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ABSTRACT 

I. The detection of the ground state nuclear quadrupole coupling 

constants of host molecules via the optically detected magnetic 

resonance (ODMR) of 'the triplet state of the guest is reported here. 

The two systems studied were the. 31i:1r* state of quinoline doped in 1, 

2, 4, 5 tetrachlorobenzene and the 3Il'rr* state of py~azine in 1, 4 

dichlorobenzene. 

II. The important atomic scattering system electron-hydrogen atom is 

studied by two approaches. For the medium high impact energy range, .the 

distorted waves approxi1!lation, in the Eikonal guise, is developed. For 

low .exci tation energies the classical I-matrix formalism is proposed for 

this very . quantum-like system. 

'. ' 

•• 
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OPTICALLY DETECTED NUCLEAR QUADRUPOLE RESONANCE AND TRANSFERRED 

HYPERFINE COUPLING IN MOLECULAR CRYSTALS 

A. Introduction 

Recent optically detected zero field electron spin resonance 

experiments on 31T1T* and 3nn*3 states of aza..-aromatic ~ompounds doped in 

molecular crystals have provided the triplet zero field parameters, 

nuclear-electron hyper fine interactions -and the first measurement of the 

14 35 37 I" t t 4,5 excited state N and ' Cl nuclear quadrupole coup lng cons an s. 

In the above experiments only intramolecular interactions have been 

consider_ed~ However, in molecular crystals the importance of intermole-

f ""t - 6 cular interactions is evident in the transfer 0 energy Vla eXCl ons 

and in the external heavy atom effect on phosphorescent radiative and 

radiationless decay,7 to cite only two examples. It is therefore not 

surprising to expect the triplet wave fUnction of an optically excited 

guest molecule to overlap the ground state wave function of the adjacent 

host molecules in doped molecular crystals and therepy transfer a small 

but finite spin density to the host. This phenomenon, which we will 

-refer to as transferred hyperfine, has in fact been observed in the 

proton ENDOR of organic triplets by Hutchinson, et al. B and in carbon-13 

and deuteron ENDOR by Kwiram et al. 9 We wish to report here positive 

evidencelO for transferred hyperfine to 35Cl and 37Cl nuclei and an 

additional phenomenon which results from guest to host transferred 

hyperfine, specifically the detection of the ground state nuclear 

". quadrupole coupling constants of the host molecules via the optically 

detected m~etic resonance (ODMR) of the triplet state of the guest. 

The two systems studied were the 3nn* state of quinoline doped in 1, 2, 

4, 5' tetrachlorobenzerie and the 3nn * state of pyrazine3 in 1,4 dichloro""' 

benzene. 
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B. Experimental Section 

Next we shall give a brief description of the experimental equip-

. " t 11 ment and procedures for the ESR experlmen, The basic experimental 

set-up is shown in Fig. 1.11 The sample is mounted inside a helical 

slow wave structure which is attached to a rigid stainless steel coaxial-

line suspended in a liquid helium dewar. A PEK 100-watt mercury short-

arc lamp is used as the radiation source. To filter off high. frequency 

components a combination of Corning glass and solution filters
12 

were 

placed at the output of the lamp. As it is shown in Fig. 1, the 

phosphorescent radiation is collected at a right angle to the excitation 

source and focused through an appropriate Corning filter in order to 

remove the scattered radiation and finally is gathered onto the entrance 

slit of a Jarrel-Ash model 4B-490, 3/4 meter Jarrel-Ash spectrometer. 

The emergent light signal is detected with an EMI 955BQB photomultiplier. 

The output of the photomultiplier is connected to a Keithley model 

610CR electrometer through an adjustable load resistor; the cathode of 

the photomultiplier is maintained at -lBoov by a Fluke 415 B power 

supply. Then the output from the electrometer is connected to a PAR 

model HR-B lock-in amplifier. The output of the lock-in amplifier is 

co=ected to the y axis of a Hewlett-Packard model F035B recorder; the 

ramp voltage from the microwave sweep oscillator ,drives the x axis. A 

Hewlett-Packard sweep oscillator model B690B equipped with plug-in units 

from the range of 0.1 to IB GHz is employed for the microwave field. 

The microwave radiation is monitored through a directional coupler, and 

band-pass filter, and an isolator to the rigid co-axial line where the 

microwave helix is mounted. For signal-detecting purposes the microwave 

sweep oxcillator can be amplitude modulated with a Hewlett-Packard 

model 211 AR square wave generator, which is also co=ected to the 
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Fig. 1. Exper-imental arrangement for optically detected electron 
spin resonance in zero magnetic field. 
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reference channel of the lock-in_ amplifier. The helium dewar can be 

pumped to 1.75°K below the A poin~ to avoid bubbling,with a Kinney model 

KTC-21 vacuum pump. The zero field ESR experiment then is conducted by 

observing the change in the phosphorescence of the sample while sweeping ~ 

the appropriate microwave region. 

C. _ Basic Development of the Triplet-State Hamiltonian 

Since we are operating under the condition of zeroexte:r:nal magnetic 

field_, the complete quantum mechanical Hamiltonian13 needed to describe 

the ODMR spectra can be formulated as follows. 

(1) 

where HSS represents the spin-spin interaction between the two unpaired 

spins, HQ is the electric quadrupole interaction between the nuclear 

quadrupole moment and the field gradient of the external charge distribu-

tion at the nucleus, and ~ the magnetic hyperfine interaction between 

the nuclear spin and net electron spin. It is interesting to see, that, 

by Virtue of the electro- and magneto-static natures of the-interactions, 

all- of the _above three Hamiltonians can be written in dyadic or tensorial 

notation -and hence can be diagonalized. A brief review is given below to 

describe the explicit form of each term of the Hamiltonian and the 

resulting eigenvalue relationships. 

HSS is primarily the magnetic dipole-dipole interaction between the 

unpaired electrons in the excited triplet state; the spin-orbit coupling 

contribution in the zero field splitting has been calculated29 to be 

small in value and hence can be neglected. 

Transcribing the classical interaction between two magnetic moments 

13 into the quantum mechanical language, we have then 

3(S.J, ',t:)(SZ • .t) 

r 5 

• 

,,-
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where ge is the anomalous electron g factor, which has been found to be 

:asically isotropic for aromatic triplet states and to equal to the free 

electron value of 2.00232, Be is the electron Bohr magneton, eh / 2Mec . 

In tensorial notation, we have 

H =S~n·s 
SS - 1& -

where ~ is a real symmetric tensor and whose nine elements are given by 

D 
xy 

(4) 

and so forth, where we have assumed that the two electrons are fixed in 

space and the average then is taken over the triplet state electronic 

wave-function. 14 The Hamiltonian HSS can be readily diagonalized in a 

principal axis system. Thediagonalized form HSS is: 

-x S2 
x 

where -X = Dxx' -1 = D , and -Z = D are evaluated in the new princi-
yy zz 

pal axis system. Using LaPlace's equation as a constraint, in conven-

tional ESR usage the Hamiltonian can be written as 

H = D(S 2 _ 1 S2) + E(S 2 _ S 2) 
SS z 3 x Y 

where the famous D and E parameters are prescribed as: 

D 

E 

-43 g 20 2 
e ~e 

(6) 

2 
But as we all know S 2 for the triplet state, so finally in a neat 

form: 
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(8) 

Next we shall treat the electric-quadrupole interaction. From the 
. .. 16 

Wigner-Eckart theorem, a nucleus with spin greater than or equal to 

one has a non-vanishing electric quadrupole moment. From basic electro-

statics, then there is an electrostatic interaction between the orienta-

tion of this quadrupole moment relative to the electric. field gradient 

due to external charge distribution, which in the case of a free molecule 

arises principally from non-S electrons. To convert the classical 

electrostatic Hamiltonian to a quantumrmechanical one, one invokes the 

16 
Wigner-Eckart theorem again, and uses the Racah coefficients to 

eValuate the coefficients of the reduced matrix element of the quadrupole 

interaction, one can show that the following expression (using the tables 

in Condon andShortley17) can be obtained 

where 

Q =il~rr 

the nuclear quadrupole moment, (length)2, a and B 
(l2V 

nuclear spin quantum number, and Va,S = (laas 

(x, Y, Z), I is the 

Since HQ is a symmetric tensor, one.can express the Hamiltonian in 

terms of the axis system which diagonalizes the quadrupole tensor 

e gQ 2 2 2 2 2 [ 
HQ = 41(21-1) (31z -I ) + n(1x -1y )] (10) 

(l2V 
where eq = --- = V or n 

(l 2 Z,z 
z 18 

in NQR spectroscopy. 

V - V X,x y,Y 
V Z,z 

is the usual asymmetry parameter 

Finally, one can use LaPlace's equation, Lv a a,a 0, to reduce HQ 
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to: 

3 2 3eQV .. .E £. I. " where £. '" "77-:-::O'='~~'~~~ 
i=l ~ ~ ~ 6(21-1)1 

(ll) 

which appears in the same canonical form as the zero-field Hamiltonian, 

It is noteworthy to point out that the V .. are.the principal 
~,~ 

values of the quadrupole tensor. 

Since the magnetic-dipole moment is an axial vector, a permanent 
. 1 

magnetic dipole exists in nUclei with spin ~ 2. The interaction of the 

nuclear magnetic moment with the electron magnetic moment, from classical 

E & M, leads to both anisotropic dipole-dipole interaction and the 

Fermi contact interaction. 14 The dipole-dipole interaction
14 

between 

the nuclear moment and the electronic spin may be expressed as: 

I . ~ 3(I· ~)(~ . ~) 
--3-' - r5 

r' 

(12) 

where gn is the nuclear g factor, and 8n is the nuclear Bohr magneton. 

The above Hamiltonian can be written in dyadic form as before for 

the zero-field and quadrupole cases. In fact ~= ~ • A • I may be 

expanded as before. The A matrix is symmetric and therefore, in its 
'" 

principal axis system, may be written as 

~D =A S I + A S I + A S I 
HF xx x x yy y y zz z z 

where 

+ C 

where 

a = (x ,y, z) 

and 

c = 8n h2 1"'(0) 12 3 Ye Yn ..... '. 

the Fermi contact term treated simple here as an additive constant; 

(13) 

IljJ(0)1 2 is the electron density at the nucleus, ljJ having a S orbital-like 
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symmetry; Yi are the conventional gyromagnetic ratios. 

D. Hamiltonian for Quinoline. the Model Case for Triplet State 

Since we used quinoline as the guest molecule for both of our 

experiments, it would behoove us to work out the complete Hamiltonian 

for this molecule subjected to the zero-field experimental conditlon. 

To be realistic and simplistic in our model we' shall state the 

.. II 19 . 
assumpt~ons ' made and the reasons for them: 

(1) The principal axes of HSS ' HQ, HHF are coincident with the. 

molecular axes. 

(2) To first order only the out of plane component of the hyperfine . 

Hamiltonian is taken into account. 

(3) Since the Bohr magnet on of the proton is 1836 times smaller 

than that for a free electron, the hyper fine interaction due to them can 

be considered as a second order interaction and has a magnitude less 

than 0.1 MHz. 

Assumption (1) is justifiable on the grounds that since the 

nitrogen lone pair orbital lies on the z axis, then one of the principal 

axes of HQ would be in this direction. FromESB spectra Maki20 found 

that the nitrogen lone pair direction and thez axis were within a few 

degrees apart. 

