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Abstract

This paper presents a parametric study of the time-resolved hemispherical reflectance
of a plane-parallel slab of homogeneous, cold, absorbing, and isotropically scatter-
ing medium exposed to a collimated Gaussian pulse. The front surface of the slab
is transparent while the back surface is assumed to be cold and black. The one-
dimensional time-dependent radiation transfer equation is solved using the mod-
ified method of characteristics. The parameters explored include (1) the optical
thickness, (2) the single scattering albedo of the medium, and (3) the incident pulse
width. The study pays particular attention to the maximum transient hemispherical
reflectance and identifies optically thin and thick regimes. It shows that the maxi-
mum reflectance is independent of the optical thickness in the optically thick regime.
In the optically thin regime, however, the maximum hemispherical reflectance de-
pends on all three parameters explored. The transition between the optically thick
and thin regimes occurs when the optical thickness is approximately equal to the
dimensionless pulse width. Finally, correlations relating the maximum of the hemi-
spherical reflectance as a function of the optical thickness, the single scattering
albedo of the materials and the incident pulse width have been developed. These
correlations could be used to retrieve radiation characteristics or serve as initial
guesses for more complex inversion schemes accounting for anisotropic scattering.

Key words: transient radiative transfer, method of characteristics, scattering,
turbid media, tomography, biological tissues.
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1 INTRODUCTION

Transient radiation transfer has found numerous applications in (1) laser-
assisted micromachining, (2) remote sensing of combustion systems, and (3)
of biological tissues among others [1]. The governing equation for radiation
transfer in homogeneous, absorbing, emitting, and scattering media is the so-
called radiative transfer equation (RTE). It expresses an energy balance in a
unit solid angle dΩ about the direction ŝ. For a non-emitting medium, on a
gray basis, it can be written as [2],

1

c

∂I

∂t
+ (ŝ · ∇)I = −κI − σsI +

σs

4π

∫

4π

I(ŝi)Φ(ŝi, ŝ)dΩi (1)

where I is the intensity in the ŝ-direction and c is the speed of light in the
medium. The linear absorption and scattering coefficients are denoted by κ
and σs, respectively. The first and second terms on the right-hand side of the
equation represent attenuation of radiation by absorption and scattering, re-
spectively. Finally, the last term on the right-hand side corresponds to the
augmentation of radiation due to in-scattering. The scattering phase function
Φ(ŝi, ŝ) represents the probability that radiation propagating in the solid an-
gle dΩi around direction ŝi will be scattered into the cone dΩ around the
direction ŝ. The transient RTE is an integro-differential equation involving
seven independent variables. In addition, various other factors like geometry,
temperature fields, and the radiation characteristics of the medium make the
RTE difficult to solve.

Established techniques for estimating the absorption and scattering coeffi-
cients as well as the scattering phase function consist of measuring the spec-
tral or total, directional-hemispherical or directional-directional transmittance
and reflectance, with collimated or diffuse incident radiation. First, initial val-
ues for the radiation characteristics are assumed and the RTE is solved. The
calculated and measured quantities are compared and a new estimate of the
radiation characteristics is made. This procedure is accomplished in an iter-
ative and time consuming manner until the set of absorption and scattering
coefficients and scattering phase function minimizes the difference between the
measured and the calculated properties. The major difficulty inherent to the
inverse method is that there is no unique solution for the radiation character-
istics. Moreover, due to the iterative nature of the method, the initial guess
for radiation characteristics are of major importance if one wants a rapid con-
vergence toward the optimum solution.

Moreover, Yamada and Kurosaki [3] retrieved the radiation characteristics of
porous materials from emittance measurements. Indeed, the authors assumed
an isotropic scattering phase function and used the fact that the emittance of
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an optically thick and isotropically scattering medium is independent of the
optical thickness and depends only on the single scattering albedo. Finally,
they recommended their method for highly scattering media rather than for
absorbing media since the albedo is very sensitive to emittance and that the
latter is larger for strongly absorbing media.

