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Abstract
Background: A composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be 
useful for assisting with basic clinical interpretation of CGM data.

Methods: We assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced 
incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM 
tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model 
to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low–glucose and low-
glucose hypoglycemia; very high–glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.

Results: The analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives 
more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater 
weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but 
they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the 
overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component 
on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones 
(quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. 
The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.

Conclusion: The GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components 
provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine 
the glycemic effects of prescribed and investigational treatments.

Keywords
ambulatory glucose profile, composite metric, continuous glucose monitor, diabetes, glycemia risk index, hyperglycemia, 
hypoglycemia, time in range
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Introduction

Continuous glucose monitor (CGM) data is emerging as a use-
ful tool for assessing and quantifying the quality of glycemic 
control.1 Glycemic control encompasses the risk of both acute 
hypoglycemia and chronic hyperglycemia,2 which is in turn 
associated with long-term complications.3 Clinicians and 
patients would benefit from CGM metrics that characterize the 

proportions of time with both very low/low, and high/very 
high glucose concentrations, a concept which can be termed 
“quality of glycemia.”

A widely used report recommended in the American Diabetes 
Association (ADA) Standards of Medical Care in Diabetes–20224 
for summarizing the results of CGM tracings is the Ambulatory 
Glucose Profile (AGP),5 which presents seven key metrics from 
a CGM tracing.6,7 These metrics include the following:

mailto:dklonoff@diabetestechnology.org
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Percentages of time in:

1. very low–glucose hypoglycemia (VLow: <54 mg/
dL; <3.0 mmol/L) (level 2 hypoglycemia)

2. low-glucose hypoglycemia (Low: 54-<70 mg/dL; 
3.0-<3.9 mmol/L) (level 1 hypoglycemia)

3. target range (TIR: 70-180 mg/dL; 3.9-10.0 mmol/L),
4. high-glucose hyperglycemia (High: >180-250 mg/

dL; >10.0-13.9 mmol/L) (level 1 hyperglycemia)
5. very high–glucose hyperglycemia (VHigh: >250 

mg/dL; >13.9 mmol/L) (level 2 hyperglycemia) 

 as well as
6. coefficient of variation (CV) (standard deviation /

mean glucose)
7. mean glucose (MG) — as well as the glucose man-

agement indicator (GMI), which is a measure linearly 
related to MG5

These seven metrics are highly interdependent. For example, 
the five percent-of-time metrics cover 100% of the monitoring 
period so that any one of them can be determined by subtracting 
the other four from 100%. The time in very low-glucose (VLow) 
plus the time in low-glucose (Low) is the time below range 
(TBR). The time in very high-glucose (VHigh) plus the time in 
high-glucose (High) is the time above range (TAR). In an AGP 
report, these seven metrics are each typically presented with a 
target range. To interpret a CGM profile, a clinician must simul-
taneously process these seven metrics, along with an aggregated 
14-day glucose profile (but other measurement durations could 
also be used now or in the future) to determine the quality of 
glycemia. Interdependence means that if a clinician tries to 
improve one metric, for example, TIR, then other metrics might 
improve or worsen. This makes the treatment optimization task 
difficult and unpredictable because it is unlikely for all metrics 
associated with an AGP to improve simultaneously.

Metrics for Glycemic Control

The ADA Standards of Care state that the TIR as measured 
by a CGM can be used for assessment of glycemic control.4 
Many clinicians use this single number as a guide to the qual-
ity of a patient’s glycemia. However, use of TIR in this con-
text has been criticized for not being adequately sensitive to 
hypoglycemia.8,9 As an alternative to TIR, several composite 
scores have been proposed to combine measures of glycemic 
control.9,10 However, some of these scores may not ade-
quately reflect both hypoglycemia and hyperglycemia or 
provide greater weighting for time in VLow than time in 
Low, or for time in VHigh than time in High.11

In this study, we (1) identify the two essential components 
that best present a person’s glycemic state—one responsible 
for the risk of hypoglycemia and the other responsible for 
exposure to hyperglycemia, based on a graphical and numer-
ical interpretation of AGP data, and (2) introduce a compos-
ite metric that describes the quality of a CGM wearer’s 

glycemic control in a single score weighted according to the 
risk for hypoglycemia and hyperglycemia, based on their 
importance as systematically evaluated by a large number of 
experienced clinicians. Such a metric would provide clini-
cians with a single number accounting for the principal 
dimensions of their patients’ glycemic control and would 
facilitate review of multiple CGM reports over time.

Methods

Design

We developed a model to predict the rankings by experi-
enced clinicians of 14-day CGM tracings. The study was 
approved by the University of Texas San Antonio Health 
Science Center Institutional Review Board.

