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Abstract 

 
Thermal Conductivity Measurements in Challenging Regimes 

 
by 
 

Sean Daniel Lubner 
 

Doctor of Philosophy in Engineering − Mechanical Engineering  
 

University of California, Berkeley 
 

Professor Christopher Dames, Chair 
 

Creating technologies to address increasingly diverse challenges ranging from biomedical 
devices to carbon-free energy solutions requires measuring material properties and 
system behaviors in increasingly challenging regimes.  In the biomedical field, accurate 
determination of the thermal conductivity (k) of biological tissues is important for 
cryopreservation, thermal ablation, and cryosurgery, but is hampered by the delicate 
nature and often-small sizes of tissues.  In the electronics and clean energy fields, it is 
increasingly necessary to reliably model the dissipation of heat from micro and 
nanoelectronics for thermal management, and the transport of heat through 
nanostructured materials for energy control and conversion technologies such as batteries 
and thermoelectrics.  However, the classical equations of heat transfer break down at 
these short length scales, calling into question the validity of various formulations of heat 
transfer theory and the very concept of thermal conductivity itself.  Here, too, is a need 
for challenging thermal conductivity measurements at micron and nanometer scales.  In 
this thesis, we describe and demonstrate two techniques that combined are capable of 
measuring the key thermal transport properties in all of these regimes. 
 
We adapt the 3ω method—widely used for rigid, inorganic solids—as a reusable sensor 
to measure k of soft biological samples, two orders of magnitude thinner than 
conventional tissue characterization methods.  Analytical and numerical studies quantify 
the error of the commonly used “boundary mismatch approximation” of the bi-directional 
3ω geometry, confirm that the generalized slope method is exact in the low-frequency 
limit, and bound its error for finite frequencies.  The bi-directional 3ω measurement 
device is validated using control experiments to within ± 2% (liquid water, std. dev.) and 
± 5% (ice).  Measurements of mouse liver cover a temperature range from -69 ºC to + 33 
ºC.  The liver results are independent of sample thicknesses from 3 mm down to 100 µm, 
and agree with available literature for non-mouse liver to within the measurement scatter. 
 
Next, we focus the laser spot 1/e2 radius in TDTR measurements down to single micron 
length scales to measure quasi-ballistic thermal transport at length scales where Fourier’s 
law breaks down.  We present an in-depth discussion of the instrumentation and provide 
comprehensive analyses of system sensitivities to all experimental parameters.  The 
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system is first validated on sapphire and single crystal silicon control samples.  We then 
measure two nano-grained Si samples (550 nm and 76 nm average grain size) and two 
SiGe alloys (1% and 9.9% Ge concentration), representing two classes of silicon-based 
materials with qualitatively different phonon scattering physics.  All samples are 5 mm x 
5 mm x 0.5 mm or larger.  Sub-diffusion measurements are performed on all samples 
using 1/e2 laser spot radii down to 1.6 µm.  Apparent thermal conductivity suppressions 
ranging from 18% to 76% are observed at room temperature, indicating that while most 
of the heat in sapphire, Si, and nano-grained Si is carried by phonons with mean free 
paths of a couple microns or less, much of the heat in SiGe alloys is still carried by 
phonons with mean free paths up to a few tens of microns at room temperature.  We 
present a discussion of the microscale origins of this suppressed thermal conductivity and 
its physical interpretation, addressing some common misconceptions.  Our results show 
that alloying and nanostructuring shift the spectral phonon mean free path distributions in 
opposite directions.  Alloying skews the phonon distribution toward long mean free 
paths, increasing k suppression at small length scales, while nanostructuring skews the 
distribution toward short mean free paths, reducing k suppression.   
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Chapter	1	- Introduction	
 

1.1 Setting	The	(Thermal)	Stage	
Any technology that performs work, processes information, or generally transfers or 

converts energy from one form into another—really all conceivable technology—will at some 
point have to deal with the dissipation of heat.  So says the second law of thermodynamics.  The 
macroscopic dissipation of heat in solid matter is described by the heat conduction equation, 
which requires knowledge of the system geometry and a few physical properties including the 
material’s thermal conductivity, k.  At steady-state operation, the thermal conductivity is the only 
material property that must be known in order to calculate the temperature distributions and 
thermal energy fluxes in a material.  For many systems, the thermal conductivity is easily 
measured and Fourier’s law of heat conduction is valid.  For these systems, thermal engineering 
has flourished for over a century and we are all the fortunate beneficiaries of the technologies 
that have been produced as a result. 

However, as we have created more advanced technologies, we have encountered more 
challenging regimes where the thermal conductivity cannot be measured so easily, and the 
classical equations of heat conduction are not always valid.  The challenges of such regimes 
include samples that are wet, soft, and chemically sensitive, or systems with important 
characteristic lengths at micron or nanometer scales where the diffusive Fourier law paradigm of 
heat conduction no longer holds true. 

The potential benefits of measuring thermal conductivities and characterizing thermal 
transport for these nontrivial systems are many.  A swath of thermal biomedical procedures rely 
on the ability to accurately model heat transport in tissues in order to use heat and cold to kill 
diseased or dangerous tissues or to keep good tissues and organs alive.  The data storage and 
transistor densities in microelectronics, the thermal management of batteries large and small, and 
the efficiency of LED lighting and solid state energy conversion devices are all becoming 
increasingly dependent on knowledge of heat conduction on nanometer and micron length scales.  
There exists a growing opportunity for broader impacts across many areas with the ability to 
more accurately, efficiently, and reliably measure thermal conductivities and heat transfer 
physics in challenging regimes. 
 

1.2 Organization	Of	This	Dissertation	
This thesis can be divided into two contiguous parts, each with its own more personalized 

introduction and conclusions sections.  The first part presents the bi-directional 3ω method and 
how it can be applied to measure k of liquids, and frozen and non-frozen hydrated biological 
tissues.  The second part presents the variable spot size TDTR technique and how it can be used 
as a phonon mean free path spectroscopy tool. 

 
Chapter 2 - Bi-Directional 3-Omega introduces the technique, deriving and fully 

explaining both the mathematical theory and experimental implementation.  A rigorous analysis 
of error quantification is presented alongside discussions of sensitivities and our own observed 
experimental uncertainties.  The technique is demonstrated on control samples of water, ice, and 
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agar gel, and then applied to thermal conductivity measurements of both frozen and non-frozen 
mouse tissue samples ranging in thicknesses from 3 mm down to 100 µm.  Recommended 
avenues for future research are presented. 

 
Chapter 3 - Variable Spot Size TDTR introduces the technique and provides broader 

context in which to understand the utility and motivation for developing such a technique.  It 
generally discusses all of the practical details of actually implementing the technique 
experimentally from start to finish, including key pieces of hardware and their purpose, robust 
chromatic aberration-corrected laser spot size measurements, sample preparation and 
characterization, mathematical modeling and data analysis, and uncertainty and sensitivity 
analyses. 

 
Chapter 4 - Effects of Alloying and Nanostructuring on Spectral Phonon Mean Free Path 

Distributions explains the microscopic origins of thermal conductivity and the correct physical 
way to interpret the results of Fourier law-based measurements of quasi-ballistic thermal 
transport experiments.  Measurements of sapphire, Si, nanograined-Si, and SiGe samples are 
presented and the results are carefully discussed.  Differing trends in thermal conductivity 
suppression due to grain boundary scattering versus alloy scattering are explained in the context 
of spectral phonon mean free path distributions.  Recommended avenues for future research are 
presented. 

 
Dissertation Summary and Conclusions offers a summary of all experimental results from 

the thesis and their implications. 
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Chapter	2	- Bi-Directional	3-Omega	
 

This chapter is very closely based on our recent publication [1]: 
 

S. D. Lubner, J. Choi, G. Wehmeyer, B. Waag, V. Mishra, H. Natesan, J. C. Bischof, and C. 
Dames, “Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-µm 
thick biological tissues,” Rev. Sci. Instrum., vol. 86, no. 1, p. 014905, Jan. 2015. 
 
I would like to thank Shannon Yee for helpful suggestions regarding the dielectric layer, 

Yasuhiro Hasegawa and Anthony Fong for help with instrumentation, the UC Berkeley Office of 
Laboratory Animal Care for mouse liver tissue samples, and the UC Berkeley Biological 
Imaging Facility for use of their cryotome. 

 

2.1 Introduction	
Thermal bioengineering uses controlled heating and cooling to preserve healthy tissues as 

well as treat conditions such as prostate, breast, and renal cancer, atrial fibrillation, peripheral 
artery disease, and renal hypertension [2]–[7].  The efficacy and safety of these treatments 
requires precisely controlled heating and/or cooling rates, which is predicted using the thermal 
conductivity (k) combined with other thermal and geometric properties.  However, traditional 
techniques to measure k of biological tissues, such as the cut-bar, guarded hot plate, and 
embedded thermistor methods, require samples at least ~10 mm thick [8]–[16].  Thus, numerous 
important thinner tissues cannot be characterized, including heart valves (1 - 2 mm), pulmonary 
vein (1 - 3 mm), esophagus (1 - 3 mm), small diameter arteries (1 mm), phrenic nerve (0.5 - 1 
mm), cornea (0.5 mm), and fascia (0.1 mm).  Furthermore, existing macroscopic techniques are 
more susceptible to errors due to parasitic heat losses to the environment and thermal contact 
resistances [9]–[11]. 

To address these shortcomings, we adapt the “3ω” method [17]–[19] for use with 
biological tissues.  This frequency-domain electrothermal method is well established for 
measuring the thermal conductivity of dry, rigid, inorganic, solids down to sub-micron 
thicknesses [19], [20], such as semiconductor wafers and thin films.  However, the traditional 3ω 
method cannot be applied directly to biological samples, because deposition of the 3ω heater line 
requires harsh microfabrication, which is incompatible with hydrated, soft, or chemically 
sensitive materials.   

To overcome this severe limitation, here we separate the functions of sensor and sample 
by using a 2-sided “supported” or “bi-directional” 3ω method (Figure 2-1), which has also been 
used recently for some liquid and solid samples [21]–[24].  It has even been extended to measure 
individual cells [25], although this introduces additional challenges in microfabrication, isolating 
the appropriate cells and ensuring their vitality, and restricting the thermally-probed volume to 
be within the single cell.  It also is not yet clear how to determine tissue-level thermal properties 
from corresponding measurements at the single-cell level.   Most of the supported 3ω studies 
invoke a “boundary mismatch approximation” (BMA) [21]–[24] which forbids heat transfer 
through the interface between upper and lower subdomains everywhere except at the heater line 
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itself.  This approximation greatly simplifies the analysis and thus is commonly assumed for bi-
directional 3ω measurements, but has not been rigorously evaluated.   

Here, we first analytically and numerically quantify the error that results from applying 
this BMA and the closely related generalized slope method.  We then describe our experimental 
apparatus and control experiments on ice and liquid water.  Finally, we apply the device to 
measure k of bulk biological tissues (mouse liver) down to 100 µm thick, over two orders of 
magnitude thinner than previous tissue measurements [8]–[16]. 

 

 
Figure 2-1: The bi-directional 3-omega technique for measuring soft tissues (not to scale).  (a) The sensor base 
is a traditional 3ω geometry fabricated using standard photolithography, with an electrically insulating 
dielectric layer over the heater line.  (b) Calibration of the sensor using Eq. (2-3) (introduced below).  (c) 
Sample placed on top of the heater line.  (d) Sample is measured.  (e) Within 10 min, a new sample can 
replace the old one and be ready for measurement.  (f) Idealized thermal circuit of impedances in parallel, 
corresponding to the common boundary mismatch approximation.  Z denotes thermal transfer function. 

 

2.2 Measurement	Principle	and	Theory	
 

2.2.1 Traditional	3ω	
 The traditional 3ω technique has been extensively described in the literature [17], [19].  
A metal heater line deposited directly on the sample is driven by an electrical current of angular 
frequency ω, causing Joule heating P at frequency 2ω.  The sample’s thermal properties 
determine the resulting 2ω temperature response of the heater line, which cause a 2ω oscillation 
in the electrical resistance of the heater.  This, combined with the 1ω driving electrical current, 
results in a voltage drop across the heater with a 3ω component, V3ω, whose magnitude can be 
related back to the thermal properties of the sample.  The temperature oscillation amplitude 
decays into the sample over a characteristic penetration depth 𝜆 = 𝛼 𝜔, where α is the thermal 
diffusivity. This tunable temperature localization reduces parasitic heat losses and enables 
measurements of thinner samples than are accessible with macroscopically-assembled steady-
state methods.  The amplitude of the AC temperature rise averaged over the heater line, ∆𝑇, can 
be conveniently represented as a complex thermal transfer function 𝑍 = ∆𝑇 𝑃 [18].  Throughout 
this paper we assume that the heater line length L is much larger than 𝜆 and the heater half-width 
b, and thus we use two-dimensional thermal models for Z. 
 For traditional one-sided 3𝜔 (Figure 2-1(a)-(b)), Cahill [17] showed that the thermal 
transfer function for an isotropic semi-infinite sample is 
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 Z!!!"#$# =
1
𝜋𝐿

1
Υ!
sin! 𝜉𝑏
𝜉𝑏 !

!

!
𝑑𝜉, (2-1) 

 

where Υ! = 𝑘! 𝜉! + 𝑖 !!
!!

, subscript j indexes the material, and 𝜉 is the Fourier transform variable 

of the in-plane spatial coordinate x. When 𝜆 ≫ 𝑏 (referred to as the “low-frequency” limit), the 
solution approaches [26]  
 

 Z!!!"#$#,!"# ! =
1

𝜋𝐿𝑘!
−
1
2 ln 𝜔 −

1
2 ln

𝑏!

𝛼!
+
3
2− 𝛾 − 𝑖

𝜋
4 , (2-2) 

 
where 𝛾 is the Euler-Mascheroni constant. Taking the derivative of the real component of Eq. 
(2-2) with respect to ln(ω) and converting Z!!!"#$#,!"# ! into experimentally measured quantities 
[18],  k can be expressed as 
 

 𝑘 =
−1

2𝜋𝐿 𝜕𝑅𝑒 𝑍𝜕 ln 𝜔

=
𝑉!!𝐼!!!

𝑑𝑅
𝑑𝑇

4𝜋𝐿
𝜕𝑉!!,!"!!!!"#
𝜕 ln 𝜔

, (2-3) 

 
where 𝐼!!is rms current, 𝑅 is heater line resistance, and 𝑇 is temperature. Equation (2-3) is 
referred to as the “slope method” for determining k in traditional one-sided geometries, and it is 
independent of the volumetric heat capacity C and heater-substrate contact resistance.  In this 
paper, we generalize the slope method for a bi-directional 3ω geometry to measure k of 
biological tissue.      
 

2.2.2 Bi-directional	3ω	and	the	Boundary	Mismatch	Approximation	(BMA)	
In the bi-directional 3ω technique, the roles of sensor and sample are physically 

separated, with the sample being supported on a reusable sensor of known ksensor. The sensor 
consists of a rigid substrate, a microfabricated heater line, and a protective dielectric layer, as 
illustrated in Figure 2-1(a).  When a sample is placed on the sensor, as in Figure 2-1(c) and (d), 
the heater line temperature contains information about the thermal properties of the sample as 
well as the sensor.   

Thus, measurements in the bi-directional 3ω configuration fundamentally give Z for the 
combined system of sensor and sample.  The challenge is to extract ksample.  The most common 
treatment is the “boundary mismatch approximation” (BMA) [21]–[24].  This treats the sub-
domains above (𝑍↑) and below (𝑍↓) the heater line as thermal impedances in parallel (Figure 
2-1(f)) where 𝑍↑ = 𝑍!"#$%& and 𝑍↓ = 𝑍!"#!$%), thereby neglecting thermal crosstalk between the 
sub-domains, except at the heater line itself. 

Analytical models of varying complexity have been developed previously to describe bi-
directional heat flow from time-periodic heat sources in the contexts of optical thermoreflectance 
[27]–[29] and resistance thermometry [22]–[24], [30]–[33].  In the common and conceptually 
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straightforward BMA,[21]–[24] the combined (sensor + sample) thermal transfer function 𝑍!"#  
is constructed by simply summing 𝑍↑ and 𝑍↓ in parallel, 

 
 𝑍!"#!! = 𝑍↑!! + 𝑍↓!!. (2-4) 

 
The BMA thermal circuit for our experiment is shown in Figure 2-1(f).  Effects of the 

dielectric layer and thermal contact resistances are addressed later, with full details given in 
Appendix 2.7.3.  𝑍↑  and 𝑍↓  are treated independently and determined analytically from a 
traditional one-sided 3ω geometry with an adiabatic top-side boundary condition.  For example, 
consider two isotropic semi-infinite solids indexed as 1 and 2 and measured in a bi-directional 
3ω geometry.  In this case 𝑍!"# is found by summing 𝑍! and 𝑍! in parallel, where each Z is 
calculated from Eq. (3-2). In the low-frequency limit, what we will refer to simply as the “slope” 
throughout this section is shown to be [23]  
 
 𝜕Re[𝑍!"#,!"# !]

𝜕 ln 𝜔 =
−1

2𝜋𝐿(𝑘! + 𝑘!)
. 

 
(2-5) 

 
It is clearly appealing to use this simple generalization of the one-sided slope method of 

Eq. (2-3) to determine ksample in a bi-directional 3ω experiment, as long as the BMA errors are 
sufficiently small.  Once the thermal conductivity of the sensor (𝑘!) has been calibrated, the 
thermal conductivity of the supported sample (𝑘!) can be calculated directly from measured 
values.   

 

2.2.3 Assessing	Errors	in	the	Boundary	Mismatch	Approximation	(BMA)	
Figure 2-2 compares numerical solutions of the full thermally coupled problem (left) and 

the BMA prediction (right) for two semi-infinite materials, obtained using commercial finite 
element software (COMSOL).  Since this model system has no contact resistance or intervening 
dielectric layer, the temperature, phase, and y-directed heat flux must be continuous across the 
interface, as verified in the full solution (left).  The BMA (right) clearly violates the requirements 
for continuous temperature and phase, and imposes an artificial adiabat at the material interface, 
all of which call into question the range of validity for the generalized slope method presented in 
Eq. (2-5), as well as the BMA itself.  We also note that the BMA deviation from the exact 
solution is larger for regions farther from the heater line (compare the two 𝑥 > 6𝑏 regions in 
Figure 2-2(a)).  This suggests that errors in the BMA may be worse in a bi-directional extension 
of a recent “anisotropic 2ω” experiment [34], where a second temperature sensing line displaced 
in x along the interface is utilized, than for the combined heater/thermometer line in isotropic bi-
directional 3ω measurements.   

  



 

 
 

7 

 

 
Figure 2-2: Numerical solutions of a representative bi-directional 3ω  problem at low frequency, showing 
contours for (a) in-phase temperature and (b) phase, and comparing exact (left) and BMA (right) treatments.  
Red arrows in (a) are in-phase heat flux unit vectors (direction only, not magnitude) anchored at their bases.  
Arrows are drawn for both sides of the interface, i.e. at y = 0+ and 0-.  Compared to the exact solution, the 
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BMA neglects heat flow through the interface, and therefore fails to match isotherm magnitude and phase. 
Simulation parameters: 𝒌𝟐/𝒌𝟏 = 𝜶𝟐/𝜶𝟏 = 𝟏/𝟗 ,  𝝀𝟐/𝒃 = 𝟗.𝟒 

 

Motivated by the clear discrepancies between the BMA and the exact solution seen in 
Figure 2-2, we now present an analytical solution to rigorously quantify these errors.  The 
thermally coupled transfer function for bi-directional 3ω was provided without derivation by 
Choi et al. [33], and can be derived from the more general Feldman transfer matrix method [35] 
or by following the method of Shendeleva [36], [37].  For an infinitely thin heater line 
sandwiched between two semi-infinite isotropic materials (1,2), the exact thermally coupled 
transfer function Z!!! is 
 
 

Z!!! =
1
𝜋𝐿

1
Υ! + Υ!

sin! 𝜉𝑏
𝜉𝑏 ! 𝑑𝜉.

!

!
 

 
(2-6) 

  
We are concerned with the error in the BMA compared to the exact solution of Eq. (2-6), 

where we define the error as (𝑐!"# − 𝑐!!!)/𝑐!!! , where 𝑐  is any scalar, such as Re[Z].  
Dimensional analysis shows that this error can be expressed as a function of 𝑘! 𝑘!, 𝛼! 𝛼!, and 
𝜆! 𝑏.  Figure 2-3 shows the errors for the specific case 𝜆! 𝑏 =10, with extensive additional 
details given in Appendix 2.7.2.  
 

 
Figure 2-3: Errors (given by shading and contour lines) in the real (left) and imaginary (right) components of 
the BMA transfer function 𝒁𝑩𝑴𝑨 as compared to the exact thermally coupled solution Eq. (2-6), for the 
particular case 𝝀𝟏 𝒃 =10.  Dashed diagonal lines indicate constant volumetric heat capacity ratios. 

 
Figure 2-3 indicates that the BMA becomes exact for matched diffusivities, as well as the 

limit of one material dominating the heat flow pathway.  Both limits are verified analytically for 
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all frequency ranges in Appendix 2.7.2 and discussed here.  First, when 𝛼! = 𝛼!, the penetration 
depths are identical in both materials. The isotherms automatically align at the interface, so there 
is no temperature distortion or cross-interface heat flow even in the exact solution.  Next, in the 
scenario that 𝑘!/𝑘! ≪ 1  and 𝑘!/𝑘! ≪ 𝐶!/𝐶! , i.e., the top-left region of the plot, heat 
preferentially exits the heater into the higher-k material 1, and heat transfer within the lower-k 
material 2 becomes negligible, equivalent to an adiabatic surface condition in a single-sided 3ω 
configuration, in agreement with the BMA model.  However, if material 2 has a much larger heat 
capacity than material 1, i.e., the bottom-left region of the plot, then heat flows across the 
boundary from the high-k material 1 to the high-C heat sink material 2 and the BMA is in error.  

In the upper halves of the plots in Figure 2-3 where 𝛼! 𝛼! > 1, we have 𝜆! > 𝜆! > 𝑏, 
and both materials are in a cylindrical heat spreading regime.  In the lower halves where 
𝛼! 𝛼! ≪ 1 (such that 𝜆! < 𝑏 < 𝜆!), however, the BMA predicts that material 2 would instead 
remain in a 1-D planar heating regime. In this scenario, the actual coupled solution has large 
isotherm shape discrepancies compared to the BMA, which causes Im[𝑍!"#] to be in error by as 
much as 10%-20% for this frequency range and large diffusivity mismatch. Errors in Re[𝑍!"#] 
are less sensitive to this penetration depth dependence and can reach 10% in the range 
considered, where 𝛼! 𝛼! ≪ 1 and where 𝛼! 𝛼! ≫ 1. 
 

2.2.4 Generalized	Slope	Method		
The generalized slope method introduced through Eq. (2-5) by taking the low frequency 

limit of the BMA is very convenient for analyzing experimental data.  However, the discussions 
surrounding Figure 2-2 and Figure 2-3 suggest that the BMA can exhibit substantial inaccuracies 
for certain property combinations, casting doubt onto the accuracy of Eq. (2-5).  Nevertheless, 
because extracting 𝑘!"#$%& using the generalized slope method of Eq. (2-5) is much simpler than 
using the amplitudes of Z and numerically integrating Eq. (2-6), we now specifically consider the 
errors that result when applying the slope method to the exact 𝑍!!!.  Previously, Choi et al. [33] 
considered the low-frequency limit of Z!!! numerically.  For the parameters considered they 
found that 𝜕𝑅𝑒[𝑍!!!] 𝜕 ln 𝜔  is simply −1 2𝜋𝐿(𝑘! + 𝑘!), consistent with Eq. (2-5).  We now 
consider the same question analytically, and demonstrate this conclusion indeed always holds in 
the low-frequency limit, for all property combinations.   

Following the method of Cahill,[17] when 𝜆! and 𝜆! are much greater than b, the integral 
in Eq. (2-6) is dominated by values of 𝜉 < 1 𝑏.  In this low-frequency limit, the integral is 
approximated by setting sin! 𝜉𝑏 𝜉𝑏 ! → 1 and imposing an upper limit of integration of 1 𝑏 
to obtain 

 

 Z!!!,!"# ! =
1

𝜋𝐿 k! + k!
−
1
2 ln 𝜔 + 𝜌 − 𝑖

𝜋
4  (2-7) 

 
Here 𝜌 is a complicated but purely real function of material properties and 𝑏, and is 

independent of ω.  Thus, applying the slope method to Eq. (2-7), which was derived from the 
exact Z!!! coupled-domain thermal transfer function, proves that the simple generalized slope 
method 𝜕Re[𝑍!"#,!"# !] 𝜕 ln 𝜔 = −1 2𝜋𝐿(𝑘! + 𝑘!)  is itself exact for all thermal 
conductivity and diffusivity ratios in the low-frequency limit, even though Re[𝑍!"#] often 
differs from Re[Z!!!].  
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 Finally, applying the generalized slope method to our bi-directional tissue experiments, 
we use 
 

 𝑘!"#$%& = 𝑘!"#$%&"' − 𝑘!"#!$% (2-8) 
 
where ksample is our reported thermal conductivity, kmeasured is calculated by naively applying the 
slope method of Eq. (2-3) directly to the bi-directional measurements, and ksensor is known from 
prior calibration. Analyzing bi-directional 3ω data with Eq. (2-8) is as straightforward as 
analyzing traditional one-sided 3ω data with the slope method.  Because Eq. (2-8) is exact in the 
low-frequency limit for all property combinations, the only modeling error is in assuming the 
low-frequency limit itself. We evaluate this error now.  

Figure 2-4 shows the percentage error in assuming the low-frequency limit (LFL) slope 
−1 2𝜋𝐿(𝑘! + 𝑘!) at a finite frequency (FF), for the representative case 𝜆! 𝑏 = 10.  When 
𝜆! > 𝜆! = 10𝑏, i.e. when 𝛼!/𝛼! > 1 in Figure 2-4, this error in using the LFL slope is less than 
1% for conductivity ratios from 102 to 10-2.  On the other hand, the slope method errors increase 
when 𝛼! 𝛼! is small because the narrow-heater approximation breaks down in material 2.  This 
effect becomes worse when 𝑘! 𝑘! > 1 because more of the heat flows through material 2.  
These finite-frequency errors in the slope method are considered further in Appendix 2.7.2.  

 

 
Figure 2-4: Error in assuming the low-frequency limit (LFL) of the slope for the representative finite 
frequency (FF) case of 𝛌𝟏 𝐛 = 𝟏𝟎.  The error in slope is defined as (LFL – FF)/FF, where FF is the exact 
solution  𝝏𝐑𝐞[𝒁𝟏!𝟐] 𝝏 𝐥𝐧 𝝎   and the LFL is  𝝏𝐑𝐞[𝒁𝟏!𝟐,𝒍𝒐𝒘 𝝎] 𝝏 𝐥𝐧 𝝎 =   𝝏𝐑𝐞[𝒁𝑩𝑴𝑨,𝒍𝒐𝒘 𝝎] 𝝏 𝐥𝐧 𝝎 =  
−𝟏 𝟐𝝅𝑳(𝒌𝟏 + 𝒌𝟐), as can be acquired from Eq. (2-5) or Eq. (2-7).   
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2.2.5 Sensitivity	and	Experimental	Considerations		
The generalized slope method is recommended for bi-directional 3ω experiments, and 

should employ minimal ksensor to maximize sensitivity to ksample, provided that λ1 > b is still 
satisfied in the sensor substrate.  Although low frequencies are always better for the accuracy of 
the slope method in semi-infinite samples, for thin samples the frequency cannot be set too low 
or λ2 would run into the backside of the sample.  As an alternative to the slope method, Eq. (2-7) 
shows that the out-of-phase voltage at a single low frequency is also convenient for measuring 
𝑘! + 𝑘! , since Im 𝑍!!!,!"# ! = −1/4𝐿(𝑘! + 𝑘!) [21].  This out-of-phase method may be 

preferable for real-time measurements [38], as only a single frequency must be monitored.  Plots 
in Appendix 2.7.2 show the FF deviation of Im[𝑍!!!] compared to the LFL of −1/4𝐿(𝑘! + 𝑘!).  
Although ||Z|| or Re[Z] could also be used to extract ksample, this is not recommended since Eq. 
(2-7) shows that this calculation for ksample now also depends on C, b, and thermal contact 
resistances, and their corresponding uncertainties.   

