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I. O?TfCALLY'DETECTED‘NUCLEAR QUADRUPOLE RESONANCE AND. TRANSFERRED
HYPERFINE COUPLiNG IN MOLECULAR CRYSTALS
-II; ELECTRON—ATOMIC HYDROGEN SCATTERING: TWO APPROACHES
David A. Yuen
3Inofgan1c Materials Research D1v151on, Lawrénce Radiatlon Laboratory )
. Department of Chemlstry, University of California :
-Berkeley, Callfornla
| ABSTRACT
 I.j The aeteétion of the.ground stéte nﬁclear quadrupOle éoﬁpling
:fconstants of host molecules via the optically detected magnetlc
resonance - (ODMR) -of the triplet state of the guest 1s reported here.
Y.The two systems studled were the 3ﬂﬂ state of quinoline doped in 1,
2, kb 5 tetrachlorobenzene and- the 3nﬂ state ef‘pyiazine in 1, #
dichlofebenzene.
II.:_The iﬁportanﬁ étomﬁc seaftering system elecfron—hydrogenvatom is_
etudied.by twgrépproachES. For fhe_medium high impact energy ;ange,nphe
.distoffed waves approximation, invthe Eikonel guise, is developed. For

low excitation energies the classical f-matrix formalism is proposed for

ﬁhis Very'Quéntum—like system.
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I. OPTICALLY DETECTED NUCLEAR QUADRUPOLE RESONANCE AND TRANSFERRED
HYPERFINE COUPLING IN MOLECULAR CRYSTALS
A. Introductipn
Recent optically'detected zZero field'electron spin resonance

3 3

eﬁperiments on “Tm¥ and. nﬂ*3 states of aza-aromatic cdompounds doped in

molecular crystals have provided the triplet zero field parameters,
nuclear-electron hyperfine interactions .and the firsf measurement of the

excited state th and 35’37

c1 puclear quadrupole coupliﬁg constants.
In the-above‘eiperiments only int?amolecular interactions have been
considered. However, in molgcular crystals the importance of intermole-
cular interactions is.evident in the transfer of energy via excitons

and in the external heavy atom effect on phosphprescent radiative and

T

radiationless decay, to cite only two examples. It is therefore not

éhrprising to expect the triplet wave function of an optically excited

guest molecule to overlap the ground state wave function of the adjécent

host molecules in doped molecular crystals and thereby transfer a small
but finite spin density to the host. This phenomenon, which we will

‘refer to as transferred hyperfine, has in fact been observed in the

.proton ENDOR of orgenic triplets by Hutchinson, et al.8 and in carbon-13

9

and deuteron ENDOR by Kwiram. et al. We wish to report here posifive_

3561 ana 37

’ ‘eQidencelO for transferred hyperfine to Cl nuclei and an
aﬁditional phehomenon which results ffom guest ﬁo host transferred
'hyperfine, specifically the detection of the.ground stafe nuclear
';Vqﬁadrupole coﬁpling consténts of the host molecules via the optically
detected mégngtic resonance (ODMR) of the triplet state of the gueét.

3ﬂﬂ* state of guinoline doped in 1, 2,

.The two systems studied were the:
oo ' *
L, 5 tetrachlorobenzene and the 3nﬂ state of pyrazine3 in 1,4 dichloro-

benzene.

b5

D

B. Experimental Section

Next we shall give a brief deécription of the eiperimental equip-
ment and procedures for the ESR experiment»,:Ll The basic experimentalv
§et—up is shown in Fig. l.ll The sample is mounted inside a helical
slow wave structure which is attached to a rigid stainless steel coaxial-

line suspended in a liquid helium dewar. A PEK 100-watt mercury short—

"~ arc lamp is used as the radiation source.  To filter off high-frequency

’ . . . 1
- components a combination of Corning glass and solution filters 2vwere

placed at the output of the lamp. As it is shown in Fig. 1, the

phosphorescent radiation is collected at a right angle to the excitation

source and focused through an appropfiate Corning filter in order to

remove the scattered radiation and finally is gathered onto the entrance
slit of a Jarrel-Ash model 48-L90, 3/l meter Jarrel-Ash spectrometer.
The emergent light signal is detected with an EMI 9558QB photomultiplier.

The output of the photomultiplier is connected to a Keithley model

- 610CR electrometer through an adjustable load resistor; the cathode of

the photomultiplier is maintained at -1800V by a Fluke 415 B power
suppLy. Then the output from the electrometer is connected to a PAR
model HR-8 lock-in amplifier. The output of the lock-in amplifier is

connected to the y axis of a Hewlett-Packard model FO35B recorder; the

' ramp voltage from the microwave sweep osgillato:’drives the x axis. A

Hewlett-Packard sweep oscillator model 8690B equipped with plug-in units
from the range of 0.1 to 18 GHz is employed fof the'microwave fielq.‘
The microwave radiatién is monitored ﬁhrough.a directional coupler, and
band-pass filter, and an isplator to thé rigid co-axisl line where the
microwave helix is mounted. For signalfdetectihg purposes the microwave.
sweep oicillator can be amplitude modulated with,a Hevlett—Packard

model 211 AR square wave generator, which is also connected to the
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Experimehtai,arrangement for optically detected electron
spin resonence in zero magnetic field. .

;h_.

\

reference channel of the lock~in amplifier. The helium dewar can be

. pumped to 1.75°K below the A point, to avoid bubbling.with a Kinney model

KTC—Zl vacuum pump. The zero field ESR experiment fhen is conducteq by
obServihg the change in the»phosphoresqenée.gf the sample while sweéping ,:
fhe.appropriate microwave region. )

¢ Basic Development of the Triplet-State Hamiltonian

Singe we are operating undér the condition Of;zerd’external magnetic

-field?'the'cbmplete quantum mechanical Hamiltonianl3 needed to describe.

the ODMR spectra can be formulated as follows.

gt Hy * Hp . . _ (1)

H= HS
‘where HSS represents the spin-spin interac¢tion between the two unpaired
spins, H. is the electric quadrupole interaction between the nuclear

Q
quadrupqlé moment and the field grédient.of the external charge distribu--

tion at the nucleué; and HHF the magnetic hyperfine interaction betﬁeen
ﬁhe nuclear sbin and nef electron spin. It is interesting to see, that,.
by virtue of the electro- and magneto-static natures of the intersctions,
all of the abovévthree Hamiltonians can be written in dyadié or tensorial
notation'énd hgnce cén be diagbnalized. A brief review is given beldw to
describe the eXpliéif form of each term of the Hemiltonian and the.
resulting eigenvaiue relationshipé.'

Hsé is primarily the magnetic'dipolefdipole interaction between thg

unpaired electrons in the excited triplet state; the spin-orbit coupling

29 to be

contribution in fhe zero field splitting has béen calculated
small in value and hence can bernegleéted.
VTranscribing the classical_interaction between two'magnetic ﬁoments
into the quantum mechanical ianguage,l3 we have then
p -g2g2 S 3 06
S8 e e 3 5 (2)

r r
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where ge is the anomalous electron g factor, which has been found to be

‘basically isotropic for aromatic triplet states and to equal to the free

electron value of 2.00232, Be is the electron. Bohr magneton,.eh/EMec.

" ‘In tensorial notation, we have

Hg=g8°R°8 . (3

s whefe'Q'is a real symmetric tensor and whose nine elements are. given by

2 2 e
2o g -1g% (8)
e 5 Xy 2 °e : r5 v

D=—;=
hod

XX

and so forth, where we have aséumed that the two elecktrons are fixed in
space and theva{rerage then is taken over the triplet state electronic
wavé—function.lh The Hamiltonian'HsS can be readily diagonalized in a
principal axis syétem. The diagonalized form Hés is:

a3 2
= -X ng -YS 2. Z 8 : (5)

Ty
HSS y z

where -X = Dxx’ -Y =D ., and =Z = DZz are evaluate@ in the new princi-

pal axis system. Using LaPlace's equation as a constraint, in conven=

tional ESR usage the Hamiltonian can be written as

H =‘D(82
2

SS Y

where the famous D and E parameters are prescribed as::

' 2 .2
‘D‘ﬁ’%‘nge rode

'But as we ‘all know 82 = 2 for the triplet’state, so finally in a neat

form:

where

1.2 2 2, - _
=38 )+ E(Sx - 8,7) (6) . . nuclear spin quantum number, and V

“where eq ='3—12,-=VZ or n = 22X Vo¥

-6-

5 :
Hog = D(ng - gq + E(Sx2—Sy2). ’ (8)

Next we shall treat the electric-quadrupole interacfion. From the
Wigner—Eckért fhéorem,lG a nucleus with spin greater than or equal to
one has a non-vanishing electric quadrupole moment. From basic electro-
statics, then there is an electrostétic interaction between £he orienta-
tion of,tﬁis,quadrupole moment relative to the electric.fiela gradient
due to ekternal chérge‘distribution, which in the casé of a free‘mélecule
arises principaliy.from non-5 electrons. To convert the classical
electrostatic Hamiltonian to a quantum-mechanical one, one invokes the
Wigner-Eckart theorem again, and useé the Racah_coefficientsl6 to
evéluate.thé éoefficiehts of the reduced matrix element of the quadrupole
ipteraction, one can show that the followingvexpreSSioﬁ (using the tables

in Condon and-Shortleyl7) can be obtained
; _ e : v -3 _ 2
H, 73—61 TR uEB Vot [2 I g * TgTy - S,gl ]
; R

' ‘ : ‘ (9)
_ 7—_1_61 - 2, 2,0y -3
S i fp(rn) r Y Q) a’r
the nuclear quadrupole moment, (length)g, o and B = (X, Y, 2), I is the
: 5 : .
AV

a,8 = 3088 °

Since HQ is a'symmetric tensor, one.can express the Hamiltonian in
terms of the axis system which diagonalizes the quadrupole tensor

2 ‘ .
- e-aq 2 2 2 2
g = 31(21-1) [(312 -I7) + (LI )]v : (10)

2 -V -V

2 v is_the usual asymmetry paramete
9z >a 252 : '
in NQR spectroscopy.1

Finally, one cen use LaPlace's equation, %:vu = 0, to reduce H

»a Q



T

5 ,
H = 2:8.1.25 where €, = 3eQVi i (11)
= - Bl2I-1)1 .

which éppears in the same canonicel form as the zero-field Hamiltonian,

H It is noteworthy to point out that the V, , are the principal

Ss” ‘ »1

values of the quadrupo;é tensor. ’

| Sinéé the ﬁagnetic7dipoleimomenf'is an axial vector? a pérmanénf-

mégnetié’dipéle.exisfs.ih nuclei wifh spiﬁ > %n The infe}action of thev

nuclear mggnetic moment with the electron ﬁagnetic monent , from claésical

E & M, leads to both anisotroéic dipolé—dipole interaction and the

Ferﬁi contact inferg.ction.].'h The dipole-dipole interactionlh ﬁetween

the nuélear’moment and the electronic spiﬁ may be expiesséd as:

I+8 31-n)g-xz
307 5

r r

Hgg‘= g B gB

e.enn

v(12)

where &, is the nuélearvg factor, and Bﬁ is the pucléar Bohr msgneton.
The above Hamiltoniaﬁ can be written in dyadic forh as before for

the zero-field and quadrﬁpoie cases. In fact Hgg'= S A L may be

expénded as 5efore. The é matrix is éymmetric and therefore, in its

principél axis system, may be written as

B2 =4 SI +A SI +A SI- (13)
HF XX X X YWYy 2Z 2 2
where
; : r2—30L2 v
Ay s -gegnﬁesn 5 - +c
_where
a = (x,y,z)
and :
8 2 2
= — h
C=F ¥ h" [Wo)]%,

the Fermi contact term treated simple here as an additivé constant;

Iw(o)]2 is the electron density at the nucleus, y having a S orbital-like

symmetry s Yi are the conventional gyromagnetic ratios.

D. Hamiltonian for Quinoline, the Model Case for Triplet State

Since we used quinoline as the guest molecule for both of our
experiments, it woﬁld behoove us to work out the completé Hamiltonian N L
for this molécule subjected to the zero—field experimental condition.