Data Set of Continuous Glucose Monitor Tracings

We assembled a de-identified data set of 14-day CGM trac-
ings from 225 adults with diabetes that had been used in the 
DIAMOND,12 DCLP3,13 REPLACE-BG,14 and DIAMOND 
T2D15 Trials. The CGMs used were Dexcom G4 Platinum 
CGM Systems with an enhanced algorithm (software 
505)12,14,15 and Dexcom G6 sensors13 (Dexcom Inc., San 
Diego, CA, USA) with the same format for displaying trend 
data. The CGM tracings were from subjects in four catego-
ries: type 1 diabetes (T1D) using (1) hybrid closed loop 
(HCL), (2) insulin infusion pump (Pump), (3) multiple daily 
insulin injections (MDI), or (4) type 2 diabetes (T2D) using 
MDI. The types of subjects in each of the four trials included 
the following: DIAMOND12 (T1D MDI users—blinded run-
in for 14 days); DCLP313 (T1D MDI users—either prestudy 
personal CGM data for MDI users using Dexcom CGM or 
unblinded run-in data for 14 days collected while using MDI 
prior to starting Pump, and T1D HCL users—unblinded 
CGM while using Control IQ [Tandem, San Diego, CA, 
USA]); REPLACE-BG14 (T1D Pump users—baseline data 
which was either prestudy personal CGM or run-in phase 
blinded or unblinded CGM), and DIAMOND T2D15 (T2D 
MDI users—blinded baseline data). Each patient category 
was represented by 56 CGM tracings, except for T2D, which 
had 57 CGM tracings. Every CGM tracing contained at least 
92% of the potential data points.

Clinician Rankers

We invited 330 expert diabetologists from six continents 
who reported reviewing at least 20 CGM tracings per month 
in their clinical practice. These clinicians ranked the 225 
CGM tracings from best to worst in terms of the quality of 
their glycemia. The geographic locations and specialties of 
the clinicians are presented in Supplementary Tables S1a and 
S1b.
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Ranking Process

In pretesting, we determined that each clinician could com-
pare five CGM tracings at a time, so we used an incomplete 
block design with a block size of five.16-18 For the incomplete 
block design to be balanced, each possible pair of CGM trac-
ings should appear in the same number of blocks, such that 
any given 14-day CGM tracing is compared against all other 
CGM tracings the same number of times—in this case, two 
times. Details of the balanced, incomplete block design and 
assessment of inter-rater agreement are provided in the 
Supplementary Material. Ultimately, each of the 225 CGM 
tracings appeared in 22 separate blocks, and each received 
22 independent rankings on a scale ranging between 0 and 4. 
The rankings were based on the CGM tracings alone without 
additional instructions. The format for the CGM tracings was 
identical, regardless of CGM make/model. The 225 CGM 
tracings were sorted by average ranking, normalized so that 
each tracing was assigned a percentile score ranging from 0 
to 100, with 0 representing “best” or “no risk” and 100 rep-
resenting “worst” or “maximum risk.” This clinicians’ per-
centile ranking was the quantity that the new composite 
index, the Glycemia Risk Index (GRI), was intended to pre-
dict. We then sought to find the best model to predict the 
clinicians’ percentile rankings for each subject using the 
seven available CGM metrics from an AGP report.

Modeling Approach

To uncover the essential components of glycemic control, we 
applied principal component analysis (PCA) for dimensional-
ity reduction and variable selection. We also compared each 
individual metric to the clinician rankings. To develop the 
model, we used five-fold cross-validation with recursive fea-
ture elimination to determine the optimal number of metrics to 
include and to inform variable selection.19 In addition, we used 
linear regression–based variable selection approaches, includ-
ing forward, backward, stepwise, and Lasso regressions.20 We 
also used two machine learning feature selection methods, 
Boruta21 and recursive partitioning,22,23 to evaluate the relative 
importance of input variables. We considered nonlinear rela-
tionships, while endeavoring to achieve a balance between 
model simplicity and goodness-of-fit.

Statistical Analysis

We summarize each of the seven AGP metrics with mean, 
standard deviation (SD), median, 25th/75th percentile, mini-
mum, and maximum, calculated for the entire set of 225 
CGM tracings and for the CGM tracings stratified by the 
four patient categories. For all bivariate comparisons between 
metrics, we display scatterplots and report correlation coef-
ficients. The PCA results are summarized in a correlation 
matrix. We then consider the clinicians’ percentile rankings, 
reporting bivariate comparisons between each metric 

and clinician rankings using scatterplots and correlation 
coefficients. Finally, we present the newly proposed metric, 
GRI. Goodness-of-fit for alternative models is summarized 
with the correlation coefficient, adjusted R2 (Adj R2), and 
root mean square error (RMS). We evaluated goodness-of-fit 
for all subjects combined and for each of the four patient 
categories. We evaluated statistical significance of models 
involving different numbers of input variables (regression 
coefficients) and degrees of freedom using the extra sum of 
squares principle.24