Assumption (2) can be justified by single crystal ESB measurements 

on quinoline by. Vincent and Maki20 where A »A A for the 
xx yy' zz 

nitrogen hyperfine interaction. The spin Hamiltonian for the quinoline 

molecule may be written for the axis system depicted in Fig. 211 as 

H x S 2 _ Y S 2 _ Z S 2 + E I 2 + E I 2 + E I 2 + A S I 
x Y z xx yy zz xxxx 

(14) 

which can be decomposed into two parts 

(15) 

". 



where 

t 
i=l 

A 8 I xx x x 
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(16) 

We shall use for our basis states' the product functions I CL/3) = a
1l

82 , 

which are the eigenfunctions that diagonalize H88 and H
Q 
.. a,8 refer to 

the electron and nuclear spin functions respectively; .ll = (X,Y,Z) and 

v = (x,y ,z). 

The effect of the various operators, 8i
2

, Ii2 can be easily found 

from the usual angular momentum operator relationships.ll,19 In this 

way HO = H88 + HQ is readily obtained and ~ is then treated asa 

first-order perturbation; terms·A IS, etc. are second order in nature. yy y y 

The complete Hamiltonian is then a 9x9 matrix as shown in Fig. 2, where 

the in-plane hyperfine elements, though negligibly small, have been 

included. The eigenvalues for this matrix, within our out-of-plane 

hyperfine perturbative approximation can be solved trivially via 

diagonalizing only 2x2 matrices. The results, from 2nd order pertur­

bation theory are shown in Fig. 3.
11 

From the center of gravity rule in 

perturbation theory, the energy of the states I Zz) and I zy) are shifted 
A 2 

by an amountS, where 8 = . ~z ,while the states I YZ) and I yy) are 

shifted by an amount -8, which is to be expected. Since Axx ~ 20 MHz, 

-10-

y~ 
z 

xx XY XZ YX YY YZ ZX ZY Z.Z 

X+x -Azz -Ayy 

X+y Azz 

X+Z Ayy 

Azz Y+X 

-Azz Y+y -:oAxx 

Y+Z Axx 

Ayy Z+X 

Axx Z+y 

-Ayy -Axx Z+Z 

and Y -Zl ~ 1000 MHz we can make· the approximation X B L 7012 _ 7270 

'z:yl 
and 

For the spin states which are coupled by the Axx component we have 

then the follow1ngresults summarized below in Table I: 

. Fig. 2. Hamiltonian matrix for triplet :plus one ~ 

nuclear spin. 
1 
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':'able 1. 

/YY) - AIZz) • A IS xx x x • IZz) - AIYY) 

• A I S xx x x Izy) -Alyy) 

where 
A 

A= y~ '" 0.02 

So the Ixv) manifold in our approximation is left unaffected. Inclusion 

of other hyperfineterms would surely bring a myriad of other possible 

transitions. 

E. Radiative Transitions and Relative Intensities 

In this section we will consider the ODMR spectra ~hen microwave 

radiation is applied to the sample. We shall see.the import~ce of the 

hyperfine term,for it is the sole means of coupling the electron and 

nuclear-quadrupote Hamiltonians. 

From time-dependent perturbation theory transitions between magnetic 

substates are caused by the magnetic dipole transition operator defined13 

by: 

where ~(r) is·the spatial dependence of the magnetic field of the 

microwave radiation; a is some arbitrary phase angle; Yn ' Ye are the 

nuclear and electron gyromagnetic ratios' respectively. 

(17) 

From Fermi's Golden Rule21 the intensity of the transition from one 

magnetic substate to another is: 

(18) 

Using the conventional angular momentum operator relationships, we 
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find the selection rules for the nuclear and -electron spin transitions 

in the zero-field picture to be: 

(1) The electron spin magnetic dipole operator, H(r,t) • (yeS), 

will induce transitions for states where I lJ2-lJl I = 1, alidlV2-Vll = O. 

(2) The nuclear spin magnetic dipole operator, H(r,t) • (yAI), will 

connect state~ forwhichl1l2-lJll = 6, and Iv2-v11= L 

Sege Sngn . .., 
From the fact that ye = -h-- » yn = '""1l""" ' a s~mple nllll!erical 

calculation will show the following hierarchy for the relative inte!,!si ties 

of the three possible kinds of transitions where 

1. I lJ2-111 I 1 and Iv2- vl l 0 

2. IlJ2-lJl l 0 and Iv2- vl l = 1 

3. I lJ2-111 I 1 and I v2-vl I 1 

Without the hyperfine perturbation, the respective relative 

intensities are: II e;106, 12 e; 102 , 13 e; O. 

Considering only the out-of-plane 

get the new relative intensities to be: 

byperfine component .ADlxSx' we 

I' e; 106 I' e; 103 I' E!! 102 
1 .' 2 ., 3 . 

It is important to .note that the intensities can be described only. in 

relative magnitudes, since there are competing rates of radiationless 

22 decay to the TO' triplet zerO-field manifold, which render the 

population of the various levels to behave in a non-Boltzmann manner. 

It should be .noted that it is necessary to have a hyper fine interaction 

in order to observe the nuclear qtiaar'upole satellites, which. arise from 

the first-order perturbed eigenfunction. 

To confirm the assignment of the ODMR spectra and to improve on 
.' 15 

energy resolutions, electron nuclear double resonance (ENDOR) experi-

ments can be performed. (For a detailed description of the experimental 

procedures involved, the reader is encouraged to consult Mike Buckley's 

h . 11) t es~s .. EN'I>OR transitions are shown in Fig. 3 as double arrows and 
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they correspond to transition of the type: 

Proceeding in the proper usage of the magnetic dipole operator, as 

shown by Harris 5 etal., we have for the above transition the intensity 

as 

(19) 

There are then two types of ENDOR transitions pos~ible in quinoline. 

We have in our laboratories observed an ENDOR transition23 - 3.1 MHz 

while saturating the Yz)+ Zy}satellite. (Data is from 10-3 M quinoline 

in Durene at 1.6°K in the 0-0 phosphorescent emission.) 

We summarize all the transitions expected for the three zero-field 

transitions in terms of the components of the total Hamiltonian in 

F · 6 11 ~g. . It is obvious that the separation of the quadrupole satellites 

for the X ->- Z and Z +Y transitions is 2(z-y) and hence the nuclear 

quadrupole transition
18 i eqQ(l j) is obtained. Theoretically the 

important physical quantities e2qQ and 11 can be obtained independently 

provided other hyperfine tensor element are large enough to enable other 

ENDOR transitions to be observable. Lastly, the value of the hyperfine 

coupling constant Axx can be trivially obtained from the separation of 

the two allowed components of each of the three transitions among the 

triplet manifold. 

F. Guest-Host Interaction Phenomena 

The above theoretical treatment agrees exceedingly well with the 

experimental data for quinoline in durene in the zero-field ESR frame-

work. However, when 1,2,4,5 tetrachlorobenzene is used as a host, 

addi tional transitions, which cannot be explained using the above 

Hamiltonian, are observed. The same phenomenon was also observed for 
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pyrazine in paradichlorobenzene. 

All materials were extensively purified and single crystals, 

lO-2m quinoline and 10~3m pyrazine in tetrachlorobenzene and paradichlor-

obenzene respectively were grown by Bridgeman refining techniques. 

Quinoline was detected using continuous wave techniques ,while pyrazine 

was detected using 20 Hz ,amplitude-modulation of the microwave field. 

All experiments were performed at 1.75°K while optically detecting the 

emission to the (0,0) state of the guest. 

. 10 10 I I I I Flgures 4 and 5 show the 2 E and D + E zero field trans i-

tions24 for quinoline and pyrazine respectively. The quinoline spectrum 

consists of a main peak at 1009.0 MHz flanked by a pair of satellites 

split symmetrically from the main peak by 37 MHz. The satellites are 

13 MHz wide at half height and show some poorly resolved structure. The 

spectrum of pyrazine consists of a main peak at 9708.1 MHz and two pairs 

of symmetrical satelli tes split 27.0 MHz and 34.8 MHz from the center 

peak. Each has a width at half height of 7 MHz. The above results can 

be understood19 in terms of intramolecular and intermolecular 

interactions. 

The extraneous peaks suggest a chlorine/quadrupole interaction. If 

the overlap integral of the triplet state electronic eigenfUnction and 

the eigenfUnctions of the adjacent host molecules is non-zero then 

chlorine quadrupole and magnetic hyperfine interactions can take place. 

The Hamiltonian containing these additional interactions for the 

quinoline in tetrachlorobenzene system is 

H H H N + ~+ Hel + ~ = SS + Q HF Q -~F (20) 

where HSS' ~ and ~ have been given in a previous section, and 
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(D (D (D 
en en en 

-16-

I I I I 
0 0 0 0 
0 N ,.,., 
0 0 0 0 -

Frequency MHz 

Fig. 4. 

... _---- ---

I 
0 
o:t 
0 

CI CI 
in 'r'()f' 
CI~CI 

I I 
0 0 
10 (D 
0 0 

~ ~ in 
N 

CI 

CI35 

Cl
37 ~ 

I I I I I I I 
0 0 0 0 0 0 0 
0 N ,.,., o:t 10 (D 
..... ..... ..... ..... ..... ,.... 1'-
en en en en en en en 

Frequency MHz 

XBL 709-6566 

Fig. 5. 

Zero-field ESR spectra showing guest-host interactio;l. 

", 

.. 



:" 

a) Tx~Tz 
110 = z-x 

b} 'l"'x -'7:y 
110 = V-x 

Ji>-(Z-y)-,8 

c) '(y:-+ '(Z 

110 = Z - Y 

~17-

1I0+(Z-Y)+,8 

. 110+ (z-y) -,8 

110+ 2 ,8 

XBL 7012.7267 

Fig. 6. ODMR spectra predicted for the energ'," level diagr8.I:1 
shown in Fig. 3. 

CIQCl eq 
12 

-18~ 

[ ] 
2 Cl Cl [ ] 

3m
2 

-Y + e q 2~ n I~ -1: 

I+, I are the standard raising and lowering operators, and 

HCl = A Cl L (I 8 -1-8 ) 
HF xx 2i + x x 

(21) 

(22) 

Implicit in the above Hamiltonian are the following three assumptions: 

(1) The interaction with only one chlorine nucleus need be 

considered; 

(2) The principal axes of the chlorine quadrupole and hyJ>erfine 

tensors coincide with the axis system for quinoline in durene employed 

by Buckley, Harris and Mald; 5 

(3) To first order, only one component of the chlorine hyperfine 

Cl interaction, the out-of-plane component Axx' need be included. 

In regard to assumption (1), interaction of the resultant electron 

spins with more than one chlorine nuclear spin would make possible 

simultaneous electron spin and two chlorine spin transitions. This would 

produce wings split off from the center frequency by approximately twice 

the pure quadrupole frequency of the host. However they would probably 

be extremely weak,. being second order in nature. 

Assumption (2) is justified in that the use of a .coincident axis 

system for the chlorine quadrupole and hyperfine interactions gave 

calculated results in agreement with the observed spectra, within experi-

mental error. 11 In fact Buckley, in unpublished work, has rotated the 

'\ axis system by as much as 15° and found that it would produce no 

observable effect on the spectrum. 

Assumption (3) is made reasonable by noting that the major overlap 

of the n system of quinoline and surrounding host molecules is most 

likely to be perpendicular to the plane of the quinoline molecule. 
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.)i Cl From consideration' of the states mixed by both '1iF and HHF' four 

-::.-;;es of transitions between the electron spin 'manifolds can be 

classified using the magnetic dipole transition operator. These can be 

described as: (a) elect;on spin t~ansitions, (b) simultaneous electron 

spin and nitrogen nuclear spin transitions, (c) simultaneous electron 

spin and chlorine nuclear spin transitions, and (d) simultaneous .elec~ 

tron spin, nitrogen nuclear spin and chlorine nuclear spin trans i tions • 

In terms, of the above model, the 37 MHz wings observed in the 

spectrum of quinoline in 1,2,4,5-tetrachlorobenzene ~e accounted for as 

simultaneous electron spin and chlorine nuclear spin transitions. The 

_~dth of. these transitions is probably due to the presence of non­

equivalent chlorine sites which broaden the C135 and C137 transitions to 

the extent that they all overlap, forming one broad peak. 