To bé realistic and simplistic in our model we shall state the

11,19

assumptions made and the reasons for them:

(1) . The.principal.ageé of HSS’ HQ; Hop are cqincidéntﬂwithrthe_
molecular axes.

(2) To first order only the out of plane component of the hyperfine .
Hamiltonianvis taken into account.

(3) Since‘the Bohr magneton of the proton is 1836 times smaller
than that for.é free electron, the hypeffine interaction due to them can
be considered as a second orde: interaction éndrhas a magnitude less
than 0.1 MHz. |

Assumption (1) isbjustifiableron the grounds that since the
nitrogen lone psair orbital lies on the z axis; then one of the principal
axes of H

Q would be in this direction. .From ESR spectra Makizo‘found
that the nitrogen léne pair direction and the 'z axis were within a few
degrees apart.

Assumption (2) can be justified by single crystal ESR measurements

on quinoline by Vincent and Méki2o where A__ >> A _, A for the
: XX yy’® 2z

nitrogen hyperfine interaction. The spin Hamiltonian for the quinoline

molecule may be written for the axis system depicted in Fig. 211 as S
H=X82-Y82-25%+el%+e1%+eI1%+a 81 (14) '
X y Z Xx Yy z2°2z XX x X »
which can be decomposed into two parts
: H=H, +H ' (15)

0 1



where

H=23:-X52+ €.1.° = H.. + H (16)
0 fyc] i7i e i S8 Q
Hl = Axxsxlx

We shall use for our.basis states-the product functions |aB> = au62’ »

which are the eigenfunctions that diagonalize HSS and H 0,B refer to -

Q-

the electroh and nuclear spin functions respectively; np = (X,Y,Z) and

>V = (x,y,‘z.).

The effect of the various operators, Siz, 1.2 can be easily found

1
11,19

from the usual angular momentum operator relationships. In this

way H, = H,, + H, is readily obtained and HHF is then treated as a

0 S5 Q

first-order pefturbation; terms’Anyysy, etc. are second order in nature.

The complete Hemiltonian is then a 9%9 matrix as shown in Fig. 2, where

" the in-plane hyperfine elemenfs; though negligibly small, have been

included. The eigenvalues for this matrix, within our out-of-plane

: hyperfine perturbative approximation can be solved trivially via

diagonalizing only 2x2 ﬁétrices. The results, from 2nd order pertur-

bation theory are shoﬁn in Fig. 3.ll From the center of gravity rule in

perturbation theory, the energy of the states |Zz> and |Zy> are shifted

o A 2 » .
by an amount B, where 8 =,*¥§Z ». while the states le) and |Yy) are

’shifted by an amount -8, which is to be expected. Since Ax# = 20 MHZ,

and Y—Zl =~ 1000 MHz we can make the approkimation

____l;—__' ~ 1

Z+z-(Y-y) Z-y

‘and ' . '
1. | .2
Z+y-(Y+z) =y

For the spin sﬁates which are coupled by the Axxvcomponent we have

' then the folldwing’reéults summarized below in Table I:

XX XY XZ YX YY YZ ZX ZY 7Z

X+x -Azz -Ayy
X+y | Azz |
X+z Ayy‘
Azz _ Y+x
-Azz 1Yy fA‘_XXV
Y+2 Axx
_Ayy‘ Z+x
Axx Lty
-Ayy -Axx |Z+2

XBL 7012-7270

‘Fig. 2. Hamiltonian matrix for triplet plus one I = 1
nuclear spin.
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Zable 1. .

}Yy) - A|zz2) 4——.—-—— Axx.Ixsx —_—

ty) - Alzy) » ST o |zy) - Alvy)
where

Axx o
A= =— =~ 0,02
So the {Xv) manlfold in our approx1mat10n is left unaffected. Inclusion

of other hyperflne terms would surely ‘bring a mwrlad of other p0551ble,

trans1tlons.

E; vRédiative Transifions and Relati&e Intensities
" In fhis séctibn'ﬁe will considervﬁhe ODMR spectra when microwave
radiation is appiied fé the samplé.' We shall see,the impqrtance_qf the
hyperfine tgrm,'for iﬁ is the sole meaﬁs of coupling the electron and
nuclearfquadfuﬁole ﬁamiltohians. .
From time-dependent péfturﬁation theor& tfansitioné betwegn magnetic
substatgs_are qaused by the.magnetic dipoie transition qpérator definedl3

Hop(rst) = A(r) cos(ut+a) « (v I + v_8) (17)

where A(r) is the spaiial dependence of tﬁe magnetic field of the
microwave radiﬁtion; o is some grbitrary phasé angle; Yn,er-are the
nuclear and electron gyroﬁagnetic ratios respectively.
‘From Fermi;s Golden Rule21 the intensity of the transition from one
magnetic substate to another is:
N ..°‘| : \ 12

I Bv2| HRF(r,t)Iaul Bvl

(18)

Using thevconvéntional angular momentum operator relationships, we

-12-

" find the selection rules for the nuclear and electron spin:transitioné

in the zero-field picture to be:

(1) The electron spin maghetié dipole operator, (r t) - (YéS),

- will 1nduce tran51tlons for states where |u2-ul| = i and |v I = 0.

(2) The nuclear spln magnetlc dlpole operator, H(r,t) - (y AI), will

"conﬂeét states for which |u2—ui| =0, and Ivé;vil'? 1.
g

From the fdct that ye = >> yn =3 ,.; & simple numerical

‘calculation will show the following hierarchy for the relative intensities

- of the three possible kinds of transitions where

1. qu—ull =1 and |v,-v,| =0
2. Juy=hy| = 0 ama vy | =11
"3 Juyug| = Toand v =1
‘Without the hyperfine perturbation, the respective relative
I L 6 o2 -
intensities are: I1 =10, 12 = 10, I3 = Of

Coﬁsidering only the oﬁt—of—plané hyperfine cqmppnent;AxxIxSx, we
get the new relétivévintensities to be: _Ii = 106, Ié = 103, Ié = 102.
It is importént’to.note that the intensities can be described only in
relative maénitudes,’Since there are cémpeting rates of radiationless
decay22 to the'TO, triplet zero-field manifold, which render thé

population of the various levels to behave in g non-Boltzmann manner.

It should be noted that it is necesséry to have a hyperfine interaction

in order to cobserve the'nuclear'quadfupole satellites, which arise from

the first-order perturbed eigenfunction.

To confirm theiaésignment of the ODMR spéctravand to improve_on
energy resolutions, electron nuclear double resonance (ENﬁOR)15 experi-
ments can be performed. (For é detailed description of ﬁhe experimental
procedures ihvolved, the rgader is encouraged to éonsplt Mike Buckley's

thesis.ll) ENDOR transitions are shown in Fig. 3 as double arrows and
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Fig. 3. Energy level diagram for the triplet and one I = 1 nuclear
spin considering only the A*x hyperfine component.

]l

they correspond to transition of the type:

[Zy) + A[¥z) > |zz) > A|ty)
Proceeding in the proper usage of the magnetic dipole opefator, as
shown by Harris” et.al., we have for the above transition the intensity

as
2 2 f P
T «lbA%ye™ + My y + v, , (19)

There are then two types of ENDOR transitions possible in quinoline.

:We have in our laboratcries observed an ENDOR transition23,~ 3.1 MHz

. while saturating the_Yz)+ Zy)satellite. (Data is from lO_3 M quinoline

in Durene at 1.6°K in the 0-0 phosphorescent emission.)

Ve'summariﬁe all the transitions expected for the tﬂree zero-field
transitions in terms of the components of the total Hamiltonian in
Fig. 6.ll It is obvious that the separation o6f the quadrupole satellites
for.the X > Z and Z + Y transitions is 2(z-y) and hence the nuclear
quadrupole.transitionl8 %-qu(l—%) is obtained. Theoretically the
important physical quantities e2qQ and 1 can beiobtaihed independently
provided other hyperfine tensor element are large enoggh to enable other
ENDOR'traﬁsitions to be obsérvable. Lastiy, the value of the hyperfine
coupling constant Axx can be trivially obtained from the separationvbf
the two allovedvéomponents‘of eéch of the three transitions among thg
triplet ﬁanifold. .

F. Guest-Host Interaction Phenomena

The above theoretical treatment agrees exceédingly‘ﬁell with the
experimental data for quinoliné in durene in the zero-field ESR frame-
work. However, when 1,2,4,5 tetrachlorobenzene is used as & host,
additional transitions, which cannot be explained using the abo&e

Hamiltonian, are observed. The same phenomenon was also observed for
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pyrazine in paradichlofobenzene.

All materials were extensively‘purified and single érystals,
lO-gm quiholine and 10f3m pyrazine in tetrachlorobenzene and paradichlor-
obenzene respectively ﬁere grown by Bridgemap fefining techniques.
quinoline was'detected using continuous wave techniqies while pyrazine
was detected usiﬁg 20 szamplitude—modglation of ﬁhe microwave field.
All experiments were pe?formed at 1.75°Kvwhiie optically detecting the
emission to the (0,0) stﬁte of the guest.

Figures 40 and 519 show the 2|E| and D + |E| zero field transi-
tions2h for quinoline and pyrazine respectively. The quinoline spectrum
consists of a main peak at 1009.0 MHz flanked by a pair of éatellites
split symretrically from the main peak by 37 MHz. The satellites are
13 MHz wide at half.height and show some poorly resolved structure. The
spectrum of pyrazine consists of a main peak at 9708.1 MHz ana two pairs
of symmetrical satellites sﬁlit 27.0 Mz and 34.8 MHz from the center )
peak. Each has a width at half height of T MHz. The above results can
be understoodlg in terms of intramolecular and intermolecular
interactionsf

The extraneous peaks suggest avchlorine/quadrupolg interaction. If
the overlap integfal of the triplet state electfonic eigenfunction and
- th? eigenfunctions of the adjacent host molecules is non-zero then
chlorine quadrupole and magnetic hyperfine interactions canvtake place.

' The Hamiltonian containing these additional interactions for the

quinecline in tetrachlorobenzene system is.

- N I '
H = HSS + HQ + HﬁF + HQ + HHF » (20)
where HSS’ Hg and HgF have been given in a previous section, and
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: c1cC1 2 C1.C1
g€l oea '@ [g2 101, £g 8 1 I -1 (21)
Q 12 L N _
I, I_ are the standard raising and lowering operators, and
-,C1 Cl 1l )
HHF = xx o1 (I+sx-I_Sx) . (22)

Implicit in the above Hamiltonian are the following three_asspmptions:

(1) The interéction with only bhe chlorine nucleus need be
considered; | |

(2) The principal axes of the chlorine guadrupole and hyperfine
tenéors coincide with the axis'system for quinoline in dqurene employed
by Buckley, Harris and Maki;5

(3) To first order, only one component of the chlorine hyperfine
interaction, the out-of—plane component A » need be included.

In regard to assumption (1), interaction of the resultant electron
spins with more than one chlofine nuclear spin would make pogsible
simultaneous electron'spin and tﬁb chlo;ine spin transitions. This would
produce wings split off from the center frequency by approximafely twice

the pure quadrupole frequenéy of the host. However they would probably

. be extremely weak, being second order in nature.

Assumption (2) is justified in that the use of a coiﬁcident axisv
system for the chlorine quadruéole and hyperfine iﬁteractions gave
calculgted results.in‘agréement with therﬁserved spectra, within experi-.
mentél error. In fact Buckley,ll in unpublished work, has rotated.the |
axis system by aé much as 15° and foﬁnd that it would produce no
oﬁservable effect on the spectrum.