Results

Data Set of Continuous Glucose Monitor Tracings

The 225 CGM tracings showed wide variation in all seven 
AGP metrics. For example, MG ranged from 94 to 267 mg/
dL (5.2-14.8 mmol/L) and VHigh ranged from 0% to 57% of 
the time (Table 1, Supplementary Figure S1). The category 
of persons with T1D using MDI had the worst quality of gly-
cemia as evidenced by highest average time in VLow (2.5%), 
lowest average TIR (43.9%), highest average time in VHigh 
(23.7%), and highest MG (188 mg/dL; 10.4 mmol/L) 
(Supplementary Table S2).

Principal Component Analysis

The PCA showed that the seven metrics can be divided into 
two distinct, highly correlated groups or clusters: a hypogly-
cemia-related group (including VLow, Low, and CV) and a 
hyperglycemia-related group (including VHigh, High, TIR, 
and MG) (Figure 1). These two clusters, which involve three 
and four metrics (hypoglycemia and hyperglycemia, respec-
tively), explain 88% of the variance in the clinicians’ percen-
tile rankings for all 225 CGM tracings. Thus, two essential 
components account for nearly 90% of the variability in the 
seven AGP metrics.

A criticism of TIR as a single metric is that it is not sensi-
tive to hypoglycemia.8 In our CGM data set, the correlation 
between TIR and VLow was –0.11 (Figure 1) and the corre-
lation between TIR and TBR (VLow + Low) was found to 
be 0.01.

Development of the GRI
The clinicians’ rankings were used to assign each CGM trac-
ing a percentile score ranging from 0 to 100, with 0 repre-
senting “best” or “no risk” and 100 representing “worst” or 
“maximum risk.” This clinicians’ percentile ranking was the 
quantity that we sought to predict with the GRI.

Multifold cross-validation determined that the optimal 
number of features, balancing bias and variance, was four. 
Because the AGP’s five percent-of-time metrics sum to 
100%, they are exactly collinear. A linear regression model 
that includes two or more exactly collinear variables will not 
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produce a solution. Therefore, it was necessary to remove 
one of the five percent-of-time metrics from our model so 
that the four remaining variables would not add up to 100%. 
Ultimately, we removed TIR. This is because TIR is highly 
negatively correlated (r = –0.91) with the VHigh metric, so 
only one of the two should be included in the model. Both 

forward and backward stepwise regression retained VHigh 
in preference to TIR. We also used two machine learning fea-
ture selection methods, Boruta and recursive partitioning; 
both methods indicated that VHigh was more important than 
TIR. Although not specifically included in our model, TIR is 
included implicitly since it can be calculated from the other 
four percent-of-time metrics: TIR = 100% – (VHigh + High 
+ Low + VLow). MG was highly correlated with the other 
hyperglycemia metrics, but was the least important metric in 
several variable selection methods including recursive fea-
ture elimination, forward and backward stepwise regression, 
and LASSO regression. Similarly, the CV was highly corre-
lated with the hypoglycemia metrics. Of the three correlated 
hypoglycemia metrics, we chose to retain VLow and Low in 
preference to the CV because VLow and Low are more 
clearly actionable metrics. The CV is the ratio of the SD of 
the glucose concentrations (a marker of variability with a 
known relationship to hypoglycemia) divided by MG (an 
indirect marker of hyperglycemia). Whereas both SD and 
MG will be lower with optimal treatment, their ratio would 
not necessarily decrease. Furthermore, the variance inflation 
factor (VIF) associated with retaining the CV in the model 
was 13.7. This VIF greater than 10 indicates that CV was 
strongly correlated with the other four metrics (Low, VLow, 
High, and VHigh) and could be eliminated from the model.21 
After eliminating TIR, MG, and CV, we were left with Low, 
VLow, High, and VHigh as the four essential parameters 
(independent variables) in our model. These four metrics are 
well established and clinically actionable.5

Using both the PCA results and clinical reasoning, we 
combined VLow and Low into a unified hypoglycemia com-
ponent, and similarly, VHigh and High into a unified hyper-
glycemia component. For both of these essential components, 
we assigned full weight (coefficient of 1) to the percent of 
time with the more extreme abnormality and a reduced 
weight (coefficient < 1) to the percent of time with the less 
extreme abnormality. This is a common weighting technique 
that has been used with glucose data for more than 20 years.25 
By construction, neither component can exceed 100%. Based 

Table 1. Summary of Ambulatory Glucose Profile Metrics for 225 Continuous Glucose Monitor Tracings.

