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Global navigation satellite systems (GNSS) have been the main technology used in aerial and

ground vehicle navigation systems. As vehicles approach full autonomy, the requirements on

the accuracy, reliability, and availability of their navigation systems become very stringent.

Due to the limitations of GNSS, namely severe attenuation in deep urban canyons and

susceptibility to interference, jamming, and spoofing, alternative sensors and signals are

sought. The most common approach to address the limitations of GNSS-based navigation

in urban environments is to fuse GNSS receivers with inertial navigation systems (INSs),

lidars, cameras, and map matching algorithms. An alternative approach has emerged over

the past decade, which is to exploit ambient signals of opportunity (SOPs), such as cellular,

digital television, AM/FM, WiFi, and low Earth orbit (LEO) satellite signals.

Among SOPs, cellular signals have attracted significant attention due to their inherently

desirable attributes, including: abundance, geometric diversity, high received power, and

large transmission bandwidth. Cellular systems have gone through five generations. Long-

term-evolution (LTE) and new radio (NR) are the standards of the last two generations of

wireless technology, namely 4th generation (4G) and 5th generation (5G), respectively. LTE

has been developed and standardized in most countries over the past few years and currently

has more than four billion users. The structure of NR signals has been finalized in 2019 and
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since then cellular providers have started rolling 5G out in major cities around the world.

Cellular signals are not designed for navigation. In order to exploit cellular signals for navi-

gation purposes, several challenges must be addressed: (1) specialized receivers are required

to extract navigation observables from cellular signals, (2) cellular towers typically transmit

from low elevation angles, causing multipath signals to be received alongside line-of-sight

signals. Multipath can introduce error on the estimated navigation observables, which must

be alleviated, (3) the achievable ranging accuracy in multipath-free and multipath-rich en-

vironments must be characterized, (4) navigation framework must be developed to localize

the receiver using the derived navigation observables, and (5) cellular signals base stations’

clock biases must be estimated, since they are not available to the receiver.

This dissertation aims to address all of the above challenges for cellular LTE and NR sig-

nals. In particular, for LTE, first, a software-defined receiver (SDR) is proposed that is

capable of (1) extracting the essential parameters for navigation from received LTE sig-

nals, (2) acquiring and tracking LTE signals transmitted from multiple eNodeBs, and (3)

producing navigation observables from LTE signals including code and carrier phase and

Doppler frequency measurements. Second, the accuracy of the produced measurements are

derived as a function of carrier-to-noise ratio and signal transmission bandwidth. It is shown

that LTE cell-specific reference signal (CRS) can provide higher precision compared to the

LTE secondary synchronization signal (SSS) due to its high transmission bandwidth. Third,

standalone and non-standalone navigation frameworks are proposed to localize the receiver

using the generated navigation observables. Fourth, it is proposed to exploit the received

LTE signal’s time-of-arrival (TOA) and direction-of-arrival (DOA) to produce a navigation

solution in cold-start applications, where there is no estimate of the receiver’s initial state.

For this purpose, an SDR is designed to jointly acquire and track TOA and DOA of LTE

signals.

For NR, first, an SDR is proposed that is capable of (1) acquiring synchronization signal
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(SS), physical broadcast channel (PBCH) signal, and its associated demodulation reference

signal (DM-RS), which are transmitted on a block called SS/PBCH block and (2) tracking

SS/PBCH block to produce code and carrier phase and Doppler frequency measurements

from NR signals. Second, the precision of the derived code and carrier phase measurements

are analyzed as a function of carrier-to-noise ratio and NR numerology. Finally, the statistics

of the NR position estimation error are derived for different propagation channels.

Throughout the dissertation, numerical and experimental results are provided to validate

the theoretical contributions.
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Chapter 1

Introduction

The inherently weak global navigation satellite system (GNSS) signals undergo severe atten-

uation in deep urban environments, making them unreliable for navigation [2]. Under these

weak signal conditions, receivers cannot produce a navigation solution, since they cannot

continuously track GNSS signals. Despite the inability to produce a navigation solution,

some approaches utilized the received signal power, the periodicity of GPS satellites, and a

power matching algorithm to estimate the receiver’s state [3, 4]. Other approaches utilized

three-dimensional (3-D) building maps to predict satellite visibility via shadow matching

to aid conventional range-based GNSS positioning [5, 6]. The most common approach to

address the limitations of GNSS-based navigation in urban environments is to fuse GNSS

receivers with inertial navigation systems (INSs), lidars, cameras, and map matching algo-

rithms [7–9]. Although fusing these systems with GNSS signals have improved the GNSS

standalone navigation solution, they have failed to provide a reliable navigation solution

in the absence of GNSS signals due to the dead reckoning characteristic of these sensors.

Besides, the performance of some of these sensors such as camera and Lidar depends on the

weather condition and availability of environmental features. Over the past decade, a new

paradigm has emerged to address GNSS limitations, which is to exploit ambient signals of
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opportunity (SOPs). This approach is discussed in the next section.

1.1 Signals of Opportunity

SOPs are ambient radio frequency (RF) signals, which are not designed for navigation;

however, they are freely available in the GNSS-challenged environments and can be exploited

for navigation purposes. Cellular, digital television, AM/FM, Wi-Fi, and low-earth orbit

(LEO) satellite signals are examples of SOPs [10–14].

The literature on SOPs answers theoretical questions on the observability and estimability

of the SOPs landscape for various a priori knowledge scenarios [15] and prescribes receiver

motion strategies for accurate receiver and SOP localization and timing estimation [16–18].

Moreover, a number of recent experimental results have demonstrated receiver localization

and timing via different SOPs [19–23]. Among SOPs, cellular signals are particularly attrac-

tive for positioning due to their desirable attributes, which will be discussed next.

1.2 Cellular Signals

Cellular signals posses several desirable characteristics for opportunistic navigation, including

[24]:

• Abundance: There are several towers from different cellular providers in each area

that can be exploited for navigation. Note that these signals are used opportunistically

and there is no need to be the subscriber of any of the networks.

• Geometric diversity: By construction of hexagonal cells in cellular networks, cellular

towers possess a favorable geometry for positioning.
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• High received power: Experimental results have shown that received cellular signals

have more than 20 dB higher carrier-to-noise ratio compared to the GNSS signals even

in deep indoor and urban environments.

• Large bandwidth: Cellular signals have significantly larger transmission bandwidth

compared to the GNSS signals, which provides accurate time-of-arrival (TOA) estima-

tion especially in GNSS-challenged environments.

• Free to use: In an opportunistic navigation, cellular downlink signals are exploited

for navigation without the need to communicate back. Therefore, the receiver does not

need to be a paying subscriber of the network.

• Jamming and spoofing resistance: Cellular signals are transmitted at different

frequency bands and from different cellular providers. Therefore, jamming or spoofing

all cellular signals at once requires sophisticated hardware and high power, which is

impractical.

Over the past years, the potentials of cellular code division multiple access (CDMA), which is

the transmission standard of the third generation (3G) of cellular signals, have been evaluated

thoroughly and navigation frameworks and receiver architectures have been developed for

these signals [25, 26]. Moreover, experimental results have demonstrated sub-meter-level

accuracy for an unmanned aerial vehicle (UAV) navigating with cellular CDMA signals [22].

In recent years, the new generations of cellular signals namely long-term evolution (LTE) and

new radio (NR) signals, which are the fourth and fifth generations (4G and 5G, respectively)

of cellular transmission standards, respectively, have been developed and implemented. Ex-

ploiting cellular LTE and NR signals have received considerable attention due to their specific

desirable characteristics, including: (1) higher transmission bandwidth compared to previ-

ous generations of wireless standards and (2) the ubiquity of their networks. Cellular LTE

and NR signals use orthogonal frequency division multiple access (OFDMA) modulation for
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their transmission, which is significantly different than CDMA signals. Therefore, extending

the receiver structure and navigation results of CDMA signals to LTE and NR signals is

impractical. In order to exploit cellular LTE and NR signals for navigation, new receiver

structure must be developed. Besides, the achievable ranging and localization accuracy of

these signals must be derived accordingly. This dissertation tackles these challenges and

makes several contributions that are discusses in the next section.

1.3 Dissertation Contributions

Over the past few years, literature have derived the Cramér-Rao lower bound (CRLB) of the

achievable localization accuracy of cellular LTE signals [27, 28] and several software-defined

receivers (SDRs) have been proposed for navigation using LTE signals [29–31]. However,

there are several challenges associated with navigating with these SDRs, which rely on ac-

quiring the primary synchronization signal (PSS) transmitted by the LTE base station (also

known as evolved Node B or eNodeB). The first challenge results from the near-far effect

created by the strongest PSS, which makes it impossible for the receiver to individually ac-

quire the remaining ambient PSSs. A simple solution would be to track only the strongest

PSSs (up to three). This raises a second challenge: the number of intra-frequency eNodeBs

that the receiver can simultaneously use for positioning is limited [32]. To circumvent this

problem, other cell-specific signals can be tracked, in which case the receiver must obtain

high-level information of the surrounding eNodeBs, such as their cell IDs, signal bandwidths,

and the number of transmitting antennas. The literature on LTE-based navigation assumes

this information to be known a priori, which raises the third challenge associated with the

published SDRs. In practice, it is desirable to have a receiver that is capable of obtaining

this information on-the-fly in unknown environments, which is the first contribution of this

dissertation.
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After acquiring the received LTE signals of all the eNodeBs in the environment, the user

equipment (UE) must estimate signal’s TOA. Literature have proposed different methods to

estimate TOA of LTE signals, including a joint channel and delay estimation method in [33],

super resolution algorithm (SRA) in [31, 34], and a threshold-based approach in [30, 35].

These methods either have high computational complexity or low accuracy. The second

contribution of this dissertation is developing three tracking methods to track TOA of the

LTE signals, with low computational complexity and high accuracy. The achievable ranging

accuracy of the proposed methods are derived analytically and compared with each other

and the state-of-the-art experimentally.

In general, one of the main challenges of navigation with cellular signals is the unknown

clock biases of the cellular base stations. To remove the effect of the eNodeBs’ clock biases,

some literature have considered synchronized eNodeBs, which can be obtained using lab

emulated LTE signals [29]. This approach is not applicable to real-world scenarios since the

eNodeBs’ are not synchronized. The other approach could be estimating and removing the

effect of the clock bias in a post-processing fashion using the known range measurements

obtained by GNSS signals [30]. This approach is not practical for real-time applications. The

third contribution of this dissertation is developing three navigation frameworks to estimate

the location of the receiver on-the-fly. Experimental results are provided to evaluate the

performance of the proposed navigation frameworks.

Although the aforementioned proposed navigation frameworks are able to provide a real-time

estimate of the UE’s position, they require a priori knowledge of the UE’s state, e.g., using

GNSS estimate before its cutoff. However, this is not available in cold-start applications.

To overcome this challenge, it is proposed to exploit not only TOA measurements but also

direction of arrival (DOA) measurements. The fourth contribution of this dissertation is de-

veloping an SDR to jointly acquire and track TOA and DOA of the LTE signals. The CRLBs

of the achievable TOA and DOA precisions are derived and compared with the achievable
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precision of the proposed SDR. Then, the computational complexity of the proposed SDR

is compared with the state-of-the-art. Finally, experimental results are provided to compare

the performance of the proposed SDR with the state-of-the-art.

Over the past few years, the third generation partnership project (3GPP) has been develop-

ing the fifth generation of wireless access technology, which is known as NR. The structure

of NR signals has been finalized in 2019 and since then cellular providers have started rolling

5G out in major cities around the world. Since NR signals are new to the field, literature lack

a thorough study on the potentials of NR signals for opportunistic navigation. There are

several challenges in an opportunistic navigation with NR signals: (1) low-level NR frame

structure and signaling procedure are scattered in several technical reports, which makes it

confusing and tiresome to follow for one without proper background, (2) potential reference

signals for opportunistic navigation with NR signals have not been investigated, (3) special-

ized receiver to opportunistically extract navigation observables from NR signals has not

been developed, and (4) achievable ranging and positioning accuracy with these signals have

not been analyzed. This dissertation tackles these challenges by (1) providing the low-level

NR signal structure and describing important parameters for opportunistic navigation, (2)

presenting potential NR signals that can be exploited for navigation and their related coding

and decoding procedure, (3) developing an SDR to extract navigation observables from NR

signals, and (4) deriving ranging and positioning accuracy with NR signals. Moreover, this

dissertation, for the first time, demonstrates pseudorange measurements extracted from real

NR signals.

In the following, the refereed publications resulting from this dissertation are presented.

Journal Publications

[J1] K. Shamaei, J. Khalife, and Z. Kassas,“Exploiting LTE signals for navigation: Theory

to implementation,” IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp.
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2173-2189, April 2018.

[J2] K. Shamaei and Z. Kassas, “LTE receiver design and multipath analysis for navigation

in urban environments,” NAVIGATION, Journal of the Institute of Navigation, vol. 65, no.

4, pp. 655–675, December 2018.

[J3] K. Shamaei and Z. Kassas, “A joint TOA and DOA acquisition and tracking approach

for positioning with LTE signals,” IEEE Transactions on Signal Processing, 2020, submitted.

[J4] K. Shamaei and Z. Kassas, “Evaluating 5G signals for opportunistic navigation,” IEEE

Transactions on Wireless Communications, 2020, in preparation.

Conference Publications

[C1] K. Shamaei, J. Khalife, and Z. Kassas, “Performance characterization of positioning in

LTE systems,” in Proceedings of ION GNSS Conference, September 2016, pp. 2262- 2270.

[C2] K. Shamaei, J. Khalife, and Z. Kassas, “Comparative results for positioning with sec-

ondary synchronization signal versus cell specific reference signal in LTE systems,” in Pro-

ceedings of ION International Technical Meeting Conference, January 2017, pp. 1256–1268.

[C3] K. Shamaei, J. Khalife, and Z. Kassas, “Ranging precision analysis of LTE signals,” in

Proceedings of European Signal Processing Conference, August 2017, pp. 2788–2792.

[C4] K. Shamaei, J. Khalife, S. Bhattacharya, and Z. Kassas, “Computationally efficient

receiver design for mitigating multipath for positioning with LTE signals,” in Proceedings of

ION GNSS Conference, September 2017, pp. 3751–3760.

[C5] K. Shamaei, J. Khalife, and Z. Kassas, “A joint TOA and DOA approach for posi-

tioning with LTE signals,” in Proceedings of IEEE/ION Position, Location, and Navigation

Symposium, April 2018, pp. 81–91.
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[C6] K. Shamaei, J. Khalife, and Z. Kassas, “Pseudorange and multipath analysis of posi-

tioning with LTE secondary synchronization signals,” in Proceedings of Wireless Communi-

cations and Networking Conference, April 2018, pp. 286–291.
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1.4 Dissertation Outline

This dissertation is organized as follow:

• Chapter 2: This chapter presents a summary of the LTE signal structure. Next, the

LTE broadcast reference signals that can be exploited for navigation are presented and

the advantages and challenges of each are discussed. Finally, the received signal model

in the presence of symbol timing and frequency offset is presented.

• Chapter 3: This chapter presents the structure of the proposed SDR, which consists

of four main stages: (1) coarse acquisition, (2) system information extraction and

neighboring cell identification, (3) acquisition refinement, and (4) tracking. Three

different tracking methods are discussed and the advantages and challenges of each are

8



discussed.

• Chapter 4: This chapter analyzes the achievable ranging precision of the proposed

SDR for the SSS and CRS signals.

• Chapter 5: This chapter presents three different navigation frameworks. The first

one is an standalone framework, which uses only code phase measurements to estimate

the position and velocity of the receiver and the difference between the clock bias and

drift of the receiver and each of the eNodeBs’. The second one is an standalone navi-

gation framework, which uses the single difference code and carrier phase and Doppler

frequency measurements to estimate the position and velocity of the receiver. Finally,

the third one is an IMU-aided SOP framework, where IMU measurements are used to

propagate the states of the estimator and cellular code phase measurements are used to

estimate the position and velocity of the receiver and the difference between the clock

bias and drift of the receiver and each of the eNodeBs’. Simulation and experimental

results are provided to evaluate each of the proposed navigation frameworks.

• Chapter 6: This chapter proposes a receiver to jointly estimate and track TOA and

DOA of the received LTE signals. CRLBs of the TOA and DOA estimates are derived

and computational complexity of the proposed approach is compared with the state-of-

the-art methods. Finally, simulation and experimental results are provided to validate

the theoretical results.

• Chapter 7: This chapter evaluates cellular NR signals for opportunistic navigation.

First, the advantages and challenges of opportunistic navigation with NR signals are

presented. Then, NR signals’ structure and the reference signals that can be exploited

for navigation are discussed. Next, an SDR is proposed to extract code and car-

rier phase and Doppler frequency measurements from cellular NR signals. Then, the

achievable ranging and positioning accuracy and precision with cellular NR signals are

analyzed. Finally, experimental results are provided to evaluate the proposed SDR.
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• Chapter 8: This chapter summarizes the contributions of this dissertation and high-

lights the major discoveries.
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Chapter 2

LTE Signal Model

In order to exploit cellular LTE signals for navigation, the low-level model of these signals

must be known at the UE. Since the purpose of this dissertation is an opportunistic naviga-

tion, the UE cannot communicate with the eNodeB and must exploit the available broadcast

reference signals to extract navigation observables. Note that these reference signals must

be known at the UE, without being the subscriber of the network. Knowing the structure

of the transmitted LTE reference signals, the received signal can be modeled and a proper

receiver structure to navigate with these signals can be designed.

This chapter describes the transmitted and received LTE signal model. Section 2.1 presents

the low-level model of LTE signals and their frame structure. Section 2.2 discusses the

reference signals that can be exploited for positioning in an opportunistic navigation with

LTE signals. Finally, Section 2.3 provides the received signal model.
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2.1 Frame Structure

In LTE systems, OFDM modulation is used for data transmission. In OFDM, the transmit-

ted symbols are mapped to different carrier frequencies called subcarriers, where a ∆f = 15

kHz spacing is assigned between different subcarriers. Assuming that Nr subcarriers are

allocated to data transmission, the transmitted serial data symbols must be first divided

into groups of length Nr and mapped to each of these subcarriers. The mapping process

depends on the LTE frame structure, where different data types are transmitted at different

time and subcarriers. To reduce the interference on the neighboring frequency bands and

on the transmitted data, a guard band is allocated to the OFDM signals, where no data

is transmitted on the subcarriers at both sides of the Nr data subcarriers. This process is

done by zero-padding the Nr data symbols to length Nc. Note that in LTE systems, no

information is transmitted on direct current (DC) subcarrier. Next, an inverse fast Fourier

transform (IFFT) is taken, resulting in an OFDM symbol in the time-domain, which has

a duration of Tsymb = 1/∆f . The last LCP elements of the OFDM symbol are repeated at

the beginning to provide the cyclic prefix (CP) and are used to suppress the inter-symbol

interference (ISI) due to multipath. Fig. 2.1 summarizes the OFDM modulation scheme for

a digital transmission.
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Figure 2.1: Block diagram of the OFDM modulation for a digital transmission

The transmitted symbols can be obtained at the receiver by executing the above steps in
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reverse order. Since the frequency reuse factor in LTE systems is one, all the eNodeBs of the

same operator use the same frequency band. To reduce the interference caused by sharing

the same frequency band, each signal is coded to be orthogonal to the transmitted signals

from other eNodeBs. Using different frequency bands makes it possible to allocate the same

cell IDs to the eNodeBs from different operators.

The number of subcarriers in an LTE frame, Nc, and the number of used subcarriers, Nr, are

assigned by the network provider and can only take the values that are shown in Table 2.1.

Hence, the occupied bandwidth can be calculated usingW = Nr×∆f , which is less than the

assigned bandwidth shown in Table 2.1 to provide a guard band for LTE transmission [36].

Table 2.1: LTE System Bandwidths and Number of Subcarriers

Bandwidth

(MHz)

Total number

of subcarriers (Nc)

Number of

subcarriers used (Nr)

1.4 128 72

3 256 180

5 512 300

10 1024 600

15 1536 900

20 2048 1200

The resulting OFDM symbols are grouped into frames with a duration of Tf = 10 ms. In

an LTE system, the structure of the frame depends on the transmission type, which can

be either frequency division duplexing (FDD) or time division duplexing (TDD). Due to

the superior performance of FDD in terms of latency and transmission range, most network

providers use FDD for LTE transmission. Hence, this dissertation only focuses on FDD
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transmission and for simplicity an FDD frame is simply called a frame.

A frame is composed of 10 ms data, which is divided into either 20 slots or 10 subframes

with a duration of 0.5 ms or 1 ms, respectively. A slot can be decomposed into multiple

resource grids (RGs) and each RG has numerous resource blocks (RBs). Then, an RB is

broken down into the smallest elements of the frame, namely resource elements (REs). The

frequency and time indices of an RE are called subcarrier and symbol, respectively. The

structure of the LTE frame is illustrated in Fig. 2.2 [36]. Fig. 2.3 shows an example of the

LTE frame structure with Nr = 72.
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Figure 2.2: LTE FDD frame structure
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Figure 2.3: An example of the LTE frame structure with Nr = 72. PSS and SSS are
transmitted on the middle 62 subcarriers. The last symbols of slots 0 and 10 are allocated
to PSS. SSS is transmitted on the sixth symbol of slot 0 or 10. CRS is scattered in both
frequency and time. CRS subcarriers are assigned based on the cell ID and symbol number.
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Since each data type is mapped to a specific time and symbol, the UE needs to first convert

the signal into the frame structure to be able to extract the transmitted information. This is

achieved by first identifying the frame start time. To provide the frame start time to the UE,

the PSS and secondary synchronization signal (SSS) are transmitted in each frame. The UE

can estimate the frame start time by finding the peak of the correlation of the received signal

with the locally generated PSS and SSS. Then, knowing the frame timing, the receiver can

remove the CPs and take a fast Fourier transform (FFT) of each Nc symbols. The duration

of a normal CP is 5.21 µs for the first symbol of each slot and 4.69 µs for the rest of the

symbols [36].

2.2 Ranging Signals

There are five different sequences in the received LTE signal that can be used for positioning:

1. CP: A CP is transmitted to reduce ISI, which is caused by multipath. A CP of length

LCP repeats the last LCP samples of each symbol at the beginning of the symbol.

Therefore, by correlating the received samples with themselves, the time and frequency

offsets can be estimated as discussed in [37].

2. PSS: To provide symbol timing, the PSS is transmitted on the last symbol of slot 0

and repeated on slot 10. The PSS is a length-62 Zadoff-Chu sequence, which is located

in the 62 middle subcarriers of the bandwidth, excluding the DC subcarrier [38]. The

PSS is transmitted in only three possible sequences which map to an integer value

N
(2)
ID ∈ {0, 1, 2}, representing the sector number of the eNodeB.

3. SSS: The SSS is an orthogonal length-62 sequence, which is transmitted in either slot

0 or 10 in the symbol preceding the PSS and on the same subcarriers as the PSS. The

SSS is obtained by concatenating two maximal-length sequences scrambled by a third
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orthogonal sequence generated based on N
(2)
ID . There are 168 possible sequences for the

SSS that are mapped to an integer number N
(1)
ID ∈ {0, . . . , 167}, called the cell group

identifier. After determining N
(1)
ID and N

(2)
ID , the eNodeB’s cell ID can be calculated

as [36, 39]

NCell
ID = 3N

(1)
ID +N

(2)
ID . (2.1)

The cell ID can be used for data association purposes.

4. CRS: The CRS is transmitted for channel estimation purposes and is scattered in

time and bandwidth. The CRS sequence is defined based on the cell ID, allocated

symbol, slot, and transmission antenna port number, such that different eNodeBs’ CRS

sequences are orthogonal to each other. The eNodeB’s cell ID indicates the designated

subcarriers to the CRS. In this dissertation, the transmitted CRS on the k-th subcarrier

and i-th symbol is denoted by Si(k), where k = m∆CRS + κ, m = 0, · · · ,M − 1,

M = ⌊Nr/∆CRS⌋, ∆CRS = 6, and κ is a constant shift depending on the cell ID and

the symbol number i. In the sequel, for simplicity of notations, the subscript i is only

used when it is required to indicate a specific symbol number. Fig. 2.3 shows the PSS,

SSS, and CRS signals.

5. PRS: Similar to the CRS, the positioning reference signal (PRS) is a scattered pilot

signal, which was introduced in LTE Release 9 for a network-based positioning. In

positioning with the PRS, the dedicated resources to the PRS are free from interference

since the neighboring eNodeBs do not transmit any signal on the subcarriers allocated

to the PRS, when one eNodeB is transmitting its PRS sequence. The positioning

accuracy of PRS is expected to be on the order of 50 m [40].

Note that all the above reference signals except PRS are broadcast in every LTE frame

regardless of the presence of a UE in the environment. Therefore, it is always possible to use
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these reference signals for positioning. Besides, since the LTE reference signals are broadcast,

the receiver does not need to be an authorized UE to be able to exploit these reference signals

for navigation. This makes it possible to use the reference signals transmitted from eNodeBs

of different network operators, simultaneously.

Although all the above signals can be exploited for extracting navigation observables, there

are a few challenges associated with the CP, PSS, and PRS signals, which leaves the SSS

and CRS signals more attractive for navigation. These challenges include:

• The estimated TOA with the CP signals may have high error in multipath environ-

ments. Besides, since the transmitted CPs for different eNodeBs are not orthogonal,

it is not possible to estimate TOAs for different eNodeBs using the CPs.

• Since PSS signals can only accept three different orthogonal sequences, the number of

intra-frequency eNodeBs that a UE can simultaneously use for positioning is limited

to three [32].

• Network-based positioning using PRS suffers from a number of drawbacks: (1) the

user’s privacy is compromised since the user’s location is revealed to the network [41],

(2) localization services are limited only to paying subscribers and from a particular

cellular provider, (3) ambient LTE signals transmitted by other cellular providers are

not exploited, and (4) additional bandwidth is required to accommodate the PRS,

which caused the majority of cellular providers to choose not to transmit the PRS in

favor of dedicating more bandwidth to traffic channels. To circumvent these drawbacks,

UE-based positioning approaches that exploit the CRS have been explored, where

several advanced signal processing techniques were developed to achieve a performance

similar to the PRS [29–31, 42, 43].

Due to the aforementioned challenges, this dissertation will focus only on the CRS and SSS

signals.
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2.3 Received Signal Model

In this section, the signal model for the received SSS and CRS are presented.

2.3.1 SSS Received Signal Model

The SSS is transmitted only once per frame. Denote the SSS sequence in frequency-domain

by SSSS(f). Therefore, by taking an inverse Fourier transform (IFT) of SSSS(f), the SSS

signal in time-domain can be obtained according to

sSSS(t) =







IFT{SSSS(f)}, for t ∈ (0, Tsymb),

0, for t ∈ (Tsymb, Tf),

where Tsymb = 1/∆f is the duration of one symbol [36].

The received signal is processed in blocks, each of which spans the duration of a frame.

Assuming that the transmitted signal is propagated in an additive white Gaussian noise

(AWGN) channel, the received signal in time domain can be modeled as

r(t) =
√
Cej(2πfDt+φ) · [scode(t− tTOAk

− kTf)+d(t− tTOAk
− kTf)] + n(t),

for kTf ≤ t ≤ (k + 1)Tf , k = 0, 1, 2, · · · ,

where k is the frame number; scode(t) ,
√

Tf

WSSS
sSSS(t);WSSS = 945 kHz is the SSS bandwidth;

C is the received signal power including antenna gains and implementation loss; tTOA is the

TOA of the SSS signal; φ is the carrier phase; fD is the total carrier frequency offset due to

the Doppler frequency, clock drift, and oscillators’ mismatch; n(t) is an additive white noise

with a constant power spectral density N0/2 Watts/Hz; and d(t) is some data transmitted
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by the eNodeB other than the SSS, where

d(t) = 0 for t 6∈ (tTOA, tTOA + Tsymb).

2.3.2 CRS Received Signal Model

The transmitted OFDM symbol at the k-th subcarrier and on the i-th symbol, which contains

CRS, can be expressed as

Yi(k) =







Si(k), if k ∈ NCRS ,

Di(k), otherwise,

(2.2)

where NCRS denotes the set of subcarriers containing the CRS and Di(k) represents some

other data signals.

It is assumed that the OFDM symbol is transmitted in a multipath fading channel, which

is assumed to stay constant over the duration of a symbol and has the CIR as

hi(τ) =
L−1∑

l=0

αi,l δ(τ − τi,l),

where i is the symbol number; L is the number of multipath components; αi,l and τi,l are the

relative attenuation and delay components, respectively, of the l-th path with respect to the

first path; αi,0 = 1 and τi,0 = 0; and δ is the Dirac delta function. Therefore, the received

symbol after removing the CP and taking an FFT in a perfect synchronization condition is

modeled as

Ri(k) =
√
C Yi(k)Hi(k) +Wi(k), for k = 0, · · · , Nc − 1,
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where Wi(k) ∼ CN (0, σ2), where CN (a, b) denotes the complex Gaussian distribution with

mean a and variance b, and

Hi(k) =
L−1∑

l=0

αi,le
−j2πτi,lk/Tsymb (2.3)

is the channel frequency response (CFR).

In general, there is a mismatch between the estimated received symbol timing and the actual

one, which can be due to imperfect synchronization, clock drift, Doppler frequency, and/or

carrier frequency offset. Assuming that time mismatch is less than the CP duration, the

received signal at the i-th symbol can be rewritten as [44, 45]

Ri(k) = ejπef ej2π(iNt+LCP)ef/Nc ej2πeτk/Nc
√
C Yi(k)Hi(k) +Wi(k),

for k = 0, · · · , Nc − 1, (2.4)

where Nt = Nc + LCP, ef = fD
∆f

, and eτ = t̂TOA−tTOA

Ts
is the symbol timing error normalized

by the sampling interval Ts = Tsymb/Nc. Note that the first two exponentials in (2.4) model

the effects of the carrier frequency offset and the third exponential models the effect of the

symbol timing error. It is worth mentioning that Doppler frequency for each subcarrier is

slightly different due to their different frequencies. In this dissertation, this difference is

neglected and the Doppler frequency is defined with respect to the center frequency fc.
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Chapter 3

LTE Receiver Structure

LTE signals are not designed for navigation. Therefore, to exploit these signals for the

navigation purpose, specialized receiver structure is required. This type of receiver must

be able to extract navigation observables including code and carrier phase and Doppler

frequency measurements, while maintaining low computational cost and high accuracy and

precision. In this chapter, the structure of the proposed SDR is presented, which consists

of four main stages. In the first stage, which is discussed in Section 3.1, a coarse estimate

of the frame timing is obtained by correlating the received signal with the locally generated

PSS and SSS sequences. In the second stage, which is provided in Section 3.2, the received

samples are converted to the frame structure and some of the important parameters for

navigation are decoded from the broadcast information on the physical channels. In the

third stage, which is presented in Section 3.3, the received CRS signal is used to refine the

frame timing estimate. In the last stage, which is discussed in Section 3.4, tracking loop is

used to keep track of TOA changes.

The results of this chapter have been published in [46–49].
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3.1 Coarse Acquisition

When a UE enters an unknown LTE environment, the first step it performs to establish

communication with the network is synchronizing with the surrounding eNodeBs. This is

achieved by acquiring the PSS and the SSS transmitted by the eNodeB, which is discussed

in this section.

A UE initiates its connection by receiving the baseband samples of the OFDM symbols and

their corresponding CPs as shown in Fig. 3.1. The UE may start receiving a signal at any

time of any frame. The UE needs to obtain the symbol start time to be able to remove the

CPs and take the FFT to convert the signal to the frame structure. For this purpose, the

UE must first detect the location of the transmitted PSS in the frame. The UE exploits

the orthogonality of the Zadoff-Chu sequences and correlates the received signal with all the

possible choices of the PSS according to

R(m) ,

Nf−1
∑

n=0

r(n)s∗PSS(n+m)Nf

= r(m)⊛Nf
s∗PSS(−m)Nf

, (3.1)

where r(n) is the received signal, sPSS(n) is the receiver-generated PSS in time-domain,

Nf = Tf/Ts is the frame length, (·)∗ denotes the complex conjugate, (·)Nf
denotes the

circular shift operator, and ⊛N represents the circular convolution operation. Taking the

FFT and IFFT of (3.1) yields

R(m) = IFFT {R(k)S∗
PSS(k)} , (3.2)

where R(k) , FFT{r(n)} and SPSS(k) , FFT{sPSS(n)}. The PSS sequence corresponding

to the highest correlation peak, represents N
(2)
ID .
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Figure 3.1: Received signal’s samples structure. The receiver may start receiving the samples
at any random time.