Consider now the chlorine nuclear quadrupole and chlorine trans-

~erredhyperfine resulting from inte~olecular interactions. In zero 

~ield the ~rst order chlorine splittings of the host on the zero~eld 

transitions of. the guest are independent of the orientationl3 of the 

host's principal field gradient tensor relative to the zero field tensor 

of the guest. Second order energy shifts of the chlorine satellites can 

occur but these are expected to be less than a few tenths of a MHz since 

they are dependent upon a very small transferred chlorine hyperfine 

interaction. If the chlorine asymmetry parameters are zero, the 

separation of chlorine satellites in Figs. 4 and 5 are simply the 

nuclear quadrupole coupling constants of the chlorine containing host 

molecules in the ground state. This is borne out by· a comparison of the 

known 35CI nuclear quadrupole transitions for tetrachlorobenzene25 

(77°K, 36.8 and 36.9,MHz) andparadichlorobenzenell ,26 (nOK, 34.78 MHz, 

4°K, 34.8 MHz). Thus it is important to stress that the chlorine 
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satellites acquire their intensity by transferred hyper~ne. This then 

is positive evidence for such kinds of interaction. The most serious 

drawback of the method appears to be the line-widths of the chlorine· 

satellites. In tetrachlorobenzene the line width probably results from 

multiple chlorine sites due to non-isomorphous 27 substitution of the 

guest and possibly from crystallographic twinning. 28 The. spectrum of 

pyrazine in paradichlorobenzene exhibits narrower chlorine satellites to 

the extent that the 35Cl and 37Cl isotopic s~littings are resolved. 

This is consistent with Kwiram's3 low field optically .detected ESR 

study which reports a two-site SUbstitution of pyrazine in paradichloro-

benzene. 

In conclusion, we have here determined the ground state nuclear 

quadrupole coupling constant for the chlorine-c'ontaining host by 

observation of this transferred hyperfine coupling mechanism. 
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II. ELECTRON-ATOMIC HYDROGEN SCATTERING: TWO APPROACHES 

A. Introduction 

1 The excitation of atomic hydrogen by electrons has received much 

more attention from research workers than has the excitation of any other 

atomic species, due to the relative simplicity of the system and the 

availability of accurate free-atom wavefunctions •. The second half of 

this thesis will be directed toward this direction. Two approaches will 

be adopted: (1) the distorted waves approximation is developed for the 

mediumly high excitation energy range of between 50 and 150 electron 

volts (eV) (2) the recently innovated classical f-matrix formalism2 is 

employed for low impact energies below a Rydberg (13.6eV). The process 

Is .... 2s, 2p are studied principally in each formalism. In both cases we 

shall state explicitly :the limitations and validity of the physical 

approximations involved. 

B. Historical Review of Some of the Approximation Schemes 

in Electron-Hydrogen Atom Scattering 

In this section we shall briefly mention a few of the basic methods 

that have been employed for the e--H problem. 

The e--H system is essentially a helium-like system whose 

Schrodinger wave equation is 

(1) 

where ~ is the reduced mass of the whole system and can be approximated 

by me' the mass of a free electron; rQ,r
l 

are arbitrarily chosen as the 

coordinates of the target and incident electrons, respectively. From 

now on we shall adopt the familiar atomic-unit system(3) where me = h = 

e = 1. 

The simplest,. and good to first order for high energies and weak 
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potentials, is the first Born approximation,l the first iterated solution 

to the integral equation of wave-scattering· solved with the Neumann se-

ries. The exchange amplitudes calculated in the plane-wave approximations 

are usually less satisfactory than the plane-wave direct amplitud~s. The 

most common form of the plane-wave appro~;-Qt;on t th ~ • 0 e exchange ampli-

tude is the Born-Oppenheimerapproximat. ion. Th . e exchange ~li tude is 

considerably more difficult to evaluate than the direct amplitude because 

of the non-orthogonality of the two hydrogenic wavefunctions with differ­

ent coordinate designation and the electron-electron interaction term. 

For the Is .... 2s,2p excitations, closed analyti.cal· expressions for the ex-

change amplitude have be.en obta;ned b· y C . ald· d T 5 • or~n es~ an rainor using 

the Feynman parametrization technique. 

Some other plane waves method that have been devised are higher­

order Born approximations; OChkur-Rudge6 technique and a variant of the 

Born-OppeIiheimer approximation employed by Bates, 7· Bassel, Gerjuoy, 7 and 

Mittleman. 7 For the ls .... 2s,2p excitation problem very accurate calculations 

have been made by P. G. Burke and his c~horts.8 In ·this approach the 

transmission matrix elements are obtained by means of the exact solution 

of the coupled integro-differential equations using numerical procedures; 

the order of the approximation depends upon the atomic states which are 

retained in the expansion of the total wavefunction, ,I, (r r) 
'l'total Q' l· The 

anomaly-free variational technique on the electron-atom scattering prob-

lem has showed much promiSe by the recent calculations by R. K. Nesbet".9 

Finally, the distorted wave technique has been used earlier by 

Erskine and MasseylO and OchkurlO in the excitation of the 2s state of 

hydrogen. The distorted-waves method differs chiefly from the plane­

waves theories insofar as it takes into account the distortion of both 

the incoming and outgoing waves by the static atomic potential. HOI-lever, 
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the use of the second or higher order terms of the Born series makes 

;;;artial allowance for this electronic distortion. From physical 

intui tion, this distorted effect becomes more prominent as the relative 

~inetic-energy decreases. The formalism of the distorted-waves method 

is flexible in that it allows one to generate the approximate wave-

functions by whichever techniClue is best suited for the problem. 

Erskine and Massey obtained their distorted-waves by a variational 
I 

method, while Ochkur calCulated his partial waves by accurate numerical 

integration. Recent distorted-waves calculations by Shelton et al. ll 

showed that they arrived at their distorted wavefunctions by numerically 

integrating outward the various. partial waves in a static atomic pot en-

tial. As we shall see, the distorted waves in our approach are invoked 

in the Eikonal spirit, since we are concerned with medium-high impact 

energies from 50 eV to 150 eV. 

C. Transition Matrix Elements for Distorted Waves 

In this section we shall give a brie.f formulation for the distorted 

waves treatment and the derivation of the transition matrix element in 

this physical picture. This is given in most standard references and we 

shall adhere to the notations in Messiah's book. 12 

(2) 

where i, f denote the initial and final channels respectively and V is 

the total interaction potential 

Wf,Wi are called the primary interactions; Vf , Vi are called.the final 

and initial state interactions respectively. 

Next we shall make the assumPtion that we know the eigenfunctions 

for the Hamiltonians 

H. 
J. (4 ) 

So 

H.X. (±) = EX. (±) and HX (±) = EX (±) 
J. J. J. f f f 

Distorting potentials Ui and Uf are suitably chosen so that the wave­

functions of Hi + Vi and Hf + Vf can be obtained exactly. (±) notations 

represent the usual outgoing and incoming boundary conditions. for the 

scattered waves. Hence Wi and Wf are the residual interactions in the 

initial and final channels. 

The transition matrix can then be written in the Goldberger-Gell­

Mannl3 two potential formula as 

where 

Tf + i 
= (,If} / V -W. / x. (+ ) ) + ( I/J ( -) / W. / x. (+» 

f f J. J. f J. J.-

, = (X (-) / V. -W / ~ > + (x (-) /w / ,1, (+) '\ 
f· J. f i· f f ~ I 

lji (+) = 
i 

~J.' + 1 V.1/!. (+) 
E.-H.+iE J. J. 

J. J. 

ljif(-) = ~ + 1 V lji (-) 
f Ef-Hf+iE f f 

are the respective Lippmann-Schwinger equations~3 For the distorted 

waves apporach we make the approximations that 1/!. (+) ~ 
J. 

(6) 

(7) 

(8) 

(9) 

for a system A+B + C+D, the initial and final state interactions U U 
f' i 

can only generate elastic scattering, so for excitation processes 

(10) 



Thus 

For inelastic collisions. 

DW 
Tf + i 
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(ll) 

It is interesting to compare wi ththe ordinary Bbrn approximation 

where 

(12) 

The differe:ntial cross section is given by the expression' 

where 1'1' . Ce) .is the scattering amplitude and is related by the usual 
+~ 

way to T~i' i.e., 

(14) 

Since the--'spins of the. bound and free electrons are omitted, the 

differential cross·-sections for the excitation processes are given by 

the familiar expression readily derivable from Fermi statistics: 

where l' (e) and l' (e) stand for the direct and exchange amplitudes 
D E 

respectively. For the IS+2p process one just sum over the cross 

sections for the three magnetic substates: 

als+2p 

+1 
L als ,2p)J . 

)J=-l 

(15) 

(16 ) 

The following assumptions are made in regard to the formulation of the 

distorted Eikonal waves: 

(1) The bound hydrogenic wavefunctions used in the Hartree field 

~i -28-

approximation are not distorted by the free electron. This is valid 

. . 14 
since the Eikonal approx~mat~on is of an impulsive nature, in which 

the translational velocity is much greater than the internal velocities. 

(2) The distorted wavefunction is written as a simple product of 

a bound hydrogenic wavefunction and a plane wave whose phase is 

perturbed by the Hartree field, but whose amplitude remains unchanged. 

For higher order Eikonal approximation the amplitude dependence can be 

properly accounted for. 

( 3) The z axis, in the Eikonal tradition, will be chosen as the 

direction of the oncoming electron. 

(4) We shall make no correction to the curvature of the actual 

trajectory in the model; the trajectory is to be evaluated by a straight 

line. It should be noted that the Eikonal approximation covers a 

larger range of angles than for the Born approximation. 13 

In this way we can write our initial channel distorted wave-

·function as 

where C is an appropriate normalization constant; Vi is.the asymptotic 

Hartree field experienced by the oncoming electron;blis the initial 

impact parameter vector; z~ is the incident direction vector; r~ is the 

radial vector from the origin (in this case the proton) to the incident 

1 d ·· b 2 b 2 2 e ectron an ~s g~ven y r l = 1 +zl . The hydrogenic wavefunctions 

used throughout are found in Pauling and Wilson,15 pp. 132-139. In the 

same vein, for direct and exchange scattering the final channel 

distorted wavefunctions may be written as follows: 

Direct scattering: 

Jf:: U~(bi,zi)d;l) 
(18) 
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(2) Exchange scattering: 

(19) 
where (rol1jJn>,<rll1/Jn) denote the final excited hydrog~nic states (in 

our case,(2s and ,2p); U/, uf
II are the final asymptotic Hartree 

potential felt by the emergent electron. The coordinate system used is 

shown in Fig. 1. 

/' 

From Eq. (1) we see that the initial total Hamiltonian H can be 

partitioned into two parts H = Hi + Vi where 

and (20) 

V. 
J. 

The above quantum-mechanical Hamiltonian can be carried over 

exactly classically. This is done in the next part of the thesis, where 

the classical Jf-matrix formulation of the same problem is explored. 

For a reasonable approximation we shall use the Hartree potential16 

for our, Ui and U f the initial and final state interactions. The Hartree 

potential, being spherically symmetric, is especially suitable in view 

of the symmetry of the total Hamiltonian. Needless to say refinements 

can be built into the Hartree potential which take into account 

polarization effects. For atoms with more than one electron, electron 

,~, correlations should be introduced in the total electronic wavefunction. 