Many bi-directional 3ω device geometries require a thin dielectric layer between the 
heater line and the supported sample, both for electrical isolation and to prevent damage to the 
heater line [30], [31], [38].   Additionally, there is inevitably some finite thermal contact 
resistance between sample and sensor, although this can be minimized by using a sample that is 
positioned while hydrated and malleable, and/or by applying clamping pressure [31].  A detailed 
discussion of dielectric layer and thermal contact resistance effects on the slope method is given 
in Appendix 2.7.3.  The important conclusion is that for the experimental conditions presented 
below, the total error in using Eq. (2-8) is no more than 3.3%  (this worst case error is for non-
frozen mouse liver on glass: 𝑘!/𝑘! = 0.5, 𝛼!/𝛼! = 0.27,  𝜆!/𝑏 = 8.5 , with a 1 µm thick 
polystyrene dielectric layer). Without the dielectric layer, the error in using Eq. (2-8) for the 
same conditions would be 0.8%, so most of the error in the slope method for our experiments can 
be attributed to the dielectric layer rather than approximating FF as the LFL.  

 

2.2.6 Heat	Capacity	Measurements	
While the focus of this work is on measuring thermal conductivity, we note that this and 

similar devices can also be used to measure volumetric heat capacity [21], [23], [31], [33], [38], 
which is important for transient procedures.  Unfortunately, there is no tidy analytical expression 
for C analogous to the simple slope method for k.  Therefore, C is typically determined via least-
squares fitting of experimental data to a nonlinear analytical [21], [23], [31], [33] or finite 
element [38] model. As a consequence, fits for C inherit propagated uncertainties from all model 
input parameters, including the heater line geometry, thermal contact resistance, and the 
properties and geometry of the sensor substrate and dielectric layer.  In general, numerical 
integration of Eq. (C2-16) from Appendix 2.7.3 can be used for such fitting.  The magnitude of Z 
has very weak sensitivity (typically < 0.05) to C in the low frequency regimes typically used to 
measure k, and so it is challenging to measure C in this cylindrical heat spreading regime.  
Alternatively, sensitivity to C increases significantly (typically ~0.25) at higher frequencies, 
when the conduction is one dimensional along y, provided that 𝜆 in any present dielectric layer is 
still much larger than its thickness.  Because Z here becomes sensitive to the thermal effusivity 
(Eq. (B2-15)), k must also be measured in order to back out C.  As an example of these 
challenges, representative calculations for our system at high frequency show that the uncertainty 
in k propagates directly into uncertainty in C, and the uncertainty in heater line width is 
magnified approximately 5-fold in its effect on C.  
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2.3 Experimental	Apparatus	and	Calibration	
 The “sensor” (Figure 2-1(a)) is based on the traditional one-sided 3ω method.  For each 
sensor, a gold heater line with typical dimensions 1500 µm in length (L) between voltage probes, 
20 µm width (2b), and 0.2 µm thickness (plus 10 nm Cr adhesion layer), was deposited on a 1 
mm thick glass microscope slide using standard microfabrication techniques.  After attaching 76 
µm diameter copper wires using silver epoxy, the wiring and heater line were coated in a 
dielectric polystyrene layer approximately 1 µm thick.  This was accomplished by preparing a 
solution of polystyrene in toluene with concentration 15 mg / mL.  Several drops of the solution 
were applied to the entire surface after wiring, which was then held vertically to allow excess 
solution to run off, after which the toluene evaporated in 5 – 10 seconds leaving behind a 
continuous film of polystyrene.  The resulting dielectric film thickness, electrical insulation, and 
repeatability were verified on practice glass slides using a stylus profilometer and digital multi-
meter.   

Each sensor’s temperature dependent electrical resistance was calibrated to extract dR/dT 
for Eq. (2-3), and to enable measurement of the sample T using the heater line.  Typical R(T) 
calibration parameters were: 6 temperatures from -20 ºC to 30 ºC; 10 current values from 5 mA 
to 25 mA with R extrapolated to I=0; resistance ~10 Ω at room temperature; ± 1% (std) 
uncertainty on dR/dT fit; ± 0.06% (std) uncertainty on R(T=0°C) fit.  The dR/dT fit was one of 
the primary sources of uncertainty in the final measured thermal conductivity values. 

Each sensor was then calibrated for ksensor(T) using the traditional 3ω method.  When 
interpolating between calibrated points later, a linear ksensor (T) fit was used for most sensors, 
while a 4th order polynomial fit was used for a few low-temperature sensors (-100 ºC < T < -20 
°C) to accommodate deviations of kglass(T) from linearity.  Typical k(T) calibration parameters 
were: 12 temperatures spaced from -10 ºC to 30 ºC (regular sensors), or 40 temperatures spaced 
from -110 ºC to 30 ºC (cryogenic); 20 fitted frequency points spaced logarithmically from 1 Hz 
to 25 Hz, measurement current 20 mA; ± 6% (std) uncertainty on dk/dT fit; ± 0.2% (std) 
uncertainty on k(T=0°C) fit.  

The 1ω heating current was produced by a custom V-to-I circuit, driven by the reference 
output of the same lock-in amplifier used to measure V3ω.  Background subtraction of the V1ω 
component of the signal was implemented using a multiplying digital-to-analog converter.[17]  
A detailed uncertainty analysis for this bi-directional 3ω technique is given in Appendix 2.7.1. 
 

2.4 Measurement	Results	
 

2.4.1 Control	Experiments:	Water	and	Ice	
The system was first validated using ice and liquid water as controls.  Some ice samples 

were made from deionized water that had been boiled for 5 minutes, and others from commercial 
distilled water (UltraPure, Life Technologies).  Thin ice and water samples (< 1 mm) were 
prepared by injecting liquid water into a sheet-like gap of known thickness over the heater line.  
Ice samples were then frozen in place.  To control the gap thickness and minimize evaporation, 
rigid transparent plastic sheets were placed over the heater line, peripherally supported by shims 
of known thickness.  The accuracy of the thickness of < 1 mm water and ice samples is believed 
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to be ± 0.02 mm, and that of ≥ 1 mm to be ± 0.2 mm.  The thickness of samples ≥ 1 mm was 
measured via visual comparison with stack-ups of shims of known thicknesses, without 
additional constraining top surfaces. 

All samples, including liver, were large enough to extend laterally by at least 0.5 mm 
around the perimeter of the heater line to ensure the longest 𝜆 of ~100 µm did not reach the 
sample boundaries in any direction.  Samples not in controlled gaps were held in place by their 
own weight and the intrinsic adhesion of these moist samples.  In order to minimize thermal 
contact resistances, ice and frozen liver were first deposited on the sensor while in their non-
frozen state, so they could form intimate thermal contact and conform to the surface of the 
sensor, before being frozen in place from the bottom up.  Literature values for representative 
solid-liquid interfaces[39] give thermal contact resistances 2 to 3 orders of magnitude smaller 
than the effective thermal resistance of the dielectric layer used.  These values are also assumed 
not to change dramatically after freezing in place.  Therefore, sample-sensor thermal contact 
resistance effects were neglected in lieu of the more dominant effect of the dielectric layer, 
considered in detail in Appendix 2.7.3.  Several liver and ice samples were visually inspected 
from underneath before, during, and after measurement, to check for signs of trapped air pockets, 
delamination, or thermal-expansion-induced shifting, none of which were observed.  During the 
freezing and measurement process of a few samples, cracking was observed both visually and 
through large jumps in the raw voltage data.  Such samples were excluded from the data set.   
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Figure 2-5: Control measurements for ice and water, compared to reference values from.[40]  (a) 
Temperature-dependent measurements.  Marker shape corresponds to sample thickness and marker edge 
color corresponds to the sensor used for the measurement.  Error bars (std) represent the combined effects of 
measurement uncertainty and estimated modeling error, with full details given in Appendix 2.7.1.  In most 
cases, the error bars are smaller than the size of the plotted points.  (b) Subset of the data in (a) interpolated 
to -22 °C for ice and averaged over all T for water.  Each point represents a unique sample.  No trend with 
sample thickness is observed.  Dashed lines indicate average thermal conductivity with the listed value, and 
black lines are CRC literature reference data [40]. 

(a) 

(b) 

(Water) 
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The results for ice and water are given in Figure 2-5, representing measurements using 2 

sensors and 10 samples.  The measures of accuracy and precision for these measurements, along 
with those for liver discussed below, are given in Table 2-1.  Here the rms error is measured with 
respect to the literature data [40], and we define the scatter as the rms deviation of the data from 
a simple model (linear for suprazero, quadratic for subzero) fit to the data.  Full detail regarding 
the error analysis is given in Appendix 2.7.1.   

Figure 2-5(a) shows the measured temperature-dependent k of ice and water.  Most of the 
rms error can be explained by the scatter, and both confirm very good accuracy (< 5% error for 
ice, < 2% for water).  The measured values for ice are slightly below the literature values, which 
might be explained by impurities, dissolved gases, or grain boundaries caused by freezing from 
many simultaneous nucleation sites. 

Figure 2-5(b) shows a subset of the data from panel (a) re-plotted as a function of sample 
thickness.  To focus on the thickness effect and eliminate the temperature dependence of kice, we 
chose to compare all samples at the single temperature of -22 °C.  For each ice sample the value 
of k(-22 °C) was determined by interpolation from the two closest bracketing T points.  Because 
k of water has a very weak temperature dependence, for each water sample we simply plot the 
average of all T > 0 °C points for that sample.  Figure 2-5(b) shows that there is no discernible 
correlation between measured thermal conductivity and sample thickness, for either water or ice.  
Thus, Figure 2-5 demonstrates the precision, accuracy, and reusability of the bi-directional 3ω 
sensors, as well as their ability to measure a wide range of sample thicknesses.   

 
Table 2-1: Accuracy and Precision Analysis of Control and Liver Data, at the Level of One 

std 

	 Water	 Liver	

	 Frozen	 Non-
Frozen	 Frozen	 Non-

Frozen	
Experimental	
uncertainty	 2.0%	 2.3%	 4.9%	 5.9%	

Experimental	
scatter	 3.6%	 1.5%	 7.4%	 5.7%	

Literature	
scatter	 	N/A	 N/A	 14.5%	 14.1%	

rms	 Error	 or	
deviation	 4.6%	 1.9%	 8.3%	 7.4%	

 
 

2.4.2 Measurements	of	Mouse	Liver	
Fresh mouse liver was harvested opportunistically, transported in phosphate buffered 

saline (PBS) solution, and stored in PBS at 2 °C to 5 °C when not being handled.  Samples ≥ 1 
mm thick were prepared by manually slicing with a scalpel, and their thicknesses were measured 
using shim stack-ups ( ± 0.2 mm).  The 0.5 mm sample was prepared using a microtome blade to 
manually slice across the top of a recessed surface of known depth, with estimated accuracy of ± 
0.1 mm.  The 100 µm sample was prepared using a Leica CM3050-S cryotome, with accuracy 
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unspecified but believed to be ± 5 µm or better.  The 100 µm sample was necessarily first frozen 
for cryosectioning and then re-thawed for mounting on the sensor.  A layer of plastic wrap was 
used to cover all non-frozen liver samples and all < 1 mm samples during measurement, to 
minimize sublimation and evaporative losses.  Additional sample preparation and measurement 
precautions were followed as described for the control experiments above.   

A separate study indicated that storage in PBS could result in up to a 10% mass gain over 
a few days.  Most samples were measured within 10 hours of harvesting, with the longest storage 
time being 33 hours for one of the 1.5 mm liver samples which was stored as bulk (~ 20 mm) 
and cut to size immediately before measurement, as with all samples.  The storage time had no 
noticeable effect on the k values of these samples.  Another study examined the effect of the liver 
surface being wet vs. dry before mounting, to investigate the adhesion potential as well as 
possible effects of a thin water layer forming between the sample and sensor.  Two sets of 
measurements differing only in one key protocol step were compared (thickness=2 mm, N=3 of 
each).  The first set was a control following our standard “wet liver” protocol, whereby the 
samples were placed on the sensor as soon as practical after removal from PBS and slicing.  In 
the second protocol, after slicing, the bottom face of the liver sample was first gently blotted dry 
before placement on the sensor.  In all cases the sensor itself is dry before receiving the sample.  
The results, shown most clearly in the inset of Figure 2-6(a) (compare green vs. yellow 
triangles), exhibit no discernible effect on k.  This result further confirms the non-frozen liver’s 
ability to form intimate thermal contact with the sensor even in a nominally dry state.  
Furthermore, the similarity of k values from wet and dry protocols implies that any possible 
intervening water layer from the wet protocol would have to be substantially thinner than the 
thermal penetration depths of the measurement (typical λ from 50 - 100 µm), since pure water 
would bias the apparent ksample upwards.  
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Figure 2-6: Mouse liver thermal conductivity measurements.  (a) Temperature-dependent mouse liver 
measurements (filled, colored points).  Marker shape corresponds to sample thickness and marker edge color 
corresponds to the sensor used for the measurement.  Reference liver data (empty circles) are from [12]–[16], 
and comprise data from pig, cow, human, dog, and rabbit livers.  Water reference values are from [40].  Data 
represent 16 samples measured using 6 sensors in two different laboratories.  Error bars (std) represent the 
combined effects of measurement uncertainty and estimated modeling error, with full details given in 
Appendix 2.7.1.  (b) Subset of the data in (a) interpolated where possible to -22 °C for frozen liver, and 
averaged over all T for non-frozen liver.  Each point represents one sample.  No trend with sample thickness 
is observed.  Dashed lines indicate average thermal conductivity.  Insets: (a) (left) photograph of 1 mm thick 

(a) 

(b) 

(Liver) 
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frozen liver sample on a sensor; (right) detail of non-frozen data; (b) photograph of 100 micron thick non-
frozen liver on a sensor. 

 
The results for mouse liver are presented in Figure 2-6.  These data represent 16 samples 

measured using 6 sensors in 2 laboratories.  The measures of accuracy and precision for these 
measurements can again be found in Table 2-1.  Scatter is defined the same as for water and ice.  
The error cannot be directly assessed since these are the first measurements of mouse liver, and 
indeed the most complete data set for liver from any organism.  Nevertheless we estimated the 
overall deviation between our measurements and literature by calculating the rms difference 
between models fitted to our data and to the literature data, over the temperature range of the 
data.  Further details are given in Appendix 2.7.1.   

Figure 2-6(a) shows that our measurements of mouse liver fall within the scatter of 
available literature data for kLiver of other organisms: pig, cow, human, dog, and rabbit, all > 10 
mm thick and measured using traditional macroscopic techniques [12]–[16].  The scatters of our 
measured liver data are comparable to their estimated uncertainties, and reflect the greater 
inherent sample-to-sample variability as compared to water. For all k measurements, the 
dominant sources of uncertainty were found to be the 𝜕𝑉!!,!"!!!!"#/𝜕 ln 𝜔  slope and the 
sensor’s calibrated 𝑑𝑅/𝑑T slope, with the latter contributing the most in the case of liver.  Table 
2-1 shows that the liver measurements had higher uncertainty than the water measurements, but 
this is simply because the sensors used for the latter were calibrated more accurately, and does 
not indicate any fundamental issue with biological samples.  The scatter of our liver data is still 
two to three times tighter than the scatter of the literature data.  This is attributed to greater inter-
organismal variation as compared to intra-organismal variation, and to the superior precision of 
our technique.  The rms deviations between our data and the literature are actually smaller than 
the internal scatter of the literature dataset itself, while also being slightly larger than the internal 
scatter of our measurements.  This means that comparatively, the best-fit model for the literature 
data has closer agreement with our data than it does with the literature data itself, again 
confirming the accuracy and repeatability of the present 3ω method.  

Figure 2-6(b) is plotted in the same manner as described for Figure 2-5(b), and confirms 
that these liver results are essentially independent of thickness over the range studied, from 3 mm 
down to 100 µm.  This is consistent with the design of the experiments, as the frequencies were 
chosen to probe only the first ~100 µm of each sample.   Therefore, this technique is agnostic to 
the full size of the sample, and could accurately measure the thermal conductivity of very thin 
tissues such as heart valves (1 - 2 mm), phrenic nerve (0.5 - 1 mm), cornea (0.5 mm), and fascia 
(0.1 mm). 
 

2.5 Conclusions	
These bi-directional 3ω sensors can accurately and precisely measure k of biological 

tissues and water-based samples at least two orders of magnitude thinner than traditional 
techniques for biological samples [8]–[16].  Measurements of mouse liver showed scatter of 
around 6% - 7% and excellent agreement with available literature for other organisms, while 
control measurements on water and ice prove ultimate accuracy limits better than 2% - 5%.  In 
most previous implementations of the bi-directional 3ω method, the experimental uncertainties 
included non-negligible contributions from the modeling errors caused by the boundary 
mismatch approximation (BMA) [21]–[24]  and generalized slope methods.  Both of these 
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idealizations are imperfect but common and very convenient, so we have for the first time 
quantified their errors, and proven analytically that the BMA does become exact in the low 
frequency limit.   

The minimum tissue thickness of 100 µm measured above was limited by sample 
preparation rather than fundamental thermal issues.  In principle much thinner layers could be 
measured (see also Appendix 2.7.3), and indeed for inorganic solids the traditional single-sided 
3ω methods are routinely used to measure films even thinner than 1 µm [19], [20].  The 
prospects for such extreme thinness in biological systems will be limited by the challenges in 
preparing thin tissue sheets, the difficulties in obtaining excellent thermal contact when 
assembling two initially distinct materials (although this may still be achievable [41]), and 
ultimately by the granularity of individual cells themselves [25]. 

The 3ω sensors used in this work are reusable, and biological samples can be changed in 
typically 10 minutes or less.  This technique also inherits the traditional 3ω method’s robustness 
against thermal contact resistance and parasitic heat loss issues.  Finally, as a microfabricated 
device this system lends itself to miniaturization, and similar sensors may be amenable to in-vivo 
measurements and devices in the future. 

 

2.6 Suggestions	For	Future	Work	
While this dissertation has demonstrated that the bi-directional 3ω method can be easily 

implemented used to measure soft, wet, and chemically sensitive samples down to 100 µm 
thicknesses, there is still room for improvement and future work to develop this technique 
further.  Here, we discuss some of these possible avenues. 

Many biological tissues are anisotropic in their structure, such as muscle tissues and 
fascia.  Recent work has shown how the traditional 3ω method can be extended to measure an 
arbitrarily oriented anisotropic thermal conductivity tensor [42].  We therefore recommend that 
this be applied to the current work, to generalize our sensor so as to be able to measure the full 
anisotropic k tensor of biological tissues. 

While we have demonstrated the efficacy of the scientific principles of the technique, this 
was all done with bulky “one-off” prototype lab equipment.  In order to be of maximal benefit to 
the biomedical community, we encourage someone to commercialize this technique to create a 
more modular and self-contained version of the apparatus with an easy user interface, so that 
medical researchers and hospital staff around the world can use this to quickly and easily 
measure k of various tissues.  Personalized calibrated k measurements could greatly enhance the 
efficacy and safety of biomedical thermal therapies.  Along a similar vein, it could be quite 
beneficial if the technology could be miniaturized so that in vivo measurements were possible. 

Our measurements, while as close to in vivo as possible, were still not of tissue within a 
living organism.  One key difference here is therefore the lack of blood perfusion and its 
potential influence on heat transfer and hence the “effective k” that most accurately models the 
tissue.  We therefore recommend miniaturization of our device and in vivo measurements where 
possible.  Recent work has made very promising progress toward in vivo measurements, 
accounting for advective thermal effects, real-time measurements, and moving toward 
miniaturization and commercialization possibilities of this technique as a biomedical device [43]. 
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2.7 Appendices	
 

2.7.1 	Appendix	A	-	Uncertainty	And	Error	Analysis	
In the usual way, the experimental uncertainties were assumed to be small, normally 

distributed, and were propagated orthogonally.  We also accounted for correlations between 
dependent parameters from the same fit based on their calculated covariance.  The fits for 
𝜕𝑉!!,!"!!!!"#/𝜕 ln 𝜔 , 𝑑𝑘/𝑑T , and 𝑑𝑅/𝑑T  were calculated using least-square regression 
weighted by the inverse of the measured standard deviation of each data point, using the 
Levenberg-Marquardt method employed via Scipy’s optimize.curve_fit module.  Uncertainties 
(std) of fit parameters were calculated from the variance-covariance matrix of the fit.  For all k 
measurements, the dominant sources of uncertainty were found to be the 𝜕𝑉!!,!"!!!!"#/𝜕 ln 𝜔  
slope and the 𝑑𝑅/𝑑T calibration, with roughly equal contributions in general.   

After calculating the total propagated uncertainty (± std) in k for each measurement, the 
modeling error was also calculated by numerically evaluating the full coupled, bi-directional 
geometry solution of Eq. (C2-16) from Appendix 2.7.3, which also accounts for the dielectric 
layer.  All samples were non-frozen and hydrated when originally placed on the sensor and 
therefore we assumed they were in intimate thermal contact with the dielectric layer and had 
negligible thermal contact resistance.  This assumption is supported by the low values of thermal 
contact resistance available in the literature [39] for interfaces involving water.  Furthermore, the 
nature of the generalized slope method eliminates error due to purely real thermal contact 
resistances which have no thermal capacitive effects, when sufficiently within the low frequency 
limit (shown in Figure 2-8 in Appendix 2.7.3) as was the case for our measurements.  The most 
conservative parameter values are given in Table 2-2 of Appendix 2.7.3, with assumed dielectric 
properties also given in Appendix 2.7.3, yielding a worst-case modeling error of 3.3%.  This 
error was always positive, indicating that that the generalized slope method applied to a finite 
frequency experiment will always over-estimate the thermal conductivity for parameters used in 
our experiments.  As such, the error bars in Figure 2-5 and Figure 2-6 are asymmetric, with the - 
error bar exceeding the + error bar.  The modeling error was combined in quadrature with the 
total propagated uncertainty (± std) to calculate the total error bar. 

In order to quantify the precision and accuracy of our data, scatter and deviation metrics 
were calculated.  Because a physics-based model for the temperature-dependent thermal 
conductivity of liver is not available, we used simple empirical models instead: a linear model 
was used for suprazero data, and a quadratic model for subzero data.  For each experimental 
dataset, the data’s scatter among itself was calculated as the rms relative deviation of the data 
from its own corresponding fitted model,   

 

 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 =
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(A2-9) 

 
where i indexes each measured data point, N is the total number of measurements in the dataset, 
kmeas,i is an experimentally measured thermal conductivity, T the temperature, and kmodel(T) is the 
temperature-dependent thermal conductivity model (linear for suprazero, quadratic for subzero) 
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fit to the dataset.  To calculate the rms error in our control ice and water measurements, Eq. 
(A2-9) was applied to our measured data, while kmodel was fit to the literature data [40].   Because 
there is no available k(T) literature specifically for mouse liver, a more general agreement metric 
was devised to compare our data to a collection of k(T) liver data reported for various other 
organisms [12]–[16].  This was calculated as the rms deviation between a model fit to our data 
and a model fit to the literature data, integrated over the temperature range spanned by the union 
of the two data sets,  
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where kmodel,exp(T) corresponds to our experiments, and kmodel,lit(T) to the literature.  The results of 
all scatter, error, and deviation analyses for both liver and control samples are summarized in 
Table 2-1 in the main text. 

The scatter of each data set gives a measure of its precision.  A comparison of the scatter 
of our data against its rms error/deviation with respect to the literature gives a measure of the 
accuracy.  The calculated error/deviation gives the combined effect of the scatter (imprecision) 
and inaccuracy.  
 

2.7.2 Appendix	B	-	Errors	in	bi-directional	data	analysis		
Figure 2-7 shows further error analysis for two semi-infinite materials in the bi-

directional geometry. Each column displays a different heating frequency, and the individual 
subplot axes are the conductivity and diffusivity ratios.  Within the middle column, the topmost, 
3rd, and 4th panels are identical to Figure 2-4 and Figure 2-3 in the main text. 

The top row in Figure 2-7, like Figure 2-4, shows the percentage error of the low-
frequency limit (LFL) compared to the exact finite-frequency (FF) slope of Eq. (2-6).  These 
calculations show that the slope of the numerically integrated Eq. (2-6) is within 1% of the much 
simpler low-frequency Eq. (2-5) as long as λ!/𝑏 and 𝜆!/𝑏  are both > 10.  The second row in 
Figure 2-7 shows the percentage error in assuming the imaginary amplitude LFL, −1/4𝐿(𝑘! +
𝑘!), as compared to the exact FF Im[𝑍!!!] of Eq. (2-6). The error is defined as (LFL –FF)/FF for 
both rows. Comparing rows 1 and 2, we see that the slope method has smaller finite-frequency 
errors than the out-of-phase method in the low and medium frequency cases.   

The remaining rows of Figure 2-7 show the percentage errors in the BMA predictions of 
Re[𝑍!"#], Im[𝑍!"#], magnitude 𝑍!"# , and phase shift angle 𝜃!"# , all compared to the exact 
𝑍!!! obtained by numerical integration of Eq. (2-6).  From Figure 2-7 we note several trends. 
First, in the low yet finite frequency scenario of the left-hand column, Im[𝑍!"#] has a much 
smaller error than Re[𝑍!"#], as predicted by Eq. (2-7). Second, for these three frequency cases, 
𝑍!"# becomes exact for equal diffusivities and/or large conductivity mismatch. Lastly, the high 
frequency behavior in the rightmost column indicates that errors in 𝑍!"# are reduced when 
penetration depths in both materials are of the order b or smaller. In the remainder of this 
appendix, we analytically study the thermal property ratios where the BMA becomes exact, and 
also confirm that the BMA is exact for all thermal property ratios in the high-frequency limit. 



 

 
 

22 

Figure 2-7: Errors in two semi-infinite bi-directional geometry analysis methods.  Rows 1-2 give the finite-
frequency errors arising from using the respective low-frequency limits for the generalized slope method 
(𝝏𝐑𝐞 𝒁𝟏!𝟐 /𝝏 𝐥𝐧𝝎), and the generalized out-of-phase method (𝐈𝐦 𝒁𝟏!𝟐 ), at three frequencies.  Rows 3-6 
give the errors in 𝒁𝑩𝑴𝑨 compared to the full coupled-domain solution, 𝐙𝟏!𝟐. 
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First, we will analytically show that the BMA is exact for the specific case of 𝛼! = 𝛼!, and 
for the case of 𝑘! 𝑘! ≪ 1 and 𝑘! 𝑘! ≪ 𝐶!/𝐶! , for all values of λ! b.  We rewrite the exact 
result of Eq. (2-6) as 
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With  𝛼! = 𝛼! = 𝛼, this simplifies to 
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where the notation 𝐹(𝛼) is shorthand for the value of the integral, and the equality with Z!"# 
follows directly from Eqs. (3-2) and (2-4).  Similarly, to study the behavior for large conductivity 
mismatches, we define a new variable of integration 𝜒 = 𝜉/𝑞! , where 𝑞! = 𝑖2𝜔/𝛼! , and 
rewrite Eq. (B2-11) as  
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(B2-13) 

 
where 𝜇 = sin! 𝜒𝑏 / 𝜒𝑏𝑞! ! is independent of material 1 properties, and we allow for 21 αα ≠ .  
When 𝑘! 𝑘! ≪ 1 and  𝑘! 𝑘! ≪ 𝐶!/𝐶! , the terms in the denominator of Eq. (B2-13) containing 
material 1 properties become small compared to 𝜒! + 1, and the one-sided solution for 
material 2 from Eq. (3-2) is recovered. This same limit is also apparent when the BMA is written 
as  
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When 𝑘! 𝑘! ≪ 1 and 𝑘! 𝑘! ≪ 𝐶!/𝐶!, the integral in the denominator of Eq. (B2-14) 
becomes large and 𝑍!"# approaches 𝑍!. It is intuitive that when 𝑍! ≫  𝑍!, the sum of the two 
impedances in parallel approaches 𝑍!. The validity of the BMA in scenarios of equal diffusivity 
and a quasi-adiabatic interface can be observed for all frequency ranges in Figure 2-7. The quasi-
adiabatic requirement 𝑘! 𝑘! ≪ 𝐶!/𝐶! explains why the error is asymmetric around 𝑘! 𝑘! = 1 
in Figure 2-7.  