The FFT-based correlation in (3.2) is also used to detect the SSS signal. The SSS sequence

corresponding to the highest correlation peak, represents N
(1)
ID . Once the PSS and SSS are

detected, the UE can estimate the frame start time and the eNodeB’s cell ID using (2.1).

Fig. 3.2 summarizes the LTE signal coarse acquisition process.

Acquisition

NCell
ID

t̂TOA

Data
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PSS
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SSS
detection

N
(2)
ID

Cell ID
calculation

N
(1)
ID

Figure 3.2: Signal acquisition block diagram.

The PSS is transmitted twice per frame. Hence, the correlation result has two peaks in the

duration of one frame, which is 10 ms. Since the transmitted PSS sequences on slot 0 and

10 are the same, the UE cannot extract the symbol numbers from the correlation result and

only the symbol start time can be obtained. Note that each type of signal is transmitted

on a specific symbol and subcarrier of each frame. Therefore, knowing the symbol start

time is not enough and the UE needs to exactly obtain the symbol numbers in each frame.

Therefore, the signal is correlated with the locally generated time-domain SSS signal. The

SSS correlation result has only one peak, since the SSS is transmitted only once per frame.

Since the SSS sequence depends on the slot number, it is possible to obtain the symbol

number using the SSS correlation results. Fig. 3.3 shows an example of the correlation of

locally generated PSS and SSS signals with real LTE signals over 10 ms.
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Figure 3.3: Normalized PSS and SSS correlation results with real LTE signals

The PSS and SSS have approximately 1 MHz bandwidth. Due to this low transmission

bandwidth, the peak of the correlations may have a bias compared to the true frame timing

in a multipath environment. This bias can be refined by estimating the timing error using the

CRS signal, which has higher transmission bandwidth. This requires the knowledge of signal

transmission bandwidth. However, when a UE enters an unknown LTE environment, it does

not have any information about the signal transmission bandwidth. Therefore, it assumes

that the signal is transmitted at the lowest transmission bandwidth. Then, it acquires the

PSS and SSS and converts the signal to the frame, as discussed in this section. Next, the UE

decodes the message that is broadcast in the frame to extract some of the signal parameters

including the transmission bandwidth. Finally, it adjusts its received bandwidth to capture

the whole transmission bandwidth of the signal. Important parameters for navigation and

the process of decoding them from LTE frame are discussed in the next section.
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3.2 System Information Extraction and Neighboring

Cells Identification

After acquiring the LTE signal, the UE needs to determine several parameters of the LTE

network in order to successfully communicate with the eNodeBs. Parameters relevant for

navigation purposes include the system bandwidth, number of transmitting antennas, and

neighboring cell IDs. These parameters are provided to the UE in two blocks, namely

the master information block (MIB) and the system information block (SIB), which are

transmitted on the physical broadcast channel (PBCH) and physical downlink shared channel

(PDSCH), respectively. In this section, the steps to decode each block are discussed in details.

3.2.1 MIB Decoding

In order to exploit the high-bandwidth CRS signal, which improves the navigation perfor-

mance in multipath environments, the UE must know the exact transmission bandwidth of

the signal. This parameter along with the number of transmitting antennas are provided

in the MIB, which must be decoded first. The MIB is transmitted on the PBCH and con-

sists of 24 bits of data: 3 bits for downlink bandwidth, 3 bits for frame number, and 18

bits for other information and spare bits. The MIB is coded and transmitted on 4 consecu-

tive symbols of the frame’s second slot. However, it is not transmitted in REs reserved for

the reference signals. Fig. 3.4 shows the steps that the MIB message goes through before

transmission [36, 50].

In the first step, a cyclic redundancy check (CRC) of length L = 16 is obtained using the

cyclic generator polynomial gCRC(D) = D16 + D12 + D5 + 1. The number of transmitting

antennas is not transmitted in the 24-bit MIB message. Instead, this information is provided

in the CRC mask, which is a sequence used to scramble the CRC bits appended to the MIB.
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Figure 3.4: MIB coding process

The CRC mask is either all zeros, all ones, or [0, 1, 0, · · · , 0, 1] for 1, 2, or 4 transmitting

antennas, respectively. In order to obtain the number of transmitting antennas from the

received signal, the UE needs to perform a blind search over the number of all possible

transmitting antennas. Then, by comparing the locally-generated CRC scrambled by the

CRC mask to the received CRC, the right number of transmitting antennas may be identified.

In the second step, channel coding is performed using a convolutional encoder with constraint

length 7 and coding rate 1/3. The configuration of the encoder is shown in Fig. 3.5. The

initial value of the encoder is set to the value of the last 6 information bits in the input

stream. The method illustrated in Fig. 3.6 is used to decode the received signal [51]. In

this method, the received signal is repeated one time. Then, a Viterbi decoder is executed

on the resulting sequence. Finally, the middle part of the sequence is selected and circularly

shifted.

D D D D D D

Figure 3.5: Tail biting convolutional encoder with constraint length 7 and coding rate 1/3

In the next step, the convolutional coded bits are rate-matched. In the rate matching step,

the obtained data from channel coding is first interleaved. Then, the outcomes of interleaving

each stream are repeated to obtain a 1920-bit long array [50]. Next, the output of the rate

matching step is scrambled with a pseudo-random sequence, which is initialized with the
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Figure 3.6: MIB channel decoding method

cell ID, yielding unique signal detection for all eNodeBs. Subsequently, quadrature phase

shift keying (QPSK) is performed on the obtained data, resulting in 960 symbols which are

mapped onto different layers to provide transmission diversity. To overcome channel fading

and thermal noise, space-time coding is utilized. This process is performed in the precoding

step. Finally, the resulting symbols are mapped onto the predetermined subcarriers for MIB

transmission [50].

3.2.2 SIB Decoding

When a UE performs acquisition, it obtains the cell ID of the ambient eNodeB with the

highest power, referred to as the main eNodeB in this dissertation. For navigation purposes,

the UE needs access to multiple eNodeB signals to estimate its state. One solution is to

perform the acquisition for all the possible values of NCell
ID . However, this method limits

the number of eNodeBs that a UE can simultaneously use for positioning to only the intra-

frequency eNodeBs. The other solution is to extract the neighboring cell IDs using the

information provided in the SIB transmitted by the main eNodeB. Since other operators

transmit on different carrier frequencies, the same approach can be exploited to extract the

cell IDs of the neighboring eNodeBs from other operators. Knowing the eNodeBs’ cell IDs,

the receiver only needs to know the position of the eNodeBs using a database or pre-mapping

approaches.
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The SIB contains information on (1) the eNodeB to which it is connected, (2) inter- and

intra-frequency neighboring cells from the same operator, (3) neighboring cells from other

networks (UMTS, GSM, and CDMA2000), and (4) other information. The SIB has 17

different forms called SIB1 to SIB17, which are transmitted in different schedules. SIB1,

which is transmitted in subframe 5 of every even frame, carries scheduling information of

the other SIBs. This information can be used to extract the schedule of SIB4, which has

the intra-frequency neighboring cell IDs. To decode SIB1, the UE has to go through several

steps. In each step, the UE needs to decode a physical channel to extract a parameter

required to perform other steps.

In general, all the downlink physical channels are coded in a similar fashion before trans-

mission, as shown in Fig. 3.7. Although all the physical channels have the same general

structure, each step in Fig. 3.7 differs from one channel to another. In the following, the

steps to retrieve information from SIB4 are briefly discussed [36, 50].

Scrambling
Modulation

mapper mapper

OFDM

generation

mapper
Pre-

Codewords Layers Antenna ports

signal

coding
Layer

Resource
element

Scrambling
Modulation

mapper mapper

OFDM

generation
signal

Resource
element

Figure 3.7: General structure of downlink physical channels

PCFICH Demodulation and CFI Decoding

The UE first obtains the control format information (CFI) from the physical control format

indicator channel (PCFICH). The CFI indicates the number of REs dedicated to the down-

link control channel and can take the values 1, 2, or 3. To decode the CFI, the UE first

locates the 16 REs dedicated to the PCFICH. Then, it demodulates the obtained symbols by

reverting the steps in Fig. 3.7, which results in a sequence of 32 bits. Finally, this sequence,

which can be only one of three possible sequences, is mapped onto a CFI value.
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PDCCH Demodulation and DCI Decoding

Knowing the CFI, the UE can identify the REs associated with the PDCCH and demodulate

them, resulting in a block of bits corresponding to the DCI message. The packing of these

bits can take one of several formats, and is not communicated with the UE. A blind search

over the different formats must therefore be performed by the UE to unpack these bits. The

“candidate” formats are either on the common search space, or on the UE-specific search

space. Fortunately, for the SIBs, there are only two candidate formats and are both located

on the common search space. A CRC is obtained to identify the right format.

PDSCH Demodulation and SIB Decoding

The parsed DCI provides the configuration of the corresponding PDSCH REs. The PDSCH,

which carries the SIB, is then decoded, resulting in the SIB bits. Subsequently, these bits

are decoded using an Abstract Syntax Notation One (ASN.1) decoder, which extracts the

system information sent on SIBs by the eNodeB.

Fig. 3.8 summarizes all the aforementioned steps in this section.
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Figure 3.8: System information extraction block diagram
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3.3 Acquisition Refinement

In this stage, the remaining symbol timing error is first estimated and removed from the

received signal. Besides, due to the receiver’s and transmitter’s oscillator mismatches and

Doppler frequency, a carrier frequency offset may remain in the received signal after carrier

wipeoff. In this stage, this carrier frequency offset is initialized and removed from the received

signal.

3.3.1 Symbol Timing Refinement

To refine the symbol timing, the CFR must be first estimated. In the i-th symbol and on the

subcarriers that carry the CRS, the transmitted signal Yi(k) is equal to the CRS sequence

Si(k). Since the CRS sequence is known at the receiver, it is possible to estimate the CFR

as

Ĥi(k) = Ri(k)S
∗
i (k), (3.3)

=
√
C

L−1∑

l=0

αi,le
jπef ej

2π(iNt+LCP)ef
Nc ej

2π(eτ−τi,l/Ts)k
Nc +W ′

i (k),

for k = m∆CRS + κ, m = 0, · · · ,M − 1.
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whereW ′
i (k) = Wi(k)S

∗
i (k). The estimated CFR at the i-th symbol and subcarriers allocated

to the CRS can be rewritten as

Ĥ ′
i(m) , Ĥi(m∆CRS + κ)

=

L−1∑

l=0

α′
i,le

−j
2πm∆CRSτ ′i,l

Tsymb +W ′′
i (m)

= aT

i (m)αi +W ′′
i (m), (3.4)

for m = 0, · · · ,M − 1.

where

αi =
[
α′
i,0, · · · , α′

i,L−1

]T
,

ai(m) =

[

e
−j

2πm∆CRSτ ′i,0
Tsymb , · · · , e−j

2πm∆CRSτ ′i,L−1
Tsymb

]T

,

α′
i,l =

√
Cejπef ej

2π(iNt+LCP)ef
Nc e

−j
2πκτi,l
Tsymb αi,l,

τ ′i,l = τi,l − Tseτ ,

W ′′
i (m) =W ′

i (m∆CRS + κ).

For simplicity of notation, the subscript i, which denotes the symbol number is dropped in

the sequel, unless it is required. The set of estimated CFR over M different subcarriers can

be written as

Ĥ ′ =
[

Ĥ ′(0), · · · , Ĥ ′(M − 1)
]T

= Aα+W ′′

31



where

A = [a(0), · · · ,a(M − 1)]T ,

W ′′ = [W ′′(0), · · · ,W ′′(M − 1)]
T
.

The covariance matrix of the estimated channel Ĥ ′ can be written as

RH = ARαA
H +RW ,

where RH , Rα, and RW are the covariance matrices of Ĥ ′, α, and W ′′, respectively. It can

be shown that A has L linearly independent vectors, which span the L-dimensional signal

subspace. The goal is to find L independent vectors that best fit the observed CFR. Several

methods have been proposed to solve this problem including multiple signal classification

(MUSIC) and estimation of signal parameters via rotational invariance techniques (ESPRIT).

The ESPRIT method has lower complexity compared to other approaches. It uses the

rotational invariance properties of the subarrays of the subcarriers with respect to each

other to estimate τ ′ [52,53]. To be able to use the ESPRIT algorithm, the channel length L

must be first estimated. The minimum descriptive length (MDL) criterion is one approach

to estimate L [54]. In this subsection, the MDL criterion and the ESPRIT algorithm are

summarized. The details of the proof of each approach are provided in [52, 54].

Step 1: The data matrix X must be first constructed with snap shots of estimated CFR as

X =












Ĥ ′(0) Ĥ ′(1) · · · Ĥ ′(K − 1)

Ĥ ′(1) Ĥ ′(2) · · · Ĥ ′(K)

...
... · · · ...

Ĥ ′(P − 1) Ĥ ′(P ) · · · Ĥ ′(M − 1)












where P is the design parameter and K =M − P + 1.
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Step 2: The channel length L can be estimated using the MDL metric. For this purpose the

singular value decomposition (SVD) of X = UΣVH must be calculated, where H represents

the Hermitian operator, U and V are unitary matrices, and Σ is a diagonal matrix with

singular values σ1 ≥ · · · ≥ σP on the diagonal. Next, calculate the MDL criterion as

MDL(γ) = −K(P − γ) log
(∏P−1

l=γ λ
1/(P−γ)
l

1
P−γ

∑P−1
l=γ λl

)

+
1

2
γ(2P − γ) logK,

for γ = 0, · · · , P − 1,

where λl = σ2
l . The estimate of L is obtained as

L̂ =argmin
γ
MDL(γ).

Step 3: By knowing the channel length, it is possible to organize the eigenvectors corre-

sponding to the L̂ largest eigenvalues as Us = U
[

IL̂ 0L̂×(P−L̂)

]T

, where Il is an identity

matrix of size l, 0l×p is an l-by-p matrix whose elements are zeros. Then, construct

U1 ,
[
IP−1 0(P−1)×(P−1)

]
Us,

U2 ,
[
0(P−1)×(P−1) IP−1

]
Us.

Step 4: Finally, the ESPRIT rotational matrix must be constructed as

Ψ =
(
UH

1U1

)−1
UH

1U2,

and compute its eigenvalues ψl, for l = 0, · · · , L̂− 1. The values of τ ′l can be obtained as

τ ′l = −
1

2πTs∆f∆CRS
arg{ψl}.
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Since it was assumed that τ0 = 0 and τ ′l = τl − eτ , the normalized estimated symbol timing

error can be obtained as

êτ =−min
l
τ ′l .

Note that in some environments, the direct signal may be blocked and the minimum of the

estimated channel delays may not correspond to the line-of-sight (LOS) signal. However,

differentiating the LOS signal from non-LOS (NLOS) signals is out of the scope of this

dissertation.

The normalized estimated symbol timing error êτ can be divided into two parts: integer,

Int{·}, and fractional, Frac{·}, given by

êτ = Int{êτ}+ Frac{êτ},

where −1 ≤ Frac{êτ} ≤ 0.

3.3.2 Frequency Offset Estimation

Next, the initial Doppler frequency can be estimated, by measuring the difference between

the received signals’ phases on the same symbols of two consecutive slots. For this purpose,

define z(m) as

z(m) = Ri+7(k)R
∗
i (k)S

∗
i+7(k)Si(k) (3.5)

= Cej2π7Ntef/Nc |Hi(k)|2 +W ′
i+7(k)W

′
i (k),

for k = m∆CRS + κ, m = 0, · · · ,M − 1.
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Then, the initial carrier frequency offset is estimated as

f̂D =
1

2πTslot
∆ϕ, (3.6)

where Tslot = 0.5 ms and

∆ϕ , arg

[
M−1∑

m=0

z(m)

]

. (3.7)

Note that ∆ϕ is a function of the difference between the phases of two received signals

at two different symbols. Since in this dissertation the sampling clock frequency offset is

assumed to be negligible, ∆ϕ is defined according to (3.7). As such, the Doppler frequency

estimate (3.6) ignores the sampling clock frequency offset. To include the effect of this offset,

an approach such as the one described in [55] could be adopted. The normalized estimated

Doppler frequency is used to remove the initial phase estimate from the time-domain received

signal as

r(n)←−e−jφ̂(n)r(n),

where r(n) is the time-domain received signal, φ̂(n) = 2πf̂DnTs.

After removing the total carrier frequency offset estimate from the received signal r(n), the

integer part of the symbol timing error is used to control the FFT window. Then, the FFT

is taken from r(n) to convert the signal to the frequency domain R(k). Next, the fractional

part of the estimated symbol timing error is removed from R(k) as

R′(k) , e−j2πkFrac{êτ}/NcR(k).

Therefore, the i-th received symbol on the subcarriers carrying the CRS after removing the
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symbol timing error estimate can be written as

R′
i(k)= ejπẽf ej2π(iNt+LCP)ẽf/Nc ej2πẽτk/Nc

√
CSi(k)Hi(k) +Wi(k), (3.8)

for k = m∆CRS + κ, m = 0, · · · ,M − 1,

where ẽf = ef − êf is the remaining carrier frequency offset and ẽτ = eτ − êτ is the remaining

symbol timing error.

3.4 Tracking

After obtaining an initial estimate of the LTE frame timing, a tracking loop can be used to

refine this estimate and keep track of any changes in TOA. In [33, 56], a method to jointly

estimate the channel impulse response (CIR) and the time delay was proposed. The CIR was

modeled statistically by a skew-t distribution in [57], which improves TOA estimation for low

bandwidth signals. An SRA was exploited in [31] to obtain the TOA, which resulted in a root

mean squared-error (RMSE) of 31.09 m. Although these methods yielded a relatively good

positioning accuracy, they are computationally expensive. A first arriving path detection

using maximum likelihood in a correlation-based approach was discussed in [35]. A threshold-

based approach was used in [30,58] to detect the first path. This method is computationally

low-cost, but does not adapt to the environment, which causes significant errors when the

noise level changes. In this section, three tracking loops are proposed, which answer the

challenges of the above algorithms.

The SSS and CRS are two possible sequences that a UE can exploit to track the TOA

and Doppler frequency. SSS is transmitted over contiguous subcarriers. Therefore, it is

possible to obtain a time-equivalent form of the SSS signal and conventional tracking loop

structures can be used to track the TOA of these signals. Subsection 3.4.1 presents the
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structure of the proposed SSS-based tracking loop [59]. The SSS is transmitted with the

lowest possible bandwidth. Therefore, the SSS is extremely susceptible to multipath. To

achieve a more precise localization using LTE signals, the CRS can be exploited. Since

CRS signals are scattered in the subcarriers, conventional tracking loop structures cannot

be used for extracting TOA of the CRS signals. Subsection 3.4.2 discusses the proposed

threshold-based approach, where an adaptive threshold is calculated to detect the peaks

of the CIR [48]. Finally, Subsection 3.4.3 presents a specialized tracking loop consisting a

phase-locked loop (PLL) and a carrier-aided delay-locked loop (DLL) to track the CRS TOA

and Doppler frequency [47, 49].

3.4.1 SSS-Based Tracking Loop

The proposed SSS-based tracking loop has a frequency-locked loop (FLL)-assisted PLL and

a carrier-aided DLL. Fig. 3.9 shows the block diagram of the SSS-based tracking loop, where

ωc = 2πfc and fc is the carrier frequency. In this subsection, the structure of the SSS tracking

loop is discussed in details.
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Figure 3.9: SSS-based tracking loop block diagram
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FLL-Assisted PLL

The frequency reuse factor in LTE systems is set to be one, which results in high inter-

ference from neighboring cells. Under interference and dynamic stress, FLLs have better

performance than PLLs. However, PLLs have significantly higher measurement accuracy

compared to FLLs. An FLL-assisted PLL has both the dynamic and interference robustness

of FLLs and the high accuracy of PLLs [60]. The main components of an FLL-assisted PLL

are: a phase discriminator, a phase loop filter, a frequency discriminator, a frequency loop

filter, and a numerically-controlled oscillator (NCO). The SSS is not modulated with other

data. Therefore, an atan2 discriminator could be used without the risk of introducing phase

ambiguities. A third-order PLL was designed to track the carrier phase, with a loop filter

transfer function given by

FPLL(s) = 2.4ωPLL +
1.1ω2

PLL

s
+
ω3
PLL

s2
, (3.9)

where ωPLL is the undamped natural frequency of the phase loop, which can be related to

the PLL noise-equivalent bandwidth BPLL by BPLL = 0.7845ωPLL [61]. The output of the

phase loop filter is the rate of change of the carrier phase error 2πf̂Dk
, expressed in rad/s,

where f̂Dk
is the Doppler frequency estimate at the k-th subaccumulation period. The phase

loop filter transfer function in (3.9) is discretized and realized in state-space. The PLL is

assisted by a second-order FLL with an atan2 discriminator for the frequency as well. The

frequency error at the k-th subaccumulation period is expressed as

eFLLk
=

atan2

(
QpkIpk−1

− IpkQpk−1
, IpkIpk−1

+QpkQpk−1

)

Tsub
,

where Spk = Ipk + jQpk is the prompt correlation at the k-th subaccumalation period and

Tsub = 10 ms is the subaccumulation period, which is chosen to be one frame length unless
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it is noted otherwise. The transfer function of the frequency loop filter is given by

FFLL(s) = 1.414ωFLL +
ω2
FLL

s
, (3.10)

where ωFLL is the undamped natural frequency of the frequency loop, which can be related

to the FLL noise-equivalent bandwidth BFLL by BFLL = 0.53ωFLL [61]. The output of the

frequency loop filter is the rate of change of the angular frequency 2π ˆ̇fDk
(n), expressed in

rad/s2. It is therefore integrated and added to the output of the phase loop filter. The

frequency loop filter transfer function in (3.10) is discretized and realized in state-space.

Carrier-Aided DLL

The carrier-aided DLL employs the non-coherent dot-product discriminator given by

eDLLk
= cDLL [(Iek − Ilk) Ipk + (Qek −Qlk)Qpk ] ,

where eDLL is the code phase error and cDLL is a normalization constant given by

cDLL =
Tc

2(E{|Spk |2} − 2σ2
IQ)

,

where Sek = Iek + jQek and Slk = Ilk + jQlk are the early and late correlations, respectively,

Tc = 1
WSSS

is the chip interval, E{·} represents the expectation operator, and σ2
IQ is the

interference-plus-noise variance.

The DLL loop filter was chosen to be similar to (3.10), with a noise-equivalent bandwidth

BDLL Hz. The output of the DLL loop filter vDLL (in s/s) is the rate of change of the SSS

code phase. Assuming low-side mixing, the TOA is updated according to

t̂TOAk+1
= t̂TOAk

− Tsub
(

vDLLk
+ f̂Dk

/fc

)

.
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The estimated TOA is used to reconstruct the received frame for the next loop iteration.

3.4.2 Threshold-Based Tracking

Threshold-based TOA estimation algorithm has been studied in different literature [35, 58].

One of the main challenges of a threshold-based approach is defining the proper value for

threshold. In [58], a constant threshold is defined to detect the first peak. However, when

the signal attenuation or the noise level is high, the performance of this approach is poor.

In [35], the threshold is assigned with respect to the highest peak of the CIR. However,

this approach can miss-detect the LOS signal, when it has much lower amplitude than the

multipath signal with the highest peak. In this subsection, a first-peak estimation algorithm

is proposed in which the threshold adapts to the environmental noise.

Multipath Detection

The estimated CIR is obtained by taking an IFFT from the estimated CFR given by

ĥ(n) = IFFT
{

Ĥ ′(m)
}

= h(n) + w′′(n), (3.11)

where w′′(n) , IFFT{W ′′(k)} ∼ CN (0, σ2
h).

In general, a multipath CIR can be modeled as

h(n) =
L−1∑

l=0

αlδ[n− dl],

for n = 0, . . . ,M − 1,

where dl is the delay of the l-th path normalized by sampling time [62]. To simplify the

derivation, it is assumed that the receiver’s low-pass filter has infinite bandwidth. The goal
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is to estimate d0, which represents the LOS TOA. In the absence of noise, L will be the

number of non-zero components in the estimated CIR, and the position of the non-zero

components will be dl. In the presence of noise, the receiver must be able to distinguish

between noise and multipath components at each specific n in the estimated CIR. This

problem is similar to detecting the presence of a target in a noisy environment. Therefore,

the problem can be modeled as a binary hypothesis test, with H1 indicating the presence of

a target (LOS or multipath signal) and noise, and H0 indicating the presence of only noise.

The hypotheses can be expressed as







H0 : ĥ(n) = w′′(n), for n 6= dl,

H1 : ĥ(n) = αl + w′′(n), for n = dl,

where l = 0, . . . , L−1. It is worth mentioning that the receiver does not have any knowledge

of αl, dl, and L. Under H0, ĥ(n) = w′′(n); therefore, |ĥ(n)| has a Rayleigh distribution with

a probability density function (pdf) given by

p
(

|ĥ(n)| = r
∣
∣
∣H0

)

=
2r

σ2
h

e

(

− r2

σ2
h

)

.

Under H1, ĥ(n) = αl + w′′(n), where αl is assumed to be a complex deterministic constant

over a frame duration. Therefore, |ĥ(n)| has a Rician distribution with the pdf

p
(

|ĥ(n)| = r
∣
∣
∣H1

)

=
2r

σ2
h

e

(

− r2+s2

σ2
h

)

I0

(
2rs

σ2
h

)

,

where r ≥ 0, I0(·) is the modified Bessel function of zeroth-order, and s = |αl|.

A Neyman-Pearson test is formulated to obtain the decision threshold, denoted η, where the
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probability of false alarm pFA is set to a desired constant and is given by

pFA =

∫ ∞

η

p
(

|ĥ(n)| = r
∣
∣
∣H0

)

dr = e
− η2

σ2
h . (3.12)

The threshold is then calculated as

η =
√

−σ2
hln(pFA). (3.13)

After determining the threshold, the detection probability is obtained using

pD =

∫ +∞

η

2r

σ2
h

e

(

− r2+|αl|
2

σ2
h

)

I0

(
2r|αl|
σ2
h

)

dr.

Although it is not possible to obtain a closed-form expression for the probability of detection,

numerical solutions for pD have been tabulated and can also be computed with software

packages [63]. Fig. 3.10 demonstrates the receiver operating characteristics (ROC) for

different C/N0 , |αl|2/N0, where N0 , 2σ2
h/∆f .
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Figure 3.10: ROC for different C/N0
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CFAR for Adaptive Threshold Calculation

The derived threshold equation in (3.13) showed that the threshold depends on the noise

variance, σ2
h. However, the noise variance continuously changes in a dynamic environment,

and the threshold must be updated accordingly. Changing the threshold to keep a constant

pFA is defined as constant false alarm rate (CFAR). Cell-averaging CFAR (CA-CFAR), shown

in Fig. 3.11, is one of the CFAR techniques [64].

CUT

Comparator

Training cellsTraining cells
Guard
cells

Guard
cells

K Pn

η

Figure 3.11: Block diagram of the CA-CFAR.

In CA-CFAR, each cell is tested for the presence of a signal. For a given cell under test (CUT),

a function of Nt training cells separated from the CUT by Ng guard cells is computed. In a

square-law detector, this functional will be the sum of |ĥ(n)|2, which is proportional to the

background noise level given by

Pn =
Nt∑

m=1

xm,

where xm is the functional evaluated at the m-th training cell. A threshold can be obtained

by multiplying Pn by a constant K, hence η = KPn, which can be shown to have a non-

central chi-square distribution with 2Nt degrees of freedom. The probability of false alarm

for a specified threshold was calculated in (3.12). The pFA in CA-CFAR can be obtained by

taking the average of (3.12) over all possible values of the decision threshold. This yields

η =
(

p
−1/Nt

FA − 1
)

Pn,
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which is used to compare the desired cell’s value to the noise floor.

To improve the probability of detection while maintaining a constant pFA, a non-coherent

integration can be used. For this purpose, it is proposed to integrate squared envelopes

of ĥ(n) at different slots and for different transmitting antennas (assuming that they have

the same LOS path) in one frame duration. Defining ni as the number of non-coherent

integrations, the threshold will have a non-central chi-square distribution with 2niNt degrees

of freedom. By taking the average of the probability of false alarm given the threshold

presented in (3.12) over the new pdf of this threshold, it can be shown that [64]

pFA =
1

(1 +K)niNt

ni−1∑

k=0

1

k!

Γ(niNt + k)

Γ(niNt)

(
K

K + 1

)k

, (3.14)

where Γ(n) = (n−1)! is the gamma function. By knowing pFA and its relation toK according

to (3.14), the value of K can be solved numerically (e.g. using Newton algorithm) and the

threshold will be determined from η = KPn.

Using the proposed method for tracking the TOA, the probability of false alarm in detecting

the first peak is equivalent to detecting the noise as a valid signal, which can cause significant

errors and potentially loss of track. To resolve this problem, a low-pass filter is applied after

the CFAR detector, which removes sudden changes in the estimated TOA. The localization

error with the proposed method is acceptable for medium to high bandwidth LTE signals

(e.g. above 10 MHz). For lower bandwidths, other methods could be exploited [57]. After

detecting d0, the residual TOA, τ = Ts d0, is fed-back to the tracking loops to improve the

estimated frame start time t̂TOA.
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3.4.3 CRS-Based Tracking Loop

Fig. 3.12 shows the structure of the proposed CRS-based tracking loop. The CRS-based

tracking loop consists of a PLL and a carrier-aided DLL, which will be discussed in this

subsection.
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Figure 3.12: Block diagram of the proposed CRS-based tracking loop

PLL

A PLL has three main components: a carrier phase discriminator function, a carrier loop

filter, and an NCO. The carrier phase discriminator function is defined as

DPLL = arg

[
M−1∑

m=0

R′(k)S∗(k)

]

,

for k = m∆CRS + κ, m = 0, · · · ,M − 1.

It can be shown that for ẽτ ≈ 0 the PLL discriminator function for the i-th received signal

and in a multipath-free environment can be written as

DPLL =∆φ+NPLL,
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where ∆φ = πẽf + 2π(iNt + LCP)ẽf/Nc and NPLL is a zero-mean noise with variance

var [NPLL] =
σ2

2MC

(

1 +
σ2

2MC

)

. (3.15)

A second-order PLL is used to track the carrier phase, with a loop filter transfer function

similar to (3.10). The output of the filter is the rate of change of the carrier phase error

2πf̂D expressed in rad/s. The loop update rate was set to a frame duration of Tf . An NCO

is used to integrate the phase as

φ(n)←− 2πf̂DnTs + φ(Nf),

for n = 0, · · · , Nf ,

where Nf = Tf/Ts is the number of samples per frame. Then, the resulting phase is removed

from the received signal as

r(n)←−e−jφ(n)r(n).

