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Lifshitz Black Holes?
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Abstract: We discuss the possible relevance of complex codimension-two extremal

surfaces to the Ryu-Takayanagi holographic entanglement proposal and its covari-

ant Hubeny-Rangamani-Takayanagi (HRT) generalization. Such surfaces live in a

complexified bulk spacetime defined by analytic continuation. We identify surfaces

of this type for BTZ, Schwarzschild-AdS, and Schwarzschild-Lifshitz planar black

holes. Since the dual CFT interpretation for the imaginary part of their areas is

unclear, we focus on a straw man proposal relating CFT entropy to the real part

of the area alone. For Schwarzschild-AdS and Schwarzschild-Lifshitz, we identify

families where the real part of the area agrees with qualitative physical expectations

for the time-dependence of the appropriate CFT entropy and, in addition, where it

is smaller than the area of corresponding real extremal surfaces. It is thus plausible

that the CFT entropy is controlled by these complex extremal surfaces.

Keywords: AdS-CFT Correspondence
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1 Introduction

The Ryu-Takayanagi proposal [1, 2] for holographic entropy and the covariant gener-

alization [3] by Hubeny, Rangamani, and Takayangi (HRT) relate the area of certain

codimension-2 bulk extremal surfaces Σ to corresponding von Neumann entropies

S(ρD) for the dual CFT. Each entropy involves a reduced density matrix ρD defined

by restricting the CFT to a globally hyperbolic domain D. The main requirement

is that, interpreting D as a region of the conformal boundary of the asymptotically-

AdSd+1 bulk, the intersection Σ∩D must coincide with the boundary ∂C of a Cauchy

surface C in D. In addition, Σ must be homologous to C and there should be no

other such surface Σ′ of smaller area. In such contexts, these proposals state

Sren(ρD) =
Arearen(Σ)

4GN

. (1.1)

On both sides, the subscript “ren” indicates that divergent quantities have been

renormalized in corresponding ways.

While there is now an impressive amount of data supporting these conjectures

(see e.g. [1, 2, 4–9] and further references in [10]), much of the evidence remains
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rather qualitative. This is especially true in the time-dependent context. As a

result, it leaves open the question of what conditions might be required for (1.1) to

hold quantitatively. We focus below on the possibility that analyticity of the bulk

spacetime may be important, and on related questions involving complex extremal

surfaces. Understanding such issues may be important for properly interpreting

recent work using Ryu-Takayanagi and HRT to study the relationship between bulk

and boundary notions of localization [11–13] and to derive bulk dynamics from that

of the CFT [14–17].

Our study is motivated by two observations. The first is that all attempts

[6, 8, 9, 18, 19] to provide general derivations of (1.1) make use of both Euclidean

path integrals and the bulk saddle-point approximation. This structure inherently

relies on some measure of analytic continuation, and suggests that one may find cases

where intrinsically complex saddles dominate the path integral. While the arguments

in these works (and in particular [9]) are phrased in the static context of the original

Ryu-Takayangi proposal [1, 2], the only crucial ingredient appears to be the exis-

tence of a well-defined – not necessarily real – asymptotically-Euclidean section. As

noted in e.g. [20], for any spacetime with this property analytic continuation to the

real Lorenzian section will imply the HRT conjecture so long as the real Lorentzian

extremal surface provides the most relevant saddle point. This suggests that (1.1)

might apply only to analytic spacetimes and, furthermore, that even in this case it

may generally require the use of complex extremal surfaces.

The second observation is an explicit example of the concerns raised by the first.

Recall (see e.g. [21, 22]) that two-point functions of heavy quantum fields may be

approximated by e−mL, where L is the proper length of a geodesic connecting the

points and m is the relevant mass. Since geodesics are extremal surfaces of codimen-

sion d in a (d+ 1)-dimensional spacetime, this geodesic approximation shares formal

similarities with the holographic entanglement proposal. Furthermore, it can be de-

rived from the stationary phase approximation to the Euclidean path integral, and

the fact [23] that CFT von Neumann entropies may be computed from twist operator

correlation functions may provide a tight connection to holographic entanglement for

d = 2 (with corresponding generalizations from geodesics to other minimal surfaces

when d > 2). But for the geodesic approximation one can show that analyticity is

indeed generally required [24] and that complex geodesics play critical roles in certain

contexts [25].

Though this concern has been understood for some time, there is a surprising

lack of discussion in the literature. This may be due in part to the lack of known

examples. Indeed, to our knowledge no complex codimension-2 surfaces have been

previously identified that satisfy appropriate boundary conditions in any spacetime.

We overcome this obstacle below by exhibiting families of complex codimension-2

surfaces in standard (d+ 1)-dimensional planar black holes corresponding as in [26]

to thermofield double states in dual CFTs on Rd. We investigate the Bañados-
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Teitelboim-Zanelli (BTZ) solution, Schwarzschild-AdSd+1 black holes for 3 ≤ d ≤ 7,

and Schwarzschild-Lifshitz black holes [27]. We work in the maximally analytically

extended spacetimes, where the real Lorentzian section has two asymptotic regions.

The dual CFT thus lives on two copies of Rd. The surfaces we consider are anchored

on both boundaries at some spatial location x⊥ and some time tb, much as in [7].

They would thus be appropriate for computing the entropy of the CFT on a pair of

half (d − 1)-planes ending at x⊥ at the time tb, with one half-plane in each copy of

Rd. For this case, the globally hyperbolic domain D mentioned in the introduction

is just the corresponding pair of Rindler-like wedges with each origin of Rindler

coordinates located at tb, x
⊥. In all cases we identify complex extremal surfaces

satisfying boundary conditions relevant to the holographic entanglement conjectures.

For Schwarzschild-AdS and Schwarzshild-Lifshitz we find families where the real part

of the area is smaller than for corresponding real extremal surfaces.

We begin by discussing the status of (1.1) for complex surfaces in section 2. The

area of a complex surface is generally complex, while entropies must be real. We

must therefore modify (1.1) if complex surfaces turn out to be relevant. This issue

remains confusing, but for the present work we choose to study a straw-man model

that replaces Aren in (1.1) by its real part.

Section 3 then explains our general approach to finding the desired complex sur-

faces and studying their properties. This is largely a transcription of the method used

for complex geodesics in [28], which in turn builds on many other works. However,

we take the opportunity to make certain improvements and corrections. The tech-

nique applies to surfaces of any codimension n, and we study complex geodesics in

Schwarzschild-AdSd+1 as an illustration of the general method. The results for d 6= 4

appear to be new, and for d > 4 indicate that real geodesics in the Lorentz-signature

spacetime can fail to dominate even on surfaces invariant under time-reflection sym-

metry (where analytic continuation between Euclidean and Lorentzian signatures is

in some sense trivial). This emphasizes that complex surfaces could be important

even in the original Ryu-Takayanagi context of static bulk spacetimes and not just

in the more general time-dependent HRT context.

Complex codimension-2 surfaces for planar BTZ, Schwarzschild AdSd+1 (with

3 ≤ d ≤ 7), and Schwarzschild-Lifshitz are studied in section 4. The BTZ case

yields a complete analytic solution showing that all complex extremal surfaces are

in some sense higher copies of the real HRT surfaces. It follows that the same is

true for global AdS3, of which BTZ is just a subset, and also for Poincaré AdS3.

Schwarzschild-AdSd+1 is more interesting, and exhibits several qualitatively-different

families of complex extremal surfaces. We identify two families where the qualitative

behavior of Re Aren matches expectations for the dual CFT entropy on our half-

planes. For the family called contour C below, Re Aren is notably less than for the

corresponding real extremal surfaces. It is thus plausible that the dual CFT entropy

is indeed controlled by these complex surfaces. Our brief study of Schwarzschild-

– 3 –



Lifshitz indicates results analogous to those for Schwarzschild-AdS.

We close with a summary and some final discussion in section 5. In particu-

lar, we note that all complex extremal surfaces in our spacetimes lie on what are

naturally called secondary sheets of an associated Riemann surfaces. This feature

may make it difficult for the associated saddles to contribute to the stationary phase

approximation of the relevant path integrals.

2 Entropy from complex areas?

As noted above, if complex surfaces are indeed relevant to the Ryu-Takayanagi or

HRT conjectures, the formula (1.1) will require modification. The issue is that

the imaginary part of Aren is generally non-zero while the von Neumann entropy

is real by definition. Now, since complex numbers enter only by analytic continu-

ation from a real spacetime, complex extremal surfaces must appear in what one

might call complex-conjugate pairs satisfying identical boundary conditions with

complex-conjugate renormalized areas Aren and A∗ren. The two members of each pair

are obtained by analytically continuing along corresponding paths but in opposite

directions. One might thus hope to combine Aren and A∗ren in some way to give a real

entropy S.

