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The Effect of Contact Area on the Permeability of Fractures 

D. W. Chen, R. W. Zimmerman, and N. G. W. Cook 

Eanh Sciences Division 
Lawrence Berkeley Laboratory 

I Cyclotron Road 
Berkeley, California 94720 

ABSTRACf 

The permeability of a rock fracture is controlled primarily by the geometry of its 

void space. In order to focus on the tortuosity induced by the contact area, we con

sider an idealized fracture consisting of two parallel plates propped open by isolated 

asperities. Boundary-element calculations, analogue electrical conductivity measure

ments, and an effective medium approximation are used to study the permeability of 

fractures with circular, elliptical, and irregular asperity shapes. 



1 INTRODUCTION 

In many geological formations with low matrix permeability, fluid flow takes 

place predominantly through fractures. Fracture-dominated flow has become increas

ingly important in various problems of geotechnical interest, particularly those involv

ing underground waste isolation. In some cases flow takes place through a particular 

fracture or fault, while in other cases the flow is through a network of fractures. In 

either case, an understanding of the permeability of single fractures is required. 

The permeability of a naturally occurring rock fracture depends principally on the 

geometry of the void space. The geometry of a typical fracture consists of regions 

where the two rock surfaces are in contact (asperities), surrounded by regions where 

the two surfaces are separated by a distance (known as the aperture, h ) that may vary 

from point to point. When fluid flows through such a fracture, it not only must flow 

around the contact areas, but also has a tendency to preferentially flow through the 

channels with the largest apertures (Brown 1987), since hydraulic conductance is pro

portional to h 3. In order to successfully model this process, both effects must be taken 

into account. In this paper, however, attention will be focused on the tortuosity 

induced by the contact regions. We therefore consider idealized fractures consisting of 

two parallel surfaces, with isolated regions of contact. Numerical and analytical 

methods will be used to relate the decrease in permeability (relative to that of unob

structed flow between parallel plates) to the amount of contact area, and the geometri

cal structure of the contact areas. 

j 
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2 FORMULATION OF PROBLEM 

The flow of a Newtonian fluid (such as water) through a fracture is governed by 

the Navier-Stokes equations. Exact solutions for specific geometries are extremely 

difficult to obtain; the exact solution for flow between two parallel plates under a uni

form pressure gradient, however, is known (Schlichting 1968). The velocity profile for 

this flow is parabolic, with zero velocity at the upper and lower surfaces to satisfy the 

no-slip boundary condition. The total fluid flux Q (per unit depth of fracture into page 

on Figure 1) is found by integrating the velocity across the thickness of the channel. 

This leads to the familiar cubic law Q = h 3G /12J..L, where G = IVP I is the magnitude 

of the pressure gradient, and J.1 is the viscosity of the fluid. 

For a fracture that is modeled as two parallel plates propped open by discrete 

areas of contact (Figure 1 ), the flow cannot be everywhere parallel to the overall pres-

sure gradient, since the fluid must follow a tortuous path as it circumvents the obsta-

cles. If the flow rates are suitably low, and if the aperture h is small relative to the 

characteristic distance L between the contact areas (Figure 1), the flow can be well 

approximated by "Hele-Shaw" flow (Schlichting 1968, p. 114). The precise con

straint on the velocity is that Re* = pUh 2/J,JL < < 1, where Re* is the reduced Rey

nolds' number, and U is the mean velocity magnitude. In Hele-Shaw flow, the fluid 

still has a parabolic velocity profile, and the velocity vector rt at each point is still in 

the direction of decreasing pressure, but the local pressure gradient is not necessarily 

the same as the overall macroscopic pressure gradient. The velocity profile for this 

type of flow is given by 

-VP 
it = ~ z (z -h) , (1) 

~· . ~ 
·'· ·~ 
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where z is the transverse coordinate measured from the bottom wall. The pressure.is 

found by solving the two-dimensional Laplace equation in the region of the x -y plane 

exterior to the obstacles, i.e. 

V2 P (x, y) = 0. (2) 

Since there can be no flow into or out of the obstacles, the pressure field must satisfy 

()p !on = 0 along the obstacle boundaries, where n is the outward unit normal vector. 

The external boundaries are typically either no-flow or constant-pressure boundaries 

(Figure 2). Note that while the obstacles are correctly treated as being impermeable, it 

is not possible to impose the no-slip boundary condition along these surfaces, since the 

Laplace equation is of lower order than the Navier-Stokes equations. This incorrect 

boundary condition introduces an error which is on the order of (h /L ), and which 

therefore should be negligible for many applications. For example, typical values of h 

for fractures in crystalline rock are on the order of 10-100 jlm, while asperity separa

tions L are usually on the order of millimeters (Pyrak-Nolte et al. 1987). 