DLL

In conventional DLLs (e.g., dot-product) the TOA error is obtained as a function of the

early, late, and prompt correlations, which are the correlation of the received signals with

locally generated early (advanced), late (delayed), and prompt versions of the code sequence,

respectively. The CRS is scattered in the bandwidth, which makes obtaining its time-

equivalent form infeasible. As a result, obtaining the time-domain correlation of the received

signal and the code will not be possible and conventional DLLs cannot be used to track the

CRS. In this dissertation, a specialized DLL, which is designed for OFDM signals, is used

to track the CRS in LTE systems.
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A DLL has three main components: a code phase discriminator function, a code loop filter,

and an NCO. Fig. 3.13 shows the structure of the code phase discriminator function, which

is an adaptation of [45] for LTE systems.
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Figure 3.13: The structure of the code phase discriminator function for a CRS-based tracking
loop

Since a shift in the time-domain is equivalent to a phase rotation in the frequency-domain,

the locally generated early and late code signals for the OFDM symbol can be obtained

respectively as

Searly(m) = e−j2πm/MξS(k),

Slate(m) = ej2πm/MξS(k),

for k = m∆CRS + κ, m = 0, · · · ,M − 1.

where 0 < ξ ≤ 1/2 is the normalized time shift. The early and late correlations in the

frequency-domain can be expressed respectively as

Rearly =
M−1∑

m=0

R′(m∆CRS + κ)S∗
early(m),

Rlate =

M−1∑

m=0

R′(m∆CRS + κ)S∗
late(m).
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The discriminator function is defined as

DDLL , |Rearly|2 − |Rlate|2 ,M2CΛDLL(ẽτ , ξ) +NDLL, (3.16)

where for a channel without multipath, ΛDLL(ẽτ , ξ) is the normalized S-curve function, de-

fined as

ΛDLL(ẽτ , ξ) ,

[
sin(π(ẽτ − ξ))

M sin(π(ẽτ − ξ)/M)

]

−
[

sin(π(ẽτ + ξ))

M sin(π(ẽτ + ξ)/M)

]

,

and NDLL represents the noise with zero-mean and variance

var[NDLL] ≤ 2M2σ4

[

1 +
C

Mσ2

(
sin(π(ẽτ − ξ))

sin(π(ẽτ − ξ)/M)

)2

+
C

Mσ2

(
sin(π(ẽτ + ξ))

sin(π(ẽτ + ξ)/M)

)2
]

,

(3.17)

where equality holds for ξ = 0.5 [45]. In the following analysis, ξ is set to be 0.5. Fig. 3.14

shows the normalized S-curve.
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Figure 3.14: DLL discriminator function of the CRS signal

The output of the discriminator function is first normalized by the slope of the S-curve

kDLL, which represents the symbol timing error plus noise. Then, a DLL loop filter is used

to achieve zero steady-state error. It can be assumed that the symbol timing error has

linear variations, which can be due to the clock drift or receiver movement, and a second-
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order loop filter can provide zero steady-state error. Therefore, the normalized output of

the discriminator function is first smoothed using a first-order low-pass filter (LPF) with a

transfer function given by (3.10). The loop update rate was set to a frame duration of Tf .

Finally, the frame start time estimate is updated according to

êτ ←− êτ −
Tf
Ts

(vDLL + vPLL) ,

where vDLL is the output of the DLL filter, which is the rate of change of the symbol timing

error expressed in s/s and vPLL = 2πf̂D/ωc. The integer part of the frame start time estimate

is used to control the FFT window and the fractional part is removed using the phase rotation

in frequency domain.
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Chapter 4

LTE Ranging Precision Analysis

LTE systems transmit using OFDMA, which is considerably different than CDMA – the

transmission standard for GPS. The ranging precision for GPS signals has been extensively

studied analytically and empirical error budgets have been established [65]. In this chapter,

the ranging precision of LTE signals is analyzed. Section 4.1 derives analytical results for the

ranging precision of the SSS-based receiver for both coherent and noncoherent discriminator

functions. Section 4.2 presents the ranging precision of the PLL and DLL in a CRS-based

receiver.

The results of this chapter have been published in [49, 66, 67].

4.1 SSS-Based Receiver

As discussed in Subsection 3.4.1, an SSS-based tracking loop includes a DLL to track the code

phase measurements. There are two types of discriminator functions that can be considered

for a DLL: (1) coherent and (2) noncoherent [65,68]. Coherent discriminator function can be

used when the carrier phase is known by the receiver. Noncoherent discriminator functions
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are independent of the carrier phase tracking accuracy (e.g., the dot-product or the early-

power minus late-power discriminator functions). In this section, the ranging precision of

each of these discriminator functions is evaluated.

4.1.1 Coherent Discriminator Function

Fig. 4.1 represents the general structure of the DLL. In this subsection, it is assumed that

the residual carrier phase and Doppler frequency are negligible, i.e., ∆φ ≈ 0 and ∆fD ≈ 0.

Therefore, a coherent baseband discriminator can be used in the DLL.
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Figure 4.1: General structure of the DLL to track the code phase.

Correlation Signal Model

In the DLL, the received signal is first correlated with the early and late locally-generated

replicas of the SSS. The resulting early and late correlations over the k-th subaccumulation
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period are given by

Zek =
1

Tsub

∫ (k+1)Tsub

kTsub

r(t)scode(t− t̂TOAk
+
teml

2
Tc − kTsub)dt

, Sek +Nek ,

Zlk =
1

Tsub

∫ (k+1)Tsub

kTsub

r(t)scode(t− t̂TOAk
− teml

2
Tc − kTsub)dt

, Slk +Nlk ,

where teml is the correlator spacing (early-minus-late) and t̂TOAk
is the estimated TOA. The

signal components of the early and late correlations, Sek and Slk , respectively, are given by

Sek =
√
CR

(

∆τk −
teml

2
Tc

)

,

Slk =
√
CR

(

∆τk +
teml

2
Tc

)

,

where ∆τk , t̂TOAk
− tTOAk

is the propagation time estimation error and R(·) is the auto-

correlation function of scode(t), given by

R(∆τ) = 1

Tsub

∫ Tsub

0

scode(t)scode(t +∆τ)dt

= sinc(WSSS∆τ)−
∆f

WSSS

sinc(∆f∆τ)

≈ sinc(WSSS∆τ).

It can be shown that the noise components of the early and late correlations, Nek and Nlk ,

respectively, are zero mean with the following covariances [69]

var{Nek} = var{Nlk} =
N0

2Tsub
, ∀k

E{NekNlk} =
N0R(temlTc)

2Tsub
, ∀k
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E{NekNej} = E{NlkNlj} = 0, ∀k 6= j.

Open-Loop Statistics of the Code Phase Error for a Coherent Discriminator

Function

The coherent baseband discriminator function is defined as

Dk , Zek − Zlk = (Sek − Slk) + (Nek −Nlk) .

The signal component of the discriminator function Sek − Slk is shown in Fig. 4.2 for

teml = {0.25, 0.5, 1, 1.5, 2}.
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Figure 4.2: The signal component of the coherent baseband discriminator function for the
SSS with different correlator spacing.

It can be seen from Fig. 4.2 that the discriminator function can be approximated by a linear

function for small values of ∆τk, as given by

Dk = kSSS∆τk +Nek −Nlk , (4.1)
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where kSSS is the slope of the discriminator function at ∆τk = 0, which is obtained by

kSSS =
∂Dk

∂∆τk

∣
∣
∣
∣
∆τk=0

= 4
√
CWSSS

(

2
sin(πteml/2)

πt2eml

− cos(πteml/2)

teml

)

.

The mean and variance of Dk can be obtained from (4.1) as

E{Dk} = kSSS∆τk, (4.2)

var{Dk} =
N0

Tsub

[
1−R(temlTc)

]
. (4.3)

Closed-Loop Statistics of the Code Phase Error for a Coherent Discriminator

Function

In a rate-aided DLL, the pseudorange rate estimated by the FLL-assisted PLL is added to

the output of the DLL discriminator. In general, it is enough to use a first-order loop for

the DLL loop filter since the FLL-assisted PLL’s pseudrange rate estimate is accurate. The

closed-loop error time-update for a first-order loop is shown to be [65]

∆τk+1 = (1− 4BLTsub)∆τk +KLDk, (4.4)

where BL is the loop noise-equivalent bandwidth and KL is the loop gain. To achieve the

desired loop noise-equivalent bandwidth, KL must be normalized according to

KL =
4BLTsub∆τk

E{Dk}

∣
∣
∣
∣
∆τk =0

. (4.5)

Using (4.2), the loop noise gain for a coherent baseband discriminator becomes KL = 4BLTsub

kSSS
.
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Assuming zero-mean tracking error, i.e., E{∆τk} = 0, the variance time-update is given by

var{∆τk+1} , (1− 4BLTsub)
2var{∆τk}+K2

Lvar{Dk}. (4.6)

At steady state, var{∆τ} = var{∆τk+1} = var{∆τk}; hence,

var{∆τ} = BL g(teml)

8(1− 2BLTsub)W 2
SSSC/N0

, (4.7)

g(teml) ,
[1− sinc(teml)]

[

2 sin(πteml/2)

πt2eml
− cos(πteml/2)

teml

]2 . (4.8)

From (4.7), it can be seen that the standard deviation of the ranging error is related to

the correlator spacing through g(teml). Fig. 4.3 shows g(teml) for 0 ≤ teml ≤ 2. It can be

seen that g(teml) is not a linear function, and it increases significantly faster when teml > 1.

Therefore, to achieve a relatively high ranging precision, teml must be set to be less than 1. It

is worth mentioning that for the GPS C/A code with an infinite bandwidth, g(teml) = teml.
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4

Figure 4.3: The standard deviation of the ranging error ∆τ is related to the correlator
spacing through g(teml), which is shown as a function of teml.

Fig. 4.4 shows the pseudorange error of a coherent DLL as a function of the carrier-to-

noise ratio (C/N0), with BL = {0.005, 0.05} Hz and teml = {0.25, 0.5, 1, 1.5, 2}. It is worth

mentioning that in Fig. 4.4, the bandwidth is chosen to be BL = {0.005, 0.05} Hz to enable

the reader to compare the results with the standard GPS results provided in [69].

55



10 20 30 40 50 60 70

10-2

100

Figure 4.4: Coherent baseband discriminator noise performance as a function of C/N0, for
different teml values. Solid and dashed lines represent the results for BL = 0.05 Hz and
BL = 0.005 Hz, respectively.

While the ranging accuracy of a coherent baseband DLL was evaluated in the presence of

white noise, other sources of errors may affect the ranging accuracy. The effect of multipath,

which is another significant source of error is discussed next.

Code Phase Error Analysis in Multipath Environments for a Coherent Discrim-

inator Function

In general, the received signal in a multipath environment can be expressed as

r(t) =
L−1∑

l=0

αl(t)y(t− τl(t)) + n(t), (4.9)

where y(t) is the transmitted data. Subsequently, the signal components of the early and

late correlations are given by

Sek =
√
C

L−1∑

l=0

αl(t)R
[
∆τk −

teml

2
Tc − τl(t)

]
,

Slk =
√
C

L−1∑

l=0

αl(t)R
[
∆τk +

teml

2
Tc − τl(t)

]
.
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The discriminator function may be attenuated in a multipath channel, and the amount of

attenuation depends on αl and τl. In general, obtaining a closed-form expression for the

pseudorange error from the DLL in a multipath environment is intractable. In this subsec-

tion, the performance of a DLL tracking the SSS code phase with a coherent discriminator

function in a multipath environment is characterized numerically.

The considered scenario assumes a channel with only one multipath component with α0 = 1

and α1 = 0.2512ejφ (i.e., the multipath amplitude is 6 dB lower than the LOS amplitude).

The effect of the delay of the reflected signal (τ1) on the pseudorange estimation performance

is evaluated for φ = {0, π}, i.e., for constructive and destructive interference, respectively.

Moreover, since the goal is to assess the ranging performance in a multipath environment,

no noise was added to the simulated signals. The zero-crossing point of the discriminator

function was calculated using Newton’s iterative method. The resulting pseudorange error

is shown in Fig. 4.5 as a function of the relative path delay (in meters) and for different teml

values.
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Figure 4.5: Pseudorange error for a channel with one multipath component with an amplitude
that is 6 dB lower than the amplitude of the LOS signal. The error is plotted as a function of
the path delay (in meters) and for different teml values. The solid and dashed lines represent
constructive and destructive interferences, respectively.
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4.1.2 Noncoherent Discriminator Function

This Section analyzes the ranging precision of LTE’s SSS signals with noncoherent discrim-

inator functions, which avoids the dependency on carrier phase tracking.

Correlation Signal Model

Denote the correlation of the received signal with the early, prompt, and late locally generated

signals at time t = kTsub as

Zxk
= Ixk

+ jQxk
,

where x can be either e, p, or l representing early, prompt, or late correlations, respectively.

Assuming the receiver’s signal acquisition stage to provide a reasonably accurate estimate

of fD, the in-phase and quadrature components of the early, prompt, and late correlations

can be written as

Ixk
=
√
CR

(

∆τk + κ
teml

2
Tc

)

cos(∆φk) + ηI,xk
,

Qxk
=
√
CR

(

∆τk + κ
teml

2
Tc

)

sin(∆φk) + ηQ,xk
,

where x is e, p, or l and κ is −1, 0, or 1 for early, prompt, and late correlations, respectively.

It can be shown that the noise components ηI,xk
and ηQ,xk

of the correlations have: (1)

uncorrelated in-phase and quadrature samples, (2) uncorrelated samples at different time,
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(3) zero-mean, and (4) the following variances and covariances

var{ηI,xk
} = var{ηQ,xk

} = N0

4Tsub
, (4.10)

E{ηI,ekηI,lk} = E{ηQ,ekηQ,lk} =
N0R(temlTc)

4Tsub
,

E{ηI,x′
k
ηI,pk} = E{ηQ,x′

k
ηQ,pk} =

N0R( teml

2
Tc)

4Tsub
, (4.11)

where x′ is e or l.

Open-Loop Statistics of the Code Phase Error for a Dot-Product Discriminator

Function

The dot-product discriminator function is defined as

Dk , (Iek − Ilk)Ipk + (Qek −Qlk)Qpk , Sk +Nk,

where Sk is the signal component of the dot-product discriminator given by

Sk = CR(∆τk)
{

R
(

∆τk −
teml

2
Tc

)

−R
(

∆τk +
teml

2
Tc

)}

,

and Nk is the noise component of the discriminator function, which has zero-mean. Fig.

4.6(a) shows Sk/C for teml = {0.25, 0.5, 1, 1.5, 2}. It can be seen that the signal component

of the discriminator function is non-zero for ∆τk/Tc > (1 + teml/2); which is in contrast to

being zero for GPS C/A code with infinite bandwidth. This is due to the sinc autocorrelation

function of the SSS versus the triangular autocorrelation function of the GPS C/A code.

For small values of ∆τk, the discriminator function can be approximated by a linear function

59



∆τ=Tc ∆τ=Tc

S
k
=C

S
k
=C

teml = 0:25 teml = 1 teml = 1:5 teml = 2

(b)(a)

teml = 0:5

Figure 4.6: Signal component of (a) dot-product and (b) early-power-minus-late-power dis-
criminator function for different correlator spacings.

according to

Dk ≈ kSSS∆τk +Nk, (4.12)

where kSSS , ∂Dk

∂∆τk

∣
∣
∣
∆τk=0

and is given by

kSSS = 4CWSSS

[

sinc
(
teml

2

)
− cos

(
πteml

2

)

teml

]

. (4.13)

The mean and variance of Dk are calculated to be

E{Dk} = kSSS∆τk, (4.14)

var{Dk} = var{Nk}|∆τk=0

=

(
N2

0

4T 2
sub

+
CN0

2Tsub

)

[1−R(temlTc)] . (4.15)
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Open-Loop Statistics of the Code Phase Error for an Early-Power-Minus-Late-

Power Discriminator Function

The early-power-minus-late-power discriminator function is defined as

Dk , I2ek +Q2
ek
− I2lk −Q

2
lk
, Sk +Nk,

where Sk can be shown to be

Sk = C

{

R2

(

∆τk −
teml

2
Tc

)

−R2

(

∆τk +
teml

2
Tc

)}

,

and Nk is the noise component of the discriminator function, which has zero-mean. Fig.

4.6(b) shows Sk/C of the early-power-minus-late-power discriminator function for teml =

{0.25, 0.5, 1, 1.5, 2}.

The discriminator function can be approximated by a linear function for small values of ∆τk

(cf. (4.12)) with

kSSS = 8CWSSSR
(
teml

2
Tc

)[

sinc
(
teml

2

)
− cos

(
πteml

2

)

teml

]

. (4.16)

The mean and variance of Dk are calculated to be

E{Dk} = kSSS∆τk, (4.17)

var{Dk} =
N2

0

2T 2
sub

[
1−R2 (temlTc)

]
+

2CN0

Tsub
R2

(
teml

2
Tc

)

[1−R (temlTc)] . (4.18)
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Closed-Loop Statistics of the Code Phase Error for a Dot-Product Discriminator

Function

Using a first-order DLL and at a steady-state, it can be shown that the closed-loop code phase

error variance follows (4.6). The closed-loop code phase error in a dot-product discriminator

can be obtained by substituting (4.13) and (4.15) into (4.6), yielding

var{∆τ} =
BL gα(teml)

(

1 + 1
2TsubC/N0

)

16(1− 2BLTsub)W 2
SSSC/N0

, (4.19)

where

gα(teml) ,
t2eml [1−R(temlTc)]

[sinc (teml/2)− cos (πteml/2)]
2 .

Fig. 4.7(a) shows gα(teml) for 0 ≤ teml ≤ 2. It can be seen that gα(teml) is a nonlinear function

and increases significantly faster for teml > 1. Fig. 4.8 shows the standard deviation of the

pseudorange error for a dot-product DLL as a function of C/N0 with teml = 1 and BL =

{0.005, 0.05} Hz, chosen as such in order to enable comparison with the GPS pseudorange

error standard deviation provided in [66, 69].
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Figure 4.7: The variance of the ranging error in a dot-product discriminator is related to the
correlator spacing through gα(teml) shown in (a), while for an early-power-minus-late-power
discriminator it is related through gα(teml) and gβ(teml) shown in (b).
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Hz, and teml = 1.

Closed-Loop Statistics of the Code Phase Error for an Early-Power-Minus-Late-

Power Discriminator Function

The variance of the ranging error in an early-power-minus-late-power discriminator can be

obtained by substituting (4.16) and (4.18) into (4.6), yielding

var{∆τ} =
BL

[
gβ(teml)

(C/N0)
+ 4Tsubgα(teml)

]

64(1− 2BLTsub)TsubW 2
SSSC/N0

, (4.20)

where

gβ(teml) ,
1 +R (temlTc)

R2
(
teml

2
Tc
) gα(teml).

Fig. 4.7(b) shows gβ(teml) for 0 ≤ teml ≤ 2. It can be seen that gβ(teml) is significantly larger

than gα(teml). To reduce the ranging error due to gβ(teml), teml must be chosen to be less

than 1.5.

Fig. 4.8 shows the standard deviation of the pseudorange error for an early-power-minus-

late-power discriminator DLL as a function of C/N0 with BL = {0.05, 0.005}Hz and teml = 1.
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It can be seen that decreasing the loop bandwidth decreases the standard deviation of the

pseudorange error. However, very small values of BL may cause the DLL to lose lock in a

highly dynamic scenario.

Code Phase Error Analysis in Multipath Environments for a Noncoherent Dis-

criminator Function

In order to evaluate the effect of multipath on the dot-product discriminator function per-

formance, a multipath environment similar to the one in Subsection 4.1.1 is considered,

where the channel consists of only one multipath component and one LOS component. The

multipath signal amplitude is 6 dB lower than the LOS amplitude. Then, the effect of the

delay of the reflected signal on the pseudorange estimation performance is evaluated for con-

structive and destructive interference. Since the goal is to assess the ranging performance

in a multipath environment, no noise was added to the simulated signals. The zero crossing

point of the discriminator function was calculated using Newton’s method. The resulting

pseudorange error for a dot-product discriminator is shown in Fig. 4.9 as a function of the

relative path delay (in meters) for teml = {0.25, 0.5, 1, 1.5}. It was noted that the pseudor-

ange errors for the early-power-minus-late-power discriminator were very close (within a few

millimeters) to the plots in Fig. 4.9 for the same tteml settings.

In what follows, some remarks outlining the major differences between a GPS and an LTE

SSS-based receiver are presented.

Remark 1. The autocorrelation function of the GPS C/A code with an infinite bandwidth

has a triangular shape, which is zero-valued for time delays greater than Tc. Therefore, for

τl > (1 + teml/2)Tc, multipath does not introduce any errors in the pseudorange. However,

the autocorrelation function of the SSS is a sinc function, which has non-zero values for time

delays higher than (1 + teml/2)Tc. Consequently, there will always be multipath-induced
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Figure 4.9: Pseudorange error for a dot-product discriminator for a channel with one multi-
path component with an amplitude that is 6 dB lower than the amplitude of the LOS signal.
The error is plotted as a function of the path delay (in meters) and for different teml values.
The solid and dashed lines represent constructive and destructive interferences, respectively.
Pseudorange errors for an early-power-minus-late-power discriminator are almost identical.

pseudorange errors when tracking the SSS in multipath environments, even in the case of

long-delay multipath (see Fig. 4.5).

Remark 2. In a GPS receiver with an infinite bandwidth in a noise-free environment,

decreasing the correlator spacing, teml, always reduces the pseudorange error. In practice,

due to the band-limiting effect of the receiver, the correlator spacing should be greater than

the reciprocal of the receiver bandwidth. In an LTE receiver, on the other hand, decreasing

the correlator spacing may either (1) reduce the pseudorange error if the signal is subject

to channel noise only or if it is in a short-delay multipath environment or (2) increase the

pseudorange error if the receiver is in a long-delay multipath environment.

4.2 CRS-Based Receiver

In this section, the open-loop statistics of the code and carrier phase errors are derived

for LTE CRS signals. Using (4.6), the results can be simply extended to the closed-loop

statistics, which are eliminated from this section.
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4.2.1 Code Phase Statistics

Open-Loop Statistics of the Code Phase Error

In a multipath-free and noise-free environment, the point at which the discriminator function

is zero represents the TOA. However, noise can move the zero crossing point as

ẽτ =
NDLL

kDLL

, (4.21)

where

kDLL =
∂DDLL(ẽτ , ξ)

∂ẽτ

∣
∣
∣
∣
∣ ẽτ≈ 0
ξ=1/2

=
4πC cos( π

2M
)

M
(
sin( π

2M
)
)3 . (4.22)

Therefore, the open-loop code phase error due to noise is a random variable with zero-mean

and variance

σ2
ẽτ =

var[NDLL]

k2DLL

≈ π2

128MC/N0
, (4.23)

which is obtained by assuming M ≫ 1 and carrier-to-noise ratio C/N0 ≫ 1 dB-Hz and

defining the power spectral density of noise as Sn(f) , N0/2 = σ2. Fig. 4.10 plots the

standard deviation of the pseudorange error as a function of C/N0 for different values of

Nc. The results show that the pseudorange error improves significantly as the number of

subcarriers Nc in the LTE signal increases.

Time Integration

From (4.23), it can be seen that one of the parameters affecting the pseudorange error

is the discriminator function’s noise component. It can be shown that the average of I
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Figure 4.10: Standard deviation of the code phase error as a function of the C/N0 for a
different number of subcarriers Nc

independent and identically distributed (i.i.d.) random variables reduces the variance by a

factor of I. This property can be used to reduce the code phase error variance. By averaging

the discriminator functions over I different symbols, the overall DLL discriminator function

is obtained as

Dtot ,
1

I

∑

i∈ICRS

DDLLi
=M2CΛDLL(ẽτ , ξ) +Ntot, (4.24)

where ICRS is the set of symbols over which integration is performed and contains CRS,

I = card (ICRS), where card (·) is the cardinality of the set, and

Ntot =
1

I

∑

i∈ICRS

NDLLi
.

It can be shown that {NDLLi
}i∈ICRS

is i.i.d. with zero-mean and variance given in (3.17).

Therefore, Ntot is zero-mean with variance var[Ntot] = var[NDLL]/I. Using the discriminator

function (4.24), it can be shown that the code phase error after averaging is a random variable

with zero-mean and variance

σ2
ẽτ ≈

π2

128MIC/N0

, (4.25)
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which is decreased by a factor of I compared to (4.23). Since the CRS is transmitted on

multiple symbols in a frame, it is possible to take the average over the symbols carrying the

CRS in only one frame and keeping the DLL loop update time equal to a frame duration.

However, increasing I too much may result in loss of coherence due to unknown receiver

motion and clock drift. Consequently, a very long integration time may degrade the estima-

tion performance. The use of a dead-reckoning (DR)-type sensor may help compensate for

receiver motion. On the other hand, the magnitude of the clock drift is determined solely

by the oscillator stability. While stable oscillators (e.g., oven-controlled crystal oscillators

(OCXOs)) allow for longer integration time, they are expensive and large to install on cheap

portable RF platforms. An integration time of 400 milliseconds may be achieved for a sta-

tionary receiver using cheap, small, but less stable oscillators (e.g., temperature-compensated

crystal oscillators (TCXOs)) [70].

Code Phase Error Analysis in a Multipath Environment

In a multipath fading environment, the discriminator function can be expressed as [45]

DDLL =M2CΛDLL(ẽτ , ξ) +NDLL + χ1 + χ2 (4.26)

where χ1 and χ2 represent the multipath channel effect on the discriminator function ac-

cording to

χ1 =C

∣
∣
∣
∣
∣

M−1∑

m=0

L−1∑

l=1

αl e
−j2π(m/M)(τl/Ts+ẽτ−ξ)

∣
∣
∣
∣
∣

2

− C
∣
∣
∣
∣
∣

M−1∑

m=0

L−1∑

l=1

αl e
−j2π(m/M)(τl/Ts+ẽτ+ξ)

∣
∣
∣
∣
∣

2

,
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χ2 =2C ℜ
{[

M−1∑

m=0

e−j2π(m/M)(ẽτ−ξ)

]

·
[
M−1∑

m′=0

L−1∑

l=1

α∗
l e

j2π(m′/M)(τl/Ts+ẽτ−ξ)

]}

− 2C ℜ
{[

M−1∑

m=0

e−j2π(m/M)(ẽτ+ξ)

]

·
[
M−1∑

m′=0

L−1∑

l=1

α∗
l e

j2π(m′/M)(τl/Ts+ẽτ+ξ)

]}

,

where ℜ{·} represents the real part. It can be seen from (4.26) that multipath adds a bias

to the discriminator function. Fig. 4.11 shows the code phase error in a multipath, but

noise-free environment. The channel is assumed to have only two taps with the multipath

amplitude 6 dB lower than the LOS’ amplitude. The effect of the delay of the reflected signal,

τ1, on the pseudorange error is evaluated for constructive and destructive interferences, re-

spectively. The results are obtained for different number of subcarriers. Fig. 4.11 shows that

the pseudorange error reduces in both constructive and destructive channels when the band-

width of the LTE signal increase. With Nc = 2048, the pseudorange error with constructive

multipath interference is less than 50 cm.

4.2.2 Carrier Phase Statistics

Open-Loop Statistics of the Carrier Phase Error

In a noisy but multipath-free environment, noise can move the zero crossing point of the

PLL discriminator function as

∆φ =
NPLL

kPLL
(4.27)

where kPLL = 1. Therefore, the open-loop carrier phase error due to noise is a random

variable with zero-mean and variance

σ2
∆φ =

1

4MC/N0

(

1 +
1

4MC/N0

)

.

69



Nc = 128

Nc = 256

Nc = 512

Nc = 1024

Nc = 1536

Nc = 2048

C
od
e
p
h
as
e
er
ro
r
[m

]
C
od
e
p
h
as
e
er
ro
r
[m

]

Multipath delay [m]

Multipath delay [m]

Figure 4.11: Code phase error for a multipath channel with α0 = 1 and α1 = 0.2512 and
for different number of subcarriers. The solid and dashed lines represent constructive and
destructive interferences, respectively.

Fig. 4.12 plots the standard deviation of the carrier phase error as a function of C/N0 for

different values of Nc. The results show that the carrier error improves significantly as the

number of subcarriers Nc in the LTE signal increases.
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Figure 4.12: Standard deviation of the carrier phase error as a function of the C/N0 for a
different number of subcarriers Nc
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Carrier Phase Error in a Multipath Environment

In a multipath fading environment, the PLL discriminator function can be expressed as

DPLL = arg
[

M
√
Cej∆φ + χPLL + noise

]

,

for k = m∆CRS + κ, m = 0, · · · ,M − 1,

where

χPLL =

M−1∑

m=0

L−1∑

l=1

√
Cej∆φαl e

−j2π(m/M)(τl/Ts)

Fig. 4.13 shows the carrier phase error in a multipath, but noise-free environment. The

channel is assumed to be similar to Section 4.2.1. The results are obtained for a different

number of subcarriers. Fig. 4.13 shows that the maximum carrier phase error for a different

number of subcarriers is the same. However, for higher Nc, the carrier phase error drops

faster as the multipath delay increases.
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Figure 4.13: Carrier phase error for a multipath channel with α0 = 1 and α1 = 0.2512 and
for a different number of subcarriers. The solid and dashed lines represent constructive and
destructive interferences, respectively.
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Chapter 5

Navigation Framework with LTE

Signals

Chapter 3 presented the structure of the proposed SDR to extract navigation observables

from cellular LTE SSS and CRS signals. This chapter proposes three frameworks to estimate

the location of the UE using the derived navigation observables. Section 5.1 presents the

navigation observables’ models as functions of the UE’s and eNodeBs’ states. Section 5.2

and 5.3 propose two standalone navigation frameworks, where only statistical model is used

to propagate the estimator’s state. Section 5.4 uses IMU measurements to propagate the

estimator’s state between measurement updates from eNodeBs. The difference between

Section 5.2 and 5.3 is that in Section 5.2, only code phase measurements are used to estimate

the UE’s position and velocity and the difference between the UE’s clock bias and drift and

those of the eNodeBs’. However, Section 5.3 uses single difference code and carrier phase and

Doppler frequency measurements to estimate the UE’s position and velocity. The advantages

of each of these frameworks are discussed in details.

The results of this chapter have been published in [48, 49, 59, 71–73]
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5.1 Navigation Observables Models

The LTE code phase measurement to the u-th eNodeB can be modeled as

ρ(u) = d(u) + c
(
δtr − δt(u)s

)
+ ε(u)ρ , [m] (5.1)

for u = 1, · · · , U,

where U is the total number of eNodeBs from which the receiver can extract measurements;

d(u) ,
∥
∥
∥rr − r

(u)
s

∥
∥
∥; rr = [xr, yr, zr]

T and r
(u)
s =

[

x
(u)
s , y

(u)
s , z

(u)
s

]T

are the UE’s and the u-th

eNodeB’s 3-D position, respectively; c is the speed of light; δtr and δt
(u)
s are the UE’s and

the u-th eNodeB’s clock biases, respectively; and ε
(u)
ρ is the code phase measurement noise,

which is modeled as a zero-mean Gaussian random variable with a standard deviation of

σ
(u)
ρ .

The LTE carrier phase measurement to the u-th eNodeB can be similarly modeled as

φ(u) = d(u) + c
(
δtr − δt(u)s

)
+ λ(u)N (u) + ε

(u)
φ , [m] (5.2)

for u = 1, · · · , U,

where λ(u) = c

f
(u)
c

is the signal’s wavelength; N (u) is the integer ambiguity representing the

number of cycles from the u-th eNodeB to the UE; and ε
(u)
φ is the carrier phase measurement

noise, which is modeled as a zero-mean Gaussian random variable with a standard deviation

of σ
(u)
φ .

The LTE Doppler frequency measurement to the u-th eNodeB can be modeled as

f
(u)
D = − 1

λ(u)

ṙT

r

(

rr − r
(u)
s

)

d(u)
+

c

λ(u)

(

δ̇tr − δ̇t(u)s

)

+ ε
(u)
f , [Hz] (5.3)

for u = 1, · · · , U,
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where ṙr = [ẋr, ẏr, żr]
T is the velocity of UE; δ̇tr and δ̇t

(u)
s are the UE’s and the u-th eNodeB’s

clock drifts, respectively; and ε
(u)
f is the Doppler frequency measurement noise, which is

modeled as a zero-mean Gaussian random variable with a standard deviation of σ
(u)
f .

It can be seen from (5.1), (5.2), and (5.3) that the UE’s and the eNodeBs’ clock biases,

which are unknown to the UE, affect all the measurements. The effect of the UE’s clock

bias and drift, which is common in all the measurements, can be removed by subtracting

the l-th eNodeB’s measurement from other eNodeBs’ measurements, which results in single

difference measurements defined as

ρ(ul) , ρ(u) − ρ(l)

= d(ul) − cδt(ul)s + ε(ul)ρ , (5.4)

φ(ul) , φ(u) − φ(l)

= d(ul) − cδt(ul)s + λ(u)N (u) − λ(l)N (l) + ε
(ul)
φ , (5.5)

ρ̇(ul) , ρ̇(u) − ρ̇(l)

= −
ṙT

r

(

rr − r
(u)
s

)

d(u)
+

ṙT

r

(

rr − r
(l)
s

)

d(l)
− cδ̇t(ul)s + ε

(ul)
ρ̇ , (5.6)

where (·)(ul) , (·)(u)− (·)(l) and ρ̇(u) , λ(u)f
(u)
D . The l-th eNodeB will be called the reference

eNodeB.
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5.2 Standalone LTE Navigation Solution with Code

Phase Measurements

In this section, a navigation framework based on an extended Kalman filter (EKF) is pro-

posed, where the code phase measurements presented in (5.1) are used to estimate the UE’s

position and velocity and the difference between the UE’s clock bias and drift and those of

the eNodeBs’. This is due to the fact that the UE and eNodeBs’ clock biases are unknown

at the UE and must be estimated.