The question is just how this should be done. In parallel with the geodesic

approximation to two-point functions, it is natural to interpret Aren/4GN as a saddle-

point approximation to the logarithm of a partition function. One might then expect

a pair of relevant saddles s1, s2 to give

Sren = − ln
(
C(s1)e−Aren(s1)/4GN + C(s2)e−Aren(s2)/4GN

)
, (2.1)

where the factors C(s1), C(s2) represent finite GN corrections that in particular

include fluctuation determinants from quantum fields propagating on the classical

spacetimes s1, s2.

For Aren(s1) = Aren(s2)∗ (and presumably C(s1) = C(s2)∗) the entropy becomes

Sren =
ReAren

4GN

− ln 2|C(s1)| − ln cos

(
−ImAren

4GN

+ φ

)
, (2.2)

where the phase φ is defined by C(s1) = |C(s1)|eiφ. But for small GN , where the

formula (1.1) holds, the cosine oscillates rapidly. This will often give Sren an un-

physical imaginary part. It is not a priori clear whether one should think of this

imaginary part as being of order 1/GN or instead being bounded but rapidly chang-

ing as GN → 0. In the latter case it would be problematic only at the level of

subleading corrections, and we might content ourselves with using

Sren ≈
ReAren

4GN

(2.3)
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at leading order in 1/GN .

Interestingly, the actual form of the Lewkowycz-Maldacena argument [9] for (1.1)

– or indeed any replica argument with a saddle-point approximation – appears to lead

to result somewhat different from (2.1)1. This occurs because it is the Renyi entropies

Sn = − 1
n−1

ln Tr ρn (for integer n) that are directly given by partition functions, and

for which the saddle-point approximation is then used. The von Neumann entropy

is finally computed by analytically continuing to all real n and using

Sren = lim
n→1

Sn = − lim
n→1

1

n− 1
ln Trρn, (2.4)

renormalizing each expression as needed. In the saddle point approximation we have

Tr ρn ≈ e−In/4GN for some In. If the von Neumann entropy is to be finite, In must

vanish at n = 1. So, for fixed GN , as n→ 1 we may write

e−In/4GN = 1− (n− 1)
1

4GN

dIn(s)

dn

∣∣∣∣
n=1

+ · · · , (2.5)

where s now denotes a family of saddles with one for each n. If two such families are

relevant, we have

Sn =− 1

n− 1
ln
(
Cn(s1)e−In(s1)/4GN + Cn(s2)e−In(s2)/4GN

)
(2.6a)

=− 1

n− 1
ln

(
Cn(s1)

[
1− (n− 1)

1

4GN

dIn(s1)

dn

∣∣∣∣
n=1

+ · · ·
]

(2.6b)

+ Cn(s2)

[
1− (n− 1)

1

4GN

dIn(s2)

dn

∣∣∣∣
n=1

+ · · ·
])

. (2.6c)

A finite von Neumann entropy requires the normalization C(s1)+C(s2) = 1. Taking

n→ 1 thus yields

Sren =
1

4GN

(
C1(s1)

dIn(s1)

dn
+ C1(s2)

dIn(s2)

dn

)∣∣∣∣
n=1

, (2.7)

where we have neglected a term involving dCn/dn which is subleading at small GN .

Furthermore, in any such argument, the saddle at n = 1 is taken to be known

and fixed; indeed, it should give the bulk dual of the original mixed state ρ. Thus

s1 and s2 both approach this fixed saddle as n→ 1. As a result, if the saddle-point

approximation continues to hold as n → 1, the fluctuation contributions C1(s1),

C1(s2) must agree at n = 1. The constraint C1(s1) + C1(s2) = 1 then requires both

to be 1/2. Since obtaining (1.1) in the case of a single extremal surface requires

Aren = dIn(s1)/dn|n=1, with two extremal surfaces the argument gives

Sren =
Aren(s1) + Aren(s2)

8GN

(2.8)

1This point was brought to our attention through a conference presentation by Matt Headrick

[29], who in turn learned it from private discussion with Rob Myers [30].
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so long as each surface leads to a corresponding family of saddles for Tr ρn for all

n. Thus the area in (1.1) has been replaced with the average of the two areas. For

Aren(s1) = Aren(s2)∗ this is equivalent to taking the real part; i.e., the final conclusion

is essentially identical to (2.3).

The result (2.8) appears to be physically incorrect. As a concrete example,

consider the black hole quotients of AdS3 described in [31–34] that have a single

asymptotically-AdS region (which asymptotes to global AdS3). Such spacetimes

were called AdS geons in [35], which suggested that they are dual to pure CFT

states. This was later argued in detail by [26, 36]. This is consistent with the fact

that any Cauchy surface for the conformal boundary is homologous in the bulk to

the empty set. So minimizing over real extremal surfaces leads to S = 0 as desired.

But the bifurcation surface of the black hole horizon is another extremal surface, this

time of positive area. Averaging the two as in (2.8) would give S > 0 and contradict

the description as a pure state.

It remains possible that (2.8) might nevertheless be salvaged by including in

the average further extremal surfaces not yet identified. Complex extremal surfaces

could contribute negatively and cancel the positive contribution from the extremal

surface at the horizon. But this seems unlikely and, even if true, would make the

entanglement conjectures extremely difficult to use in practice. One instead expects

that the saddle-point phase approximation simply fails near n = 1, as this is typically

the case when one varies parameters so as to make two saddles coincide.

The above discussion mostly serves to illustrate our ignorance of how (1.1) should

be modified to accommodate complex extremal surfaces. While we have discussed

the problem at the level of the von Neumann entropy, the replica discussion above

makes it clear that the issue is already present at the level of the Renyi entropies.

The point is that Trρn must be positive definite for any quantum system. But writing

Trρn = e−In/4GN + e−I
∗
n/4GN (2.9)

for a complex conjugate pair of saddles one finds that the sign of the right-hand

side oscillates quickly as GN → 0 when the action In is not real. One could choose

to take this as an indication that only saddles with real action can contribute to

Renyi entropies in the semiclassical limit, and thus that only extremal surfaces with

real areas could contribute to von Neumann entropies. But other possibilities may

exist. For example, we recall that in some contexts [37] carefully studying contours of

integration can show that the correct semi-classical approximation is e−|S|. It would

be very interesting if a similar conclusion might somehow apply here.

Since we found two arguments above leading us to replace Aren in (1.1) with its

real part, we adopt this hypothesis for discussion purposes below. To emphasize the

uncertainty in this conclusion, we refer to this suggestion as the straw-man proposal2.

2 It would be very interesting to understand whether our straw man proposal – or indeed any
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We will consider each complex conjugate pair separately and not attempt to further

combine the results from various pairs. We also comment on the relative size of

ReAren for various such complex pairs, though we refrain from stating whether this

means that any such pair necessarily dominates the result. Indeed, given a set of

saddles it is typically difficult to determine whether the contour of integration can

be deformed to pass through them in such a way that they can actually contribute

to the desired saddle-point approximation. We defer further discussion of this issue

to section 5.

3 Method and Analytic Structures

We now outline our general procedure for finding complex extremal surfaces. After

a brief introduction to the spacetimes of interest, the basic techniques are presented

in section 3.1 generalizing methods used to study complex geodesics in [28] (based

on e.g. [7, 38, 39]). Relevant analytic structures are discussed in section 3.2. We

consider extremal surfaces Σ of general codimension n, and we illustrate the method

in section 3.3 by studying complex geodesics in Schwarzschild AdSd+1.

As noted above, for simplicity we study (d+1)-dimensional spacetimes describing

planar black holes with AdS-like asymptotics in each of two asymptotic regions. We

therefore restrict to spacetimes of the form

ds2 = −f(r)dt2 +
dr2

g(r)
+ r2dx2

d−1, (3.1)

where f(r) and g(r) each have a simple zero at some r = rh > 0 corresponding to a

horizon with inverse temperature

β =
4π√

f ′(rh)g′(rh)
. (3.2)

We assume our spacetimes to have timelike conformal boundaries at r =∞, though

we make no further assumption about the large r behavior of f and g. In particular,

we allow both asymptotically AdSd+1 and asymptotically Lifshitz spacetimes [40]

restricted to z ≥ 1 (so that the null energy condition is satisfied [41]). We assume

that f , g, and f/g are analytic functions of r everywhere on the complex plane except

perhaps at r = 0 and∞. In the Lifshitz case, r = 0,∞ will be branch points so that

it is better to say that f , g, and f/g are analytic on appropriate Riemann surfaces.

other proposal involving complex extremal surfaces – satisfies well known properties of entropies

like strong subadditivity. This property has been shown to hold in [4] and [5] for the original Ryu-

Takayanagi and HRT proposals based solely on real extremal surfaces, but it is far from clear that

they continue to hold for complex generalizations.
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Im(t) = 0

Im(t) = iβ

4

Im(t) = iβ

2

Im(t) = −

iβ

4

b b tb−tb +
iβ

2

Figure 1. A conformal diagram of our spacetimes. The asymptotic regions are located in

the left and right regions. The imaginary part of the time coordinate t is constant in each

wedge, and t has period t ∼ t+ iβ. We consider extremal surfaces anchored at the points

indicated on each boundary.