In the high-frequency limit, 1-D planar transport occurs on both sides of the heater line. 
The integral in Eqn. (2-6) is dominated by values of 𝜉 such that 𝜉 ≪ 𝑅𝑒[𝑞!] for materials 1 and 
2, so the transfer function can be approximated as 
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where 𝑘𝐶 ! is the thermal effusivity of material j. As expected, the BMA becomes exact in 
this high frequency limit for all effusivity ratios because the materials do not thermally 
communicate outside of the heater line during purely planar heating.[30] If the BMA is used for 
data analysis in planar heating experiments, care must be taken to ensure that both materials 
remain in a planar heating regime, because error increases as one material transitions from a 
planar to a cylindrical heating regime. 
 

2.7.3 Appendix	C	-	Dielectric	layer	&	Interfacial	Resistance	analysis	
Josell et al [44] published a corrected version of the thermal transfer function Z!!!!! that 

includes a finite-thickness dielectric layer between the heater line and material 2 that was derived 
by Kuo et al. [44], [45]  for an equivalent opto-thermal system.  Josell’s derivation is equivalent 
to the Feldman matrix method [35].  Briefly, the Green’s function for a periodic line heat source 
is found by taking the spatial Fourier transform parallel to the material interface for the 
governing steady periodic Helmholtz heat equations and the interface conditions. Solving for the 
constants of the temperature field within the three different materials, taking the inverse Fourier 
transform with respect to space, and using the convolution theorem for a finite heat source yields  

 
 
 

Z!!!!! =
1
𝜋𝐿

cosh Υ!𝑅! + sinh Υ!𝑅!
Υ!
Υ!

(Υ! + Υ!) cosh Υ!𝑅! + Υ!Υ!
Υ!

+ Υ! sinh Υ!𝑅!

sin! 𝜉𝑏
𝜉𝑏 ! 𝑑𝜉,

!

!
 (C2-1

6) 

 
where the subscript d indicates the dielectric layer and 𝑅! = 𝑡! 𝑘! is the area-specific thermal 
resistance of the dielectric layer with thickness 𝑡!. A nondimensionalized Z!!!!! is a function of 
5 nondimensional parameters. We list our selected groups in Table 2-2, along with approximate 
values for our experiments on non-frozen mouse liver at 20 oC, representing our most 
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conservative worst-case measurements.  Errors in the slope method are worse for the fresh liver 
than the higher-diffusivity frozen liver, and we use the high end of the frequency fitting range as 
the characteristic ω used to calculate values in Table 1, as this is most conservative.  As in the 
main text, subscript 1 refers to the sensor and subscript 2 refers to the sample.  Numerically 
evaluating 𝜕Re[𝑍!!!!! ] 𝜕𝑙𝑛 (𝜔), the worst-case error in the 𝑘!"#!$% + 𝑘!"#$%&  generalized 
slope method for our liver experiments is 3.3%. If the dielectric were not present, the error in the 
slope method would be 0.8% for the same sample and substrate properties and test parameters. 
Errors in the slope method for the frozen liver properties are less than 0.5% using the same 
dielectric properties (𝑘! = 0.11 W/m-K[46] and 𝑡! = 1 𝜇𝑚).  
 

Table 2-2: Nondimensional Parameters Used In Calculating 𝐙𝟏!𝒅!𝟐 With Most 
Conservative Values 

Nondimensional group Conservative value in mouse 
liver experiment 

𝑘! 𝑘! 0.5 
𝛼! 𝛼! 0.27 
𝑅!𝑘!/λ! 0.11 
𝜆!/𝑡! 33 
𝜆!/𝑏 8.5 

 
Ju and Goodson [47] showed that a thin dielectric layer can be treated as a pure thermal 

contact resistance when 𝜆!/𝑡! ≫  1 for planar heating in one-sided 3ω. In the bi-directional case 
of Eq. (C2-16), the dielectric thermal capacitance and the 2D heat spreading inside the dielectric 
are relatively unimportant when 𝜆!/𝑡! >>1 and 𝑡!/𝑏 <<1, respectively. Since these two 
conditions hold for common thin dielectrics (𝑡!/𝑏 = 0.1 in our experiments) and heating 
frequencies, we Taylor expand the hyperbolic terms of Eq. (C2-16) to first order in Υ!𝑅!.  
Furthermore, when 𝜆!/𝑏 ≫ 1, we can follow the method of Cahill[17] to simplify the integral in 
the low-frequency regime. Neglecting terms of order  𝑡!/𝑏  or smaller that would include 
information about heat spreading and dielectric capacitance, the integral becomes equivalent to 
assuming a pure thermal contact resistance at the interface: 

 
 

Z!!!!!! =
1
𝜋𝐿

1+ 𝑅!Υ!
Υ! + Υ! + Υ!Υ!𝑅!

𝑑𝜉.
!
!

!
 

 
(C2-17) 

 
For large 𝑅!, the adiabatic one-sided solution for material 1 is recovered, and for small 

𝑅!, the perfect contact solution in Eq. (2-6) is recovered. The slopes obtained from Eqs. (C2-16) 
and (C2-17) using the relevant parameter values from Table 1 agree to within 0.5% for 𝜆!/𝑏 
=10. 

To gain further insight into the error in using the generalized slope method when a 
dielectric layer or large thermal contact resistance is present, we study the specific case of equal 
volumetric heat capacities, 𝐶! = 𝐶!.  This is a reasonable first approximation for many fully 
dense materials. Now, after imposing equal heat capacities, neglecting dielectric capacitance, and 
neglecting heat spreading within the dielectric, the error in using the low-frequency limit to 
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approximate ∂Re[Z!!!!!!] ∂ln (𝜔)  can be expressed in terms of only three dimensionless 
groups, selected as 𝜆! 𝑏, 𝑅!𝑘! 𝜆!, and 𝑘! 𝑘!.  

For the situation just described, Figure 2-8 shows the error in using the slope method, as a 
function of the normalized thermal contact resistance for different values of 𝑘! 𝑘!.  The error is 
again defined as (LFL-FF)/FF. The error in the slope is insensitive to 𝜆! 𝑏 when the low-
frequency assumption in the derivation of Eq. (C2-17) is satisfied. As the contact resistance 
increases, a larger 𝜆! is required to access the regime where the slope method is accurate.  In the 
limit that 𝑅!𝑘! 𝜆! is large, the slope is only sensitive to material 1.  Now looking at the 
conductivity ratio dependence, we see that the slope method can be used for larger normalized 
resistances when material 1 and 2 have comparable conductivities. When k! k! > 1, the slope 
method breaks down at relatively smaller values of the 𝑘!-normalized contact resistance, because 
the ratio 𝑅!/Re[𝑍!] becomes significant for smaller values of 𝑅!𝑘! 𝜆!.  

 

  
Figure 2-8: Error in the generalized slope method due to a thermal contact resistance layer between the 
heater and material 2 (the sample). The error is defined as (LFL-FF)/FF. Larger penetration depths are 
required to reach the range of validity for the generalized slope method when the contact resistance is large. 
The experimental values for the fresh mouse liver experiment (worst case) correspond to 𝑹𝒅𝒌𝟏 𝝀𝟏 = 𝟎.𝟏 and  
𝒌𝟐/𝒌𝟏 = 𝟎.𝟓 with 𝑪𝟐/𝑪𝟏 = 𝟏.𝟔.  

 
Lastly, we note that these thermal transfer functions for layered bi-directional geometries 

can be used to extend the single-sided differential 3𝜔 method for measuring thin films [19], [20] 
to a “bi-directional differential” experiment. The differential measurement would compare the 
measured bi-directional thermal transfer function when a thin sample is inserted between the 
dielectric layer and material 2 (𝑍!!!!!!!) to an identical bi-directional geometry without the thin 
sample (𝑍!!!!!). In the BMA, the film is treated as an additional thermal resistance that is found 
by simple parallel/series resistor algebra using the two measured transfer functions. The 
sensitivity to the cross-plane film conductivity is not improved in the bi-directional differential 
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method compared with the single-sided differential method because of the parallel heat flow 
pathways from the heater line, but a bi-directional scheme might still be advantageous for the 
practical assembly of challenging samples.  Optimal sensitivities would be obtained when the 
substrate (1) has low 𝑘, the dielectric layer (d) is as thin and conductive as possible, and the 
material (2) above the supported film (f) is of high 𝑘 .  The bi-directional differential 
measurement could potentially be utilized to measure the cross-plane conductivities of solution 
processed thin films, flakes of bulk materials, or biological samples as thin as 1 µm.  
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Chapter	3	- Variable	Spot	Size	TDTR	
 
Significant thanks are given to Dr. Christian Monachon for training me on TDTR.  Without 

his extensive experience and mentorship, this project could not have been completed with nearly 
the speed nor to the level of scientific rigor that was possible. 

 

3.1 Introduction	
Traditional engineering was constrained in the diversity of technologies that could be 

created due to the limited ranges of accessible material properties.  With the onset of nano-scale 
engineering, it is now possible to engineer material properties themselves, opening access to a 
larger space of possible values of material properties and property combinations, allowing for 
more complex designs.  The family of macroscopic thermal energy properties such as heat 
capacity and thermal conductivity is governed on the nano-scale by the behaviors of quantized 
bundles of atomic vibrational energy called phonons.  Their velocity, energy, scattering rates, 
and statistical distributions govern everything from how much energy it takes to keep a building 
cool in the summer, to why pipes buried deeply enough never freeze in the winter, and even how 
long the Mars Curiosity rover can power itself. 

Detailed knowledge of the behavior of phonons in different materials enables us to 
calculate their thermal transport properties in all situations, including when the length scales of 
the material are small enough to invalidate Fourier’s law of heat conduction and we need to 
account for the phononic granularity of the flow of heat.  Furthermore, an understanding of how 
different phonon scattering mechanisms affect the behavior of phonons equips us with the ability 
to know how the introduction of those different scattering mechanisms will change these thermal 
transport properties in controllable ways.  Taken together, if we can know the baseline phonon 
properties of a material, how they collectively govern thermal transport properties, and how 
different introduced scattering mechanisms will change those phonon behaviors, then we can 
engineer the thermal properties of a material to have extreme and unique behaviors, such as 
ultra-low thermal conductivity [48] and shielded or inverted thermal fluxes [49]. 

There are already many pertinent technologies that either already have or could benefit 
from thermal nano-engineering.  Nanostructuring a material can increase phonon scattering to 
reduce thermal conductivity via the introduction of defects and impurities or by ball milling and 
hot pressing.  This has been used to boost the efficiency with which thermoelectric materials can 
generate useable electricity from otherwise wasted low-grade heat [50]–[53].  Similar benefits 
can also be achieved by shrinking materials down to create nanowires [54]–[56] or nanomeshes 
[57].  Heat dissipation from nanometer scale transistors in modern electronics is one of the 
primary challenges threatening Moore’s law and limiting how small we can make computer 
chips [58].  The classical equations of heat conduction ignorant of the details of phonon 
properties fail to predict heat transfer at such small length scales, further hindering our ability to 
make progress in microelectronics.  For the same token, controlled nano-scale heating of 
magnetic media may hold the key to the next generation of hard disk drive storage with increased 
information density (up to ~ 375 TB/m2) via Heat-Assisted Magnetic Recording (HAMR) 
devices [59], but to reach its full potential, this technology requires writable magnetic media with 
a precisely engineered nano-scale anisotropic thermal conductivity tensor and effective heat 
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dissipation from its nanometer scale near field thermal transducer.  High-powered lasers are 
currently limited in their maximum power output by how much energy the lasing medium can 
dissipate before overheating.  Solving this problem requires simultaneously engineering both the 
optical and the thermal transport properties of a material, and the most promising approaches 
thus far involve creating anisotropic crystal nano-grains to control directional photon and phonon 
scattering [60], [61].  LEDs produce much less heat overall than incandescent bulbs, but what 
heat they do produce is very locally concentrated in nanometer sized quantum wells, and 
reducing these semiconductor junction temperatures by just 11 ºC would triple the lifetime of 
LEDs [62] and increase their luminous output by a factor of 5-7 [63], making them far more 
economically competitive and desirable, hence boosting their adoption rates.  If most industrial 
and residential lighting applications adopted the best LEDs, the total energy consumption of the 
entire United States would drop by a staggering 5% [64], [65].  Meanwhile, the issue of thermal 
management in batteries is a direct safety concern influencing how well batteries mitigate 
thermal runaway shorts that can otherwise cause batteries to explode or burst into flames [66].  
Such battery fires have occurred in smart phones, airplanes, and electric vehicles, occasionally 
prompting widespread product recalls.  Improving the heat transport in batteries would also 
reduce their recharge time [67] and remove the need for much of the often-present bulky external 
cooling systems [68], [69], leading to safer and smaller personal electronic devices, as well as 
lighter electric vehicles with increased driving range [70].  All of the controllable internal 
thermal transport in these battery systems is governed by the interaction of phonons in nanometer 
to micron scale materials and features [70].  Even promising heated nanoparticle-based cancer 
treatments depend on nano-scale heat conduction [71]. 

All of these important problems require a fundamental understanding of nano-scale 
thermal energy transport coupled with the ability to measure properties of phonon populations in 
different materials.  As all forms of technology advance and move toward smaller minimum 
feature sizes, such nano-scale thermal engineering will become ubiquitously necessary.  A large 
body of work already exists studying phonon transport properties theoretically and 
experimentally, with a particular eye toward its application for nano-scale thermal engineering 
and broader impacts [58], [72]–[78].  This work has resulted in great progress, especially 
regarding theoretical models and understanding.  However, in spite of all this effort, it is only 
within the last few years that such sub-continuum thermal transport regimes have become more 
experimentally accessible, especially for bulk materials.  There are still only a few number of 
experimental techniques capable of accessing this regime, and reasonable debate still exists 
regarding how to properly interpret many of the experimental results [72], [79]–[82]. 

To contribute to this ongoing effort, in the rest of this thesis we describe the variable spot 
size time domain thermoreflectance measurement technique and how it can be used as a tool to 
measure such phonon properties, demonstrating its efficacy by measuring sub-diffusion thermal 
transport in sapphire, silicon, nano-grained silicon, and silicon germanium samples.  We explain 
the microscopic origins of macroscopic heat conduction in a physically intuitive paradigm and 
how this understanding can be used to extract information about phonon properties from 
measurements of bulk samples.  The results of our measurements are discussed and related back 
to this microscopic understanding of thermal energy transport. 
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3.2 Description	Of	The	Experimental	System	

3.2.1 Traditional	TDTR	
Time Domain ThermoReflectance (TDTR) [27], [83] is effective for measuring both high 

(~1000 W/m-K) and low (~1 W/m-K) thermal conductivity (k) materials [84], thin films and 
interfaces [73], [85], as well as liquids [28].  Ultimately, the only requirement is that the sample 
of interest be in intimate thermal contact with a thin, specularly smooth metal transducer layer 
and be spatially homogeneous on the length scale of the thermal penetration depth as determined 
by the modulation frequency.  The thermal penetration depth for planar heating is given by 

 
 Lp = D 2π f  (3-1) 
 
where D is the thermal diffusivity, and f is the frequency of thermal oscillations. 

In traditional TDTR experiments, an ultrafast pulsed laser is used in a pump-probe 
configuration.  The raw output of the laser is a constant pulse train of equally spaced high-
intensity pulses typically ~200 femtoseconds in duration (FWHM).  The repetition rate of a 
standard Ti:Sapphire pulsed laser is 80 MHz (80.1 MHz in our experiments), resulting in one 
pulse every 12.5 nanoseconds.  The pulse widths are hence approximately 5 orders of magnitude 
briefer than the time between pulses, and so the pulse train can be very well described 
mathematically as a series of Dirac delta functions, known as a “Dirac Comb.”  More details of 
the mathematical modeling will be given later in section 3.6 TDTR Mathematical Theory.  The 
laser output is divided into two separate beams, a “pump” and a “probe” beam.  Traditionally, 
this beam splitting is done with a regular or polarizing beam splitter cube [86], [87].  The pump 
beam is used to heat the sample, while the probe beam is used to measure the resulting surface 
temperature changes of the sample, which depend on the sample’s thermal properties.   

The probe beam passes through a variable length optical path, while the pump beam 
traverses a constant-length optical path on its way to the sample.  By increasing the probe’s 
optical path length by a distance d, its arrival time at the sample is delayed by a time d/c as 
compared to the pump, where c is the speed of light in air, approximately 3x108 m/s.  The 
enormity of the speed of light, combined with the brevity of the laser pulse widths, allow for 
very precise temporal resolution of the measured transient cooling of the sample.  For example, 
increasing the probe’s optical path length by 0.3 mm will delay its arrival time by 1 picosecond.  
This is the core idea of ultrafast optical pump-probe systems.  The final major component for 
traditional TDTR systems is a modulator that chops the pump beam at a high frequency 
(typically 1 to 10 MHz).  This introduces a frequency component at the modulation frequency in 
the temperature response of the sample, which can be picked out from the probe beam’s signal 
by a lock-in amplifier.  Because only the pump beam is chopped, any component of the probe 
beam’s signal at the modulation frequency must have originated from the sample’s temperature 
respond, and hence is the thermal signal of interest.  This lock-in technique is similar to that used 
in the 3-Omega system, and is a great way to increase signal-to-noise by up to a few orders of 
magnitude [88]. 

The sample to be measured is typically coated with a thin (~100 nm [86], [89]) metal film 
to act as an optical transducer layer.  The purpose of this metal film is two-fold.  First, it serves 
to absorb the incident pump beam’s optical energy over a short distance and convert this energy 
into heat.  This greatly simplifies the thermal modeling as it means the incident heat flux can be 
well modeled as a boundary condition at the sample’s surface, rather than having to account for 
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the details of a distributed volumetric heat generation penetrating non-negligibly into the sample.  
Second, the metal’s optical reflectivity changes as a function of temperature, allowing us to use 
the amount of reflected probe beam light as a thermometer for the sample.  For small to moderate 
temperature excursions (typical TDTR experiments have < 1 K of surface temperature 
oscillations) this relationship between temperature and optical reflectivity can be assumed to be 
linear. 
 

3.2.2 Variable	Spot	Size	TDTR	
Our system is based on the traditional TDTR setup, with a few modifications that will be 

described in greater detail in section 3.3.  Most notably, we vary our laser spot size by changing 
the objective lens used to focus the pump and probe beams onto the sample.  This allows us to 
create thermometers and heat sources with characteristic lengths on the order of mean free paths 
of some of the phonons in the sample, resulting in a tool that can study sub-continuum effects of 
heat conduction at the micro- and nano-scales.  A more in-depth explanation of the physics of 
sub-continuum heat conduction will be given later in Chapter 4 - Effects of Alloying and 
Nanostructuring on Spectral Phonon Mean Free Path Distributions.  Several challenges arise 
from using spot sizes only a few microns large, especially when trying to precisely overlap two 
such spot sizes, and prevent either one from changing location, size, or shape throughout a 
measurement while the probe beam’s optical path is elongated by up to a meter.  This 
instrumentation used to achieve such results is now discussed in section 3.3. 

 

3.3 Instrumentation	and	Experimental	Tricks	
 In this section, I will give an overview of the hardware and instrumentation used in our 
implementation of TDTR, as well as describe the various tactics employed in our system to 
reduce noise and generally improve the robustness of our measurements.  Most of these tricks of 
the trade have already been described elsewhere in the literature, but by collecting them all in 
one place and spending a little bit more time explaining the reasoning behind each, I hope to help 
make the challenging design of a robust and functional TDTR system more accessible to future 
researchers. 
 

3.3.1 System	Overview	
Here I will briefly walk through all components of the variable spot size TDTR system, 

and then describe key elements in greater detail below.  Our specific setup is given in Figure 3-1 
below.  The laser pulses are originally generated in the Ti:Sapphire laser, whose fundamental 
wavelength at 800 nm partially passes through as the probe beam.  This wavelength is chosen as 
it is near where aluminum exhibits a local maximum for its temperature-dependent optical 
reflectivity coefficient, maximizing detected signal strength.  Aluminum is used as the optical 
transducer in all of our measurements, with a typical film thickness of 70 nm.  The remaining 
power from the Ti:Sapphire laser pumps the Optical Parametric Oscillator (OPO) which then 
feeds a Second Harmonic Generation (SHG) crystal, to output a spatially distinct pulse train 
beam at 530 nm, used as the pump beam.  This wavelength was chosen to maximize the output 
power of the laser OPO SHG while being sufficiently spectrally distinct from the probe beam.  
This laser system was purchased from Coherent’s Chameleon compact OPO-Vis laser series, and 
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allows for independent tuning of our pump and probe wavelengths across the full visible 
spectrum into the near-infrared.  This laser system is a shared facility in the Molecular Foundary 
at the Lawrence Berkeley National Lab, with a large user base. 

Independently tuned pump and probe, with large spectral separation, offer some benefits 
over the more common “two-tint” TDTR system.  In two-tint TDTR [87], both pump and probe 
beams are derived from the same laser, whose output has a spectral width of at least 10 nm or 
greater.  The beam is split using a polarized beam splitter cube, and then different branches are 
passed through very sharp spectral filters.  The top half of the spectrum, from the center 
wavelength of the original laser output and above, is used for one beam, while the bottom 
spectral half is used for the other beam.  This approach is very effective at reducing noise created 
by rough samples that diffusely reflect incident light, possibly into different polarizations and 
angles, limiting the efficacy of polarization or spatial separation to distinguish pump from probe.  
Our system has these same benefits, but also does not require such ultra sharp spectral filters, 
owing to our pump and probe beams being spectrally separated by hundreds of nm instead of 
single digit nm.  Much cheaper and readily available filters are sufficient.  Thanks to this spectral 
elbowroom, we can also use a dichroic mirror to combine and separate optical paths of pump and 
probe.  By combining the functions of the polarizing beam splitter cube and the filters into one 
optical element, we double the overall power transmission of our system, from laser to sample.  
In the two-tint configuration, the power is divided once by the polarizing beam splitter cube, and 
then a second time by the sharp spectral filters.  Independent tuning of the pump and probe 
wavelengths over a couple hundred nm of range also allows us to use a variety of transducer film 
materials.  This provides the flexibility to use different metals, as well as plasmonic materials. 

The probe beam is directed through a beam expander, before being guided through two 
passes of a delay stage with the help of three corner-cube reflectors.  We can delay the probe 
beam by a maximum of 1 m in total, corresponding to 3.3 ns of delay with respect to the pump.  
The probe then passes through an objective that launches it into a single-mode optical fiber.  The 
mouth of the fiber is mounted on a piezoelectric XYZ stage for careful positioning with respect 
to the objective’s focus.  The fiber sends the probe through another beam expander and then a 
50/50 beam splitter.  The transmitted portion is measured by detector B as a pre-sample of the 
probe power before the sample.   The reflected portion is directed through the objective lens (2x, 
5x, 10x, or 20x, working distances = 20 mm to 35 mm) focusing it onto the sample.  Typical 
probe laser powers are on the order of 5 mW for spot sizes on the order of 5 µm by the time the 
beam reaches the sample.  The probe beam is then reflected by the sample and sent back to 
detector A, which has a 715 nm long-pass filter over its entrance to block out all spurious 
background light signals as well as the pump beam.  The pump beam is directed through a long 
750 mm focal length lens to converge it through the EOM and avoid internal reflections, and 
then two mirrors whose position can be precisely translated synchronously to finely adjust the 
arrival time of the pump.  The pump is then also expanded before being sent to the sample via a 
700 nm single-edge dichroic beam splitter that transmits the probe but reflects the pump.  
Typical pump laser powers are on the order of 10 mW for spot sizes on the order of 5 µm by the 
time the beam reaches the sample.  All beam expanders are 4x.  Two low-reflectivity (92:8) 
beam splitters are used, one to inject flood illumination onto the sample for imaging, and the 
other so that a CCD camera can directly view the sample and laser spots.  The sample is mounted 
on an XYZ stage, and inside an optical cryostat for low-temperature measurements. 
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Figure 3-1 Complete TDTR System, in the Molecular Foundry at LBNL 

 

3.3.2 Beam	Steering,	Spot	Size	Control,	and	Beam	Expanders	
One of the greatest experimental challenges of TDTR is keeping the probe spot location, 

shape, and size constant on the sample throughout the measurement, as the probe’s optical path 
length is varied by over a meter via motion of the delay stage.  We combine several strategies to 
control probe spot stability during our measurements.  A perfectly collimated beam will diverge 
at a rate approximately inversely proportional to its minimum beam radius [90].  Therefore, to 
minimize the divergence angle of the probe beam as it travels along the increasing length delay 
stage, it is first expanded to maximize its radius.   

A perfectly aligned probe beam’s position on the sample would not drift when its delay is 
increased.  This is impossible in practice, however, and any finite deviation from a perfectly 
orthogonal incident angle of the probe beam on the sample will result in some slight drift in its 
position, or “beam steering,” when its delay is increased.  Additionally, even with the beam 
expander, there will still be some finite divergence of the probe beam, resulting in a change in its 
spot size when its delay is increased.  A change in the probe spot size or a change in the overlap 
of pump and probe spots during the measurement will invalidate the thermal model.  To mitigate 
this problem, we follow the approach of Ref. [91] and feed the probe beam into a single-mode 
optical fiber after the delay stage.  Allowing the transmission of only one mode, or spatial 
intensity distribution, by the fiber ensures that the output spatial intensity profile of the beam is 
Gaussian regardless of the launch conditions when the probe beam is sent into the fiber.  The 
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output angle of the single-mode fiber is also independent of small variations of the launch angle 
of the beam entering the fiber.  Thus, the probe beam’s location on the sample, spot shape, and 
spot size, remain constant throughout a measurement even as the mechanical delay stage is 
advanced, thanks to the single-mode fiber. 

There are two drawbacks to using the fiber, however.  First, a significant amount of 
power is lost.  We routinely achieved 20% to 30% power transmission of our probe beam 
through optical fibers half a meter in length.  Second, even a very small spatial drift on the order 
of one micron of the position of the mouth of the fiber relative to the launching objective can 
cause a dramatic loss of coupling efficiency.  Similarly, any beam steering coming out of the 
delay stage, causing the angle at which the probe beam passes through the launch objective, can 
similarly destroy the fiber coupling.  To mitigate this, we attached the mouth of the fiber to a 
piezoelectric XYZ stage capable of fine (sub-micron) positioning of the fiber in x, y, and z.  An 
automated LabVIEW program would sweep the position of the fiber by +/- 10 microns in x, y, 
and z, locating the position where the transmitted power was greatest, and then set the fiber 
mouth to this location.  This fiber sweeping re-alignment protocol was performed before the start 
of every measurement and then again every 200 to 1000 picoseconds of delay during a 
measurement, to correct for drifts of the fiber launch hardware and of the probe beam exiting the 
delay stage.  This substantially improved the consistency of power coupled through the fiber 
throughout a measurement.  Across the full 3.3 ns of delay, routine power coupling efficiency 
variations throughout a single measurement were on the order of 20%.  Finally, in order to 
suppress transmission through any cladding modes in the fiber, the alignment of the launching 
objective was made as parallel to the optical axis of the fiber as possible, and the fiber was 
deliberately wound into a few loops. 

Incorporating an optical fiber also creates a convenient way to add additional static 
delays to the probe line.  By swapping the fiber out for a longer fiber, the total delay time of the 
probe beam can be statically increased, and then swept out from this new starting point using the 
delay stage.  This can then be repeated to stitch together data for a full pulse-to-pulse cooling 
curve, as was done in Ref. [92]. 

A second challenge in our system was to achieve very small spot sizes.  We varied our 
spot sizes by using different magnification objective lenses.  We used a 2x, 5x, 10x, and 20x 
objective lens, corresponding to 1/e2 radii of pump and probe beams of approximately 1.8 µm, 
3.1 µm, 6.8 µm, and 16.4 µm respectively.  The ratios of the spot sizes does not entirely match 
the ratios of the objective magnifications due to the particular numerical apertures (NAs) of each 
objective, and due to the effects of other optics in the system that focus the beams prior to their 
reaching the objective lens.  To fully utilize the capabilities of the 2x, 5x, 10x, and 20x 
objectives used, we expanded both pump and probe beams before sending them into the 
objective lens.  Expanding the size of the incoming beam so as to approach overfilling the 
backside of the objective lens fully utilizes its numerical aperture, achieving minimal spot sizes.   