" Assumption (3) is mede reasonable by noting that the mejor overlap
of the T system of quinoline and surrounding hosf molecules is most

likely to be perpendicular to the plane of the quinoline molecule.
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From consideratiop»of thé statés mixed by both‘HgF and HE;, four
“ozes of transitioﬁs between the electron épih 'manifolds can be
claSsified_using the magnetic dipole transition operator._.?hese can be
:déscriﬁéd as: (a) eléctfon.spin tfansitiéns, (v) simultaneous electron
spin and>nifr6génbhuéleér spin trénsitions; (c) simuiﬁaneouS'electrbn
spin and chlorlne nuclear spin tran51t10ns, and (d) . simultaneous elec—’

tron spin, nltrogen nuclear spln and chlorlne nuclear spin trans1tlons._

In terms of the above model, the 37 MHz wlngs observed in the

snectrum of qulnollne in 1,2,4,5-tetrachlorcbenzene are accounted for as

'SLmultaneous electron spin and chlorine nuclear spin tran51tlons._ The
widthvof.theée transitions is probabl& due to the presence of non-

equivalent chlorine sites which broaden the 13’ 37

and C1 traﬁsitions to
the extent thai they all overlap, forming one broad pegk.

Consider now the chlorine_nuélear quadruﬁo;e and chlorine trans-—
ferred'hypeffine résulting from intermolecular interactions. In zero
field the_§i£§§_order chlorine splittings of the host on the zero field
transifions of the guest are independent of the o::-ien’(:ationi3 of the
host's principal field gradienf tensor relative to the zero field tensér
of the guest. Second order energy éhiffs of the chlorine satellites'can
ocecur but.these are ex@ected to be less than a few tenths of‘a MHz since
thef are  dependent upon a very small transferred chlorine hyperfine
interactibn. If thg’chiorine asymmetry parameters are zero, the
'sepafation of chlorine satellites in Figs, L4 and 5 are simply the
nuéléar'qu§drupdle coupling constants of the chlorine containing host
molecules in the ground state._ This isvborne out by-a compérison of the
¥nown 35C1 nucléar quadrupole'transitions for tetrachlorobenzene25
(7T7°k, 36.8 and 36;9,Mﬁz) and'paradichlorobenzenell’26_(77°K, 34.78 MHz,

4°K, 34.8 MHz). Thus it is important to stress that the chlorine

-20~

sgtelliteé acquife their intensity by transferred hyﬁerfine. This then
is positive evidence for such kinds of interaction. The mostvsefious
drawback of the method appears to be'fhe line—widths of the.chlbrine»
saﬁellites. In tetrachloroﬁenzene fhe line width.prdbably reéultsvfrom

27

multiple chlorine sites due to non-isomorphous” substitution of the.

guest and possibly from cnystallogréphic twiﬁning 28 The. spectrum of

) pyraz1ne in paradlchlorobenzene exhibits narrower chlorine satellltes to

‘the extent that the 3501 and 3701 1sotop1c spllttlngs are resolved.

3 1low field optically detected ESR

This is con;istent with Kwiram's
study whichvreports 8 two—site éubstitution of pyrazine in paradichloro-
bénzene;

: In.éonclusion; we haﬁe here determined the ground étate nuclear
gquadrupole coqpling constant for thé ch1orine—cbntaihiné host by
observation of this ﬁransferred hyperfine qoupling mgchaniém.
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Il.v ELECTRON-ATOMIC HYDROGEN SCATTERING: TWO APPROACHES
A. Introduction

The excitation of atomic hydrogenl by electrons has received much
nore attention from research workers than has the excitatlon of any_othev
'atomic speciee, Aue.to the relabive_Simplicity of the.system and the
“availebility of accurate freeeatom wavefunctions._.The second half of v
this bhesis will be directed toward this direction. Two approaches will
be edoptea' (l)>the distorted waves approx1mat10n is developed for the
medlumly high excitation energy range of between 50 and 150 electron
volts (eV) (2) +the recently innovated cla551cal,/1matr1x formallsm2 is
employed for low impact energies below a Rydberg (13.6eV). The process
1s +2s, 2p are studied principally in each formalisn. In both caees ve
shall state explicitly the limitations and validiby.of_the physical
appfoximations involved.v -

B. Historical Review of Some of the'App;oximation Schemes

in Electron—gxdrogen Atom Scattéring

In this section we shall briefly mention a few of the basic methods

that have, been employed for the e -H. problem.
The e -H system is essentially a helium—like system whose

Schrodinger wave equation is

-h 2. _&_ 2 _e” e~ _e° (1)
ESI— Vl - 2me vO r, +'ro rl.] W(rQ,r ) = Ew(r rl)

-1

where u ie the reduced mass of the whole system and can be approximated

bv m,; the mass of a free electron; r’Q are arbitraiily chosen as the
e .

coordinates of the target and'incident electrons, respectively. From

(3)

now on we shell adopt the familiar atomic-unit system where m, =h =
e =1,

The simplest, and good to first order for high energies and weak

-l
potentials, is the flrst Born approximatlon,l the first 1terated solutlon
to the 1ntegral equatlon of wave—scatterlng solved with the Neumann se-
ries. The exchange amplltudes calculated in the plane-wave approx1mat10ns
are usually less sat1sfactory than the plane-wave direct amplltudes The

most common form of the plane—wave approxlmatlon to the exchange ampli-

B tude is the Born—Oppenhelmer approximation. The exchange amplltude 1s

con51derab1y more dlfflcult to evaluate than the dlrect amplitude because

of the.non—orthogonallty of the two hydrogenic wavefunctions with differ-
ent coordinate designation and the electron-electron interaction term.
For the 1s+2s,2p ekcitations, closed analytical'expressions for the ex-

change amplltude have been obtained by Corlnaldes1 and Tra:a.nor5 using

the Feynmen parametrization technlque.

Some other plane waves method that have been dev1sed are higher-
order Born approx1mat10ns, Ochkur-Rudge6 technique and a variant of the

Born~Oppenheimer approx1mat10n employed by Bates,7 Bassel,. Ger,juoy,7 and

‘Mittleman. 7 For the ls*28,2p excitation problem very accurate calculations .

have been made by P. G. Burke and his cohorts.8 In this approach the

transmission matrix elements are obtained by means of the exact solution

‘of the coupled integro—differential equations using numerical'proceduree;

the order of the approximation depends upon the atomic states which are

retained in the expansion of the total wavefunction, (r.,r.). The

wt otal "0 1

anomaly-free variational technique on the ‘electron-atom scattering prob-

lem has showed much promise by the recent calculations'by R. K. Nesbetlg
Finaily, the distorted wave technique has been used earlier by

Erskine and Massey'C and Ochkur:®

-in the excitation of the 2s state of
hydrogen. The distorted-waves method differs chiefly from the plane-

waves theories insofar as it takes into account the distortion of both

- the incoming and outgoing waves by the static atomic potential. However,
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' -the use of the second or higher order terms of the Born series makes

vertial allowance for this electronic distértion. From physical
intuitién, this distorted effect becomes more prominent as the relative
kinetic~energy decreases. The formalism of the distorted-waves method
is flexible in that it alIOVS'one to generate the'apﬁioximate wave-
-functioné by whichevgr tecﬁnique is'bést-suited for the problem.
Erskine andeassey‘Cbtéinéd their distortedeaves by a variational
method, while Ochkﬁr-calculated his partial waves by accurate mumerical

" integration. -Recent distorted-waves calculations by Shelton et al.ll

showed that they arrived at their distorted wavefunctions by numerically‘

integrating outward the varioﬁs.partiél waves in a static astomic poten-

tial. As we shall see, the distorted waves in our approach are invoked

" ip the Eikonal spirit, since we are concerned with medium-high impact
energies from 50 eV to 150 eV.

C. Trensition Matrix Elements for Distorted Waves

In this section we shall give a brief formulation for the distorted
waves treatment and the derivation of the transition matrix eleﬁent in
this physical picture. This is given in most standard referénces and we

' ‘ 12

shall adhere to the notations in Messiah's book.

Let‘H.=Hi+Vi=Hf+Vf_ '.(2)‘
vhere i, f denote the initial and final channels_respectively'and Vis

the total interaction potential

= + . = T+ .
VS U h W, Ve = U v W, (3)

£271 7

and initial state interactions respectively.

W_.,W. are called the primary interactions; Vf, Vi are called the final

Next we shall make the assumption that we know the eigenfunctions

for the-Hamiltonians

H, = + V " =
B+ V, and Hy = H, + V (L)
So

Distorting potentials Ui and Uf are suitébly chosen so that the wave-
functions of Hi + Vi and Hf + Vf can be obtained exactly. (%) notations
represent the usuél outgoing and incoming boundary conditions_fbr the

scattered waves. Hence Wi'and Wf a;e'the residual interactions in-the

initial and final channels.

The transition matrix can then be written in ﬁhe Goldberger-Gell-

13

Mann™~ two potential'formula as

et = Coalveny 11,00 o (ot I, )

T -
- <x£.(—)lvi’wf'°i> * <Xr(_)lwf""i(+)> (6)
where )
(+) _ 1 ' '
¥y =0, E,-H +ie Vi“’i“) (7)
S =22 A (8)

— V_ ¢
b Ef—Hf+1€ £ ‘ ;

are the respective'Lippmann—Schwinger equations%s-For the distorted
waves apporach we make the approximations that wi(f) > X.(+), and
i

0 1) e
T - <,Xf(-.),vi'wi|q’i>_+ <Xf(_)lwflxi(+)'> (9)

for a system A+B - C+D, the initial and final state interactions Uf, .
) i

can onlyvgenerate elastic scattering, so for exeitation procesées

Golkyes
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‘Thus

Tgﬁi =‘< l 1, X (+)> _ S ()
W .

For 1nelast1c collls1ons
It is 1nterest1ng to compare wlth.the ordlnary Bbrn approx1mat10n

-where
£ ' 12)
<«>f||«> I
The dlfferentlal cross sectlon is given by the express1on

_- |2 . (13)
O le pup ()
where f (e) is the scattering amplitude and is related by the usual

way to Ta oo i.e. ,_'

(1k)

1/2
) T Tpes (©)

f
(0 = (
1
Since the-spins of the bound and free electrons grevomitted, the
differential cross-sections for the excitation processes are given by

the familiar expression readily derivable from Fermi statistics:

6. (0) =% lfD(e) + 15(0)]

where fD(S) and fE(G) stand for the direct and exchange amplitudes
réspectively. For the 1S+2p process one just sum over the cross

sections for the three magnetic substates:

15+2p ;Z: %1s,2pn T . (26)

The following assumptions are made in regard to the formulation of the
distorted Eikonal waves:

(1) The bound hydrogenic wvavefunctions used in the Hartree field

2+ 3 igle) - OF a5

y o ~28~

approximation are not distorfed by the free electron. This-is valid
since the.Eikonél a.pproximationll‘l is of an impulsive nature, in which
the translational velocity is much greater than the internal velécities.

(2) The’distorted wavefunction is written as a simple product of
a bound hydrogenic wavefunction and a piane wave whose phase-is
perturbed by the Hartree fiéld, but whose amplitude remains unchanged.
For highervorder Eikonal apbroximation the amplitude dependence can be
properly accounted for. |

(3) 'The z axis, in the Eikonal tradition, will be chosen as the
direction of the oncoming electron.