Overall (N = 225) Min. Percentile Max.

 Avg SD 0th 25th 50th 75th 100th

% of time
 Very Low (<54 mg/dL; <3.0 mmol/L) 1.2 2.0 0 0 0 1 12
 Low (54-<70 mg/d; 3.0-<3.9 mmol/L) 2.5 2.8 0 0 2 4 15
 In Range (70-180 mg/dL; 3.9-10.0 mmol/L) 59.9 21.2 13 42 59 80 97
 High (>180-250 mg/dL; > 10.0-13.9 mmol/L) 23.4 11.5 1 14 23 32 58
 Very High (>250 mg/dL; >13.9 mmol/L) 13.0 12.9 0 2 10 21 57
 Total 100.0  
Other
 Mean Glucose (mg/dL) 167 34 94 140 161 192 267
 Coefficient of Variation 0.35 0.08 0.18 0.29 0.33 0.40 0.62

Figure 1. Correlation between pairs of metrics, where 1.0 
indicates a strong correlation and –1.0 indicates a strong inverse 
correlation. The principal component analysis showed that 
the seven metrics divide into two highly correlated groups: a 
hypoglycemia-related group (including VLow, Low, and CV) and 
a hyperglycemia-related group (including VHigh, High, TIR, and 
MG). Therefore, each group of metrics is represented by one 
principal dimension, or essential component, of the quality of 
glycemia (the hypoglycemia component and the hyperglycemia 
component). Abbreviations: VLow, <54 mg/dL; <3.0 mmol/L; 
Low, 54-<70 mg/dL; 3.0-<3.9 mmol/L; CV, coefficient of 
variation (standard deviation of glucose/mean glucose); VHigh, 
>250 mg/dL; >13.9 mmol/L; High, >180-250 mg/dL; >10.0-
13.9 mmol/L; TIR, time in target range (70-180 mg/dL; 3.9-10.0 
mmol/L); MG, mean glucose (mg/dL).
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on the ratio of the coefficients in the linear regression model 
with the clinicians’ percentile ranking as the dependent vari-
able and VLow, Low, High, and VHigh as the independent 
variables, we determined a weight for Low of 0.8 of VLow 
(Table 2, Equation #1), and a weight for High of 0.5 of VHigh 
(Table 2, Equation #2). Since these coefficient values were 
based on the ratio of the best-fit regression coefficients, they 
reflect the combined judgment of the clinicians about the 
relative importance of less extreme versus more extreme 
abnormalities. The GRI is then calculated as a linear combi-
nation of the two essential components, which represent 
hypoglycemia and hyperglycemia. Using a linear regression 
model with the clinicians’ percentile ranking as the depen-
dent variable and the hypoglycemia and hyperglycemia com-
ponents as the independent variables, we found the best-fit 
coefficients for the hypoglycemia and hyperglycemia com-
ponents to be 3.0 and 1.6, respectively. The model formula 
based on predicted clinician rankings is presented in Table 2.

This model was designed to give a best-fit, unbiased esti-
mate of the clinicians’ percentile rankings, meaning that it 
fits the rankings well and is equally likely to underestimate 
or overestimate the ranking (Figure 2). Although the GRI’s 
hypoglycemia and hyperglycemia components cannot 
exceed 100%, a calculated GRI exceeding 100 is arithmeti-
cally possible if a CGM tracing would receive a high 

clinician ranking close to 100 with overestimation by the 
model. If Equation #4 exceeds 100, then the GRI is capped at 
100.

The GRI predicts the clinicians’ percentile rankings. It is 
calculated as GRI = (3.0 × VLow) + (2.4 × Low) + (1.6 × 
VHigh) + (0.8 × High), with a maximum permissible value 
of 100.

Correlation of the GRI With Other Metrics

Since the GRI was designed to estimate the clinicians’ per-
centile rankings (with 0 being the best and 100 being the 
worst), it is not surprising that the GRI fits those rankings 
better than any of the seven individual metrics reported with 
the AGP. The correlation between the seven AGP metrics and 
clinician rankings are illustrated in Figure 3 and 
Supplementary Figure S2. For example, as TIR decreases, 
the clinicians’ percentile ranking increases, and compared 
with the GRI, TIR does not correlate as well with the clini-
cians’ percentile rankings (TIR: R2 = 0.824, RMS = 12.16; 
GRI: R2 = 0.904, RMS = 8.95; P < .00001 by extra sum of 
squares). When TIR was approximately 50%, the clinicians’ 
percentile ranking could be as high as 97 or as low as 44. 
Similarly, when TIR was approximately 70%, the clinicians’ 
percentile ranking could be as high as 62 or as low as 25 

Table 2. Formula for Calculating the Glycemia Risk Index.