 

3.3.3 Modulation,	Lock-In,	and	RLC	Filters	
It is standard for TDTR systems to use a modulator (we used an electro-optic modulator, 

or EOM) to chop the pump signal at high (1 to 10 MHz) frequencies (but still lower than the 
laser’s innate pulsed frequency ~ 80 MHz), and then use a lock-in amplifier whose reference is 
synchronized to this same frequency to pick out the modulation frequency component of the 
probe beam after it has reflected off the sample.  The lock-in amplifier works by internally 
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multiplying the input detected signal by a sine wave of known amplitude at the reference signal’s 
frequency, f.  This mixes with every frequency component, ν, of the detected signal, producing a 
signal at the sum and difference of those two frequencies, f+ν and f-ν, for each frequency 
component.  The total signal is then passed through an adjustable low-pass filter, which permits 
only those signal components that are very nearly DC, corresponding to f-ν ≈ 0, or ν ≈ f.  The 
cut-off frequency of this low-pass filter is further reduced by increasing the time constant of the 
lock-in amplifier.  In this way, the lock-in amplifier picks out the amplitude of the component of 
the detected signal at the reference frequency, f. 

Ideally, the pump beam modulation would be sinusoidal, but in practice it is usually a 
square wave.  This means that it contains multiple frequencies at all the odd harmonics of the 
fundamental frequency of the square wave.  This would not be a problem if the lock-in amplifier 
used a pure sine wave mixer when internally multiply the input detected signal.  However, the 
radio frequency (RF) lock-in amplifier used (Stanford Research Systems model SR844) also uses 
a square wave for its internal multiplication.  This means that without intervention, our detected 
“pure” frequency signal is actually a hodgepodge mix of multiple different frequency 
components, and is no longer a clean signal as the thermal model assumes.  The system is now 
also highly susceptible to noise at any of the odd harmonic frequencies of the square wave.  Our 
solution, as employed in Ref. [27], was to place an inductor in series with the BNC cable leading 
the signal from our Si photodiode (detector A in Figure 3-1) to our lock-in amplifier.  This 
couples with the electrical resistances and capacitances of the BNC cable, Si photodiode, and 
input impedance of the lock-in amplifier to form a resonant RLC filter, whose resonance 
frequency can be controlled by deliberate selection of the inductor value.  The true resonance 
frequency of each analog filter was characterized after construction using an oscilloscope.  The 
resonant frequencies of our three primarily used filters were measured to be 0.9375 MHz, 2.4615 
MHz, and 9.5 MHz (referred to generally as approximately 0.94 MHz, 2.5 MHz, and 9.5 MHz in 
this dissertation).  These resonant filters amplify the signal at the desired fundamental harmonic 
of the square wave from the EOM, and attenuate the odd harmonics.  An alternative approach to 
eliminating the odd harmonics of the square wave is to carefully adjust the waveform driving the 
EOM, as employed by Ref. [93]. 

While the lock-in approach is very effective at rejecting all signal components not at the 
prescribed modulation frequency, f, it is still susceptible to noise at f.  To account for this, a 
reading of the in-phase and out-of-phase background noise levels at f were taken before each 
measurement, and subtracted from the measured signal.  These background levels were measured 
as the X and Y outputs of the lock-in for a fully aligned and powered measurement, except with 
the pump beam blocked.  Typical background noise levels were 1% to 10% of the measured 
signal for the lower 2 modulation frequencies, but could be much higher at 9.5 MHz, which is 
further discussed later in section 3.7.1 System Modeling and Data Fitting.  

We also found that alignment through the EOM is very delicate, and even the slight 
divergence of the pump beam coming from the laser is enough to cause internal reflections 
within the EOM and severely distort the beam shape and cause loss of transmission.  To mitigate 
this, we placed a long focal length (750 mm) lens after the iris used to align the pump beam into 
the EOM, to converge and focus the beam through the EOM.  This improved the transmission 
through the EOM, and considerably improved the spot shape distortion. 
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3.3.4 Zero-Time	Finding	
While the mechanical delay stage allows for the continuously advancing delay of the probe 

beam relative to the pump beam, it is still necessary to align the zero delay position of the probe 
pulse to closely coincide with the pulse of the pump beam.  In our experiments, we typically start 
our measurement at a probe delay time of -20 ps, or 20 ps before the pump pulse hits the sample.  
This way, we can see the temperature rise of the pulse and be confident in knowing the zero-time 
of when the transient temperature decay begins when fitting to the data.  However, it can be non-
trivial to align the zero-delay point to be near the incident time of the pump pulse.  It is not 
possible to manually “eyeball” the pump beam path during construction, so that it is the same 
length as the zero-delay probe beam path down to less than 0.3 mm (corresponding to 1 ps of 
delay).  To allow for fine-tuning of the pump path length, two of the mirrors (the two mirrors 
after the EOM, as shown in Figure 3-1) are mounted on a horizontal beam that is connected to a 
micrometric screw.  This micrometric screw can finely adjust the lateral position of these two 
mirrors, increasing or decreasing the pump beam optical path length by twice the distance the 
mirrors move.  By iteratively sweeping with the mechanical delay stage and then adjusting this 
micrometric screw, the zero-time can be found and positioned.  

 

3.4 Spot	Size	Measurements	and	Chromatic	Aberrations	
 

3.4.1 General	Spot	Size	Measurement	Protocol	
Spot size measurements are a dominant source of uncertainty in TDTR (see sections 3.7.2 

Uncertainty Analysis and 3.8 Sensitivity Analysis).  Laser spot sizes are particularly important in 
our experiments, as we are using small laser spots as a way to measure sub-continuum heat 
conduction effects.  We use a CCD camera in our system as shown in Figure 3-1 for visualizing 
the sample and measuring spot sizes.  We use the camera to record the spot size of pump and 
probe before every measurement.  We placed the camera as close to the sample as possible in 
order to minimize the number of optical elements between the camera and sample, allowing us to 
see an undistorted image of our sample with pump and probe spots.  We used LED flood 
illumination in order to see the sample with the camera.  Because the flood illumination is 
injected into the optical path behind the objective lens, it undergoes the same level of 
magnification as the image viewed on the sample.  As such, the total amount of light per viewing 
area is approximately constant, and the brightness of the flood illumination does not need to be 
increased with higher magnification objective lenses.  This section will describe the protocol 
used to measure the spot sizes with the camera, and the various steps taken to control and verify 
these measurements. 

In order to use the camera to reliably measure spot sizes, we first had to calibrate the 
magnification of the camera.  This was done using a standard control scanning electron 
microscope (SEM) grid, which had squares of precisely 10 micron pitch, in 49 x 49 groups of 
squares, as shown in Figure 3-2.  For each of our four objectives, in-focus images were taken of 
the SEM calibration grid.  These pictures were then used to calibrate the camera-pixel-to-micron 
conversion ratio for each objective.  To increase accuracy and attain sub-pixel precision in this 
conversion coefficient, the largest possible line was taken from the calibration pictures, spanning 
the greatest integer number of 10 µm x 10 µm squares as possible.  The length of this line in 
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pixels was then divided by 10 µm times the number of squares spanned (both numbers possibly 
decimals, for the case of a diagonal line) in order to calculate the conversion coefficient. 

 

 
Figure 3-2 Picture of the standard SEM grid used to calibrate the pixel-to-micron conversion factors for each 
objective lens.  The grid consists of 49 x 49 groupings of 10 µm x 10 µm pitched squares.  This picture was 
taken with our camera using the 20x objective lens. 

 
To measure accurate spot sizes, high quality images must be taken.  Each gray scale pixel 

of the camera can record a value ranging from 0 to 255, with 255 being the brightest.  We would 
like to use as much of this range as possible without ever saturating a pixel.  This enables us to 
use the maximum number of bits in resolving the intensity distributions of our spot pictures 
without losing information.  To achieve this, we used gradient wheel neutral density (ND) filters 
to independently adjust the overall intensity of pump and probe beams for optical picture taking 
conditions.  Using vertical and horizontal line cuts in the camera’s software, we adjusted the 
filter intensity until the brightest pixel in the laser spot came close to a value of 255 without 
actually saturating.  This also created a consistency in spot size measurements across sample 
types.  When taking a picture, a beam block was used to block whichever laser spot was not 
currently being photographed, all LED flood illumination turned off, and the camera was 
outfitted with a long opaque tube to block out most ambient light. 

Once photographed, a 40 pixel x 40 pixel array, centered on the laser spot, was cropped 
out of the original photograph and used to fit an arbitrarily oriented 2-D Gaussian function to the 
laser spot.  This array size included enough surroundings to let the tails of the Gaussian spot 
decay to zero (i.e. to significantly below the ambient noise level), without including too much of 
the background to influence fitting to noise.  The function used to fit the laser spot had 7 fit 
parameters: the amplitude of the Gaussian, the center of the Gaussian in x and y, the 1/e2 radius 
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of the Gaussian (w) along its minor and major axis, the rotation angle of the Gaussian, and a 
constant background offset.  These 7 variables were fit to the 40 x 40 array constituting 1600 
pixels of data.  The fit always converged rapidly, with a typical uncertainty (as measured by the 
square root of the corresponding elements from the covariance matrix) of less than 1% for the 
1/e2 radii.  This fit method of fitting could properly fit to an elliptical spot. 

The TDTR thermal model assumes a perfectly circular Gaussian spot for both pump and 
probe beams.  We consistently found the best fits to TDTR data (as compared to literature values 
when available, and using the metrics described in section 3.7.2 Uncertainty Analysis) were 
achieved when taking the 1/e2 radius of the minor axis as the isotropic spot radius for the thermal 
model in cases where our measured spots were irregularly shaped, as opposed to a geometric 
average of the minor and major axis radii.  Typical anisotropies (ratio of major to minor spot 
radius) for the probe beam spot were ~ 1.1 and for the pump beam spot were ~ 1.3.  The pump 
beam spot anisotropy could be as high as ~ 2.0 for some (~15% of) measurements.  We speculate 
that the minor axis radius yielded the best fit results because it is along this axis that the light 
(and hence heat source) is most compressed, and so will be the most influential in defining the 
effective lateral extent of the peak intensity of the heat source, as well as the planar versus 
spherical geometry heat spreading regime, discussed further in section 3.8 Sensitivity Analysis.  
Additionally, any slight mismatches in the exact focus of the laser spots on the sample as 
compared to in the camera would manifest primarily in differences in the major axis, with the 
minor axis remaining more consistent, as described more completely in section 3.4.2 Chromatic 
Aberration Corrections. 

To separately validate this method of spot size fitting, we also measured select laser spots 
using a sweeping knife edge technique, which is fully explained in Ref. [86].  In brief, we used a 
straight edge from a piece of silicon cleaved along a crystal plane, driven by a piezoelectric XYZ 
stage, to slowly cut across our focused beam in x and y.  The intensity of transmitted power as a 
function of knife-edge position was used to calculate the 1/e2 radius of the Gaussian cross section 
of the beam.  Sweeping knife-edge measurements agreed with camera spot size measurements to 
better than 10%.  Therefore, we conservatively set the uncertainty of our laser spot 
measurements to be 10% (see Table 3-1).   This was the dominant source of uncertainty for most 
thermal conductivity measurements.  We verified that neither changing the modulation frequency 
nor changing the camera brightness (brightest pixel ranging from ~ 80 to ~ 255) affected the 
measured 1/e2 radii. 

Finally, changing the sample focus by moving it along the optical axis in either direction 
decreased the TDTR signal strength, confirming that the laser spots were already properly 
focused on the sample as a result of the spot picture taking procedure. 

 

3.4.2 Chromatic	Aberration	Corrections	
In our system, there is typically 270 nm of spectral shift between our pump (530 nm) and 

probe (800 nm) beams.  An ideal system would have no chromatic aberrations.  However, given 
the chromatic aberrations and depths of field of our objective lenses, this is sufficient spectral 
separation to cause one spot to be considerably out of focus when the other is in focus.  A 
defocused laser spot will change the spot size on the sample.  If the spot is not a perfectly 
circular Gaussian, then a defocused spot will also affect the spot shape.  If the finite radius beam 
is not aligned to pass exactly through the center of the focusing objective, exactly parallel to its 
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optical axis, being out of focus will then affect both the spot shape and the spot position.  Such 
errors can be detrimental to our measurements if not corrected and accounted for. 

In order to understand our chromatic aberration correction protocol, it is necessary to 
understand all focusing elements that affect the pump and probe beams’ focus onto the sample 
and onto the camera.  These elements are shown schematically in Figure 3-3.  The beam 
expander lens and sample position can both change the focus of the spots on the sample and in 
the camera, while the tube lens can additionally change the focus of the spot in the camera.  Note 
that in our actual setup, the pump and probe beams each have their own separate and hence 
independently adjustable beam expanders.  For simplicity of the figure, I have shown both beams 
passing through the same beam expander.  The challenge is to simultaneously have both the 
pump and the probe beam focused on the surface of the sample and to take in-focus pictures of 
those spots with the camera for correct spot size measurements, even though all optical elements 
focus the pump and probe beams differently due to chromatic aberrations.  We go through a 
protocol whereby we effectively lock in a correction using the separate beam expanders for 
pump and probe that cancels out the chromatic aberration, enabling us to have both beams 
simultaneously focused on the sample surface.  We then tune the focus of the camera by 
adjusting the tube lens in order to take accurate spot pictures of each beam separately.  This 
protocol is now explained in detail. 

 

 
Figure 3-3 Optical elements used in chromatic aberration correction when focusing laser spots onto the 
sample or camera. 

 
It is important to always be mindful of the fact that we only see what the camera sees, 

which may be different from what the sample sees.  For example, for the configuration depicted 
in Figure 3-3, both pump and probe spots are in focus on the sample, but only the probe looks to 
be in focus on the camera, while the pump looks to be out of focus.  Furthermore, it is important 
to remember that samples are typically specularly smooth and so act as mirrors.  This means that 
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it is also possible to accidentally focus the camera on a virtual image of the spot that is slightly 
above or below the true surface of the sample.  In this case, the spot will look to be in focus on 
the camera, when it is not actually in focus on the sample.  These two subtleties make properly 
focusing the pump and probe a non-trivial process that requires the experimentalist’s full 
attention.   

The key to our chromatic aberration correction protocol is the use of wavelength-specific 
LED flood illumination to image the sample.  The diffuse flood lighting injected into the optical 
path before the camera, as shown in Figure 3-1, is an LED centered on a specific wavelength, 
which is interchangeable for other LEDs.  We use a green LED whose wavelength is exactly 
matched to the pump beam of 530 nm, and an IR LED at 850 nm, which is close to the 
wavelength of the probe beam at 800 nm.  We ensured that the 50 nm discrepancy between our 
IR LED and the probe did not cause any measurable error.  We confirmed this by performing the 
focusing protocol described below using the 850 nm LED with the probe beam set to 800 nm, 
and then afterward shifting the output wavelength of the probe up to 850 nm without changing 
any optics.  No change in the focus of the spot was observed.  The chromatic aberration 
correction protocol is as follows: 

 
1. Using the green LED, adjust the sample position until the sample surface features are 

in sharp focus on the camera screen, while illuminated by the green LED.  We use an 
Al coated Si sample for this, with very shallow but distinct surface features, so that 
there is no ambiguity in the focal plane resulting from finite heights of the features 
used to focus the sample.  Step 1 confirms that the sample is in focus for 530 nm 
light, as viewed by the camera.  The exact tube lens focusing ring position is clearly 
marked with tape to avoid gradual focal plane drift with repeated measurements. 
 

2. We turn off the illumination, block the probe beam, and adjust the beam expander 
lens of the pump beam until it is in sharp focus on the camera.  Because step 1 
ensured that any 530 nm light that is in focus on the camera is in focus on the sample, 
this step ensures that the pump beam is now properly focused on the sample. 

 
3. We now swap out the green LED for the IR LED that is close in wavelength to the 

probe beam, and illuminate the sample with 850 nm diffuse flood lighting.  The 
sample surface will appear out of focus, because the sample and camera are currently 
set up to make features on the sample illuminated by 530 nm light be in focus.  At 
this point, the sample position and the pump’s beam expander are properly set such 
that the pump beam is properly focused onto the sample.  Therefore, we must not 
adjust either of those components, or else we will disturb this alignment.  Therefore, 
we adjust the tube lens in front of the camera to bring the sample, now illuminated 
with IR light, into sharp focus.  This does not affect the alignment of the pump, but it 
means any IR light that appears in focus on the camera is also in focus on the sample. 

 
4. We turn off the illumination, block the pump beam, and adjust the beam expander 

lens of the probe beam until it is in sharp focus on the camera.  Because step 3 
ensured that any IR light that is in focus on the camera is in focus on the sample, this 
step ensures that the probe beam is now properly focused on the sample. 
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As a result of this protocol, we are now confident that both the pump and probe are 
simultaneously in sharp focus on the sample, even though it is only possible to view one of them 
in focus at a time.  After the protocol is complete, neither beam expander is touched for the rest 
of the measurements, until the objective lens is changed and a new chromatic aberration 
correction must be dialed in.  We found that the 2x, 5x, and 10x objectives all had the same level 
of chromatic aberration, while the 20x required separate calibration. 

When it is time to take pictures to measure spot sizes, the tube lens of the camera is 
adjusted until the beam being photographed is in sharp focus, while the other beam is being 
blocked.  The camera focus must therefore be adjusted between every pump and probe picture.  
Because the beams are focused on the sample, adjusting the camera to bring the beams into focus 
is also bringing the sample into focus for that wavelength of light, and so the correct spot size as 
felt by the surface of the sample is photographed.  We would periodically swap either the IR or 
green LED back in to illuminate the sample, approximately every 10 measurements, after having 
brought the corresponding wavelength spot into focus with the tube lens.  The sample was 
always still in sharp focus and a discrepancy was never observed, indicating that there was no 
measurable drift of the alignment configuration over time or with repeated re-focusing of the 
camera to take pictures for multiple consecutive measurements. 

While this approach does mean that the focal length, and hence magnification, for 
pictures of the pump and probe are slightly different, the difference in focal length is on the order 
of single microns.  This is enough to defocus and distort a spot image if not accounted for when 
compared to the narrow depths of field that are also on the order of single microns, but compared 
to the much longer working distances that are on the order of tens of millimeters, the change in 
magnification is negligible and well below detection threshold.  Similarly, there may be concern 
that with repeated adjusting of the sample position and camera tube lens, the focal plane may 
gradually “walk” away over time.  However, the camera tube lens and beam expander lenses all 
have a fixed range of travel corresponding to a total possible focal length change of only a few 
microns.  This is insufficient to affect magnification calibrations by a measurable amount.  If one 
finds themselves hitting the ends of the threads on any of the lenses, this is an indication that the 
focal plane has drifted over time, and one can walk it back to center by alternately over-
correcting the focus with the sample position and then bringing the image back into proper focus 
with the camera tube lens, until all optical elements are back near the middle of their threads and 
range of travel. 

One cautionary warning: before changing to a new location on the sample, or to a new 
sample, it is important to always first re-focus the camera to either the pump or probe 
wavelength, and remember for which one it is focused.  Then, after moving to a new sample or 
location, adjust the sample position along the optical axis until the spot is back in focus.  This 
way, you know that you have correctly placed the sample surface at the plane in real space where 
the pump and probe beams are focused.  If the camera focus is accidentally knocked out of focus 
before changing locations, then there is a risk of adjusting the sample position until the spot 
appears to be in focus, when in reality the spot is not properly focused on the sample and the 
camera is focused on a virtual image of the spot reflected off the sample’s mirror-like surface.  
We use tape to clearly mark the position of the tube lens focusing ring for the green light focus to 
help mitigate such risks of focal plane drifting. 
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3.4.3 Benefits	of	Our	Spot	Size	Measurement	Technique	
While conceptually more complicated, our technique for focusing pump and probe and 

for measuring spot sizes offers several benefits over the more traditional sweeping knife-edge 
(SKE) method.  These benefits and some drawbacks are now discussed. 

Our method does not require removing the sample.  The SKE method requires physically 
removing one’s sample and replacing it with the knife-edge, such that the lasers can be focused 
onto the knife-edge as it is swept through the beam.  Because we do not need to remove our 
sample to measure the laser spot, we can also measure the spot size for each individual 
measurement.  For the SKE, one initial spot size measurement is performed, and then one 
assumes that there is no drift or variation of the spot size over the course of the subsequent 
measurements. 

Our method is also cheaper, as no additional equipment is necessary.  The SKE 
equipment is not prohibitively expensive, especially as compared to more expensive components 
of a TDTR system, but off-the-shelf beam profilers can cost a few thousand dollars, as can 
motorized piezoelectric XYZ stages and drivers for researchers who wish to build their own DIY 
SKE. 

Our method is robust against slight angles in the direction of translation of the driving 
stages for an SKE.  If there is any unintentional angle such that the blade in an SKE is not 
exactly orthogonal to the optical axis, or in the linear actuator stage driving the SKE, then the 
blade may have a small component of translation parallel to the optical axis during the sweep.  
This would then result in an incorrectly measured spot size and shape, as the blade would not 
remain in the focal plane throughout the measurement.  However, such imperfections typically 
result in negligible spot size measurement error for a carefully aligned SKE implementation. 

Our method avoids errors from knife-edge diffraction effects when measuring very small 
spot sizes.  This is of particular concern for systems such as ours that use very small spot sizes 
that approach the diffraction limited spot size.  For such spots, the knife-edge effect can cause 
the incident light to diffract around the shape knife-edge, potentially missing the detector or 
causing interference fringes if some of these diffracted rays then reflect off the underside of the 
finite thickness of the knife-edge.  This, or any other effects such as an aggressive convergence 
angle, which may cause some of the transmitted light to occasionally miss the detector, will 
result in an incorrect spot size and shape measurement. 

Our method also correctly measures the ellipticity of the spot, whereas the SKE approach 
assumes that the minor and major axes of an elliptical spot are perfectly aligned to the sweeping 
directions of the knife-edge, which in general will not be true.  This can result in considerable 
error in the effective isotropic spot size that is calculated for the thermal model, as demonstrated 
in Figure 3-4. 
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Figure 3-4 Measurement of an arbitrarily oriented elliptical laser spot.  Solid blue double arrows indicate the 
spot radii that would be measured by the sweeping knife-edge approach.  Dashed green double arrows 
indicate the spot radii that are measured using our method of fitting an arbitrarily oriented 2-D Gaussian 
function to a picture of the laser spot.  The effective isotropic 1/e2 radius calculated from the sweeping knife-
edge approach can substantially over-estimate the laser spot size. 

 
One drawback of our method is that precision of spot size measurement can be limited if 

the spot fills only a very small fraction of the camera viewing window, and hence view few if 
any pixels.  Fitting a Gaussian to the spot enables sub-pixel resolution in determining the spot 
size.  However, if the 1/e2 radius is much less than a single pixel on the camera, then the 
precision of measurement will be inherently limited.  Choosing a tube lens that increases the 
magnification of the image in the camera can mitigate this problem.  In our system, because the 
camera is positioned behind the objective lens, the number of pixels spanned by the laser spot 
(~5 – 10 pixels) is approximately independent of the objective used and hence independent of the 
spot size.  Therefore, the accuracy of our spot size measurements as a percentage of the 1/e2 
radius is constant for all spot sizes, and does not decrease for smaller spots. 

 

3.4.4 Pump-Probe	Overlap	
For our TDTR experiments, it is necessary to have the pump and probe beams perfectly 

overlapped.  This is greatly helped by the coaxial nature, enabled by the dichroic mirror that 
injects the pump beam into the same optical path as the probe beam, through the objective lens.  
However, fine alignment is still necessary.  The position of the beams can be controlled with fine 
adjustment knobs in their alignment mirrors.  We again use the camera for precise control of 
beam position.  The camera software allows us to place pixel-precise crosshairs to mark 
positions on the viewing area and to designate the positions through which intensity profile cuts 
are to be made (these are the same intensity profile cuts used to ensure that no camera pixels are 
being saturated prior to taking spot pictures).  When the camera is focused on the probe spot, the 
crosshairs are placed on the central brightest pixel of the probe, and its position is carefully 
perturbed until the four corner pixels surrounding the central crosshair pixel are illuminated with 
equal brightness.  The digital zoom feature of the camera helps greatly with this process.  The 
variable gradient ND filter is used to suppress the intensity of the spot to the appropriate level 
such that only these central few pixels are significantly illuminated.  Then, the probe beam is 
blocked, the pump beam is unblocked, and the camera is adjusted until the pump beam is in 

Spot radii as measured by 
sweeping knife-edge 

Spot radii as measured by 
2D Gaussian fit to picture 
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sharp focus.  The pump beam’s position is then adjusted until it meets this same criterion, 
without moving the crosshairs.  Using this method allows for repeatable and precise pump-probe 
spot overlap to an accuracy better than 1/8 of the 1/e2 diameter.  This accuracy is limited 
primarily by our ability to make fine adjustments to the mirrors. 

We validated this protocol by perturbing the pump position while continuously 
monitoring the strength of the TDTR signal, and observing that we were consistently at a global 
maximum for signal strength after applying the above protocol.  This protocol also confers most 
of the same benefits over using an SKE measurement to overlap pump and probe as were 
described above in section 3.4.3. 
 

3.5 Sample	Preparation	and	Characterization	
Before depositing the transducer layer, samples were polished using Chemical 

Mechanical Polishing (CMP) to achieve a specular, flat surface.  For our samples, we used 70 
nm thick Al as our transducer layers.  The transducer layer was deposited using an electron beam 
evaporator for uniform and pin-hole free layers.  Prior to deposition, samples were carefully 
cleaned by means of 30 minutes of sonication in an acetone bath, followed immediately (without 
letting the sample dry) by a methanol wash and then an IPA wash.  The samples were blown dry 
with compressed dry nitrogen gas.  Half an hour before deposition, a hydrofluoric acid (HF) dip 
was performed to remove native oxide layers on the samples.  The HF dip was performed using a 
1:10 solution of HF:water, dipped for 30 seconds at room temperature, immediately followed by 
a DI water wash and then air dried.  The evaporation chamber (the “CHA” evaporator at the UC 
Berkeley Marvell Nanofabrication Lab) was pumped down over 1.5 hours to a base pressure of 
approximately 8x10-7 mTorr.  The aluminum melt was thoroughly degassed before opening the 
shutter to begin deposition.  This was accomplished by monitoring the chamber pressure spike 
after the metal began to melt, and waiting until this pressure had stabilized back down to base 
pressure before beginning deposition.  The deposition was initiated with a high deposition rate, 
typically around 10 Å/sec, to promote metal condensation nucleation sites and encourage 
uniform deposition and smooth films.  The deposition rate was then kept between 5 to 10 Å/sec 
until the desired film thickness was reached, as measured by a crystal monitor in the evaporation 
chamber. 

Film thicknesses were characterized using AFM scans in tapping mode across scratches 
made in the metal film using tweezers.  The scratch was inspected using an optical microscope to 
ensure that it penetrated through the entire metal layer, and had not damaged the sample surface 
below.  The AFM scans further confirmed this by showing the uniform flat sample at the bottom 
of the scratch.  Typical surface roughnesses on top of the Al film were in the range of 1 to 5 nm 
rms for nominally 70 nm thick films.  Our samples did not have a strong or clear enough acoustic 
echo signal to be able to use picosecond acoustics [89], [94] to measure film thicknesses.  The 
aluminum layers were assumed to have developed a 4 nm oxide layer from being stored in 
atmosphere [95], [96]. 

Bulk thermal conductivity cannot be assumed for such a thin layer of Al, whose thermal 
conductivity will be reduced from boundary scattering of the electrons.  Instead, the electrical 
sheet resistance of the Al films was measured using a van der Pauw method.  The sheet 
resistance was then converted into a thermal conductivity using the Wiedemann-Franz law [97], 
and taken to be isotropic.  Only the electrically conducting portion of the film’s thickness (i.e. 
AFM measured thickness minus ~ 4 nm oxide layer thickness) was used in this calculation.  Al 
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film thermal conductivities ranged from ~100 to ~160 W/m-K at room temperature, consistent 
with the literature [98]. 