3.1 Extremal Surfaces

To study surfaces Σ of codimension n, it is useful to divide the (d − 1) coordinates

x into two families {
x⊥
}

=
{
x1, . . . , xn−1

}
, (3.3a){

x‖
}

=
{
xn, . . . , xd−1

}
. (3.3b)

We will require x⊥ to be constant on the boundary ∂Σ of Σ, and by translation

invariance we may take (x⊥)|∂Σ = 0. This fixes n − 1 boundary conditions, so it

remains only to specify a time coordinate on ∂Σ.

The horizon at r = rh divides the spacetime into four wedges, and we can

use the Schwarzschild-like coordinates t, r of (3.1) in all four wedges by analytic

continuation. This prescription causes the imaginary part of t to shift by iβ/4 every

time a horizon is crossed, as shown in figure 1, and imposes a periodicity t ∼ t+ iβ.

We thus require Σ to stretch between the two boundaries, with t|∂Σ = tb on the right

and t|∂Σ = −tb+iβ/2 on the left. We take take tb to be a real parameter specifying the

desired boundary conditions and more generally use ∆t to denote the time difference

between the two ends of any extremal surface with (x⊥)|∂Σ = 0. It will sometimes

be useful to break ∆t into its real and imaginary parts by writing ∆t = −2tR + itI
so that surfaces satisfying our boundary conditions have tR = tb and tI = β/2.

Since our boundary conditions are invariant under translations in x‖ we assume Σ

to share this symmetry. Thus the problem reduces to finding (t, r, x⊥) as functions of

a single parameter λ which we specify below. In fact, since momentum conservation

requires x⊥ to be monotonic in λ, the fact that x⊥ vanishes on both boundaries

implies x⊥ = 0 on all of Σ so that we need only solve for the two embedding functions
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(t, r) = (T (λ), R(λ)). The area functional then becomes

A = Vd−n

∫
dλRd−n

√
−f(R)Ṫ 2 +

Ṙ2

g(R)
≡ Vd−n

∫
dλL, (3.4)

where Vd−n is the volume of the x‖ space and dots denote derivatives with respect

to λ.

Since T is cyclic in (3.4), its conjugate momentum (hereafter referred to as

energy) is a constant of motion:

E = −∂L
∂Ṫ

=
R2(d−n)f(R)

L
Ṫ . (3.5)

Note that E may be complex for complex surfaces Σ. Finally, we invoke the reparametriza-

tion freedom of (3.4) to choose λ to satisfy L = Rd−n. This constraint serves as the

remaining equation of motion, which using (3.5) can be written as the Newtonian

particle-in-a-potential problem

Ṙ2 + Veff(R) = 0, where Veff(R) = −g(R)− E2g(R)

R2(d−n)f(R)
. (3.6)

We have thus reduced the system to quadratures. In particular, since we allow

complex R and T , given any contour γ in the complex R plane we can solve (3.6) and

(3.5) for dT/dR and integrate to find a T (R) that solves the equations of motion3.

The only question is whether the associated complex extremal surface satisfies our

boundary condition. I.e., we must require both ends of the contour γ to approach

R =∞ along the real axis and then compare the total elapsed time

∆t ≡ −2tR + itI =

∫
γ

E

Rd−nf(R)
√
−Veff(R)

dR (3.7)

with −2tb + iβ/2.

A similar calculation gives the renormalized area of the surface as

Aren = lim
ε→0

(
Vd−n

∫
γε

Rd−n√
−Veff(R)

dR + Act(ε)

)
, (3.8)

where ε is a UV regulator, Act(ε) is a counterterm that cancels the ε-divergent terms

in A, and γε is a regulated contour that runs to R = rh/ε rather than R→∞. Since

the renormalized area is an on-shell action, (3.7) and (3.8) satisfy the Hamilton-

Jacobi relation

dAren = −Vd−nE d(∆t), (3.9)

3 This point was not correctly discussed in [28], which instead claimed that each complex geodesic

had a preferred turning point. This is not generally true, but does not affect the final results of

[28].
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which can also be checked directly. This structure precisely parallels that of complex

geodesics; see e.g. [38] and the recent review in [28].

Since Veff(R) generally vanishes at several values of R, the function
√
−Veff(R)

defines a non-trivial Riemann surface over the complex R plane. There may also

be additional branch points at R = 0 and at R = ∞ (for the Lifshitz case). The

branch points of
√
−Veff(R) will be denoted Rbranch(E). So long as f and g have no

branch points themselves (i.e., except for the Lifshitz case), the Riemann surface for√
−Veff(R) has precisely two sheets.

Because the sign of
√
−Veff(R) in (3.7) determines the sign of Ṙ, our boundary

conditions require it to take opposite values at the two ends of γ. In particular, in the

non-Lifshitz case allowed contours γ thus run between endpoints R =∞ on opposite

sheets of the Riemann surface for
√
−Veff(R), and without loss of generality we may

take them to run from the negative branch to the positive branch. Examples of such

contours are shown in figure 2. In the limit where the contour is deformed to tightly

circle some branch point, it is natural to think of the branch point as a turning point

of the trajectory. This is the case for contours along the real R-axis – such as the

one shown in figure 2(b)– that describe real extremal surfaces in either Euclidean or

Lorentzian signature.

Of course, smooth deformations of the contour γ that preserve the endpoints will

not change (3.7) or (3.8). Two contours related in this way will be said to describe

equivalent extremal surfaces, with inequivalent surfaces at given E corresponding to

homotopically distinct contours on the Riemann surface for
√
−Veff(R).

3.2 Analytic Structure of ∆t(E) and Aren(E)

One would like to use (3.7) and (3.8) to define Aren as a function of tb. But in

general there will be multiple inequivalent extremal surfaces for a given tb. As a

result, Aren(tb) is in fact properly defined on a multi-sheeted Riemann surface. A

useful way to deal with this complication is to work directly with ∆t(E) and Aren(E)

as described by (3.7) and (3.8). While ∆t(E) and Aren(E) are again defined on

non-trivial Riemann surfaces, their structure is closely related to that of the branch

points Rbranch(E) for
√
−Veff(R). This structure is again like that of the geodesic

case presented in [28], though our discussion below corrects some minor errors in [28]

related to footnote 3.

Indeed, the functions (3.7) and (3.8) are analytic in E so long as the contour γ

can be deformed to avoid branch points Rbranch(E) or poles. But at certain critical

energies two branch points will merge. Contours γ that run between these branch

points will be said to be pinched as E becomes critical, and can no longer be deformed

to avoid them. Mergers of three or more branch points do not occur for the examples

considered below.

When the integration contour is pinched we divide the critical energies into two

classes, which we denote Ec and E ′c. The former (Ec) are energies where the merging
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b

b γ

(a)

b

b

b

b
γ

(b)

Figure 2. The branching structure of the integrands of (3.7) and (3.8) in the complex R-

plane, and sample contours of integration γ. The number of branch points depends on

the precise form of Veff ; here we draw four, as for geodesics in d = 3 AdS-Schwarzschild.

The branch points correspond to zeros of Veff and often an additional branch point at

R = 0. We introduce branch cuts in order to draw figures; the solid and dashed portions

of γ indicate segments that run on different sheets of the associated Riemann surface.

For convenience we choose the branch cuts to run radially inward, connecting all other

branch points Rbranch directly to R = 0. We adopt this convention even when R = 0 is

not a branch point – in effect momentarily introducing an artificial branch point whose

effects must disappear from the final results. Figure (a) shows the generic (complex E)

case in which all the branch points lie at complex R. Figure (b) shows the special case in

which E is real, in which case at least one of the branch points lies on the positive R-axis.

The extremal surface corresponding to the indicated contour γ is then equivalent to a real

extremal surface which may be described as having a turning point at the encircled branch

point. The integrand for ∆t may also have poles at other values of R, but these are not

shown.

branch points are both simple roots of Veff (with no other coincident singularities4),

so that Veff develops a double root at Ec. Thus as E → Ec, each integrand becomes

structurally similar to |R−Rbranch|−1 so that the integrals ∆t(E) and Aren(E) diverge.

Careful examination shows that when the contour γ is pinched at such Ec, the

functions ∆t(E) and Aren(E) both behave like C ln(E−Ec) near Ec for some complex

coefficient C. So both have logarithmic branch points at Ec. In contrast, the E ′c are

energies where roots of Veff moves to R = 0 or (for Lifshitz) to R = ∞. In general,

∆t(E) and Aren(E) do not diverge at such E ′c, though they do have branch points

there.

When the integration contour is not pinched, ∆t(E) and Aren(E) remain analytic

even when roots merge; such situations are neither Ec’s nor E ′c’s and will not be

4Section 4.2 will describe a case where two simple roots of Veff merge with a non-branching

singularity (a pole) at R = 0.
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2

Figure 3. Sample integration contours γ′1, γ
′
2 for (3.7) and (3.8) that define secondary

Riemann sheets of ∆t(E). Both contours are obtained from γ in figure 2 by exchanging

the branch points in quadrants 1 and 3. For γ′1 the originally-encircled branch point passes

below the other during the exchange, while for γ′2 it passes above. At each step, the contour

must be deformed to keep it smooth on the associated Riemann surface; it must avoid both

branch points and poles, though for simplicity we show only the former.

called critical. Since we will see below that different sheets of our Riemann surface

are associated with different contours γ, this means that the identification of a given

energy E as being critical (or not) will vary as one moves from one sheet to another.