(%) We shall make no correction to the curvature of the actual
trajectory in fhe mgdelg the-traJectéf& is to be -evaluated by a straight
line. it should be noted that the Eikonai approximation covers a
larger range of angles than for the Born approximation.l3
In this way we can write our initial channel distorted wave-

‘function as

> (+) - i *

X, (rg,rl) = Cwls(ro) exp lKQ ry - 2Ki_’. Vi(bl’zl)dzl (17)
. w :

where C is an appropriate normalization constant; Vi is the asymptotic

Hartree field experienced by the oncoming electron; b, is the initial

1
impact parameter vector; Zl is the incident direction vector; rl is the
radial vector from the origin (in this case the proton) to the incident
electron and is given by r12 = b12+z12. The hydrogenic wavefunctions

used throughout are found in Pauling and Wilson,ls pp. 132-139. In the

same vein, for direct and exchange scéttering the final channel
distorted wavefunctions may be written as follows:
1. Direct scattering:

Ef('-)("g”;’ = Cy(ry) exp (1“1: o EK; f:l ui(bi,zpd;)
(18)
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{2) Exchange scattering:

> (=) o 1 j .
i, v(?Q’rL) = Cwn(rl) exp 1K r - T e ,zo)dzO
)
where <F0|wr>f<rlIWA> denote the final excited hydrogenic states (in
our case,(2s and 2p); UfI, UfII are the final asymptotic - Hartree

potential felt by the emergent eiectron. The coordinate system used is
shown in Fig. 1.
v
From Eq. (1) we see that the initial total Hamiltonian H can be

partitioned into two parts H = H, + Vi where

Bo= -5 (M7 90 - %5
and . , : . . (20)
K %1 ) T;‘
1

The above quantum—mechahical Hamiltonian can be carried over
exactly classically. This is done in the next part of the thesis, where
the classical;/:matrix formulation of the same problem-is explored. _

For a reasonable approxiﬁation we shall use the Hartree potential%6
.for our. U and Uf the 1n1t1al and final state interactions. The Hartree
potentlal being spherically symmetric, is especlally suitable in view
.ef the symhetry of the total Hamiltonian. Needless to say refinements
can be bﬁilt into the Hartree potential ﬁhich take- into account
po.la.z.'ization _effécts. For atoms with more than one elecfron, electron

correlations shouid be'introauced in the total electronic waﬁefunction.

In general one calculates the spherlcally averaged Hartree potentlal

U seen by each electron r by averaging the potentlal produced by the

other bound electrons and the nucleus

-30~

Bound |

electron

Projectile

electron

Fig. 1.

Coordinate system for electron-atomic
hydrogen system.

XBL 716- 6807
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U (r) = - o4 (2 2 ’ (21)
ivi r, . T
S NJ#L T
- where 7 is the etomie number.

The Hartree equations in matrix notation

- K :
Vi ey ly = ' :
TEAt Ug(ri) U, =E U | (22)

SR A °

~are coupled differentiai equations;'u the redﬁced mass. The'soiutiOnS‘:
U are obtained by usual methods of numerlcal 1ntegrat10n and self—
consistency is used as a criterion. Tﬁe i ( ) and i (-) in our  
distorted wave formqiatidn are in fect the first guess for the Hartree
'eQuatione:of ihe'initiqlnaqd finai channels. For the hydrogenﬁatpmr
electren system, they ought to be’ver&zaccurate.

One would expect, that after the fiist.iteration

= i(i) + eX. (23)

x() (t
i f i,fj i,

)
f
and e, a small number:, can be determlned via numerical ‘methods. From
now on we shall drop the over—bar on the approxlmate distorted wave-

_ functions. Hence»our distorted-wave transition matrix rf*i can row be

expressed as:

In the case of exchange scattering, either the prior or post form
‘of the residual 1nteract10n mey be used therefore the residual inter-
~act10n is the same for both the exchange and direct cases.

D. Evaluation of Hartree Potentials

We_shell now work dut the simplest case for the hydrogenic-Hartree

‘potential, that ofvthe ground state 15, since it is present throughout

“the prior tesidual interaction operator Wi. The other Hartree potentiel

o o —Ui(rl)lxi(+)> (24)
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" up to 2p are listed in Table 1.

To evaluste the matrix element

: 1
. <¢1s(ro)l f lwls r )>‘ (25)
We set rQ as the polar axis and use the'stand&rd expansion in Legeﬁdfe
.polynomials:
]——-———r 2: n+l P (cose) L (28).
i L= T
where r greater (rl,ro), = smaller (rl,ro); 6 isvthe’angle_

between r and r

Q. Ll
The orthogonality relationship

gﬂ P (cos®) P _(cos8) d(cos) = 2§+l' 8 nﬁ (27)
gives us the desired result
' -or S
3 * P | 1 4 1 -1
J&x, l”1s(‘ro)(-§'(;"‘ 7)) Hslg) = e T+ 59 (28)

et
As we can seé the above‘integraivVOuld have more terms in it when:

higﬁer orders of Legendre polynomials sre introduced with orbitals of

"higher anguler momentum. For the Hartree potential -of tﬁe 2p states it

is necessary to select an axis of'quantization.for the magnetic

substates and to use the more general exﬁresSioﬁ.

- ='l‘".w+il iﬁf”(’e ) ¥, (6,
T - ;Z% &4, 2R T s 0°To) Yon(8oTy) - (29)
~ As expected_from electrostatic multipole expansion we obtained en

angular dependent Hartree potential. Thevresults are listed below in

Table I.
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Teble 1.

Y Hartree potential U}il(rl) = <w:(ro)'[;z— - ;_lzlwi(ro)) :
1

1s E -e-grl(l + ;;)
1

S Cerqfl 2 §_ .
e v e 1<-2r1+ 2 1)

1[ )(—+ 2 cos 9) + ry -2% :2% coszel)'

4
R)I'_‘

+
5 6 2 cos 61> 3 c0529 3 c08261 ]
gpo + (2 + 2 coslel) + (rl T, + 2 3
Tr I
5 , 1 1
R 2 .cos 61 -
- = —5
rl rl
‘ . . sin2T
s s I I S W s B, 3,3 L3 sine LY
21 31 3 2r, 2 30 1\ cos®t
_ B 1 : 4 1
2P,y : 3 - sin2'1'l
: . —-—Esin 61( 2 )
) éos T,

Interestingly enotgh fhe Hartree potential for the p lobes has a
quadrupole—llke asymptotic tail8 18 to it. -This is‘to be expected from
the geometrical shape of the p orbital; hence upon mpltipole expansign
there shouid be higherbterms than just the £=0 coﬁponent. Also the
ave;agé pésition of the 2p electron is farther gway than that‘for 1s or

s beéauéé of its finite angﬁlar momentum. Thus physically we would
:'expéét the cross section for the ls42p‘process, vhich corresponds to an
ppticaliy allowed'tr;néition to be'greater then for the 1s-2s exé¢itation,

which is optically forbidden by parity. This fact and the difference in

" angﬁlar distributions for the two processes have been borne out by
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various calculations.8’18

To improve on the description of the initial asymptotic atomic

potential we could have added a polarization potenfial of the form

- fi‘_ (_1 - exp —%)“) - (30)
whefe o is fhelgrbund'state polarizability for hydrogen etom and is
g-A.U.; rO is an arbitrary cut-off distance; n is chosen to 5e,usually 8.

But we feel that the additional effect ought to dréstically
decréase at small ahgles and at hiéh energies, where the Eikonal way

vprevails. Hence we neglected this term. ¢

E. Further Development of the Transition Matrix

The case of direct scatterihg from 1s%2s is first treated in detail.

From Egs. (17), (18), and (2L) we get:

T?Ei o j.d 'fd

l - —— exp(—ro) exp(;Kl'rl

f UZS (b3 2 )

1 1 To
<Tﬁr_;‘: U;,.} )(Zr)exp( -9

n

TR i 28 ' '
‘exp (-1K£ . + *EE- J,. Uﬁ (bl,Zi)le} _ (31)
. A :
1

2s s :
where UH . Ué stand for the respective asymptotic Hartree potentials.
Integrating Eq. (31) over rg coordinates énd”invoking the orthog-
onality of the bound-state wavefunctions we get only contributions

from the term which is the following

r.-r

[Ty |
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) = <‘pzs(ro)l.|£0i?; l‘.pls(ro))

W 1

R B if3
and so T, . 0 —— ﬁ r exp(lK L S s
- S & (2 11/2) n L 2m f UJL .'",zi)dzi)'s .

S e . +o L
i . ' i 1128 1y '
B_(rl_) exp( 1K r‘L +, er f »UH (bl’zl)dzl

In Teble II we 1ist all'the B(r,) for the direct excitation processes

1s+2s ,2p considered here.

Table 2. i
— -7
) Ol
S deEso o 55‘!""%*‘1)‘196 0t ar )”"eig —
. _ X N
. ls-’epo’il %[6@('2 rl)(-3 rl - 9 rl - 9r —2——3lr )
+ —&2] cosf
3lrl

A simple use of the Addition Theorem for spherical Ha:c'moz_licsl7 shows
" that B'(ri) from Fotational symmetry is the same for the three magnetic
‘sublevels of the p level.
' The expression in Eq. (31) can further be reduced by integrating in

~the b and z coordinate syst'ems_‘.. So

and by simplifying the momentum transfer vector relation. ‘

metrix for direct excitatiéqurocessés has tEe ektra faci_:or .(K_i - K

36

- We have for the momentum t‘ra.néfe»r vector K the relationship:

=K. - K
| K=y %
but »
= Db. + K

r bl. 2 Kl
so let | . ‘_ o - oL . ) i g

-cosq = K . bl
where o is the projection of X-on the bl'vecﬁcr ‘which lies on the
impact parameter plare. .

Row )
K=k2+x%+x K, cos6

f i f

where 6 is the momentum transfer angle

. ('K).L -K,) ¢ (bl. + zl k ) "Kb,cosa + z, (K —Kf c_:oé.é) - (33)

1)

Thé above e_qua.tion’demonstrates that in the small angle limit: the -
momentum transfer vector i_s parallel, rather than verpendicular to the
final and initial wave-vectors, whereas in the first Box;n approximation

the momentum transfer vector in the small;.—angie,limit is perp_exidicula.r

" to fhe initial and final vectors. Thus the expression of the transition

T
cose)zi in ifs'expo'nential_ argument , unlike the usual Ej.l;onai bsca.ttering
amplitude expression.

Then the transition matrix element is written as:

L 21 +o

DW 1 Y il _
Toey @ - f db,b; _/vda dz; exp[i(K;-K; cosb)z,]
11/2 2 ,
2 m 0. 0 o

v o
. B(rl) exp(iKblcosa)bvexp( %(i; f Uis dz' f Uls dzl>)
z
. . 1

(3h)' )
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iising the fact that o

_ 1 ~ixcos6 :
Jo(x) = 2 f e de (35)
A
17

is the integral representation for Bessel function of the zeroth

order, we can further obtain: ' -

. +00 .
T?Xi o ;/2 : f dzle1 (Ki—Kfcose)zl
(2)7" 5 S

<«

175
0
. e "
. i_ _:.L_ ) 2s 1 i . .l_ 8 | ] Y
-exp 2(Kf [ Up (2d,b1)dz] K j U';L{ bl )dz
, ; i

1 =00

Next we face the task of evaluating the "Eikonal" phase shifts:

+00 . : ” »
- A1 , :
Bt y Jaz) - 2 g (37)
_2(Kf/ Uy (2],b])dz] - K f up (zi,bi)dzi) |
| - ) |

1
Even for the s.unplest pnor-potentla.l that of the 1ls state, the .
.’1ntegral can not be evaluated via analytic means, because conversion to
the integral form of Bessel functions is not possible. because the upper
limit» depends on 8 i)arameter instéad__ of a finite_ value. Therefore _
nu’meriéa.l methods must be used in evaluating the transition matrix;

T , for all excitation processes.

fei
To évaluat_;e these integrals numerically, it behooves one to change
variable
: - +r! .
V = -—*l N A
v 2.2 2 v (38)
r- 1, . ‘

_then the integrals of the Hartree potentlal Ul(z' b') over the Z]'_

_coordinate for both the incoming and outgmng phase sl_l_ifts would have

/dbl By J(K0) B (“b Sz ) (6)

Fig. 2.

Scattering
region

Fikonal trajectory (straight line
approximation).

XBL716- 6806 -
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-‘the‘forms _ 41

/ e'—-BVz £{V bl,zl)dV
=

+w. . t p
_ f .e-BVzl f(Vv,bl,z_lde_‘
A : :

'respectlvely, where B 1s determlned by the approprlate quantum state,

. and f(V b ) 1s a 51mple algebralc expre551on Thus. for each 1nput

17

1221

values of (bl’ zl) one would obtaln via Slmpson s rule ' the numerical
value of the phase-shlft.