Bulk values of gravimetric heat capacity were assumed for our nano-grained silicon 
samples, as even the smallest grains were not small enough to affect the silicon density of states.  
The density was multiplied by 1-p, where p is the porosity of the sample.  These are the same 
nano-grained silicon samples as were measured in [99], and their full characterization is 
explained there.  For the SiGe samples, the virtual crystal approximation [100] was used to 
estimate the volumetric heat capacity as a simple average between that of silicon and 
germanium, weighted by their stoichiometric ratio. 

 

3.6 TDTR	Mathematical	Theory	
A complete derivation of the mathematical theory for the thermal model of a standard 

TDTR geometry is given in Refs. [27], [83].  Here, I will briefly review the key concepts and the 
physical picture behind the derivations.  My primary goal in this section is to give the reader a 
physical intuition for how to interpret and understand each equation, and the assumptions and 
models on which they are built.  Interested readers can then be directed to Refs. [27], [83] for the 
full formalism and mathematical details of each step.  As the mathematical formalism of TDTR 
is quite involved, my hope is to provide a qualitative guide that new researchers can couple with 
the published literature to produce a more manageable first introduction to the theory. 

I will first give a high-level overview of the derivation approach:  one begins with the 
heat conduction Green’s function for a time-periodic point heat source in a semi-infinite 
medium.  One then uses superposition of this Green’s function separately in time, t, in the 
through-plane direction, z, and in the in-plane direction, (cylindrical) r, in order to create a full 
three-dimensional steady-periodic solution for the TDTR geometry.  One primarily works in the 
Fourier domain for the time dimension, Hankel transforms are used for the in-plane spatial 
dimension, and the Feldman algorithm [35] is used to decompose the solution into counter-
propagating plane waves along the (real-space) z-direction in order to handle the multi-layered 
material geometry.  Once a full frequency-domain response for a steady-periodic, Gaussian-
distributed, pumped-probed laser system has been established, one incorporates the details of the 
probe and modulated pump laser pulse trains via a convolution of their respective frequency 
domain expressions, resulting in a Fourier series expansion to provide complete temporal detail. 

I will now provide some further details on key steps.  The Green’s function for a time-
periodic point heat source in a semi-infinite medium, as shown in Figure 3-5, is given by 
 
 

g(r,ω) = exp(−qr)
2πkr

 (3-2) 

 
where r is the (spherical) radial coordinate, ω the (angular) heating frequency, k the thermal 
conductivity, and q = iω D is the complex thermal wave vector with D being the thermal 
diffusivity.  The function g can be thought of as a thermal transfer function in the Fourier 
domain, giving the amplitude of the periodic temperature rise at any point a distance r away from 
the periodic point heat source located at the origin.  Later, r is separated into an in-plane 
cylindrical r and a through-plane Cartesian z, as shown in the coordinate system of Figure 3-5. 
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Figure 3-5 Time-periodic point heat source in a semi-infinite medium 

 
This Green’s function is non-trivial to derive, and can be found on page 263 of Ref. 

[101].  Note that Ref. [101] has divided out the heat liberation rate of ρceiωt , which must be 
added back in to the listed equations to maintain proper units.  The solution in Ref. [101] is for 
an infinite medium.  To adapt this to a semi-infinite medium, the heat input is halved, as only 
half of the heat diffuses down into the bottom semi-infinite domain under consideration.  
Symmetry means that no other part of the solution must be altered, as we divide the infinite 
domain into semi-infinite domains by cutting along an adiabatic plane through the origin across 
which no heat is transferred. 

In standard TDTR, the pump and probe beams are coaxially aligned with circular 
Gaussian intensity distributions.  Because Eq. (3-2) gives the Green’s function temperature 
response for a unit heat input, we can convolve it with a normalized Gaussian function in order 
to get the temperature response from laser heating.  Because convolution in real space is 
equivalent to multiplication in reciprocal space, we take the Hankel transform of Eq. (3-2),  
 
 G(K,ω) = 1

k 4π 2K 2 + q2
 (3-3) 

 
where G represents the Hankel transform of the function g, and K (not to be confused with k for 
thermal conductivity) is the Hankel transformed conjugate variable to the in-plane real-space 
cylindrical coordinate r.  Eq. (3-3) is then multiplied by the Hankel transform of a normalized 
Gaussian in order to paint out the response to a Gaussian heating profile from the Green’s 
function of Eq. (3-2) and complete the convolution.   

Because we measure temperature by the total integrated intensity of a reflected probe 
beam also with circular Gaussian intensity, we want to weight this convolved surface 
temperature response with another Gaussian in real-space to accurately predict the signal 
strength experimentally measured.  After both convolving with a normalized Gaussian intensity 
distribution with the pump beam’s 1/e2 radius and then also weighting with another normalized 
Gaussian with the probe beam’s 1/e2 radius, we have [27] 

 
 

ΔT (ω) = 2πA(ω) G(K,ω)e−π
2K 2 (w0

2+w1
2 ) 2K dK

K=0

∞

∫  (3-4) 
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where A is the amplitude of pump power absorbed at frequency ω, G is from Eq. (3-3), and w0 
and w1 are the pump and probe 1/e2 radii, respectively.  Eq. (3-4) therefore gives the frequency 
domain amplitude of the surface temperature oscillations as measured by the probe laser in 
response to pump laser heating at the single frequency ω, and accounts for the full three 
dimensional details of the distributed laser heat source and its conduction into the semi-infinite 
substrate. 

There are a couple reasons why we choose to take this Hankel transform instead of 
simply doing a regular convolution over r in real space.  The first is that our system exhibits 
cylindrical symmetry, making it a natural fit for Hankel space, as Hankel transforms project 
functions using zero-order Bessel functions of the first kind, which can be thought of as our 
regular friendly sinusoidal functions in cylindrical coordinates.  This therefore tends to produce 
well-behaved expressions when transforming functions that exhibit cylindrical symmetry (such 
as our Gaussian laser spots), which can then be handled analytically.  The second reason is that 
by taking the Hankel transform of the Green’s function, which represents a point heat source in 
real-space, we transform the fundamental heat input from a point source into a plane source.  The 
point source that is infinitely “localized” at the origin in real space is infinitely “spread out” in 
reciprocal-space, as shown in Figure 3-6.  This is analogous to how the Fourier transform of an 
origin-centered Dirac delta function in real space yields a constant value that is uniform over all 
of Fourier space. 
 

 
Figure 3-6 Time-periodic planar heat source in a semi-infinite medium as a result of taking the Hankel 
transform of a point source. 

 
This transformation therefore has considerable utility, as we are now able to apply 

Feldman’s algorithm [35], which only applies to one-dimensional heat conduction.  Even though 
our solution is still three-dimensional in space, the two in-plane spatial dimensions are wrapped 
up in the Hankel transform, and so we can elegantly decompose the solution into one-
dimensional plane waves propagating in z as required by the algorithm.  Feldman’s algorithm 
allows us to extend our solution of the heat diffusion equation in a single semi-infinite medium 
to an arbitrary layered stack of dissimilar materials, each of which can have its own thermal 
diffusivity, thickness, and thermal boundary conductance to above and below layers.  The 
solution easily incorporates simple anisotropy between the through-plane and in-plane thermal 
conductivities.  We can also place planar heat sources anywhere we like throughout the layered 
stack, although in our case we place the laser heat source as a boundary condition at the top of 

r 

z 
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the metal transducer layer, at the top of the stack.  This also gives the flexibility to model layers 
both above and below the transducer layer such as is useful when measuring liquid samples [28].  
In practice, applying the algorithm amounts to multiplying a series of second rank transfer 
matrices, corresponding to forward and backward propagating one-dimensional waves.  The first 
type of matrix accounts for wave propagation through a material, and consistent progression of 
the phase and amplitude of the waves according to that layer’s material properties.  The second 
type of matrix accounts for the matching of waves at layer interfaces, which can include heat 
sources and boundary resistances.  The mathematical details of this process for the particular 
application to TDTR are given in Ref. [27], and the derivation for the general case is in Ref. [35]. 

The temperature response of Eq. (3-4) is for heating at only a single frequency.  In order 
to incorporate details of the pulsed nature of the pump and probe beams, their respective pulse 
trains are modeled as Dirac Combs as justified in section 3.2.1, with the pump pulse train 
multiplied by an oscillating envelope function at the modulation frequency.  These temporal 
distributions are multiplied together (in practice, convolved together in the frequency domain), to 
yield a final solution that has all spatial and temporal details of the TDTR system properly 
modeled.  The output of the lock-in amplifier is thus given by [27], [83], 
 
 

Z(t) =
βQpumpQprobe

τ 2
dR
dT

ΔT (ω0 +m2π / τ )e
im2π t/τ

m=−∞

∞

∑  (3-5) 

 
where β is a constant representing the gain of the electronics, Qprobe is the probe laser intensity 
incident on the sample, Qpump is the pump laser power absorbed by the sample, τ is the time 
between laser pulses (~12.5 ns), dR/dT is the Al film thermoreflectance (~10-4 K-1 for 800 nm 
light), ΔT is the frequency-domain amplitude of the temperature response for a given heating 
frequency described above, ω0 is the pump modulation frequency, and t is the time by which the 
arrival of the probe is delayed relative to the arrival of the pump (note that t is not regular 
laboratory time). 
 Eq. (3-5) is complex valued and so carries information about both the amplitude and 
phase of the system’s response to the pump laser excitation.  The infinite sum in Eq. (3-5) 
originates from the Dirac Combs of the pump and probe pulse trains.  Eq. (3-5) can be 
understood as taking ΔT, the fundamental temperature response in the frequency domain, and 
projecting it onto the delay-time (t) domain by means of a Fourier series expansion, with the time 
between laser pulses (τ) as the fundamental period of the expansion.  It is important to remember 
that the variable t in Eq. (3-5) is not regular time, but is specifically the delay time of the probe 
pulse with respect to the pump pulse (which is typically chosen to arrive at a laboratory time of 
zero).  In the limit where the sample completely returns back to thermal equilibrium before the 
arrival of the next pulse, the delay time (t) becomes equal to the laboratory time.  This would 
require either a sample with very high thermal diffusivity and/or a laser with very long times (τ) 
between pulses.  In practice, samples rarely fully return to equilibrium between pulses, and so 
there is an accumulation effect when the end of the thermal decay of a preceding pulse bleeds 
into the next pulse [83]. 
 Although complicating to the modeling, this pulse accumulation effect is useful as it 
means the sample feels the effects of the modulation frequency envelope.  This can be directly 
visualized in Figure 3-7, which is taken from Ref. [83]. 
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Figure 3-7 (a) The pump beam input to the sample modulated by the fundamental component of the EOM.  
(b) The surface temperature of the sample in response to the pump input. (c) The probe pulses arrive at the 
sample delayed by a time, t, and are reflected back to a detector with an intensity proportional to the surface 
temperature. (d) The fundamental harmonic components of the reference wave and measured probe wave. 
The lock-in amplifier records the amplitude and phase difference between these two waves at every delay 
time.  This figure and most of its caption taken from Ref. [83]. 

 
Figure 3-7(d) makes it easy to see that the probe response function measured by the lock-

in amplifier and given by Eq. (3-5) has a different amplitude and phase lag relative to the pump 
laser modulation frequency.  It is acceptable to only consider the fundamental (sinusoidal) 
component of the modulation (as the modulation is a square wave) as well as ignore DC offsets, 
because the lock-in amplifier in combination with the RLC filters discussed in section 3.3.3 pick 
out only this fundamental frequency component of the signal and reject all others. 
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3.7 Experimental	Modeling	and	Data	Analysis	
 

3.7.1 System	Modeling	and	Data	Fitting	
In principle it is possible to fit Eq. (3-5) directly to the output of the lock-in amplifier in 

Volts.  In practice, however, this opens up susceptibility to uncertainty in all of the coefficients 
of Eq. (3-5).  Additionally, the pump and probe power can drift throughout a measurement due to 
instabilities in the laser or varying coupling strengths of the probe beam throughout the range of 
motion of the delay stage.  It is therefore usually recommended that one instead fits to the 
negative ratio of the in-phase (X) and out-of-phase (Y) components of the lock-in amplifier [85].  
Mathematically, the in-phase signal is the real component of Eq. (3-5), while the out-of-phase 
signal is the imaginary component, as was a similar case for the 3-Omega system. This offers the 
considerable advantage of canceling out all of the coefficients in Eq. (3-5), which therefore no 
longer need to be known and whose uncertainties do not affect the final measured results.  This is 
much like fitting to the phase as a function of delay time. Therefore, we fit our data by equating 
experimental and theoretical quantities, according to 
 
 −Vin

Vout
=
−Re Z(t){ }
Im Z(t){ }

 (3-6) 

 
where Vin and Vout are the in-phase (X) and out-of-phase (Y) outputs from the lock-in amplifier, 
respectively, and Z(t) is given by Eq. (3-5).  Taking the negative is not strictly necessary for data 
fitting, but it makes the resulting plotted data positive-valued and decaying toward zero, as is 
consistent with our intuition for a decaying thermal transient. 

We fit our data using a multi-variable non-linear least squares protocol, as implemented 
by the Python “curve_fit” function from the “optimize” library in SciPy version 0.17.1.  This 
function uses the Levenberg-Marquardt algorithm when applied to optimizing unconstrained 
problems as in our case.  The thermal conductivity of the sample and the thermal boundary 
conductance (TBC) between the Al transducer and sample are both simultaneously fit, with all 
other parameters being fixed inputs to the thermal model.  Data was generally fit in the range of 
0.5 ns to 3 ns of delay, although the exact interval was selected for based on a sensitivity analysis 
used to find the optimal region that maximized the signal-to-noise ratio for the desired measured 
quantities, and subject to the assessed goodness of fit discussed below.  Extensive details of the 
sensitivity analysis are given in section 3.8 Sensitivity Analysis. 

To assess the goodness of fit, we employed the Durbin-Watson statistic (DW) [102] in 
conjunction with the mean relative magnitude of the residuals, ε.  The Durbin-Watson statistic is 
essentially the normalized autocorrelation of the fit residuals with a lag of 1 time step between 
consecutive observations.  Conceptually, it quantifies in a consistent manner how much left over 
physics in the data leaked through to the residuals because the fitted model failed to capture it.  
For a perfectly fitted data set, the fit residuals should be completely randomly distributed with no 
predictive power.  A value for the Durbin-Watson statistic less than 1 implies a positive 
autocorrelation of the residuals, meaning noticeably non-random trends in the residuals, 
suggesting that our model has failed to properly fit the data and is not correctly accounting for all 
of the physics that systematically affected the data.  A value between 1 and 2 is ideal, and means 
the residuals are fairly randomly distributed without significantly discernible patterns.  A value 
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over 2 typically indicates a negative autocorrelation of the residuals, and can be an indicator of 
over-fitting to noise in the case of polynomial or other general high-order fits.  This is not a 
concern for our system, as we use a physics-based model with a fixed number of few parameters, 
and so cannot over-fit to noise in this way.  Therefore, for our system, a Durbin-Watson statistic 
greater than 2 is still considered acceptable and an indicator of a good fit.  We also utilized the 
relative mean of the residuals, ε, designating the average error of the model in relation to the 
data, as a second metric.  The average value was taken of the absolute value of each residual, 
normalized by the magnitude of its corresponding experimental data point.  Specifically, 

 
 

ε =
1
N

yi − ŷi
yii=1

N

∑  (3-7) 

 
where N is the number of measured data points, yi is a specific measurement value, and ŷi is the 
model-predicted value for that measurement.  We took ε ≤ 1.5% as signifying a good fit.  An 
example fit is shown in Figure 3-8. 
 

 
Figure 3-8 Representative good fit showing raw data, best fit line, theoretical curves for a k ± 15% as 
compared to the best fit value, residuals of the fit, and their calculated values of DW and ε.  This fit is for 
single crystal silicon at T = 297 K and w = 2.9 µm. 

 
DW and ε are complimentary metrics that compensate for the shortcomings of the other.  

The Durbin-Watson statistic does not take into consideration the variance of the residuals nor 
their magnitude as compared to the fitted signal magnitude.  As a consequence, DW can be 
unduly strict for very low-noise and clean data, and overly forgiving of data that has a lot of 
random noise.  On the other hand, ε specifically quantifies the relative magnitude of noise and 
the mismatch between fitted model and data, but is ignorant of any systematic trends in this 
mismatch.  In brief, DW is poor at accounting for random error, while ε poor at accounting for 
systematic error.  Therefore, measurements that failed both requirements of DW ≥ 1 and ε ≤ 
1.5% were considered poor fits, and excluded from the results.  Additionally, any measurements 
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that passed one metric, but were still especially poor according to the other metric (i.e. had either 
DW < 0.3 or ε > 3%) were also excluded from the results. 

The system was modeled as a stack of two physical layers, with two additionally 
simulated effective layers to account for the interfacial TBC as well as the Al2O3 oxide layer and 
optical absorption depth of the laser.  The bottom layer, being the sample, was modeled as semi-
infinite in thickness.  This is a valid assumption, as even the thinnest samples (~ 500 µm) were 
still approximately 2 orders of magnitude thicker than our largest thermal penetration depths (~ 5 
µm), ensuring no part of the thermal signal was influenced by the backside boundary conditions 
of the sample.  Heat capacity values were taken from literature and interpolated at the sample’s 
temperature (which included a calculated background DC temperature rise due to the pump and 
probe lasers), and the thermal conductivity was one of two fitting parameters.  The top layer 
modeled the Al film using temperature-dependent literature values for the heat capacity, and with 
thermal conductivities calculated from measured electrical sheet resistances.  More complete 
details on these input parameters are given in section 3.5 Sample Preparation and 
Characterization.   

The thermal boundary conductance (TBC) between the Al film and sample was modeled 
using a layer with vanishing thickness (1 nm) and vanishing heat capacity (1 J/m3-K).  The latter 
ensured the layer contributed no “thermal inertial” effects (appropriate as a true interface has no 
“thermal mass”).  The thermal conductivity of this TBC layer was the second fitting parameter, 
as is standard [27].  Holding this layer’s thickness constant and fitting kTBC is therefore 
effectively fitting the TBC (W/m2-K) as it is the ratio of kTBC and the layer thickness. 

The thermal model used to fit the data treats the impinging laser heat flux as a boundary 
condition at the top of the Al film.  In reality, the laser energy is volumetrically absorbed over 
the top few nm of the film, spread out over the optical absorption depth of Al for the wavelength 
of pump light used.  To harmonize these two scenarios, the top 10 nm of the Al film was 
collapsed into a 1 nm thick effective layer, with ten times the true heat capacity and thermal 
conductivity, following the recommendation of Ref. [27].  This effectively compresses the heat 
absorption into a boundary condition, while preserving the true heat capacity per unit area and 
lateral thermal diffusivity of the Al layer. 

The thickness of Al layer was also reduced by 4 nm, representing the 4 nm thick Al2O3 
native oxide layer that grows on Al.  The heat capacity from this 4 nm of oxide was added to the 
1 nm effective absorption layer described above in order to preserve the correct total heat 
capacity per unit area (J/m2-K) of the combined Al film + oxide layer.  This areal heat capacity is 
an important parameter for the system as discussed in section 3.8 Sensitivity Analysis, and 
failure to account for the increased heat capacity due to the oxide layer can skew the measured 
sample thermal conductivity value by as much as 10%. 

The out-of-phase (aka. imaginary) component of the temperature response is constant 
across the zero delay time (t = 0) point when the laser pulse hits.  In general, however, the 
experimentally detected phase will be incorrect due to phase contributions from the electronics 
that are variable and difficult to quantify.  The best solution is therefore to correct the phase in 
post-processing by forcing this condition to be true [27].  We corrected the phase of our data so 
that the average value of the out-of-phase component over the range -10 ps to -5 ps is equal to 
the average value over the range +5 ps to +10 ps (i.e. just before and just after the zero delay 
time point). 

Aluminum (our transducer material of choice) has an optical thermoreflectance around 
10-4 K-1 for 800 nm light (our probe beam wavelength) [103].  Our measurements often produced 
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surface temperature oscillations with amplitude ~ 0.1 K at the modulation frequency.  Therefore, 
we routinely measure a signal on the order of 10 ppm (10-5), corresponding to 1 µV – 1 mV, 
depending on the laser powers and objectives used.  Due to the globally reduced sensitivities, 
reduced relative sensitivity of ksample with respect to CAl and LAl (discussed in section 3.8 
Sensitivity Analysis), and lower absolute magnitude of sample temperature oscillations at high 
modulation frequencies, combined with the poorer quality of the high frequency RLC resonant 
circuit, the signal for the 9.5 MHz measurements was consistently more than an order of 
magnitude weaker than for the two lower frequencies while experiencing the same magnitude of 
noise.  While curves could be fit to these measurements, they were deemed unreliable due to the 
poor signal-to-noise ratio for a majority of measurements.  Therefore for consistency, all 9.5 
MHz measurement data was excluded from the results.  This is an area for improved 
instrumentation for future measurements. 

 

3.7.2 Uncertainty	Analysis	
Analyzing TDTR data requires a multi-parameter non-linear fit to a complicated thermal 

model with many input parameters.  Therefore, there are many possible sources of uncertainty in 
the measurement and it is important to take great care in considering all of them.  The 
uncertainties used in the error propagation for all of our input parameters are summarized in 
Table 3-1.  Conventional error propagation uses partial derivatives of the measured quantity with 
respect to the parameter under consideration to quantify the uncertainty contribution of the latter 
to the measured quantity.  However, this approach assumes all sources of uncertainty are 
independent and it otherwise quickly becomes complicated and tedious to account for 
covariances among all fitting variables and system parameters.  This approach also assumes 
normally distributed noise, and often fails for large noise levels or other situations where this 
assumption breaks down.  Therefore, we chose to propagate uncertainties by performing multiple 
fits to the same data set with perturbed inputs.  For each fit, we perturbed a single input 
parameter by its level of uncertainty while holding all other inputs constant, and observed the 
effect this had on the values of the fitted variables.  Although computationally more expensive, 
this approach captures the effects of covariance, non-normally distributed noise sources, multi-
parameter fitting, and noise on the fitting itself, and is a more realistic estimate of the true 
uncertainty in our measured quantities.  We also calculated the uncertainty (standard deviation) 
of the fit itself from the square root of the diagonals of the corresponding covariance matrix.  All 
calculated uncertainties were combined in quadrature to calculate the total uncertainties of each 
fitted variable. 
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Table 3-1 Input Parameter Uncertainties in TDTR Measurements 

Input Parameter Symbol Uncertainty Quantification of Uncertainty 

Laser Spot Sizes w 10% Comparison to sweeping knife 
edge measurements 

Sample Temperature T 2% Room temperature consistency 

Signal Phase ϕ 0.2 degrees Phase correction consistency and 
sensitivity to noise 

Al film thermal 
conductivity kAl 3% to 8% 

Propagated Van der Pauw sheet 
resistance measurement 
uncertainties 

Al film volumetric 
heat capacity CAl 5% Best guess 

 
Al film thickness LAl 2% to 6% AFM measured surface roughness 

Sample heat capacity Csample 5% Best guess 

 
The relative contribution of uncertainty from the different input parameters varied for 

measurements in different regimes of spot sizes, modulation frequencies, and sample thermal 
conductivities.  Generally speaking, however, the dominant source of uncertainty was the laser 
spot size, followed by the heat capacity and thickness of the Al transducer layer.  This is to be 
expected, given the results of the sensitivity analysis presented in Figure 3-9 and its related 
discussions in section 3.8. 

In addition to careful uncertainty propagation, all measurements were repeated up to 9 
times.  Repeated measurements were completely independent.  Although they were performed 
under consistent experimental conditions (i.e. same modulation frequency, spot size, and 
sample), they were performed at different physical locations on the sample, each with 
independently measured laser spot sizes, and sometimes on different days.  The standard 
deviation of all repeated measurements was calculated as an empirical measure of the 
measurement uncertainty.  Between this empirically measured standard deviation and the 
theoretically propagated uncertainty described above, the larger of the two on a case-by-case 
basis is reported as the measurement uncertainty and is used for all error bars for reported 
measurements in Chapter 4 - Effects of Alloying and Nanostructuring on Spectral Phonon Mean 
Free Path Distributions (where each point is the average of all repeated measurements).  This 
maximum error was typically around 10% to 20%, and got as high as ~40% for a select few of 
the low frequency, low thermal conductivity, small spot size measurements that are extremely 
susceptible to uncertainties in laser spot sizes.  This approach offers a realistic estimate of the 
true measurement uncertainty, erring on the side of being overly conservative.  By using the 
larger of the two errors between the empirically and theoretically derived quantities, we avoid 
under-estimating the uncertainty due to accidentally under-predicting the uncertainty of input 
parameters, taking too few repeated measurements, or statistical anomalies causing non-
representatively tight bunching of repeated measurements.  We also increase our chances of 
capturing both random and systematic sources of error.  In the majority of cases, the empirically 
measured and theoretically predicted uncertainties were within a factor of 2 of each other, 
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indicating that we have not overlooked any dominant sources of uncertainty, nor left out any 
crucial physics in our thermal model. 
 

3.8 Sensitivity	Analysis	
An important step to designing a TDTR experiment and optimally analyzing its data is 

generating a sensitivity plot.  Here, I define sensitivity the same as in Ref. [104], 
 
 

Sx
R =

∂ ln R( )
∂ ln x( )

=
x0
R0

∂R
∂x

 (3-8) 

 
where Sx

R is the sensitivity of measured value R to parameter x, and 0 subscripts denote property 
values for the particular measurement.  This definition yields the relative (always dimensionless) 
sensitivity, meaning that Sx

R = 0.3  implies that if the value of parameter x in an experiment were 
doubled, the resulting measured value of R would increase by 30%.  We take R to be the 
negative ratio of the real to the imaginary component of the voltage signal, as this is the 
measured quantity in our experiment.  We calculate sensitivities by taking numerical partial 
derivatives of Eq. (3-6).  By taking the absolute value, we lose information about the sign of the 
sensitivity, meaning we do not really know if doubling x made R increase or decrease by 30%.  
However, for the purposes of designing an experiment, usually only the magnitude of the 
sensitivity is relevant.  Taking the absolute value makes comparing relative magnitudes of 
sensitivities to various parameters in a plot much easier, as is evident in Figure 3-9, and so we 
choose this convention.   

An ideal experiment has maximum sensitivity to the parameters under investigation, and 
minimum sensitivity to all other parameters.  If the sensitivity of an experiment to a parameter 
under investigation is too low, then the influence of that parameter on the measured signal may 
be comparable to or weaker than background noise levels.  In this case, it will not be possible to 
resolve the influence of the parameter and accurately measure it.  Estimating these values before 
preparing samples and attempting a futile experiment can save tremendous time.  Such estimates, 
for the purposes of quantitative comparison to noise levels, should be done using semi-absolute 
sensitivity rather than relative sensitivity.  This is calculated by omitting the natural logarithm 
function surrounding R in Eq. (3-8).  The resulting sensitivity will yield an absolute 
(“dimensionful”) change in R for a relative change in parameter x.  For example, let us take R to 
be the in-phase voltage response, and x to be the thermal boundary conductance (TBC) of the 
sample.  A calculated semi-absolute sensitivity of 5 x 10-6 V means that if the value of the TBC 
were doubled, we would expect our in-phase voltage signal to change by 5 µV.  If the measured 
in-phase voltage signal (i.e. after lock-in detection) contains random noise with magnitude of 
order 2.5 µV, then at best we might hope to determine the TBC to within +/- 50%, and 
realistically worse than that. 

Alternatively, if the sensitivity to the other input parameters is too high compared to the 
sensitivity of the parameter under investigation, then uncertainties in the other input parameters 
can be significantly amplified in their effects on the measurement uncertainty of the parameter 
under investigation.  This can be seen explicitly by considering 
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 σ x

σ p

=
∂ x x0( )
∂ p p0( )

=
∂ ln x( )
∂ ln R( )

∂ ln R( )
∂ ln p( )

=
Sp
R

Sx
R  (3-9) 

 
where x is the parameter under investigation, p is any other input parameter of the model, σ 
denotes the relative uncertainty of a value, and all other quantities are as defined for Eq. (3-8).  
The chain rule has been used to show that the amount of measurement uncertainty (σx) in x, given 
an amount of uncertainty (σp) in input parameter p, is simply given by the ratio of their relative 
sensitivities.  Contributions from multiple input parameters can be added up in quadrature as 
with standard uncertainty propagation.  For example, if an experiment’s sensitivity to parameter 
p is equal to twice its sensitivity to parameter x, then a 10% uncertainty in the input value of p 
used to fit a model to experimental data in order to calculate x will result in a 20% uncertainty in 
the measured value of x.  This is a second measure by which a sensitivity analysis can be used to 
help predict the efficacy of an experiment a priori. 