Since ∆t(E) diverges at the Ec, we expect the large time behavior of at least

some families of extremal surfaces to be determined by the Ec. As for the geodesic

case [38], for a family of extremal surfaces with ∆t→∞ as E → Ec, the Hamilton-

Jacobi relation (3.9) immediately yields a linear relationship between ∆t(E) and

Aren(E). This can also be seen from the fact that both behave like ln(E − Ec). In

particular, for codimension-2 extremal surfaces (i.e. n = 2), one has

Aren

4GN

= Sren = −Vd−2Ec
4GN

∆t+ · · · ≡ −1

2
svVd−2∆t+ · · · , (3.10)

where s = rd−1
h /4GN is the thermal entropy density, v is a constant, and · · · denote

subleading terms in ∆t. For surfaces of this type that dominate the HRT prescription,

the constant v is a speed characterizing the rate of growth of the entanglement

entropy; see e.g. [7, 42, 43]. It is interesting that the relation (3.10) is linear for

asymptotically Lifshitz spacetimes (and, indeed, for more general asymptotics) as

well as for the asymptotically AdS case. This speed was recently computed in [44]

along with other properties of Schwarzschild-Lifshitz black holes.

Tracing a closed contour in the complex E-plane around one of the branch points

of ∆t(E) results in movement from one sheet of ∆t(E) to another. Traveling around

such a contour corresponds to swapping two of the roots of Veff , so one can think

of constructing a secondary sheet of ∆t(E) by simply changing the contour of in-

tegration in (3.7) to a new contour γ′, where the new contour is obtained from the

– 12 –
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Figure 4. A sample choice of branch cut structure used to define a single sheet

of ∆t and Aren in the complex E-plane; the particular structure shown here is that

of e.g. geodesics in Reissner-Nordström AdS5 or codimension-2 extremal surfaces in

Schwarzschild-AdS7. The branch points shown here correspond to the critical energies Ec
at which the contour of integration γ for (3.7) and (3.8) becomes pinched between two

roots of Veff that coincide, and are therefore energies at which |∆t| and |A| diverge.

original contour γ by exchanging two of the branch points in figure 2 without allow-

ing the contour to cross any branch points or poles. Examples of resulting contours

are shown in figure 3.

In order to draw diagrams, we find it useful to cut the resulting Riemann surfaces

into sheets. It is convenient to do so by introducing branch cuts that run radially

outward from branch points at any Ec, E
′
c to E =∞; see figure 4. It is also convenient

to introduce a notion of principal vs. secondary sheets. We take the principal sheet to

be the one containing those extremal surfaces that lie entirely within either the real

Lorentzian or real Euclidean sections of the complexified spacetime. For all examples

below, it is consistent to take both such families of surfaces to lie on a single sheet.

It is natural to ask whether the principal sheet is preferred in any physical sense over

the secondary Riemann sheets, but we defer discussion of this question to section 5.

The above structure makes the identification of extremal surfaces straightfor-

ward. The boundary conditions require that ∆t = −2tb + iβ/2, so extremal surfaces

satisfying the boundary conditions correspond to the contours tI = β/2 (mod β) in

the complex E-plane. Since ∆t(E) is analytic (except at branch points and poles),

so long as the derivative does not vanish the inverse function E(∆t) is also analytic

and defines a good conformal map. Thus tR must change monotonically along these

contours when the derivative is non-zero; vanishing derivative is generally signalled

by the intersection of multiple contours. The contours tI = β/2 may be found by nu-

merically integrating (3.7), for example by using Mathematica’s built-in NIntegrate

command which is capable of performing contour integrals in the complex plane. Be-

low, we use the structure of such contours to probe the associated complex extremal

surfaces.
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3.3 A Cautionary Tale: Geodesics in Schwarzschild-AdS

To illustrate the above techniques, we pause to discuss complex geodesics (the case

n = d) in Schwarzschild-AdSd+1. We have studied only cases with d ≤ 7, though we

expect the results for d ≥ 8 to resemble those found for d = 5, 6, 7. We find interesting

distinctions between the cases d = 3, d = 4, and d ≥ 5. The case d = 4 was discussed

in [25], though to our knowledge the results for d 6= 4 are new. In particular, one

might have hoped that since the t = 0 surface is common to both the Euclidean

and Lorentzian sections, geodesics in this surface would always provide good saddle

points for path integral with tb = 0. But we will see that Schwarzschild-AdSd+1 for

d ≥ 5 provides a counter-example5.

For definiteness, we first consider d = 4 as in [25] so that we have

f(r) = g(r) =
r2

`2

(
1− r4

h

r4

)
. (3.11)

The function Veff is as in (4.2a), and one finds [25]

∆t(E) =
β

2π

[
ln

(
E2/2− E + 1√

1 + E4/4

)
− i ln

(
−E2/2 + iE + 1√

1 + E4/4

)]
, (3.12)

where E ≡ E`/rh and β = π`2/rh. Note that ∆t has branch points at E4 = −4.

Sketching the contours of tI = β/2 in the center panel of figure 5, one finds a contour

along the real E-axis corresponding to real geodesics, and two complex contours that

start and end on the branch points6. Taking again (4.3) for the area regulator, one

finds that the regulated length diverges as the contours approach the branch points.

The presence of complex contours is generic and independent of dimension. In

figure 5 we sketch the contours on the principal sheet for the three cases d = 3, d = 4,

and d ≥ 5. Note that there are always two sets of contours: a contour along the

real E-axis corresponding to real geodesics, and a set of complex contours that end

at the branch points.

For d ≥ 5 the real geodesics have properties very similar to those found in [25]

for d = 4. In particular, the renormalized action diverges to −∞ at finite tb. If these

were the relevant saddle points for the path integral, this would imply a boundary to

boundary two-point function e−mLren that diverges at finite tb. This cannot happen

in a good field theory, and even the small tb behavior is suspicious. The fact that

the arrow on the real contour runs to the left in the right panel of figure 5 means

that tb increases in that direction and thus by the Hamilton-Jacobi relation (3.9)

5This might be expected from the analysis of [25], which argued that perturbing the d = 4 case

would produce this result. Changing d = 4 to d = 5 is such a perturbation, though so is changing

d = 4 to d = 3 (which yields very different results as shown in figure 5).
6In fact, these contours spiral infinitely many times around the branch points, so they actually

move off of the principal sheet of ∆t(E).
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Figure 5. The structure of the tI = β/2 contours for geodesics in Schwarzschild-AdSd+1;

arrows denote the direction of increasing tb. From left to right, the figures show d = 3, d =

4, and d ≥ 5. Note that there is always a contour along the real E-axis, which for d ≥ 5

is disconnected from the two complex ones. The complex contours spiral into the branch

points.

that tb = 0 would be a local minimum of the resulting two-point function. But

on physical grounds it should be a local maximum; see e.g. [7, 38, 39, 45]. We

conclude that there must be some obstacle to deforming the path integral contour

of integration to make use of the real Lorentz-signature geodesics. Instead, it is

the complex geodesics shown in the right-most panel of figure 5 that give physically

reasonable behavior, and which in particular end at branch points for which Lren

diverges to positive infinity as tb → ±∞. The story is similar to that in [25] for

d = 4 except that the complex tI = β/2 contours do not pass through E = 0, and

the correct complex geodesics now differ in action from the real Lorentzian geodesic

even at tb = 0. Indeed, we find that the complex geodesics with tb = 0 have smaller

action7.

4 HRT Surfaces in Planar Black Holes

We now turn to codimension-2 extremal surfaces (n = 2), which are our primary in-

terest. In particular, we apply the above methods to identify and study such surfaces

in the maximally-extended planar BTZ, Schwarzschild-AdSd+1, and Schwarzschild-

Lifshitz spacetimes, each of which is dual to a thermofield double state on Rd in paral-

lel with the discussion in [26]. In all cases, we consider the class of surfaces described

in section 3 which satisfy boundary conditions appropriate to computing the entropy

of a pair of half (d−1)-planes in opposite components of the thermofield double state.

These are bulk surfaces that stretch from one of the two conformal boundaries to the

7 We stress, however, that the real tb = 0 geodesic appears not to provide even a subdominant

contribution. If the path integral contour could be deformed to use this geodesic in the saddle point

approximation, then by continuity the same should be true of real geodesics with tb 6= 0. But the

action of the real geodesics clearly has smaller real part in the limit where it approaches −∞, so in

that limit the real geodesics would become the dominant saddles.
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other as shown in figure 1. We are mostly interested in the Schwarzschild-AdSd+1

case (section 4.2), but study BTZ as an analytically-solvable warm-up in section 4.1.