The present analysis aims at (1) gaining a physical understanding of transient
radiation transfer in participating media, (2) performing a parametric study
for the time-dependent hemispherical reflectance of a cold plane-parallel slab
of an absorbing and isotropically scattering medium subject to a collimated
Gaussian pulse, and (3) developing simple correlations for the maximum of
the time-resolved hemispherical reflectance. The study pays particular atten-
tion to the maximum transient hemispherical reflectance which can easily be
measured experimentally using a time-resolved attenuated total reflectance
device [4]. Reflectance is preferred to transmittance as its magnitude and the
associated signal to noise ratio are much larger, without requiring a powerful
radiation source that could heat up or damage the samples. This issue is of
particular concern for non-invasive in vivo sensing of biological tissues.

2 CURRENT STATE OF KNOWLEDGE

Due to the challenges encountered in solving the RTE several simplifying ap-
proaches have been suggested. First, the diffusion approximation has been
used extensively in biomedical applications [4]. Its major advantage resides in
the fact that there exist analytical solutions for the time-resolved hemispher-
ical reflectance for simple geometries [4]. Brewster and Yamada [5] used the
Monte Carlo method to study the effects of single scattering albedo, optical
thickness, anisotropic scattering, and detector field of view on time-resolved
transmittance and reflectance of an optically thick slab subjected to a pi-
cosecond collimated pulse. The numerical results were in good agreement with
predictions of the diffusion approximation at long times [5]. Brewster and Ya-
mada propose to use their findings to retrieve the radiation characteristics
of absorbing and scattering media from transient transmission measurements
at long times. However, their study also indicates that the diffusion theory
predictions can be poor at early times, including the maximum hemispherical
reflectance and the time at which it occurs. Other studies have shown that
the diffusion approximation fails to predict the transmittance at early times
for all optical thicknesses and also at long times for optically thin slabs [6]. In
addition, Guo et al. [7] showed that the diffusion approximation fails for both
collimated radiation and strong anisotropically scattering media.

Moreover, analytical solutions of the transient RTE in homogeneous, isotropi-
cally scattering plane-parallel slab having a non-reflecting front surface with a
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blackbody back surface exposed to a collimated source have been obtained by
Pomraning [8]. Also, Wu [9] used analytical solutions to obtain expressions for
the hemispherical transmittance and reflectance. In addition, Wu [9] used the
integral equation to compute the temporal reflectance and transmittance of
1-D absorbing and isotropically scattering slabs with various scattering albe-
dos and optical thicknesses that compared well with results obtained using
the Monte Carlo method. Tan and Hsu [10] used an integral formulation to
simulate radiative transport in a 1-D plane-parallel slab of a homogeneous ab-
sorbing and isotropically scattering medium with a black back surface exposed
to diffuse or collimated irradiation. The authors then extended the method to
solve the same problem in three-dimensional geometries [11].

Numerical techniques have also been used to solve the transient RTE. First, in
a series of papers, Kumar and co-workers solved the transient radiation trans-
fer equation for different geometries, scattering characteristics, and boundary
conditions using various methods, including the P1 approximation [12], Monte
Carlo [13–15], discrete-ordinates [6, 16, 17], and radiation element [18] meth-
ods and compared their results with predictions based on other methods or
approximations [19] or with experimental data [17]. Moreover, Hsu [15] used
the Monte Carlo method to study the effect of various parameters on the radi-
ation transfer through a one-dimensional, plane-parallel, cold, absorbing, and
isotropically scattering medium. The author focused on the transient local
fluence within the slab by accounting for specular internal reflection at the
slab surfaces. Elaloufi et al. [6] used a conventional discrete ordinate method
(DOM) to solve the transient RTE and assess the validity of the diffusion ap-
proximation for slabs with different radiation characteristics and anisotropy.
Also, Ayranci et al. [20] used the method of lines solution of the DOM to pre-
dict transmittance of a cubical enclosure of purely scattering media. Recently,
Chai et al. [21] used the Finite Volume Method to simulate transient radia-
tion transfer in a cube of absorbing and isotropically scattering medium with
different boundary conditions and compared the results with published ones.
On the other hand, Boulanger and Charette [22] used the DOM coupled with
the piecewise parabolic advection (PPA) scheme to solve the transient multi-
dimensional RTE for a collimated light pulse propagating in a semi-infinite,
semi-transparent, non-homogeneous medium. Finally, Lu and Hsu [23] have
developed the reverse Monte Carlo method in order to reduce the excessive
computational time of the conventional Monte Carlo method and applied it to
various geometries and scattering media. Similarly, Katika and Pilon [24] have
developed the modified method of characteristics used in the present study.
Advantages of this method versus other methods include its use for solving
coupled equations using other numerical schemes, and its ability to capture
the sharp discontinuities associated with the propagation of a radiation front
in transient radiation transport.