Figure 3-9 provides a comprehensive set of systematic TDTR sensitivity calculations 
representative of the majority of realistic TDTR measurements, including our own.  Figure 3-9 
can therefore be used as a reference tool in designing TDTR experiments.  I will devote 
considerable space in this section to discussing different trends present in Figure 3-9 in order to 
shed light on their physical origin.  A solid physical intuition for the complicated interplay of 
these various parameters is crucial for planning and designing effective TDTR experiments, and 
it is worthwhile for prospective researchers to spend some time familiarizing themselves with 
these physical relationships. 
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Figure 3-9 TDTR sensitivity plots at probe delay times of (a) 0.5 ns, (b) 1.5 ns, and (c) 3 ns.  Sensitivities are 
calculated using Eq. (3-8) with R always taken as the ratio from Eq. (3-6) for a 70 nm thick Al transducer 
layer (kAl = 130 W/m-K) with a 4 nm Al2O3 oxide layer; the sample is a semi-infinite material at 300 K with a 
volumetric heat capacity equal to that of Silicon (C = 1.6 MJ/m3-K) and variable thermal conductivity; the 
thermal boundary conductance between the Al layer and sample is set to 100 MW/m2-K.  Sensitivities are 
calculated for a system with pump beam modulation frequencies, f0, of 1 MHz, 3 MHz, and 10 MHz, for 
pump and probe beam 1/e2 radii, w, of 2 µm, 6 µm, and 15 µm, and for a sample thermal conductivity, k, 
ranging from 0.1 W/m-K to 1000 W/m-K.  Lines are plotted showing R’s sensitivity to L, k, and C of the Al 
layer, k and C of the sample, w, and the TBC.  Note the slightly different y-axis scales among (a), (b), and (c). 

One of the most immediately apparent features of Figure 3-9 is that the sensitivity to the 
thermal conductivity of the sample is often one of the highest sensitivities, particularly for high 
values of k.  This is consistent with the historical success of TDTR as a general thermal 
conductivity metrology technique, particularly for high-k materials such as silicon.  Another 
prominent feature is that for most of our measurements, the laser spot size has a strong if not 
dominant sensitivity.  This is consistent with the laser spot size being among the largest sources 
of uncertainty in our measurements, particularly for our smallest spot sizes, and justifies our 
meticulous and labor-intensive spot size measurement protocol. 

Several of the trends in sensitivities can be understood by considering heat spreading 
regimes.  Specifically, considering whether heat conduction is primarily spherical or planar in 
nature, as determined by the relative magnitude of the laser spot size (w) as compared to the 
thermal penetration depth (Lp) in a material at the pump laser’s modulation frequency.  These 
two regimes are shown schematically in Figure 3-10.  When the laser spot size is much larger 
than the thermal penetration, edge effects around the perimeter of the spot are negligible and the 
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heat conducts into the substrate primarily downward in a 1-D planar fashion.  In the reverse 
limit, edge effects dominate and, from the thermal waves’ point of view, the spot looks more like 
a point source and so the heat conducts into the substrate in a spherical fashion.  In general, 
moving from the top-left panel toward the bottom-right panel in Figure 3-9 corresponds to 
moving from spherical to planar heat spreading. 

 

 
Figure 3-10 The two heating regimes for a TDTR experiment.  Sample cross section view.  Orange arrows 
denote the thermal penetration depth (Lp) into the substrate at the pump laser’s modulation frequency, and w 
denotes the radius of the heating laser spots. 

 
These two limits can be understood more quantitatively by considering the high and low 

frequency limits of the frequency-domain surface temperature response given by Eq. (3-4).  The 
high frequency limit is given by [27] 

 
 

ΔTHF (ω) =
A(ω)

πw2 iωkC
=

A(ω)
πw2 ωkC

e
−iπ
4  (3-10) 

 
where A is the amplitude of pump power absorbed at frequency ω, w is the 1/e2 laser spot radius 
(with pump and probe spots set to the same size), k is the substrate thermal conductivity, and C is 
the substrate volumetric heat capacity (J/m3-K).  The low frequency limit is given by [27] 
 
 

ΔTLF =
ADC

2 π kw
 (3-11) 

 
where ADC is the DC power absorbed from the pump.  In the high frequency limit, the thermal 
penetration depth is much smaller than the spot size and so we expect the heat conduction to 
follow a planar geometry.  Eq. (3-10) has been re-written to explicitly show the π/4 phase shift 
between surface heating and temperature response that is characteristic of planar periodic heating 
of semi-infinite media.  Indeed, Eq. (3-10) is equivalent to the solution for planar periodic 
heating by a uniform heat flux equal to A(ω) πw2( ) .  Similarly, in the low frequency limit, the 

thermal penetration depth is much larger than the spot size and so we expect the heat conduction 
to follow a spherical geometry, and indeed Eq. (3-11) takes the form of steady spherical heat 
conduction.  Note that we would not be able to obtain a finite converged temperature response 

w w 
Planar Heating: w >> Lp Spherical Heating: w << Lp 
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for steady heating without spherical heat spreading, which is also consistent with the phase shift 
vanishing for spherical heating. 
 We can now examine the sensitivity trends through the lens of heating regimes.  For all 
panels in Figure 3-9, the sensitivity to the sample thermal conductivity, ksa, and volumetric heat 
capacity, Csa, collapse into the same curve when increasing modulation frequency, increasing 
spot size, or decreasing sample thermal conductivity, while holding all other parameters 
constant.  This happens because increasing w or f0, or decreasing ksa pushes the system more 
toward a planar heating regime.  In this regime, the temperature response is only sensitive to the 
thermal effusivity, ksaCsa , as shown in Eq. (3-10).  Perturbing either ksa or Csa has the same 
effect on the signal, and so they have the same sensitivity.  This means that uncertainty in Csa 
propagates directly into uncertainty in ksa, and also means that it becomes impossible to 
experimentally distinguish ksa from Csa and fit to both simultaneously.  The sensitivity to ksa 
itself exhibits a global maximum as function of varying ksa.  In either limit of very high or very 
low ksa, the interface between the Al layer and the sample becomes a thermal boundary condition 
(adiabatic B.C. for very low ksa, fixed temperature for very high ksa).  Therefore, the details of ksa 
itself no longer significantly affect the heat transport, and so sensitivity to ksa vanishes at either 
extreme.  The thermal boundary conductance (TBC) and Al layer thermal conductivity dictate 
what qualifies “very low” or “very high” ksa values, as it is with respect to heat transport in and 
through the Al layer that heat transport in the sample must become negligible. 
 The sensitivity to laser spot size is a more complicated non-monotonic function of sample 
thermal conductivity due to the competing effects of pulse accumulation and heat spreading 
regime.  Lower thermal conductivities reduce Lp and push the system more toward planar 
heating.  At the same time, lower thermal conductivities also increase the thermal diffusion time 
of the system, and hence cause greater pulse accumulation.  This means that after absorbing a 
heating pulse, the sample does not fully return back to equilibrium before the next pulse hits.  In 
this sense, a component of the surface temperature response results from the cumulative effects 
of consecutive heating pulses.  This pulse accumulation effect is what lets the sample feel the 
effects of the laser modulation frequency (which is a longer time scale than the inter-pulse time), 
as shown in Figure 3-7.  In general, being in a more planar heating regime reduces sensitivity to 
spot size because edge effects (and hence the finite size of the laser spot) are diminished, as 
shown in Figure 3-10.  From the thermal wave’s point of view, the spot size grows to look like 
an infinite plane heat source regardless of its true size.  Conversely, sensitivity to laser spot size 
is increased for spherical heat spreading, because edge effects dominate and the thermal waves 
can see and feel the finite size of the laser spot.   

For low thermal conductivities (the left third to half of most panels in Figure 3-9), the 
system is already in a predominantly planar heating regime and so further decreasing ksa 
primarily influences pulse accumulation and has little additional effect on heating regime.  By 
increasing pulse accumulation effects, the influence of the modulation frequency is enhanced and 
hence the influence of thermal penetration depths and their associated edge effects is enhanced.  
Although predominantly in a planar heating regime, because further decreasing ksa increases 
sensitivity to edge effects via a boosted pulse accumulation effect faster than it decreases the 
edge effects via a stronger push toward planar heating, the net effect is increased sensitivity to 
spot size with reduced ksa in the low thermal conductivity regime.  For mid-range thermal 
conductivities, a local minimum in spot size sensitivity occurs where the system begins to 
transition to a spherical heating regime.  In this regime, the boost to spot size sensitivity via the 
shift toward spherical heating outweighs the decreased sensitivity from thermal penetration depth 
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related effects via reduced pulse accumulation.  The trend shifts to a net increase in spot size 
sensitivity with increasing ksa.  Finally, for very high thermal conductivities (the right quarter of 
the 2 µm spot size panels) the pulse accumulation effect begins to disappear entirely, and so the 
sensitivity to spot size decreases again.  Even though the system would be in a completely 
spherical heating regime for thermal penetration depths at the modulation frequency for these 
ultra-high ksa systems, the system is numb to the effects of the modulation frequency due to lack 
of pulse accumulation.  Sensitivity to spot size is also increased for smaller spot sizes, as this 
also pushes the system toward spherical heat spreading without reducing pulse accumulation 
effects.  Similarly, increasing modulation frequency pushes the system toward the planar heating 
regime without affecting pulse accumulation, and so increasing modulation frequency reduces 
sensitivity to spot size. 

Sensitivity to TBC is greatest for later delay times, when the heat is in the process of 
transferring from the Al layer, through the boundary, and into the substrate.  At very early delay 
times, the heat is still spreading within the Al layer, and has not yet begun to significantly 
conduct through the boundary, and hence sensitivity to TBC is low.  Conversely, sensitivities to 
the heat capacity and thickness of the Al layer, CAl and LAl, are greatest for early delay times 
when the dominant heat transport is still taking place through the Al film, before most of the heat 
has left the Al layer and is diffusing through the sample.  The reduction in sensitivity to CAl and 
LAl at longer delay times is most pronounced for high ksa samples, which suck the heat down and 
out of the Al film more rapidly.  The global maximum in TBC sensitivity as a function of ksa is a 
matter of thermal impedance matching.  For very low or very high ksa, the thermal transport is 
primarily limited by conduction through the substrate or the Al layer, respectively.  In this case, 
changing the TBC does not a strong effect on thermal transport, as TBC is not the bottle-neck, 
hence the sensitivity is low.  The magnitude of the TBC itself as well as the thermal 
conductivities of the sample and Al transducer layer will all influence this impedance matching.  
Similarly, the heating regime will influence what shape factor governs the heat transport through 
the substrate (planar heating is more resistive than spherical heating), and hence will also affect 
the thermal impedance matching. 

In general, very high frequencies globally reduce sensitivities to physical parameters.  
This happens because as the system moves more toward the high frequency limit of Eq. (3-10), 
the phase shift of the temperature response becomes a constant, π/4, regardless of physical 
parameters.  Because our measured signal is the ratio of the real and imaginary components of 
the temperature response, which is essentially the phase of the temperature response, we lose 
sensitivity to all parameters at very high frequencies.  In practice, however, Nyquist sampling 
limitations from the 80 MHz laser repetition rate would cause modulation frequencies > 80 MHz 
to “wrap around” and behave like < 80 MHz modulation frequencies, analogous to how phonons 
with spatial frequencies greater than that of the atomic lattice “wrap around” and are folded back 
into the First Brillouin Zone. 

The sensitivities to CAl and LAl collapse into the same curve in the planar heating regime, 
because the heat conduction becomes one dimensional through the Al layer.  This effectively 
“collapses” the affect of the thermophysical properties of the layer, and is the reason why the 
heat capacity per unit area of the film is an important quantity in TDTR experiments.  This is 
more pronounced for larger spot sizes and higher modulation frequencies, where the heat 
conduction in the film is more planar.  Unlike for ksa, reducing the sample thermal conductivity 
makes heat conduction in the Al layer effectively more spherical (and so separates the CAl and 
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LAl curves).  This happens because the heat has more time to spread out radially within the Al 
layer before it is sucked down into the sample. 

Finally, sensitivity to kAl is greatest when the heat transport in the Al film is spherical.  As 
explained above, this happens for small spot sizes, low modulation frequencies, and high sample 
thermal conductivities.  As explained previously, when heat conduction through the Al film is 
primarily planar and 1-D, the layer is effectively “collapsed” and so there is little sensitivity to 
kAl, which is only important when the shape of heat conduction within the layer has interesting 
features.  CAl and LAl still have higher sensitivities than kAl in the planar Al heating regime, 
because unlike kAl, the film areal heat capacity still has relevance in this regime by serving as a 
the thermal mass from which the absorbed heat is released over time into the sample below. 
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Chapter	4	- Effects	of	Alloying	and	Nanostructuring	on	Spectral	
Phonon	Mean	Free	Path	Distributions	

 

4.1 Macro-to-Nano	Heat	Conduction	
 

4.1.1 Connecting	the	Micro	and	Macro	Worlds	
A comprehensive discussion of nano-scale energy transport and conversion is given in 

Ref. [105].  In section 4.1, I will present a high-level overview to provide the reader with the key 
concepts necessary to understand the results of the rest of this thesis.  In certain places, I will 
augment existing models and comment on the prevailing physical interpretations of select classes 
of experiments.   

The macroscopic transport of heat through solids via conduction is governed by Fourier’s 
law [106], 

 
 ʹ́q = −k∇T  (4-1) 
 
where q” is the heat flux [W/m2], k is the thermal conductivity [W/m-K], and∇T is the spatial 
temperature gradient [K/m]. 

Eq. (4-1) dictates that the flow of thermal energy is directly proportional to the 
temperature gradient, and that the proportionality constant connecting these two is the thermal 
conductivity, k, which is a material property.  The negative sign ensures that heat flows from hot 
to cold.  In general, ∇T  and q” are vectors and k is a tensor, which can also be a function of 
temperature and position within the material.  Eq. (4-1) can be plugged into the 1st Law of 
Thermodynamics (energy conservation) [106], 
 
 

ρc ∂T
∂t

+∇⋅ ʹ́q = 0  (4-2) 

 
assuming constant properties, in order to yield the heat conduction equation (with zero heat 
generation) [106], 
 
 ∂T

∂t
= D∇2T  (4-3) 

 
where the ρc product gives the volumetric heat capacity, C [J/m3-K], and D = k/ρc is the thermal 
diffusivity [m2/s].   

In this form, Eq. (4-3) can be recognized as Fick’s second law, also known as a diffusion 
equation, with the thermal diffusivity (D) as the diffusion coefficient with the telltale m2/sec 
units.  In this light, Eq. (4-1) can also be understood as a form of Fick’s law of diffusion.  This 
tells us that fundamentally, macroscopic heat conduction through solids is a form of diffusion.  
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The units of D have specific physical significance, and as a consequence the time t it takes for 
heat to conduct (i.e. diffuse) through a given length L scales according to t∝ L2 .  This offers 
clues regarding how the macroscopic and microscopic pictures of heat conduction are tied 
together.  During a random walk, a particle on average displaces a net distance of L from its 
original starting position after traveling an absolute distance (i.e. non-straight path including all 
the random jitter) of L2.  Modeling the particle as traveling at a constant average speed, the time 
it takes the particle to displace a net distance L from its starting position therefore scales with L2.  
This parallel scaling physics is no coincidence, and implies that macroscopic diffusion processes 
are the result of microscopic Brownian motion and the random walks of ensembles of individual 
particles.  Indeed, heat conduction in nonmetallic solids is the result of the random motion of 
individual energy carriers called phonons.   

Formally, phonons are quasi-particles, meaning they are not physical particles but are 
eigenstates of the total dynamical Hamiltonian of a collection of bound atoms that accounts for 
the kinetic and potential energy of the massive ionic cores of the atoms.  Phonons are collective 
excitations of the atomic lattice, or quantized bundles of vibrational atomic energy.  One can 
approximately visualize a phonon propagating through an atomic lattice as analogous to a pulse 
traveling down the length of a stretched out slinky (if the vibrational energy were quantized into 
discrete chunks).  Although phonons are fundamentally quantum mechanical objects with wave 
nature, for length scales at least ~10x larger than their wavelength (wavelengths ~1 – 3 nm for Si 
at 300 K [76]), phonons can be treated as discrete particles carrying chunks of thermal energy, 
which obey Bose-Einstein statistics [76], [107], [108].  Doing so lets us apply kinetic theory, 
which is a classical formalism that treats phonons like hard spheres in order to calculate 
macroscopic average transport properties for large collections of phonons.  A key result of 
kinetic theory is the magnitude of net thermal energy current carried by phonons in response to a 
spatial temperature gradient, which in 1-D is given by [105], [109], [110], 

 
 

ʹ́qx = −
1
3
Cvl

⎛

⎝
⎜

⎞

⎠
⎟
dT
dx  (4-4) 

 
where C (= ρc) is the volumetric heat capacity of the phonon population at constant volume 
[J/m3-K], v is the group velocity of the phonons [m/s] (i.e. the speed of sound in the material in 
the case of low frequency phonons), and l is the mean free path of the phonons [m].  The mean 
free path (MFP) is the average distance that a phonon travels before scattering and exchanging 
energy.  There are many different mechanisms that scatter phonons, such as collisions with other 
phonons, impurities or defects in the lattice, boundaries around the perimeter of the sample and 
between grains, or interfaces between dissimilar materials.  Such phonon scattering is the 
primary resistive process that reduces the thermal energy flux and creates thermal resistance in a 
material by redirecting the flow of heat-carrying phonons. 

Eq. (4-4) connects the macroscopic description of heat transfer (q”, ∇T ) with the 
microscopic description of phonons (C, v, l).  The quasi-random jiggling of atoms often used to 
describe the microscopic physical picture of heat is really the superposition of all the different 
phonon vibrational waves zipping around in all directions.  The random motion of phonons, 
which themselves are the heat, tends to smooth out any non-uniformities in the distribution of 
phonons throughout a material (i.e. temperature gradients) and hence lead to the conduction of 
heat.  This smoothing is governed by the diffusion processes dictated by Eq. (4-3).  By 
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comparing Eq. (4-4) to Eq. (4-1) we can identify the microscopic origins of the thermal 
conductivity, k, 

 
 

k = 1
3
Cvl  (4-5) 

 
This is the well-known kinetic theory result for the thermal conductivity [105].  In an 

electrically conducting material, C, v, and l can refer both to the free electrons and the phonons.  
The total thermal conductivity in this case will be the combination of contributions from 
electrons and phonons, ktotal = kelectron + kphonon, with kelectron typically dominating for metals 
around 300 K.  In general, Eq. (4-5) governs how any energy carrier (electrons, phonons, gas 
molecules, photons, magnons, etc.) contributes to their host material’s total thermal conductivity.  
In the rest of this thesis, we restrict our discussion to nonmetallic crystalline solids for which 
phonons are the only significant carriers of heat. 

By explicitly showing the dependence of k on various microscopic properties, Eq. (4-5) 
reveals how to engineer the thermal conductivity of a material.  Even for structures on the scale 
of the phonon MFP, C and v are mostly fixed once a material selection has been made, as they 
are more fundamental properties of the choice of atoms, how they are bonded together, and their 
harmonic vibrational frequencies.  They usually retain bulk values unless confined in structures 
small enough to approach the phonon wavelengths.  The mean free path, l, is an easier target for 
manipulation.  Introducing additional forms of scattering, such as by inserting grain boundaries 
(e.g. from ball milling and hot pressing) or lattice defects (e.g. from doping, alloying, or ion 
bombardment), will shorten the phonon mean free paths and consequently reduce the bulk 
thermal conductivity [51], [52], [76], [77], [99], [100], [111].  Similarly, purifying a material so 
as to remove grain boundaries, isotopes, and other impurities, will increase mean free paths and 
increase the innate bulk thermal conductivity.  Later in this chapter, we will experimentally 
investigate the effects of two such approaches to reducing thermal conductivity by examining 
grain boundary scattering in nano-grained silicon and alloy scattering in silicon germanium.   

Alternatively, the physical dimensions of a sample can be reduced in order to reduce l by 
means of increased scattering events at the boundaries of the sample (e.g. in nanowires [54]–
[56], [112], [113] or thin films [114]).  These forms of reducing k are often referred to as 
“classical size effects” [105], because the change in energy transport resulting from a reduction 
in material external dimensions can be explained using a particle picture of phonons.  When the 
characteristic length scale, Lchar, of a micro or nanostructure approaches the MFP of the bulk 
material, lbulk, it will increase phonon scattering, reducing l and hence resulting in a suppressed 
measured thermal conductivity as compared to bulk.  When this occurs, it means that many 
phonons are scattering primarily at the structure’s boundaries rather than within its interior.  The 
restricted dimension can be orthogonal or parallel to the direction of thermal transport, or both. 

An important distinction should be emphasized between classical size effects and 
decreasing kbulk by introducing additional intrinsic bulk scattering mechanisms, as we first 
discussed.  Both will result in a lower measured k, but only in the latter case is the intrinsic k as a 
material property innately reduced.  In the case of many classical size effects, the material’s 
innate k as a material property has not been reduced, and if brought back up to macroscopic 
dimensions, samples would recover kbulk.  The apparent reduction in k is a direct consequence of 
the size of the sample and not changes to its material properties.  This distinction may seem like 
pure semantics at first, but consider the following two situations.  First consider the case of heat 
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transfer perpendicular to a thin dielectric film [115].  Lchar for this system is the film thickness.  It 
initially seems intuitive and expected that reducing the film thickness until Lchar ≤ l would 
increase phonon scattering at the film boundaries, reducing the phonon MFPs and hence 
reducing k.  And, indeed, experiments do measure a reduced k [96], [116].  But now consider the 
case of heat transport from a small heated isothermal sphere embedded in an infinite medium 
[117].  Lchar for this system is the sphere’s radius.  Reducing Lchar as before, until Lchar ≤ l (where 
l is the phonon MFP in the host material, not in the sphere) will again result in measuring a 
reduced k of the host material.  However, this cannot be explained in the same way as with the 
thin film.  The presence of the sphere does not reduce l in the material.  There is no special way 
in which Lchar suddenly and significantly increases phonon scattering when it shrinks to approach 
l.  If anything, a larger sphere would scatter more phonons due to its larger surface area.  All 
phonons in the host material still propagate with the same average lbulk as before, including those 
phonons in the immediate vicinity of and emitted by the sphere.  So, why then is k reduced, if not 
due to truncated phonon MFPs?  And, has the true k actually been reduced (as happens when we 
increase materials’ bulk scattering rates), or are we just measuring a reduced apparent k?  If the 
latter, does a reduced apparent k have any physical consequence on the actual heat transfer from 
tiny spheres, or is it just a measurement artifact that we need to correct?  We will return to these 
questions once we have secured a couple more important concepts under our belt.  The answers 
to these questions hold immediate importance regarding all phonon MFP spectroscopy 
techniques to date (including the variable spot size TDTR measurements performed for this 
thesis).  These techniques fundamentally work to measure MFP properties by using tiny heaters 
on the order of l, akin to a small, embedded, heated sphere. 

 

4.1.2 Diffusive	Versus	Ballistic	Transport,	and	k	Suppression	
When external dimensions approach the phonon mean free path (MFP) and phonons 

scatter predominantly at the boundaries of the material, we say we have transitioned from a 
“diffusive” thermal transport regime to a “ballistic” thermal transport regime.  This progressive 
transition is depicted in Figure 4-1, and will be discussed in some detail below.  
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Figure 4-1 Ballistic to Diffusive 1-D Phonon Heat Transfer, Concept Schematic.  When transitioning from 
ballistic to diffusive transport, temperature jumps at interfaces disappear, a continuous temperature gradient 
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is established, and the net heat flux scales with the length of the bar.  Fully ballistic heat flux is independent of 
L.  A more complete explanation is provided in the text. 

 
Figure 4-1 depicts a 1-D bar with fixed-temperature hot and cold thermal reservoirs at 

either end undergoing heat conduction as its length is varied from L ≤ l to L >> l.  Arrows 
indicate the trajectories of phonons within the material, with colors and labels giving the 
temperature of that phonon (individual phonons do not have a well defined temperature, but 
think of each arrow as a representative phonon from an ensemble of similar phonons).  Perfect 
inelastic scattering among phonons is assumed for clarity, as are perfectly absorbing and emitting 
interfaces at the thermal reservoirs.  All scattering events conserve energy.  Below each heated 
bar schematic is its temperature profile, showing fixed hot and cold reservoir temperatures and 
equivalent temperatures within the bar (discussed below).  To the right of each schematic is the 
net heat flux, Qnet, being carried through the bar by the phonons, in units of h, the “irradiance per 
phonon” [W/K per phonon].  hT is the irradiated power [Watts per phonon] carried by a 
representative phonon at temperature T.  Therefore, the net heat flux leaving the hot surface 
equals the heat out minus the heat in, Qnet = Qout - Qin.  For example, the hot reservoir in (d) has a 
representative phonon at 400 K (and hence carrying 400h Watts of power) leaving, and a 
representative phonon at 375 K (carrying 375h Watts) entering, so the net thermal flux leaving 
the reservoir is 400h – 375h = 25h Watts.  This can also be calculated by examining the cold 
reservoir interface.  The thermal conductivity is also given to the right of each schematic, as 
defined by Eq. (4-1).  The effective k for ballistic transport in panel (a) will be derived later.  The 
schematics show the complete progression from fully ballistic phonon transport when L ≤ l in 
(a), to fully diffusive phonon transport when L >> l in (e).  In practice, of course, l is a mean free 
path, and the actual free paths of the phonons will follow a Poisson distribution and will be 
spread out evenly throughout the bar.  In Figure 4-1, phonon-phonon collisions are depicted as 
happening at regular isolated intervals for clarity, rather than smeared out throughout the bar as 
actually happens in real materials. 

Diffusive transport, as named because energy is transported via the diffusion of energy 
carriers as previously discussed, is what governs macroscopic every-day heat conduction.  
Fourier’s law and the heat conduction equation, Eq. (4-1) and Eq. (4-3), are based on the 
assumption of diffusive transport.  Diffusive transport is a valid model when phonons scatter 
within a material’s bulk frequently enough to follow random walks.  Sufficiently frequent 
inelastic scattering among phonons must also occur such that a local thermal equilibrium can be 
established at different points in space, and such that the concept of a temperature gradient is 
well defined.  The bottom panel, Figure 4-1(e), depicts heat transfer via fully diffusive phonon 
transport. 

When external dimensions are comparable to or smaller than bulk mean free paths, the 
phonons primarily travel ballistically from one boundary to the other, without scattering much in 
transit.  In this regime, the phonons do not follow random walks but rather straight-line 
trajectories, and so a diffusion model is no longer valid and Fourier’s law breaks down, as will 
be further discussed later.  This regime is sometimes also referred to as “sub-continuum” heat 
transfer because the fact that heat is carried by individual phonons with individual trajectories—
the details of which are usually washed out in the diffusion process—becomes relevant.  The top 
panel, Figure 4-1(a), depicts heat transfer via fully ballistic phonon transport.  

Ballistic phonons will travel directly from their emitting thermal reservoir, without 
scattering, until being absorbed by the receiving thermal reservoir on the opposite side.  Because 
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of these ballistic trajectories, the total Qnet thermal flux carried from hot to cold will be 
completely independent of the length of the bar, provided the transport remains ballistic.  This 
constant Qnet, termed the “ballistic limit,” is the maximum physically possible rate of net heat 
transfer between the two reservoirs (as mediated by phonons), and is limited only by the rate at 
which phonons can be emitted from the reservoirs.  Ballistic transport is sometimes also called 
“radiative” transport in analogy to heat transfer by thermal radiation, because photons typically 
travel balistically and do not interact with each other.  In ballistic transport, non-interacting hot 
and cold phonons exist in the same region of space, representing two distinct thermal 
distributions of phonons simultaneously.  Because these phonons do not scatter with one another, 
local thermal equilibrium cannot be established at interior points within the bar, and the bar does 
not have a classically defined temperature anywhere within its interior.  We can, however, define 
an equivalent average temperature, Tequivalent, based on the temperature that all the phonons 
instantaneously occupying a local region of space would reach if they were hypothetically 
allowed to interact and adiabatically come to a single thermal equilibrium.  Tequivalent is really a 
measure of the local energy density, and in the case of a temperature-independent heat capacity 
(assumed here for simplicity) it is the simple average of the rightward and leftward propagating 
phonon temperatures [105].  Because the phonons never interact for fully ballistic transport, 
Tequivalent is uniformly 350 K everywhere within the bar in Figure 4-1(a). 