First, the state and dynamic models are discussed. Then, experimental hardware and soft-

ware setup are presented. Next, two experimental results are demonstrated. In the first

experiment, an SSS-based SDR is compared with a CRS-based SDR with a threshold-based

tracking approach. The results show that the CRS-based SDR outperforms the SSS-based

one significantly due to the higher transmission bandwidth of the CRS signals. In the second

experiment, the performance of the CRS-based SDR with a tracking loop is compared to the

state-of-the-art showing lower computational complexity and higher accuracy and precision

of the proposed SDR. Finally, the concluded remarks from the presented experimental results

are provided.

5.2.1 State and Dynamic Model

The UE is assumed to move in a two-dimensional (2-D) plane with known height, i.e.,

zr(j) = z0 and żr(j) = 0, where z0 is a known constant. Moreover, the receiver’s 2-D

position is assumed to evolve according to a velocity random walk, with the continuous-time

(CT) dynamics given by

ẍr(t) = w̃x, ÿr(t) = w̃y, (5.7)
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where w̃x and w̃y are zero-mean white noise processes with power spectral densities q̃x and

q̃y, respectively. The receiver’s discrete-time (DT) dynamics are hence given by

xpv(j + 1) = Fpvxpv(j) +wpv(j), (5.8)

where

xpv ,












xr

yr

ẋr

ẏr












, Fpv =












1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1












,

where T ≡ Tf is the measurement’s sampling time andwpv is a DT zero-mean white sequence

with covariance Qpv, where

Qpv =












q̃x
T 3

3
0 q̃x

T 2

2
0

0 q̃y
T 3

3
0 q̃y

T 2

2

q̃x
T 2

2
0 q̃xT 0

0 q̃y
T 2

2
0 q̃yT












.

The UE’s clock bias and drift are assumed to evolve according to the following DT dynamics

xclkr(j + 1) = Fclkxclkr(j) +wclkr(j), (5.9)

where

xclkr ,






cδtr

cδ̇tr




 , Fclk =






1 T

0 1




 , wclkr =






wδtr

wδ̇tr




 ,

where wclkr is the process noise, which is modeled as a DT zero-mean white sequence with
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covariance Qclkr with

Qclkr =






Sw̃δtr
T + Sw̃δ̇tr

T 3

3
Sw̃δ̇tr

T 2

2

Sw̃δ̇tr

T 2

2
Sw̃δ̇tr

T




 .

The terms Sw̃δtr
and Sw̃δ̇tr

are the clock bias and drift process noise power spectra, re-

spectively, which can be related to the power-law coefficients {hα}2α=−2, which have been

shown through laboratory experiments to characterize the power spectral density of the

fractional frequency deviation y(t) of an oscillator from nominal frequency according to

Sy(f) =
∑2

α=−2 hαf
α. A common approximation involves only the h0 and h−2 parameters,

namely Sw̃δtr
≈

h0r

2
and Sw̃δ̇tr

≈ 2π2h−2r [74].

The u-th eNodeBs’ clock states x
(u)
clks

evolve according to the same dynamic model as the

UE’s clock state (5.9), except that the process noise is replaced with w
(u)
clks

,
[

w
(u)
δts
, w

(u)

δ̇ts

]T

,

which is modeled as a DT zero-mean sequence with covariance Q
(u)
clks

[75].

One of the main challenges in navigation with LTE signals is the unavailability of the eN-

odeBs’ positions and clock states. It has been previously shown that the SOP position can

be mapped with a high degree of accuracy, whether collaboratively or non-collaboratively

[75, 76]. In what follows, the eNodeBs’ positions are assumed to be known, and an EKF

will be utilized to estimate the vehicle’s position rr and velocity ṙr simultaneously with

the difference between the receiver and each eNodeB’s clock bias and drift states. The dif-

ference between the receiver’s clock state vector and the u-th eNodeB’s clock state vector

∆x
(u)
clk , xclkr − x

(u)
clks

evolves according to

∆x
(u)
clk (j + 1) = Fclk∆x

(u)
clk(j) +w

(u)
clk (j),

where w
(u)
clk ,

(

wclkr −w
(u)
clks

)

is a DT zero-mean white sequence with covariance Q
(u)
clk , where

Q
(u)
clk , Qclkr +Q

(u)
clks

.
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The augmented state vector which will be estimated by the EKF is defined as

x ,
[

xT

pv,∆x
(1)
clk

T

, . . . ,∆x
(U)
clk

T
]T

.

This vector has the dynamics

x(j + 1) = Fx(j) +w(j),

where F , diag [Fpv,Fclk, . . . ,Fclk] and w is a DT zero-mean white sequence with covariance

Q , diag [Qpv,Qclk] and

Qclk =












Qclkr +Q
(1)
clks

Qclkr . . . Qclkr

Qclkr Qclkr +Q
(2)
clks

. . . Qclkr

...
...

. . .
...

Qclkr Qclkr . . . Qclkr +Q
(U)
clks












. (5.10)

5.2.2 Experimental Hardware and Software Setup

To evaluate the performance of the navigation framework and the proposed SDRs, two field

tests were conducted with real LTE signals in a suburban and urban environment. For this

purpose, a mobile ground receiver was equipped with two types of antennas to acquire and

track: (1) GPS signals and (2) LTE signals in different bands from nearby eNodeBs. The LTE

antennas were consumer-grade 800/1900 MHz cellular omnidirectional antennas and the GPS

antenna was a surveyor-grade Leica antenna. The LTE signals were simultaneously down-

mixed and synchronously sampled via a dual-channel universal software radio peripheral

(USRP)-2954R driven by a GPS-disciplined oscillator (GPSDO). LTE signals were sampled

at a rate of 20 MSps. The GPS signals were collected on a separate NI single-channel

USRP-2930 also driven by a GPSDO. It is worth mentioning that the GPSDO is only used
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to discipline the clock on the USRPs (which were not very stable without a GPSDO). Samples

of the received signals were stored for off-line post-processing. The samples of the GPS signal

were used to produce the vehicle’s “ground truth” trajectory [77] and the LTE signals were

processed by the proposed SSS- and CRS-based LTE SDRs. Fig. 5.1 shows the experimental

hardware and software setup.
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Error
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Figure 5.1: Experimental hardware and software setup

According to the LTE protocol, the modulated carrier frequency of LTE signals received from

an eNodeB over 1 ms should be accurate to within ±50 parts per billion (ppb) with respect

to a reference [78]. This reference is typically obtained by using OCXOs in the eNodeBs and

the signals transmitted by GNSS. However, when GNSS signals are not available or reliable

(e.g., in deep urban canyons), other standards (e.g., synchronous ethernet) could be used to

transfer synchronization signals to the eNodeBs [78, 79].

The clock error dynamics modeled in (5.9) is only valid for a GPSDO over short periods

of time. When the measurement rate is significantly higher than the GPSDO correction

rate, it can be assumed that the clock follows the model presented in Section 5.2.1 between

each GPSDO correction. In this dissertation, the measurements are obtained every 10 ms,

while the GPSDO correction is performed usually less than once per second. Therefore,

using the model in (5.9) is practical. The eNodeBs’ clocks were modeled as OCXOs with

{h0s}Ni=1 = 2.6 × 10−22 and {h−2s}Ni=1 = 4 × 10−26, while the UE’s clock was modeled as a

TCXO with h0r = 9.4× 10−20 and h−2r = 3.8× 10−21.
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5.2.3 Experimental Results: SSS-Based vs. CRS-Based SDR

This experiment was performed in a suburban environment in Colton, CA, USA. Over the

course of the experiment, the vehicle-mounted receiver traversed a total trajectory of 2 km

while listening to 2 eNodeBs simultaneously. The LTE UE was tuned to 1955 and 2145 MHz

carrier frequencies, which were allocated to USA providers AT&T and T-Mobile, respectively,

and the transmission bandwidth was measured to be 20 MHz.

Pseudorange Measurements

In this subsection, the quality of the pseudoranges obtained by the SSS- and the CRS-based

SDRs are evaluated. To this end, the change in the pseudorange between the receiver and

eNodeB 1 and 2 was calculated using the SSS- and CRS-based SDRs. The result is plotted

for each eNodeB in Fig. 5.2 and Fig. 5.4, respectively. The change in true range calculated

from the GPS solution is also shown in these figures. The pseudorange error obtained from

SSS-based SDR had a standard deviation of 32.72 m for eNodeB 1 and 37.49 m for eNodeB

2. The pseudorange error obtained from the CRS-based SDR had a standard deviation of

5.14 m for eNodeB 1 and 6.01 m for eNodeB 2. Fig. 5.3 and 5.5 show the pseudorange error

and its cumulative distribution function (CDF) obtained by SSS- and CRS-based SDRs for

eNodeB 1 and eNodeB 2, respectively.

Fig. 5.2 and Fig. 5.4 show that the main cause of error in the pseudorange obtained by

tracking the SSS signal is due to multipath. The estimated CIR at t = 13.04 s for eNodeB 1

and t = 8.89 s for eNodeB 2 (Fig. 5.2 and Fig. 5.4, respectively) show several peaks resulting

from multipath. These peaks are the main source of pseudorange error at t = 13.04 s for

eNodeB 1 and t = 8.89 s for eNodeB 2, which are around 330 m and 130 m, respectively.

Moreover, Fig. 5.2 and Fig. 5.4 show that the CRS-based receiver has a significantly lower

pseudorange error compared to the SSS-based receiver in multipath environments. It is
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Figure 5.2: Estimated change in pseudorange and estimated CIR at t = 13.04 s for eNodeB
1. The change in the pseudorange was calculated using: (1) SSS pseudoranges, (2) CRS
pseudoranges, and (3) true ranges obtained using GPS.
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Figure 5.3: (a) Error in the change of the pseudorange obtained by LTE and GPS. (b) CDF
of the distance error.

worth mentioning that in some environments with severe multipath, the LOS signal may

have a significantly lower amplitude compared to the multipath signals. In this case, the

CIR peak-detection threshold must be dynamically tuned in the receiver in order to detect

the LOS peak. The pseudoranges shown in Fig. 5.2 and Fig. 5.4 are obtained by tuning

the receiver threshold in post-processing. Fig. 5.6 shows the pseudorange obtained without

dynamically adjusting the peak-detection threshold. An instance of having a LOS peak

significantly lower than multipath peaks is shown in the estimated CIR at t = 40.5 s in Fig.

5.4. It can be seen from this estimated CIR that the LOS peak is at approximately -40 m,
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Figure 5.5: (a) Error in the change of the pseudorange obtained by LTE and GPS. (b) CDF
of the distance error.

whereas the highest peak of the estimated CIR, which corresponds to a multipath signal, is

at approximately 400 m. Consequently, an error of approximately 440 m due to multipath

will be introduced into the pseudorange, as shown in 5.6.
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Figure 5.6: Tracking results for eNodeB 2: pseudorange obtained without dynamically tuning
the peak-detection threshold

Navigation Solution

The second part of the experiment was to navigate using LTE signals exclusively and via

the EKF framework discussed in the previous subsection. For this purpose, the receiver’s

position and velocity along with the difference of clock biases between the receiver and each

eNodeB as well as the difference of clock drifts are estimated dynamically. To make the

problem observable, it is assumed that the receiver has had access to GPS before navigating

with LTE signals; hence, the receiver has full knowledge of its initial state [15].

The environment layout as well as the true and estimated receiver trajectories are shown

in Fig. 5.7. The RMSE between the GPS and SSS-based navigation solutions along the

traversed trajectory was calculated to be 50.46 m with a standard deviation of 41.07 m and

a maximum error of 419.66 m. The RMSE between the GPS and CRS-based navigation

solutions was calculated to be 9.32 m with a standard deviation of 4.36 m and a maximum

error of 33.47 m. Theses results are summarized in Table 5.1.

Table 5.1: Experimental results [in meters] comparing navigation solutions obtained from
SSS-based and CRS-based SDRs.

Receiver RMSE
Standard

deviation

Maximum

error

SSS 50.46 41.07 419.66

CRS 9.32 4.36 33.47
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Figure 5.7: Receiver true and estimated trajectories and eNodeBs’ locations.

5.2.4 Experimental Results: CRS-Based SDR vs. State-of-the-

Art

In this experiment, the performance of the CRS-based SDR with tracking loop is evaluated

and compared with the state-of-the-art apporaches. The experiment was conducted using a

ground vehicle in an urban multipath environment: downtown Riverside, California. It is

assumed that the receiver had access to GPS, and GPS was cut off at the start time of the

experiment. Therefore, the EKF’s states were initialized with the values obtained from the

GPS navigation solution. The standard deviation of the initial uncertainty of position and

velocity were set to be 5 m and 0.01 m/s, respectively [69]. The standard deviation of the

initial uncertainty of the clock bias and drift were set to be 0.1 m and 0.01 m/s, respectively,

which were obtained empirically. The process noise power spectral densities q̃x and q̃y were

set to 0.1 (m2/s3) and the measurement noise standard deviation was set to 10 m2, which

were obtained empirically.

The DLL bandwidth was tuned between 0.05 and 0.2 Hz and the PLL bandwidth was tuned

between 4 and 8 Hz. In order to choose the loop bandwidth, it is required to balance the

performance in the presence of noise against the performance for a moving receiver. Low loop
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bandwidth improves the performance in the presence of noise by increasing the averaging

time. However, a longer averaging time degrades the performance of a moving receiver.

Experimental results revealed that the PLL with high loop bandwidth would fail to track

signals with low C/N0. Therefore, the PLL bandwidth has to be decreased for low C/N0.

To capture the dynamics of a moving receiver, the DLL loop bandwidth, on the other hand,

must be increased. Typically, with high C/N0, the PLL bandwidth can be increased and

lower bandwidth for the DLL can be chosen.

The ESPRIT design parameter was set to P = 0.5M . The integration was performed over

four consecutive OFDM symbols carrying CRS in four slots. The characteristics of the

eNodeBs to which the receiver was listening during the experiment are presented in Table

5.2. The GPS navigation solution was produced from ten GPS satellites. Over the course of

the experiment, the ground vehicle traversed a trajectory of 1.44 km in 90 s with an average

speed of 16 m/s.

Table 5.2: ENodeBs’ Characteristics

eNodeB
Carrier

frequency (MHz)
NCell

ID

Bandwidth

(MHz)

1 739 152 10

2 1955 216 20

3 739 232 10

4 739 288 10

Pseudorange Measurements

In order to evaluate the channel condition, the ESPRIT algorithm was used to estimate the

channel impulse response at each frame of the received LTE signal over the course of the
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experiment. Fig. 5.8 shows the probability of the relative (with respect to the first estimated

path) attenuation and delay components of multipath for each eNodeB. The results showed

that the average of the channel length L over the course of the experiment for eNodeBs 1–4

were 1.09, 4.29, 1.45, and 1.17, respectively, implying relatively less multipath compared

to the extended typical urban (ETU) channel model with channel length of 9. In some

environments, the received signal may be completely blocked resulting in a non-LOS signal.

Differentiating the LOS signal from the NLOS signal is outside the scope of this dissertation,

and the received signal with the lowest TOA is assumed to be the LOS signal.

The obtained pseudoranges with the proposed LTE SDR for each eNodeB are shown in Fig.

5.9(a) with dashed lines. The receiver had access to its actual position using the stored

GPS signal. Therefore, the actual ranges of the receiver to each eNodeB was calculated

and is shown in Fig. 5.9(a) with solid lines. To enable comparison, the initial values of the

pseudoranges and actual ranges are removed in Fig. 5.9(a). It can be seen that the change

in pseudoranges follows the actual ranges closely.

Fig. 5.9(b) shows the relative errors between the pseudoranges and their corresponding

ranges. In this figure, it was assumed that the mean of each error is due to the difference

of the clock biases between the receiver and the transmitter. Therefore, the mean of the

obtained errors for each eNodeB was removed from the entire error, and the plotted errors

have zero-mean. The results show that the standard deviation of the pseudorange errors for

eNodeBs 1–4 are 4.55, 2.20, 1.96, and 2.04 m, respectively. The difference in the obtained

standard deviations can be attributed to several factors, including: (1) different transmission

bandwidth, (2) different multipath environment, and (3) different clock drifts. Fig. 5.9(c)

shows the measured C/N0 of the received signal from each eNodeB over the course of the

experiment. It can be seen that eNodeB 1’s C/N0 drops to approximately 47 dB-Hz after

40 s. Fig. 5.9(d) shows the CIR of the received signal from eNodeB 1 at time instant 40 s.

It can be seen that at this time instant, the noise level and multipath are significantly high
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Figure 5.8: (a)–(d) The probability of the relative (with respect to the first estimated path)
attenuation and delay components of the multipath over the course of experiment, for eN-
odeBs 1–4, respectively.
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Figure 5.9: (a) Measured pseudoranges and actual ranges for each eNodeB, plotted with
dashed and solid lines, respectively. The initial values were removed for comparison purposes.
(b) The obtained error between the pseudoranges and the actual ranges, after removing the
mean of the error. (c) Measured C/N0 of the received signal from each eNodeB. (d) the
normalized CIR of the received LTE signal from eNodeB 1 at time instant 40 s.

resulting in low C/N0. Although multipath is severe for this received signal and the C/N0

is low, the estimated pseudorange obtained by the proposed receiver still follows the actual

range closely.

Fig. 5.10(a) and 5.10(b) show the tracking results for the carrier phase error and Doppler

frequency, respectively, for eNodeB 3.

Navigation Solution

Fig. 5.11(a) shows the distance error between the navigation solution obtained by the LTE

SDR and that of the GPS navigation solution over time. The experimental CDF of the error

is shown in Fig. 5.11(b). The environment layout, the eNodeBs locations, and the entire

trajectory are shown in Fig. 5.12. Table 5.3 summarizes the LTE navigation performance.
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Figure 5.11: (a) Distance error between the navigation solution obtained by the LTE SDR
and the GPS navigation solution over time. (b) The CDF of the error.

Table 5.3: LTE Navigation Performance with Proposed Method

Performance Measure Value

RMSE 3.17 m

Standard deviation 1.06 m

Maximum error 6.58 m
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Figure 5.12: Environment layout, the eNodeBs’ locations, and the traversed trajectory. The
LTE navigation solution exhibited an RMSE of 3.17 m, standard deviation of 1.06 m, and
maximum error of 6.58 m from the GPS navigation solution over a trajectory of 1.44 km.
Image: Google Earth.

Comparison with Other Methods

With the threshold-based SDR proposed in Subsection 3.4.2, the signals from only 3 eN-

odeBs are trackable (i.e. eNodeBs 2–4) and the resulting RMSE over the same traversed

trajectory is 11.96 m, with standard deviation of 6.83 m, and a maximum error of 40.42 m.

The performance of the proposed receiver is also compared with the ESPRIT and EKAT al-

gorithms discussed in [34]. The ESPRIT algorithm is known to provide highly accurate TOA

estimation. However, this method needs perfect knowledge of the CIR length L to provide

accurate results. The MDL method is an approach that can be used to estimate L; but, this

method tends to overestimate the channel length. As a result, the ESPRIT TOA estimation

has an outlier. The effect of this outlier can be reduced significantly using a Kalman filter

and a predetermined threshold on the vehicle’s speed, which is called EKAT in [34]. Fig.

5.13 shows the pseudoranges obtained by the ESPRIT, EKAT, and the proposed receiver
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for all eNodeBs. It can be seen that the pseudoranges obtained by ESPRIT have significant

outliers, which is improved in EKAT. The pseudoranges shown in Fig. 5.13 are obtained

using the same parameters as in [34]. It can be seen that the pseudoranges obtained by the

proposed receiver are significantly more robust and accurate. For more explanation on the

high error obtained using ESPRIT and EKAT algorithms, consider the results for eNodeB 1.

As was discussed in Fig. 5.9, the noise level and multipath effect for eNodeB 1 increase after

40 s. Under this condition, the MDL algorithm tends to overestimate the channel length

and as a result, the noise components are detected as the signal components in the ESPRIT

algorithm. Although the EKAT algorithm could remove some of the outliers in the estimated

CIR by ESPRIT, it could not eliminate a continuous error in the CIR estimates, obtained

by the ESPRIT algorithm. Table 6.1 compares the pseudorange error statistics (standard

deviation σ and maximum error) obtained with the proposed method versus the ESPRIT

and EKAT algorithms.
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Figure 5.13: Estimated pseudoranges obtained by the proposed receiver, ESPRIT, and
EKAT algorithms for all the eNodeBs
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Table 5.4: Comparison of Pseudorange Errors Obtained by Each Method

ESPRIT EKAT
Proposed

Method

σ

[m]

Max.

Error [m]

σ

[m]

Max.

Error [m]

σ

[m]

Max.

Error [m]

eNodeB 1 883.2 2102 495.6 1683 4.55 9.61

eNodeB 2 249.2 2981 176.6 2098 2.20 5.60

eNodeB 3 836.8 2431 422.1 1751 1.96 7.74

eNodeB 4 642.3 1884 148.4 1151 2.04 3.84

In terms of complexity, the ESPRIT and EKAT algorithms have complexity on the order of

O(N3
c ), which is mainly due to the SVD operator. However, the complexity of the proposed

receiver is on the order of O(Nc logNc), which is due to the FFT operator. Since acquisition

is either performed once before tracking starts or after tracking is lost, and since the majority

of the processing time is spent in the tracking stage, when evaluating the complexity, only

the tracking stage is considered.

5.2.5 Remarks

This subsection summarizes key remarks concluded from the presented results.

• A GPSDO allows modeling the receiver’s clock by a known clock model as discussed

in Subsection 5.2.1. In an environment where GPS is not available and the receiver’s

clock model is unknown, other navigation frameworks could be used, e.g., collaboration

via mapping and navigating receivers [22].
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• The GPS navigation solution is only used (1) as ground truth to obtain the estimation

error for navigating with LTE signals and (2) to initialize the EKF.

• The choice of hardware and software is not unique. Any hardware that can sample in

cellular bands can be used to record LTE signals and any software that has the pro-

cessing capabilities (e.g. LabVIEW, MATLAB, and C++) can be used to implement

the receiver.

• The estimation performance depends on the geometric diversity of the eNodeBs, the

number of eNodeBs in the environment, the dynamical model, and the measurement

accuracy.

• There is a slight mismatch between the vehicle’s true dynamical model and the assumed

model in (5.8). In the assumed model, the EKF might allow the vehicle’s position and

velocity estimates to move freely, as opposed to constraining them to a road segment.

This model mismatch will cause the estimation error to become larger. In order to

minimize the mismatch between the true and assumed model, multiple models for

the vehicle’s dynamics may be used to accommodate the different behaviors of the

vehicle in different segments of the trajectory. Alternatively, an inertial measurement

unit (IMU), which is available in many practical systems (e.g., UAV, cars, and smart

phones), can be used to propagate the state of the vehicle [23]. This will also aid in

alleviating multipath-induced errors. Section 5.4 presents a navigation framework that

uses IMU measurements to propagate the state of the filter between each measurement

update.
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5.3 Standalone LTE Navigation Solution with Code

and Carrier Phase and Doppler Frequency Mea-

surements

Section 5.2 discussed a navigation framework that uses code phase measurements to simul-

taneously estimate the position and velocity of the UE and the difference between the UE’s

clock bias and drift and those of the eNodeBs’. There are two main challenges in the pro-

posed framework in Section 5.2: (1) the UE’s and eNodeBs’ clock models must be known

at the UE and (2) code phase measurements have high error and accurate carrier phase

and Doppler frequency measurements are not used. In this section, a navigation framework

based on an EKF is proposed that resolves the aforementioned challenges. The proposed

framework uses single difference code and carrier phase and range rate measurements, which

do not have the effect of the UE’s clock bias.

Although single difference measurements do not depend on the UE’s clock model, they still

have the effect of eNodeBs’ clock biases. One approach to remove this dependency is to use a

base-rover framework. In this framework, the navigation observables of a receiver with known

location, which is called base receiver, is transmitted to the receiver with unknown location,

which is called rover receiver. By subtracting the single difference measurements of the rover

and base receiver, the common error terms (e.g., transmitters’ clock biases) can be removed,

resulting in highly accurate measurements. Note that the base receiver must be installed

close to the rover receiver to be able to listen to the same transmitters and to experience

similar errors (e.g., ionospheric error in GNSS measurements). A base-rover framework

in GNSS systems requires a maximum distance of 10 to 20 km between the base and rover

receivers. This distance ensures similarity between the base and rover common error sources,

while listening to the same satellites. Therefore, GNSS systems require a relatively sparse

base installation. However, this is not the case for navigation with cellular LTE signals. To
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reduce the interference of each eNodeB’s signal with the neighboring eNodeBs, the signal

coverage of each eNodeB is designed to be typically less than 4 km. Therefore, the base

and rover distance must be less than 4 km in a base-rover framework for navigation with

LTE signals. This necessitates a relatively dense network of base stations, which could be

impractical. In this section, the high stability of LTE eNodeBs’ clocks is used to eliminate

the need for a base receiver. The details of the state and dynamic model are presented in

Subsection 5.3.1

One of the main challenges in navigation with carrier phase measurements is the unknown

number of integer cycles between the transmitter and the receiver, namely integer ambiguity.

Different methods can be used to determine the values of integer ambiguities [69, 80]. As

long as the carrier tracking loop maintains lock, integer cycles remain constant. However,

several factors including high receiver’s dynamics, momentary loss of phase lock (e.g., due

to signal blockage), and multipath can cause a discontinuity in the integer cycles, while

the fractional part of the phase is measured continuously. This discontinuity in the integer

cycles is called a cycle slip. Several approaches have been proposed for cycle slip detection in

GNSS signals, including: (1) phase-code comparison, (2) phase-phase ionospheric residual,

(3) Doppler integration, and (4) differential phases [81]. Phase-code comparison can only be

used for large cycle slip detection since the noise level of the code is high. The performance

of phase-phase ionospheric residual depends on the ionospheric residuals and also requires

multiple transmission frequencies (e.g., L1 and L2 in GPS). The receiver’s high dynamics

may be detected as cycle slip in Doppler integration and differential phases. Among the

aforementioned algorithms for cycle slip detection, the second is geometry-free and has the

highest accuracy for small ionospheric residuals due to precise phase measurements. Since

the ionosphere does not affect terrestrial cellular signals, this approach seems promising

for cycle slip detection of cellular signals. However, it requires phase measurements from

multiple carrier frequencies for each transmitter, which is not usually available in cellular LTE

systems since they are typically transmitted on one carrier frequency from each LTE eNodeB.
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However, carrier phase measurements can be obtained from multiple transmission antennas,

which are installed on each eNodeB. In Subsection 5.3.2, a new approach is proposed in

which the carrier phase measurements of different LTE transmission antennas are used to

detect cycle slips. The proposed navigation framework and cycle slip detection algorithm are

evaluated experimentally with real LTE signals. Finally, Subsections 5.3.3 and 5.3.4 present

the experimental setup and results, respectively.

5.3.1 State, Dynamic, and Measurement Model

Based on the LTE protocol, LTE eNodeBs are required to have sufficiently stable clocks [78].

Hence, it can be assumed that δ̇t
(ul)
s is zero over the UE’s navigation course, resulting in the

following model for the single difference range rate measurement

ρ̇(ul) , −
ṙT

r

(

rr − r
(u)
s

)

d(u)
+

ṙT

r

(

rr − r
(l)
s

)

d(l)
+ ε

(ul)
ρ̇ . (5.11)

The UE is assumed to have initial access to the GPS signals before starting to navigate with

LTE signals. Therefore, the known initial position of the UE can be used to estimate δt
(ul)
s .

The estimated value of δt
(ul)
s is assumed to be constant during the UE’s navigation course.

The pseudorange and carrier phase measurements after removing the effect of eNodeBs’ clock

biases can be modeled as

ρ′(ul) , ρ(ul) + cδ̂t
(ul)

s

= d(ul) + ε(ul)ρ , (5.12)
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φ′(ul) , φ(ul) + cδ̂t
(ul)

s

= d(ul) + λ(u)N (u) − λ(l)N (l)

︸ ︷︷ ︸

,N
(ul)
float

+ε
(ul)
φ . (5.13)

By comparing (5.13) with GPS single difference carrier phase measurements, it can be seen

that the effect of different eNodeBs’ integer ambiguities cannot be modeled with one integer

element. This is due to the fact that different LTE operators transmit at different carrier

frequencies. Therefore, conventional algorithms to estimate integer ambiguities (e.g., Least-

squares AMBiguity Decorrelation Adjustment (LAMBDA) algorithm [82]) cannot be used

here. In this dissertation, the value of N
(ul)
float, which is not necessarily an integer, is estimated

along with other states of the filter.

The EKF state consists of the UE’s position and velocity, and the vector of ambiguities N ,

given by

x =
[
rT

r , ṙ
T

r ,N
]T
, (5.14)

where N ,
[

N
(21)
float, · · · , N

(U1)
float

]T

. The state vector dynamics is modeled according to the

following discretized model

x(j + 1) = Fx(j) +w(j), (5.15)

where j is the discretized time sample; F = blkdiag [Fpv, IU−1]; blkdiag denotes a matrix

block diagonal; Im is the identity matrix of size m; w is a discrete-time zero-mean white

noise with covariance matrix Q = blkdiag [Qpv, ǫIU−1]; and ǫ > 0 is set to be very small,

e.g., 10−10; The UE’s dynamics is assumed to evolve according to a velocity random walk
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with the following dynamic model

Fpv =






I3 T I3

03×3 I3




 , (5.16)
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where T is the time interval between two measurements, and q̃x, q̃y, and q̃z are the power

spectral densities of the acceleration in x, y, and z directions.

Due to the low vertical diversity of LTE eNodeBs, the UE’s altitude estimate suffers from

large error. An altimeter can be used to reduce the UE’s altitude estimation uncertainty.

The measurement vector is defined as z ,
[
ρT,φT, ρ̇T, a

]T
, where ρ =

[
ρ′(21), · · · , ρ′(U1)

]T
;

φ =
[
φ′(21), · · · , φ′(U1)

]T
; ρ̇ =

[
ρ̇(21), · · · , ρ̇(U1)

]T
; a , zr + εa is the altitude estimate derived

from an altimeter; and εa is the altitude measurement noise, which is modeled as a zero-mean

Gaussian random variable with a standard deviation of σa.

The measurement noise covariance matrix is defined as R , blkdiag [Rρ,Rφ,Rρ̇, σ
2
a], where

Rρ =
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{

ε
(1)
ρ

}

var
{

ε
(1)
ρ

}

var
{

ε
(31)
ρ

}
. . . var

{

ε
(1)
ρ

}

...
. . .

. . .
...

var
{

ε
(1)
ρ

}

· · · var
{

ε
(1)
ρ

}

var
{

ε
(U1)
ρ

}












(5.18)
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where var {·} represents the variance operator and var
{

ε
(ul)
ρ

}

= σ
(u)
ρ

2
+ σ

(l)
ρ

2
. The values of

Rφ and Rρ̇ can be derived similar to (5.18).

5.3.2 Cycle Slip Detection

The LTE protocol considers 1, 2, or 4 transmission antennas for the eNodeBs in order

to increase data throughput. Denote the u-th eNodeB’s carrier phase measurement from

antenna port i by

φ
(u)
i =

1

λ(u)
d
(u)
i +

c

λ(u)
(
δtr − δt(u)s

)
+N

(u)
i + ε

(u)
φi
, [cycle]

for i = 1, · · · , 4.

Antenna ports 1 and 2 (and antenna ports 3 and 4 if available) only differ in the polarization

and not the antennas positions [34]. Therefore, the received signals from antenna ports 1

and 2 have the same TOA at the receiver, which means d
(u)
1 = d

(u)
2 . Define φ

(u)
12 and ∆φ

(u)
12 (n)

at time-step n to be

φ
(u)
12 (n) , φ

(u)
1 (n)− φ(u)

2 (n)

= N
(u)
1 (n)−N (u)

2 (n)
︸ ︷︷ ︸

,N
(u)
12 (n)

+ε
(u)
φ12

(n),

∆φ
(u)
12 (n) , φ

(u)
12 (n)− φ(u)

12 (0)

= N
(u)
12 (n)−N (u)

12 (0) + ε
(ul)
φ12

(n)− ε(ul)φ12
(0).