In general one calculates the spherically averaged Hartree potential 

U. seen by each eiection r. by averaging the potential produced by the 
J. J. 

other bound electrons and the nucleus 

I 
I 
I 

I 
/ 

\ , 

Bound 
electron r, - ro 
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Projectile 
electron 

;' ;"~--------~~~~~~--------------------------~~~ ...... 
/ 

/ 
I ro 

/ ~ 

I 
Proton I 

I 
I 

/ 

... -

Fig. 1. Coordinate system for electron-atomic 
hydrogen system. 
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(2l) 

where Z is the atomic number. 

The Hartree equations in matrix notation 

are coupled differential equations; II the reduced mass. The solutions 

U
i 

are obtained by usual methods of numeri.cal integration and self-

consistency is used as a criterion. 
, - (+) - (-) 

The Xi and Xf in our 

distorted wave formulation are in fact the first guess for the Hartree 

equations of .the initial and final channels. For the hydrogen. atom-

electron system, they ought to be very accurate. 

One would expect, that after the first iteration 

= i(±) + e:x(±) 
i,f i,f 

(23) 

and e:, a small number, can be determined via numerical methods ~ From 

now on we shall ,drop the over-bar on the approximate distorted wave-

functions. Hence our distorted-wave transition matrix ~. can' now be 
.L'<-1 

expressed as: 

~W = (x(-) 1-'1- + 1 
f+i f r Ir -r I , 1 1 g 

(24) 

In the case of exchange scattering, either the prior or post form 

of the residual interaction may be used, therefore the residual inter-

action is the s.arne for both the exchange and direct cases. 

D. Evaluation of Hartree Potentials 

We shall now work out the simplest case for the hydrogenic-Hartree 

potential, that of the ground state 18, since it is present throughout 

thep'rior residual interaction operator Wi' The other Hartree potential 
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up to 2p are listed in Table 1. 

To evaluate the matrix element 

We set r g as the polar axis and use the standard expansion in Legendre 

. polynomials 

n 
00 I' 

. E:+l 
n=O r;, 

P (cose) 
n 

where r:> = greater (r 1 ,r 0); r < = smaller (r 1 ,r 0); e is the' angle 

between rgand r
1

. 

The orthogonality relationship 

~ P (cose) P (cose) d(cose) = 2n2+l 0 o n m nm 

gives us the desired result 

. (26) 

(28) 

As we can see the above integral would have more terms in it when' 

higher orders of Legendre polynomials are introduced with orbitals of 

higher angular momentum. For the Hartree potential ,of the 2p states it 

is necessary to select an axis of quantization for the magnetic 

substates and to use the more general expression 

As expected from electrostatic multipole expansion we obtained an 

angular dependent Hartree potential. The results are listed below in 

Table I. 



Table 1. 

1/1. 3. 

Is 

2s 

2po 

_e-rl [(r12X~ + 2 

+ @ + 2 cos
2eJ + (~l 

2 
- -3 -

r
l 
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. 2 3 . 2 (s3.n T I)' 
- --3 Sl.n el 2 

r l cos Tl 

Interestingly enough the Hartree potential for the p lobes has a 

quadrupole-like asymptotic tailS,lS to it. -This is to be expected from 

the geometrical shape of the p orbital; hence upon multipole expansion 

there should be higher terms than just the £=0 component. Also the 

average position of the 2p eiectron is farther away than that for Is or 

2s becaUse of its finite angular momentum. Thus physically we would 

"expect the cross section for the Is+2p process, whic,h corresponds to an 

9ptically allowed transition to be greater than for the Is+2s excitation, 

which is optically forbidden by parity. This fact and the difference in 

angular distributions for the two processes have been borne out by 
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various calculations. 8 ,18 

To improve on the description of the initial asymptotic atomic 

potential we could have added a polarization potential of the form 

where C:t is the, ground state polarizabilityfor hydrogen atom and is 
9 
"2 A. U.; r 0 is an arbitrary cut-off distance; n is chosen to be, usually 8. 

But we feel that the additional effect ought to drastically 

decrease at small angles and at high energies, where the Eikonal way 

prevails. Hence we neglected this term. 

E. Further Development of the Transition Matrix 

The case of direct scattering from Is+2s is first treated in detail. 

From Eqs. (17), (18), and (24) we get: 

i 
- 2K. 3. 

00 

(31) 

where U~s, ~s stand for the respective asymptotic Hartree potentials. 

Integrating Eq. (31) over rQ coordinates and'invoking the orthog­

onality of the bound-state wavefunctions we get only contributions 

term which is the following 
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·.and so 

In Table II we list all' the B(r
l

) for the direct excitation processes 

ls~2s,2p considered here. 

Table 2. 

ls~2s 

ls~2pO,±l 

- i -. (3 ) (16 + Jl.. 
T2 exp -2' r 1 ""9 r 1 27 

10 -
-Slr

l 

A. simple use of the Addition Theorem for spherical Harmonics17 shows 

that B(rl ) from· rotational symmetry is the sam~ for the three .magnetic 

sublevels of the p .level. 

The expression inEq. (31) can further be reduced by integrating in 

the b and z coordinate systems. So 

fd
3

r l = fd~lfdZl 
and by simplifying the momentum transfer vector relation. ' 

We have for the momentum transfer vector K the relationship: 

but 

so .let 

COS<l = iC b
l 

where <l. is the projection of K on the bJ, vector .which lies on the 

impact parameter plan:e. 

Now 

where e is the momentum transfer angle 

The above e~uation demonstrates that in the small angle limit. the 

momentum transfer vector is parallel, rather than perpendicular to the 

final and initial wave-vectors, whereas in the first Born approximation 

the momentum transfer vector in the small".angle lililit is perpendicular 

to the initial and final vectors. Thus the. expression qf the transition 

matrix for direct excitation-processes has t~e extra factor (K
i 

- K
f 

cos9)zl in its exponential argument,unlike the usual Eikonal scattering 

amplitude expression. 

Then the transition matrix element is written as: 

J:s 
H 

~: 

--I 
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Using the fact that 
21T f e-ixcos8d8 1 

21T 

o 

h · al ' t t' 1 7 fBI fun t' f th th is t e lntegr represen a,lon or esse c 10n 0 e zero 

order, we can further obtain: 

exp 

+ClO 

f 
_00 

00 

d i(K.-Kfcos8)Zl 
zle 1 

Jdb b J (Kb ) ' B(..Jb 2+ 2) , 1 1 0 1 1 zl 
o 

Next we face the task of evaluating the "Eikonal" phase shifts: 

(35) 

(37) 

Even for the simplest prior-potential, that of the Is state, the 

integral can not be evaluated via analytic means, because conversion to 

the integral form of Bessel functions is not possible because the upper 

limit depends on a parameter :i.nst~ad of a finite value. Therefore 

numerical methods must be used in evaluating the transition matrix, 

~f ., for all excitation processes. 
+1 

To evaluate these integrals numerically, it behooves one to change 

variable 
+r1 

V = ;=:::===­V 2_b 2 
r l 1 

(38) 

then the integrals of the Hartre.e potential ui( zi ,bi) over the zi 

coordinate for both the incoming and outgoing phase shifts would have 

-38-

/ 
0/;/;// / 

t ' 
Z=O-:..-__ -------...0 ........ 

Scott~ring 
region 

Fig. 2. Eikonal trajectory (straight line 
approximation) . 

"l 
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(+«> e-13Vzl, f(V,bi,zl~dV 
J+l 

(39) 

-respectively; ~here 13 is determined by the appropriate quantum state, 

and f(V ,bi ,zl) is a simpleaigebraic e~:ression, Thus for each input 

values' of" (bi' zl )"one would obtain via Simpson's rule17 tne numerical 

value of: the phase-shift, 

In the numerical double-integration over the b-Z plane, we- shall 

integrate over the area from _zi = initial cut-off distance to +Zf = 
f f i i 

final cut-otf distance, and from -b . to +b and from -b to +.b ,where 

the limits of integration are dictated by the strength of the asymptotic 

Hartree potential. This scheme is shown in Fig. 2. The grid-s::'stem to 

evaluate the double integral ought to be pretty standard. , By virtue 

of the medium-high iilIpact energy, one in short integrates ,over a "tube,,19 

about the classical trajectory, the ends of the "tube" may be different 

in area-, depending on the accuracy of the approximation and the tails of 

the potential. Indeed, the Eikonal approximation has its origin in 

oPtics;20 in first order it is a straight line approximation much in 

the spirit of light rays, only in higher order terms does the curvature 

of the trajectory comes into play. 

F. Transition Matrix for Exchange Process 

In collision theory exchange processes are usually much harder to 

- . 13 14 
formulate· and to calculate than direct processes.' Therefore, it 

should be no wonder that the transition matrix for exchange in this 

distorted Eikonal formulation would yield poorer results than i'or the 

direct scattering case, but that the result would be superior to the 

..,40-

first Born treatment. This basis for this argument is that straight 

trajectories are assumed for the first-order Eikonalwaves and that the 

interaction is localised about the scattering site, whereas in the 

exchange process a non-local exchange potential, usually an, integral 

operator type, is involved. 

X
f

(-) are employed; so the 

O~l.r h . (+) 
~ t e asymptotic wavefunct~ons Xi ' 

Hartree field observed by the eXChanged 

electron would bE! the same as the direct case, with the exception: :0'£ 

havi-ng a _. different coordinate designation. Unlike _ the direct case,­

there is no way to reduce the six-dimension integral in the transition 

matrix element to a three dimensional integral. This is due to the_ 

presence of "Eikonal" phase shifts which does riot pennit one to utilize 

the integral representation of I ,- 1 I" namely 
rO-rl 

(40) 

and hence to use the momentum repr-esentation of hydrogenic waveflinctions 

which one coul-d do in the exchange scattering transition matrix for the 

first Born approximation. 1 Besides the exchange electron's distorted 

wavefunction is now no longer orthogonal to the initial hydrogenic 

wavefunction.That is: 
co 

f U/s
-,2p (bb,zb)dzO) 

Zo 

.' 1 
In all two additional terms from the - and Ui (rl ) interactions are 

r
l 

present in the distorted wave transition matrix of the exchange. mode. 

Formally we can write the exchange contribution in the complete 

form of: 



~. 

. ~ 

. ,~ 
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.-o'JW 
":"f+-i ( ) < () (OK + i exchange = ~2S,2p r l exp l f·rQ 2K

f 
[ 

_2H·s.,,2P (b' , ) I ) U:. o,zo dzO 
o 

exp (iK.'r +...l...­
l:..Q 2Ki 

(41) 

Needless to say, the numerical task for this system in the exchange case 

is much more difficult than that for direct process, as in all quantum 

arid classical scattering problems. 

In extending this approach to electron scattering off slightly 

larger atoms, sa;:{ He, Li, Be .. one must take into account the correlation 

effects quantum mechanically among ,the core and outer shell electrons 

and the distortion effects on their wave:t'unctions by the free .,electron. 

Certainly tabulated· Hartree functions, vi th correlation taking into 

account by configuration interactions, would further promote the validity 

of this distorted Eikonal wave picture for larger atoms, ,at least in the 

medium-high energy range. 