This non-equilibrium among ballistic energy carriers also gives rise to a temperature 
“jump” at each interface, as can be seen in Figure 4-1(a).  The thermal reservoirs are at 400 K 
and 300 K, while Tequivalent = 350 K everywhere within the bar including adjacent to the thermal 
reservoir interface.  This results in a discontinuous 50 K jump at the interface, and is sometimes 
also referred to as temperature “slip.”  This jump in T at the interface is a routine phenomenon in 
the study of radiation heat transfer [118], and is a direct consequence of the non-equilibrium of 
non-interacting ballistic energy carriers.  All phonons emitted from the hot reservoir are at 400 
K, while all cold phonons ballistically arriving at the hot reservoir from the cold reservoir are at 
300 K.  Therefore, the hot reservoir is at 400 K, but Tequivalent immediately within the material, 
adjacent to the reservoir, instantly drops to 350 K because of the averaging with the incoming 
cold phonons. 

As we progress through the other panels, Figure 4-1(b)-(e), the length of the bar (L) is 
increased to be greater than the phonon MFP, l, while holding the total temperature difference, 
ΔT, constant.  This results in increased phonon scattering events.  Each phonon-phonon collision 
is depicted as perfectly inelastic for clarity, and it exactly averages the energy of the two 
incoming phonons between the two outgoing phonons.  In practice, phonon-phonon collisions 
can span the full spectrum from elastic to inelastic, need not conserve phonon number (such as in 
Umklapp processes), and need only conserve crystal momentum and not physical momentum 
[119].  Figure 4-1(b)-(e) show why the 1-D Fourier law conduction thermal flux decreases as L 
increases.  Mathematically, this direct relationship between q” and L (for fixed k and ΔT) is 
captured in Eq. (4-1) (remembering that ∇T = ΔT L  for our 1-D bar).  But now we can 
understand its physical origins.  As L is increased, the number of phonon-phonon scattering 
events increases proportionally, which reduces the flow of heat.  On average, these scattering 
events establish a local thermal equilibrium and average out the temperature of the phonons 
arriving from either end of the rod.  By examining this energy averaging effect in detail in Figure 
4-1(b)-(d), we see that as L increases from 2l to 3l to 4l, Qnet decreases to ½, ⅓, and ¼ of the 
ballistic limit thermal flux proportionally.  Here, we did not need to invoke Eq. (4-1) to calculate 
this decrease in Qnet proportional to increasing L, but correctly deduced it based on purely 
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physical arguments and careful book-keeping of the energy averaging from phonon-phonon 
scattering events.  Also note that each time L increases by one MFP, the number of scattering 
events per representative phonon increases by 1 proportionally. 

With increased energy averaging from phonon-phonon scattering, the temperature profile 
also approaches a smooth gradient, and the temperature jump at the interfaces progressively 
decreases.  In the extreme limit when L >> l and there are a tremendous number of phonon-
phonon scattering events occurring between hot and cold reservoirs (Figure 4-1(e)), the 
temperature profile is a completely smooth gradient with no jumps, as predicted by Eq. (4-1).  
Again, note that these features all arise naturally from simple considerations of phonon-mediated 
energy transfer. 

Because Fourier’s law breaks down in the non-diffusive regimes, a new mathematical 
approach is required to model heat transfer for temperature gradients and structure sizes 
comparable to l.  Since photons are well-studied energy carriers that typically travel ballistically, 
one approach is to borrow much of the mathematical formalism from thermal radiation heat 
transfer and apply it to ballistic phonons [120], [121].  For the general case, the Boltzmann 
Transport Equation (BTE) is used for a rigorous mathematical model of phonon heat transport 
that is valid in all regimes from fully ballistic to fully diffusive [105], [115], [121].  
Unfortunately, the full BTE is a high-dimensional integro-differential equation of time, real 
space, and phase space, and closed fully analytical solutions are scarce.  Here, we will examine 
simpler toy models with readily available analytical solutions that still provide all of the physical 
intuition we will need. 

The fully ballistic limit can be modeled using the exact formalism of radiation heat 
transfer.  Therefore, we begin examining ballistic phonon transport by solving the thermal 
radiation problem analogous to our conducting bar.  Specifically, two diffuse, gray, parallel 
plates held at fixed temperatures.  In general, the radiative heat flux for this system is given by 
[106] 
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(4-6) 

 
where qb,p is the total radiative heat flux in [W] for ballistic phonons carrying heat between 
parallel plates, Eb is the phonon radiative emissive power for each plate [W/m2], A the surface 
area of each plate [m2], ε the phonon emissivity for each plate, and F12 is the view factor from 
plate 1 to plate 2.   

We can make a number of simplifying approximations to Eq. (4-6).  To model the 1-D 
linear heat transfer of Figure 4-1, we choose infinite parallel plates.  This means A1 = A2 = A, 
which can be divided through to give q/A = q”, and also means F12 = 1 (infinite plates).  We will 
also neglect thermal contact resistances at the interfaces, and so model the plates as black, 
dictating that ε1 = ε2 = 1.  Finally, by approximating the phonon volumetric heat capacity, C, as 
being independent of temperature, we can approximate Eb as [117], [122] 

 
 Eb ≈

Cv
4
T  (4-7) 
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where C is the phonon volumetric heat capacity at constant volume, v is the phonon group 
velocity, and T is the temperature of the plate emitting the phonons.  Combining all of these 
approximations and substituting in Eq. (4-7), Eq. (4-6) becomes 
 
 

ʹ́qb,p =
1
4
CvΔT  (4-8) 

 
where ΔT is the temperature difference between the two plates.  Note that L never entered the 
problem, because the ballistic heat flux is a constant and is independent of length. 

Eq. (4-8) gives the heat transfer physics for heat conduction by fully ballistic phonons.  
Physically, this ballistic limit is an upper bound to the possible heat flux and represents the net 
rate at which phonons can be emitted and radiate away from the surface.  To study the opposite 
limiting case, we solve the diffusive heat conduction equations.  Applying Eq. (4-4) to the case 
of a 1-D bar of length L, we acquire the diffusive heat flux, 
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where q”f,p is now the total Fourier’s law heat flux in [W/m2] for diffusive phonons carrying heat 
between parallel plates, ΔT is redefined as ΔT = Thot - Tcold to eliminate the negative sign, l is the 
phonon MFP as per usual, and Lchar is the length of the 1-D bar in this case.  The dimensionless 
quantity l/Lchar is the Knudsen number (Kn).  For large values of Kn > 1, sub-continuum effects 
become important and the validity of Fourier’s law is questionable.  We set Eq. (4-9) equal to 
Eq. (4-8) to examine the cross-over point from diffusive to ballistic transport and find that it 
occurs when Lchar = 4

3 l .  Next, we plot Eq. (4-9) and Eq. (4-8) together in non-dimensional form 
in Figure 4-2 as functions of Lchar, representing the fully diffusive and fully ballistic phonon 
transport regimes, respectively. 
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Figure 4-2 Fully diffusive versus fully ballistic phonon transport heat fluxes through a 1-D bar of length Lchar 
or an embedded sphere of radius Lchar, with fixed ΔT and fixed phonon MFP. 

 
For Lchar > 4

3 l , the heat transport is predominantly diffusive, and Fourier’s law gives the 
limiting heat flux.  For Lchar < 4

3 l , the heat transport is predominantly ballistic, and the radiation 
model gives the limiting heat flux.  The observation that the ballistic heat flux is a constant while 
the diffusive heat flux continues to vary as 1/Lchar for all Lchar is quite pertinent.  Therein lies the 
key to answering the questions posed earlier with regards to reducing k by shrinking the bar 
length.  If a system is in the ballistic regime (approximately Kn ≥ 3/4) and an experiment is 
performed to determine k, then a Fourier’s law model is being used to fit to the data (since the 
concept of thermal conductivity only exists for Fourier’s law, and is not properly defined for 
ballistic transport due to the lack of temperature gradients and local thermal equilibrium).  
However, Fourier’s law breaks down in the non-diffusive regimes, and it over-predicts the true 
heat flux for a given ΔT as is evident in Figure 4-2.  The true heat flux in the ballistic regime—
what the real experiment will actually measure—is given by Eq. (4-8), and can be significantly 
less than what Fourier’s law predicts if Lchar is much smaller than l.   

Analysis of the experimental data entails varying the value of k in the thermal model until 
the best possible agreement between the model and the data is achieved.  Because the 
experimentally measured heat flux is less than the q” that Fourier’s law would predict using kbulk, 
and because artificially decreasing k in the model decreases the predicted heat flux for fixed 
geometry and fixed ΔT (see Eq. (4-1)), the end result will be an apparent suppressed thermal 
conductivity that is less than kbulk.  This apparent suppressed thermal conductivity, kapparent, will 
provide the best agreement between the ill-suited model and the data, and so the researcher 
would claim to have observed a suppression of the sample’s thermal conductivity as a result of 
shrinking its external dimension in the direction of heat transport down to be on the order of the 
phonon MFP.  Alternatively, in an experiment where the heat flux is controlled and held 
constant, Fourier’s law would under-predict the resulting temperature difference, ΔT.  The 
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measured true ΔT for fixed q” would be higher than what Fourier’s law would predict using kbulk, 
and so again the experiment would measure a suppressed kapparent < kbulk in order to make model 
predictions match experiments. 

Because of the linear relationship between k and q” for diffusive transport, the amount of 
suppression of kapparent will equal the amount of suppression necessary to get q”Fourier to equal 
q”ballistic, as shown in Figure 4-2.  We can calculate the scaling of this suppression by comparing 
Eq. (4-9) to Eq. (4-8), and remembering the definition of kbulk given by Eq. (4-5), 
 
 kapparent
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 (4-10) 

 
This is the same result as derived from the full BTE solution for an equivalent problem in the 
same regime [117], and is given for the ballistic case in Figure 4-1(a).  Physically, Eq. (4-10) 
results from forcibly casting the ballistic heat flux in the form of Fourier’s law, to see what 
kapparent a non-diffusive heat transfer experiment would interpret if analyzing data using Fourier’s 
law. 

Eq. (4-10) is only valid around Lchar ≤ 4
3 l , and it shows that the suppression of kapparent 

will scale directly with Lchar (for fixed l).  An expression that is valid for all values of Lchar can be 
derived using the full BTE [117], and will converge to Eq. (4-10) in the ballistic limit, but it is 
far less trivial to derive and such closed analytical solutions do not exist for most geometries.  
One can similarly work out the limiting ballistic and diffusive expressions for the net heat flux 
[W/m2] leaving the surface of a black sphere at T1 with radius Lchar embedded in an infinite 
medium with a far-field temperature of T2.  Fortuitously, the expressions for both the diffusive 
and ballistic heat fluxes work out to be identical to those expressions for the 1-D bar of length 
Lchar that we just derived, as given by Eq. (4-9) to Eq. (4-8).  Therefore, the full preceding 
discussion also applies to the case of the heated embedded nano-sphere.  It is also important to 
note that for the Fourier’s law solution for an embedded heated sphere, its temperature profile 
falls off as 1/r, where r is the radial distance away from the sphere.  Therefore, 50% of the total 
temperature drop from T at the surface of the sphere to T infinitely far away in the medium 
occurs within one radius of the spherical surface, and 75% of the total ΔT occurs within 3 radii of 
the spherical surface.  This rapid temperature decay is a unique property of the geometry of 
spherical heat spreading and is the reason why the thermal resistance between two concentric 
spheres remains finite even when the radius of the outer sphere goes to infinity [106], in contrast 
to analogous planar and cylindrical systems that diverge.  This means that the Fourier’s law 
model of a heated embedded sphere is primarily sensitive to the nature of the heat transfer 
occurring within just a couple radii of the surface of the sphere. 

We now have all the tools necessary to properly explain why embedding a heated sphere 
of radius Lchar ≤ 4

3 l  in an infinite medium will result in a measured kapparent < kbulk.  While it is 
tempting to apply similar logic from other nanostructuring or classical size effects and say that 
because the sphere’s radius is on the same order as or smaller than the host medium’s phonon 
MFPs, the MFPs are being clipped and the reduction in l is causing a reduction in k.  However, 
this is incorrect.  Many people fall into this trap and false line of reasoning.  As previously 
explained, the sphere has no effect on l, which remains at its bulk value in the host medium.  The 
thermal conductivity of the host medium is still kbulk, and has not been affected by the presence 
of the sphere.  What actually happens is the diffusive Fourier’s law model used to examine the 
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heat transfer process is predominantly sensitive to the heat transfer occurring within a couple 
radii of the surface of the sphere.  When the radius of the sphere is comparable to the host 
medium’s MFP, then the heat transfer within a couple radii of the sphere is mostly ballistic, 
which results in a lower heat flux for fixed ΔT (or a higher ΔT for fixed heat flux) than what is 
predicted by Fourier’s law.  As a result, a diffusive model forces its assumed value of k to 
decrease in an effort to match the experimentally observed values with predictions.  Therefore, in 
reality the thermal conductivity of the host medium has not actually been reduced, but the 
physical heat flux is lower for fixed ΔT than what Fourier’s law predicts using kbulk, because the 
dominant heat transfer is non-diffusive (or vice-versa for a fixed heat flux).  Note that for 
strongly ballistic transport it may be entirely impossible to satisfactorily fit a Fourier’s law model 
to the data, for any assumed value of kapparent, due to qualitative differences in the fundamental 
nature of the heat transfer process (especially for complicated geometries or boundary 
conditions).  For example, the shape of the cooling curve in a transient grating experiment stops 
being exponential in the strongly ballistic regime, making it impossible to model using Fourier’s 
law regardless of the choice of kapparent [123].   

Because of the frequent confusion these subtle concepts provide, it is worth reiterating 
the distinction between actually reducing kbulk by introducing additional phonon scattering 
mechanisms or by reducing the external dimensions of diffusely scattering boundaries 
orthogonal to the direction of heat transfer, versus measuring a reduced apparent thermal 
conductivity by using a small heater comparable to or smaller than a material’s phonon MFP.  
Both result in measuring a suppressed k, and both can be due to experimental characteristic 
length scales approaching l.  However, only the former actually reduces kbulk.  The latter only 
measures an apparent kapparent < kbulk as a result of trying to force an ill-suited diffusive thermal 
model to fit data from experiments where the relevant heat transfer is predominantly non-
diffusive.  To stress this point, note that if hypothetically Fourier’s law happened to under-
predict q” in non-diffusive regimes instead of over-predicting it, then such experiments would 
yield an enhanced kapparent > kbulk, instead of a suppressed kapparent as is actually observed. But 
nanostructuring a material would still always result in a suppressed true thermal conductivity.  If 
one were to be pedantic when examining the thermal transport through a thin film whose 
thickness is comparable to l, its cross-plane thermal conductivity is not reduced, it is just not 
properly defined due to the non-diffusive nature of the transport.  We can accurately describe the 
thermal transport by using an effective kapparent < kbulk, but strictly speaking the concept of 
thermal conductivity is only rigorously valid for fully diffusive systems, and the observed 
reduction in kapparent is really the result of forcing a diffusive model to describe quasi-ballistic 
transport.  Similarly, even the concept of temperature is not rigorously valid for the non-
equilibrium ballistic transport across a thin film, and we really can only talk about an effective 
Tequivalent that describes local energy density.  In contrast, if we nanostructure a bulk material to 
contain grains with Lchar ≤ l that scatter phonons at their boundaries, then we really have reduced 
kbulk.  The bulk-scale sample is still perfectly well governed by diffusive transport, and so the 
concept of a thermal conductivity is rigorously valid, and its value will be reduced.  This is also 
true of the axial thermal transport down rough-walled nanowires, whose boundaries will 
diffusely scatter phonons as a result of a restricted diameter.  This will genuinely decrease the 
axial phonon MFP, and hence reduce k for long nanowires whose axial thermal transport is still 
predominantly diffusive. 

Just because kapparent is not a true measure of a material’s actual thermal conductivity, 
does not mean that such experiments are without utility.  Because the degree of suppression of 
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kapparent is a function of the relative magnitude of Lchar compared to l, such experiments are 
excellent approaches to experimentally measuring phonon MFPs of bulk materials, without 
needing to nanostructure those materials or otherwise alter the very phonon mean free path 
spectrum that you are trying to measure.  This is a powerful concept that we will return to later, 
and is the underlying principle behind variable spot size TDTR as a phonon MFP spectroscopy 
tool. 

 

4.1.3 Understanding	the	Breakdown	of	Fourier’s	Law	
At this point, it is worth briefly discussing why Fourier’s law over-predicts heat flux in 

non-diffusive transport regimes.  The discussions of section 4.1.2 explain why Fourier’s law can 
sometimes be in error in the first place, but many find it confusing that Fourier’s law should 
predict a greater heat flux than ballistic transport.  After all, for any given transport problem, the 
maximum energy flux always occurs when the energy carriers are traveling ballistically.  When 
compared to a ballistic model, a diffusive model assumes the existence of imaginary scattering 
events that are not actually there, and scattering events add resistance to transport.  So, why does 
Fourier’s law, which assumes the presence of additional non-existent resistive scattering events, 
predict a higher heat flux than the ballistic limit—the maximum possible heat flux? 

One common stated explanation is that Fourier’s law, by means of additional scattering 
mechanisms, assumes the existence of local thermal equilibrium and hence a temperature 
gradient that does not actually exist.  In reality, when the hot and cold reservoirs are brought too 
close together as in Figure 4-1(a), the concept of local thermal equilibrium and hence 
temperature gradients disappears.  However, if Fourier’s law still assumes the existence of a 
continuous temperature gradient, then it would become increasingly steep as the distance 
separating the fixed ΔT became increasingly small.  Eq. (4-1) shows that the diffusive heat flux 
scales directly with the temperature gradient, so as the temperature gradient diverges to infinity 
with a vanishing separation distance between temperature boundary conditions, so too does the 
predicted diffusive heat flux diverge to infinity.  This is a completely fair and mathematically 
consistent explanation, but it is a macro-scale explanation and it does not provide a physical 
understanding on the deepest level for why, from a micro-scale heat conduction perspective, the 
axioms of diffusive transport would predict an enhanced heat flux.  Fundamentally, why would 
assuming local thermal equilibrium and temperature gradients from imagined scattering events 
require a hot surface to emit more phonons than it actually can, or cause those emitted phonons 
to travel with less resistance than if they traveled ballistically? 

A compelling micro-scale understanding is possible by revisiting Figure 4-1 in its 
entirety.  For each panel, the total net heat flux (Qnet) leaving the hot reservoir is the result of all 
energy emitted as hot phonons minus all energy absorbed as colder phonons.  In panel (d), Qnet = 
25h, because the reservoir emits phonons at 400 K while absorbing phonons at 375 K, for a net 
emission of 400h - 375h = 25h Watts.  Following the trends up the panels as the transport 
becomes more ballistic, Qnet increases even though the hot thermal reservoir continues to emit 
phonons at the same temperature (400 K) and at the same rate.  The increase in Qnet is therefore a 
result of the decreasing temperature of the cold phonons absorbed by the hot reservoir.  Less and 
less of the hot reservoir’s emitted energy is canceled out by absorbed energy as scattering events 
are removed.  The absorbed phonons get progressively colder because there are fewer inelastic 
scattering events between the thermal reservoirs.  Each inelastic phonon scattering event 
averages out the temperature, bringing it to a local thermal equilibrium, and hence reducing the 
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local temperature difference between hot and cold phonons.  It is ultimately this temperature 
difference between hot and cold phonons at the interface that dictates the magnitude of Qnet.  One 
could therefore describe the increased diffusive heat flux with decreasing Lchar as resulting from 
the assumed fewer and fewer scattering events that occur as Lchar is reduced.  It then follows that 
this principle will break down exactly as the transport becomes ballistic.  At this point, there are 
no more scattering events left to get rid of in order to further increase the local temperature 
difference between hot and cold phonons at the interface.  However, Fourier’s law is agnostic to 
the granularity of phonons and the finite number of scattering events that exist.  As a result, even 
as Lchar continues to shrink past l and a ballistic transport regime is entered, Fourier’s law 
continues to assume that a shrinking Lchar effectively means a reduced number of scattering 
events.  Because there are no more actual scattering events to get rid of, in the ballistic regime 
Fourier’s law effectively assumes the presence of negative scattering events that artificially 
increase the temperature difference between hot and cold phonons at the interface beyond what is 
physically possible.  This translates to effectively requiring the absorbed cold phonons to 
continue to drop in temperature, below that of the cold reservoir and even 0 K.  These fictionally 
cold phonons, born out of fictional negative scattering events, begin to suck heat out of the hot 
reservoir when absorbed, leading to a diverging Fourier’s law heat flux. 

 

4.1.4 Non-Gray	Mean	Free	Paths	
Eq. (4-5) makes the simplifying assumption that C, v, and l are the same for all phonons 

in the material.  This is referred to as the “gray medium approximation” [115] because it ignores 
the fact that there are phonons of different vibrational frequencies (analogous to photons of 
different colors) that can each have different values of frequency-dependent C, v, and l.  We are 
primarily concerned with the breadth of values of l (which itself is a function of ω).  All 
discussions up until now have assumed a gray phonon model regarding mean free paths.  This is 
a reasonable approximation for ideal gases [124] and free electron gases that span only a narrow 
band of energies centered around the Fermi energy.  However, it is a poor approximation for 
phonons in real crystalline materials, where the spectrum of MFPs can span more than two 
orders of magnitude [76], [125]–[127] (see Figure 4-3).  If this approximation is relaxed, then 
Eq. (4-5) can be applied to each type of phonon individually, each of which contributes to the 
material’s total k, and may have its own unique value of C, v, or l.  Traditionally, different types 
of phonons are indexed by their vibrational frequency, ω, and polarization.  All other properties 
such as C, v, l, and the phonon’s energy, can be calculated as a function of the phonon frequency.  
In practice, however, it is far more useful from an engineering perspective for relating k to 
nanostructure effects to index different kinds of phonons by their mean free path, l, instead [125].  
In the case of materials with isotropic phonon dispersion relations and mean free paths, l 
uniquely identifies a given phonon for a particular polarization branch.  Typically, l is a smooth 
and monotonically decreasing function of ω.  The material’s total thermal conductivity can be 
expressed as an integral over the contributions from phonons of all mean free paths.  Integrating 
up the contribution of Eq. (4-5) for each kind of phonon, we get [76], [125], 
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where “bulk” subscripts denote properties as they would exist in a bulk, macroscopic, sample of 
the material, s indexes different phonon polarizations, and a formal change of variable from 
phonon frequency (ω) to phonon mean free path (l) has been applied.  C, v, and lbulk are all 
functions of ω, so that lbulk now represents a whole spectrum of mean free paths that exist in the 
bulk material, rather than just a single value as in the discussions of previous sections.  The 
negative sign ensures that k remains a positive quantity when swapping the bounds of the 
integral during the change of integration variable so that the integral begins by adding up the 
smallest MFPs first (small values of ω correspond to large values of l, and vice-versa). 

Eq. (4-11) shows explicitly that a material’s total bulk thermal conductivity is the result 
of adding up the contributions from all phonons in the material, which form a continuous 
spectrum.  The integrand of Eq. (4-11) gives the spectral thermal conductivity as a function of l 
(i.e. the thermal conductivity per l), which is important for understanding later results and is 
qualitatively depicted in Figure 4-7 in section 4.5, Summary of Variable Spot Size TDTR 
Findings.  This spectral k as a function of l is referred to as the “phonon MFP spectrum.”  It is 
also possible to terminate the integration in Eq. (4-11) before l = ∞ to calculate the k due to a 
fraction of the total MFP spectrum.  If one instead stops the integration at some specific l = lα, 
then the result is the thermal conductivity due to the contributions from all phonons with mean 
free paths ≤ lα.  When normalized to kbulk, this is termed the thermal conductivity accumulation 
function [125], α, and it ranges from 0 to 1, 
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Calculated k accumulation functions from Refs. [75], [76] for Si and Si90Ge10 are plotted 

in Figure 4-3.  The 60% MFP, l0.6, is defined such that α(l0.6) = 0.6, and so on.  This means that 
phonons with mean free paths ≤ l0.6 collectively account for 60% of the total heat carried in the 
bulk material.  The paradigm introduced by Eq. (4-12) can be very instructive when calculating 
heat transfer in micro and nano structures.  If, for example, additional scattering mechanisms are 
introduced that effectively eliminate all phonons with l > l0.6, so that only phonons with l ≤ l0.6 
actively participated in transporting heat, then 40% of the thermal conductivity will have been 
removed and the material will now have a k only 60% of its original value.  Alternatively, we say 
that we have suppressed the thermal conductivity of the material by 40%. 
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Figure 4-3 Thermal conductivity accumulation functions (Eq. (4-12)) of Si and Si90Ge10.  Plots are theoretical 
calculations from Refs. [75], [76]. 

 
In practice, however, nanostructures that target l > l0.6 MFPs will not simply suppress k 

by 40%, because the real effect of such structures is not to literally eliminate phonons with l > l0.6 
from the material, but to reduce the MFPs of those phonons to be ≤ l0.6.  Therefore in reality, all 
types of phonons (i.e. phonons of all vibrational frequencies) will still participate in heat transfer 
(even if negligibly).  However, most of the phonons that used to have l > l0.6 will now have l ≤ 
l0.6 as a result of the introduced scattering mechanisms and so will contribute less to the total k 
via Eq. (4-5).  There are now a greater number of types of phonons with l ≤ l0.6 carrying heat.  
The overall k is always reduced, but whether or not this equates to a greater or lesser absolute 
quantity of heat now carried by phonons with l ≤ l0.6 depends on how much the MFPs of the 
phonons that previously had l ≤ l0.6 were reduced, as compared to how much heat is now carried 
by the converted phonons that used to have l ≥ l0.6 but now have a reduced l ≤ l0.6.  A much larger 
fraction of the heat is now also carried by phonons with l ≤ l0.6, and so l0.6 of the original material 
may be equal to l0.95 of this new modified material.  This is the case for grain boundary scattering 
introduced by nano-grains within a material.  If the average grain size in a material is 550 nm, 
then phonons whose mean free paths were already < 50 nm hardly notice the difference.  
However, phonons whose MFPs were previously on the order of a few microns now experience 
significantly more scattering and have a considerably reduced MFP as a result.  Therefore, this 
kind of nanostructuring primarily attacks long MFP phonons. 

Alternatively, it is also possible to introduce scattering mechanisms that attack the short 
end of the MFP spectrum, and further reduce l for phonons with, for example, l < l0.6.  This 
would have the effect of decreasing the amount of heat carried by the short MFP phonons, 
causing the heat carried by the longer MFP phonons to now constitute a larger fraction of the 
total thermal conductivity.  If this is the case, then l0.6 of the original material may be equal to l0.4 
of the new modified material, because now a larger fraction of the heat is carried by longer MFPs 
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than before.  This is the case for point defect scattering.  If a point defect is on the order of or 
much smaller than phonon wavelengths, it obeys Rayleigh scattering physics.  Rayleigh phonon 
scattering strength scales as the fourth power of phonon frequency, and so aggressively attacks 
the high frequency phonons.  High frequency phonons correspond to short MFP phonons, and so 
point defect scattering targets short MFPs.  One example of point defect scattering is the alloy 
scattering from isolated alloyed atoms in alloys such as SiGe.  These examples demonstrate that 
the types of scattering mechanisms introduced will not only affect how strongly k is reduced, but 
also how the transport of heat is distributed among the different phonons.  Two materials could 
have the same kbulk, while having very different distributions of heat among their phonons.  These 
two materials would then respond very differently to nanostructuring, as we will investigate. 