In the numerical double 1ntegratlon ‘over the b—Z plane, we: shall
'integrate-over the area from —Z = initial cut-off distance to,+Zf =

final cut-off distance , and from --bf to +b¥ and from -bi to +bi, vhere
‘the llmlts of 1ntegratlon are dictated by the strength of the asymptotlc
Hartree potentlal This scheme is shown in Fig. 2. The grld—s:stem to
evaluate the double 1ntegral ought to be pretty standard. By virtde
of the ﬁedlum—highnimpact energy, one in short integrates.over a "tube"19
about the»classical trajectory, the ends of the "tube" may be different
in area;ddepending on the accuracy of the approximatiOn and the tails of
the potential Indeed, the'Eikooal approximation has its origin in
optlcs,zg in flrst order it is a stralght line approx1matlon much in

the sp1r1t of llght rays, only in hlgher order terms does the curvature

of the traJectory comes into play.

F. Transition Matrix for Exchange Process

In colllslon theory exchange processes are usually much harder to

formulate and to calculate than direct processes.13 b

Therefore, it
should be noéd’ wonder that the tran51tlon matrix for exchange in this
dlstorted Elkonal formulatlon would yleld poorer results than for the

direct scattering case, but that the-result,would be superior to the

: trajectories are assumed for the first-order Eikonal waves and that the

-ko-

_first Born treatment. This basis for this argument ig that_straight

interaction is localised about the scattering site, whereasvin the

exchange process a non~local exchange potentlal usually an, 1ntegral - ' g;
( )

opersator type is involved. Only the asymptot1c wavefunctlons X

Xe (=)

are employed, so the Hartree field observed by ‘the exchanged . N

'electron would be the same' as the dlrect case, with the exceptlon of
vhav1ng a d;fferent coordlnate de51gnat10n. Unllke the direct case, "h, -

there is no way to reduce the six-dimension integral in the transition

matrix element to & three dimensional integral.-vThiSvis due to;the“.

presence of "Eikonal" phase shifts which does not permit one to utilize
o . ‘ o 1 : .

the integral representation of 4= . namely

S B - vlro rll

1£ (r Ty ) ,‘(hq) B

r . -r

1 'QEZ, d3& iz
e

aad hence to use the;momentum representation of hydrogenic Qavefuhctionsv'-
which one could do in the exchange scattering transltion matrix for the
first Born approximatioh.ll.Besides the exchange electron's distorted.

wavefunction>is now no longer orthogonal to the initial hydrogenic

wavefunction. That is:

<

3 ' _jL_ -/(. 25,2p (vr o4
ﬁ r exp(ikK Y + / U (bo,zo)dzé)
o v

wls(ro).# 0 -

In all two additional terms from the i?— and Ui(r interactions are
' 1

present in the distorted wave transition matrix of the exchange mode.

1)

Formally we can write the exchange contribution in the complete

form of:
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SEMI-CLASSICAL TREATMENT OF ELECTRON~-HYDROGEN ATOM SCATTERING

The theme of the final chapter of this thesis is to apply cla551cal

dynamics and semi- cla551cal boundary conditions along w1th appropriate‘

trons.

quantum number_s,_l

quantum-mechanical superpos1tion of scatterlng amplitudes in the

. treatment of 1ow-level exc1tation of hydrogen atom by 1mpact of elec— -

This is espec1ally 1nteresting since for exc1tat10n of hlgh

the correspondence principle can,be invoked_snd,thus.

one woﬁia expect'thaf'quantum”Snd‘semi—classical (among'them the

Eikonal approxxmation ) results ought to agree in most details. :vOur'

prime goal then lies in quantum number exc1tations (1s+2s,

)mmmd

the first threshold region, because 1t would ‘be neat to see how such &

quantum—like system, from the criterion of DeBroglie s wave,3 would

Thomson (1912)

-mechanics was known.

used for their comparstive simplicity.

behave under the recently formulated class1cal,]1matr1x framevork

A. Other Semiclassical or Classicgl-Treatmentsv

of Electron-Atom Scattering .
The original classical theories of atcmic scattering due to
4 and Rutherford (191l)h were proposed before quantum

Despite the discovery of quantum mechsnics and its

. wide application to atomic scattering, classical methods continue to be

The reason for this is that.the

number of coupled equations that must be ‘solved. via classicallméchanics

correspond to the degrees of freedom of the collision system, while.

quentum-mechanically one has to solve the appropriate number of doupled

Schroe

.simple

The close—coupling approximetion

dinger equations for the quantum states involved, which even for

processes very often exceed present day computationsl capabilities.

5

represents the quantum—mechanical'

approasch to 1limit the number of atomic states which are in the expansion

of the

total wavefunction.
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Since the development of quantum theory, classical methods were
largely néglectéd until the paper of Gryzinski6 appeared in 1959. He

showed that classical methods could be used to calculate simple and

. useful analytic epproximate cross sections for a variety of processes.

Monte-Carlo celculations by Abrines et al. (1966);1 Brattsev and Ochkur

(1967.),7 were also carried out for the ionization of classical hydrogen

atoms by electrons. As expected, the result for n=1 doces not agree so

well as for protons used as projectiles, this is due to the quantum-

‘mechanical interference between direct and exchange electron scattering.

Recently Percival and Richa.rds8 showed how‘BohrFs correspondengé prin-'
ciplé could be applied to collision-induced transitions in the wesk .
coupling region where both quantum and ciassicalvperturbation theory are
valid. They obtained cross sections for transitions btheen highly
excited states of hydrbgenfatoms induced by eleétron impact.

The above classical methods have an inherent embiguity in the

choice of boundary conditions, because in representing quantum mechanical

vstates by classical distributions, one encounters the uncertainty

principle in position and momentum. However, as we shall see below, the

. recently devéloped classical f-matrix theory shows how the.appropriate

" use of classical mechanical canonical transformations, the cousins of

qﬁentum mechanical unitary transformations, would yield the proper

" initial conditionms fdr the classical equations of motion for each degree

of freedom of the system.

B. Capsule Presentation of the Classical LyMatrix Formelism
He:e we shall give the basic development’and motivation of the
classical [-matrix formalism developed by W. H. Miller.9 The finer
16

details of much of what follows in this section can be found in Mil;er's

investigations of the rolé played by classical and quantum mechanics in

. is

the canonical momentum are specified at time t

Jacobi equation.

~L6-

. molecular collision dynamics.

R. P. Feynman3 in his far-out development of quantum mechanics by
means of path integrals, whose origin can be traced to Wiener,ll linked
classical mechanics with quantum mechanics by showing that the quantum-

mechanical propagqtor for spatial representation in the classical limit

.(qglve'iH(tz'tl_)/_hlql)_Q Z ilidlay,a)lm - (1)

all classical
paths

where q, = q(t2), qi = q(tl) are the values of the coordinate at times
t2’ tl, H is the time independent Hamiltonian governing the system and
¢ is the classical action integral between two space~time points
. t2 |

#lasa,) = at Lla(t),a(¢)] - (2)

. t ’

l .

L is the classical Lagrangian of the system and q(t), q(t) obey the
classical equstions of motion. '

It is important tq’note‘that since ql, q, are the independent
variables which specify the classical trajectory, the trajectory may not .
be unique, hence there may be several classical paths with 9 fixed
which lead to the same value of 4> whereas if 9 fhe,coordinate and 2
1> then a(t), p(t) are

uniquelyvdetermined'for_all later times. This facf arises from the

variational derivation of Hamilton's equeations.

It ié'interesting to point out that where q are the spétial coor-
dinates of one set of canonical variasbles and P are the constants of

motion of another set, then Fe(q,P),13 a generator of classical

'canonical transformation, is the solution to the familiar Hamilton-

12,1 ) ) :
’_3 More conecisely in quantum-mechanical langusge,

this actibn principle conceﬁt may be expressed as:



. . bp- |
a. : Pplx) = <xlE>’ = <q|P>' 5 eiFQ(q,?)
| B (3)
S0 wE(X) ~ wm(x) .

It is also easy to show that if the Hamiltonian does not involve time
explicitly, then
B »
_ S0 1. - o . (%)
o .Bq?P:f~v.;§§X5- » : S
o N O o1k '
for the correct WKB amplitude dependence.
. "Now the cléséicéi-f—matfix ¢an be found from evalusting the
matrix elements of the operator I'from.some initial eigenstate'of H0 to

a final elgenstate of HO’ H. is the Hamlltonlan for ‘the colllslon

0
partners at asymptotlc dlstances onm foruml quantum scatterlng
theorys'
[ = lim v 1H t /h -1H(t2—tl)/h -iH t/ﬁ (5)
téf+®
0

where H is #he'totdl Hamiltohian governing the collision system. From
semi-claSSiéal reasoning, one.seeé that from the old quantum theory15

the momenta or action varigbles, -being constants of the motion of‘Hd,

are the precise classical equivalent of quantum numbers in quantum

mechanicS'andvthé oonjuééte angle varisbles asre the quantum phase angles.

In scattering problems one prefers thé S -matrix in the momentum
representation of these variables. -
Since 1p> are'eigeustatos of Hb then
+OHt +iEt _
ot ot/ o) = MMM ) (6)

Then the'f;mat;ix is related to the propagator or evolution operator in

the momeéntum representation by

.transformatlon and is found to be’:

48~

‘Um o (p,lf[p)) = lim 'F (tZ—Fl)/F <p2|e-iH (t2-tl/h|pl> ’
t, 4 ' £, 4w ’ : e : o

e 2 S
t1+-co . t -)...oo ) : : -

1

U51ng the fact that the Hamlltonlan is related to the Lagrang1an by

H(p,4) = pa - L(q,q) and wrltlng the phase of the propagator, ¢(q
\

in the momentum representatlon, ¢(p2,pl), we have flnally 1n terms of

the phase of the classical propagator 1n the momentum representatlon

The cla551cal f—matrixlq is. given by -

| AN o e -
5 b ) _
@oliley )= DN zn(—"é) | etolopp)  (8)

all 013531cal aq1 Py
paths ’ )
' o P2 ~1/2
The approprlate cla551cal-11m1t normallzatlon 2 3a. = 5
. . ql pl !

has been phy51cally interpreted in terms of its square modul

(om | 9p, lp

' Thisg is verlly the probablllty of the pl+p2 transition
assoc1ated w1th a particular traJectory.

¢(p2,pl 1s obtained from ¢(q2,ql) by simple rules of unltary

t, .

| , o
o) = - f e a5 )

where q(t), p(t) obey Hamilton's eguétions i.e.

daft) _, 3H(p,q) ha 2dp(t) ; Bﬁjp,q)
at op and . -

“dt 3q (10)

The sbove developed expression for the classical f -matrix is for

one degree of freedom and one pair of canonical coordinate and momentum, .

it can be extended to any number of'degrées of freedom without too much

effort.

In continuing this semirclassicél spirit, to obtain the transition

2’q1), IR
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P1,2 from state 1 to state 2, ve calculate the dynamics of the inter-
szcting system via classical mecmanics and treat the transition amplitude
according to well-posed quantum superposition postulates

To arrive at Pl 2 quantum mechanlcally one calculates the Il ?

f —matrix element, v1a gquantum dynamics, i.e. Schroed;nger equation, and

square the f-matrix element.to obtain the transitiop probebilmty P1,2_

P, = s |2 (11)

F1,2 1,2

From the classlcal,f-matrlx expression in Eq{11) we see readlly
SC
that the transition probability in this seml—class1cal approach P1 >
can be decomposed prlnc1pally into two perts, one having a partlcle—llke

or classical orlgln, the other having a V&VE—lee or. quantum—mechanlcal
nature. Namely

sc CL QM
= +
Flo=Po*Fi2

P Z b : (12)

1,2 411 classical
paths

where the p.'s are probabilities (obtained by solving classical
i ;

equations ofvmotion) associated with all the possible classical

trajectomies, and'PgMglare the cross-interference terms when one

L]

squares the classical f—matrlx element

=2 z '14’ ; (13)

3

where the sum, once sgain, is taken over all classical trajectories.