Unfortunately, it was not possible to obtain analytical expressions [8,9] for the
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maximum reflectance and the time at which it occurs. Instead, a numerical
parametric study is performed using the modified method of characteristics
and discussed in the following sections.

3 ANALYSIS

Let us consider transient radiation transfer in a homogeneous absorbing and
isotropically scattering but non-emitting plane-parallel slab of thickness L as
shown in Figure 1. The front surface of the slab (z = 0) is exposed to a
normally collimated and monochromatic incident Gaussian pulse. The index
of refraction of the slab is assumed to be identical to that of the surroundings
and equal to unity. Thus, the entire incident light is transmitted through
the front surface and internal reflection can be ignored. The back surface of
the slab (z = L) is treated as black and cold. This can be implemented by
coating the surface with paints or soot particles depending on the wavelength
of interest. Finally, a Gaussian pulse is considered instead of other pulse shapes
as it closely matches the shape produced by lasers or light emitting diodes.

3.1 Governing Equation

To solve the one-dimensional radiative transfer equation for collimated irra-
diation, the intensity is split into two parts: (i) the radiation scattered from
the collimated radiation source and (ii) the remaining collimated beam af-
ter partial extinction by absorption and scattering along its path. The con-
tribution from emission by the medium is negligible compared to the inci-
dent and scattered intensities, and consequently the medium can be consid-
ered as cold. Thus, the intensity for a gray medium is written as I(z, µ, t) =
Ic(z, µ, t)+Id(z, µ, t). The collimated intensity Ic(z, µ, t) at location z and time
t in direction µ, remnant of any incident irradiation Ii(t), is given by [2, 8],
Ic(z, µ, t) = Ii(t−z/c)δ(µ−µ0)e

−βz where δ(µ−µ0) is the Dirac’s delta function
and, in the present case, the incident direction µ0 corresponds to the normal
direction, i.e., µ0 = 1. Thus, the governing equation for the diffuse radiation
intensity Id(z, µ, t) along the characteristics curves of the photons [2, 25] can
be written as,

1

c

DId(z, µ, t)

Dt
= −βId(z, µ, t) +

σs

4π

∫

4π

Id(z, µi, t)dΩi +
σs

4π
Ii(t− z/c)e−βzH(t− z/c)(2)

where DId/Dt is the total derivative of Id(z, µ, t) along the characteristic
curves dz/dt = cµ.
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3.2 Initial and Boundary Conditions

In order to solve the above governing equation, initial and boundary conditions
must be specified. First, the initial intensity at all locations and in all directions
at time t = 0 is taken as zero. At subsequent times, the radiation intensity
incident on the front face (at z = 0) is a truncated Gaussian distribution with
a pulse width tp expressed as,

Ii(t) = I0 exp


−4 ln 2

(
t− tc

tp

)2

 , 0 < t < 2tc and Ii(t) = 0, t ≥ 2tc (3)

In the present study, Ii(t) reaches its maximum value I0 at time tc = 3tp.

Finally, for the diffuse component, Id, the front is transparent while the back
surface is assumed to be black and cold, i.e., Id(z = 0, µ > 0, t) = 0 and
Id(z = L, µ < 0, t) = 0. The value of the diffuse intensity Id(z = 0, µ < 0, t)
and Id(z = L, µ > 0, t) need not be considered, because the method of solution
uses boundary conditions only for intensity entering the computational domain
[25].