To conclude this section of the thesis, we can add higher-order 

correction terms tb the first-order distorted Eikonal waves by making 

additional iterations of the Hartree equations to improve on the 

potential and by making a second Eikonal approximation19 which contains 

in it an amplitude dependent term. In the spirit of the one-dimensional 

JWKB wave fun'ction , this new term21 would serve to measure the curvature 

of the projectile's path. However, this method may be necessary only at 

lower energies than the ones considered here. 
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III. SEMI-CLASSICAL TREATMENT OF ELECTRON-HYDROGEN ATOM SCATTERING 

The theme of the final chapter of this thesis is to apply classical 

dyn8lllics and semi-classical boundary conditions along with appropriate 

quantum-mechanical superposition of scattering amplitudes iIi the 

treatment of low-level excitation of hydrogen atom ,by impact of elec­

trons. This is especially interesting since for excitation of high 

1 
quantum numbers, the correspondence principle can, be invokeq. and .thus 

, )"' .. -

one would expec'j:; that quantum and semi-classical (among them the 

Eikonal approximation2 ) results ought to agree in most details .. Our 

prime goal then lies in quantum number excitations (ls+2s , 2p) around 

the first threshold region, because it would·be neat to see how such a 

quantum-like system,. from the criterion of DeBrqg1ie's wave,3 would 

behave under the recently formulated ciassic~f-matrix framework. 

A. Other Semiclassical or Classical Treatments 

of Electron-Atom Scattering 

The original classical theories of atomic scattering due to 

4 4 
Thomson (1912) and Rutherford (1911) were proposed before quantum 

mechanics was known. Despi te the discov7ry of quantum mechanics and its 

wide application to atomic scattering, classical methods continue to be 

used for their comparative simpli ci ty . The reason for this is that the 

ntimber of coupled equations that must be solved. via classical mechanics 

correspond to the degrees of freedom of the collision system, while 

quantum-mechanically one has to solve the appropriate number of coupled 

Schroedinger equations for the quantum states involved, which even for 

. simple processes very often exceed present day computational capabilities. 

The close-coupling approximation5 represents the quantum-mechanical 

approach to liIDit the number of atomic states which are in the expansion 

of the total wavefUnction. 

." 



~' 
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Since the development o~ quantum theory, classical methods were 

2.argely neglected until the paper o~ Gryzinski 6 appeared in 1959. He 

showed that classical methods could be used to calculate simple and 

useful analytic approximate cross sections ~or a variety o~ processes. 

Monte-Carlo calculations by Abrines et al. (1966);1 Brattsev and Ocbkur 

(1967),7 were also carried out for the ionization of classical hydrogen 

atoms by electrons. As expected, the result for n=l does not agree so 

well as ~br protons used as projectiles, this is due to the quantum-

mechanical interference between direct and exchange electron scattering. 

Recently Percival and Richards 8 showed how Bohr.'s correspondence prin-

ciple could be applied to collision-induced transitions in the weak 

coupling region where both quantum and classical perturbation theory are 

valid. They obtained cross sections for transitions between highly 

excited states of hydrogen atoms induced by electron impact. 

The above classical methods have an inherent ambiguity in the 

choice of boundary conditions, because in representing quantum mechanical 

states by classical distributions, one encounters the uncertainty 

principle in position and momentum. However, as we shall see below, the 

recently developed classical I-matrix theory shows how the. appropriate 

use of classical mechanical canonical trans~ormations, the cousins of 

quantum mechanical unitary transformations, would yield the proper 

initial conditions for the classical equations of motion for each degree 

of freedom o~ the system. 

B. Capsule Presentation of the Classical I-Matrix Formalism 

Here we shall give the basic development and motivation of the 

classical I-matrix ·formalism developed by W. H. Miller. 9 The finer 

details of much of what follows in this section can be found in Miller'sl6 

investigations of the role played by classical and quantum mechanics in 
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molecular collision dynamics. 

R. P. Feynman3 in his far-out development of quantum mechanics by 

means of path integrals, whose origin can be traced to Wiener,ll linked 

classical mechanics with quantum mechanics by showing that the quantum-

mechanical propagator for spatial representation in the classical limit 

is 

all classical 
paths 

where q2 = q(t2 ), ql = q(tl ) are the values of the coordinate at times 

t 2 , t l , H is the time independent Hamiltonian governing the system and 

$ is the classical action integral between two space-time points 

j
t2 

$(Q2,ql) = dt L[q(t).q(t)] 
tl 

L is the, classical Lagrangian of the system and q(t), q(t) obey the 

classical equations of motion. 

(1) 

It iSllnportant to note that since ql' q2 are the independent 

variables which specifY the classical trajectory, the trajectory may not 

be unique, hence there may be several classical paths with ql fixed 

which lead to the same value of q2' whereas if ql the coordinate and Pl 

the canonical momentum are specified at time t
l

, then q(t). pet) are 

uniquely determined for .all later times. This fact arises from the 

variational derivation of Hamilton's equations. 

It is interesting to point out that where q are the spatial coor-

dinates of one set of canonical variables and P are the constants of 

. ( ) 13 . motl.on of another set, then F2 q,P, a generator of classl.cal 

canonical transformation, is the solution to the familiar Hamilton-

Jacobl.'· equation.12,13 M . ly. ore conCl.se l.n quantum-mechanical language, 

this action principle concept may be expressed as: 
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(3) 

It is also easy to show that if the Hamiltonian does not involve time 

expliCitly, • then 

1 
7KTXT (4) 

for the correCt WKBampli tude dependence. 14 

Now the classical I -matri~ can be found from evaluating th,e 

matrix elements of the operator J' from, soine initial eigenstate of HO to 
" , 

a fin8.l eigen~tateof HO; HO is the Hamiltonian for the colli'sion 

partners at asYmPtotic distances. From formal quantum scattering 

theo;3 

I lim 

t -++00 
2 

tl~ 

whereH is the 'total Hamiltonian governing the collision system. From 

, 15 
semi-claSsical reasoning, one sees that from the old qu~tum theory 

the momenta: or action varia.bles, ,being constants of the motion ofH
O
', 

are the precise classical equivaient of quantum numbers in quantum 

mechanics' and the conju€;a.te angle variables are the quantum phase angles. 

,In scattering problems one prefers the I -matrix in the momentum 

representation of these variables. 

Since~p > are eigenstates of HO then 

±i HOt/h I) ±iEt/h 1 )' e 'p=e' p (6) 

Then the I-matrix is related to the propagator or evolution operator in 

the momentum representation by 

t2 -++00 

t +_00 
1 

t -++00 
2 

t +_00 
1 ' 
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Using the fact that the Hamiltonian is related to the ,Lairang±an by 

H(p,q) = pq - L(q,q\and writing the phase of the propagat~r,</>(q2,ql)' ' 

in the momentum representation ,</>CP2 ,PI)' we have finally in terms' of 

the phase of the classical propagator in the momentum representation: 

The classical f -matrixlO is given by 

(p21I Ipl > = LI, . 2'IT Cl P2 " e i </>(P2 ,PI) (8) " [~Cl)' ] -1/2 

, all class~cal, ql PI " 

paths Lpp) ] ~1/2 
The appropri!i:te classical-limit normalization Ll'liq~ ',p " , 

has been' physically interpreted in terms ()f its square modulusl 
3q , ' 

( 21T ) -1 1 ---1.1 
, 3P2 PI 

This is verily the probability of the Pl~2 transition 

associated with a particular trajectory. 

</>(P2,Pl) is obtained from </>(q2,ql) by simple rules of unitary 

transformation ,and is found to be: 

t2 

..;, [ dt q(t) pet) 
tl " 

where q(t), pet) obey Hamilton's eqUations i.e. 

9:.sIitl 
dt 

= + ClH(p ,9) 
3p 

and-'dp(t) = 3H(p,q) 
dt Clq (10) 

The above developed expression for the classical f -matrix is for 

one degree or freedom and one pair of canonical coordinate and momentum, 

it can be extended to any number of degrees of freedom without too much 

effort. 

In continuing this semi,-classical spir.it, to obtain the' transi tion 

,j 
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D from state 1 to state 2, we calculate the dynamics of the inter-
-1,2 

~c-:ing system via classical mechanics and treat the transition amplitude 

according to well-posed quantum superposition postulates. 

To . t P quantum mechanically one calculates the '1,2' arr~ve a 1,2 

I-matrix element, via quantum dynamics, i.e. Schroediager equation, and 

square the I-matrix element to obtain the transition probability Pl ,2 

(ll) 

From the classical I -matrix expression in Eq.(ll) we see readily, 
, SC 

that the transition probability in this serni-classical approach Pl ,2 

can be decomposed principally into two parts, one having a particle-like 

or classical origin, the other having a wave-like or quantum-mechanical 

nature. Namely 

pCL + pQM 
1,2 1,2 

Pi 
all classical 

paths 

where the p. 's are probabilities (obtained by solving classi cal 
, ~ , 

equations of motion) associated with all the possible classical 

trajectories, andP~2 are the cross-interference terms when one 

squares the classical I -matrix element. 

2l: 
i 

(12) 

where the sum, once again, is taken over all classical trajectories. 

The terms ei(¢j':"¢i) give the transition probability pi~2 the wave-like 

behavior which pure classical approaches miss. This is the guantum 

effect of the classical I -matrix outlook. 
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Furthermore from conservation of probability pSC can be divided 
1,2 

into the direct (non-reactive, NR) part and the exchange (reactive, R) 

part. 

(14) 

The result from sweeping the ql from ° to 2rr, as it has been noted 

'16 
before, is exactly the same as a Monte-Carlo averaging over a large 

number of appropriately chosen classical tr'ajectories. 

C. The Classical Hamiltonian for the Electron-HYdrogen Atom System 

Now we shall apply the above-delineated method to the three 

problem of the electron-hydrogen atom system, alias the "helium" atom 

kid. 

The electron-hydrogen atom system classically has nine degrees of 

freedom. Transforming to the center of mass (CM) system by means of a 

contact transformation and using the fact that the integrals of motion 

of the center of mass are constants, the transformed system then has 

six degrees of freedom. (See Appendix I.) Further reduction to four 

degrees of freedom is made by virtue of the conservation of total 

angular momentum and its component along some fixed_space axis analogons 

to the commutation relations [H,Jz] = 0, [H,J2] = 0, where H is the 

total quantum-mechanical Hamiltonian. This is accomplished via a 

F
3

(Q,P) transformation and the use of the constants of motion of the 

total angular momentum. Thus the three body problem is at last reduced 

to four degrees of freedom. 1T 

For physical reasons that now the new Hamiltonian system represents 

the equations of motion of two particles, one being t~e target or the 

hydrogen atom, the other the projectile or the free electron, we choose 

the four pair of canonical variables as the fo1J.owing: 
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PI P 2 ql R 

P2 = Pr q2 = r 

P3 
j q3 = qj (15) 

Pit t q4 = qR, 

, vbere Ris the radial coordinate between the electron to the c~nter of 

'mass Of ',the hydrogen' atom;' r is the, radial coordinate between the bound 
. " .: .. 
electron and proton; Pr':P~ are translational'radialniomenta correspond-

.. . . . 

i~ t~'their conjugate coordinates; R,'is the'orbital angular momentum of 

the projectile electrOn with resI>ect to the atom;, j is the rotational 

, angular .momentum of the bound electron about the proton; qj .q~are the 

angles" between 0 arid 21r, conjugate to these imgular momen;ta. 

In terms, of these canonical variables the, clas'sical Hamiltonian is 

' .. '. 17 
gl.ven, as " 

H(p q) =1:... fp2 +R,2} + Lfpr' 2 .j. £.2 ~ + v(r) + V(r.R.y) 
• , 211 ' 'R. R2;' au r 

Where 11 is the reduced mass of the projectile 

m (m +m, ) 
ep' e 
m+2m 

p e 

m is the reduced mass of ,the target" 
m m, 
~ m = m '+m ' 
P e 

'" m, e 

"'m e 

(16) 

v(r) 
2 e 

r 
the exact'electro-static potential 

of the hydrogen atomic system. 