3 METHODS OF ANALYSIS 

3.1 Boundary-element analysis 

The boundary-value problem described above can be solved for general obstacle 

shapes using any of the numerical schemes that have been constructed to treat 

Laplace's equation. We use a boundary-element method to solve the Laplace equation 

in square regions containing contact areas of various shapes (Figure 2). Fixed pres

sures are maintained on two opposing edges of the region, while the other two sides 
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are taken to be no-flow boundaries. The boundary-element method has certain advan

tages over finite-differences or finite-elements for this type of problem, since it 

requires discretization only of the boundaries of the problem, instead of the entire flow 

region. Briefly described, the boundary-element method utilizes "point-source" type 

solutions to the partial differential equation, and superimposes them to satisfy the 

boundary conditions in some average or approximate sense. Details of the method, 

and some computer programs, can be found in Brebbia (1978). The boundary-element 

calculations yield the pressure distribution throughout the flow region. The velocity 

vector can be found from equation (1), after which the total flux through the region is 

found by integrating the normal component of the velocity vector across one of the 

constant -pressure boundaries. 

3.2 Analogue measurements 

Since the fluid flow is described by Laplace's equation, with the contact areas 

serving as impermeable boundaries, this problem is analogous to the flow of electrical 

current in a thin sheet with holes punched in it. Since the holes obstruct the flow of 

electrical current, they play the role of the asperity obstacles. Experiments were there

fore carried out on such sheets to measure the overall electrical conductivity (which is 

the analogue of the fracture permeability), in order to validate the numerical code. For 

these experiments, a thin sheet of conductive paper is cut into a square, and a strip of 

metallic paint is applied to two opposing edges. Since the conductivity of the paint is 

much higher than that of the paper, these edges will therefore be lines of constant 

potential. Holes which have the desired shapes, sizes and locations are cut out of the 

sheet, and the overall conductance is measured with an ohm-meter. Since resistance 

measurements can be made very accurately, this method is limited only by the preci

sion with which the holes can be cut. 

' •'• 
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3.3 Effective-medium theory 

The problem outlined above is a typical one in the area of effective properties of 

heterogeneous media. The unobstructed areas between the obstacles are regions of 

permeability K 0 (say), while the obstacles are regions of zero permeability, and it is 

desired to determine the effective macroscopic permeability K* that can represent flow 

through the fracture on' a length scale large enough to cover many asperities. Since 

this problem is governed by Laplace's equation, the method introduced by Maxwell 

(see Carslaw & Jaeger 1959, p. 425) to predict the overall electrical conductivity of 

composite media can be applied. In the terminology of the present problem, this 

method considers the decrease in flow due to a single obstacle of known size and 

shape, averages this effect over all shapes and orientations of the obstacles, and then· 

equates the resulting decrease in flux to that which would be caused by a single circu

lar "obstruction" which has some effective permeability K*. Walsh (1981) applied 

this method to a fracture with "randomly" located circular obstructions; we extend 

this method to cases where .the obstacles are elliptical in shape, with random orienta

tions. 

4 RESULTS 

4.1 Circular obstructions 

In general, the effective ·fracture permeability will depend on both the shape of 

the obstructions, and their location and orientation. The simplest case to consider is 

that of circular obstructions, for which the issue of orientation is not relevant; this is 

also the only case for which analytical estimates of the permeability have been derived 

(Walsh 1981). Walsh used Maxwell's effective medium approach, along with the 

solutions for the potential fields surrounding circular inclusions (Carslaw & Jaeger 

v 
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1959, p. 426), to derive the following expression for the effective permeability: 

K* 1-c -=--, 
K0 1+c 

(3) 

where c is the fractional contact area of the fracture. Walsh interpreted this result as 

applying to "randomly located" obstructions. However, the Maxwell formalism cannot 

account for correlations in the locations of the asperities. Furthermore, any deviation 

from randomness would introduce a second-order effect that is probably not felt at the 

low values of c found in naturally occurring fractures, which are usually less than 

25% (Tsang & Witherspoon 1981). 

Boundary-element calculations were carried out for fractures with circular 

obstructions arranged in both hexagonal (Figure 3) and square arrays, for values of c 

ranging from 0 to 0.25. When the obstructions have the sort of symmetry exhibited by 

these arrangements, it suffices to perform the calculations in a ''unit cell'' formed by 

the imaginary grid of intersecting no-flow and constant pressure lines. Perhaps surpris

ingly, in light of its approximate nature, Walsh's expression was found to be extremely 

accurate. Note that the hexagonal array should lead to isotropic permeability varia

tions, while the square array should not. However, the effect of asperity location was 

less than 1% at these values of c, and so it seems that the assumption of randomness 

can be relaxed when applying Walsh's expression. As an additional check on the 

accuracy of the boundary-element calculations, analogue measurements were also car

ried out. The measured electrical conductivities (see Figure 3) also agreed very 

closely with equation (3). 
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4.2 Elliptical obstructions 

Since the Walsh-Maxwell effective medium approach works very well for circular 

obstructions, it is worthwhile to extend it to more general shapes. One general shape 

that is often used in modeling various physical properties of rocks is the ellipse (Zim

memian 1984). Although it could be said that the ellipse, as well as the circle, are 

both too idealized to represent real asperities, the ellipse has the advantage that by 

varying the aspect ratio, one can achieve different values of the perimeter-to-area ratio. 