3.3 Dimensional Analysis

Dimensional analysis of the RTE can be performed by defining the following
independent dimensionless variables, z∗ = z/L, I∗ = I/I0, and t∗ = t/1/βc =
βct where L is the slab thickness, I0 is the maximum value reached by the
time-dependent incident intensity, and 1/βc represents a characteristic time
for radiation propagation through the slab. Substituting the dimensionless
parameters in Equation (1) for one-dimensional transient radiation transfer
problems along the z-direction yields,

∂I∗

∂t∗
+

µ

βL

∂I∗

∂z∗
= −I∗ +

ω

4π

∫

4π

I∗(ŝi)Φ(ŝi, ŝ)dΩi (4)

where ω is the single scattering albedo defined as σs/(κ + σs). One can also
recognize the optical thickness βL. Thus, the dimensionless intensity I∗ at
time t∗ and location z∗ in direction µ depends on the dimensionless variables
ω, βL, and Φ, i.e., I∗ = I∗(z∗, µ, t∗, ω, βL, Φ). After solving for the intensity
in all directions at every time and location, the time-resolved transient hemi-
spherical reflectance R(t∗) at the front surface (z∗ = 0) can be computed based
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on the following definition,

R = −2π

0∫

−1

I∗(0, µ, t∗, ω, βL, Φ)µdµ = R(t∗, ω, βL, Φ) (5)

Furthermore, if the medium is isotropically scattering, i.e., Φ(ŝi, ŝ) = 1, the
transient hemispherical reflectance of the slab is a function of only three di-
mensionless numbers, i.e., R = R(βct, ω, βL). Note that other characteristic
times could have been selected such as: (1) the pulse width tp, (2) the time
at which the incident intensity reaches its maximum tc, (3) the time for the
pulse to travel ballistically through the slab given by L/c, or (4) the charac-
teristic time of the scattering process alone defined as t∗ = σsct. In all cases,
ω, βL and Φ appear as relevant dimensionless parameters. In addition, the
dimensionless quantities βctp and βctc appear when time is scaled with tp and
tc, respectively.

3.4 Method of Solution

The governing Equation (2) and the associated boundary conditions are solved
using the modified method of characteristics [25]. Extensive discussion of this
method for both transient and steady-state radiation transfer has been pre-
viously reported [24,26] and need not be repeated here. Comparison between
numerical integral solutions [9] and the modified method of characteristics
were found to be in good agreement with a mean error of less than 5% for
βL = 0.5 and ω = 0.05 and 0.95 [25]. The same accuracy is expected in the
present results. A uniform discretization of Nz points along the z−direction
and Nθ discrete directions for θ varying from 0 to π was used. The time interval
∆t had little effect on the numerical results as long as it satisfied ∆t ≤ ∆z/c.
Thus, ∆t was set equal to ∆z/c where ∆z = L/(Nz − 1). After solving for
the intensities in the discrete directions at every point, the hemispherical re-
flectance R of the slab was computed from Equation (5).

4 RESULTS AND DISCUSSION

A large range of optical thickness (0 ≤ βL ≤ 50), single scattering albedo
(0.05 ≤ ω ≤ 1), and incident pulse width (0.015 ≤ βctp ≤ 0.15) have been
explored. The number of discrete points Nz and directions Nθ were varied be-
tween 100 and 2000 and between 50 and 450, respectively to obtain converged
numerical solutions for each pair of parameters βL and ω. In all cases, the re-
sults were assumed to be numerically converged when doubling both Nz and
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Nθ produced less than 1% change in the value of the computed reflectance.
The integrals in Equations (2) and (5) were computed using the 3/8 Simpson’s
rule [27]. The CPU time taken for computing the transient hemispherical re-
flectance for the case of βL = 0.5 and ω = 0.95, for example, using a spatial
discretization of Nz = 101 points and an angular discretization of Nθ = 25
directions per octant was about 21 seconds on a 512 MHz Pentium III for a
total dimensionless time of t∗ (=βct) = 8.

4.1 Effect of βL and ω

Figure 2 shows the typical transient hemispherical reflectance of the plane-
parallel slab with either black or specularly reflecting back surface as a function
of βct, for ω = 0.7, βL = 0.5, and βctp = 0.15. Since there is no direct
reflection of the incident beam from the front surface, the reflected signal is
due to back scattering of the incident radiation by the slab. The maximum
value of the reflectance is denoted by R1 and occurs at dimensionless time
βct1. For a black back surface, the reflectance reveals only one maximum as
the pulse is absorbed once it reaches the back of the slab. On the other hand,
for a specularly reflecting back surface, two maxima are evident. The first one
is identical to that observed with a black back surface. The second maximum
corresponds to radiation emerging from the slab after being reflected by the
back surface.