V(r.R.y) is ,the electrostatic interaction potential between the free 

electron and hydrogen atom; yis the angle between ~ and ~ in which the 

, interaction potential V(r.R.y) is expressed. 

In terms of the canonical variables 

cosy = COSq j , cosq,e + 
[R.2+,12..j2J 

Sinq
j sinqR, (17) 2R.J 
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Fig. 1. Electron-hydrogen atom reduced to four 
degrees of free,dom. 
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;;-here J is the total angular momentum of the system and J t+j, and a 

ccnstant of the motion. 

For our simple atomic problem we can in fact write out V(r,R,Y) in 

closed form as: 

V(r,R,y) 
2 2 2 -1/2 2 2 2 1/2 = -e (r +R -2rR cosy) + e (r +R +2rR cosy r ... (18) 

The physical situation of the problem is shown in .Fig. 1. 

The asymptotic limit of this interaction potential V(r,R,y) is 

different for the classical electrostatic case and the quantum electronic 

distribution obtained from Schroedinger perturbation theory. This 

important point will be discussed in the later section pertaining to 

trajectory calculations. 

Moving in the semi-classical trend, we shall quantize by means of 

the Bohr-Sommerfeld quantum conditions the rotational and vibrational 

degrees of freedom for the hyc1rogen atom (our "diatom") system. 

We have from the old quantum mechanics14 

(19) 

where n is an integer 0,1,2,... and i is an index for each degree of 

freedom. So for the relative translational momentum between the bound 

electron and proton we can state 

. /> d~2m[£(n,j)-v(r)] - 5 
r< 

(20) 

where r~ r> are the classical turning points of the vibration motion of 

the bound electron about the proton. Physically', the vibration degree 

of freedom classically corresponds to the radial quantum number nr in 

quantum mechanics, while the rotational degree of freedom can be likened 

to the quantum number~. The generator F2(q,P) which gives the desired 
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quantized conditions can be seen to be: lO 

± fr dr' - r [£( n, j) _ V (r ' )] _ L ym r,2 
r< 

(21) 
where the first three terms are just the identity. transformation, and 

the last term arises from the particular quantized condition and is 

. 23 readily seen to be related to the WEB wavefUnction of the hydrogen atom. 
2 

For the Coulomb potential V(r) = ==- it is not difficuit to show 
r 

from the implicit eigenvalue relation in Eq. (20) that in terms of 

atomic units 

e: (n ,j ) _ _ _--=-10.-,":::" 

2(n+j+l)2 

From the usual WKB reasons the conditions for n,j are n 

1 1 
and j = 2,0,2"'" 

(22) 

It is also not surprising to see that the physical systems whose 

eigenvalues can be solved exactly by Schroedinger equation. these same 

eigenvalues can be solved via semi-classical (WKB) eigenvalue 

relationships. So for the case of the one-dimensional harmonic oscilla-

tor one obtains with Eq. (I') the correct quantum-mechanical energy 

relationship (n+%)hW; for the case of the one-dimensional Morse 

potential, D[e":'2a(r-rO) _ 2e -a(r-rO)] one performs the WKB phase integral 

and obtains the eigenvalue 

dn) 

18 the same as for the quantum case. 

(23) 

Using the generator F 2 (q.p) as shown above in Eq. (21), we find 

that for the quantized condition i~osed the new canonically transformed 
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Hamiltonian is 

H 
1 2,9.,2 

(p +-) + E(n,j) + V(r,R,y) 
211 R R2 

From the definition 

we see that: 

a .ili.z.Jl 
~ = m a 

and 

'n 

. [9nJ 
q.-(-l) 7T' 

J 

r 

f dx' 
r< 

(. . 2 ) 1/2 
\2mldn,j)-v(r')] - ~ 

1 

r(n.j.n) 

f 
r< 

l .j r' 2 )1/2 
\2m[£(n. j )-V(r')] - ~ 

where [~]'iS the greatest integer function. 

(24) 

(26) 

To rid of the ungainly "phase shift" in (j. we use the fact that 

a (n-1) 
= 0 -a-

j
-

which implies then 

jr> drfl dn.j)-V(r') 

r< . 

O' 

So we choose ~ such that r(n,j,~) r> then the "phase shift" 

vanishes and 

(28) 

The. generalized coordinates ~.qj,q9., are the angle variables and 

have value between 0 and 21r, and the corresponding conjugate momenta 
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n,j,9., are the indices for the classical f -matrix. From the total 

parity of the Hamiltonian the substitution q9., ~ q9., + 7T and qj ~ qj + 7T 

leaves the classical Hamiltonian invariant; so we can further restrict
lO 

the values of q9., from 0 ~q9.,~ 7T, while qj remains at 0 ~ qj ~ 27T. 

D. Initial Conditions for Hamilton's Eguations 

Since the total angular momentum J, J = .2.+j, and the total energy 

E are constants in the collision dYnami·cs. we shall denote our initial. 

J-matrix indices by 9.,l,jl,nl and vary the corresponding angle variables 

q9., ,qj ,~ over the appropriate intervals. Rl is required to be large 
III 

and by energy conservation it is: 

_ .2.12)1/2 

R 2 
1 

Similarly for the isolated "diatom" (hydrogen atom) 

(30) 

where r l is chosen to be either the perihelion or the apehelion of the 

Bohr orbit,15 in order that qj = qj' for the reason mentioned above. 

In order to insure that r l is at a turning point, it is necessary 

to vary Rl , so we shall introduce a phase-shift in the vibration period 

by moving the projectile either forward or backward for this purpose. 

We have 

~l RO + 
PI 

e£(n zJ ») ~l 
11 an 

nl 

RI R -
2Pl (nl +jl+I)3 

= ~l 0 11 

) 
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where RO is to be determined from the nature of the asymptotic inter­

a.ction potential V(r,R,y) to be discussed in detail in the next section. 

So we can now vary the phase angles qj for the numerical computation. 

In fact ~ ,qj ,~ contain in themselves information about the geometrical 

orientation of the three bodies with respect to each' other. 15 

. aH . aH 
However, in the Hamilton'equations q~ = a~ and qJ' = a- there is a 

, j 
. ul 't 10 . d a slng arl y ln qj an q~ as j or N becomes vanishingly small. So 

instead of integrating Hamilton's equations in the transformed canonical 

variables (p,Q), it is more prudent to integrate them in Cartesian 

coordinates (p,q). Thus the initial conditions are specified in terms 

of action-an,gle variables as specified above, but then these are 

transformed to ordinary Cartesian coordinates and the numerical inte-

grationof the classical trajectories is carried out by the Adams 

Moulton teChnique. 19 At the end of each trajectory one transforms back 

to the action-angle variables, so with energy and angular-momentum 

conservation, the trajectory functions n2(q~ ,qj ,~ ), j2(q~ ,qj ,~ ), 
1 1 1 1 1 1 

£2 (qa ,q. ,~ ) are obtained and can be used to construct the proper 
Nl J l 1 

classical f ":'matrix element. In Appendix I one can find the transforma-

tion between the action-angle variables and Cartesian coordinates. 

E. Asymptotic Interaction Potential Between an Electron 

and a Bohr-Quantized Hydrogen Atom 

Since classical mechanics is used to describe the dynamics of the 

collision system, while the boundary conditions are handled with semi-

classical methods, it becomes necessary to look at the electrodynamics of 

the three charged particles subjected to the Bohr-Sommerfeld quantization 

rules .14 ,15 From previous quantum mechanical caicUlations20 of the 

electron-hydrogen atom scattering it has been found that an asymptotic 

tail from the Coulomb potential is present and it necessitated the 
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numerical integration of Schroedinger's equation to many a A.U., 

(sometimes 30 to 50). In order to facilitate computation, it behooves 

one to investigate the asymptotic nature of the interaction potential 

V(r,R,y), subjected to classical electrodynamics. For the Is ground 

state, there is a big difference in the asymptotic potential between 

the purely quantum mechanical picture and the classical picture. For 

higher quantum states the classical treatment and the quantum treatment 

yield the same form for the potential at far-off distances. The crux 

of the whole matter lies in the presence of a permanent dipole of the 

hydrogen for all states when classical mechanics is applied. It is 

well known that from rudimentary quantum calculations21 that there is 

no permanent dipole for the Is state in a Stark field because of 

degeneracy, all higher quantum states have a permanent dipole 
1/I2s±1/I2pz 

electric field (for the n=2 -=~~--~~ 
12 

in the 

, for n=3 

the z axis being the direction of the external 

field. Physically, for asymptotic distances, the free electron produces 

a perturbin,g potential of the form H' = eEz where E, the electric field, 

is equal to e 2' R a certain prescribed asymptotic distance. This 
R 

perturbing field can be described as a Stark field, since the divergence 

of the electric field of the free electron in the neighborhood of the 

hydrogen atom is .small. This distorts the hydrogen atom's charge density 

such that V (r,R,y) - E-where p is the dipole moment for that 
asymp R2 

perticular Bohr quantum state. It is cowell known that, in the quantum 

mechanical adiabatic approximation,22 the potential V(r,R,y) seen at 

large distances from a hydrogen atom is - a4, where a is the polariza-
2r 

bility for the quantum state and is related to the induced dipole 

moment by PI = ~ • t, t the applied electric field, ~ the tensor of 

polarizability. 
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A closer look at the Bohr picture for the hydrogen atom for the 

__ state shows that there exists a permanent dipole. Introducing the 

:;Joiar coordinate notations for a Kepleriari. orbit subjected to an 

1 ' 
'attractive - potential, we can find ,the average position of the Bohr­

r: 
quantized,electron by integrating over one period of motion. 

We have 

(i) 
r:rr i /' d<p )0 ' 

/

','rr fd<!> 

d -

.tere_f is the orbit of the bOund electron under no perturbed field. 

It can be shown from celestial mechanicsl5 that 

,3 " (L) == '2 Ea~ 

vi::i.ere ~,is the perihelion unit vector, E is the eccentricity ,of'the 

ellipse arid a the 'semi";'major axis of the ellipse. Hence, with the 

( 33) 

proton being one of tl:le focus ,the permanent dipole. moment present in a 

3 " 
classical"Bohr hydrogen atom is B :::i '2Ea~. The secUlar motions of the 

~vdr6gen atom in a Stark field have been investigated in the 1920's by 

15 
Born andc;o-workers. Then the use of first-order classical perturba-

tion theory is applied to the Hamilton-Jacobi equations, the result of 

tne perturbed dipole moment is 

where qj" is the angle between the line from the .:focus to the perihelion 

and the node of the new plane of orbit 'subjected to the Stark field 

and the invariable plane, (r,e), plane. Historically, the application 
, 

of the oid ~tiantum mechani'cs to the Stark effect on the spectra of the 

, ",' 23 
hydro~en atom yielded the same result as that calculated by Schroedinger , 
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in his first few,papers on wave-mechanics. 

Next we shall look at the relative magnitude b~tween the, first two 

terms, the dipole and quadrupole terms, of the multiple expansion of 

Y(r,R,y). It is instructive to compare the values p ;and ex in a Taylor 

series expansion of the energy ~n an applied electric ?ield ~. 

WeE) (36) 

The values for p ,ex ,as, a function of parabolic quantum numbers can 

be calculated from Schroedinger perturbation theory; they are listed in. 

Betheand Salpeter;23 from this we get: 

where n = n1 +n2+m+l'a.re the quantum numbers one obtains from solving 

the hydrogen atom problem with parabolic coordinates. 