VLow = very low–glucose hypoglycemia (% of time)  
Low = low-glucose hypoglycemia (% of time)  
VHigh = very high–glucose hyperglycemia (% of time)  
High = high-glucose hyperglycemia (% of time)  

Hypoglycemia Component = VLow + (0.8 × Low) (Equation #1)
Hyperglycemia Component = VHigh + (0.5 × High) (Equation #2)
GRI = (3.0 × HypoComponent) + (1.6 × HyperComponent) (Equation #3)
Equivalently,
GRI = (3.0 × VLow) + (2.4 × Low) + (1.6 × VHigh) + (0.8 × High) (Equation #4)

Example:
 VLow = 5%, Low = 10%, VHigh = 15%, High = 20%
 HypoComponent = 5% + (0.8 × 10%) = 13% (Equation #1)
 HyperComponent = 15% + (0.5 × 20%) = 25% (Equation #2)
 GRI = (3.0 × 13%) + (1.6 × 25%) = 79 (Equation #3)
Equivalently,
 GRI = (3.0 × 5%) + (2.4 × 10%) + (1.6 × 15%) + (0.8 × 20%) =
 GRI =       15       +       24        +       24         +       16         = 79

 

In this example
 TIR = 100% – (VLow + Low + VHigh + High)  
   = 100% – (5% + 10% + 15% + 20%)  
   = 100 – 50%  
   = 50%  

Abbreviations: GRI, Glycemia Risk Index; VLow, very low–glucose hypoglycemia (<54 mg/dL; <3.0 mmol/L) (level 2 hypoglycemia); Low, low-glucose 
hypoglycemia (54-<70 mg/dL; 3.0-<3.9 mmol/L) (level 1 hypoglycemia); TIR, time in target range (70-180 mg/dL; 3.9-10.0 mmol/L); High, high-glucose 
hyperglycemia (>180-250 mg/dL; >10.0-13.9 mmol/L) (level 1 hyperglycemia); VHigh, very high–glucose hyperglycemia (>250 mg/dL; >13.9 mmol/L) 
(level 2 hyperglycemia).
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(Figure 3). This discrepancy in the clinicians’ percentile 
rankings for a given TIR reflects (1) differences in how much 
of the time out of range was hypoglycemia versus hypergly-
cemia and (2) the relative contributions of Low, VLow, High, 
and VHigh. These factors are incorporated into the GRI, but 
are not reflected in TIR.

Since the GRI is based on weighted combinations of TBR 
(the hypoglycemia component) and TAR (the hyperglycemia 
component), like the clinicians’ percentile rankings, the GRI 
is high when TIR is low. The correlation coefficient between 
the GRI and TIR is –0.91 (Figure 1).

TBR (VLow + Low) combined with TIR is an estab-
lished combination of metrics that can be an effective basis 
for interventions to improve the quality of glycemia.26 We 
considered a model based on an optimized combination of 
TBR and TIR. However, this model of a composite metric 
did not fit the clinicians’ rankings quite as well as the GRI in 
terms of adjusted R2 and RMS. (TBR/TIR: Adj R2 = 0.889; 
RMS = 9.64; GRI: Adj R2 = 0.904, RMS = 8.95, P < .0001 
by extra sum of squares.)24 The GRI has the added advantage 
that both components are higher when glycemic control is 
worse. The ideal value is zero for GRI and both the hypogly-
cemia and hyperglycemia components. This makes for an 
intuitive graphical display on a two-dimensional grid as in 
Figures 4 to 6.

We separately assessed goodness-of-fit between the GRI 
and the clinicians’ percentile rankings for CGM tracings 

from each of the four patient categories. The fit for the indi-
vidual patient categories was similar to the fit for the overall 
group.

We evaluated several models for matching the clinicians’ 
percentile rankings. Overall, the GRI was the best model 
identified.

Graphical Display of Hyperglycemia Versus 
Hypoglycemia

Since glycemic control is a two-dimensional quantity, the 
GRI’s hypoglycemia and hyperglycemia components can be 
displayed on a two-dimensional plot called the GRI Grid 
(Figure 4). We chose to display the hypoglycemia compo-
nent (0%-100%) on the horizontal axis and the hyperglyce-
mia component (0%-100%) on the vertical axis. A set of 
diagonal lines divides the graph into five glycemia risk zones 
(which we label A-E) corresponding to the best (first-20th 
percentile) to worst (81st-100th percentile) quintiles for 
overall quality of glycemia. We highlighted two points cor-
responding to CGM tracings from two persons with T1D, 
whom we will call P1 and P2, both treated with MDI. Both 
have similar GRIs (and clinicians’ percentile ranking), but 
one person (P1) had no hypoglycemia on the CGM tracing 
and the other (P2) had 8% VLow and 7% Low. The TIR for 
these two CGM tracings was different for P1 versus P2 (31% 
vs 55%), but because the person with the higher TIR had 

Figure 2. Relationship between clinicians’ percentile rankings 
and the Glycemia Risk Index. Each individual clinician’s data point 
is represented as a blue dot. The 95% confidence interval is in 
solid yellow lines and the 95% prediction interval is in the dashed 
line. Abbreviations: GRI, Glycemia Risk Index; CGM, continuous 
glucose monitor; RMS, root mean square error.