We also use Schwarzschild-Lifshitz to probe possible dependence on boundary con-

ditions in section 4.3. Of course, since d = 2 for BTZ, geodesics and codimension-2

surfaces coincide in that context.

4.1 HRT in BTZ

A planar version of the BTZ spacetime [46] may be defined by taking d = n = 2 and

f(r) = g(r) =
r2

`2

(
1− r2

h

r2

)
. (4.1)

The metric (3.1) then describes a region of global AdS3 and contains no singularities.

One might thus argue that a better name for this region is AdS3-Rindler, but we use

the term planar BTZ to emphasize that it is the unique 3-dimensional analogue of

planar Schwarzschild-AdSd+1 for d ≥ 3.

For this case one finds

Veff(R) = −f(R)− E2, (4.2a)

∆t = β

[
− 1

π
arctanh E +

i

2

]
, (4.2b)

where again E ≡ E`/rh and now β = 2π`2/rh. Taking the area regulator to be

Act = −2` ln

(
1

ε

)
, (4.3)

we obtain

Aren = ` ln

(
4

1− E2

)
. (4.4)

The simple form of the expressions (4.2b) and (4.4) allows one to write Aren

as an explicit function of ∆t. But in order to illustrate the general procedure, we

continue to treat Aren and ∆t as separate functions parametrized by E . In order to

find geodesics connecting the two boundaries of the BTZ black hole, we require tI =

β/2 (mod β). This condition will clearly be satisfied for real E ∈ (−1, 1). These

energies correspond to the usual real geodesics, so we will call this the principal

tI = β/2 contour. At the endpoints E → ±1 we find tb → ±∞. Moreover, Aren

is real and diverges to +∞ at the endpoints. Indeed, on the principal tI = β/2

contour Aren has a global minimum at tb = 0. It then increases monotonically as

one moves away from this value. This agrees with the expected behavior of the

entanglement entropy at large times. One can also check that certain results are

quantitatively correct [7]. Since these surfaces are geodesics it is also natural to

compare e−mLren with two-point functions, and one finds corresponding agreement

[38].
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However, we may also consider the full Riemann surfaces defined by ∆t and Aren.

These are obtained by a simple analytic continuation of the arctanh and logarithm,

so that each of the resulting sheets can be labeled by an integer m:

∆tm = β

[
− 1

π
arctanh E +

(2m+ 1)i

2

]
, (4.5a)

Aren,m′ = ` ln

(
4

1− E2

)
+ 2m′πi`. (4.5b)

The union of all such sheets yields the full Riemann surface. There are now many

contours for which tI = β/2 (mod β). These contours are labeled by m and all

project to the interval E ∈ (−1, 1) along the real line in the complex E plane. We

see that tb(E) is independent of m, while Aren(E) (and thus Aren(tb)) differs from its

values on the principal (m′ = 0) contour only by a tb-independent purely-imaginary

constant. So all choices of m′ would lead to the same entropies under the straw-man

proposal of section 2.

As noted above, the spacetime we called planar BTZ is really just a subset of

global AdS3 (described in Rindler-like coordinates). Thus our surfaces immediately

define complex extremal surfaces in AdS3. If (t, r, θ) are the usual global coordinates,

these surfaces intersect the boundary at (t, θ = 0) and (t, θ = π). For given m above,

they are all related by global time translations; the nontrivial time-dependence of

the area in (4.5b) is entirely due to the transformation between the global AdS3 and

BTZ conformal frames. One may also describe these surfaces in the Poincaré patch.

4.2 HRT in Schwarzschild-AdS

We now turn to the more interesting case of Schwarzschild-AdSd+1. We again set n =

2 and take

f(r) = g(r) =
r2

`2

(
1− rdh

rd

)
. (4.6)

We identify the critical Ec and the corresponding coincident branch points Rbranch

by requiring Veff(Rbranch) = 0 = V ′eff(Rbranch), which gives

Ec = ±e2πim/d

√
d

d− 2

(
d− 2

2(d− 1)

)(d−1)/d
rd−1
h

`
(4.7)

for m = 1, . . . , d. By numerically integrating (3.7), we find for all 3 ≤ d ≤ 7 that

the only Ec on the principal sheet of ∆t(E) are the two real ones, which form a pair

of points on the real axis with opposite signs. We also find that the only tI = β/2

contour on this sheet connects these Ec by running along the real axis, as shown in

figure 6(a) for d = 4. This contour corresponds to the real surfaces studied in [7].

As in that work, taking

Act = −2`rd−2
h Vd−2

d− 2

1

εd−2
(4.8)
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shows that Aren increases as one moves along this contour away from tb = 0 and

diverges to positive infinity as the branch points are approached (where tb → ±∞).

Though we have studied only d ≤ 7, we expect similar behavior for larger values of

d.

The secondary sheets turn out to contain much more structure. For simplicity,

we will focus in detail on the case d = 4, though we will briefly comment on the

cases d = 3 and d = 6 as well8. In Appendix A, we express the integrals (3.7)

and (3.8) for d = 4 in terms of standard elliptic integrals, which we will use to obtain

various approximations.

For d = 4, we see from (4.7) that there are only four critical energies Ec. These

Ec lie on the real and imaginary axes, and are related to one another by multiples

of the phase eiπ/2. In addition, there is another critical energy E ′c = 0 at which two

roots of Veff(R) coincide at R = 0. Though R = 0 is not a branch point of the

integrands of (3.7) and (3.8) for d = 4, it remains a singularity; in this case a pole

for E 6= 0. Thus the functions ∆t(E) and Aren(E) will generally have branch points

at E = 0 though they will not diverge there.

Let us now analytically continue off the principal sheet through one of the branch

cuts shown in figure 6(a) onto what we now call sheet #2. As shown in figure 6(b),

we find a sheet with branch points at all four of the Ec as well as at E ′c = 0. The

choice of direction is arbitrary for the branch cut ending at E ′c = 0; we find the choice

shown in the figure convenient.

The new purely imaginary Ec lead to interesting behavior. This is perhaps best

studied by using expression (A.5) to show that near Ec = −i
√

2/33/4 r3
h/`,

∆t = − iβ

23/2 · 31/4 π
ln (E − Ec) + C +O (E − Ec) , (4.9)

where β ≡ π`2/rh, E ≡ `E/r3
h, and C is a (complex) constant. In particular, we

see that taking |E −Ec| arbitrarily small makes tI arbitrarily large and that and tR
increases uniformly as one travels around this Ec. Thus there are an infinite number

of contours satisfying tI = β/2 (mod β) circling near these Ec, crossing to higher and

higher sheets with each cycle; these contours thus form an infinite family of “helical

contours”. Some examples are shown in figure 6.

Returning to sheet #2, we also find the additional contours shown in figure 6(b).

Two contours start at the branch point on the negative real axis and leave through

branch cuts, while the contour in the first quadrant enters and exits through branch

cuts. Tracking this contour through a branch cut onto a third sheet (#3), we find

that it continues and crosses yet another branch cut. On this third sheet, we also

find a variety of new contours. We will focus on the contour labeled B in figure 6,

which starts at the branch point E ′c and ends at the branch point on the positive

8For even d the analysis is simplified by working in terms of a new variable w = (rh/r)
2; thus is

d = 6 more tractable than d = 5, 7.
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Figure 6. Schematic drawings where solid lines with arrows (red in color version) show

contours with tI = β/2 (mod β) for codimension-2 extremal surfaces on various sheets

of ∆t(E) for Schwarzschild-AdS5. Arrows on the contours show directions of increasing tb
and dashed lines indicate loci where tb = 0. Panel (a) shows the principal sheet. Here

the only contour lies along the real E-axis, so on this sheet only the familiar real extremal

surfaces satisfy our boundary conditions. Analytically continuing through the right-hand

branch cut in the direction indicated by the vertical arrow takes us to sheet #2, shown

in (b). Note the infinite family of helical contours that circle the branch points on the

imaginary axis, as well as new contours and branch points. Analytically continuing through

the right-hand branch cut takes us to sheet #3, shown in (c). The contour labeled A

on sheet #2 continues through this cut onto sheet #3. Aside from the real contour on

the principal sheet, only the two contours marked B and C on sheet #3 are physically

acceptable near tb = 0 under the straw-man proposal of section 2. All other segments

of complex contours shown above cross tb = 0 when Re E 6= 0. In addition, on helical

contours Re Aren remains unphysically bounded at large tb.

real axis. This contour resembles a deformed version of the original real contour,

and we expect additonal such deformed contours to appear as one probes more of

the Riemann surface.

For the d = 3 case, the only contour on the principal sheet is again the real

one. In this case there are no contours on sheet #2 with tI = β/2 (mod β), and

in particular no analogue of the helical contours in figure 6(b). However, we expect

that new contours could be found on higher sheets. For d = 6, we once more find

that the only contour on the principal sheet is the real one. On sheet #2 there are

analogues of the helical contours for d = 4 that now spiral into the the complex Ec
of (4.7). We also find an analogue of the contour in the upper left quadrant of figure

6(b), again terminating at an Ec on the negative real axis. We have not examined

higher sheets.