Moreover, Figure 3 shows the transient hemispherical reflectance as a function
of the dimensionless time t∗ for different values of the single scattering albedo
ω and for βL = 0.7 and βctp = 0.15. Similar plots have been obtained for
other values of βL. One can see that the hemispherical reflectance R increases
as ω increases for any given dimensionless time βct. This can be attributed
to the increase in the scattering coefficient resulting in a larger fraction of the
incident intensity being back-scattered by the medium. It is also worth noting
that the dimensionless time βct1 appears to be independent of ω and is equal
to 0.6 in these cases.

Finally, Figure 4 shows the transient hemispherical reflectance as a function
of the dimensionless time βct for different values of βL and for ω = 0.95 and
βctp = 0.15. Similar results have been obtained for different values of ω. Figure
4 indicates that the maximum reflectance R1 increases with βL up to a critical
optical thickness (βL)cr beyond which it is independent of βL. The highest
value for the maximum reflectance is denoted R1,max. One can also note that
(βL)cr for this case is equal to 0.15 which, coincidentally, is also the value of
βctp. The effect of the incident pulse width, βctp, will be discussed in detail
in Section 4.3.
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4.2 Maximum Reflectance

Let us now focus our attention to the value of the maximum reflectance R1

and its occurrence at time βct1 as functions of the optical thickness βL and
of the single scattering albedo ω. Figure 5 (top) shows the peak value of the
transient reflectance R1 as a function of the optical thickness βL ranging from
0.01 to 50 for βctp = 0.15 and for four different values of the single scattering
albedo between 0.05 and 1. It also shows (bottom) the corresponding values of
βct1 as a function of βL for values up to 1 for the sake of clarity. The error bars
correspond to a numerical uncertainty of ±5%. It is interesting to note that
the critical optical thickness (βL)cr is identical for R1 and for βct1. Moreover,
an optically thin and optically thick regimes can be identified as follows:
Optically Thin Regime, βL ≤ (βL)cr. In this regime, R1 varies linearly
with ln(βL) and increases as ω increases. On the other hand, βct1 is nearly
independent of ω and varies linearly with βL. In addition, (βL)cr depends on
the pulse width βctp.
Optically Thick Regime, βL > (βL)cr. In this regime, R1 is independent of
βL but increases with ω. However, βct1 appears to be independent of both βL
and ω. Beyond the critical value (βL)cr, the optical thickness βL has no effect
on the maximum reflectance, and R1 and βct1 reach their maximum denoted
by R1,max and βct1,max, respectively.

4.3 Effect of the Incident Pulse Width

To investigate the effect of the dimensionless pulse width on the hemispherical
reflectance, different values of βctp have been investigated, namely 0.15, 0.075,
and 0.015. Figure 6 plots R1 versus βL for different values of βctp at ω = 0.7.
One can see that R1 increases as βctp increases for fixed values of ω and βL.
This can be attributed to the fact that increasing the pulse width increases
the radiant energy in the slab at any given time and therefore, increases the
scattered radiation intensity and the hemispherical reflectance.

In addition, Figure 7 shows the ratio βct1/βctp and R1 as functions of βL for
different values of the single scattering albedo ω. It indicates that as βL tends
to zero, t1 tends asymptotically toward 3tp. Moreover, βct1 is independent of ω
in the optically thin regime for all values of βctp. Additionally, once βL reaches
βctp, the value of βct1 and R1 become independent of βL. This is defined as
the optically thick regime because increasing βL no longer has any effect on
the values of βct1 and R1. In the optically thick regime βct1 = βct1,max and
R1 = R1,max.

Finally, for each value of ω, the values of (βL)cr can be obtained from R1 versus
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βL or from βct1 versus βL. The values of (βL)cr vary within 5% when obtained
from either R1 or βct1. Figure 8 shows the average critical optical thickness
(βL)cr as a function of the dimensionless pulse width βctp for different values
of ω. One can see that for βctp = 0.015 and 0.075, the average value of the
critical optical thickness (βL)cr is approximately βctp. However, when βctp
increases to 0.15, the average value of (βL)cr falls below βctp possibly due to
numerical error. Nonetheless, this finding indicates that (βL)cr is equal to βctp
within 10%.