Figure 3. Clinicians’ percentile rankings (lower is better) 
versus time in range (higher is better). When time in range was 
approximately 50%, the clinicians’ percentile ranking could be as 
high as 97 (A) or as low as 44 (B). Similarly, when time in range was 
approximately 70%, the clinicians’ percentile ranking could be as high 
as 62 (C) or as low as 25 (D). Abbreviations: RMS, root mean square 
error; CGM, continuous glucose monitor; TIR, time in target range.
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substantial hypoglycemia, the GRIs are almost the same (76 
and 75, respectively).

The grid also enables the user to track sequential changes 
within an individual. Figure 5 shows a hypothetical patient's 
progression over five time periods (time 1-time 5). Between 
time 1 and time 2, TIR worsened by decreasing from 46% to 
40%. However, the GRI between the same two periods 
improved from 90 to 75. At time 1, the hypoglycemia and 
hyperglycemia components are 16% and 26%. For time 2, 
they are 6% and 35%. In this example, the treatment was 
adapted to reduce the risk of hypoglycemia, resulting in 
much less hypoglycemia, slightly less time in target range, 
and more hyperglycemia: VLow decreased from 8% to 3% 
and Low decreased from 10% to 4%. The amount of time in 

VLow and Low ranges combined and the amount of time in 
the VHigh and High ranges were more favorable at time 2 
than at time 1, resulting in an improved GRI, even though the 
TIR worsened. Because GRI accounts for more extreme out-
of-range times and assigns greater weight to hypoglycemia 
than to hyperglycemia, an improvement (reduction) in VLow 
can have more influence than a worsening in TIR. The diver-
gence (improving GRI and worsening TIR) between time 1 
and time 2 in this example was followed by progressive 
improvement in both the GRI and the TIR for time 3, time 4, 
and time 5.

Data from a multiday or multiweek CGM tracing can be 
broken down into separate daily or weekly GRIs. These GRIs 
can then be plotted on a grid to determine whether patterns of 

Figure 4. A Glycemia Risk Index grid showing the hyperglycemia component versus the hypoglycemia component for all 225 CGM 
tracings. The results for each of the four categories of patients are shown with different symbols. We highlighted individual data 
points for the CGM tracings from two persons (designated P1 and P2) with type 1 diabetes receiving multiple daily insulin injections. 
Abbreviations: GRI, Glycemia Risk Index; T1D, type 1 diabetes; MDI, multiple daily insulin injections; VLow, very low–glucose 
hypoglycemia (<54 mg/dL; <3.0 mmol/L) (level 2 hypoglycemia); Low, low-glucose hypoglycemia (54-<70 mg/dL; 3.0-<3.9 mmol/L) 
(level 1 hypoglycemia); High, high-glucose hyperglycemia (>180-250 mg/dL; >10.0-13.9 mmol/L) (level 1 hyperglycemia); VHigh, very 
high–glucose hyperglycemia (>250 mg/dL; >13.9 mmol/L) (level 2 hyperglycemia); TIR, time in target range (70-180 mg/dL; 3.9-10.0 
mmol/L); Hypo, Hypoglycemia Component; Hyper, Hyperglycemia Component; Pump, insulin infusion pump; HCL, hybrid closed loop; 
T2D, type 2 diabetes.
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glycemia during specific days or weeks of a measurement 
period differ from patterns during other time periods.

The mean GRI was lowest in the T1D HCL category 
(mean GRI = 26), highest in the T1D MDI category (mean 
GRI = 78) and similar in the T1D Pump (mean GRI = 43) 
and T2D MDI (mean GRI =52) categories (Figure 6). The 
T1D Pump and T2D MDI groups had similar GRIs, but 
the T1D Pump group had more hypoglycemia and less 
hyperglycemia than the T2D MDI group. For the T1D 
Pump group, mean hypoglycemia and hyperglycemia 
components were 3% and 21%. In the T2D MDI group, 
they were 2% and 28%.

The GRI Grid displays both hypoglycemia risk and hyper-
glycemia exposure. This plot allows for an individual 
patient’s risks to be monitored sequentially over time and for 
a population of patients to be monitored for identifying those 
who require additional treatment.