; i - cas s sC R
v The terms'el(¢3,¢i) give the transition pro‘ba.‘m.‘ln.’cy_Pl,2 the wave-like
‘behavior which pure classical’approaches miss. This is the quantum

- effect of the classical f-matrix outlook.
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Fmrthermore from conservation of probability Picz can be divided
b
into the direct (non-reactive, NR) part and the exchange (reactive, R)
part.

IECRDILAPRD D

v (14)
PpsP
p2 p2 2°F1

The result from sweeping the ql from 0 to 2w, as it has beern noted
before, is exactly the same as a Monte—Carlol6 aversging over a large
number of appropriately chosen classical trhjectories

' C. The Classical Hamiltonian for the Electron-HYergen Atom System

Now we shall apply the above-delineated method to the three
problem of-the‘electron—hydrogen atom system, alias the "helium" atom
kid.

The electron-hydrogen atom system classically has nine degrees of

freedom. Transforming to the center of mass (CM) system by means of a

contact transformation and using the fact that the integrals of motion

of the center of mass are constants, the transformed system then has

six degrees of freedom. (See Appendix I.) Further reduction to four

degrees of freedom‘is made by virtue of the conservation of total
angular momentum and its component along some fixed—spece axis analogons
to tﬁe commutation relations [H,Jz] = O, [H,Ja] =0, where H is the |
total quantum—mechanic&l Hamiltonian. This is accomplished via 8
F3(Q,p) transformation and the use of the constants of motion of the
total anguiar momentum. Thus the three body problem is at last reduced
to four degreesvof freedom.lT

~For physical reasons that now the new Hamiltonian system represents
the equations of motion of two particles, one being the target or_the

hydrogen atom, the other the projectile or the free electron, we choose

the four pair of canonical variables as the folloving
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Py =P, q, = R
,p3'=J e o A3 = 4y . (15)
LR A S ’ ‘ ‘qhéqz

n'énéré ﬁ-is'tne'réﬂial.coordinafe between'the eleetron to the cenper of
':fmass -of . the hydrogen atom r is the radlal coordlnaxe betWeen the bound
: electron and proton, p 5 PR are translatlonal radlal momenta correspond—
:vlng to thelr conjugate coordlnates, 2 ‘is the orbital angular momentum of
uthe progectlle electron w1th_respect to the atom, jiis the rotational
”'angular nomentum of the ‘bound electron about the proton, qi,q ‘are the.
vangles between 0 and 2ﬂ, conJugate to these angular momenta.

In terms of these canonical variables the 018381cal Hamiltonian is

17

“given;as e

‘ . o . . _ ‘
H(p,q) 211 (pR _ &—2—) + 51'56?;-2 + i-g) + v(r) '+',.V(r’R’Y) (16)

" where U‘isvfhé.redﬁcedjmaﬁs of the projectile
m (m+m )
e p e
M m +2m . e

‘3_m is. the reduced mass of .the . target
. . m m

.: e2 . . =
vir) = -5 , the exact electro-static potential
.of the hydrogen atomic system
V(f‘R,Y) is’ the electrogtatlc 1nteract10n potentlal between the free
_electron and hydrogen atom, Y. is the angle between r and 3 in which the
.'1nteraction potent;al V(r,R,Y) 1s expressed.
In terms;of the. canonical variables
EE 2.2 27

ST ' L°4+1°-T . ‘ .
o;cosY é eosqj’eosqﬁ + Ie—zéj—e-l .31nqj einq£ .o

~52e

Fig. 1.
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B

Electron~hydrogen atom reduced to four
- degrees of freedom. - ‘



where J is the total angular mementum of the system and J

"Hbto_the quantum number 2.

-53-
= 2+j, and a
cnstant of the motion.

For our simple atomic problem we can in fact write out V(r,R,Y) in
closédvform as:

: o2 -
V(r,R,Y) = -e (r2+R2-2rR cosy) l/2+ ee(r +R2+2rR cosy) -1/2 (18)

" The phy31cal 51tuat10n of the problem is shown in F1g l.

The asymptotlc 11m1t of this 1nteract10n potentlal V(r, R,Y) is

different for thevcla551cal electrostatlc case and the quantum electronic

distribution bbtained from Schroedinger perturbation theory. This
important point will be discussed in the later section pertaiﬁing to
trajectory calculatlons. »

Moving 1n the seml—clas51cal trend we shall quantlze by means of
the Bohr—Sommerfeld quantum conditions the rotatlonal and v1brat10nal
degrees of freedom for the hydrogen atom (our "dlatom") system.

1k

We have from the old quentum mechanlcs_

(ne3)n =f Py 93y (19)

where n is an integer 0,1,2,... and i is an index for each degree of
freedom. So for the relative translational momentum between the bound

electron and proton we can state

/ rJTe n,j)-v(r)] - -(20)

where r<, r> are the classical turning points of the vibration motion of

(n+3

"the bound electron'ebout the proton. Physically, the vibration degree

of freedom classically corfesponds to the radial guantum number o, in
quantum mechanics, while the rotational degree of freedom can be likened

The generator Fe(q,P) which gives the desired

~5he

quantized conditions can be seen to be:lo

) 3 .2
Fy(ap) = mpg ¢ g g [ ar Yenle(na) - vie)] - A

1
r< T

(21)
where the first three terms are gust the identity. transformation, and

the last term a:ises from the particularvquantized condition and is

. readily seen to be related to the WKB vavefunctioﬁ of the h&dregen atom.23

2
For the -Coulomb potentlal v(r) = —;f- it is not difflcult to. show

from the implicit elgenvalue relation in Eq. (20) that in terms of -
atomic units

e(n,)) = - —= | ' (22)

2(n+j+l)2

From the usual WKB reasons the conditions for n,) are n = -%yO,%Q...

1
g

It is also not surprising to see that the physical systems whose

Lo

andj=-f§,

eigenvalues can be solved exactly by Schroedinéer eqﬁation, these same
eigenvalues can be solved via semi-classical (WKB) eigenvalue
relatioﬁshiés. So fer the cese of the cne-dimensional harmonic oscilla-
‘tor one obtains with Eq. ( 19 ) the correct quantum-mechanical energy
relationehié (n+%0hw; for the case of fhe one-dimensional Morse
;2a(r—ro) -a(?ero)] one performs.the WKB phase inteéral

potential, D[e - 2e

and obtains the eigenvalue

. .
e(n) = (1- 2l 1/2) (23)
2) '
18

the same as for the quantum case.
Using the generator F2(q,P) as shown above in Eq. (237), we find

that for the quantized condition imposed the new canonically transformed
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Hamiltonian is
H= L ( R + ——) + e(n;j) + V(r R,Y) (2k)
From the definition : -
oF ’ .13 -

2 (- -

we see that:

@ =mn %Euil / ar' 75 (25)
: o r< (an[e(n,J)—V(r ) - "—2)

r.!

and

[ Esn“”

r'

: , 1/2
(am[em,j)-v(r')] - 1—5)

where [??J‘ié the greatest integer function.
To rid of the ungainly "phase shift" in Ej, we use the fact that .
. 1 .
8(n+§)
=
which implies then

r> | -~ o
f’ dr‘ge(n,j)-\l(r') - 3-3 = 0 (27)
r< r'

So we choose a, such that r(n,j,qn) = r> then the "phase shift"
vanlshes and ' '

| _c‘T.J.='C1J ' | ' - (28)
The_genefalized coordipétes qn,qJ,qz are the angle variab}es'and

have value between 0 and'2ﬂ, and the corresponding conjugate momenta

r' L (26)_
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n,j,% are the indices for the classical [-matrix. From the total

parity Qf the Hamiltonian the substitution q2'+ q, + 7 and q, * qj + 7

J

leaves the classical Hamiltonian invariant; so we can further restricplo

the values of g, from 0 < g, € T, vhile g, remains at 0 < q, < 27.
| 2 J J v

'D. Initial Conditions for Hamilton's Equations

Since the'totgi angular momentum J, J = 243, and the édtal energy  v:
E aré constants in.the célliéion dynamibs, we shall denofe oﬁr initia1 
f—matrlx 1nd1ces by ll,Jl,n and vary the correspondlng angle varlables
Q l’ jl’qn over fhe approp?iéte intervals, Ry is required to be large.
and by energy conservation it is:

- R NS V2
P, = -(Z:lJIE-t(naJ)—V(rl,Rl,Yl] - ;1—2) )
1

Similarly for the isolated "diatom" (hydrogen atom) -

. j. 1/2 :
Pl = i(an[-e(nl"jl)d% - —-J;-e—) : (30)
. ) I'l .

where ry is éhosep to be either the perihglion or the apehelion of the

Bohr orbit,15 in order that qj = qj, for the reason mentiohéd above.

In order to insure that rl_is at a turning point, it is necessaxy

to vary Rl’ so we shall introduce a phase-shift in the vibration pefiod-

by moving the projectile either forward or backward for this purpose.

We have
. P i .
R, = ' ' (31)
) '; O ( egn,q ) qnl

3
2P1(n1+51+1)

Rl =4 RO - i qnl (32)
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- .

where RO is to be determined from the nature of the asymptotic:inter—.

action potential V(r,R,Y) to be discussed in detail in the next section.

So we can now vary the phase angles %j for the numerical computation.

In fact ql,%j,qn contain in themselves information about the geometrical

orientation of the three bodies with respect to each other.15
However, in the Hamilton' equations éz = %% and éj = %g-there is a
; ' ) _ 3 >

singular?fylolin qj and qg as jor & beeomeé vanishingly small. So
instead of inteérating}Hamilton's equatiohs in the transforﬁed canonical
variables (P,Q), it is more prudent to integrate them in Ca;tesian
coordinates (p,q). Thﬁs the initial conditions are specified in terms
of actioheangle variables as specified sbove, but then these'ere
transformed to ordinary Cartesian coordinates and tﬁe.numerical inte~
gration'of the classical trejectories is'car;ied out by the Adams

1 .
9 At the end of each trajectory one transforms back

Moulton technique.

to the action-angle variables, so with energy and angular—momentum
conservation, the trajectory functions n2(q£l,qjl,qnl), je(qzl,qjl,qnl),
2.(q, ,q. %, ) are obtained and can be used to construct the proper’
27,7y ' : ‘

classical [ -matrix element. In Appendik I one can find the transforma-

tion between the action-angle variables and Cartesian coordinates.

E. Asymptotic Interaction Potential Between an Electron

and a Bohr-Quantized Hydrogen Atom

Since classical mechanics is used to describe the dynemics of the

collision system, while the boundary conditions are handled with semi-

classical métheds; it becomes necessary to look at the electrodynamics of

the three charged particles subjected to the Bohr-Sommerfeld quantization

14,15

rules. From previous quantum mechanical calculationszo'of the

electron-hydrogen atom scdattering it has been found that an aéymptotic

tail from the Coulomb potential is present and it necessitated the

_58;

numerical integration of Schroedinger's eyuation to many a A.U.,
(sometimes 30 to 50). In order to facilitate computation, it behooves
one to investigate the asymptotic nature of the interection potential
V(r,R,Y), subjected to classical electrodynamics. For the 1s ground
state, there is a big difference in the asymptotic potential between
the purely quantum mechanical picture and the classical piefure. For
higher quantum states.the classical treatment and.the quantuﬁ treatment
yield the saﬁe form forvthevbotentiai at far-off distances. The erux
of the whole matter lies in the presence of a permanent‘dipole of the
hydrogen for all states when classical mechanics is applied. It is
ﬁell-known that from rudimentery quanfum calculationSZl fhat there is
no permanent dipole for the ls state in a Stark field because of
degeneracy, all higher quantum states have & permanent dipole in the

. v,
presence of an external electric field (for the n=2 -28_2pz , for n=3_

+ - ¥2
(?35 w3dz2 w3pz) ' '
, etc., the z axis being the direction of the external
73 |

field. Physically, for asymptotic distances, the free electron produces

a perturbing potential of the form H' = eEz where E, the electric field,
is equal to 25, R & certain prescribed asymptotic distance. This

' R - ‘ . _
perturbing field can be described as a Stark field, since the divergence

of the electric field of the free electron in the neighborhood of the

- hydrogen atom is .sme&ll. This distorts the hydrogen atom's charge densitj

such that V. {r,R,Y) ~ &= where p is the dipole moment for that
asymp R2
perticular Bohr quantum state. It is-well known that, in the quantum
mechanical adiabatic tatpproxime‘a.tion,22 the potential V(r,R,Y) seen at
large distances from a hydrogen atom is - _QE’ where o is the polariza-
: 2r
bility for the quentum state and is related to the induced dipole

moment by pl =g * E, E the applied electric field, g the temsor of

polarizability.
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A'ciosef lqok &t the Bohr piétufg for the hydrogen atom for the
s staié shdws fhat there ¢xists e permanent dipple. Iﬁtroducing.the
;olér coordiﬁéte.notations for a Keplerian orbit‘subjécted to an
'attractlve ;-potentlal, we can f1nd the average p081t10n of the Bohr—»

quantlzed electron by 1ntegrat1ng over one period. of motlon

(i) - S (33)
J[f f d¢ . .