The basic problem that must be solved in order to apply this approach to elliptical 

obstructions is Laplace's equation in the region exterior to an ellipse, with a uniform 

potential gradient at infinity, and no flow across the boundary of the ellipse. The 

ellipse has an arbitrary angular onentation with respect to the imposed potential; the 

effect on the flow is then averaged over all (equally likely) orientations. The solution 

to this problem can be found in Batchelor (1967), where it was derived in the context 

of inviscid flow acros~ an ellipse. Note that this is mathematically equivalent to the 

our problem, although the physical analogy is not so direct, since in the inviscid prob

lem the velocity potential which satisfies equation (2) is not equal to the pressure. 

While the intermediate algebraic steps are somewhat complicated, the . final expression 

for the effective permeability is only slightly different in form from equation (3) for 

circular obstructions: 

K* 1-pc 
-= 

1 + f3c ' 
(1 +a)2 

where A = -'-----"-
JJ. 4a (4) 

and the aspect ratio a ( Sl) is defined as the ratio of the minor to major axis. Note 

that for circular obstructions, a= 1, and J3 = 1, so that expression (4) for elliptical 

obstructions reduces to Walsh's expression for circular obstructions. 
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The beta factor defined in equation (4) is always greater than unity, and monoton

ically increases as the ellipse becomes more elongat~d. Hence the K* (c )IK0 curves 

for elliptical obstructions will always lie below Walsh's curve. (In fact, since circular 

"inclusions" usually lead to upper or lower bounds in effective medium problems, it 

is reasonable to expect that Walsh's result is an upper bound with respect to all possi

ble geometries). The predictions of the effective medium theory for a.=0.2 are shown 

in Figure 4, where they are compared to boundary-element calculations. The elliptical 

obstacles were generated by placing them on an hexagonal array (as in Figure 3), and 

then assigning to each ellipse a randomly chosen angular orientation. Over the range 

of contact areas shown in the figure, the effective medium estimates are very accurate. 

(Note that a contact area of 4% consisting of ellipses with a.=0.2 corresponds to the 

same number of obstacles per unit area as a 20% concentration of circular obstacles). 

Due to the extremely laborious and painstaking procedure required to cut out the holes 

in conductive sheet, only one analogue measurement was made; this value (Figure 4) 

was also in relatively close agreement with the predicti~ns of equation (4). 

4.3 Irregular obstructions 

The shapes of asperity obstructions found in real rock fractures are of course 

more irregular than circles or ellipses. We have therefore used our boundary-element 

code to study flow around irregularly shaped obstacles such as that shown in Figure 5. 

These patterns are generated by breaking up the square into a 64x64 rectangular grid, 

and assigning each grid block to be either an obstruction zone or a flow zone. The 

parameter that can be altered when generating these patterns is the correlation-length 

parameter (see Coakley 1989). As expected, the calculated permeabilities lie below 

equation (3). These permeabilities can be fit fairly well by using the elliptical obstruc

tion model (equation (4)) along with a value of a.=0.25. It can be conjectured that 
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this value of a is somehow related to the perimeter-to-area ratio of the irregular 

obstruction pattern; this possibility is currently being investigated. 

S CONCLUSIONS 

Numerical, analogue and analytical methods have been used to investigate the 

effect of contact area geometry on the permeability of a fracture. To isolate the effect 

of contact area, the fracture aperture has been assumed constant in the regions between 

the asperities. For obstacles that are circular in the plane of the fracture, the expres

sion derived by Walsh (1981) using a Maxwell-type effective medium approximation 

(equation (3)) was found to be very accurate for contact areas up to at least 25%. The 

Walsh-Maxwell approach was extended to randomly oriented obstacles of elliptical 

shape (equation (4)), with the results verified numerically for certain values of the 

aspect ratio and percentage contact area. Fractures with more irregular contact area 

geometries were also studied using the boundary-element approach. Such fractures 

had permeabilities that were lower (by as much as 30%) than would be predicted by 

Walsh's expression, but which could be fit very well by the effective medium approxi

mation if an equivalent aspect ratio is used. 
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Figure 1. Top: Side view of a rock fracture. Middle and bottom: idealized fracture 

with parallel walls and isolated asperities. 
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Figure 2. Schematic diagram of the basic computational problem, showing two asperi

ties, the no-flow and constant-pressure boundaries, and the discrete nodal points used 

in the boundary-element calculations. 



>-
1-
~ 

0.9 

CD 0.8 
< w 
~ 
0:::: 
w 
a_ 0.7 
0 w 
N 
_J 

< 
~ 0.6 
0:::: 
0 z 

0.5 

• • • • • • • • • • • • • • • • • • • • • • • • • 

- 14-

0 BOUNDARY-ELEMENT METHOD 

0 ANALOGUE MEASUREMENTS 

WALSH'S THEORY (1981) . 
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Figure 3. Normalized permeability of a fracture with circular asperities. Typical 

asperity geometry is shown in the inset. 
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Figure 4. Normalized permeability of a fracture with elliptical asperities. Typical 

asperity geometry is shown in the inset. 
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Figure 5. Normalized permeability of a fracture with irregular asperities. Example of 

asperity geometry is shown in the inset. 
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