When there is no cycle slip, N
(u)
12 (n) remains constant over time. However, the value of

N
(u)
12 (n) changes over time when a cycle slip with different values happen on the carrier

phase measurements from two different eNodeB’s antenna ports. Therefore, a threshold on

99



∆φ
(u)
12 (n) can be used to detect cycle slips. Note that the proposed algorithm can miss-detect

the presence of cycle slips when they are similar on the carrier phase measurements of both

antenna ports.

5.3.3 Experimental Hardware and Software Setup

To evaluate the performance of the proposed method, an experiment was performed in

Mission Viejo, CA, USA. This section presents the experimental hardware and software

setup.

A DJI Matrice 600 UAV was equipped with a four-channel NI USRP-2955 to sample LTE

signals at four different carrier frequencies. For this experiment, the LTE carrier frequencies

1955, 2145, 2125, and 739 MHz were used, which are allocated to the U.S. cellular operators

AT&T, T-Mobile, and Verizon. The sampling rate was set to 10 MSps and the sampled LTE

signals were recorded on a laptop.

A Septentrio AsteRx-i V, which was equipped with dual antenna multi-frequency GNSS

receiver with RTK and a Vectornav VN-100 micro electromechanical systems (MEMS) IMU,

was used to estimate the position and orientation of the drone, which was used as the ground

truth. Fig. 5.14 shows the experimental hardware setup.

The values of the power spectral densities of the acceleration in x, y, and z directions were

set to q̃x = 1, q̃y = 1, and q̃z = 0.1 m2/s3, respectively. A random variable with a standard

deviation of 1 m was added to the true altitude of the UAV over time and was used as

an altimeter measurement. The true standard deviations of the measurements, which were

obtained using the ground truth, were used to build the measurement covariance matrix R.

Over the course of the experiment, the receiver traversed a trajectory of 605 m over 175

seconds, while listening to 11 eNodeBs. The locations of the eNodeBs in the environment
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LTE antennas LaptopUSRP

Multi-frequency
AsteRx-i V GNSS antennas

AsteRx-i V GNSS
receiver with IMU

Battery

DJI Matrice 600

Figure 5.14: Experimental hardware setup

were mapped before the experiment. The eNodeBs’ cell IDs and their corresponding carrier

frequencies are presented in Table 5.5.

Table 5.5: eNodeBs’ characteristics

Cell ID Carrier frequency (MHz)

78 2145

104, 352 1955

308, 358, 224, 58, 354 2125

492, 5, 27 739

The sampled LTE signals were processed offline using the proposed LTE SDR in Section

3. The resulting measurements were used to estimate the location of the UAV using the

proposed navigation framework in Subsection 5.3.1.
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5.3.4 Experimental Results

This subsection presents the derived navigation observables and the achieved navigation

solution over the course of the experiment.

Measurements

Fig. 5.15 presents the CDF of the single difference pseudorange and carrier phase mea-

surement errors, i.e., ρ(ul) − d(ul) and φ(ul) − d(ul). Note that d(ul) was obtained using the

ground truth. To remove the effect of eNodeBs’ clock biases and integer ambiguities from

the plots, the means of ρ(ul)−d(ul) and φ(ul)−d(ul) over time were subtracted from the results.

Fig. 5.15 shows that the carrier phase measurements have higher precision compared to the

pseudorange measurements.
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Figure 5.15: CDF of the single difference pseudorange and carrier phase measurement errors

Cycle Slip Detection

Fig. 5.16 shows ∆φ
(u)
12 (n) over time for all the cell IDs. It can be seen that only for eNodeB

with cell ID 78, the value of ∆φ
(u)
12 (n) stays less than one cycle during the course of the

experiment. This means that: (i) the carrier phase measurement from the cell ID 78 does
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not have any cycle slip or (ii) cycle slips on the carrier phase measurements from antenna

ports 1 and 2 were equal. It can be concluded from Fig. 5.16 that all the carrier phase

measurements except the one for cell ID 78 were affected by cycle slips. The cycle slips can

be due to several factors including:

• High receiver’s dynamics: The traversed path included several turns, which can cause

receiver’s loss of phase lock.

• Momentary signal loss: The UAV’s altitude was relatively low compared to the sur-

rounding buildings. Besides, the eNodeBs’ have low altitudes and as a result, the signal

can be blocked momentarily, which can cause cycle slips.

• Multipath: The buildings in the UAV’s surrounding environment can cause significant

multipath, which can result in a discontinuity in the integer cycles while the fractional

part of the phase is measured continuously.

Figure 5.16: The values of ∆φ
(u)
12 (n) over time. This value can be used to detect cycle slips

for each carrier phase measurement.
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Navigation Solution

Fig. 5.17 presents the environmental layout of the experiment, the location of the eNodeBs,

ground truth, and the LTE navigation solution. The result shows a 2-D RMSE of 81 cm

over the course of the experiment. The results of the experiment are summarized in Table

5.6.

LTE
eNodeB

RTK & IMU
solution

LTE
solution

Figure 5.17: Environmental layout of the experiment, location of the eNodeBs, ground truth,
and final navigation solution. The UAV traversed a trajectory of 605 m over 175 seconds.
The results show a 2-D RMSE of 81 cm. Image: Google Earth.

Table 5.6: Navigation solution results

2-D RMSE [m] 3-D RMSE [m] Maximum error [m]

0.81 0.86 2.49

Discussion

The difference between the LTE navigation solution and the ground truth is due to several

sources of error, including:

104



• Cycle slip: As was shown in Fig. 5.16, the carrier phase measurements experienced

significant cycle slips over the course of the experiment, which reduces the precision of

carrier phase measurements.

• eNodeBs’ clock biases: As was discussed in Section 5.3.1, the eNodeBs’ clock biases

were assumed to be constant over the course of the UAV’s navigation. Small changes

in the value of the eNodeBs’ clock biases can introduce error in all the measurements.

This can be resolved using a base receiver.

• Multipath: The UAV’s altitude was relatively low compared to the surrounding build-

ings and trees. Therefore, the received signal suffered from multipath effects. The

multipath error can be reduced by flying at higher altitudes.

• Uncertainty in eNodeBs’ locations: The locations of the eNodeBs were mapped using

Google Earth, which is not very accurate. Using a database can reduce the error due

to this factor.

• Different carrier frequencies: Since different operators use different carrier frequencies,

the effect of the number of cycles on single difference carrier phase measurements N
(ul)
float

is not an integer and its estimate can introduce error in the solution. This can be

resolved using a base receiver.

• Model mismatch: A velocity random walk was used to model the UAV’s dynamics.

The mismatch between this model and the UAV’s true dynamics causes error in the

position estimate. This can be resolved by using an IMU to propagate the states.
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5.4 IMU-Aided LTE Navigation Solution with Code

Phase Measurements

Section 5.2 and 5.3 proposed two navigation frameworks based on an EKF, where a velocity

random-walk was used to model the dynamics of the UE’s position and velocity. How-

ever, there is a slight mismatch between the true vehicle’s dynamic model and the velocity

random-walk model. For example, a ground vehicle mostly moves on a road with straight

segments. But, the velocity random-walk model does not take into consideration the tra-

jectory constraints and allows the vehicle’s position and velocity estimates to move freely.

This mismatch will cause the estimation error to become larger. In order to minimize the

mismatch between the true and assumed model, multiple models for the vehicle’s dynamics

may be used to accommodate the different behaviors of the vehicle in different segments of

the trajectory. Alternatively, an IMU, which is available in many practical scenarios, can be

used to propagate the state of the vehicle.

In addition to the model mismatch, multipath is among the most significant challenges that

must be addressed for RF-based navigation. As discussed in Subsection 4.2.2, multipath

introduces error in the estimated pseudoranges, where the magnitude of the error depends

on the multipath condition, signal bandwidth, and sampling rate. The high transmission

bandwidth of LTE signals (up to 20 MHz) could be used to resolve multipath. However,

received LTE signals experience more multipath compared to GNSS signals, particularly for

ground-based receivers in urban canyons, due to the low elevation angles at which signals

are received. In a low dynamic environment, the multipath effect lasts over multiple epochs

and the error due to multipath is time-correlated. Besides, the pseudorange error caused by

multipath may affect multiple epochs due to the receiver’s loop filter.

Several signal processing-based methods have been proposed to remove the effect of multi-

path in GNSS signals including a multipath-estimating delay-locked loop (MEDLL) [83], a
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batch filter to estimate the multipath using a known antenna motion [84], and a technique

to correct multipath errors using signal-to-noise ratio [85]. These approaches have either

high computational cost or they require prior knowledge of the multipath condition. An-

other approach to reduce the effect of multipath is based on beamforming. Beamforming

can be performed using an antenna array, which has a bulky structure. Alternatively, one

can synthesize an antenna array by moving the antenna. In synthetic aperture navigation

(SAN), the antenna movement can be uniform or arbitrary. In a uniform movement, com-

putationally low-cost approaches (e.g., MUSIC or ESPRIT) can be used to estimate the

DOA [86, 87], whereas computationally expensive algorithms (e.g., space-alternating gener-

alized expectation-maximization (SAGE)) must be used to estimate the DOA in an arbitrary

movement [88]. Uniform structures require a bulky hardware platform, and the performance

of arbitrary structures depends on the accuracy of the antenna location, which depends on

the accuracy of the IMU. It has been shown that the antenna motion can also be used to

decorrelate the error induced by multipath. Antenna motion was used in [89] to improve the

detection performance and in [90] to reduce the carrier-phase error in carrier-phase differ-

ential GNSS (CDGNSS) positioning, where a first-order Gauss-Markov process was used to

model the relative antenna position with respect to the reference antenna.

In a Kalman filter, the measurement noise is assumed to be time-uncorrelated. A time-

correlated measurement noise will induce an error in the navigation solution estimate. Since

the dynamics of the errors due to multipath is unknown, whitening approaches cannot be

used to decorrelate the measurement noise. This section addresses this challenge by making

two contributions. First, a navigation framework based on a multi-state constraint Kalman

filter (MSCKF) is proposed. The MSCKF was first introduced in robotics literature [91].

In this framework, an IMU is used to capture the position of the antenna over a window

of measurements. Unlike a traditional EKF, which uses a single measurement epoch to

update the state estimate, this dissertation employs an MSCKF to use a sliding window of

measurement epochs along with the antenna motion to decorrelate the measurement noise
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and provide constraints on the position estimate. Moreover, the difference of the clock bias

of the receiver and each of the LTE eNodeBs are estimated along with the position of the

antenna since the eNodeBs’ clock biases are unknown to the receiver. Second, the results

are evaluated with simulations and experiments.

5.4.1 State Model

The vehicle’s state vector x is defined as

x ,
[
xT

IMU , xT

clk , π
T

1 , πT

2 , · · · ,πT

N

]T
,

where xIMU represents the IMU state vector, xclk is the clock error state vector, and πi is

composed of the receiver’s position and the difference between the clock bias of the receiver

and each of the eNodeBs at the i-th pseudorange measurement.

The IMU state vector is given by

xIMU ,
[
I
Gq̄

T , GrT

IMU , GvT

IMU , bTg , b
T

a

]T
,

where I
Gq̄ is the unit quaternion representing the rotation from a global frame G, such as

an Earth-centered inertial (ECI) frame, to the IMU frame I; GrIMU and GvIMU = GṙIMU are

the 3-D position and velocity of the IMU in the global frame, respectively; and bg and ba

are the gyroscope and accelerometer biases, respectively.

The clock error state vector is defined as

xclk , [∆x
(1)T

clk , · · · , ∆x
(U)T

clk ]T,

where ∆x
(u)
clk , [c∆δt(u), c∆δ̇t(u)], ∆δt(u) = δtr − δt(u)s , and ∆δ̇t(u) = δ̇tr − δ̇t(u)s .
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The vector πi is defined as

πi ,
[
GrT

Ai
, xT

clk,bi

]T

,

where xclk,bi =
[

c∆δt
(1)
i , · · · , c∆δt(U)

i

]T

is the difference between the clock bias of the receiver

and each of the eNodeBs and GrAi
is the antenna’s position in the global frame at the i-th

pseudorange measurement epoch.

5.4.2 State Propagation

The IMU produces measurements of the rotational velocity ωm and linear acceleration am

every T seconds, which are modeled as

ωm(k) =
Iω(k) + bg(k) + ng(k), (5.19)

am(k) = C
(
I
Gq̄(k)

) (
Ga(k)− Gg(k)

)
+ ba(k) + na(k), (5.20)

where Iω is the true rotational velocity of the IMU; ng and na are the gyroscope and

accelerometer measurement noises with zero-mean and covariances σ2
gI3×3 and σ2

aI3×3, re-

spectively; Im×m is an m × m identity matrix; Ga is the 3-D linear acceleration; Gg is the

acceleration due to gravity; and C
(
I
Gq̄
)
is the equivalent rotation matrix of I

Gq̄.

The IMU measurements are used to propagate the IMU state estimate. The orientation

estimate is propagated according to

Ik+1|j

G
ˆ̄q =

Ik+1

Ik
ˆ̄q ⊗ Ik|j

G
ˆ̄q, for k ≥ j,

where ⊗ is the quaternion multiplication operator and
Ik+1

Ik
ˆ̄q is the relative rotation of the

IMU frame from time-step k to k + 1, which is obtained using a fourth-order Runge-Kutta
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numerical solver [23].

The IMU position state estimate is propagated using trapezoidal integration according to

Gr̂IMU(k + 1|j) =Gr̂IMU(k|j)

+
T

2

[
Gv̂IMU(k + 1|j) + Gv̂IMU(k|j)

]
,

where Gv̂IMU(k+1|j) is the propagated IMU velocity state estimate, which is obtained using

trapezoidal integration according to

Gv̂IMU(k + 1|j) =Gv̂IMU(k|j)

+
T

2
[ŝ(k) + ŝ(k + 1)] + T Gg,

where ŝ(k) = CT

(
Ik|j
G q̂

)

â(k) and â = am − b̂a.

The gyroscope and accelerometer biases state estimates are propagated according to

b̂g(k + 1|j) = b̂g(k|j),

b̂a(k + 1|j) = b̂a(k|j).

The clock state estimate is propagated according to

x̂clk(k + 1|j) = Fclkx̂clk(k|j), (5.21)

where Fclk = diag
[

F
(1)
clk, . . . ,F

(U)
clk

]

and F
(u)
clk =






1 T

0 1




 .
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The one-step prediction error covariance matrix of the IMU and clock states is given by

P(k + 1|j) = F(k)P(k|j)F(k)T +Q, (5.22)

where F , diag [FIMU,Fclk] and Q = diag [QIMU,Qclk]; FIMU is the linearized DT IMU state

transition matrix and QIMU is the linearized DT IMU state process noise covariance matrix.

The detailed derivations of FIMU and QIMU are described in [92,93]. The clock process noise

covariance matrix Qclk is given by (5.10).

5.4.3 State Augmentation

The antenna position estimate is computed from the IMU pose estimate at every pseudorange

measurement epoch according to

Gr̂A(k|j) = Gr̂IMU(k|j) +CT

(
Ik|j
G q̂

)
I r̂A,

where I r̂A is the position of the antenna in the IMU frame and is known a priori. The

antenna position and the difference between the clock bias of the receiver and each of the

eNodeBs are augmented to the state vector. The covariance matrix of the state estimate is

augmented according to

PAUG(k|j)←−






IL

J




PAUG(k|j)






IL

J






T

,

where L = 15+2U+(3+U)n, n = 0, · · · , N−1 is the number of pseudorange measurements

augmented to the measurement vector, PAUG(k|j) , P(k|j) for n = 0, and J is the Jacobian
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matrix given by

J =






⌊CT

q̂
IrA×⌋ I3 03×9 03×2U 03×(3+U)n

0U×3 0U×3 0U×9 K 0U×(3+U)n




 ,

where CT

q̂ , CT

(
Ik|j
G q̂

)

; K = [e0, · · · , eU−1]
T; ei is a vector of length 2U , where its 2i-th

element is one and the rest are zeros; 0m×n is an m× n matrix of zeros; and ⌊ω×⌋ is the

skew-symmetric matrix of vector ω defined as

⌊ω×⌋ ,









0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0









, ω = [ωx, ωy, ωz]
T .

The augmented covariance matrix PAUG can be partitioned as

PAUG(k|j) =






P(k|j) Pc(k|j)

PT

c (k|j) PA(k|j)




 ,

where PA is the covariance matrix of the estimate of (i) antenna’s positions and (ii) differ-

ence between the clock biases of the receiver and each of the eNodeBs and Pc is the cross

correlation of the evolving IMU and clock states with the estimate of the antenna’s positions

and the difference between the clock biases. When an IMU measurement is available, the

IMU and clock state estimates and the covariance matrix P are propagated according to

Subsection 5.4.2. The augmented covariance matrix is propagated according to

PAUG(k + 1|j) =






P(k + 1|j) F(k)Pc(k|j)

PT

c (k|j)FT(k) F(k)PA(k|j)FT(k)




 .
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5.4.4 Measurement Update

After N + 1 pseudorange measurement epochs to all U eNodeBs, the vector ρ is formed as

ρ =
[

ρ(1)T , · · · ,ρ(U)T
]T

,

where ρ(u) =
[
ρ(u)(0), · · · , ρ(u)(N)

]T
and

ρ(u)(i) =







h(u)(GrA(i)) + c∆δt(u)(i) + ε
(u)
ρ (i), if i = 0, · · · , N − 1,

h(u)(GrIMU +CT

q̂
IrA) + c∆δt(u)(i) + ε

(u)
ρ (i), otherwise.

where h(u)(r) , ||r(u)
s −r||. Assuming the measurement noise to be independent for different

eNodeBs, the measurement noise covariance matrix can be expressed as

R = diag
[
R(1), · · · ,R(U)

]
,

where the (i, j)-th element of R(u) is defined as

R(u)(i, j) =







σ
(u)
ρ

2
(i), if i = j

̺(u)(i, j) σ
(u)
ρ (i)σ

(u)
ρ (j), otherwise.

where σ
(u)
ρ (i) is the standard deviation of ε

(u)
ρ (i) and ̺(u)(i, j) is the correlation coefficient of

the measurement noise between time step i and j. The residual can be modeled as

r = ρ− ρ̂ = Hx̃+ v,
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where H is the Jacobian matrix defined as H =









H(1)

...

H(U)









, with the i-th row of H(u) given by

H(u)(i) =







[

01×(15+2U) 01×(3+U) · · · A(u)(i) · · · 01×(3+U)

]

, if i = 0, · · · , N − 1,
[

B(u)(i) 01×(3+U) · · · 01×(3+U)

]

, if i = N.

where

A(u)(i) =

[
(

r
(u)
s −G

r̂A(i)
)

T

||r(u)
s −Gr̂A(i)||

0 · · · 0
︸ ︷︷ ︸

u−1

1 0 · · · 0

]

,

B(u)(i) =

[

⌊CT

q̂
IrA×⌋

(

r
(u)
s −Gr̂IMU

)

T

||r(u)
s −Gr̂IMU||

0 · · · 0
︸ ︷︷ ︸

2(u−1)

1 0 · · · 0

]

.

When an IMU measurement is available (i.e., every T ), it is used to propagate the IMU pose

estimate. When a pseudorange measurement is available (i.e., every LTE frame Tsub = 10

ms), the antenna’s position and the difference between the clock bias of the receiver and each

of the eNodeBs are augmented to the state vector. Once N + 1 pseudorange measurement

epochs are appended the measurement vector, an EKF update is performed. After each

update, the states corresponding to the antenna’s position and the difference between the

clock bias of the receiver and each of the eNodeBs corresponding to Nrem epochs are removed

from the state vector. The pseudorange measurements corresponding to these states are also

removed from the measurement vector and the filter returns to the state propagation stage.

Therefore, the update is performed every NremTsub. By increasing Nrem, the time correlation

between the measurement vectors of two consecutive updates decreases. However, increasing

Nrem decreases the update rate. Therefore, the choice of Nrem depends on the level of time-

correlation in the measurement noise and the application requirements for the update rate.
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5.4.5 Simulation Results

To evaluate the proposed framework, a simulation environment was developed comprising a

receiver navigating in an urban area (downtown Riverside, California) over a 6 km trajectory

that includes straight segments and turns. The locations of the eNodeBs were simulated

using real eNodeBs’ locations in that environment. The simulation environment showing the

receiver’s trajectory and the eNodeBs’ positions is shown in Fig. 5.18. The receiver’s and

eNodeBs’ clocks were simulated with a TCXO and an OCXO, respectively.

250 m0 m

Figure 5.18: Simulated traversed trajectory and the positions of the LTE eNodeBs. Map
data: Google Earth

The IMU’s rotational velocity and linear acceleration measurements were generated at T =

0.01 s. The IMU’s measurement noise and time evolution of the IMU’s biases are determined

by the grade of the IMU. In this simulation, data for a consumer-grade IMU was generated.

It is assumed that the LTE pseudoranges were estimated every LTE frame duration, which

is Tsub = 10 ms.

There are several factors that characterize the behavior of a wireless channel e.g., terrain

features, relative speed of the transmitter and receiver, etc. Propagation mode including

LOS, reflections, diffractions, and scattering is among these factors to characterize a wireless

channel. Two channel models were introduced to capture these factors namely Rician and

Rayleigh fading channels [94]. A channel with LOS can be modeled with a Rician fading,
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while a channel with no LOS can be modeled with a Rayleigh fading. The simulation

environment assumes the receiver to have access to the LOS signal and the channel is modeled

as a Rician fading channel. To characterize the LOS and multipath signal power and delay

profile, the CIR was simulated based on an extended vehicular A (EVA) channel model

[95] and the multipath error affecting the pseudorange was simulated based on the model

presented in [45, 47]. The simulated CIRs were assumed to be correlated with two different

correlation coefficients ̺ = {0.8, 0.98}. For comparison purposes, Fig. 5.19 shows the

simulated multipath error for one of the eNodeBs over 10 s. The standard deviation of

the generated multipath was 1.1 m. The measurement noise was assumed to be additive

white Gaussian with a standard deviation obtained based on the carrier-to-noise ratio of the

received signal for each eNodeB [69].
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Figure 5.19: Example of the simulated multipath error for one eNodeB over 10 s.

The simulation was repeated for 20 different multipath and noise conditions. Fig. 5.20

shows the average of the 2-D and 3-D position RMSE over the entire simulated trajectory

for each run using the proposed method. The values of the 2-D and 3-D position RMSEs

were obtained for different update time (i.e., NremTsub). The results were compared with an

EKF, where the state update is done whenever a pseudorange measurement is available and

no state augmentation is performed. For the sake of comparison, in the EKF approach, it

is assumed that the pseudorange measurement is available every NremTsub. The value of N
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was set to 100.
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Figure 5.20: 2-D and 3-D position RMSE over the entire simulated trajectory for different
update time.

The following conclusions can be drawn from the simulation results.

Remark 1 For both the MSCKF and EKF approaches, the 3-D position RMSE is worse

than the 2-D RMSE, since the eNodeBs have approximately similar height and the geometric

diversity in the vertical direction is poor.

Remark 2 The proposed MSCKF approach outperforms the EKF approach. The reduction

in the RMSE for ̺ = 0.98 is higher compared to ̺ = 0.8, which means that when the

measurement noise is highly time-correlated, the proposed approach can significantly reduce

the position estimation error.

Remark 3 From several sets of simulations, it was concluded that a good rule of thumb

for choosing Nrem is such that Nrem ≈ ⌊N/2⌋. Such rule of thumb reduces the RMSE while

maintaining a reasonable computational complexity (update time).

Next, the 2-D position RMSE was evaluated for different values of N . For this purpose,

the value of N was selected from the set {0, 25, 50, 100} and Nrem was set to ⌊N/2⌋. Note

that when N is zero, the MSCKF approach is equivalent to an EKF since no augmenta-
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tion is performed. Fig. 5.21 shows the results for this simulation, which was obtained by

averaging the obtained 2-D position RMSE over 20 different simulated multipath and noise

realizations. The results show that increasing N decreases the RMSE, especially for higher

time-correlation in the measurement noise (i.e., ̺ = 0.98). However, increasing N increases

the update time, which increases the computational burden.
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Figure 5.21: 2-D position RMSE over the entire simulated trajectory for different values of
N and for Nrem = ⌊N/2⌋

5.4.6 Experimental Results

To evaluate the performance of the proposed framework, an experiment was performed in

an urban area (downtown Riverside, California). In this experiment, a ground vehicle was

equipped with two consumer-grade 800/1900 MHz cellular omnidirectional Laird antennas

to receive LTE signals at 739 MHz and 1955 MHz carrier frequencies from the U.S. cellular

provider AT&T. A dual-channel NI USRP-2954R, driven by a GPSDO was used to simulta-

neously down-mix and synchronously sample LTE signals with 10 MSps. A laptop was used

to store LTE samples for post-processing. A Septentrio AsteRx-i V, which is equipped with

dual antenna multi-frequency GNSS receiver with RTK and a Vectornav VN-100 MEMS

IMU, was used to estimate the position and orientation of the ground vehicle, which was
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used as the ground truth. Fig. 5.22 shows the experimental hardware setup.

USRP RIOStorageIntegrated
GPS-IMU

GPS antennas
Cellular antennas

Figure 5.22: Experimental hardware setup

The receiver traversed a trajectory of 1380 m over 190 s while listening to 5 eNodeBs.

The stored LTE samples were processed by the proposed SDR in Chapter 3, producing

pseudoranges to LTE eNodeBs in the environment. The subaccumulation period was set to

two LTE frames, which is Tsub = 20 ms.

The derived pseudoranges were used to estimate the receiver’s position using the proposed

MSCKF framework and the EKF framework. The receiver was assumed to have access

to GPS signals at its initial position. Therefore, the receiver was able to estimate the

initial values of its position and the difference of its clock bias with each of the eNodeBs,

which makes the problem observable [15]. The AsteRx-i V’s GNSS-INS provides orientation,

position, velocity, and their covariances, which were used to initialize both the MSCKF and

EKF frameworks. The gyroscope’s and accelerometer’s biases and their measurement noise

covariances were initialized by taking the mean and variance of 5 seconds of stationary

IMU data, respectively. The receiver and eNodeBs clocks were modeled as OCXO with

h0r = 8 × 10−20, h−2r = 4 × 10−23, h
(u)
0s = 2.6 × 10−22, and h

(u)
−2s = 4 × 10−26, where

u = 1, · · · , 5. The initial values of the difference of the clock bias and drift of the receiver

with each of the eNodeBs were set to 1 m and 0.01 m/s with initial covariance of 1 m2 and

0.01 m2/s2, respectively. The measurement noise variance was determined empirically.
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Fig. 5.23(a) shows the 2-D and 3-D position RMSE and maximum error for different values

of N . In these results, it is assumed that ̺ = 0.99 and Nrem = ⌊N/2⌋. It can be seen

that 2-D and 3-D position RMSE and maximum error are decreased by increasing N . The

payoff due to increasing N from 50 to 100 diminishes. Fig. 5.23(b) shows the 2-D and 3-D

position RMSE for different values of ̺. In these results, N = 50 and Nrem = ⌊N/2⌋. It

can be seen that higher ̺ decreases the position RMSE, which shows that the pseudorange

measurements’ errors were highly correlated. The results show that the proposed framework

could reduce the 2-D and 3-D position RMSE by 29% and 64.7%, respectively, and the 2-D

and 3-D maximum error by 19.6% and 86.7%, respectively, compared to the EKF approach.

(a) (b)

Figure 5.23: Experimental 2-D and 3-D position RMSE for (a) different numbers of states
to augment and (b) different values of correlation coefficient

Fig. 5.24 shows the navigation solution errors in east-north-up (ENU) frame and their

corresponding ±3σ bounds for the EKF and proposed frameworks. It can be seen that the

navigation solution error is lower for the proposed framework compared to an EKF. It can

also be seen that the error in the proposed framework is within the estimated covariance

bounds, which means that the filter is consistent. This is not the case for the results obtained

by an EKF framework. Note that the growing vehicle’s vertical estimation uncertainty is

due to a lack of both vehicle’s vertical motion and eNodeB’s vertical geometric diversity. A

calibrated altimeter would help reduce the vertical error and uncertainty.
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Figure 5.24: Navigation solution errors in ENU frame and their corresponding estimated
±3σ bounds for the EKF and proposed framework

Fig. 5.25 compares the navigation solutions obtained by the proposed MSCKF framework

and the EKF framework versus the ground truth. Table 5.7 summarizes the resulting 2-D

and 3-D position RMSE and maximum error.

Table 5.7: 2-D and 3-D position RMSE

Method
2-D

RMSE [m]

3-D

RMSE [m]

2-D Maximum

error [m]

3-D Maximum

error [m]

EKF 8.06 18.04 16.13 98.90

Proposed

framework
5.72 6.37 12.97 13.15
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Figure 5.25: Experimental results showing the vehicle’s ground truth trajectory (from a
GNSS-IMU RTK system) and the estimated trajectory with the proposed MSCKF frame-
work and an EKF. The total traversed trajectory was 1380 m. Image: Google Earth
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Chapter 6

Joint TOA and DOA Acquisition and

Tracking of LTE Signals

One of the main challenges in opportunistic navigation with LTE signals is the unknown

clock biases of the UE and the eNodeBs. Current approaches to overcome this challenge

include: (1) estimating and removing the clock bias in a post-processing fashion by using

the known position of the UE [30,34], (2) using perfectly synchronized eNodeBs in laboratory-

emulated LTE signals [29], or (3) estimating the difference of the clock biases of the UE and

each eNodeB in an EKF framework [48]. The first approach does not provide an on-the-

fly navigation solution. The second approach is not feasible with real LTE signals, whose

eNodeBs are not perfectly synchronized. In the third approach, which was discussed in

Chapter 5, certain a priori knowledge about the UE’s and/or the eNodeBs’ states must

be assumed in order to make the estimation problem observable [15, 96]. For example, the

eNodeBs’ positions states were assumed to be known as well as the UE’s initial states:

position, velocity, clock bias, and clock drift. GPS signals were used to estimate the UE’s

initial states, and such estimates were used to initialize the EKF, which subsequently only

used received LTE signals to estimate the UE’s position and velocity and the difference
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between the UE’s clock bias and drift and those of the eNodeBs’. However, such initial

knowledge about the UE’s states might not be available in many practical scenarios, e.g.,

cold-start applications in the absence of GNSS signals. To remove the required a priori

knowledge about the UE’s states, the temporal diversity of TOA measurements and spatial

diversity of DOA measurements from LTE signals can be used to estimate the location of

the receiver in a cold-start fashion.

The problem of joint angle and delay estimation (JADE) was first addressed in [97,98], where

MUSIC and ESPRIT were used to jointly estimate the delay and angle [52, 99]. MUSIC

and ESPRIT are two statistical techniques, which are based on the eigen-structure of the

covariance matrix. These algorithms were obtained based on the assumption of noncoherent

received signals. Therefore, in the presence of coherent multipath signals, additional signal

processing must be performed [100]. In contrast to the MUSIC and ESPRIT algorithms, the

matrix pencil (MP) approach works directly with data and does not need additional signal

processing in the presence of coherent multipath signals [101, 102].

MP algorithm was first used in [101] to estimate the parameters of exponentially damped

or undamped sinusoids. This idea was later extended to estimating 2-D frequencies in [102].

Later on, MP algorithm was used in different types of applications to estimate angles, TOA,

or frequencies of the received signal [103–105]. In [103], a 3-D MP algorithm was used to

estimate the frequency, elevation, and azimuth angles of the signal using a 3-D antenna

array. In this approach, the TOA measurements, which are generally more accurate than

angle measurements are not estimated. In [104, 105], a 2-D MP algorithm was used to

estimate the DOA and TOA of the OFDM signals using a uniform linear array (ULA). Note

that the estimated DOA using a ULA is always in the interval of [0, π]. This will introduce

an ambiguity in the DOA estimates since signals received at angles θ ∈ [0, π] and −θ will

be measured as θ. In this chapter, a uniform planar array (UPA) is used to overcome this

ambiguity, where a 3-D MP algorithm is used to estimate the TOA, elevation, and azimuth
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angles of the LTE signals. Then, the performance of this algorithm in the presence of noise

is derived using a first-order perturbation analysis.