4.4 Correlations

Developing correlations for transient hemispherical reflectance could be useful
as a simple method for retrieving the optical thickness and the single scattering
albedo of a substance. Then, each regime features its own set of correlations
for R1 and βct1.
Optically Thin Regime, βL ≤ βctp. In this regime the maximum reflectance
R1 varies as a function of ln(βL) as indicated by Figures 5 and 6 and can be
expressed as,

R1(ω, βctp, βL) = C1 ln(βL) + C2 (6)

where the slope C1 = C1(ω, βctp) and the constant C2 = C2(ω, βctp) depend
on both the single scattering albedo and the dimensionless pulse width. Figure
9 illustrates C1/βctp and C2/ωβctp as functions of ω and βctp, respectively for
βL ≤ βctp. It shows that both C1 and C2 vary with ωβctp according to,

C1 = 0.05ωβctp = 0.05σsctp (7)

C2 = (−0.8βctp + 0.375)σsctp (8)

This confirms the finding that if the slab is non-scattering (σs = 0) its re-
flectance vanishes. The coefficients of regression R2 for C1 and C2 are 0.998
and 0.973, respectively.

Similarly, Figure 7 indicates that, within the numerical uncertainty,

βct1 = 3βctp + βL for βL < βctp (9)

The value of βct1 = 3βctp for the limiting case when βL approaches 0 can be
explained from first principles. Indeed, the scattered intensity in direction ŝ
from a ray of radiation propagating in direction ŝi by an infinitesimally thin
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element dL can be expressed as [2],

dIsca(ŝ, t) =
σsdL

4π

∫

4π

I(ŝi, t)Φ(ŝi, ŝ)dΩi (10)

when βL approaches 0, one can safely assume that single scattering prevails
[28]. Then, the incoming intensity from direction ŝi is identical to the incident
intensity, i.e., I(ŝi, t) = Ii(t)δ(ŝ − ŝ0) and Equation (10) reduces to, I(ŝ, t) =
σsL
4π

Ii(t)Φ(ŝ0, ŝ). Then, using Equation (5) for an isotropically scattering slab,
the hemispherical reflectance simplifies to,

R(t) =
σsL

2

Ii(t)

I0

(11)

Thus, the reflectance R(t) is maximum when Ii(t) is maximum, that is, when
t = tc = 3tp, in our case. Moreover, predictions from Equation (11) compare
well with numerical results for βL = 0.0001 and βctp = 0.015. The maximum
reflectance was R1 = 0.005% and occurred at βct1 = 0.0452, with a relative
error of 5.5% with respect to the predictions of Equation (11).
Optically Thick Regime, βL > βctp. In this regime, the maximum re-
flectance R1,max and βct1,max is independent of βL. Figure 10 shows the linear
increase of the ratio R1,max/βctp as a function of ω. It also shows that βct1,max

as a function of βctp for all values of βL and ω in this regime. It establishes
that,

R1,max = 0.156σsctp for βL > βctp (12)

βct1,max = 4βctp for βL > βctp (13)

4.5 Discussion

First, numerical simulations were performed for different indices of refraction
(n = 1, 1.33, and 1.5) for ω = 0.7 and βL = 0.5 while still neglecting internal
reflectance. This practically can be achieved by immersing the device in an
index matching fluid whose index of refraction is the same as that of the slab
to be analyzed. As expected from dimensional analysis, the same values of the
transient hemispherical reflectance shown in Figure 3 were obtained for the
same set of parameters (ω, βL, βctp).

Moreover, Figure 11 compares the predictions of the above correlations with
numerically computed values of R1 and βct1, respectively. The computed max-
imum hemispherical reflectance is properly predicted within a maximum ab-
solute error of ±0.21%, and every numerically computed dimensionless time
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βct1 is predicted within a maximum absolute error of ±0.025. The maximum
relative error was determined for small values of R1 that might be difficult to
measure experimentally.

Additionally, the above correlations were validated against numerical results
reported by Wu [9]. In particular Figures 3, 9 and 10 in Ref. [9] were digitized
and the maximum reflectance was retrieved using digiXY. The optical thick-
ness βL ranged from 0.25 to 16, the single scattering albedo ω ranged from
0.05 to 1, and the dimensionless pulse width was either 0.15 or 0.3333 [29]
while tc/tp = 3. Most data fell in the optically thick regime. The single scat-
tering albedo was retrieved within 5% of its input value by recognizing that
ω = 4R1,max/0.156βct1,max. If one assumes that tc, tp, t1,max and R1,max are
accessible experimentally, the scattering coefficient σs can be found from Equa-
tion (12) within 16% of its input value. Moreover, we verified that t1,max = tp/4
within 11%.