For the case n=2, nl=l, DFOwhich in the spherical-polar coordinate 

representation corresponds to 

(38) 

-8 The above ratio ,becomes one when R - 1.5XIO em which clearly is not in 

the asymptotic region. S~ we shall be concerned only with the dipole 

attracti ve term in the far-distant region. Furthermore one can 

generalize that within an order of magnitude 

V (quadrupole ) 
V(dipole) 

QM 

For the same quantum numbers n{n
r

), R,(j) where n, 

Classical Bohr orbit 

JI. are the quantUm 



r' 

.. 
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1 b 1 d d j ld . 1 . 1· d· 24 a e s an nr an are 0 seml-C aSSlca ln lces. 

Next we shall give a numerical estimate for the Bohr Is state. 

From the semi-classical approximation14 the (j~)2 in the centrifugal 

potential keeps the electron in the S state where j=O from falling into 

the nucleus. It can be derived from application of the old quantum 

24 theory that for the bydrogenic system the eccentricity of the orbit 
_I .2' 2 

£ =11 - ~ and the semi-major axis a = n aO' where n the principal 
n 

quantum number n nr +j and aO is the common Bohr radius aO ~ 0.529 A. 

A semi-classical approximation is then applied to the parabolic quantum 

numbers, much in the same mode of the spherical quantum numbers. 

From the Coulomb degeneracy 

n = nl +n2+1+m 

n = nr+j+l 

for parabolic system 

for spherical system 

ill and n2 are separation constants from Schroedinger equation. When 

nlfn2, then there is an asymmetric distribution of charge about the 

plane z=O, which is the desired effect for a Stark field. 

(40) 

Now for ls state, j-~, nl f n2 and n=l which implies m = ± I~I, 

nl (± I~I) n2 = (+ :).' From quantum calculations p = ~n(nl-n2)' 
o - 121 

so a reasonable approximation for the dipole moment for the classical 

Is state ist A.U. or about 0~39 Debye for our "diatomic" molecule. 

From the symmetry of the "diatomic" orientation of a rigid rotor, there 

is no contribution to V(:t',R,y) from odd multipoles; Le. V(r,R,y) 

V(r,R,7T-y). Thus in the classical trajectory calculations, varying the 

angle q j at the start wotlld have the effect of orienting the initial 

static dipole from 0 to 7T for the incoming electron to scatter from. 

After establishing the fact that the asymptotic attractive potential 

is predominantly of a dipole nature, aside from the always present 

centrifugal tail, we can solve for the trajectory of the electron 

-62-

(incident or emergent) subjected to both the repulsive centrifugal and 

the attractive dipole potentials in the asymptotic region with the orbit 

equation. 13 We get 

e = 1 u .;=;==d;;;;;U;;;;;'====;;;-

, 0 ~2mE + (2me p 1)U'2 
9-2 9-2 

(41) 

where u' 1 r" p is the' static asymptotic dipole moment to first order 

p 1 £ a 
2 

~ 
Sinqj,l - f) (42) 

In atomic units where e m h 1 then it can be integrated to give: 

For the case where 

1. 

2. 

3. 

- 1 > 0 

sinh-

~- 1 
R,2 

0, using L'Hospital's rule 

e _- r;; 1: "2E r 

For the input values p = tA.U., the Bohr ls dipole moment; 

(43) 

(44) 

E = tA.U., the first threshold energy; and 9-=1, the deflection angle 

obtained from infinity to 10 A.U. is around 10°. Clearly this "spurious" 

deflection angle would mean the following: 

1. The cut-off distances for the numerical integration must be 
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ir.creased. 

2. Both an increase in the total energy E and in the orbital 

angular momentum ~would minimize this undesirable effect from the Is 

dipole tail; 

In .Appendix IIa way ·of nUmerically obtaining the deflection angle 

in this classical scheme is shown for the case when one employs the 
, . 

, ' 

body-fixed axes, so as to eliminate many a cross term in the t and! of 

the classical dynamics. Also in the appendix a flow chart for the 
, . 

calculation, using both the appropriate analytic expression obtained 

from the orbit equation and the 'numerical calculation for the scattering 

region is given. 

In the actual calculation one would then start off with minim,um 

asymptotic distancesR~ and R~ as shown in Fig. 2 and move them farther 

away, keeping all other variables constant, until the final n,j,~ 

stabilize. So one would need. only to integrate numerically from R=Rl 

to R=R2 , .and the tail-end can be followed by the analytic forms. This 

is very much in the spirit of the JeffreyS-Born approximation. 25 In 

this adiabatic picture, we assume that essentially we have a static 

dipole potential,' whose time-average over a e,riod of revolution yields 

the proper orientation qj' andinclinatio -(~ z~2 " etc. Hence the 

. boilnd electron makes many' revolutions, as the projectile traverses in 

the asymptotic region. 

, F. Phase of the Classical [-matrix and Quantilm Conseguences 

In an earlier section we, see how the phase of the [-matrix was 

deriVed. The physical interpretation'one can lend to the computed 

value of the phase may be stated as the ,number of periods all the 

degre.es of freedom undergo in the collision process. For systems 

subjected to complex formation or resonance one would expect the value 

H atom 
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Analytic form 
---applied here 

1\ 

Z 

Appropriate 
asymptotic distances 

t 
Analytic form 
applied here 

XBL 716-6804 

Fig. 2: Sketch of possible tra:ectory. 

"':) 
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':0 be large in comparison to the value computed for a simple, collision 

::::::-'Jcess. This is evident in the recent calculations of Rankin and 

- 1 26 th H Cl HCl + H t . h 1 ft' . Hll er on e + 2.... reac lon were camp ex orma lon lS 

( noted, and in Miller'slO work on the one dimensional He + H2 inelastic 

,~.., 

collision, where the process is rather simple. Hence the many states 

of resonance' 'in hydrogen atom would reveal themselves in the case of 

classical-orbiting2 or quantum tunneling. In Appendix III the phase of 

the I-matrix for both the direct and exchange processes in the momentum 

representation is given for the electron-Bohr hydrogen atom scattering 

problem where both an analytic form and numerical integration are used 

to compute the trajectories. For the three dimensional case the 

classical I-matrix for both exchange and direct processes can be 

generalized as 

all,classical 
paths 

where the normalization D, according to prescribed formulation for n 

10 degrees of freedom, is given by the Jacobian of the final momenta 

with respect to the initial coordinates (at fixed initial momenta): 

an{t
2

) an(t2) an(t
2

) 

a~ (tl ) aqj(tl ) aqR,(t l ) 

D-l 
aj (t

2
) aj(t2) dj(t

2
) 

a~ (tl ) Clqj (tl ) aqR, (t l ) 

H (t2 ) (lR,(t
2

) (lR,(t
2

) 

a~(tl) Clqj(tl J (lqR,(tl ) 

where the elements of , the Jacobian matrix are simply the numerical 

value of the slopes of the final momenta with respect to the initial 

(45) 

(46 ) 
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coordinates. Since elect'ron are Fermions, the quantum-statistical rule3 

on summing of transition amplitudes, in our case classical obtained, 

yield the relation for the transition probability: 

2 

Pf+i L S f+-i L S f+i (47) 
all, direct all exchange 

paths paths 

In this way,one hopes that the interference between the two kinds 

of paths would reveal some quantum details. 

In conclusion, ,because of the very quantum-like nature of the 

eleCtron-hydrogen atom system one might expect possible breakdown of 

this semi-classical theory. From the DeBroglie,'s wavelength of the 

incident electron, for energy of t A.U., ~ - 1 0 1 A.U., we consider the 

question in terms of simple one-dimensional barrier arguments and use 

the criterion for classical motion from Landau and Lifshitz,27 i.e. 

Clv With one A.U. from the nucleus, -a:R ~ 1 

« 1 (48) 

~ ~ 1 around the neighborhood of the Bohr classical 

hydrogen atom. 

From the above argument one sees that for the first threshold 

energy the incident electron follows a closely classical path; and only 

around the region of scattering does quantum phenomenon come into play. 

However, at higher energies and hence more hydrogenic states are 

energetically possible, then the classical I-matrix ought to yield 

. 10 28 satisfactor,y results, with the possible exceptlon at resonances. • 

comparable to quantum calculations. 
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APPENDIX A 

Transformation Between ,Action-Angle Variables and Cartesian Coordinates 

·For reasons mentioned earlier, we want to specify the canonical 

10 
coordinates r, R, q£, qj' qJ' qMJ and the related.momenta Pr , PR, £, 

j ,J, MJ (MJ denoting the proJ ection ofJ on a particular axis), and to 

use these iIii tial values to deteTInine lni tial values for x, y, z", X, Y, 

. Z, P , P , p' , P , P', P , where the upper case letters refer to the . x y z x _ y z '. . 

, relative Cartesian coordinates (momenta) between the electron and hydro-

gen atom, and the lower case represents the relative coordinates (mo-

. menta) between the bound electron and nucleus. B,;(' can be transformed 

readily to the body-'fixed Cartesian systems (ql'~' q3)' (q4' q5' q6)' 

(q7' q8' ~) that represent the three bodies. It is not hard to show 

the following: 

s. 
~ 

where i 

, (Al) 

1, 2, 3. 

It is clear,that (sl' s2' s3) = ~ and (s4' s5' s6) = B and (s7' s8' s9) 

are the center of mass (CM) Cartesian coordinates of the whole system. 

A similar relationship between Pj (j=l,2, •.. ,9) representing the momenta 

. conjugate to the coordinates (s j ,j=l, .•. ,9) and the momenta p j '. conjugate 

,to the coordinates qj (j =1, .•. ,9) can be obtained via the point-contact 

transformation 

and so 
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They become 
m 

Pi +3 + 
e 

Pi +6 Pi 2m +m e p 

m [m ] 

Pi+3 -P. ~ Pi +3 + E Pi +6 ~ m+m p e 

m 
, Pi+6 = Pi - m ~ . 

'e p 

In matrix notation . 

and 

m+2m p 

m 
'e 

P.i+3 + 2m +m 
e p 

e 

i 1,2,3 

Using the classical. generator F
3

(Q,p) given by Whittaker,lT the 

relationship between the action-angle variables and the Cartesian 

variables;t = (x,y,z) and 12 = (px,Py,pz)'!! = (X,Y,Z), E = (Px,Py,Pz ) 

are obtained through tedious algebraic invE;rsion steps. The angle qJ 

may be set initially to any arbitrary value, qMJ is set to~ from the 

conservation of angular momentum. 

With;: = rr 

then (n.Jon ... + \ 
~ = -cosqJcosq£ +A

l (A3) 

:.J l-A 2 sinq£ 
1 

) 

') 

.A 

'-' 



r 

,\.,.~ 

.... :.../ 

P! 

where 

-69-

cosqJ COSq
j - A2 sinqJ 

I_A2 sinq. 
2 J 

sinqJ sinq j - A2 .cosqJ 

-cosqJ sinqj - A2 sinqJ 

COSqj I_A2 
2 

Now :r = -; x; and t = R x P we have furthermore: 

I-A2 
2 cosqJ 

.... 
j 2 j = I-A2 sinqJ 

. A2 

(A4) 

(A6) 

(A7) 

(A8) 

(A$}) 

-70-

(AlO) 

for the proper helicity (All) 

APPENDIX B 

Deflection Angle for Classical Trajectories 

Here we shall give a method of obtaining the physically interesting 

quantity of classical scattering the deflection angle2 e for the .electron-

hydrogen atom system. From classical mechanics, the deflection angle, 

for the collision of two particles subject to a central force, is given 

by: 

00 

e = 'IT - 2 J dr r -2 [b-2 
< 

I _ vCr) 
E 

-r 

where b is the impact parameter and r< 

-2] (BI) 

is the classical turning point. 

Consider the incident electron's direction as the Z axis, for 

proper helicity.2 The initial body-fixed axes are designated as X, Y, 
and Z . 