It is clearly of interest to investigate the areas of the extremal surfaces along our

contours. For simplicity we limit this discussion to d = 4. Following the straw-man

hypothesis of section 2, we focus on the real part Re Aren(E). Were this real part to

describe the CFT entropy on our pair of half-planes, the time-reflection symmetry
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tb

Figure 7. The small tb part of a generic smooth real function (solid) with non-vanishing

slope at tb = 0 and its time-reversed image (dashed). Taking the minimum of the two

(red parts in color version) defines a function with a local maximum at tb = 0 where the

derivative is discontinuous.

of the dual CFT thermofield-double state would require a corresponding symmetry

of the relevant Re Aren’s. In particular, if a single smooth contour is to provide the

relevant surfaces near tb = 0, then the derivative with respect to tb must vanish there.

The Hamilton-Jacobi relation (3.9) then requires that Re E vanish as well; i.e., tb
could vanish only on the imaginary E axis. Of the complex contours shown in figure

6, only the two marked B and C have vanishing Re E at tb = 0.

Of course, the symmetry of the spacetime under time-reversal implies that any

contour must have a time-reversed image somewhere on the Riemann surface –

though this will generically lie on some yet-unexplored Riemann sheet. One can

clearly combine the tb > 0 part of one contour with the tb < 0 part of its im-

age to define time-symmetric Re Aren. But with non-vanishing Re E at tb = 0,

the time-derivative is discontinuous at tb = 0; one would then need to rely on sur-

prising sub-leading corrections in 1/GN to match the physically expected vanishing

of dSren/dtb in the CFT. Furthermore, choosing to keep the surfaces with smallest

Re Aren would necessarily force Re Aren to have a local maximum at tb = 0; see figure

7.

In contrast, as discussed in e.g. [7] the thermofield-double nature of the CFT

state strongly suggests that the entropy should be a mininum at tb = 0 followed

by monotonic increase with |tb| to diverge as tb → ±∞. From the Hamilton-Jacobi

relation (3.9) and the arrows in figure 6, we see that this correctly describes the

behavior of Re Aren along contours B and C. But it fails at various points along other

contours. In particular, for helical contours (4.9) and (3.9) imply that Re Aren(E)

oscillates with each cycle and remains bounded as tb → ±∞. The large tb regimes

of these contours are particularly problematic, as there Re Aren(E) is clearly smaller

than for any physically acceptable contour. Under suitable extensions of the straw

man proposal, the comments in footnote 7 about the implications of such behavior

for the geodesic approximation would thus apply here as well and indicate that even

finite tb pieces of these contours cannot be relevant to the dual CFT entropy.

For the above reasons we discuss only contours B and C in detail. These contours
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Figure 8. The plots show Re Aren(tb) for contour B (lower curve in left panel, blue in color

version) and contour C (lower curve in right panel, blue in color version) in comparison

with that on the real contour (upper curve in both panels, red in color version). Contour

C clearly has smallest Re Aren. Near tb/β = 0.1 contour B also appears to have Re Aren

slightly smaller than for the real contour, though a more careful analysis would be required

to show that this is not an artifact of our numerics.

are defined only for tb > 0 and tb < 0 respectively, and since at tb = 0 they reach

the E = 0 branch point there is no simple notion of an extension through tb = 0.

But each must have a time-reversed copy as discussed above, and this copy will also

reach the E = 0 branch point at tb = 0. So it is natural to glue B and C at tb = 0

to their respective time-reversed copies. Since E(tb) = 0, extending B and C in this

way defines contours where Aren is at least C1, which continue to meet the above

physical expectations.

We begin with B. As shown in figure 8 (left), to good accuracy the func-

tion Re Aren(tb) along B agrees with that along the real contour on the principal

sheet. It would be interesting to understand whether the tiny discrepancy near

tb/β ∼ 0.1 is a numerical artifact. While this is beyond the scope of the present

work, it is straightforward to study the small- and late-time regimes perturbatively

at leading order. In particular, the Hamilton-Jacobi relation (or alternatively, (3.10))

guarantees that the late-time growth of Aren(tb) will be identical along the two con-

tours since both approach the same Ec. At small E we can expand the elliptic

integrals (A.5) and (A.9) to find

tb =
β

2π
E +O(E)3, (4.10)

ReAren =
`r2
hV2

2
E2 +O(E)4, (4.11)

so that

ReAren =
2r4

hV2

`3
t2b +O(tb)

4 (4.12)

along both contours. Thus B agrees with the real contour to this order.
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Figure 9. The imaginary parts ImAren(tb) along contours B (left) and C (right). The

noise at larger values of tb is a numerical artifact, likely due the failure of ImAren(E) to be

continuous at Ec. The function ImAren(E) does admit direction-dependent limits at Ec
that make ImAren(tb) continuous there for real tb, but a small error in the location of our

contour near Ec can translate into a large error in ImAren. We have also excised portions

near tb = 0 which exhibit numerical noise.

Contour C is even more interesting. The Hamilton-Jacobi relation again guaran-

tees the late-time growth to be identical to those above, and (A.5) and (A.9) again

yield (4.10), (4.2), and (4.12). But for tb 6= 0 figure 8 clearly shows the associated

Re Aren(tb) to be smaller than for real extremal surfaces. It is thus plausible that the

associated entropy of the dual CFT is controlled by the complex surfaces contour C,

and not by the original real extremal surfaces.

For completeness we also include plots of the imaginary part of Aren along B and

C in figure 9. Expansions analogous to those above show that ImAren = 2 + O(t4b)

near tb = 0 for both contours, and since they end at real Ec the imaginary parts

are again much smaller than ReAren at large |tb|. As a result, for large tb we have

|Aren| ∼ ReAren and using |Aren| ∼ ReAren gives the same result as taking the

absolute value.

4.3 Lifshitz

In order to investigate possible dependence on boundary conditions, we now briefly

consider the Schwarzschild-Lifhshitz black holes of [27]. The spacetimes are charac-

terized by the spacetime dimension d + 1, a choice of dynamical scaling exponent

z, and a horizon radius rh. Since z = 1 is just the Schwarzschild-AdS case already

studied in section 4.2, we assume z 6= 1 below. In order to respect the null energy

condition we consider only z > 1 [41]. We also restrict to rational z.

We will find that these spacetimes follow the same pattern seen above. The only

tI = β/2 contour on the principal sheet describes real extremal surfaces, but complex

contours appear on secondary sheets. We refer to the contour on the principal sheet

as the real contour below. For an infinite class of special cases, an analytic argument

allows us to identify contours on certain secondary sheets that are simply related
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to the real contour: the associated extremal surfaces satisfy the same boundary

conditions (i.e., they have same ∆t) while Aren differs from that on the real contour

by a phase. For appropriate choices, such families satisfy our qualitative physical

expectations (minimum at tb = 0 and monotonic increase to infinity with |tb|) for

use as an HRT surface. However, in such cases ReAren(tb) is always smaller than for

the corresponding real extremal surface.

We now begin the calculations. From [27] one sees that the desired spacetimes

satisfy

f(r) =
(r
`

)2z
(

1−
(rh
r

)d+z−1
)
, g(r) =

(r
`

)2
(

1−
(rh
r

)d+z−1
)
. (4.13)

We therefore find

∆t =
αβ

4π

∫
γ

E

ρz−1 (ρα − 1)

√
−Ṽeff(ρ)

dρ, (4.14a)

A = Vd−2` r
d−2
h

∫
γ

ρd−2√
−Ṽeff(ρ)

dρ, (4.14b)

where α ≡ d+ z − 1, β = 4π`z+1/αrzh, ρ ≡ R/rh, E ≡ `zE/rα−1
h , and

Ṽeff(ρ) = − 1

ρ2(α−2)

(
ρ2(α−1) − ρα−2 + E2

)
. (4.15)

We regulate the area with

Act = − 2Vd−2`r
d−2
h

(d− 2)εd−2
. (4.16)

The critical energies are

Ec = ±(1)1/α
n

√
α

α− 2

(
α− 2

2(α− 1)

)(α−1)/α

, (4.17)

where (1)
1/α
n is the nth root of xα = 1. If α is irrational, there are an infinite number

of such roots and the critical energies are dense in a circle in the complex E-plane.

We therefore restrict our analysis to rational α or, equivalently, rational z.