0

" Ve hgve _

where f fs the érbit of the'bound electron under no perturbed field.

It can be shown from celestial mechanics15 that
._.3_ ~ J. ’
(L) = 5 ea : | (34)

where £ is the perihelion unif"véctor, € is the eccentricity of the

ellipse éﬁd a'the‘Semiémajdr axis of thévellipse. Hence, with the

- rroton Eeingvone,bf tﬁe focus; the'pérmhnent dipolgfﬁoment present in a

c;éssical#Bthlhydrogen'atom is 2 = gfeag. The secular motions of the
hydrogen atam in a'Sﬁark field haﬁe been iﬁvestigated in the 1920'5 by
Bo%n;énd.qo;vorkgrs.ls Theﬁ the use of first—order classicalvperturba{
tion theory is applied to the Hamilton-Jacobi equations, the Fesult of
tﬁe pertu;bed:dipdié:moment is

ip| = ez = + e;sinqj g-ea 1 -(%5)2 (35)

~ where qj“is the angle between the line from the<§ocus_tovthé perihelion
and ‘the node_of_ﬁhe new “plane of_o:biﬁ'subjectég_to théuStark field
and the invariable plane, (r,8) plane. Historically, the application

of:thé old quentum meghanibs to the étark effect on the spectravpf>the

hyd:pgén stom yielded the same iesu;t és that calculéted by Si::hroedingé_r2
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in his first_feW«papers on wave-méechanics.
. Next we shall look at the relative magnitude'between‘the_first t%o;
terms,.the dipolg and quadrupqle terms, of thé multiplejekpénsion of-.
V{r,R,y). It is instructivelpa.qoﬁpare the values p .and a.in a‘Ta&lorv

series éxpansion of the energy in an applied eleétric fieid'g.

W(E) = W(0) + p°E +v%-aE2 + 0(D) T (36)
The.values for’p,a as, a function of parabolic qUaﬁtum numbefs cén.;
be calculated from Schroedlnger perturbatlon theory, they are 1lsted in.

Bethe and Salpeter,23 from this we get

a2

& o 2 \2
2.E a dZERh _ h[17n *3(n -0, ) —9m +19] B
oE - 5= n (37)
p/R 2hn(n,-n, )R :
. I 4
where n = l+n2+m+l ‘are the quantum numbers one obtains from solv1ng

the hydrogen atom problem wlth parabollc coordlnates
For'the'case n=2, nl=l, m=Q'wh1ch in thevspherlcal—polar coordinate

representation corresponds to

(,I_'IIP)U.— -7 [Rzo(r) YOO(Q) 2l(r) Y (Q)]_vv - (38)
The above ratio becomes one when R ~ 1, 5><10_8 cm which clesrly is not in
the asymptotic region. So we shall be concerned only with the dipole

attractive term in the far-distant region. Furthermore one can

. generalize that within an order of magnitude

" V(quadrupole) . Vv ﬁadru ole) |- - (39)
V(dipole) v(dipole) . Co

QM Class1cal Bohr orbit

For the same quantum numbers n(nr), 2(3) where n, £ are the quantim
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. . e as 2L
labels and n and J are old semi-classical indices,

Next we shall give a numerical estimate for the Bohr 1s state.

From the semi~classical approxime.tionl)4 the (j+%)2 in the centrifugal

. potential keeps the electron in the S state where j=0 from falling into

the nucleus. It can be derived from application of tﬁe old quantum

'theoryeh that for the hydrogenic system the eécéntricity of the orbit

€ iv 1- ;E- and the semi-major axis. a = ngao, where n the principal
i n
quantum number n = nr+j and ao is the common Bohr radius 8, = 0.529 A.

A semi-classical approximation is then applied to the parabolic quantum

'numbers, much in the same mode of the spherical quantum numbers.

From the Coulomb degeneracy

n.+n, +1l+m

1¥0, for parsbolic system

#

n

(ko)

n nr+j+l for spherical system

ﬁl and n2vare separation constants from Schroedinger equation. When

ﬁl#ng, then there is an asymmetric distribution of charge about the
plane z=0, which .is the desired effect for a Stark field.

Now for 1s state, j=%3 nl#n2 and n=1 which implies m = % [%I,
1 0 .
-t 151 - o3
n, = 2. s N, = . 111 . From quantum calculstions p = 5 n(nl—nz),
S0. & regsonable approximgtion for the dipole moment for the classical

1s state isv%-A.U.—or about 0,39 Debye for our "diatomic' molecule.

_ From the symmetry of the "diatomic" orientation of a rigid rotor, there
- is no contribution to V(r,R,y) from odd multipoles; i.e. V(r,R,Y) =
V(r,R,m=Y).- Thus in the classical trajectory calculations, varying the

- angle qj,at the start would have the effect of orienting the initial

static dipole from 0 to 7 for the incomiﬁg electron to scatter from.
After establishing the fact that the asymptoiic attractive potential
is predominantly of a dipole nature, aside from the always present

centrifugal tail, we can solve for the trajectory of the electron
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(incident or emergent) subjected to both the repulsive centrifugal and

the attractive dipole potentials in the asymptotic region with the orbit

" | du' ‘
e=‘f ' ()

=4
.0-‘/@+ 2me p _ ,\u
22 22 :

1
equation. 3 We get

_wﬁere u! = %3, p is the'staticjasymptotic dipole moment to first order

p= (42)

In gtomic units where e = m = h = 1 then it can be integrated to give:
For the case where.

1. g% -1 <0

2
(43)
2
2 -1>0
22
(4k)

3. 2 1= 0, using L'Hospital's rule

42
R L
2E r
For the input values p = %ﬁA.U.; the Bohr 1s dipole moment;
3 .

E = ﬂ'A'U" the first threshold energy; and £=1, the deflection angle
obtained from infinity to 10 A.U. is around 10°. Clearly this "spurious”
deflection angle would mean the following:

l.v The cut-off distances for the numerical integration must be
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incéeaged;

2. Both an increase inlthe tqtal‘enérgy:E and in the orbital
angular moméntum £;would ﬁiniﬁize this undesifablg,effect_from thg.ls
dlpole ta11 » 7 |

In Appendlx II ‘a way of numerlcally obtalnlng the deflectlon angle
~in this cla531cal scheme is shcwn for the case when one employs the
;_ogx—flxe Vgxes,’sovgs ﬁq gllm;nate many & cross termvln the i and & of
the piassicél-dynamics{' Also in the appéhdik_évfiow chart for ﬁhe'

' célculatipﬁ, using bqth the gpprbbfiate analytic éxpression obtained:
from the orﬁit'eguatioﬁ and ‘the numerical calculation for the séattering
;egion is given. | . “ ‘

.fIn fhe actual calculation one would then start off qith minimum
asymp_'cotic‘c‘l:i.stv;gmces.v:R‘L and 32 as shown in Fig. 2.and_move_them_farther
away , keeping.allvother variables constant, until tﬁe final n;J,l
stabilize. So oneswouid ﬁeed.onlf‘to integrate humerically from R=ﬁi

eand the tail-end can be followed by the analytic forms. This
25

to R‘Rg, :
is very much in the spirit of the Jeffreys<Born éppfoximaxion. In

this adiabatic picture, we assuﬁe that essenﬁially we have a static

dipole potential, whose timé—aVerage over a périod of revolution yields

the proper orientation qj, and inclinsatio %)*, etc. Hence the

‘bound electron m@kes many'revoiutions,_as the projectiie travérses in
' the asymptotic region.

" F. Phase of the Classical [=matrix and Quantum Consequences

" In an ear;ier_séctioﬁ wefsee how the phase of the [ -matrix was
derived.” The physical interpretation one:can iehd to the computed
'yélue of the.phase ma& be sféfed as the:ﬁumbér of periods all the
degrees of freeddm undergo'iﬁ the collision process.. For systems

subjected tp complex-formation”or resonance one would expect the value

—Elm

Analytic form
applied here

Pig.

2.

Appropriate
-asymptotic distances

'.Ahalyﬁc? form
applied here -

XBL716-6804

Sketch of possible tralsctory.
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¢ be large in comparison to the value computed for a simple collision
crscess. This is evident in the recent caleculations of Rankin and
Miller26 on the H + Cl2 - HC1 + H reaction where comﬁlex formation is

work on the one dimensionel He + H, inelastic

noted, and in Miller‘élo >

collision, where the process is father simple. Hence.the manyistates
of resonance in hydrogen atom would reveal themseives-in the case of
classicalforbitinga or Quantﬁm tuﬁneling. In Appendix III the phase‘of
the [-matrix for both.the direct and eichange:processes in the momentum

representatidn is given for'the electron~Bohr hydrogen atom scattering

" problem where both an analytic form and numerical integration are used

to compute the trajectories. For the three dimensional case the

>claséical J-matrix for both exchange and direct processes can be

.generalized s&s

DA

2,J29 o3 l’jl

L .
Z p 2 exp(lda ) (45)

all. classical D52dpshyiny ady st
paths

where the normalization D, according to prescribed formuiation for n
degrees of freedom,lo is given by the Jacobian of the final momenta

vith'reséect to the initial coordinates (at fixed initial momenta):

oan(t,) . dn(sy) n(t,)
5q_(ty) | aqj(‘t‘l)b 3q, (%)
33(t,) 35 () a3 | : .
3a, (%)) 3a, (8] 3q,TE,) '
az'(te) an(t,) 3%(t,)

wheré the elements of the Jacobian matrix are simply the numerical

value of the éloges of the final momenta with respect to the initial
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coordinates. Since electron are Fermions, the quantum-statistical rule3
on summing of transition amplitudes, in our case classical obtained,

yield the relation for the transition probability:

f+i Z Sf+i Z S el Uﬂ)

all.direct all exchange
paths . ~ paths
In this way, one hopes that the interference between the two kinds
of paths would reveal some quantum details.

In conclusion, because of the very quantum-like nature of the

'eleCtron—hydrogen atom system one might expect possible breakdown of

this semi-classical theory. From the DeBroglie's wavelength of the
incident electron, for energy of %-A.U., ’(‘” 1+1 A.U., we consider the
question in terms of simple one-dimensional barrier arguments and use

the criterion for classical motion from Landau and Lifshitz,27 i.e.

3, 3V
U (-
’ £ = ___ﬂ._ << 1 (48)

classical 72
. ' X
With one A.U. from the nucleus, 3R <1

. < 1 around the nej !
Eclassical v 61gh§orhood of the.Bohr
hydrogen atom.