Upon collision the emergent direction of the scattered electron is 

going to be different from the incident direction • 

From the dynamics we can write down 

(B2) 
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or 

Now it is possible to relate Z '= a3lX+ a
32

Y -+ a
33

Z from the 

values of· the numerically integrated classical trajectories. 

Next we can constrain X' to lie on the line or-p.odes so a
12 

= .0,. 

this is equivalent to setting one of the Euler angles to zero. 

Noywe nave the following five equations to' solve: 

2 + a
13 

2 
. all 

2 + 2 a
21 

a
22 

The result is 

where 

.0 

.0 

.0 

1 

+ a
23 

2 =1 

YZ 

R..JR2_Z2 

X 

y 
R 

orthogonality 

normalization 

-'"22 -VR~-Z-

R 

.0 

Z 
:If 

(B3) 

(B4) 

(B5) 

R =f + y2+ Z2 

This is the same result as that obtained by Pack and Hlrschfelder,29 
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Here at this point it is of physical interest to note that an ex-

ression between the axes of the Bohr elliptical orbit. and the.~ and ~' 

vectors can be obtained .. 

From the·action....;imgle variables before an(i after .the collision 

process, the i,g, 2 axes ·of the elliptical orbit15 can be 'Written in· 

of i,?, Z; z is chosen to be the normal of the elliptical Plane ·.of 

orbit in the ·right-hand screw convention . 

Hence 

where U1 is a 3x 3 matrix expressed in terms of .. action-angle va:r:iables 

and can be specified at either before or after the co.llision; U
1 
i, ui, . 

Since B' = U? R, by means of a unitary transformation we have 
~ -~ . 

for the final. elliptical-orbit coordinates, .l;': 

~' =!l .y fu_
T (;~ 

2 1""2 zr) 

~,=(~) 
where E; refers to the minor axis 

nrefers to the major axis and points to the perihelion 

n refers to the normal of the elliptical-plane and n= f)x~. 

(BT) 

(B8) 

Using the notation for Euler angles from Goldstein13 (pages 1.07-1.09) 

and the definition for the angle variables from Whittaker,17 (pg. 349) 

we have then 

n. = 7T 
"'2 

-1 cos 

,) 

. ~, 
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I -sinq j sin9.J 

jz 

u -. 
~ 

- 70S9.JcOS9.j 

-----~-----------------~-----~-----~-------~-------------------

~1-(jZ)2sinqj 
j . 

------~-------------T------------~----~-----~----------------------

I 

(BlO) 

Finally it may be instructive at this point to sketch the scheme 

ror obtaining the derlection angle, using both the analytic solution for 

the initial (final) asymptotic distances and the numeri6ally calculated 

trajectories. The sketch of an hypothetical trajectory is depicted in 

Fig. 2 .. The flowchart is as follows: 

(1 ) 

(2) 

An analytic form r(8) is used from infinity to an appropriate 

distance, during which 91 is accumulated. 

The classical dynamics, with the appropriate semi-classical 

boundary conditions, i.e. action-angle variables, are followed 

by the AdamS-Moulton19 integrator routine, based on a predictor;" 

.corrector lIlethod. 

(3) After· obtaining via numerical means the proper final quantum 

conditions for the hydrogen atom, the analytic expression r(9) is 

again employed from an appropriate cut-off distance out to infinity, 

where. 82 is the deflection angle picked up for this region. 

(4) t', the final' ve~torial direction of the electron, is measured in 

the ;ij' system. In order to arrive at the actual deflection angle 

we must transform back to the original body-fixed axes system R 

via the U transformation so 
""2 

angle is readily obtainable. 
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t .' 

~ t' =! from • .. hich the deflection 

APPENDIX C 

Phase-Accumulation Consideration 

Since the numerical integration and the asymptotic analytic solution 

are carried out in Cartesian coordinates (p,q) we must transf~rm the 

. ( )10 phase of the S-matrix back to the action-angle variables P ,Q. for 

the proper value of. the phase. 

From Goldstein13 (pg. 241) the important relation is given, 

namely: 

We then integrate from tl to t2 to obtain: 

t 
<P(P2 ,Pl ) = <P(q2'9.1 ) - F2 (q,P) 1/ 

1 

where J t 2 -+- -+--+- -+- -+--+-
<P(q2'9.1 ): . t dt pq and where ?(p,p), q=(r,R) 

1 

From Whittaker' s17 F 3 (p,Q) generator we integrate by parts and 

obtain for the direct (non-exchange) phase:. 

<p P2 ,P1 /

2 • 
- . dt ;r';e 

tl 

.. *2 0 2 t3 
[ + 2. J -" ] I - R,qR, + JQJ 2 --J-' to 

(Cl) 

(C2) 

(c4) 
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where to is the starting time for the trajectory 

t· 
1 

is the start of the numerical integration 

t 
2 

is the end of the integration 

t3 is the end of the trajectory. 

° (1T -l(. r_ j 2 )) J '2 + tan' 2 
J(2( -r +r)_j2)l/2) 

2(n+j+l)2 

(C) ) 

f
2
(r,n;j)can be given in closed form for a Coulomb potential, for· 

more complicated ones, such as a MOrse potential in three dimensions, 

one mus"!; eValuate f
2
(r,n,j) by numerical integration. It is worthwhile 

to note that, by virtue of our static dipole approximation the internal 

degrees of freedom of the hydrogen atom do not accumulate phase in 

the asymptotic regions. 

The phase for exchange scattering is a little more complicated than 

that of the direct case because the final unperturbed Hamiltonian is of 

a different arrangement from the initial unperturbed Hamiltonian. 

From the general rules of classical canonical transformation we 

have 

We shall designate a, b for the final and initial arrangements 

a- b-
respectively. Making use of a F I [q (t) q (t)] generator, where 

Fl(qa(t), qb(t» is a point transformation and t.iS the time of the 

(c6 y 

exchange, it can be shown that o so one can choose 

In this vein, 

+ ./2 dt a'a J-z pq 
t 

. can be now written as: 

(c8) 

Now in Eq. (C8) 

F ( a p a) a 0 a + qa j a + R 8- a + f ( a a j a) 
2 ~ , 2 q9.2 "'2 . j2 2 2 .t' 22 r 2 ,n2 '2 . 

and 

"p a Q _ a = qa JI, a + a j a + R ~ .a + ap a 
4.J 2 -,,: 9.2 2 q J2 2' 2 2 r 2 2 

(CIO) 

. (0 2 9. 2 ) 
+ Ja a + !..- Ja - a 

qJ 2 J • 
. a 

Likewise for F
2

(qlb, Plb) and EP2bq2bo At last collecting terms, 

we have the phasetfor exchange s~attering: 

~ a b = -Jft
2 dt(Eo~)b -ft2 dt(~'£)b 

P 2 'Pl 0 I 

* evaluated at t2 
(Cll) 

.• 

.1 



(\ 

-77-

ACKNOWLEDGEMENTS 

First of all, I would like to express my gratitude to my research 

director, Professor William Miller, for ,his support and encouragement. 

Fruitful discussions with C. C. Rankin, D. B. Coster, G. M. Denny, 

H. Arnett, R. D. Zimmerman and others were immensely enlightening to my 

graduate education at Berkeley. 

Lastly, I thank my parents for their constant moral support. 

All of the above work was done under the auspices of the Atomic 

Energy Commission through the Inorganic Materials Research Division of 

the Lawrence Radiation Laboratory at the University of California, 

Berkeley. 

1. 

2. 

3. 

4. 

5. 

-78-

REFERENCES 

Abrines, R. and Percival, I. C., Proc. Phys. 2oc. (London) 88, 

861 (1966); Burgess, A. ,and Percival L C., Adv. Atoin. MQ1. Phys. 

~, 109 (1968). 

R. G. Newton, Scattering Theory of Waves and Particles, (McGraw~ 

Hill Co., New York) (1966). 

. R. P. Feynman and A. R; Hibbs, guantum Mechanics and Path Integrals 

(McGraw-Hill Co., New York), (1965). 

Thomson., J.J., Phil. Mag. 23, 449; Rutherford, E. Phil. Mag. 21, 

669. 

P. G. Burke, A., J. Taylor, S. Ormonde, Proc. Phys. Soc. (London) 

,2g" 345 (1967). 

6. M. Gryzinski, Phys. Rev. 115. 374 (1959). 

7. V. F. Brattsev and V. I. Ochkur, Soviet Phys. (JETP) 25, 631 (1967). 

8. I. C • Percival and D. Richards, J. Phys. B: Atom. Molec.' Phys. 1. 

315-28 (1970); J. Phys. B 1, 1035 (1970). 

9. w. H. Miller, J. Chern. Phys. n, 1949 (1970). 

16. W. H. Miller, J. Chern. Phys. 53, 3578 '(1970). 

W. H. Miller, Chern. Phys. Let. 1, 431 (1970) . 

w. H. Miller, J. Chern. Phys., "The Classical f -Matrix for 

Rotational Excitation", (in press) (1971). 

11. N. Wiener, Cybernetics (M.I.T.Press). (1964). 

12. P. A. M. Dirac, Principles of Quantum Mechanics (OxfordU. P., 

New York, 1958), 4th edition, p. vii and p. 97. 

13. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass., 

1950), pp. 288-307. 

14. See, for example, A. B. Migdal and V. P. Krainov, ~ximation 

Methods in Quantum Mechanics CW. A. Benjamin, Inc., New York, 1969), 



16. 

-79-

p. 140 ff. 

M. Born, The Mechanics of the Atom (Eng. Trans. ) (Frederick Ungar. 

Publishing Co., New York, 1960). 

M. Karplus, R. N. Porter, R. D. Sharma, J. Chem. Phys. 43, 3259 

(1965) . 

17. E. A. Whittaker, A Treatise on the Analytical pynamics of 

Particles and Rigid Bodies, (Cambridge U.P., New. York, 1960), 

pp. 34B-351. 

18. A. Messiah, Quantum Mechanics, Vol. II. (John Wiley & Sons, Inc., 

New York, 1962) p. Boo. 

19. E. Issacson, H. B. Keller, Analysis of Numerical Methods, (John 

Wiley & S0ns, Inc., New York, 1966) pp. 384 to 400. 

20. P. G. Burke, S. Ormonde, W. Whitaker, Proc. Phys. Soc. (London) 

~, 319 (1966); Gailitis, M. K. and Damburg, R. Proc. Phys. Soc. 

82, 192 (1963); Shelton, Baluja, Watson, J. Phys. B: Atom.Molec. 

Phys ..!!" 71 (1971). 

21. E. Merzbacher, Quantum Mechanics (John Wiley & Sons, Inc., New 

York) 2nd Edition, (1970). 

22. S. Geltman, Topics in Atomic Collision Theory (Academic Press, 

New York, 1969), p. 106. 

23. H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two­

Electron Atoms (Springer Verlag, New York, 1957), p. 229 ff. 

24. .L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics 

(McGraw-Hill Co., New York, 1935) pp. 37 ff. 

25. N. Mott and H. Massey, The Theory of Atomic Collisions (Oxford 

U. P., New York, 1949). 

26. C. C. Rankin and W. H. Miller, J. Chern. Phys. (in press), 1971. 

27. L. D. Landau and E. M. Lifshitz, Quantum Mechanics .(Addison-

28. 

29· 

-BO-

Wesley, Reading, Mass. 195B). 

Recent work on the threshold behavior of theH + H2 reaction shows 

that the tunneling formalism needs more refinement. 

R. T. Pack and J. O. Hirschfelder, J. Chem., Phys. ~, 4409 (196B), 

Eq. (2.31). 

) 

) 

\ 

J 



p-~--------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



TECHNICAL INFORMATION DIVISION 
LAWRENCE RADIATION LABORATORY 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 