One of the challenges of all JADE algorithms is their high computational cost. Therefore,

they should be used only in the acquisition stage to provide initial estimates of the TOA and

DOA and the tracking loops should be used to refine these estimates and track their changes.

TOA tracking loops are well-established and are being used in navigation receivers [65].

The direction locked-loops (DiLL) with non-coherent/coherent discriminator functions were

proposed for 1-D angle estimation using a ULA [106,107]. The idea was then extended to a

2-D angle estimation of a mobile satellite communications using a UPA [108]. In the former

DiLLs, the discriminator function contains a noticeable tracking bias when the angle is not

zero. This bias was removed using a modification factor. In this chapter, a tracking loop

to jointly track the TOA and 2-D DOA of LTE signals is proposed, where the estimates of

the angles and TOA are first removed from the received signal. This removes the bias of the

discriminator function and as a result, the need for modification factor is eliminated.

After discussing the acquisition and tracking stages of the TOA and DOA estimation, the

CRLBs of the TOA and DOA estimates are derived to compare the performance of the

proposed acquisition and tracking approaches with the best-case performance. The compu-

tational complexity of the proposed acquisition and tracking approaches are also compared.

Finally, experimental results are provided with real LTE signals, which show higher stability

of the proposed structure compared to MP algorithm.

The remainder of this chapter is organized as follows. Section 6.1 summarizes the trans-

mitted and received LTE signal models. Section 6.2 presents the MP algorithm to acquire

the TOA and DOA estimates of received LTE signals and analyzes its performance in the

presence of noise. Section 6.3 presents the TOA and DOA tracking structure and analyzes its

performance in the presence of noise and multipath. Section 6.4 derives the CRLB. Section

6.5 compares the computational complexity of the acquisition and tracking stages. Finally,
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Sections 6.6 and 6.7 present the simulation and experimental results, respectively.

The results of this chapter are presented in [109, 110].

6.1 Signal Model

At the receiver, a UPA can be used to estimate TOA and DOA (comprised of the azimuth

and elevation angles) using the phase difference of the received signal at different antenna

elements and different subcarriers. Fig. 6.1 shows a UPA with M antenna elements in

the x-direction and N antenna elements in the y-direction. To provide directivity to the

antenna array, the spacing between antenna elements should not be very small. However,

large spacing causes multiple radiation lobes, which are not desirable. Therefore, the distance

between adjacent antenna elements is typically assigned to be d = λ/2, where λ = c/fc is

the received signal wavelength [111].

θ
(u)
l

0 1 N − 1
y

z

d
M − 1

1

x

φ
(u)
l

l-th arriving signal path
from u-th eNodeB

Figure 6.1: UPA structure and DOA representation

The transmitted signal from the u-th eNodeB propagates to the antenna array through L(u)

different paths, where the l-th arriving path has an attenuation and delay of α
(u)
l and τ

(u)
l ,

respectively, and impinges the antenna array at an azimuth angle φ
(u)
l and an elevation angle

θ
(u)
l , as shown in Fig. 6.1.

Denoting Ĥ(u) ∈ CM×N×Ns and H(u) ∈ CM×N×Ns to be the estimated and true CFRs of
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the u-th eNodeB, it can be shown that Ĥ(u) = H(u) + W, where Wm,n,q ∼ CN (0, σ2) is

the contribution of an AWGN channel at the (m,n)-th antenna element and the q-th CRS

subcarrier; and

H(u)
m,n,q =

L(u)−1∑

l=0

√
Cβ

(u)
l x

(u)
l

m
y
(u)
l

n
z
(u)
l

q
, (6.1)

β
(u)
l , α

(u)
l e

−j2πν
NCell
ID

fsτ
(u)
l e−jωcτ

(u)
l ,

x
(u)
l , ej

ωcd
c

sin θ
(u)
l cosφ

(u)
l ,

y
(u)
l , ej

ωcd
c

sin θ
(u)
l sinφ

(u)
l ,

z
(u)
l , e−j2πfsNCRSτ

(u)
l ,

where fs = 15 kHz is the subcarrier spacing; νNCell
ID

is a constant shift in the first CRS

subcarrier number; NCRS = 6; C is the carrier power; ωc = 2πfc; and it is assumed that

α
(u)
0 = 1. The objective is to estimate

(

x
(u)
l , y

(u)
l , z

(u)
l

)

and obtain the relative TOA and

DOA of each path as

θ̂
(u)
l = sin−1

(√

κ2 + ς2
)

, (6.2)

φ̂
(u)
l = atan2 (ς, κ) , (6.3)

τ̂
(u)
l = − 1

2πfsNCRS
atan2

(

ℑ
{

ẑ
(u)
l

}

,ℜ
{

ẑ
(u)
l

})

, (6.4)

where ℜ{·} and ℑ{·} represent real and imaginary parts, respectively; atan2 is the four-

quadrant inverse tangent function and

κ ,
c

ωc d
atan2

(

ℑ
{

x̂
(u)
l

}

,ℜ
{

x̂
(u)
l

})

,

ς ,
c

ωc d
atan2

(

ℑ
{

ŷ
(u)
l

}

,ℜ
{

ŷ
(u)
l

})

.

The TOA and DOA estimation is performed in two stages, namely acquisition and tracking,
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which are discussed in the next two sections. For simplicity of notations, the superscript (u),

which denotes the u-th eNodeB, will be dropped in the sequel, unless it is required.

6.2 Signal Acquisition

In the acquisition stage, the 3-D MP algorithm is used to jointly estimate the TOAs and

DOAs of received LTE signals. This section discusses the process of estimating the TOA

and DOA and characterizes the estimation performance in the presence of noise.

6.2.1 TOA and DOA Estimation

A 3-D MP algorithm can be divided into three 1-D MP algorithms to estimate xl, yl, and zl

individually [102,103]. There are five main steps in a 3-D MP algorithm, which are discussed

next.

Step 1: Construct the estimated enhanced-matrix as

Ê ,












Ê0 Ê1 · · · ÊNs−R

Ê1 Ê2 · · · ÊNs−R+1

...
...

. . .
...

ÊR−1 ÊR · · · ÊNs−1












PKR×[(M−P+1)(N−K+1)(Ns−R+1)]

,

Êk ,












Ê0,k Ê1,k · · · ÊN−K,k

Ê1,k Ê2,k · · · ÊN−K+1,k

...
...

. . .
...

ÊK−1,k ÊK,k · · · ÊN−1,k












,
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Êj,k ,












Ĥ0,j,k Ĥ1,j,k · · · ĤM−P,j,k

Ĥ1,j,k Ĥ2,j,k · · · ĤM−P+1,j,k

...
...

. . .
...

ĤP−1,j,k ĤP,j,k · · · ĤM−1,j,k












,

for j = 0, 1, . . . , N − 1, and k = 0, 1, . . . , Ns − 1,

where P , K, and R are pencil parameters. The pencil parameters are tuning parameters

that are used to improve the estimation accuracy and must satisfy the following necessary

conditions

(P − 1)RK ≥ L, (K − 1)PK ≥ L, (R− 1)PK ≥ L,

(M − P + 1)(N −K + 1)(Ns −R + 1) ≥ L.

For efficient noise filtering, it has been shown that the pencil parameters should be selected

between one third and two third of their corresponding parameters [101].

Step 2: Decompose Ê using an SVD operation as Ê = ÛΣ̂V̂H, where Û and V̂ are unitary

matrices of singular vectors, and Σ̂ is the matrix of singular values σ1 ≥ · · · ≥ σKPR. Next,

use the MDL criterion to estimate the multipath channel length [54].

Step 3: Knowing the length of the channel impulse response, the enhanced matrix Ê can be

decomposed into the signal and noise subspaces as Ê = ÛsΣ̂sV̂
H

s + ÛnΣ̂nV̂
H

n , where Ûs and

V̂s are composed of the singular vectors corresponding to the L̂ largest singular values of Ê

and span the signal subspace of Ê; and Ûn and V̂n span the noise subspace of Ê. Remove

the last and first PK rows of Us to build the matrices Ûs1 and Ûs2, respectively, as

Ûs1 = C1Us, C1 =
[
IPK(R−1), 0PK(R−1)×PK

]
,

Ûs2 = C2Us, C2 =
[
0PK(R−1)×PK , IPK(R−1)

]
. (6.5)

129



Derive the generalized eigenvalues of the pencil pair (Ûs2 , Ûs1), which are equal to the

eigenvalues of Ψ̂z = Û†
s1Ûs2, where † is the Moore-Penrose pseudo-inverse. The resulting

eigenvalues are permutation of
{
ẑ0, · · · , ẑL̂−1

}
.

Step 4: Form the matrix Ûj = JÛs, where J is the permutation matrix given by

J , [J0,J1, · · · ,JK−1]
T ,

where Ji is defined as

Ji , [p(1 + iP ), · · · ,p(P + iP ),

p(1 + iP + PK), · · · ,p(P + iP + PK), · · · · · · ,

p(1 + iP + (R− 1)PK), · · · ,p(P + iP + (R− 1)PK)] ,

where p(ℓ) is a column vector of size KPR with one in the (ℓ)-th element and zero else-

where. Similar to (6.5), build Ûj1 and Ûj2 from Ûj by removing the last and first PR rows,

respectively. The eigenvalues of Ψ̂y = Û†
j1
Ûj2 are permutation of

{
ŷ0, · · · , ŷL̂−1

}
.

Step 5: Form the matrix Ûp = PÛs, where P is the permutation matrix defined as

P , [p(1),p(1 + P ), · · · ,p(1 + (KR − 1)P ),

p(2),p(2 + P ), · · · ,p(2 + (KR − 1)P ), · · · · · · ,

p(P ),p(P + P ), · · · ,p(P + (KR− 1)P )]T.

Similar to (6.5), build Ûp1 and Ûp2 from Ûp by removing the last and first KR rows,

respectively. The eigenvalues of Ψ̂x = Û†
p1Ûp2 are permutation of

{
x̂0, · · · , x̂L̂−1

}
.

The estimated values of {xl}L̂−1
l=0 , {yl}

L̂−1
l=0 , and {zl}

L̂−1
l=0 are not necessarily in the same order.

Therefore, they must be paired together correctly before calculating the TOA and DOA of
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the LOS signal. It can be shown that Ψx, Ψy, and Ψz have the same eigenvectors, which

implies

Ψx = AXA−1,

Ψy = AYA−1,

Ψz = AZA−1,

whereX,Y, and Z are diagonal matrices consisting the permutation of estimation of {xl}L̂−1
l=0 ,

{yl}L̂−1
l=0 , and {zl}

L̂−1
l=0 , respectively. Next, the eigenvalues ofΨz are used to calculate the TOA

of each multipath and the TOA estimates are sorted in ascending order. The eigenvectors

of Ψz, which are the column vectors of matrix A, must be also sorted according to the TOA

estimates, yielding the matrix A′. Then, define the matrices X′ and Y′ according to

X′ = A′−1
ΨxA

′,

Y′ = A′−1
ΨyA

′.

The diagonal elements of X′ and Y′ are {x̂1, · · · , x̂L̂} and {ŷ1, · · · , ŷL̂}, respectively, and are

in the right order.

After estimating the TOA and DOA of the LOS and multipath signals, the LOS DOA and

TOA estimates will be tracked in the tracking loop to refine the estimates and track the

changes over time. In this dissertation, in order to remove the tracking bias, which were

discussed in [106, 107], from the tracking loops discriminator functions, the LOS DOA and

TOA estimates are removed from the CFR resulting in

H ′
m,n,q , Ĥm,n,qx̂

−m
0 ŷ−n

0 ẑ−q
0 . (6.6)

Denoting the LOS TOA and DOA estimation error by eτ , τ̂0 − τ0, eφ , φ̂0 − φ0, and
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eθ , θ̂0 − θ0, and assuming small TOA and DOA estimation errors, it can be shown that

H ′(m,n, q) can be rewritten as

H ′
m,n,q =

√
Cβ0e

−j ωcd
c

(m cos θ0 cosφ0+n cos θ0 sinφ0)eθ

ej
ωcd
c

(m sin θ0 sinφ0−n sin θ0 cos φ0)eφ

ej2πqfsNCRSeτ + Im,n,q +W ′
m,n,q, (6.7)

where Im,n,q is the effect of multipath and is defined as

Im,n,q ,
√
C

L−1∑

l=1

βl (xl/x̂0)
m(yl/ŷ0)

n(zl/ẑ0)
q,

and W ′
m,n,q is the noise component defined as W ′

m,n,q , Wm,n,qx̂
−m
0 ŷ−n

0 ẑ−q
0 , where W ′

m,n,q ∼

CN (0, σ2). The derivation of (6.7) ia detailed in Appendix A.1.

6.2.2 Noise Performance Analysis

In the presence of noise, the estimated DOA and TOA are slightly different than their actual

values. The statistics of this discrepancy will be derived in this subsection.

In Subsection 6.2.1, it was shown that the values of {ẑl}L̂i=0 are the eigenvalues of Û†
s1
Ûs2 .

Using first-order perturbation theory, it can be shown that the perturbation of the eigenvalue

ẑi, which is denoted by ∆zi, is obtained as

∆zi =
sHi ∆

(
U†

s1
Us2

)
ri

sHi ri
, (6.8)

where si and ri are the left and right eigenvectors of U†
s1Us2, respectively, corresponding to

ẑi [112]. Using the equalities ∆
(
U†

s1
Us2

)
= ∆U†

s1
Us2 +U†

s1
∆Us2 , ∆U†

s1
= −U†

s1
∆Us1U

†
s1
,

and the facts that U†
s = UH

s , C
†
1 = CH

1 , and U†
s1
Us2ri = ziri, equation (6.8) can be simplified
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to

∆zi =
sHi U

H

s C
H

1 (C2 − ziC1)∆Usri

sHi ri
. (6.9)

It has been shown that ∆Us = UnU
H

n∆EVsΣ
−1
s [113]. Therefore, equation (6.9) can be

simplified to

∆zi = aH

i ∆Eqi, (6.10)

where aH

i =
s
H

i U
H
sC

H

1 (C2−ziC1)UnU
H
n

sHi ri
and qi = VsΣ

−1
s ri. After some algebraic manipulation

and using the fact that ∆H = W, equation (6.10) can be rewritten as

∆zi = aH

i Qvec {W} , (6.11)

where

Q =












Q0 · · · QNs−R 0 · · · 0

0 Q0 · · · QNs−R
. . .

...

...
. . .

. . .
...

. . . 0

0 · · · 0 Q0 · · · QNs−R












PKR×MNNs

,

Qk=












Q0,k · · · QN−K,k 0 · · · 0

0 Q0,k · · · QN−K,k
. . .

...

...
. . .

. . .
...

. . . 0

0 · · · 0 Q0,k · · · QN−K,k












PK×MN

,
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Ql,k =









qil′ · · · qil′+M−P 0 · · · 0

...
. . .

. . .
...

. . . 0

0 · · · 0 qil′ · · · qil′+M−P









P×M

,

for l′ = (k(N −K + 1) + l)(M − P + 1).

Using (6.11), variance of ∆zi can be obtained as

var{∆zi} = σ2aH

i QQHai. (6.12)

Therefore, the variance of τi estimation error can be obtained as

var{∆τi} =
1

2 (2πfsNCRS)
2var{∆zi}. (6.13)

A similar approach can be used to derive var{∆xi} and var{∆yi}, resulting in a similar

structure to (6.12). Note that aH

i is replaced by aH

i =
s
H

i U
H
sJ

†
C

H

1 (C2−yiC1)JUnU
H
n

sHi ri
for ∆yi and

aH

i =
s
H

i U
H
sP

†
C

H

1 (C2−xiC1)PUnU
H
n

sHi ri
for ∆xi. Also, note that si and ri are the left and right

eigenvectors of U†
j1
Uj2 and U†

p1
Up2 for ∆yi and ∆xi, respectively, and matrices C1 and

C2 are used to remove the first and last few rows of Up and Uj as discussed in the last

subsection. The variance of the estimation of θ and φ can be obtained as

var{∆θi} =
c2

2ω2
cd

2 cos2 θi

[
cos2 φivar{∆xi} + sin2 φivar{∆yi}

+2 sinφi cos φiℜ{cov{∆xi,∆yi}}] , (6.14)

var{∆φi} =
c2

2ω2
cd

2 sin2 θi

[
sin2 φivar{∆xi} + cos2 φivar{∆yi}

−2 sinφi cos φiℜ{cov{∆xi,∆yi}}] . (6.15)
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6.3 Signal Tracking

In the tracking stage, the receiver refines the TOA and DOA estimates and keeps track of

their changes. Fig. 6.2 shows the structure of the proposed tracking stage, where azimuth,

elevation, and delay locked-loops (ALL, ELL, and DLL, respectively) are used to estimate

and remove the TOA and DOA errors. For this purpose, an estimate of the TOA and DOA

errors, êτ , êθ, and êφ, are first removed from H ′
m,n,q resulting in

H ′′
m,n,q =

√
Cβ0e

j ωcd
c

(m cos θ0 cosφ0+n cos θ0 sinφ0)∆eθ

e−j ωcd
c

(m sin θ0 sinφ0−n sin θ0 cosφ0)∆eφ

e−j2πqfsNCRS∆eτ + I ′m,n,q +W ′′
m,n,q, (6.16)

where I ′m,n,q andW
′′
m,n,q are the interference and noise components, respectively, after remov-

ing the TOA and DOA errors; and ∆eτ , êτ − eτ , ∆eφ , êφ − eφ, and ∆eθ , êθ − eθ are

TOA and DOA tracking loop errors. Next, a noncoherent discriminator function is used in

each loop to obtain the tracking error signals. Finally, low pass filters and accumulators are

used to smooth and accumulate the error signals.

In the next subsections, the structure of these loops and their performance in the presence

of noise and multipath are discussed in details.
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Figure 6.2: ELL, ALL, and DLL tracking loop structure. The ALL and DLL are identical
to the ELL shown above with appropriate modifications to their respective discriminators,
scaling, and reference signal generators.

6.3.1 ELL

Discriminator Function

The elevation angle discriminator function is defined as

Dθ ,







∑Ns−1
q=0

∑N−1
n=0 [|Rdown|2 − |Rup|2] , if | sinφ0| < ηthr,

∑Ns−1
q=0

∑M−1
m=0 [|Rdown|2 − |Rup|2] , otherwise,

where two different conditions are used to keep the tracking error bounded; ηthr =
√
2
2
; and

Rdown and Rup are the down and up cross-correlation functions of H ′′
m,n,q with the up-down

locally generated signal Υ and its conjugate, respectively, which are defined according to

Rdown ,







∑M−1
m=0 H

′′
m,n,qΥm, if | sinφ0| < ηthr,

∑N−1
n=0 H

′′
m,n,qΥn, otherwise,
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Rup ,







∑M−1
m=0 H

′′
m,n,qΥ

∗
m, if | sinφ0| < ηthr,

∑N−1
n=0 H

′′
m,n,qΥ

∗
n, otherwise,

Υm ,







ej
ωcd
c (m cos θ̂0 cos φ̂0ξθ), if | sinφ0| < ηthr,

ej
ωcd
c (m cos θ̂0 sin φ̂0ξθ), otherwise,

where ξθ is the up-down correlator spacing. It can be shown that

Rdown = Sdown + Idown + ndown,

Rup = Sup + Iup + nup,

where S, I, and n are the overall signal, interference, and noise components of the correlation

functions, respectively, which are defined according to

Sdown ,







√
Cejϑ sin(MAθ(∆eθ+ξθ))

sin(Aθ(∆eθ+ξθ))
, if | sinφ0| < ηthr,

√
Cejϑ sin(NBθ(∆eθ+ξθ))

sin(Bθ(∆eθ+ξθ))
, otherwise,

Idown ,







∑M−1
m=0 I

′
m,n,qΥm, if | sinφ0| < ηthr,

∑N−1
n=0 I

′
m,n,qΥn, otherwise,

ndown ,







∑M−1
m=0 V

′
m,n,qΥm, if | sinφ0| < ηthr,

∑N−1
n=0 V

′
m,n,qΥn, otherwise,

(6.17)

where ϑ is the overall phase; Aθ , ωcd
2c

cos θ̂0 cos φ̂0, Bθ , ωcd
2c

cos θ̂0 sin φ̂0; Sup has similar

structure to Sdown except for a negative sign before ξθ; and Iup and nup have similar structure

to Idown and ndown except for Υ∗ instead of Υ.

To evaluate the performance of the ELL discriminator function in the presence of noise,
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an AWGN channel is first considered, where Idown = Iup = 0. In an AWGN channel, the

elevation angle discriminator function can be rewritten as

Dθ = Sθ + nθ,

where Sθ is the S-curve, representing the signal part of the discriminator function given by

Sθ =







CNNs

[(
sin(MAθ(∆eθ+ξθ))
sin(Aθ(∆eθ+ξθ))

)2

−
(
sin(MAθ(∆eθ−ξθ))
sin(Aθ(∆eθ−ξθ))

)2
]

, if | sinφ0| < ηthr,

CMNs

[(
sin(NBθ(∆eθ+ξθ))
sin(Bθ(∆eθ+ξθ))

)2

−
(
sin(NBθ(∆eθ−ξθ))
sin(Bθ(∆eθ−ξθ))

)2
]

, otherwise,

(6.18)

and nθ is the noise part of the discriminator function. It can be shown that nθ is zero-mean

with the following variance

var{nθ}=







2NsNM
2σ4
(

1 + 2C
Mσ2 sin2( π

2M
)

)

,

if | sinφ0| < ηthr and ξθ =
π

2MAθ
,

2NsMN2σ4
(

1 + 2C
Nσ2 sin2( π

2N
)

)

,

if | sinφ0| ≥ ηthr and ξθ =
π

2NBθ
.

(6.19)

In the sequel, the ELL correlator spacing is assumed to be ξθ =
π

2MAθ
for | sinφ0| < ηthr and

ξθ =
π

2NBθ
otherwise.

It can be seen from (6.18) that the ELL S-curve depends on the elevation and azimuth angles

and the correlator spacings. Fig. 6.3 shows the ELL S-curve for C = 1, Ns = 1,M = N = 8,

φ0 = π/6, and different values of θ0.
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Figure 6.3: ELL S-curve for C = 1, Ns = 1, M = N = 8, φ0 = π/6, and different values of
θ0

Closed-Loop Statistics of the Elevation Angle Error

For small values of ∆eθ, the discriminator function can be approximated by a linear function

given by

Dθ = kθ∆eθ + nθ,

where kθ is the slope of the S-curve at ∆eθ = 0, which is obtained by

kθ =
∂Sθ

∂∆eθ
|
∆eθ=0

=







−4CNNsAθ
cos( π

2M
)

sin3( π
2M

)
, if | sinφ0| < ηthr,

−4CMNsBθ
cos( π

2N
)

sin3( π
2N

)
, otherwise.

A second-order loop filter can be used to track the linear changes in the elevation angle, with

the following transfer function

H(s) =
4πζfNs+ (2πfN)

2

s2 + 4πζfNs+ (2πfN)2
, (6.20)
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where ζ is the damping ratio and can be set to ζ = 1/
√
2 to have a step response that rises

sufficiently fast with a small overshoot; and fN is the undamped natural frequency, which

is related to the noise equivalent bandwidth of the loop according to BL = 1.06πfN [69].

Using the derived noise variance in (6.19), the variance of the closed-loop elevation angle

estimation error can be obtained as [69]

σ2
θ =

2BLTsubvar{nθ}
k2θ

≈







BLTsubM
2NNsA2

θC/σ2

sin4( π
2M

)

cos2( π
2M

)
, if | sinφ0| < ηthr,

BLTsubN
2MNsB2

θC/σ2

sin4( π
2N

)

cos2( π
2N

)
, otherwise,

(6.21)

where the approximation is valid for large C/σ2 and Tsub is the time interval between two

samples, which can be set to one LTE frame length, i.e., 10 ms.

The following remarks can be made from (6.21):

• The variance of the elevation angle estimation error depends on the elevation and

azimuth angles values at each time.

• The variance of the error has its highest value at cos θ ≈ 0.

• The variance of the elevation angle estimation error is inversely proportional to (C/σ2).

Elevation Angle Error Analysis in a Multipath Environment

In the presence of multipath, the ELL discriminator function can be rewritten as

Dθ = Sθ + Iθ + nθ,

where Iθ is the effect of multipath on the discriminator function, and is given by
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Iθ =

Ns−1∑

q=0

[
2ℜ
{
S∗
down · Idownq

}
+ |Idownq |2

]

−
[

2ℜ
{

S∗
up · Iupq

}

+ |Iupq |2
]

.

Fig. 6.4(a) shows the elevation angle estimation error for an environment with L = 2,

α1 = 0.2512, c(τ1 − τ0) = 100 m, and θ0 = φ0 = π/4. The receiver is assumed to have

M = N = 16 and Ns = 200. The results, which are presented for different multipath

azimuth and elevation angles, show that the error depends on the relative azimuth and

elevation angles of the multipath signal with respect to the LOS signal. Fig. 6.4(b) shows

the amplitude of the maximum elevation angle estimation error for the same multipath

settings as Fig. 6.4(a), but for different number of antenna elements M = N .

(a) (b)

Figure 6.4: Evaluating the effect of the multipath signal on elevation angle estimation for
an environment with L = 2, α1 = 0.2512, c(τ1 − τ0) = 100 m, θ0 = φ0 = π/4, and Ns = 200.
(a) Elevation angle estimation error for different azimuth and elevation angles of multipath,
assuming M = N = 16 and (b) amplitude of the maximum elevation angle estimation error
for different number of antenna elements.

The following remarks can be made from the results presented in this subsection:

• The elevation angle estimation error due to multipath depends on the relative azimuth

and elevation angles of multipath with respect to the LOS signal.

• The elevation angle estimation error due to multipath depends on the LOS azimuth
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and elevation angles.

• Increasing the number of antennas reduces the elevation angle estimation error caused

by multipath.

6.3.2 ALL

Discriminator Function

Similar to an ELL, the ALL discriminator function is defined to be

Dφ ,







∑Ns−1
q=0

∑M−1
m=0 [|Rleft|2−|Rright|2] , if | sinφ0| < ηthr,

∑Ns−1
q=0

∑N−1
n=0 [|Rleft|2−|Rright|2] , otherwise.

where Rleft and Rright are the left and right correlation functions defined as

Rleft ,







|∑N−1
n=0 H

′′
m,n,qΥn|, if | sinφ0| < ηthr,

|∑M−1
m=0 H

′′
m,n,qΥm|, otherwise,

Rright ,







∑N−1
n=0 H

′′
m,n,qΥ

∗
n, if | sinφ0| < ηthr,

∑M−1
m=0 H

′′
m,n,qΥ

∗
m, otherwise.

Note that Υ in an ALL is the left-right locally generated signal, defined as

Υm ,







ej
ωcd
c (m sin θ̂0 cos φ̂0ξφ), if | sinφ0| < ηthr,

e−j ωcd
c (m sin θ̂0 sin φ̂0ξφ), otherwise,

where ξφ is the left-right correlator spacing.

In an AWGN channel, the ALL discriminator function can be rewritten according to Dφ =
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Sφ + nφ, where Sφ is the azimuth angle S-curve, representing the signal part of the discrim-

inator function given by

Sφ =







CMNs

[(
sin(NBφ(∆eφ+ξφ))
sin(Bφ(∆eφ+ξφ))

)2

−
(

sin(NBφ(∆eφ−ξφ))
sin(Bφ(∆eφ−ξφ))

)2
]

, if | sinφ0| < ηthr,

CNNs

[(
sin(MAφ(∆eφ+ξφ))
sin(Aφ(∆eφ+ξφ))

)2

−
(

sin(MAφ(∆eφ−ξφ))
sin(Aφ(∆eφ−ξφ))

)2
]

, otherwise,

(6.22)

where Aφ , ωcd
2c

sin θ̂0 sin φ̂0 and Bφ , ωcd
2c

sin θ̂0 cos φ̂0. It can be shown that the noise part

of the ALL discriminator function nφ is zero-mean with the following variance

var{nφ}=







2NsMN2σ4
(

1+ 2C
Nσ2 sin2( π

2N
)

)

,

if ξφ = π
2NBφ

and | sinφ0| < ηthr,

2NsNM
2σ4
(

1+ 2C
Mσ2 sin2( π

2M
)

)

,

if ξφ = π
2MAφ

and | sinφ0| ≥ ηthr.

In the sequel, the left-right correlator spacing is assumed to be ξφ = π
2NBφ

for | sinφ0| < ηthr

and ξφ = π
2MAφ

otherwise.

It can be seen from (6.22) that the shape of the ALL S-curve depends on the elevation and

azimuth angles. Fig. 6.5 shows the ALL S-curve for C = 1, Ns = 1, M = N = 8, ηthr =
√
2
2
,

θ0 = π/4, and different values of φ0.
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Figure 6.5: ALL S-curve for C = 1, Ns = 1, M = N = 8, ηthr =
√
2
2
, θ0 = π/4, and different

values of φ0

Closed-Loop Statistics of the Azimuth Angle Error

For small values of ∆eφ, the discriminator function can be approximated by a linear function

given by Dφ = kφ∆eφ + nφ, where kφ is the slope of the S-curve at ∆eφ = 0 given by

kφ =







−4CMNsBφ
cos( π

2N )
sin3( π

2N )
, if | sinφ0| < ηthr,

−4CNNsAφ
cos( π

2M )
sin3( π

2M )
, otherwise.

Using a second-order loop filter with the transfer function presented in (6.20), it can be

shown that the variance of the steady-state tracking error follows

σ2
φ ≈







BLTsubN
2MNsB2

φC/σ2

sin4( π
2N

)

cos2( π
2N

)
, if | sinφ0| < ηthr,

BLTsubM
2NNsA2

φC/σ2

sin4( π
2M

)

cos2( π
2M

)
, otherwise,

(6.23)

where the approximation is valid for large C/σ2.

The following remarks can be made based on (6.23):
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• The variance of the azimuth angle estimation error depends on the elevation and az-

imuth angles values.

• The variance of the azimuth angle estimation error has its highest value at sin θ0 ≈ 0.

• The variance of the azimuth angle estimation error is inversely proportional to (C/σ2).

Azimuth Angle Error Analysis in a Multipath Environment

In the presence of multipath, the ALL discriminator function can be rewritten as Dφ =

Sφ + Iφ + nφ, where Iφ is the effect of multipath on the discriminator output given by

Iφ =

Ns−1∑

q=0

[
2ℜ{S∗

left · Ileft}+ |Ileft|2
]

−
[
2ℜ
{
S∗
right · Iright

}
+ |Iright|2

]
.

where Sleft, Sright, Ileft, Iright can be defined similar to (6.17).

Fig. 6.6(a) shows the azimuth angle estimation error for a an environment with L = 2,

α1 = 0.2512, θ0 = φ0 = π/4. The receiver is assumed to have M = N = 16 and Ns = 200.

The results, which are presented for different multipath azimuth and elevation angles, show

that the error depends on the relative azimuth and elevation angles of the multipath signal

with respect to the LOS signal. Fig. 6.6(b) shows the amplitude of the maximum azimuth

angle estimation error for the same multipath settings as Fig. 6.6(a), but for different number

of antenna elements. Similar remarks as the ELL can be made from these results.
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(a) (b)

Figure 6.6: Evaluating the effect of multipath signal on the azimuth angle estimation for
θ
(u)
0 = φ

(u)
0 = π/4, L = 2, α1 = 0.2512, and Ns = 200. (a) Azimuth angle estimation error

for different azimuth and elevation angles of multipath, assuming M = N = 16 and (b)
amplitude of the maximum azimuth angle estimation error for different number of antenna
elements.

6.3.3 DLL

The structure of the DLL was discussed in details in [45] and [49]. In this section, the

presented results in [45] and [49] are adapted to the UPA antenna array.

Discriminator Function

The DLL discriminator function is defined as

Dτ ,

M−1∑

m=0

N−1∑

n=0

[
|Rlate|2 − |Rearly|2

]
,

where Rearly and Rlate are early and late correlation functions, which are obtained by the

cross-correlation of H ′′
m,n,q with the early-late locally generated signal and its conjugate,

respectively. An early-late locally generated signal is defined to be Υq , ej2πqfsNCRSξτ , where

ξτ is the early-late correlator spacing.