Discussion

The GRI is a composite CGM metric of glycemic risk. This 
index (1) reflects both the essential hypoglycemia and hyper-
glycemia components, (2) weights extreme hypoglycemia or 
hyperglycemia more than less extreme hypoglycemia or 
hyperglycemia, and (3) correlates with clinician rankings 
more closely than other models we considered, such as TIR 
or TIR combined with TBR.

A useful feature of the GRI’s hypoglycemia and hypergly-
cemia components is that they can be plotted together on a 
grid with the origin for both located in the lower left corner 
and extreme values in the upper right corner. The GRI can be 
reported and plotted longitudinally for one patient or cross-
sectionally for a group of patients. Using only a single index 
may be more attractive to some clinicians, but understanding 
the two actionable dimensions of hypoglycemia and hyper-
glycemia, when paired with a glucose profile, should permit 

Figure 5. The Glycemia Risk Index over time for five different time periods. Legend: Between times 1 and 2, the TIR worsened by 
decreasing from 46% to 40%. However, the GRI improved from 90 to 75. For time 1, the hypoglycemia/hyperglycemia components are 
16%/26%. For time 2, they are 6%/35%. Adjustment to reduce hypoglycemia could increase hyperglycemia. Abbreviations: GRI, Glycemia 
Risk Index; TIR, time in range; Hypo, hypoglycemia component; Hyper, hyperglycemia component.
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and facilitate more appropriate adjustments in therapy. 
Perhaps a GRI above a chosen level should prompt detailed 
review of the AGP report or referral to a diabetes specialist.

Comparison With Time in Range

TIR is an easy-to-understand, well-established metric for the 
quality of glycemia.27 Both TIR and the GRI can be calcu-
lated for any desired time period. An obvious difference 
between the GRI and TIR is that the GRI is higher when 
glycemia is worse and the TIR is higher when glycemia is 
better. Both are on a 0 to 100 scale. If the pattern of glycemia 
is poor, then the grid portrayal of the GRI indicates whether 
the problem is too much hypoglycemia, too much hypergly-
cemia, or too much of both. A glucose profile can then be 
used to determine an action. TIR as a single measurement 
does not indicate whether the out of range readings are gen-
erally too low or too high, and if they are too low or too high, 
then TIR does not weight (as experienced clinicians do) 
hypoglycemia as more significant than hyperglycemia. Also, 

TIR does not weight extreme deviations from the target 
range more heavily than less extreme deviations.

TIR and TBR can be used together effectively to express 
the quality of glycemia.9,26 However, compared with the 
GRI’s components, use of a combination of TIR and TBR 
did not provide as good a fit to clinician rankings. The clini-
cians distinguished between time spent in the very high ver-
sus the high glucose range and, to a lesser extent, between 
time spent in the very low versus the low glucose range. 
Also, from an intuitive or visual standpoint, we believe that 
many clinicians would prefer to use a single-index, linear 
combination of hypoglycemia and hyperglycemia compo-
nents, both of which are worse when high, than a combina-
tion of TBR and TIR, one of which (TBR) is worse when 
high and one of which (TIR) is worse when low. Moreover, 
from a control engineering perspective, TIR and TBR do not 
combine in a well-defined cost function for the purposes of 
automated optimization to a target set point.

A clinician or researcher might wish to use GRI in addi-
tion to TIR as a summary statistic to understand a set of 

Figure 6. The median and IQR for the Hyperglycemia Component and Hypoglycemia Component for the four patient categories and 
overall. Abbreviations: IQR, interquartile range; GRI, Glycemia Risk Index; T1D, type 1 diabetes; MDI, multiple daily insulin injections; 
HCL, hybrid closed loop; Pump, insulin infusion pump; T2D, type 2 diabetes.
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CGM data from a different perspective than that of TIR. A 
correlation between TIR and long-term complications has 
been demonstrated.28 GRI is a new metric and has not yet 
been studied for its association with outcomes. In view of the 
high correlation between TIR and GRI for the present data 
set, it is highly likely that similar high correlations will be 
found between GRI and long-term complications.

Comparison With Other Metrics of Glycemic 
Control

Plotting the GRI’s hyperglycemia component (0%-100%) on 
the vertical axis and hypoglycemia component (0%-100%) 
on the horizontal axis with a set of diagonal lines creates a 
graph similar to one created by Rodbard.29 The diagonal lines 
on the display of a GRI grid as in Figure 4 predict the clini-
cians’ percentile rankings, whereas the diagonal lines in 
Rodbard correspond to specified times in range. Rodbard dis-
played percent of time <80 mg/dL on the horizontal axis, 
while the GRI’s hypoglycemic component gives a weight of 
0.8 to less extreme hypoglycemia (54-<70 mg/dL) relative to 
extreme hypoglycemia (<54 mg/dL). Similarly, Rodbard dis-
played percent of time >180 mg/dL on the vertical axis, 
while the GRI’s hyperglycemia component uses a lower 
weight for less extreme hyperglycemia (>180-250 mg/dL) as 
0.5 of the weight for extreme hyperglycemia (>250 mg/dL).