We have examined the principal sheet numerically for (d, z) = (3, 2), (3, 3), (4, 2),

and (4, 3). In each of these cases we find only the real contour. Turning now to

secondary sheets, we will show that certain z exhibit a special symmetry relating

the principal sheet to a class of secondary sheets. This may be seen by choosing an

integer m and noting that the phase rotations

ρ→ e2πim/αρ, E → e−2πim/αE , (4.18)

act on the effective potential as Ṽeff → e4πim/αṼeff . Thus if ρ∗ is a root of Ṽeff at

energy E , then e2πim/αρ∗ is also a root of Ṽeff at energy e−2πim/αE .
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Figure 10. Sample integration contours γ, γ′ in the complex ρ plane for Schwarzschild-

Lifshitz with d = 3, z = 2. The left panels shows the contour γ which defines a real

extremal surface for real E. There are 4 real and two imaginary branch points, with γ

encircling only the largest real branch point. The right panel is obtained from the left

by (4.18). The new contour contour γ′ defines a complex extremal surface that lies on a

secondary sheet of ∆t and Aren.

Consider then any contour γ in the complex ρ plane that defines a real extremal

surface. The contour γ then runs along the real ρ axis, coming in from ρ =∞ before

turning around the largest real branch point ρturn and returning to ρ = ∞. The

expressions for ∆t and Aren can be written as

∆t =
αβ

2π

∫ ∞
ρturn

E

ρz−1 (ρα − 1)

√
−Ṽeff(ρ)

dρ, (4.19a)

Aren = 2Vd−2` r
d−2
h lim

ε→0

∫ 1/ε

ρturn

ρd−2√
−Ṽeff(ρ)

dρ− 1

(d− 2)εd−2

 , (4.19b)

= 2Vd−2` r
d−2
h

∫ ∞
ρturn

 ρd−2√
−Ṽeff(ρ)

− ρd−3

 dρ− ρd−2
turn

(d− 2)

 , (4.19c)

where we have conveniently reabsorbed the counterterm Act into the integral expres-

sion for Aren in order to extend the integration out to ρ =∞.

Acting with (4.18) takes the (real) turning point ρturn to ρ′turn = e2πim/αρturn.

Consequently, the original contour γ is taken to a new contour γ′ that runs from

infinity to ρ′turn along a line of constant arg(ρ) = 2πim/α. In particular, the con-

tour γ′ does not approach ρ = ∞ along the positive real axis, as we require of our

allowed contours. But because both of the integrands in (4.19) die off sufficiently

fast at infinity, γ′ can be deformed to approach ρ = ∞ along the positive real axis

without changing ∆t and Aren. As a result, the new contour γ′ defines a secondary

sheet of the Riemann surfaces for ∆t and Aren which is related to the principal sheet
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Figure 11. Three sheets of the Riemann surface for ∆t in d = 4, z = 3 Lifshitz. The

left panel shows the principal sheet (generated by the contour γ in figure 10) and the

contour tI = β/2 corresponding to real extremal surfaces. The middle and right panels

show the secondary sheets that are obtained from the principal sheet by acting with the

transformations (4.18); each of these contains an image of the real contour.

by the transformations (4.18). Examples of γ′ for the special case d = 3, z = 2 are

shown in figure 10.

If (4.18) preserve the condition tI = β/2 (mod β), then they will map the real

tI = β/2 (mod β) contour to another on the secondary sheet defined by γ′; examples

of these contours for the special case d = 4, z = 3 are shown in figure 11. Setting

ρ = eπim/αρ′, E = e−πim/αE ′, we find

∆tγ(E) = eπi(d−1)m/ααβ

2π

∫ ∞
ρ′turn

E ′

(ρ′)z−1 ((ρ′)α − 1)

√
−Ṽeff(ρ′)

dρ′ (4.20a)

= eπim(d−1)/α∆tγ′(E ′). (4.20b)

So tI = β/2 (mod β) is preserved when (d− 1)m/α is an integer.

Examining the area, we find

Aren,γ(E) = eπim(d−2)/α2Vd−2` r
d−2
h

∫ ∞
ρ′turn

 (ρ′)d−2√
−Ṽeff(ρ′)

− (ρ′)d−3

 dρ′ − (ρ′turn)d−2

(d− 2)

 ,
(4.21a)

= eπim(d−1)/αe−πim/αAren,γ′(E ′). (4.21b)

Thus if eπim(d−1)/α = ±1 the behavior of Aren on the secondary sheet will be related

to its behavior on the principal branch by a rotation eπim/α in the complex E-plane,

and by a change of phase e−πim/α. So since Aren is real along the real contour, it

acquires an imaginary part along these secondary contours. And since cos θ ≤ 1,

the real part Re Aren is clearly smaller for the surfaces defined by γ′ than for the

original real extremal surfaces. However, if Re eπim(d−1)/αe−πim/α < 0, the real part

of A along these secondary contours becomes large and negative at large times, in

contrast with the physical behavior expected of the entanglement entropy. Thus the
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straw-man hypothesis of section 2 is inconsistent with the use of extremal surfaces

on certain secondary contours though it is consistent with others.

We can be a bit more explicit as to when this occurs. Let us write α = p/q with

(p, q) = 1, where (p, q) denotes the greatest common divisor of two integers p, q. We

must satisfy the constraint m(d − 1)q/p ∈ Z for the above symmetry to preserve

tI = β/2 (mod β). But the map becomes trivial when mq/p is an even integer. If p is

a divisor of m, one can show that non-trivial solutions occur for any odd q and that

Re Aren behaves as desired for even d, while for odd d it has a global maximum at

t = 0 and is unbounded below at large |tb|. When p is not a divisor of m, non-trivial

solutions occur when (p, d − 1) > 1 and one can choose m so that Aren behaves as

desired for (p, d− 1) > 2; for (p, d− 1) = 2 one can choose m so that Aren is purely

imaginary. We thus find many cases where the dual CFT entropy may plausibly be

controlled by complex surfaces instead of real extremal surfaces.

5 Discussion

The above work considered the possible significance of complex extremal surfaces

for the Ryu-Takayanagi and Hubeny-Rangamani-Takayanagi (HRT) holographic en-

tanglement conjectures. As emphasized by the study of complex geodesics in d > 4

Schwarzschild-AdSd+1 (section 3.3), this issue could in principle be as important for

the static setting as for the time-dependent context. We began by discussing how the

formula (1.1) might be modified if complex surfaces are indeed relevant. We reached

no firm conclusions, but noted that a straw-man model replacing the renormalized

area Aren by its real part is not without motivation.

Given the confusion surrounding how holographic entanglement conjectures might

be extended to include codimension-2 surfaces with complex areas, one might have

hoped that no such surfaces would meet the real conformal boundary in the manner

that these conjectures require. But we showed that they do. Such complex surfaces

exist in complexified spacetimes defined by analytic continuation of simple real solu-

tions. For planar BTZ, or equivalently global AdS3, they are somewhat trivial copies

of the real surfaces in which Aren differs from the real case only by a quantized purely

imaginary offset. One might expect similar behavior for global AdSd+1 for d ≥ 3.

But for Schwarzschild-AdS5 we find many distinct families of surfaces with a rich

structure; we suspect that this is the case in other dimensions as well. We also found

interesting families for Schwarzschild-Lifshitz.

Given the existence of complex extremal surfaces, one might next have hoped

that they would exhibit clearly pathological behavior so as to be excluded on physical

grounds. But in all cases studied in depth we identified families of complex extremal

surfaces consistent under the above straw-man proposal with basic physical expecta-

tions for the time-dependence of the entropy. Furthermore, these complex surfaces

have Re Aren smaller than (or sometimes equal to) that of corresponding real ex-
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tremal surfaces. It is thus plausible at this level that the dual CFT entropy is indeed

determined by such complex extremal surfaces and not by the real ones.

Nevertheless, one may contrast the situation here with that concerning the

geodesic approximation for 2-point functions in Schwarzschild-AdSd+1 for d ≥ 3.

As shown in [25] for d = 4 (and more generally in section 3.3 for other 3 ≤ d ≤ 7),

use of the real geodesics in such cases would imply unphysical behavior for the two-

point function. It is then clear that, if a geodesic approximation is to be maintained

at all, the geodesics involved must be complex. On the other hand, at least in cases

studied here the real codimension-2 extremal surfaces lead to no obvious unphysical

behavior. Furthermore, one knows that entropies based on the real surfaces will sat-

isfy strong subadditivity [4, 5] – a property we are unable to test using the complex

surfaces found above since we considered only the entropy of a single boundary re-

gion at each time; see also related comments in footnote 2. On a similar note, recall

that for Schwarzschild-AdS and Schwarzschild-Lifshitz we also find families where

the behavior of Re Aren does not match expectations for entropy in the dual CFT;

this may indicate that the relevant path integral cannot generally be deformed to

take advantage of such complex surfaces. So while the relevance of complex extremal

surfaces is plausible, it is by no means assured.