From the above argument one sees that for the first threshold
energy the incident electron follows a closely classical path; and only
around the region of scattering does Quantum phenomenon come into play.
However, at higher energies and hence more hydrogenic states are
énergetically possible, then the classical [-matrix ought to yield
10,28

satisfactory results, with the possible exception at resonances,

comparable to quantum calculations.
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APPENDIX A

‘Transformation Between Action-Angle Variables and Cartesian Coordinates

For reasons mentioned eaflier, we want to specify the canonical

. 10 : : . o
_c09rd1nate? r, R, ql, qj, 95> qMJ an@ the relatedAgomenta pr, Pps 2,
3, I, M; (M& denoting the projection of .J on a'particular axis), and to
use these initial values to determine initial valués,forvx, ¥, z, X, Y,

7, Px’ py, p%, Px’,P§’ Pz’ where the upper case letters rgfer tg the

" relative Cartesian coordinates (momenta),between‘the eleétron and hydro-.

gen atom, and the lower case represents the relative cdqrdinates (mo~
*menta) between the bound electron and nucleus. . R, £ can be transformed
‘readily to the body—fixed Cartesian systems (ql,‘qé, q3), (qh, 55 q6);
(Q7, qs,vqg) that represent the three bodies. It is not hard to show

the following:
51 T %446 T U3 \
Si+3 7 93 - (mp 943 * B q'i+6)/(mp"'me)

..
i+6 " m_+2m
p »e

s (mg a5 * my G543+ B 2546) . o)

where i = 1, 2, 3.

It is clear that (s , 5,, 5)) = and (s, Sgs s¢) =R and (s7, sg> s9) -

3

are the center of mass (CM) Cartesiah coordinates of the whole system.-

A similar relatiénship betweén PJ(J=1,2,.--,9) representingvthe momenta

" conjugate to the coordinates (sj,j=1;..-,9) and the momenta Pjo conjugate

‘to the coordinates qj(j=l,;..,9) can be obtained via the point—contaét,
transformation

' o . /[ o8
; J.
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They become

- e
Py TPt pam e Fit6
) . - Te p. .
[m ] m
. = - - +
Pis3 Pi m_+m P i+3 m_+2m Pi+6
P p-e . P e .
m . m,
‘Pie6 P "mm Tiv3s T Emom Pi+6
e "p. e’ p. .
(A2)
i=1,2,3- -
In matrix notation.
o i g
R=AL amd E=4"1p

Using the élassigal,generator F3(Q,p) given by Whittaker,:_L7 the
relationship between the action%anglevvariables and thngartesién_
variasbles ¢ = (x,y,i) and p = (ﬁxgpy,pz), R= (X,Y,Z), k= (Px’Py’Pz)
are obtained fhrough tedious élgebraic ihvgrsidn steps. .The'ang;erqj
may be set initially to any arbitrary wvalue, qMJ is sgt tovg' ffom thé

conservation of angular momentum.

_)' N
With r = rr } i

Pv‘Prvr"'r i1
R=RR
cppe b
P = PR+ —= fl
then /sind .cosq, + A, cosg.sin
[ 510950084y T Ay coSqSingy
f = ‘~cosqcosqy + Al siansinql - " (A3) -

2 .
l—ll singyg
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N » - , . - 1-A1 cosq;y
d ) ~sing; cosqj = A, gong 51nqj . ‘
) : ) . 2
~ 2 =2 - 1-A,7 sing, - (A10)
£ =) cosg; cosq, - A, sing. sing, o (Aak) 1 J :
i I 3 = Ap sing j (ak) .
22 s - A
l.Az s1nqj o . | 1
0
o v : F=1+ 3 =0 for the proper helieity . o (A11)
-sing; sing, + Al cosq; cosqy ) J :
P = | cosq singy + Al sing; cosq 3 .. {a5)
1-32 cosq, - ' . APPENDIX B
’ Deflection Angle for Classical Trajectories
_ Here we shall give a method of obtaining the physically interesting  ::
Sian sinqj - Ae,coqu . quantity of classical séattering the deflection ang1e2 © for the electron—
ﬁl - '—coqu sinqj>- Ag'sian (46) hydrogen atom system. From cla551cgl.mechgn1cs, the deflection angle,
2 ' for the collision of two particles subject to a central force, is given
e cosq 4 1-X :
2 by : _
where ' . : - : . ' T2
' o al ' L e=n-2fdrr‘2 Eo'2 1- %) -r‘g] - (B1)
. Al = (2°-3%+J%) /200 : (A7) e _
. . : . <
A2»= (32-22+J2)/2JJ ' ' o ) . (A8)- where b is the impact parameter and r_ is the classical turning point.
N TN : o Consider the ‘incident electron's direction as the Z axis, for
Nowj=rxp and L£=RxP we have furthérmore: . - . ' ' A
: : : - proper helicity. The initial body-fixed axes are designated as X, Y,
l-Az cosqy - and 2.
B =3 ) 1'A22 singy’ _ ‘ v (59) Upon collision the emergent direction of the scattered electron is
;XE going to be different from the‘ingident direction.

From the dynamics we can write down

X'\ /e ez a3 X _ _
) ={eaxn axpn a3 ¥ (82)
2! 831 83 833
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) » 31_ 32 33
'values of»the numericélly integrated glassical trajectoriés.

L Now it is possiblée to relate Z' = a_ X+ a_ Y + a__Z from the

* " Next ve can constrain X' to lie on the line ofjpddes s0'a),
* this is equivalént_to setting one of the“Eﬁle; anglés to zero.
.} Noy'?eNhQQé the foilowing five éqdations to solve:

=0

‘-‘é.'lj‘_'.a3l ‘9513_‘?3.'3
:?é1a31 ; aéég32_+'ag3a33 =0 Orthogénaiity
) allaél '+> av,13a23vv= 0
,511? + §i3? =1
. _— normalization
a212 * ’?222 * 8‘232 =1

ol

where R =

This is the same result as that obtained by Pack and Hirschfelder.

= 0,..

(B3)

(Bb)

(85)

29
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Here at this point it is of physical interest to note that an_exf

ression between the axes of the Bohr elliptical dfbit_qnd the R and R'

-vectors can be obtained. "

From the ‘action-angle variables before and after the collision.

process; the %, §, 2 axes -of the elliptical orbit;5

"~ -of %, ¥,°%; 2z is .chosen to be the normal of the elliptical plane .of

" orbit in the”right—ﬁand_screw convention.

Hence

g:

y e
e

can be written in

(86)

where UI is'é 3x3 matrix expressed in terms of.action-angle variables
. .

and can be specified at either before or after the co;lision; vt UL .

i

Since R!' = U, R, by means of & unitaryAtransfbrmatibn we have
& [T : : , o

for the final elliptical-orbit coordinates, g':

e i fX
Lk (YE)

Z
£
. £'= 'r]
. - \n

where £ refers to the minor axis

n 'reféré to fhe major axis and points to the perihelion

n refers to the normal of the elliptical;plane_ and ﬁ:évﬁxé,_

Using the notation for Euler angles from Goldsteinl3v(pages 107-109) - .

(B7)

(88)

and the definition for the angle variables from Whiftakef,lT (pg. 349)
we have then
.1 - eos~l (12 S
¢$= 5 +4q;, 0=cos <J) > V= 7 - (B9)_

s
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- . !
/_ —51an.51an } sinqjcoqu
/ < jz ‘ Jz, . .
- + 220 .
j{toqucosqj i 3 (_51an)coqu
| _ ‘ |
coéqjsian | —cosqjcosq;

Jz . .
+ — - .
3 ( 51an)51nq |

- Jz .
+ 3 coqus:anj 5

Jl*(%%oecosqj. | UIj(gfﬁzsinq. .!

d |

(310)

Finally it hay be instructive at this point to sketch the scheme

for 6btaining the deflection angle, using both the analytic solution for

the initial (final) asymptotic distances and the numerically calculated

_trajectories. The sketch of an hypotheticél trajectory is depicted in

Fig. 2, The flowcharf is as follows:

(1) An analytic form r(8) is used from infinity to an appropriate
diétance, dﬁring which'el ig accumulated. -

(2)' The ﬁlassical dynamics, with the appfopriate-semi—clagsical
boundaiy conditions, i.e. action-anglg variables,_arg followea

by the Adams-Moulton™®

'infegrator routine, based on a prgdictor}
.:correctér_methoa.:' . |
(3) After~obtaining:§ia numeficgl meaﬁs the proper final qﬁantum
conditioqs for the'hy@rogen afom, the analytic expression r(6) is

again employed from an appropriate cut-off distance out to infinity,

vhere 6, is theé deflection angle picked up for this region.

(3 2, the_finalﬁveétorial direction of the electron, is measured in

the }' system. In order to arrive at the actual deflection angle

we must transform back to the original body-fixed axes system R

-Th-

~2

angle is readily obtainable.

via the U transformation so Q2T21==g from which the deflection

.APPENDIX C -

Phase-Accumulation Consideration

Since the numefical integration and the asymptotic analytic solution

‘are carried out in Cgrtésian coordinates (p,q) we must transform the

. ! : p . 10
phase of the S-matrix back to the action-angle variables (P,Q)"" for
the proper value of the phase.

From Goldstein®> (pg. 241) the important felatiog is given,

' namelj:

- o =ea g Byl S (1)

We then integrate from tl'to t2 to obtain:

: : o
2
$(PysPy) = ¢(ay,9,) - F2(q,?)|tl | : (c2)
» - t, > > > .
where ¢(q2,ql)=_[t2dt pd and where p=(p,P), a=(r,R)} (c3)
. 1 :

From Whitte.kér's17 F3(p;Q) generator we integrate by parts and

obtain for the direct {non-exchange) phase:

. d/fta ) ;}rtz .
¢ = - at(R-p) - dt r'p’
PyPy Ty ty v

» L t,
+ (rp - fg(?,n,J)}t
' *2 2t
: L 3 0% _
_[JLq2 +JQ; + 3 S ]|to evaluated at tl,pz
t : : '
3,2 o (ew)
370t
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where to'is the starting time for the trajectory

t. is the étart.of the numerical integrétion
t, is the end of the integration -
ot is’therend of the trajectory.
2

-7 .

.. fe(r‘snnj) = (2[ — /2
S s 2(n+3+1)

; (n+J+1) (-;sin 1 ( (l (n+J+1)2) ) .

(n+J+l)

+r] - B2

-J LA + tan_l Lo r-J : . (c)-)

“\2 L re 2,1/2 :

N ;———————é+r> 15
' 2{n+j*¥1)" .

fz(r,ngjj,can be given in closed form for a Coulomb potehfial, for.

more complicated ohes, sﬁch as a Morse potential in three dimensions,
" one must évaiuaté fz(r,n,J) by numerical integration. It is worthwhile
to notevthat by virtue of our static dibole approximation the internal

degrees of freedom of the hydrogen atom do not accumulate phase in

the asymptotlc reglons

The phase for exchange scattering is a little more complicated than

that of the direct .case because the final unperturbed Hamiltonian is. of
a different érrangement from the initial unpefturbedeamiltonian.

Fromvthe géneral rules Qf'classical cénonical transformation we
have v

$(Py5P, ) = #(p0pp) - Fy(ppsBp) + FylpysPy) B (c6)

We shall designate a, b for the final and initial arrangements
respectively. Making use of a Fl[qa(E} qbQZW] generator, where

Fl(qé(f), (%)) is a point trensformation and t is the time of the

~T6~

exchange, it can be shown that f%— ¢(pea,p2b) =.0 so one can choose
dt i . .
- .
t t2.
In this vein; T
- b a_a B
- . b b 2 . _asa .
-] apqg + [ “atpg .. (c1)
f1 L
can be now written as:’
. a, by _ a by _ a8
b, b ; a a V b.b -
*FplaysP) + EopyT g - 2R s (c8)
N
Now 1n Eq (c8) v
a a .
= +
Folay?sP,%) = qg %, + qJ RS T AR AR RN (c9).
and
a a‘= a,a_. &8ja a, _ a a ' .
2Py =aly taypty RyPy + 5Py (c10)

o . b b b b
Likewise forlfz(ql » By ) and Ip, qy -

we have the phase for exchange s%attering:

t

t
b, byl
+(£, (rl ,nl 2y P)- -ry P )

a_a .a, _a_a
'(f2(r2 9n2 aJ2 )'rz p2 )I

e BRI e,

2 - . -
¢ . p = -fto dt(gj,g)b - £ dt_(E'E)b -

*
evaluated at t

At last collecting terms,

(c11)
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