The GRI uses a simple five-step weighting function for 
glucose values using the AGP glucose boundaries of 54, 70, 
180, and 250 mg/dL. It weights VLow:Low:VHigh:High in 
the ratio 3.75:3:2:1. This increased weighting of extreme 

glucose values is characteristic of risk indexes used by engi-
neers in algorithm development, which typically assign 
higher penalties for greater deviations from a safe state. In 
1997, Kovatchev et al. introduced the Low Blood Glucose 
Index/High Blood Glucose Index (LBGI/HBGI) based on a 
smooth risk function to which the GRI step function roughly 
corresponds (Figure 7).30,31 A similar kind of risk function 
was developed by several other investigators.8,32

Limitations

As part of this research effort, we invited 80 experts in CGM 
clinical research and clinical practice from six continents to 
complete a survey linking quantitative measures with clini-
cal assessments. We asked the experts to create ten zones of 
clinical performance from worst to best for each of the seven 
CGM metrics. The zones did not necessarily have to be equal 
in width. The experts’ ten zones for each metric were then 
averaged to assign levels of appeal for each of the analytic 
measures and make it possible to compare one measure with 
another in terms of quality of glycemia. The subsequent anal-
ysis was performed using both the "raw" CGM metrics and 
the experts’ scaled scores. Since similar regression results 
were obtained whether we used the “raw” CGM parameters 
in standard units or the expert-scaled metrics, we decided to 
use the original measurements. An analysis of the scaling by 
experts will be published elsewhere.

The data set of CGM tracings used to develop the GRI 
came from clinical trials that included four different types 
of insulin-treated adult patients using CGM and may not be 
representative of tracings in other clinical populations. For 
example, the GRI would not be applicable to the quality of 
glycemia in pregnant women or children until it has been 
validated in these populations. The GRI is not a substitute 
for looking at individual metrics but rather is a summary or 
screening score. It can be used either to supplement indi-
vidual metrics or determine who warrants either review of 
individual metrics or referral to an expert in optimizing gly-
cemic control. As with each of the summary measures in 
the AGP, the GRI does not distinguish by time of day. In 
most cases, specific treatment decisions will require differ-
entiating between daytime and nighttime or between pre-
prandial and postprandial patterns of glycemia, which can 
be seen in a composite glucose profile or series of daily 
glucose profiles that make up the composite profile. The 
GRI is based on the average ratings of experienced clini-
cians who were specifically recruited for this study by 
experts in research and clinical use of CGMs from six con-
tinents. A different sample of experienced clinicians 
(whether by geography or specialty) might have produced a 
different set of rankings. Finally and most importantly, the 
GRI is based on clinician rankings, not clinical outcomes. 
Subsequent studies will be needed to determine how well 
the GRI predicts outcomes.

Figure 7. The Glycemia Risk Index weights glucose 
abnormalities according to a five-step function. The five-step 
weighting process for the GRI is in contrast to the smooth LBGI/
HBGI risk function introduced by Kovatchev30 and Kovatchev 
et al.,31 Abbreviations: GRI, Glycemia Risk Index; LBGI, low blood 
glucose index; HBGI, high blood glucose index.
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Applications

The GRI is a statistic expressing the quality of glycemia that 
is expected to have value in four contexts. These are (1) man-
aging the health care of CGM users in conjunction with an 
AGP report, (2) identifying individuals within a population 
who are most in need of further glycemic optimization, (3) 
developing algorithms for automated insulin dosing systems 
to quantify glycemic patterns, so clinicians, statisticians, and 
other researchers can choose which trade-offs to make, and 
(4) predicting outcomes in long term studies of interventions 
intended to decrease risks of complications, both according 
to the GRI score and the hypoglycemia and hyperglycemia 
components as potentially independent variables.

Conclusion

In conclusion, we have identified a pair of essential compo-
nents of glycemic control, one related to hypoglycemia and 
one related to hyperglycemia. We also introduce a composite 
metric, the GRI, that describes the quality of glycemia in a 
CGM tracing. The GRI is a single number weighted accord-
ing to the risk for hypoglycemia and hyperglycemia and 
based on the opinions of experienced clinicians. GRI has the 
potential to become established as a useful statistic for 
assessing and treating patients, following the quality of gly-
cemia in populations, determining trade-offs for developing 
algorithms for automated insulin delivery algorithms, and 
predicting long-term complications in diabetes.
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