For an AWGN channel, the DLL discriminator function can be rewritten as Dτ = Sτ + nτ ,
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where Sτ is the DLL S-curve, representing the signal part of the DLL discriminator function

given by

Sτ =CMN

[(
sin (πfsNCRSNs(∆eτ + ξτ ))

sin (πfsNCRS(∆eτ + ξτ))

)2

−
(
sin (πfsNCRSNs(∆eτ − ξτ ))
sin (πfsNCRS(∆eτ − ξτ))

)2
]

.

(6.24)

and nτ is the noise component with zero-mean and the following variance

var{nτ} ≤ 2MNN2
s σ

4

[

1 +
2C sin (πfsNCRSNsξτ )

Nsσ2 sin2(πfsNCRSξτ)

]

.

where the equality holds for ξτ = 1
2fsNCRSNs

, which is used in the rest of the chapter [45].

Fig. 6.7 shows Sτ for C = 1, M = N = 1 and Ns = 200. It can be seen from (6.24) that, in

contrast to Sθ and Sφ, which depend on θ0 and φ0, the DLL S-curve Sτ does not depend on

τ0.

-3 -2 -1 0 1 2 3
∆τ/Ts

-1

-0.5

0

0.5
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S
τ

Figure 6.7: DLL S-curve for C = 1, M = N = 1 and Ns = 200
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Closed-Loop Statistics of the Delay Error

For small values of ∆eτ , the DLL discriminator function can be approximated by a linear

function, according to Dτ = kτ∆eτ + nτ , where kτ is the slope of Sτ for ∆eτ = 0, given by

kτ = −4πCMNfsNCRS

cos( π
2Ns

)

sin3( π
2Ns

)
.

Using a second-order loop filter with transfer function presented in (6.20), the closed-loop

delay estimation error can be obtained as

σ2
τ ≈

BLTsubNs

2π2MNf 2
sN

2
CRSC/σ

2

sin4( π
2Ns

)

cos2( π
2Ns

)
. (6.25)

Delay Error Analysis in a Multipath Environment

In the presence of multipath, the DLL discriminator function can be rewritten as Dτ =

Sτ + Iτ + nτ , where Iτ is the effect of multipath on the DLL output given by

Iτ =
M−1∑

m=0

N−1∑

n=0

[
2ℜ{S∗

lateIlate}+ |Ilate|2
]
−
[
2ℜ
{
S∗
earlyIearly

}
+ |Iearly|2

]
.

Fig. 6.8(a) shows the error caused by multipath on the TOA estimation for L = 2, α1 =

0.2512, M = N = 16, and Ns = 200. It can be seen that multipath delay changes the error

in TOA estimation. Fig. 6.8(b) shows amplitude of the maximum delay estimation error

due to multipath for different Ns values. It can be seen that increasing Ns reduces the TOA

estimation error. In contrast to the ELL and ALL, the TOA estimation error due to the

multipath only depends on the relative multipath delay with respect to the LOS TOA.
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(a) (b)

Figure 6.8: Evaluating the effect of multipath on the TOA estimation for L = 2, α1 = 0.2512,
M = N = 1, and Ns = 200. (a) TOA estimation error for different multipath delays and (b)
amplitude of the maximum TOA estimation error for different Ns

6.4 Cramér-Rao Lower Bound

The measurements are considered to be the CFRs of all UPA antenna elements and at

different CRS subcarriers. It can be shown that the matrix of CFRs at all antenna elements

and on the q-th CRS subcarrier Hq can be written as

Hq = Xdiag
{
b ◦ z′

q

}
YT,

where ◦ is the Hadamard product and

X , [x0, · · · ,xL−1] ,

xi ,
[
1, xi, · · · , xM−1

i

]T
,

Y , [y0, · · · ,yL−1] ,

yi ,
[
1, yi, · · · , yN−1

i

]T
,

b ,
√
C[β0, · · · , βL−1]

T,

z′
q ,

[
zq0, · · · , zqL−1

]T
.
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Using the equality of vec
{
A1diag {a}AT

2

}
= (A2 ⊙A1)a for any vector a and matrices A1

and A2 of the proper size [98, 105], the vector vec [Hq] can be obtained as

vec [Hq] = [Y ⊙X]
(
b ◦ z′

q

)

= [Y ⊙X] diag {b} z′
q. (6.26)

where vec {X} stacks columns of matrixX one under another and⊙ is a Khatri-Rao product.

Define G , [vec {H0} , · · · , vec {HNs−1}]. Using (6.26), G can be rewritten as

G = [Y ⊙X] diag {b}ZT,

where Z , [z0, · · · , zL−1] and zi ,
[
1, zi, · · · , zNs−1

i

]T
. Therefore, g = vec [G] can be

obtained as g = Sb, where S , Z ⊙ [Y ⊙X]. The same approach can be used for the

estimated CFRs, resulting in ĝ = Sb+w, where w = vec [W] represents the noise effect. It

can be seen that, ĝ has a similar form as equation (13) in [105]. Therefore, one can use the

results in [105] to derive the CRLB of the relevant parameters η = [θ,φ, τ ] for a UPA-LTE

system, yielding

CRLB(η) =
σ2

2

{
ℜ
[
BH

e D
H
(
I− SS†)DBe

]}−1
, (6.27)

where Be = I3 ⊗ diag {b}; D = [∂S/∂θ, ∂S/∂φ, ∂S/∂τ ]; and

∂S/∂θ =
[
dθ0 , · · · ,dθL−1

]
,

∂S/∂φ =
[
dφ0 , · · · ,dφL−1

]
,

∂S/∂τ =
[
dτ0 , · · · ,dτL−1

]
,
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dθi = zi ⊗ (∂yi/∂θi ⊗ xi + yi ⊗ ∂xi/∂θi) ,

dφi
= zi ⊗ (∂yi/∂φi ⊗ xi + yi ⊗ ∂xi/∂φi) ,

dτi = ∂zi/∂τi ⊗ (yi ⊗ xi) ,

for i = 0, · · · , L− 1.

where ⊗ represents the Kronecker product.

The above results can be simplified to the following (see Appendix A.2) for a channel with

only a LOS signal.

σ2
θ0,CRLB =

6

C/σ2MNNs(ωcd/c)2 cos2 θ0
[
(N2 − 1) sin2 φ0 + (M2 − 1) cos2 φ0

] , (6.28)

σ2
φ0,CRLB =

6

C/σ2MNNs(ωcd/c)2 sin
2 θ0

[
(N2 − 1) cos2 φ0 + (M2 − 1) sin2 φ0

] , (6.29)

σ2
τ0,CRLB =

6

C/σ2MNNs(N2
s − 1)(2πfsNCRS)2

. (6.30)

The following remarks can be made from (6.28)–(6.30):

• For M = N , both azimuth and elevation angles’ CRLBs are independent of the actual

azimuth angle.

• The azimuth and elevation angles’ CRLBs tend to infinity for sin θ0 = 0 and cos θ0 = 0,

respectively.

• The TOA CRLB does not depend on the DOA and TOA values.

6.5 Computational Complexity

In the 3-D MP algorithm, the most computationally intensive step is to estimate the signal

subspace using the SVD decomposition, which requires 17P 3K3R3/3 + 2P 2K2R2(M − P +
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1)(N −K + 1)(Ns − R + 1) real multiplications [114]. The discriminator functions are the

most computationally intensive steps in the tracking stage, which require 8(MN +Ns) real

multiplications.

6.6 Simulation Results

This section presents simulation results to evaluate the performance of the proposed acqui-

sition and tracking stages and demonstrate the analytical results derived in Sections 6.2 to

6.4.

6.6.1 Acquisition Stage Noise Performance

To evaluate the acquisition stage performance, a CFR was modeled based on (6.1) and for

M = N = Ns = 32, P = K = R = ⌈M/3⌉, L = 1, τ0 = 0, φ0 = θ0 = π/4. Then, for

each C/σ2, 300 different noise realizations with the proper σ2 were added to the CFRs. The

MP algorithm presented in Subsection 6.2.1 was used to estimate TOAs and DOAs for each

generated CFR and the standard deviation of the estimation errors were obtained, which

represents the noise performance of the acquisition stage. Fig. 6.9 shows the simulation

results with blue ’+’ markers. The derived analytical results in (6.13), (6.14), and (6.15)

are plotted with the solid blue lines, which show the simulation results follow the analytical

results closely.

The CRLBs of the TOA and DOA, which were derived in (6.28), (6.29), and (6.30), can be

used to evaluate the performance of the acquisition stage. Fig. 6.9 shows the TOA and DOA

CRLBs with dashed orange lines. It can be seen that the acquisition stage noise performance

is very close to the CRLB.
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Figure 6.9: CRLB and acquisition stage standard deviation of elevation and azimuth angles
and delay estimation errors for different C/σ2. The results are presented forM = N = Ns =
32, P = K = R = ⌈M/3⌉, L = 1, τ0 = 0, φ0 = θ0 = π/4.

6.6.2 Tracking Stage Noise Performance

To evaluate the performance of the tracking stage, a similar approach to Subsection 6.6.1

was used to generate CFRs for L = 1, τ0 = 0, φ0 = θ0 = π/4. Then, the tracking stage noise

performance was obtained for different M = N = Ns, BL, and C/σ2, and was compared

to the analytical results presented in (6.21), (6.23), and (6.25). It can be seen that the

simulation results (‘o’ markers) follow the analytical results (solid lines) closely.
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M = N = Ns = 16, BL = 8
M = N = Ns = 32, BL = 2

M = N = Ns = 16, BL = 2

M = N = Ns = 32, BL = 8

M = N = Ns = 16, BL = 8
M = N = Ns = 32, BL = 2

M = N = Ns = 16, BL = 2

M = N = Ns = 32, BL = 8

M = N = Ns = 16, BL = 8
M = N = Ns = 32, BL = 2

M = N = Ns = 16, BL = 2

M = N = Ns = 32, BL = 8

Figure 6.10: Tracking stage standard deviation of elevation and azimuth angles and delay
estimation errors for different C/σ2. The results are presented for L = 1, τ0 = 0, φ0 = θ0 =
π/4.

6.7 Experimental Results

To evaluate the performance of the proposed framework, a field test was conducted with real

LTE signals in the Anteater parking structure at the University of California, Irvine, USA.

This section presents the experimental setup and obtained results.

6.7.1 Hardware and Software Setup

To perform the experiment, a cart was equipped with

• Four consumer-grade 800/1900 MHz Laird cellular omnidirectional antennas to record
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LTE signals. The antennas were arranged in a 2 × 2 UPA array structure with d = 7

cm.

• An NI four-channel USRPs-2955 to simultaneously down-mix and synchronously sam-

ple the LTE signals received by the four antennas at a sampling rate of 10 MSps and

a carrier frequency of 1955 MHz.

• A host laptop computer to store the samples for post-processing.

• An NI USRP 2930 and a consumer-grade 800/1900 MHz LTE antenna to transmit a

tone signal before performing the experiment to remove the initial phase offsets between

different elements of the antenna array.

• A GPS antenna to discipline the USRP’s oscillator.

• A Septentrio AsteRx-i V, which was equipped with a dual antenna multi-frequency

GNSS receiver with RTK and a Vectornav VN-100 MEMS IMU to estimate the position

and orientation of the ground vehicle, which was used as the “ground truth”.

Fig. 7.12(a) shows the experimental hardware setup. The location of the LTE eNodeB,

the traversed trajectory, and the environmental layout of the experiment is shown in Fig.

7.12(b).

The receiver traversed a trajectory of 153 m over 180 s, while listening to 1 LTE eNodeBs.

The true orientation of the receiver was obtained using the Septentrio device described above.

6.7.2 Calibration

The USRP’s filters, mixers, amplifiers, and phase locked-loops may contribute to a phase

error on the received signals from different antennas. This phase error may vary with time,

temperature, and mechanical conditions. To remove these errors, an initial and periodic
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Figure 6.11: (a) Experimental hardware setup and (b) location of the LTE eNodeB, the
traversed trajectory, and the environmental layout of the experiment

calibration is required [115]. For this purpose, a calibration tone was transmitted to all the

USRP’s channels and the phase and amplitude differences between all the channels with the

first channel was measured. Then, the phase and amplitude difference was removed from

the received signals over the course of the experiment. Since the phase differences may vary

with time and temperature, it is important to perform the calibration routine before each

experiment.

6.7.3 Results

The stored LTE samples were used to jointly estimate the TOA and DOA of the received

LTE signals using (1) only MP algorithm and (2) the proposed receiver structure. Then, the
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results were compared against the true value, which are shown in Fig. 6.12. Fig. 6.12(c)

compares the estimated pseudoranges with the true range. Note that the initial bias is

removed from the range and pseudoranges for comparison purposes. The difference between

the true range and the estimated pseudoranges are due to noise, multipath, and clock drift.

In order to remove the effect of the clock, a linear function was mapped to the error, which

represents a constant clock drift model. The estimated drift was -0.11 m/s. Then, this

function was used to remove the effect of clock drift from the pseudoranges. Fig. 6.12(d)

shows the estimated ranges after removing the effect of the clock. Table 6.1 compares the

standard deviation of the TOA and DOA errors. It can be seen that a reduction of 93%,

57%, and 31% in the standard deviation of the estimated TOA, azimuth, and elevation

angles errors, respectively, was achieved using the proposed receiver structure compared to

the MP algorithm. Note that the MDL method tends to overestimate the channel length.

As a result, the MP algorithm has an outlier. Since pseudorange estimates are obtained by

multiplying TOA estimates with the speed of light, this outlier tends to have large numbers,

which results in large estimation error standard deviation. Note that the y-axis in Fig. 6.12

is limited for better visualization and does not show the outlier completely.

Table 6.1: Standard deviation of the estimated TOA and DOA errors

MP algorithm Proposed algorithm

Azimuth [degrees] 43.21 18.62

Elevation [degrees] 11.49 7.89

TOA [m] 21.86 1.60
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Figure 6.12: Estimated TOA and DOA obtained by MP algorithm and the proposed receiver
structure

158



Chapter 7

NR: Signal Model, Receiver Design,

and Ranging/Positioning Error

Statistics

Autonomous ground vehicles (AGVs), also known as self-driving cars, already navigate the

streets todays in several cities around the world. Companies such as Waymo, GM Cruise,

and Apple have reported more than 1.5 million miles with their self-driving cars in 2018

[116]. AGVs promise higher quality of life by reducing the number accidents and reducing

countless hours of wasted time. However, this is only achievable with reliable autonomy. One

important factor to evaluate the reliability of an AGV is called disengagement rate, which

is defined based on the California Department of Motor Vehicles (DMV) as the number of

times the AGV’s test driver has to disengage the autonomous mode and to take immediate

manual control of the vehicle [117]. Although Waymo’s, GM Cruise’s, and Apple’s AGVs

are among the top tier performing AGVs, they have reported disengagement rates of 0.09,

0.19, and 0.5 per 1,000 miles, respectively, in 2018. At this point, AGVs are a long way from

reliable, full autonomy.
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Situational awareness is key to achieving reliable, full autonomy. One of the key enablers

is vehicle-to-everything (V2X) communication, which includes vehicle’s communication with

other vehicles, pedestrians, infrastructure, and network. In 2009, the United States as-

signed an IEEE 802.11p-based dedicated short range communication (DSRC) technology

to vehicle-to-vehicle (V2V) communication over a pre-specified transmission band to ensure

low interference. Although DSRC has been tested over large-scale trials over the past years

for V2V transmissions, it has failed to answer the demands for vehicle-to-network (V2N)

and vehicle-to-infrastructure (V2I) due to its low transmission bandwidth and lack of proper

roadside units. To overcome the limitations of DSRC, the third generation partnership

project (3GPP) has developed a cellular-based V2X communication in Release 15 and 16 for

the 5th generation (5G) of wireless access technology (also known as new radio (NR)) [118].

Low latency and high data rate are among the main characteristics of NR signals. To

achieve these characteristics, higher transmission bandwidth is essential. However, unli-

censed spectrum in lower frequencies is scarce. Due to this limitation, using millimeter

waves (mmWaves) for NR signal transmission has been considered. But, mmWaves suffer

from high signal path loss, which can be compensated by beamforming techniques and mas-

sive multiple-input multiple-output (mMIMO) antenna structure. Beamforming requires the

knowledge of the user’s location. Therefore, 5G-based positioning is not only a service that is

provided to users, but also a key enabler to high data rates via proactive resource allocation

and beamforming [119].

The 3GPP has evaluated different types of positioning techniques including timing, angle,

carrier phase, and received reference signal power-based techniques for NR downlink and

uplink signals in Release 15 and 16 [120]. Positioning performance evaluation of 5G signals

is not only limited to 3GPP reports. For example, mmWaves signals’ characteristics were

evaluated for positioning in [121]. Position and orientation error bounds were derived in [122,

123] as a function of the Cramér-Rao lower bounds (CRLBs) of the direction-of-departure
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(DOD), direction-of-arrival (DOA), and time-of-arrival (TOA) for both uplink and downlink

communications. A methodology to design 5G networks for precise positioning was proposed

in [124] and was evaluated with simulation results. Several channel estimation algorithms

were proposed in [125–127] to estimate DOD, DOA, and TOA of the user equipment (UE) by

means of compressed sensing tools, which exploit the sparsity of mmWaves’ channels. The

received reference signal strength from multiple base stations was used in [128] to estimate

the DOD and position of the UE in a two-stage Kalman filter. In [129], a method was

proposed to jointly estimate the position and orientation of the UE, as well as the location

of reflectors or scatterers in the absence of the line-of-sight (LOS) path. To remove the effect

of the clock bias, a two-way localization approach was proposed in [130] and its position and

orientation error bounds were derived.

All the proposed approaches in the literature require a pre-specified reference signal trans-

mission, namely positioning reference signal (PRS), where cellular providers must allocate

additional bandwidth to the PRS transmission. Besides, the aforementioned algorithms re-

quire prior knowledge of the systems’ parameters (e.g., number of transmission antennas and

beamforming matrix), which are not available at the UE in practical applications. There-

fore, a network-based positioning approach must be used, which compromises the privacy

of the UEs. This chapter presents an opportunistic navigation with NR signals, where NR

reference signals that are broadcast to the UE are exploited for navigation purposes.

Over the past decade, opportunistic navigation has been demonstrated in the literature with

different types of radio frequency (RF) signals, also known as signals of opportunity (SOPs).

Cellular, digital television, AM/FM, Wi-Fi, and low-earth orbit (LEO) satellite signals are

examples of SOPs [10–14]. Among SOPs, cellular signals have attracted considerable atten-

tions due to their desirable attributes, including: (1) large transmission bandwidth, (2) high

carrier-to-noise ratio (C/N0), and (3) favorable geometric diversity. The potential of cellular

code-division multiple access (CDMA) and long-term evolution (LTE) signals for navigation
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have been thoroughly studied in the literature [25, 30, 31, 49, 131]. CDMA and LTE are the

standards of the 3rd and 4th generations (3G and 4G) of wireless communication systems,

respectively. The structure of NR signals has finalized in 2019, and since then, only a few

operators have started implementing this standard mainly in major cities around the world.

Since NR signals are new to the field, the literature lacks a thorough study on the potential

of NR signals for opportunistic navigation.

There are several challenges for an opportunistic navigation with NR signals: (1) low-level

NR frame structure and signaling processing are scattered in several technical reports, which

makes them confusing and tiresome to follow for one without proper background, (2) poten-

tial reference signals for opportunistic navigation with NR signals have not been investigated,

(3) specialized receivers to opportunistically extract navigation observables from NR signals

have not been developed, and (4) achievable ranging and positioning accuracy with these

signals have not been analyzed. This chapter tackles these challenges by

• providing the low-level NR signal structure and describing important parameters for

opportunistic navigation,

• presenting potential signals for opportunistic navigation and their related coding and

decoding procedure,

• developing a software-defined receiver (SDR) to extract navigation observables from

NR signals, and

• deriving ranging and positioning accuracy with NR signals.

In addition to the above contributions, experimental results with real NR signals are provided

showing a standard deviation of 1.19 m for the estimated range with the proposed SDR. To

the authors’ knowledge, this is the first time that navigation observables are extracted from

real NR signals.
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The structure of this chapter is organized as follows. Section 7.1 discusses the advantages

and challenges of navigation with NR signals. Section 7.2 presents NR frame structure and

the potential reference signals for opportunistic navigation. Section 7.3 shows the structure

of the proposed SDR to extract navigation observables from NR signals. Section 7.4 derives

the ranging precision of the NR signals. Section 7.5 analyzes the statistics of the position

estimation error. Finally, Section 7.6 demonstrates the experimental results.

7.1 Opportunistic Navigation with NR Signals: Op-

portunities and Challenges

This section discusses the opportunities and challenges associated with exploiting NR signals

for navigation.

7.1.1 Opportunities

NR signals possess multiple desirable characteristics for opportunistic navigation, which are

summarized next.

• Operating at high frequency bands: NR is designed to support transmission at

different frequency ranges (FRs). According to the NR specifications, these FRs can be

divided into two main ranges: (1) FR1, which is also known as sub-6 GHz, corresponds

to 450 MHz to 6 GHz and (2) FR2, which is also known as mmWaves, corresponds to

24.25 GHz to 52.6 GHz [132]. Due to the high path loss in mmWaves, the received signal

will contain an LOS signal with a few dominant multipath components. Therefore,

multipath effect on the navigation observables is lower for mmWaves compared to low

frequency signals. This will yield a more accurate TOA estimation [121]. Moreover,
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due to high path loss, 5G networks have higher density to provide a reliable coverage,

which results in a desirable geometric diversity for navigation purposes.

• mMIMO structure: mMIMO structure in NR is advantageous for navigation pur-

poses, since (1) the large number of antennas increases the received signal’s carrier-to-

noise ratio (C/N0), which has direct relationship with ranging precision and (2) highly

directional signals reduce the interference of other NR base stations (also known as

next generation NodeBs or gNBs), which increases the ranging accuracy.

• Large transmission bandwidth: A single NR can have a maximum of 100 MHz

and 400 MHz bandwidth in sub-6 and mmWaves, respectively. The large transmission

bandwidth of NR signals enables differentiating multipath from LOS, which improves

the accuracy of TOA estimation.

7.1.2 Challenges

To exploit NR signals for navigation, the following challenges must be tackled.

• Ultra-lean transmission: In opportunist navigation, a broadcast reference signal is

used to derive navigation observables such as TOA and DOA. This signal is known at

the UE and is independent of the network operator. Therefore, the UE can exploit

it opportunistically for navigation without being a network subscriber. In cellular

LTE signals, several reference signals, such as cell-specific reference signal (CRS), are

broadcast at regular time intervals even when there is no UE in the environment. This

reduces the network energy efficiency and increases the network operational expenses

and interference. One of the main features of NR is its ultra-lean transmission, which

minimizes the transmission of these “always-on” signals. NR has four main reference

signals: demodulation reference signals, phase tracking reference signals, sounding ref-

erence signals, and channel state information reference signals. These signals are only
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transmitted when necessary, making previously developed opportunistic navigation ap-

proaches with these signals impossible [133]. This limits opportunist navigation with

NR signals to only synchronization signal and physical broadcast channel (SS/PBCH)

block, which is always-on. As will be discussed in the next section, SS/PBCH block

is not transmitted on the whole signal’s bandwidth. Therefore, one cannot exploit the

full ranging accuracy that can be achieved by NR signals.

• Unknown mMIMO structure: As discussed in the introduction of this chapter,

mMIMO is a requirement for NR transmission to overcome high path loss, increase

throughput, and reduce interference. In a conventional MIMO structure, all signal

processing is performed in baseband and each antenna has a separate RF chain. In

mmWaves, antenna elements must be placed close to each other to avoid granting lobes.

Therefore, allocating one RF chain to each antenna element is impossible for mmWave

mMIMO due to space limitations. Moreover, large number of RF chains increases the

power consumption, which is a limiting factor [134]. Due to these limitations, hybrid

analog-digital precoding and combining has been proposed for NR transmission. As

a result, the channel measured in the digital baseband is intertwined with the choice

of analog precoding and combining vectors and the entries of the channel matrix are

not directly accessible. Therefore, existing approaches to estimate angles and TOA are

not straightforwardly applicable, since the choice of hybrid-digital precoding structure,

the number of antennas at the gNB, and the structure of array depend on the network

provider and is unknown at the UE.

• Need for specialized receiver structure: A specialized receiver is required to

extract navigation observables from NR signals, since these signals are not designed

for navigation purposes.

• Unknown gNBs’ clock biases: NR signals are designed for communication pur-

poses. Therefore, a stringent level of synchronization between gNBs is not required.
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In order to achieve an accurate navigation solution with NR signals, the gNBs’ clock

biases must be known and removed from the pseudorange measurements. However,

these clock biases are unknown at the UE and must be estimated.

7.2 NR Signal Structure

This section presents the low-level models of NR signals and frame structure.

7.2.1 NR Frame Structure

NR downlink transmission is based on orthogonal frequency division multiplexing (OFDM)

modulation with cyclic prefix (CP). An NR frame has a duration of 10 ms and consists of

10 subframes with durations of 1 ms. A frame can also be decomposed into two half-frames,

where subframes 0 to 4 form half-frame 0 and subframes 5 to 9 form half-frame 1. This

structure enables the coexistence of LTE and NR systems.

In the time-domain, each subframe breaks down into numerous slots, each of which contains

14 OFDM symbols for a normal CP length. The number of slots per subframe depends on

the subcarrier spacing. In contrast to LTE, which has a constant subcarrier spacing of 15

kHz, NR defines different numerologies µ ∈ {0, · · · , 4} to support flexible subcarrier spacing

∆f = 2µ ·15 [kHz]. As a result, there are 2µ slots in each subframe and the CP is down-scaled

by a factor of 2µ compared to the LTE signal’s CP length [1]. Subcarrier spacings of 15 and

30 kHz are more suitable for FR1 since the signal’s attenuation is lower and the cell size can

be larger, while higher subcarrier spacings are more applicable to FR2.

In the frequency-domain, each subframe is divided into numerous resource grids, each of

which has multiple resource blocks with 12 subcarriers. The number of resource grids in the

frame is provided to the UE from higher level signallings. A resource element is the smallest
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element of a resource grid that is defined by its symbol and subcarrier number. Fig. 7.1

summarizes the NR frame structure.
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Figure 7.1: NR frame structure

7.2.2 NR SS/PBCH Block

When a UE receives an NR signal, it must first convert the signal into the frame structure

to be able to extract the transmitted information. This is achieved by first identifying the

frame start time. Then, knowing the frame start time, the UE can remove the CPs and take

a fast Fourier transform (FFT) to construct all the OFDM symbols in the frame.

To provide frame timing to the UE, a gNB broadcast synchronization signals (SS) on pre-

specified symbol numbers, which are known at the UE. The UE can obtain frame start time

by acquiring the SS. An SS includes a primary synchronization signal (PSS) and a secondary

synchronization signal (SSS), which provide symbol and frame timing, respectively.

The PSS and SSS are transmitted along with the physical broadcast channel (PBCH) sig-

nal and its associated demodulation reference signal (DM-RS) on a block called SS/PBCH

block. The SS/PBCH block consists of four consecutive OFDM symbols and 240 consecutive

subcarriers. Fig. 7.2 demonstrates an SS/PBCH block structure and Table 7.1 shows the

subcarriers and symbols allocated to each symbol in the SS/PBCH block.
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Figure 7.2: SS/PBCH block structure

The frequency location of the SS/PBCH block depends on the NR high-level signallings. The

SS/PBCH block has a periodicity of 20 ms and is transmitted numerous times on one of the

half frames, which is also known as SS/PBCH burst. Each SS/PBCH block is transmitted in

a different direction using beamforming techniques. The OFDM symbol numbers on which

the SS/PBCH block starts and the number of SS/PBCH blocks per frame depend on the

numerology and transmission frequency fc of the signal. Table 7.2 summarizes these values

based on Section 4.1 of [135]. Index 0 in this table represents the first symbol of the half frame

containing SS/PBCH blocks. Note that in the 5G protocol, SS/PBCH is not transmitted on

subcarrier spacing of 60 kHz.

7.2.3 PSS and SSS Sequence Generation

The PSS and SSS are two orthogonal maximum-length sequences (m-sequences) of length

NSS = 127, which are transmitted on contiguous subcarriers. The PSS is transmitted in one

form of three possible sequences, each of which maps to an integer representing the sector

ID of the gNB, i.e., N
(2)
ID ∈ {0, 1, 2}.
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Table 7.1: Symbol and subcarrier numbers in an SS/PBCH block based on Table 7.4.3.1-1
in [1]

Signal
type

Symbol
number

Subcarrier
number

PSS 0 56, 57, · · · , 182
SSS 0 56, 57, · · · , 182

Set to zero
0

0, 1, · · · , 55,
183, 184, · · · , 239

2
48, 49, · · · , 55,

183, 184, · · · , 191
PBCH

1, 3 0, 1, · · · , 239
2

0, 1, · · · 47,
192, 193, · · · , 239

DMRS
1, 3 0 + v, 4 + v, · · · , 236+ v

2
0 + v, 4 + v, · · · , 44+ v

192 + v, 196 + v, · · · , 236 + v

Note: v = NCell
ID mod 4

Table 7.2: Symbol numbers containing SS/PBCH block for different numerologies and fre-
quency bands

subcarrier
spacing (kHz)

Carrier
frequency

Symbol
number

Slot
number n

Case A: 15
fc ≤ 3 GHz

3 < fc ≤ 6 GHz
{2, 8} + 14n

{0, 1}
{0, · · · , 3}

Case B: 30
fc ≤ 3 GHz

3 < fc ≤ 6 GHz
{4, 8, 16, 20} + 28n

{0}
{0, 1}

Case C: 30
fc ≤ 3 GHz

3 < fc ≤ 6 GHz
{2, 8} + 14n

{0, 1}
{0, · · · , 3}

Case D: 120 fc > 6 GHz {4, 8, 16, 20} + 28n

{0, · · · , 3,
5, · · · , 8,

10, · · · , 13,
15, · · · , 18}

Case E: 240 fc > 6 GHz
{8, 12, 16, 20, 32,
36, 40, 44} + 56n

{0, · · · , 8}
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The SSS is transmitted in one of 336 possible forms, each of which maps to an integer

representing the gNB’s group identifier, i.e., N
(1)
ID ∈ {0, · · · , 335}. The values of N

(2)
ID and

N
(1)
ID define the physical cell identity of the gNB according to

NCell
ID = 3N

(1)
ID +N

(2)
ID .

The instructions to generate the PSS and SSS sequences are provided in Section 7.4.2 of [1].

7.2.4 PBCH Sequence Generation

PBCH is a physical channel to transmit essential system information for establishing a

connection between the gNB and UE. These parameters are sent in a block called master

information block (MIB). An MIB is a 23 bits message containing: (1) frame number (6

bits), (2) subcarrier spacing (1 bit) (this bit shows subcarrier spacing of 15 or 30 kHz for

FR1 and subcarrier spacing of 60 or 120 kHZ for FR2), (3) subcarrier offset between the

first subcarrier of SS/PBCH block and the first subcarrier of the resource grid containing the

SS/PBCH block kSSB (4 bits), (4) position of the DM-RS corresponding to physical downlink

shared channel (PDSCH) (1 bit), (5) parameters related to the physical downlink control

channel (PDCCH) and system information block (SIB) (8 bits), (6) a flag showing if the cell

is barred or not (a UE may not use a barred cell for cell selection/reselection) (1 bit), (7) a

flag to allow intra frequency reselection (1 bit), and (8) a spare bit (1 bit) [136]. PBCH also

contains 1 bit message representing the type of message in PBCH, which can be either MIB

or a messageClassExtension. Therefore, the size of PBCH message is 24 bits [136]. Once the

PBCH message is generated at the higher layers, it is encoded and transmitted on physical

channel. Fig. 7.3 shows the block diagram of PBCH coding stages, in which PBCH message

is denoted by vector ā of length Ā = 24 [1, 137].