Our work studied planar black hole spacetimes and looked for surfaces as shown

in figure 1, running from the left boundary to the right and intersecting each bound-

ary on a plane (also of codimension-2 with respect to the boundary) at some given

time tb in analogy with those studied in [7]9. For extremal surfaces of this form the

time difference ∆t between the left and right ends defines an infinite-sheeted Rie-

mann surface when expressed in terms of the conserved energy E. The same is true

of the renormalized area Aren. By definition, extremal surfaces in the real Lorentzian

spacetime live on the principal sheet of this Riemann surface. In all cases studied,

numerical investigation indicated that there are no further extremal surfaces on this

sheet; all complex extremal surfaces mentioned above lie on secondary sheets. In

addition to the spacetimes addressed in the main text, we have also checked that the

hyperbolic AdS black hole10 [47–49] and planar Reissner-Nordström-AdS5 are free of

complex extremal surfaces on their primary sheets. In the latter case, the particular

cases checked were T/γµ ≈ 0.56 and 0.16, where T and µ are the temperature and

chemical potential of the black hole, and γ ≡
√

3/2 g`/κ is a dimensionless ratio of

the Maxwell and gravitational couplings as in [28].

The above discussion brings to the fore the issue of which extremal surfaces

should actually contribute to (1.1) and the associated entanglement conjectures.

9If complex surfaces in the bulk do determine the dual CFT entropy, this would affect the

detailed results of [7]. But the most plausible families of complex surfaces found above behave

sufficiently similar to the real surfaces that this change would not alter their main conclusions.
10In the hyperbolic black hole, the planar line element dx2

d−1 in (3.1) is replaced by a metric of

constant negative curvature, but otherwise the procedure is identical.

– 27 –



Thinking of our surfaces as representing saddle points of a path integral suggests

that the general answer may be difficult to determine. We refer the reader to the

classic discussion of [25] in the perhaps-related context of geodesics in Schwarzschild-

AdS5. But in typical cases one might expect saddles on the the principal sheet of our

Riemann surface to be more accessible than those on secondary sheets. We therefore

again remind the reader that, for codimension-2, the principal sheets studied here

admit only real extremal surfaces. This may suggest that only such real surfaces are

relevant to the entropies we consider.

For the geodesic approximation to the two-point function one can give a stronger

argument [28] to exclude secondary sheets. The point is that, in that context, branch

cuts are a clear artifact of taking what from the dual CFT perspective is the large-

dimension limit of the operators involved. For any finite operator dimension, the

actual two-point function resolves the branch cut into a discrete series of poles asso-

ciated with bulk quasi-normal modes [38, 39]. It follows that the geodesic approx-

imation to two-point functions must break down whenever it involves geodesics on

secondary sheets.

This last argument might perhaps be adapted to the present context using the

fact that the Renyi entropies Sn are given by correlators of twist operators [23].

In particular, one might argue that such correlators must again involve only poles

(say, in the energy plane) and that branch cuts must be absent. But it is unclear

what this would imply for the analytic structure of the von Neumann entropy whose

construction requires the analytic continuation to general n and taking the limit (2.4)

as n→ 1.

It would be interesting to determine whether the principal sheet remains free

of complex extremal surfaces when one studies the entropy of other regions on the

boundaries of these spacetimes (i.e., not just for the pair of half (d − 1)-planes

considered here). One might hope that the appearance of complex contours on the

principal sheet is in fact forbidden by the null energy condition (NEC) so that this

argument could be extended to truly general settings. However, in a forthcoming

work [50] we describe spacetimes satisfying the NEC where complex extreme surfaces

do indeed arise on the principal sheet.

Our discussion of complex codimension-2 surfaces was in part motivated by anal-

ogy with the case of larger codimension n > 2. But comparison of figures 5 and 6

shows that, at least in practice, the n = 2 setting behaves very differently. This is

perhaps most clear on the principal sheet. While this may at first come as a sur-

prise, one sees from e.g. [5] that codimension-2 surfaces are subject to much tighter

constraints than for n > 2. This occurs because n = 2 surfaces define a pair of

orthogonal null congruences (see e.g. [51, 52]) and the extremality condition requires

both to have vanishing expansions. The result is that properties of such extremal

surfaces are dictated much more directly by the null energy condition than for n > 2.

Some of the associated implications for real n = 2 extremal surfaces were discussed
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in [5, 53]. It could be very useful to understand any ramifications for complex n = 2

surfaces as well.

We conclude that there remain many open questions, and that the possible rel-

evance of complex extremal surfaces to CFT entanglement remains mysterious. But

the existence of physically-plausible contours for Schwarzschild-AdS and analogous

results for Schwarzschild-Lifshitz makes it critical to understand this issue in detail.

One would in particular like to find an independent calculation of the corresponding

CFT entropy allowing quantitative comparison with figure 8. At least for this case

such an analysis would definitively answer whether the CFT entropy is determined

by real extremal surfaces, or instead by the complex surfaces found in this work.
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A Integration in Terms of Elliptic Integrals

In this appendix, we give the expressions for ∆t and Aren for codimension-2 extremal

surfaces in Schwarzschild-AdS5 (d = 4). First, note that the integrals for ∆t and Aren

take the form

∆t =
β

π

∫
γ

ρ2E
(ρ4 − 1)

√
ρ6 − ρ2 + E2

dρ, (A.1a)

Aren = `r2
hV2 lim

ε→0

(∫
γε

ρ2√
ρ6 − ρ2 + E2

dρ− 1

ε2

)
, (A.1b)

where ρ ≡ R/rh, E ≡ E`/r3
h, and β = π`2/rh. It will be convenient to convert to a

new variable w = 1/ρ2 in terms of which these become

∆t =
β

2π

∫
γ

wE
(1− w2)

√
1− w2 + E2w3

dw, (A.2a)

Aren = `r2
hV2 lim

ε→0

(
1

2

∫
γε

dw

w2
√

1− w2 + E2w3
− 1

ε2

)
, (A.2b)

with the contours γ and γε modified accordingly.

We now use w1(E), w2(E), w3(E) to label the three roots of the cubic h(w) =

1 − w2 + E2w3 as follows. For real extremal surfaces, we take w1 to be the turning
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point. We then extend this this definition by continuity to the region near the

principal contour in the complex E plane. We similarly specify w2(E) by requiring

that it diverge at E = 0 (as some root must since h(w) becomes a quadratic at E = 0)

and that it be continuous in the same region. The remaining root is w3. Defined in

this way, w1(E), w2(E), w3(E) are single-valued functions which can be used directly

in all expressions below whether evaluated on the principal contour, contour B, or

contour C.

We also define a function

I(z1, z2) =

∫ z2

z1

wE
(1− w2)

√
1− w2 + E2w3

dw. (A.3)

By tracking the behavior of the contour γ as one moves in the complex E-plane,

it is possible to show that ∆t near the principal (real) contour and near contours B

and C can be written11

∆tprincipal =
β

π
I(0, w1), (A.4a)

∆tB =
β

π
(I(0, w2) + I(w1, w2)) , (A.4b)

∆tC =
β

π
(I(0, w1)− 2I(w1, w3)− 2I(w2, w3)) . (A.4c)

The integral I(z1, z2) can be expressed in terms of standard elliptic integrals; one

obtains

I(0, w1) =
1

(1− w2
2)
√
w1 − w2

{
2w2 (F (ψ|m)−K(m))

−(w2 − 1)

[
Π

(
w2 + 1

w2 − w1

;ψ

∣∣∣∣m)− Π

(
w2 + 1

w2 − w1

∣∣∣∣m)]
−(w2 + 1)

[
Π

(
w2 − 1

w2 − w1

;ψ

∣∣∣∣m)− Π

(
w2 − 1

w2 − w1

∣∣∣∣m)]} , (A.5)

where

ψ = arctan

√
w2 − w1

w1

, m =
w2 − w3

w2 − w1

. (A.6)

I(0, w2) and I(0, w3) are obtained from I(0, w1) by the exchanges w1 ↔ w2 and w1 ↔
w2, and I(wi, wj) = I(0, wj)− I(0, wi).

For the area, we proceed similarly. We define

J(z1, z2) =

∫ z2

z1

1

w2
√

1− w2 + E2w3
dw. (A.7)

11One does need to be careful in order to avoid having the contour γ cross the poles at w = ±1;

luckily, these add a constant contribution of ±iβ or ±β, so we find it convenient to allow γ to cross

the poles, and then compensate by subtracting off the corresponding residue.
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The renormalized area on the above sheets is then

Aren,principal = `r2
hV2 lim

ε→0

(
J(ε2, w1)− 1

ε2

)
, (A.8a)

Aren,B = `r2
hV2 lim

ε→0

(
J(ε2, w2)− 1

ε2
+ J(w1, w2)

)
, (A.8b)

Aren,C = `r2
hV2 lim

ε→0

(
J(ε2, w1)− 1

ε2
− 2J(w1, w3)− 2J(w2, w3)

)
. (A.8c)

Again evaluating J in terms of elliptic integrals, we obtain

J(ε2, w1) =
1

ε2
+

1

w2

− E√
w1 − w2

[(w2 − w1) (E(m)− E(ψ|m))

+w1 (K(m)− F (ψ|m))] +O(ε2), (A.9)

where ψ andm are as before. Then J(ε2, w2) and J(ε2, w3) are obtained from J(ε2, w1)

by the exchanges w1 ↔ w2 and w1 ↔ w3, and J(wi, wj) = limε→0(J(ε2, wj) −
J(ε2, wi)).
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