Finally, the above correlations could be used to determine the radiation char-
acteristics of homogeneous absorbing and isotropically scattering media by
experimentally measuring the maximum of the transient reflectance for slabs
having at least two different thicknesses or by holding tc = 3tp and vary-
ing the pulse width of the incident radiation. The slab thickness or the pulse
width must be chosen in such a way to cover both the optically thin and thick
regimes. Note that this bears some analogy with the method proposed by Ya-
mada and Kurosaki [3] to retrieve the radiation characteristics of porous mate-
rials from steady-state emittance measurements. Indeed, the authors assumed
an isotropic scattering phase function and used the fact that the emittance of
an optically thick and isotropically scattering medium is independent of the
optical thickness and depends only on the single scattering albedo. Alterna-
tively, the method could also serve to obtain an initial guess for more complex
inversion schemes accounting for anisotropic scattering.

5 CONCLUSIONS

This paper proposes a method to determine the radiation characteristics of
homogeneous, cold, absorbing and isotropically scattering plane-parallel slab
with a transparent front surface and a black back surface from measured time-
resolved hemispherical reflectance. It presents a parametric study focusing
on the maximum hemispherical reflectance R1 and its occurrence time βct1.
Dimensionless parameters include the optical thickness of the slab βL, the
single scattering albedo ω, and the incident pulse width βctp. Conclusions
of the study are as follows: (1) there exist optically thin and optically thick
regimes for the maximum hemispherical reflectance R1 and the dimensionless
time βct1, (2) these two regimes meet at a critical optical thickness (βL)cr
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such that (βL)cr ≈ βctp, (3) in the optically thin regime, R1 increases with
increasing βL, ω and βctp, while βct1 is independent of ω but increases with
βL such that βct1 = 3βctp + βL, (4) in the optically thick regime, R1,max is
proportional to ωβctp and is independent of βL. On the other hand, βct1,max

is independent of both ω and βL such that βct1 = 4βctp.

Similar parametric studies could be performed for (i) other pulse shapes, (ii)
independently varying tc and tp of the Gaussian pulse, (iii) cases when the
indices of refraction across the front surface differ and one needs to account
for internal reflection, and (iv) anisotropically scattering media. Similar trends
and correlations are anticipated.
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FIGURE CAPTIONS

Figure 1. Schematic of an absorbing and isotropically scattering plane-parallel
slab exposed to collimated incident radiation pulse.
Figure 2. Time-resolved hemispherical reflectance R versus the dimensionless
time βct for βctp = 0.15 with βL = 0.5 and ω = 0.7 with black or specularly
reflecting back surface.
Figure 3. Time-resolved hemispherical reflectance R as a function of the di-
mensionless time βct for different values of ω and for βL = 0.7.
Figure 4. Hemispherical reflectance R as a function of βct for different values
of βL for ω = 0.95 and βctp = 0.15.
Figure 5. Effect of the single scattering albedo ω and of the optical thickness
βL on the maximum reflectance R1 (top) and the corresponding time βct1
(bottom) for βctp = 0.15.
Figure 6. Effect of the dimensionless pulse width βctp on the maximum hemi-
spherical reflectance R1 for ω = 0.7.
Figure 7. βct1/βctp and R1 as functions of βL and ω for (a) βctp = 0.15, (b)
0.075, and (c) 0.015. Error bars shown are the absolute errors.
Figure 8. Effect of the dimensionless pulse width βctp and ω on the critical
βL.
Figure 9. Value of the slope C1/βctp and constant C2/σsctp as a function
of the single scattering albedo, ω, and the incident pulse width, βctp, respec-
tively, for βL < βctp.
Figure 10. Maximum hemispherical reflectance and βct1,max scaled with βctp,
as a function of the single scattering albedo ω in the optically thick regime
(βL > βctp).
Figure 11. Comparison of predicted values of the (top) R1 and (bottom) βct1,
vs. numerically computed values for all values of βL, ω, and βctp explored in
this study.
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ŝ

Fig. 1. Schematic of an absorbing and isotropically scattering plane-parallel slab
exposed to collimated incident radiation pulse.
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