In the payload generation stage, PBCH message ā is first extended to length A = Ā + 8

170



Payload

generation

ā
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Figure 7.3: PBCH coding block diagram

and then interleaved according to Section 7.1.1 in [137]. Next, the resulting vector a is

scrambled to a′ of size 32 based on Section 7.1.2 of [137]. Then, the entire vector is used

to generate cyclic redundancy check (CRC) parity bits of length 32 according to Section

7.1.3 of [137]. The resulting CRC is attached to vector a′, resulting in vector c of length

64. The vector c is then passed to the channel coding block, where a polar coding is used to

code the message according to Section 7.1.4 of [137]. The output of channel coding block is

passed to the rate matching block, resulting in vector f of length 864 as discussed in Section

7.1.5 in [137]. Then, the vector f is scrambled, modulated to quadrature phase-shift keying

(QPSK) symbols, and mapped to physical resources according to Section 7.3.3 in [1]. The

scrambling code at this stage depends on the SS/PBCH block index. Therefore, by decoding

PBCH message, the exact symbol number can be obtained. The final PBCH sequence dPBCH

with length of 432 is transmitted on the symbols allocated to this message, which are shown

in Fig. 7.2.

7.2.5 DM-RS for PBCH Sequence Generation

A DM-RS is a reference signal, which is transmitted to the UE to provide an estimate of the

channel frequency response. In NR, each physical channel has a DM-RS signal, which is used

for decoding that specific physical channel, and also providing some system parameters. The

DM-RS is transmitted on only specific symbols and subcarriers (not the whole transmission

band). A DM-RS for PBCH depends on the half frame containing the SS/PBCH block nhf ,

171



the number of SS/PBCH block transmission per frame, and the SS/PBCH block index iSSB.

The structure of DM-RS sequence is shown in Section 7.4.1.4 of [1].

7.3 Receiver Structure

This section presents the structure of the proposed SDR to opportunistically extract TOA

from NR signals. The proposed SDR consists of three main stages: (1) carrier frequency

extraction, (2) acquisition, and (3) tracking. Each of these stages are discussed in details

next.

7.3.1 Carrier Frequency Extraction

When a UE is activated, it first needs to perform a blind search over all possible frequencies

in order to find any available SS/PBCH block. In NR, only specified channel raster can

carry SS/PBCH blocks, which is called synchronization raster. The center frequency of the

synchronization channel raster, which is equivalent to the frequency of the 121th subcarrier

of the SS/PBCH block, is denoted by SSref . The value of SSref is a function of a param-

eter called global synchronization channel number (GSCN). This function depends on the

frequency band of the signal and is presented in Section 5.4.3.1 of [132].

It is worth mentioning that if a UE knows SSref a priori, it can skip this stage.

7.3.2 Acquisition

Once the UE determines the SS/PBCH block center frequency SSref , it starts sampling at

a minimum rate equal to the SS/PBCH transmission bandwidth. Next, it wipes off the
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carrier frequency to convert the samples into the baseband domain. The resulting samples

are correlated with all the possible PSS sequences and the PSS sequence corresponding to

the highest correlation peak determines the N
(2)
ID . The location of the peak of the correlation

represents the SS/PBCH symbol start time and can be used to control the FFT window.

Then, the cyclic prefix is removed from the signal and by taking the FFT from the received

samples, the signal is converted into the frame structure. At this stage, the UE can extract

the SS/PBCH block. Next, the received SSS signal is correlated with all possible SSS

sequences, and the one corresponding to the highest correlation peak determines the value

of N
(1)
ID . Knowing N

(1)
ID and N

(2)
ID , the UE is able to calculate the cell ID NCell

ID . The cell

ID is used to map the subcarriers allocated to the DM-RS. An exhaustive search must be

performed over all possible DM-RS sequences and the one with the highest peak is selected.

Once the DM-RS sequence is detected, it can be used to estimate the channel frequency

response (CFR). The next stage is to decode the PBCH message. For this purpose, the

effect of CFR on the received PBCH message is removed using a channel equalizer. Then,

the resulting PBCH message is decoded by following the steps in Fig. 7.3 in reverse order.

After obtaining the PBCH message, the UE can reconstruct the SS/PBCH block locally.

Then, the resulting code on the second or fourth symbol of the SS/PBCH block is used to

estimate the CFR and refine the frame start time, which is called TOA in this paper. The

TOA refinement can be performed using a super resolution algorithm such as estimation of

signal parameters via rotational invariant techniques (ESPRIT) [52]. The phase difference

between the CFR on the second and fourth symbols of the PBCH is used to provide a coarse

estimate of Doppler frequency f̂D. Fig. 7.4 summarizes the structure of the acquisition

stage.
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Figure 7.4: Block diagram of the acquisition stage

7.3.3 Tracking

After obtaining a coarse estimate of the TOA, a tracking loop can be used to refine the TOA

estimate and keep track of any changes. The tracking loop is composed of a phase-locked

loop (PLL)-aided delay-locked loop (DLL). The main components of the PLL and DLL

are: a discriminator function, a low-pass filter (LPF), and a numerically-controlled oscillator

(NCO). Fig. 7.5 shows the structure of the proposed tracking loop.

At each tracking loop iteration, the estimated phase, which is obtained by integrating the

Doppler frequency f̂D over time, is removed from the baseband signal. Then, the estimated

TOA, which is normalized by the sampling time Ts, is divided into a fractional part 0 ≤

Frac{·} < 1 and an integer part Int{·}. The integer part is used to control the FFT window,

while the fractional part is removed from the signal in the frequency domain using a phase

rotation. Then, the DLL and PLL are used to estimate the remaining code and carrier phase

errors, respectively.

It has been shown that the PLL discriminator function can be the phase of the integrated

CFRs over the entire subcarriers [49]. An early-power-minus-late-power discriminator func-

tion can be used for the DLL discriminator function to derive the normalized timing error
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Figure 7.5: Block diagram of the tracking stage

ẽτ [45]. Since a shift in the time-domain is equivalent to a phase rotation in the frequency-

domain, the locally generated early and late code signals for the OFDM symbol can be

obtained respectively as

Searly(k) = e−j2πξk/KS(k),

Slate(k) = ej2πξk/KS(k),

for k = 0, · · · , K − 1.

where S(k) is the locally generated SS/PBCH symbol at the k-th subcarrier, K = 240 is the

number of subcarriers allocated to the SS/PBCH block at each symbol, and 0 < ξ ≤ 1/2 is

the normalized time shift. The early and late correlations in the frequency-domain can be

expressed respectively as

Rearly =
K−1∑

k=0

R′(k)S∗
early(k),

Rlate =

K−1∑

k=0

R′(k)S∗
late(k),

where R′(k) is the received signal at the k-th subcarrier after phase shift. The DLL discrim-
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inator function is defined as

DDLL , |Rearly|2 − |Rlate|2 , K2CΛDLL(ẽτ , ξ) +NDLL, (7.1)

where C is the received signal power, ΛDLL(ẽτ , ξ) is the normalized S-curve function, defined

as

ΛDLL(ẽτ , ξ) ,

[
sin(π(ẽτ − ξ))

K sin(π(ẽτ − ξ)/K)

]2

−
[

sin(π(ẽτ + ξ))

K sin(π(ẽτ + ξ)/K)

]2

,

and NDLL represents the noise with zero-mean and variance

var[NDLL] ≤ 2K2σ4

[

1 +
C

Kσ2

(
sin(π(ẽτ − ξ))

sin(π(ẽτ − ξ)/K)

)2

+
C

Kσ2

(
sin(π(ẽτ + ξ))

sin(π(ẽτ + ξ)/K)

)2
]

, (7.2)

where equality holds for ξ = 0.5 and σ2 is the variance of the received signal’s noise [45]. In

the following analysis, ξ is set to be 0.5.

The output of the discriminator functions are first normalized by the slope of the discrimi-

nator functions at zero error. Then, a loop filter is used to achieve zero steady-state error.

It can be assumed that the symbol timing error has linear variations and a second-order

loop filter can be used to achieve zero steady-state error. Therefore, a first-order LPF can

be used with a transfer function given by

F (s) = 2ζ ωL +
ω2
L

s
, (7.3)

where ωL is the undamped natural frequency of the delay loop and ζ is the damping ratio.

The damping ratio was set to 1/
√
2 to have a step response that rises fast enough with little
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overshoot [69]. Therefore, the noise-equivalent bandwidth is BL = 0.53ωL [61]. The loop

filter transfer function in (7.3) is discretized and realized in state-space. The loop update

rate was set to two frame duration, i.e., Tf = 20 ms since SS/PBCH block has periodicity

of 20 ms.

Finally, the TOA estimate êτ is updated according to

êτ ←− êτ +
Tf
Ts

(vDLL − vPLL) ,

where vDLL and vPLL are the outputs of the DLL and PLL filters, respectively.

7.4 Code Phase Error Statistics

In this section, the SS/PBCH block open-loop code phase error in the absence and presence

of multipath is evaluated. Since the derivation of the results are similar to the ones in [49]

and [45], only the final expressions are presented.

7.4.1 Code Phase Error in Multipath-Free Environment

It can be shown that the open-loop code phase error due to noise is a random variable with

zero-mean and variance

σ2
ε̃ ≈

c2π2

128∆f 2K3C/N0

, [m2] (7.4)

where c is the speed of light. Fig. 7.6 compares the standard deviation of the code phase

error for different values of C/N0 and for different numerologies. It can be seen that due

to the large transmission bandwidth of higher numerologies, the standard deviation of code
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phase error is an order of magnitude lower compared to lower numerologies.
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Figure 7.6: Standard deviation of the code phase error for different values of C/N0 and for
different numerologies

7.4.2 Code Phase Error in a Multipath Environment

Multipath environments introduce a bias in the DLL discriminator function given by [45]

b =
c
(
sin
(

π
2K

))3

4π∆f cos
(

π
2K

) (χ1 + χ2) , [m] (7.5)

where

χ1 =

∣
∣
∣
∣
∣

K−1∑

k=0

L−1∑

l=1

αl e
−j2π(k/K)(τl/Ts−ξ)

∣
∣
∣
∣
∣

2

−
∣
∣
∣
∣
∣

K−1∑

k=0

L−1∑

l=1

αl e
−j2π(k/K)(τl/Ts+ξ)

∣
∣
∣
∣
∣

2

,
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χ2 =2 ℜ
{[

K−1∑

k=0

ej2π(k/K)ξ

]

·
[
K−1∑

k′=0

L−1∑

l=1

α∗(l)ej2π(k
′/K)(τl/Ts−ξ)

]}

− 2 ℜ
{[

K−1∑

k=0

e−j2π(k/K)ξ

]

·
[
K−1∑

k′=0

L−1∑

l=1

α∗(l)ej2π(k
′/K)(τl/Ts+ξ)

]}

,

where ℜ{·} denotes the real part; L is the number of multipath components; αl and τl are the

relative attenuation and delay components, respectively, of the channel impulse response’s

l-th path; α0 = 1 and τ0 = 0; and ξ = 0.5. To evaluate the effect of multipath delay on the

SS/PBCH block ranging error, a channel with only one LOS and one multipath component is

considered, where the multipath component has 6 dB lower amplitude than the LOS signal.

Fig. 7.7 shows the results. The solid and dashed lines represent the results for constructive

and destructive multipath, respectively. It can be seen that although multipath can cause

high error on low numerologies, higher numerologies are more robust to multipath.

A proper channel model is essential for evaluating the effect of multipath on the SS/PBCH

ranging performance. The existing channel models must be modified to be adopted for

mmWaves, since they have different radio propagation characteristics than sub-6 GHz sig-

nals. Over the past years, several channel models have been proposed to model radio prop-

agation characteristics of different frequency bands [138]. In this paper, tapped delay line

(TDL) 3GPP channel model is used, which is a proper model for simplified evaluations,

e.g., non-MIMO evaluations, and is valid for a frequency range between 0.5 GHz and 100

GHz [139]. More specifically, TDL-D and TDL-E channel models are considered to model a

LOS propagation environment, where the first tap follows a Rician fading distribution and

the rest of the taps follow Rayleigh distribution. Channel delay’s taps can have different

delay spreads from very short to very long. For each channel model, 105 channel taps are
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Figure 7.7: Code phase error for a multipath channel with α0 = 1 and α1 = 0.2512 and for
different numerologies. The solid and dashed lines represent constructive and destructive
interferences, respectively. The bottom figure is a zoomed version of the top figure.

generated according to the specified distributions in Section 7.7.2 of [139]. Then, multipath

error is calculated according to (7.5). Fig. 7.8 shows the histogram of the code phase error

for different numerologies and for (a) TDL-D and (b) TDL-E channel models with nominal

delay spread. Similar figures can be plotted for the rest of the delay spreads. It can be seen

that the distribution has slightly heavier tail for positive multipath errors, which is due to

the fact that multipath delays are always larger than the LOS delay.

The mean and standard deviation of the error for each channel model are obtained, which

are presented in Fig. 7.9 and 7.10. It can be seen that for each channel model, e.g., a

TDL-D with short delay spread, increasing subcarrier spacing (i.e., increasing numerologies)

reduces the mean and standard deviation of the error. This is due to the fact that for

larger subcarrier spacing, the SS/PBCH signal bandwidth is larger, which provides higher
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Figure 7.8: Histogram of the code phase error for different numerologies and for (a) TDL-D
and (b) TDL-E channel models with nominal delay spread

resolution to differentiate the LOS from multipath. Fig. 7.7, 7.9, and 7.10 also show that

pseudorange error does not decrease monotonically with the multipath delay. This is due to

the limited band of the received signal, which causes a sinc autocorrelation function in the

time domain.

7.5 Position Estimation Error Statistics

The structure of the proposed SDR to extract navigation observables from NR signals was

discussed in Section 7.3. Then, the achievable ranging precision and the model of multipath

error were derived in Section 7.4. In this section, these results are used to derive the statistics

of the position estimation error.
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Figure 7.9: Mean and standard deviation of the code phase error for different values of delay
spread for a TDL-D channel model

7.5.1 TOA Measurement Model

Consider a 2-dimensional (2D) network of U ≥ 3 gNBs, which are distributed indepen-

dently and uniformly around the UE with a binomial point process (BPP) model [140].

The minimum distance between the UE and the gNBs for far-field assumption to hold is

assumed to be dmin. The maximum distance for which ranging signals can be detected

by the UE is assumed to be dmax. The location of the u-th gNB can be presented by

(d(u), φ(u)), where d(u) =
∥
∥
∥rr − r

(u)
s

∥
∥
∥ is the distance between the u-th gNB and the UE and

φ(u) = arctan
(

y
(u)
s −yr

x
(u)
s −xr

)

, where rr = [xr, yr]
T and r

(u)
s =

[

x
(u)
s , y

(u)
s

]T

are the locations of the

UE and the u-th gNB, respectively. For simplicity, it is assumed that the gNBs and UE are

synchronized.
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Figure 7.10: Mean and standard deviation of the code phase error for different values of
delay spread for a TDL-E channel model

The UE makes TOA measurements to all gNBs according to

ρ = d+ b+ ε, (7.6)

where ρ ,
[
ρ(1), · · · , ρ(U)

]T
is the vector of TOA measurements; d ,

[
d(1), · · · , d(U)

]T
is the

vector of ranges; b ,
[
b(1), · · · , b(U)

]T
is the vector of biases caused by multipath according

to (7.5), with mean µb and covariance matrix Σb; and ε ,
[
ε(1), · · · , ε(U)

]T
, where ε(u)

is the measurement noise, which is modeled as zero-mean Gaussian random variable with

standard deviation of σ
(u)
ε . Since the effect of multipath and noise on TOA measurements

are independent, the covariance matrix of ρ can be obtained according to

Σρ , cov {ρ} = Σε +Σb,
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where Σε , cov {ε} = diag
[

σ
(1)
ε

2
, · · · , σ(U)

ε

2
]

and diag represents diagonal matrix.

Denoting the received carrier-to-noise ratio from the gNB located at distance dmin to the UE

by C/N0, and using the path-loss model, it can be shown that the carrier-to-noise ratio of

the u-th gNB follows

(C/N0)
(u) =

(
dmin

d(u)

)a

C/N0, (7.7)

where a is the path-loss exponent, which depends on the propagation environment [141].

Therefore, using the results of (7.4), the u-th gNB’s TOA measurement noise variance can

be modeled according to

σ(u)
ε

2
=

c2π2

128∆f 2K3C/N0

(
d(u)

dmin

)a

[m2]. (7.8)

7.5.2 Position Estimation Error Statistics

The UE can obtain an estimate of Σε using the correlation function. However, the UE does

not have any information about the multipath bias on its estimated TOA, since the channel

impulse response parameters are not estimated in the DLL. Therefore, b is unknown at the

UE and is assumed to be zero.

It is assumed that the UE employs a weighted nonlinear least squares (WNLS) estimator.

Therefore, if b is nonzero, it can be shown that the UE’s position estimation error r̃r has

the following mean and covariance matrix

E {r̃r} =
(
GTΣ−1

ε G
)−1

GTΣ−1
ε b, (7.9)

cov {r̃r} =
(
GTΣ−1

ε G
)−1

+
(
GTΣ−1

ε G
)−1

GTΣ−1
ε ΣbΣ

−1
ε G

(
GTΣ−1

ε G
)−1

, (7.10)
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Table 7.3: Monte Carlo simulation parameters

Parameter Values

C/N0 60 [dB-Hz]

a 3.7

dmin 10

dmax 200

U {5, 10, 15}

where

G ,






cosφ(1), · · · , cosφ(U)

sinφ(1), · · · , sinφ(U)






T

.

Next, the effect of gNBs’ locations and multipath error on the statistics of the position

estimation error is evaluated. Since deriving a closed-form equation for the statistics of the

position estimation error is intractable, the results will be limited to Monte Carlo simulations.

7.5.3 Numerical Results

In this section, Monte Carlo simulations are used to numerically analyze the statistics of

the position estimation error for TDL-D and TDL-E channel propagation environments.

As it was shown in Subsection 7.4.2, nominal delay spread has the highest ranging error.

Therefore, the results of this subsection will be only limited to this worst-case scenario.

For each multipath environment, 104 realizations of the channel impulse response and the

location of the gNBs are generated and a WNLS is used to solve for the position of the UE.

Table 7.3 summarizes the values of the Monte Carlo simulation parameters.

Fig. 7.11 shows the resulting cumulative distribution function (CDF) of the position es-

timation error. Table 7.4 shows the 95% probability position estimation error bounds for
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U = 5 and µ = 0, · · · , 4. It can also be seen that increasing the numerologies has the highest

effect on the position estimation error, while the effect of the number of gNBs on the error

is insignificant.

TDL-D channel model

TDL-E channel model

µ = 0; U = 5
µ = 1; U = 5
µ = 2; U = 5
µ = 3; U = 5
µ = 4; U = 5
µ = 0; U = 10
µ = 0; U = 15

µ = 0; U = 5
µ = 1; U = 5
µ = 2; U = 5
µ = 3; U = 5
µ = 4; U = 5
µ = 0; U = 10
µ = 0; U = 15

Position estimation error [m]
(a)

Position estimation error [m]

Position estimation error [m]
(b)

Figure 7.11: CDF of the position estimation error for TDL-D and TDL-E channel models
with nominal delay spreads

7.6 Experimental Results

In order to evaluate the proposed receiver, an experiment was performed with real 5G signals

in the Anteater parking structure at the University of California, Irvine, USA. In this section,

the experimental hardware and software setup are first presented. Then, the experimental

results are presented.
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Table 7.4: Position estimation error < η [m] with 95% probability

µ ηTDL−D ηTDL−E

0 26.85 29.74

1 9.75 13.98

2 3.24 8.06

3 0.74 0.46

4 0.48 0.36

7.6.1 Experimental Hardware and Software Setup

Since 5G protocol has been finalized very recently, it has not been fully implemented by

all operators. The U.S. operators AT&T, Verizon, and Sprint have partially implemented

their 5G networks in some areas of a few major cities. On December 6th, 2019, T-Mobile

announced a nationwide 5G implementation on its band 71 (i.e., frequency range of 600

MHz). At the time and location of this paper’s experiment, only T-Mobile was transmitting

5G signals and the available gNBs were limited to only this operator. Over the course of the

experiment, the 5G signal to only one gNB was available. Therefore, extracting a position

estimate from one pseudorange measurement was infeasible. Hence, the experimental results

were confined to evaluating the pseudorange measurements.

In order to perform the experiment, a ground vehicle was equipped with 1 cellular Laird

antenna to receive 5G signals at a center frequency of 630.05 MHz, which was obtained by

searching over all possible frequency candidates as discussed in Section 7.3.1. Using Table

5.4.3.3-1 of [132], it can be seen that the SS/PBCH block can only accept Case A on band

71, which has 15 kHz subcarrier spacing. Therefore, the SS/PBCH block at this band has 3.6

MHz bandwidth. The cellular antenna was connected to a national instrument (NI) universal

software radio peripheral (USRP)-2955, driven by a GPS-disciplined oscillator (GPSDO) to

down-mix and sample 5G signals at 5 MSps. A laptop was used to record the samples

using LabVIEW. The recorded samples were processed with Matlab offline. A Septentrio
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AsteRx-i V, which was equipped with dual antenna multi-frequency GNSS receiver with real-

time kinematic (RTK) and a Vectornav VN-100 micro electromechanical systems (MEMS)

inertial measurement unit (IMU), was used to estimate the position of the ground vehicle,

which was used as the “ground truth.” The ground vehicle traversed a loop path four times

over 135 seconds. The code and carrier loop bandwidth were set to 0.1 and 4 Hz, respectively.

Fig. 7.12 shows the experimental hardware setup, the location of the gNB, and the traversed

trajectory.

Battery

NI USRP 2955

2930
Laptop

antennas
GNSS

LTE

IMU

antennas

(a)

(b)

LTE eNodeB

Traversed
trajectory

293 m

NI USRP 2955

NI USRPNI USRP

Figure 7.12: (a) Experimental hardware setup and (b) location of the gNBs and the traversed
trajectory
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7.6.2 Experimental Results

First, the received signal was correlated with all the possible PSS sequences and the one with

the highest peak was selected resulting in N
(2)
ID = 1. Fig. 7.13(a) shows the maximum of the

PSS correlations, which is normalized by the highest value. Next, the signal was converted

to the frame structure and the SS/PBCH block was extracted. Then, the received SSS

signal was correlated with all possible SSS sequences and the one with the highest peak was

selected resulting in N
(1)
ID = 131. Fig. 7.13(b) shows the maximum of the SSS correlations,

which is normalized by the highest value. Fig. 7.13(c) shows the normalized correlation of

the received signal with the selected PSS and SSS sequences in time-domain. Note that as

Table 7.2 shows, case A contains four SS/PBCH block for carrier frequency below 3 GHz.

The small peaks on Fig. 7.13(c) show the position of the rest of the SS/PBCH blocks.

Fig. 7.14(a) shows the estimated pseudorange using the proposed receiver. In order to

compare the results visually, the entire value of pseudorange is shifted to have similar initial

value as the true range. The difference of these two curves is plotted in Fig. 7.14(b) with

the blue line. It can be seen that this difference decreases over time. This is due to the clock

drift. To remove the effect of the clock bias and drift, the measured pseudorange ρ over time

t is modeled as ρ(t) = d+
(

δ̇t+ δ
)

+ε, where d is the actual range, δ and δ̇ are the clock bias

and drift, respectively, and ε is the measurement noise. In this model, it is assumed that

the clock has a constant drift over time and a first-order polynomial was fitted to estimate

this drift. The resulting polynomial was used to remove the effect of the clock bias and

drift from the estimated pseudorange. The red line in Fig. 7.14(b) shows the resulting

first-order polynomial and the yellow line shows the difference of the pseudorange and range

after removing the effect of the clock. The results showed that the estimated range has a

standard deviation of 1.19 m. Since the experimental environment was a relatively open

area, the received signal had less multipath than the TDL-D and TDL-E channel models.

Therefore, the resulting standard deviation was less than the results presented in Fig. 7.9
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(c)

(a) (b)

Figure 7.13: (a) Maximum of correlation of the received signal with all possible PSS se-
quences, (2) maximum of correlation of the received signal with all possible SSS sequences,
and (3) correlation of the received signal with the selected PSS and SSS sequence in time
domain

and 7.10.
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True range

Pseudorange
after removing
clock effect

Error
Fitted

Error after

clock effectpolynomial
removing

Pseudorange

(a) (b)

Figure 7.14: (a) Actual range, estimated pseudorange, and pseudorange after removing
clock bias, (b) the difference between pseudorange and true range, fitted polynomial to this
difference to model clock bias and drift, and remaining error after removing the clock effect
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Chapter 8

Conclusions

In this dissertation, exploiting cellular LTE and NR signals for navigation was evaluated. The

structure of cellular LTE signals was first presented and possible reference signals that can

be exploited for navigation were discussed. Considering the advantages and disadvantages of

these signals, the SSS and CRS were selected as two possible candidates for navigation and

their received signal models were presented. Next, an SDR to extract navigation observables

from these signals was presented, which consists of four main stages: (1) coarse acquisi-

tion, (2) system information extraction and neighboring cell identification, (3) acquisition

refinement, and (4) tracking. Three different tracking methods were developed to extract

navigation observables from the SSS and CRS signals. The first approach uses an FLL-

assisted PLL and a carrier-aided DLL to track the code and carrier phase of the received

SSS signal. The second approach uses an adaptive threshold-based approach to detect and

track the first peak of the estimated CIR using the received CRS signals. The third approach

uses a carrier-aided DLL to track the code and carrier phase of the received CRS signal. The

achievable ranging accuracy of each of these methods were analyzed in multipath-free and

multipath-rich environments. The results showed that the CRS can achieve higher ranging

accuracy compared to the SSS, especially in multipath-rich environments due to the high
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transmission bandwidth of the CRS.

Next, three different navigation frameworks were presented to estimate the location of the

UE. The first framework, which is an standalone navigation framework based on an EKF,

uses the produced code phase measurements by the proposed SDR to estimate the location

and velocity of the UE and the difference between the UE’s clock bias and drift and those of

the eNodeBs’. Experimental results validated that the CRS-based SDR has higher accuracy

compared to the SSS-based one in multipath-rich environments. Moreover, experimental

results demonstrated that the proposed SDR has higher precision and accuracy compared to

the state-of-the-art. To remove the effect of the clock bias from the measurements, the second

navigation framework was proposed, which is an standalone framework based on an EKF

and uses the single difference code and carrier phase and Doppler frequency measurements

to estimate the location and velocity of the UE. In this framework, the eNodeBs’ clock

biases are initialized and assumed constant over the course of the navigation. A method

to detect cycle slip in LTE carrier phase measurements was presented and validated with

experimental results. The proposed framework demonstrated a sub-meter level position

estimation accuracy for a UAV navigating with LTE signals. In order to reduce the effect

of the time-correlated multipath errors and the model mismatch between the true dynamics

of the UE and the statistical model, the third navigation framework was proposed. This

framework is based on an MSCKF and uses the IMU measurements to propagate the state

of the estimator. Code phase measurements were used to estimate the location and velocity

of the UE and the difference between the UE’s clock bias and drift and those of the eNodeBs’.

The presented simulation and experimental results showed that the MSCKF estimator can

significantly reduce the RMSE compared to an EKF estimator in the presence of time-

correlated multipath errors.

All the presented navigation frameworks required initial knowledge of the estimator’s states,

which was obtained by a GNSS navigation solution before the GNSS cutoff. In order to
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remove this assumption and produce navigation solution in cold-start applications, it was

proposed to exploit both TOA and DOA of the received signal. For this purpose, an SDR

to jointly estimate and track TOA and DOA of the received LTE signals was proposed. In

the proposed SDR, a 3-D MP algorithm is first used in the acquisition stage to provide

an initial estimate of the TOA and DOA. Then, three different tracking loops are used in

parallel to jointly track delay, azimuth and elevation of the received signal. The discrimi-

nator functions of the tracking loops were derived and their accuracy in multipath-free and

multipath-rich environments was analyzed. The CRLBs of the TOA and DOA were derived

and compared to the performance of the proposed SDR. It was shown that the proposed SDR

has lower computational complexity and higher precision compared to the state-of-the-art

JADE algorithms. Simulation and experimental results were provided validating theoretical

results.

After evaluating cellular LTE signals for opportunistic navigation and developing an SDR to

extract navigation observables from LTE signals, exploiting NR signals for navigation was

analyzed. The advantages and challenges of NR signals for navigation were discussed. Then,

possible reference signals that can be exploited for opportunistic navigation were presented.

It was shown that since NR signals have ultra-lean transmission, the only signal that is

broadcast in every NR frame and can be used for opportunistic navigation is SS/PBCH

block. Then, an SDR was proposed to extract code and carrier phase and Doppler frequency

measurements from NR SS/PBCH block. The ranging and positioning precision of the

proposed SDR were analyzed. Finally, for the first time, experimental results were provided

showing pseudorange measurement derived from real NR signals.
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Appendix A

Appendix for Chapter 6

A.1 Derivation of Equation (6.7)

In order to prove (6.7), first (6.6) is rewritten as

H ′
m,n,q =

√
Cβ0e

jmωcd
c (sin θ0 cosφ0−sin θ̂0 cos φ̂0)ej

nωcd
c (sin θ0 sinφ0−sin θ̂0 sin φ̂0)

e−j2πqfsNCRS (τ0−τ̂0) + Im,n(q) + V ′
m,n(k), (A.1)

It can be shown that for small values of eθ and eφ the following equalities hold.

sin
(

θ̂0

)

= sin (θ0 + eθ)

≈ sin (θ0) + cos (θ0) eθ (A.2)

sin
(

φ̂0

)

= sin (φ0 + eφ)

≈ sin (φ0) + cos (φ0) eφ (A.3)
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cos
(

φ̂0

)

= cos (φ0 + eφ)

≈ cos (φ0)− sin (φ0) eφ (A.4)

Using (A.2), (A.3), and (A.4), it can be shown that

sin θ̂0cos φ̂0=sin θ0cosφ0−sin θ0sinφ0eφ

+cos θ0cosφ0eθ−cos θ0sinφ0eθeφ (A.5)

sin θ̂0sin φ̂0= sin θ0sinφ0+sin θ0cosφ0eφ

+cos θ0sinφ0eθ+cos θ0cosφ0eθeφ (A.6)

where for small values of eθ and eφ, the last terms in (A.5) and (A.6) can be neglected. After

replacing (A.5) and (A.6) into (A.1), it can be shown that (6.7) holds.

A.2 Derivation of CRLB (6.27)

The diagonal elements of the CRLB(η) in (6.27) represent the CRLB of θ, φ, and τ error

variances. For L = 1, D = [dθ0,dφ0 ,dτ0] and S = z0⊗(y0⊗x0) is a vector, which is replaced

by s to follow the notations. Therefore, the DOA and TOA CRLB error variances can be

simplified to

σ2
θ0,CRLB=

σ2

2

{
ℜ
[
C
(
dH

θ0
dθ0 − dH

θ0
s(sHs)−1sHdθ0

)]}−1
,
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σ2
φ0,CRLB=

σ2

2

{
ℜ
[
C
(
dH

φ0
dφ0 − dH

φ0
s(sHs)−1sHdφ0

)]}−1
,

σ2
τ0,CRLB=

σ2

2

{
ℜ
[
C
(
dH

τ0
dτ0 − dH

τ0
s(sHs)−1sHdτ0

)]}−1
,

For any matricesA1,A2,A3, andA4 of proper size, the general relations (A1 ⊗A2) (A3 ⊗A3) =

(A1A3)⊗(A2A4) and (A1 ⊗A2)
H =

(
AH

1 ⊗AH

2

)
hold. Using these relations, it can be shown

that the following equalities hold, which can be used to obtain (6.28), (6.29), and (6.30).

sHs =MNNs,

dH

θ0
s=−j ωcdNsMNcos θ0

2c
[(N − 1)sinφ0+(M − 1)cosφ0],

dH

φ0
s=−j ωcdNsMNsin θ0

2c
[(N − 1)cosφ0−(M − 1)sinφ0],

dH

τ0
s=jπfsNCRSMNNs(Ns − 1),

dH

θ0dθ0 =
MNNs

2

(
ωcd cos θ0

c

)2[
(N − 1)(2N − 1)

3
sin2 φ0

+
(M − 1)(2M − 1)

3
cos2 φ0

+(N − 1)(M − 1) sinφ0 cos φ0] ,

dH

φ0
dφ0 =

MNNs

2

(
ωcd sin θ0

c

)2 [
(N − 1)(2N − 1)

3
cos2 φ0

+
(M − 1)(2M − 1)

3
sin2 φ0

−(N − 1)(M − 1) sinφ0 cosφ0] ,

dH

τ0dτ0 =
MNNs(Ns − 1)(2Ns − 1)

6
(2πfsNCRS)

2,
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