 

4.1.5 Phonon	Mean	Free	Path	Spectroscopy	
Once a material has been modified by the addition of bulk phonon scattering mechanisms 

or by constricting external dimensions orthogonal to the direction of heat transport, it will have 
reduced MFPs and a new distribution of heat among its phonons.  This new kbulk will be less than 
the original kbulk, and so to avoid confusion we call it knano.  We can replace lbulk with lnano in Eq. 
(4-11) and multiply and divide by lbulk in order to rearrange the equation back into the same form 
as Eq. (4-11), preserving the same integration variable with one added multiplicative term [125], 
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Note again that unlike kapparent, knano represents a real reduction of the true bulk thermal 

conductivity of the nanostructured material.  Recall that both lnano and lbulk are functions of ω, 
and represent full spectra of phonons. Here, lbulk refers to the frequency-dependent MFPs as they 
existed in the original bulk material, and lnano refers to the new spectrum of MFPs in the 
nanostructured material.  The ratio lnano/lbulk is often called the suppression function, S, and it is a 
function of the ratio of the characteristic length scale of the system, Lchar, and the bulk mean free 
paths, lbulk [72], [125], [128], [129].  Eq. (4-13) lets us easily calculate the thermal conductivity 
of a nanostructured system given knowledge of the bulk phonon mean free paths and 
characteristic lengths of the system.  Eq. (4-13) is a very powerful tool, as it means that we can 
measure the bulk phonon mean free path spectrum once, and from it predict how the same 
material will transport heat under most kinds of arbitrary nano-structuring using the much more 
analytically solvable Fourier law equations (as opposed to BTE), provided that we know its 
suppression function.  There is therefore great utility in being able to measure a bulk MFP 
spectrum. 

But measuring a phonon MFP spectrum is tricky.  We could try nanostructuring a 
material in a known way and correlating the characteristic lengths used with the resulting 
reduced knano, but as Eq. (4-13) shows, the new nano-material will have a different MFP 
spectrum than the original material whose spectrum we wish to measure.  Therefore, we would 
not have really measured the target MFP spectrum, but rather just messed up our original sample.  
We need a way to measure the MFP spectrum without changing it.  Herein lies the beauty of 
kapparent.  Unlike knano, kapparent is an apparent measured thermal conductivity whose measurement 
does not actually change any of the MFPs in the host material, and whose suppressed magnitude 
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depends in a known way on the relative sizes of Lchar and l.  Therefore, a set of measurements of 
kapparent as a function of Lchar provides the quantitative information about the MFP spectrum of 
the bulk material that we seek.  This makes kapparent the perfect tool for phonon mean free path 
spectroscopy.  As was discussed at length in sections 4.1.2 and 4.1.3, a heated embedded sphere 
with radius on the order of l yields a measurement of a reduced kapparent.  Embedding, heating, 
and measuring a bunch of nano-spheres of varying radii is not an easy task.  Fortunately, the 
concept of an embedded heated nano-sphere can be extended to the generalized case of any 
nano-scale point-like heat source, and can exist at the boundary of a sample.  A laser beam spot 
directed onto the surface of a sample closely approximates a heated sphere for penetration depths 
much larger than the radius of the beam, and so satisfies all of these requirements, provided that 
its radius can be made very small.  For very short penetration depths, the laser approximates a 
thin film, which works equally well for acquiring measurements of kapparent.  This is the principle 
behind using variable spot size TDTR as a phonon MFP spectroscopy technique.   

We use high-magnification microscope objectives to concentrate our laser spots down to 
very small radii, on the order of phonon MFPs.  This results in non-diffusive phonon heat 
transport in the immediate vicinity of the heated laser spot; the region to which the measurement 
is most sensitive.  The thermal model used to fit our data, derived in section 3.6 TDTR 
Mathematical Theory, is based on Fourier’s law and the diffusive heat conduction equation.  
Therefore, as a consequence of using Fourier’s law to interpret data from non-diffusive thermal 
measurements, we measure a reduced kapparent without actually affecting kbulk of our measured 
samples.  Unfortunately, recovery of the exact MFP spectrum from this series of kapparent(Lchar) 
measurements would require exactly knowing the suppression function, S, for our system.  This 
would require an exact solution of the 3-D, time-dependent, spectral BTE for the quite involved 
TDTR system, which has very complicated spatial and temporal distributions of heat.  The 
solution would also need to rigorously include material interfaces and be valid for finite 
domains.  While there are some recent BTE solutions in the literature that come close to meeting 
these conditions [122], [123], [130], [131], there is no existing solution that satisfies the precisely 
stated requirements.  Deriving such a solution or performing the full numerical analysis would be 
highly nontrivial, and is beyond the scope of this work.  Even if a solution were known, its fully 
accurate implementation would necessitate knowledge of the spectral phonon transmission 
coefficients between the Al transducer layer and the sample, as well as the phonon specularity 
parameter, neither of which are known or measurable with current techniques.  Therefore, 
instead of trying to recover a full MFP accumulation function from our samples, we note from 
our simpler models that kapparent shows suppression below kbulk when Lchar is approximately equal 
to 43 l  and shows continued suppression as Lchar is further decreased below l, scaling with Lchar 
(Eq. (4-10)).  From these facts, we can draw general conclusions about MFP spectra based on 
our measurements, as well as identify consistent trends.  The next sections will examine the 
results of our MFP spectroscopy experiments. 
 

4.2 Control	Measurements:	Silicon	and	Sapphire	
We first validated our system on control samples of single crystal silicon and sapphire to 

confirm that we were able to recover established literature values of thermal conductivity.  After 
validation with relatively large (w = 6.1 µm 1/e2 radius) spot sizes, we reduced spot sizes to w = 
2.9 µm and then 1.6 µm, in order to see suppression of the bulk thermal conductivity due to non-
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diffusive heat transfer in the vicinity of our laser spots when w ~ l.  The results of these 
measurements are summarized in Figure 4-4. 

 

 
Figure 4-4 Control variable spot size TDTR measurements on single crystal silicon and sapphire at 300 K.  
Bulk thermal conductivity values shown by dashed lines.  Apparent thermal conductivity is measured as a 
function of a characteristic micro length scale of heating, Lchar.  For our measurements, performed at pump 
modulation frequencies of 2.5 MHz and 0.94 MHz, Lchar is the 1/e2 pump and probe radius, w.  Points are the 
average of 1 to 4 repeated measurements.  Error bars are conservative estimates of uncertainty, fully 
explained in section 3.7.2.  The Lchar, type of measurement, and reference for plotted literature data are: [a] – 
pump and probe 1/e2 spot radius, beam-offset anisotropic TDTR [79], [b] – 1/e2 pump (anisotropic TDTR) or 
pump and probe spot radii (isotropic Monte Carlo Boltzmann Transport Equation simulation) [132], [c] – 
thickness of Si film, large-spot TDTR [96], [d] – thermal penetration depth, broadband FDTR [80], [e] – 
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phonon MFP*4/3 (See Eq. (4-10)), first principles calculations [125], [127], [f] – phonon MFP*4/3 (See Eq. 
(4-10)), theoretical calculation [75], [76], [g] – heater line width, ultrafast soft coherent X-rays [133]. 

 
We successfully recover bulk room temperature thermal conductivity for our largest spot 

sizes for both silicon and sapphire, with agreements to literature of 4.2% and 6.0% respectively 
(low modulation frequency data).  Agreement is within estimated measurement uncertainty, as 
shown by the dashed lines in Figure 4-4 passing within the bounds set by the error bars. 

Sapphire only shows thermal conductivity suppression for the smallest spot size, for 
which we measure an 18% suppression of apparent thermal conductivity as compared to the bulk 
value.  This degree of suppression is consistent with measurements of thermal conductance 
suppression using ultrafast soft coherent X-ray pulses [133], whose data is also plotted for 
comparison.  The data from Ref. [133] gives the measured thermal conductance from nano-scale 
Ni heater lines into a sapphire substrate as a function of the heater line width.  To facilitate 
comparison to our measurements, the thermal conductance data was normalized to its bulk value, 
and then rescaled to sapphire’s bulk thermal conductivity.  While not directly equivalent to our 
experiments, the data from Ref. [133] captures thermal transport suppression effects due to small 
heater sizes on the order of long MFPs creating non-diffusive thermal transport within their 
immediate vicinity, and so is a fair comparison for the kind of physics we are targeting.  No other 
measurements of sub-diffusion thermal transport in sapphire exist in the literature to our 
knowledge. 

Silicon shows much stronger suppression, implying that at room temperature the 
dominant heat carrying phonons in silicon have much longer mean free paths than in sapphire.  
We measure a maximum thermal conductivity suppression in Si of 44% as compared to its bulk 
value for a laser spot 1/e2 radius of w = 1.6 µm.  This is consistent with theoretical calculations 
from first principles [125], [127] and traditional models [75], [76] (plotted for comparison) of Si 
thermal conductivity at 300 K.  These models are plotted as a function of Lchar = 4

3 l  for 
consistent comparison to Lchar of our and other experiments (see Eq. (4-10) and Ref. [115]).  For 
a cutoff MFP of 43 l ~1.6 µm , these models predict apparent Si k suppressions of 41% and 36%, 
respectively.  Our measurements fall on the lower end of the scatter of literature data, meaning 
that we measure around a 10% to 20% stronger k suppression than measured by others with 
different techniques.  Note that the literature Si data plotted in Figure 4-4 constitutes a variety of 
kinds of geometries and measurement techniques, whose characteristic thermal length scales 
(Lchar) can therefore only be approximately compared among each other.  As a consequence, 
clustering of data from dissimilar experiments is partially coincidental.  In total, the experiments 
represented by the plotted Si literature data include broadband frequency domain 
thermoreflectance (BB-FDTR) (Lchar is the thermal penetration depth) [80], Si thin films (Lchar is 
the film thickness) [96], Monte Carlo simulations of TDTR using the Boltzmann Transport 
Equation (Lchar is the simulated 1/e2 pump and probe radius) [132], first principles and theoretical 
calculations of Si thermal conductivity (Lchar is 4/3 the phonon MFP) [75], [76], [125], [127], and 
various flavors of TDTR (Lchar is various combinations of pump and/or probe 1/e2 radii) [79], 
[132]. 

For the other TDTR experiments, which are the most directly comparable, some used an 
anisotropic thermal conductivity model to fit their data and reported the cross-plane value, while 
we used an isotropic model.  Recent literature predicts that the breakdown of Fourier Law at 
micro and nano length scales may happen anisotropically, depending on the dimension that is 
being constricted [79], [132].  However, we have inconsistent sensitivities to anisotropy across 
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all of our samples.  For some samples, the sensitivity is low enough that fitting an anisotropic 
model would introduce more error than might already exist from using the isotropic model in the 
first place.  Therefore for consistency, and following the recommendation of Ref. [132] for our 
geometry, we have used an isotropic model to fit all of our data.  It should also be noted that 
some of the plotted TDTR literature data primarily reduced the size of their pump beam while 
keeping the probe beam spot size mostly fixed.  TDTR k suppression measurements from 
different groups have previously had difficulty finding close agreement when one group shrunk 
both pump and probe while the other group shrunk only one spot size [79], [126]. 

 

4.3 Measurements	of	Nano-Grained	Silicon	
We now present our measurements of nano-grained silicon, which are some of the same 

samples that were measured in bulk by 3-Omega in Ref. [99].  To encapsulate the full effect of 
grain boundaries, we chose to measure the samples with the largest and smallest average grain 
sizes that were still fully dense (i.e. both samples had only 1% porosity) from that sample set.  
This corresponded to the 550 nm and 76 nm average grain size samples.  To our knowledge, 
these are the first direct sub-continuum thermal transport measurements of a nanostructured bulk 
crystal, and there is no prior literature against which we can compare our results.  The results of 
these measurements are summarized in Figure 4-5. 
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Figure 4-5 Variable spot size TDTR measurements of nano-grained silicon samples at 300 K.  Bulk thermal 
conductivity values, taken from 3-Omega measurements performed in Ref. [99], are shown by dashed lines.  
Samples have average grain sizes of 550 nm and 76 nm, and both are 1% porous.  Insets show SEM 
micrographs of fracture surfaces.  Measurements were performed using pump modulation frequencies of 2.5 
MHz and 0.94 MHz.  Points are the average of 1 to 9 repeated measurements.  Error bars are conservative 
estimates of uncertainty, fully explained in section 3.7.2. 

 
For both samples, we successfully recovered bulk thermal conductivities with our largest 

(w = 5.9 µm 1/e2 radius) spot sizes with agreements of 0.4% and 0.7% for the 550 nm and 76 nm 
samples respectively (low modulation frequency data).  This implies that, like with sapphire and 
single crystal silicon, the vast majority of heat in nano-grained silicon samples at room 



 

 
 

85 

temperature is carried by phonons with 43 l  < ~6 µm.  Bulk values were taken from the 300 K 3-
Omega measurements of these same physical samples performed by Ref. [99].  References [79], 
[132] predict that increasing modulation frequency should cause k suppression in the cross-plane 
direction, while shrinking spot sizes will cause suppression in the radial direction.  Experiments 
will be most sensitive to cross-plane suppression for large spot sizes, when there is not also 
simultaneous radial suppression.  For this reason, we always use our lowest frequency data to 
evaluate bulk thermal conductivity with our largest spot sizes, and to calculate the spot size-
induced suppression of k.  While it is true that for our largest spot sizes, the 2.5 MHz data shows 
a lower k than the 0.94 MHz data, it is still within the measurement uncertainty and the trend is 
not consistent with smaller spot sizes.  Therefore, we can neither confirm nor reject Ref. [79]’s 
frequency-dependent k suppression hypothesis from this data.  Ref. [79] predicts that frequency-
dependent suppression effects should be weak in silicon. 

The 550 nm sample is most similar to single-crystal silicon.  In comparison, it shows a 
slightly lower maximum thermal conductivity suppression of 36% for w = of 1.7 µm.  This 
implies that around 8% less of the 550 nm sample’s heat is carried by phonons with 43 l  > ~1.7 
µm as compared to single crystal silicon.  This is consistent with the nanostructuring reducing 
both k and phonon MFPs.  However, it is surprising that our smallest laser spot size, with a 1/e2 
radius still three times larger than the average grain size in the sample, is still able to suppress the 
thermal conductivity by as much as 36%.  This implies that in spite of the nanostructuring, a 
considerable fraction of the 550 nm sample’s phonons still have MFPs longer than ~550 nm.  
This is consistent with the results of Ref. [99], which predicts a frequency-dependent 
transmissivity of grain boundaries, or with a gray transmissivity model with transmissivity 
considerably greater then zero.  Ref. [99] predicts that the scattering strength of grain boundaries 
scales as the inverse of the phonon frequency, meaning that high frequency phonons scatter more 
strongly while low frequency phonons will scatter more weakly and thus still have MFPs 
considerably longer than the grain sizes. 

It should be noted that because the 1.7 µm spot is only a few times larger than the grain 
sizes, the precise placement of the spot in relation to individual grains may be of importance.  
For example, a measurement where the laser spot is in the center of a large grain may measure 
kapparent closer to that of pure Si as compared to a measurement where the spot happens to fall 
directly on top of or close to a grain boundary.  The laser spot will average over far fewer grains 
than with the 76 nm sample, which can be treated as homogeneous from the laser’s point of 
view.  To mitigate this concern, we took the greatest number of repeated measurements (9) of all 
samples for the 550 nm 20x objective (i.e. w = 1.7 µm) 2.5 MHz and 0.94 MHz data points. 

The 76 nm sample continued all trends set by the 550 nm sample.  The 76 nm sample 
showed a weaker suppression of only 22% for our 1.6 µm 1/e2 radius spot.  This is consistent 
with our expectations from both preceding trends.  Further reducing the average grain size 
further reduces phonon MFPs, resulting both in reduced bulk knano and weakened suppression of 
kapparent.  Because the phonon MFPs are all reduced as compared to the 550 nm sample, shrinking 
w to 1.7 µm does not lead to heat transport near the spot that is as ballistic as it was for the 550 
nm sample because the now much smaller MFP phonons are still diffusive at these length scales, 
and so the k suppression is weaker.  Additionally, as explained toward the end of section 4.1.4, 
nanostructuring will specifically attack the long MFP phonons, shifting the spectral distribution 
of heat toward shorter MFP phonons.  As a result, one would expect to see less suppression of 
kapparent for fixed w when nanostructuring a material and shifting its heat more toward MFPs 43 l  < 
w.  The nanostructuring thus has the effect of restoring diffusive type thermal transport for the 
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heating by w > 43 l , consistent with our observation of a weakened thermal conductivity 
suppression relative to bulk. 

At the same time, the fact that there is any suppression at all when our spot is now an 
order of magnitude larger than the average grain size is further support to the phonon-frequency-
dependent grain boundary scattering proposal of Ref. [99], or a gray transmissivity model with 
high transmissivity. 

 

4.4 Measurements	of	Silicon	Germanium	
We now present our measurements of silicon germanium alloys.  In analogy with the 

nano-grained silicon samples, we measured a sample with both high and low germanium 
concentration in order to examine the effect of mass defect phonon scattering from alloying.  
Because of the saturation of the alloying effects for the middle ~ 90% of the range of possible Ge 
concentrations [100], [134], it is important to choose one sample within this range and one dilute 
sample outside this range with only light alloying in order to properly study the effect of 
alloying.  We chose samples with germanium concentrations of 1 atomic % (Si99Ge1), and 9.9 
atomic % (Si90.1Ge9.9).  Acquiring bulk, single crystal SiGe samples with controlled alloy 
concentration is very difficult.  The Si90.1Ge9.9 sample was grown and characterized by N. 
Abrosimov of the Leibniz Institute for Crystal Growth, while the Si99Ge1 sample is the same as 
was used in Ref. [79].  The results of our measurements are summarized in Figure 4-6. 
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Figure 4-6 Variable spot size TDTR measurements of silicon germanium samples at 300 K.  Bulk thermal 
conductivity values are shown by dashed lines.  The bulk k value for Si99Ge1 is taken from Ref. [79], while we 
measured the bulk k value for Si90.1Ge9.9 via the 3-Omega method, using an 80 µm x 1500 µm heater line 
(thermal penetration depth ranging from 75 µm to 350 µm).  Samples have 1.0 and 9.9 atomic percent Ge 
concentrations.  Measurements were performed using pump modulation frequencies of 2.5 MHz and 0.94 
MHz.  Points are the average of 2 to 6 repeated measurements.  Error bars are conservative estimates of 
uncertainty, fully explained in section 3.7.2.  The Lchar, type of measurement, and reference for plotted 
literature data are: [a] – pump and probe 1/e2 spot radius, beam-offset anisotropic TDTR [79], [f] – phonon 
MFP*4/3 (See Eq. (4-10)), theoretical calculation [75], [76], [h] – Si90Ge10 Nanowire length, suspended heated 
platforms [135]. 
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For comparison of our Si99Ge1 measurements we have included TDTR data from Ref. 
[79] (also for Si99Ge1) for both fixed w = 10 µm / variable modulation frequency (1.1 MHz to 
17.6 MHz), and fixed modulation frequency (f = 1.1 MHz) / variable w.  To our knowledge, no 
other direct sub-continuum thermal measurements of similar SiGe alloys exist in the literature.  
We measure considerably stronger kapparent suppression for small w than Ref. [79], although we 
appear to converge to similar values for large w.  However, their measurements appear to fail to 
converge all the way to bulk values (not shown is their measurement for w = 26 µm, which still 
measures the same k value as our w = 15.3 µm point, and the same as their w = 10.3 µm point).  
Our largest spot size is 15.3 µm, so we cannot confirm whether we would also fail to recover 
bulk k values.  This may be due to persistent modulation frequency-induced suppression, 
independent from spot size suppression.  Beyond the facts that Ref. [79] used an anisotropic 
model to fit their data and report a cross-plane kapparent while we used an isotropic model, and 
they used a sweeping knife-edge approach to measure their spot sizes for data fitting while we 
used a 2-D Gaussian fit, we cannot identify any other significant differences between our 
respective measurement protocols that would explain such different results.  The disagreement 
between their two 1.1 MHz points (one at w = 10 µm, one at w = 10.3 µm), taken from different 
data sets of the same paper corresponding to different parametric sweeps, gives an indication of 
the size of their error bars. 

As previously mentioned, Ref. [79] predicted a modulation frequency dependent 
suppression of kapparent, with stronger suppressions expected for higher frequencies.  This 
frequency-dependent suppression of kapparent is demonstrated in their plotted frequency sweep 
data at w = 10 µm.  Ref. [79] predicted this effect would be weak for Si, but strong for SiGe, 
especially for large spot sizes where it is not competing with radial spot size-induced kapparent 
suppression.  We do observe a stronger apparent frequency dependence of kapparent for SiGe 
samples than we did for previous samples, even beyond the uncertainty of our measurements for 
our largest spot size in Si99Ge1.  Our tentative frequency-dependent suppression is stronger than 
what is observed by Ref. [79], consistent with our spot size-dependent suppression also being 
stronger.  This may again be due to differences in anisotropic vs. isotropic measurements, as well 
as how spot size is calculated both for reporting results and for fitting raw data.  However, we 
have insufficient data across all spot sizes given our measurement uncertainty to confidently 
comment on the pump laser modulation frequency-dependence trend.  Our higher frequency data 
also shows a less consistent trend with spot size.  A more comprehensive data set including a 
larger frequency sweep would be necessary to more rigorously investigate this claim. 

Both SiGe alloys fail to recover bulk thermal conductivity values for large spot sizes, and 
so we cannot place an upper bound on the maximum phonon MFP relevant to heat transfer at 
room temperature in either sample based on our variable spot size TDTR data.  The bulk k value 
for Si99Ge1 of 44 W/m-K is taken from Ref. [79].  For comparison, literature values for Si99Ge1 
kbulk are 33 W/m-K [100] and 35 W/m-K [134], indicating that our sample taken from Ref. [79] is 
either a higher k than usual, or more likely a slightly lower germanium concentration than what 
was reported.  The thermal conductivity of SiGe is a very steep function of alloying 
concentration for dilute alloys, and a value of kbulk = 44 W/m-K would correspond more closely 
to a 0.7% germanium concentration instead of 1% [134].  Note that using the lower literature 
values for k of Si99Ge1 would not change any of the major findings of our results discussed 
below.  We measured the bulk k of the Si90.1Ge9.9 sample via a traditional 3-Omega method, 
using an 80 µm wide x 1500 µm long x 0.2 µm thick Au heater line (thermal penetration depth 
ranging from 75 µm to 350 µm) on top of a ~ 1 µm thick spin-coated electrically insulating 
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photoresist layer.  Our 3-Omega measurements yielded a bulk k of 12.3 ± 0.2 W/m-K for the 
Si90.1Ge9.9 sample, agreeing with literature values to within 7.5% [100] and 0.8% [134].  This 
implies that the vast majority of heat in Si90.1Ge9.9 is carried by phonons with 43 l  less than at 
most ~80 µm at room temperature.  Even with w ~ 15.5 µm 1/e2 radius spot sizes, more than 
twice the size of the largest spot sizes used on other samples, we still did not recover bulk k 
values for either SiGe sample.  This implies that at room temperature, a considerable fraction of 
the heat in SiGe alloys is carried by phonons with 43 l  > 15.5 µm.  These are very large mean free 
paths for 300 K, and is a somewhat striking result.  This “long tail” in SiGe is still consistent 
with the theory in literature, which predicts that in order to account for 90% of the heat carried in 
SiGe, one needs to consider phonon MFPs as high as 100 µm [76], [111] (see Figure 4-3). 

Our measurements of the Si90.1Ge9.9 sample are in reasonable agreement with the 
theoretical calculations of Si90Ge10’s k accumulation function from [75], [76] (plotted in Figure 
4-6 for comparison, and in semilog scale in Figure 4-3).  We have also plotted literature data for 
Si90Ge10 nanowire measurements [135] in Figure 4-6.  Note that Lchar for the nanowire 
measurements is their length, and not their diameter as is more conventional in nanowire studies.  
Ref. [135] somewhat surprisingly did not see a difference in measured k values for nanowires of 
varying diameters, provided they had the same length.  Therefore, it is a reasonable assumption 
that the nanowire length was the dominant length scale responsible for diffusive vs. ballistic 
axial heat transport regimes.  Therefore, this is an appropriate comparison.  This could be 
explained if the nanowires had very smooth surfaces (as is indicated by the STEM images in Ref. 
[135]), as specular phonon scattering by nanowire walls does not reduce axial phonon 
momentum and therefore has very minimal impact on axial heat conduction [76].  Such an effect 
is also more likely in alloy systems such as SiGe, where long wavelength phonons (which see 
nanowire walls as smoother) are more dominant as a result of the alloy Rayleigh scattering.  In 
this case, the nanowire length would be the dominant length scale responsible for increased 
thermally resistive phonon scattering, even though the length was much greater than the 
diameter.  The data from Ref. [135] does plateau to a value around k = 8 W/m-K (less than the 
bulk value of 12.3 W/m-K) for nanowire lengths ≥ 8 µm.  We speculate that at there was a 
regime switch for lengths ≥ 8 µm and the nanowire diameter became the dominant length scale 
suppressing axial heat transport, which then became diffusive leading to a constant value of knano 
with increasing Lchar.  Beyond nanowire lengths of ~5µm, Ref. [135] did not measure nanowires 
with varying diameters anymore, and so this speculation can be neither confirmed nor disproved 
(one would expect the k leveling-off to occur at shorter lengths for smaller diameter nanowires 
according to our “regime shift” hypothesis).  Consequently, we feel it is only appropriate to 
compare our results to data from Ref. [135] for nanowires with lengths ≤ 8 µm, for which we 
believe the nanowire length was still the dominant length scale causing non-diffusive phonon 
transport, and therefore still the appropriate choice of Lchar for plotting.  We have still plotted all 
data for completeness, including for nanowire length > 8 µm.  Ref. [135] measured nanowires 
with both 10% and 60% Germanium concentrations, and as with the varying diameters, did not 
see this influence measured k values. This implies that for nanowire lengths ≤ 8 µm, neither the 
alloying concentration nor the diameter (perpendicular to the heat transport direction) was the 
primary resistive phonon scattering mechanism for axial transport.  It would therefore be 
interesting to perform variable spot size TDTR measurements on higher Ge concentration SiGe 
alloys, to see if they collapse down to the same k values for small spot sizes.  This would be 
consistent with the “saturation effect” on the influence of mass point defect phonon scattering 
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with increased alloying (i.e. that that kbulk quickly levels off and is roughly constant for the 
middle ~80% of alloying concentrations [100], [134]). 

Both SiGe alloys show very strong kapparent suppressions for w = 1.6 µm.  We measure a 
57% and 76% thermal conductivity suppression with w = 1.6 µm for the Si99Ge1 and Si90.1Ge9.9 
samples, respectively.  This implies that the majority of the heat in both samples at room 
temperature is carried by phonons with 43 l  > ~1.6 µm, consistent with theoretical predictions 
[75], [76] (see Figure 4-3).  This could have significant relevance to microelectronics and 
microstructured thermoelectric materials that use SiGe alloys [136].   

At first, these two observations seem contradictory.  On the one hand, increasing the 
alloying concentration of SiGe reduces thermal conductivity, due to the increased phonon 
scattering and hence shorter phonon MFPs.  On the other hand, increasing the alloying 
concentration of SiGe also increases the level of k suppression for fixed w, seemingly implying 
that the phonon MFPs have become larger in relation to the (fixed) laser spot size.  How can 
phonon MFPs simultaneously be getting longer and shorter with increasing alloying 
concentration?  The paradox is resolved by remembering that it is possible to change the relative 
distribution of heat among different kinds of phonons when introducing new scattering 
mechanisms, as was discussed at the end of section 4.1.4.  Imagine introducing a new scattering 
mechanism that selectively scatters short phonon MFPs, making them even shorter, while 
leaving the long MFPs relatively unscathed.  This concept is portrayed qualitatively in Figure 4-7 
in section 4.5 Summary of Variable Spot Size TDTR Findings.  The net result would be to 
reduce the amount of heat carried by the short MFP phonons, globally shifting the “center of 
mass” of the spectral k distribution to the right toward longer MFPs so that a larger fraction of 
the total heat were carried by long MFP phonons as compared to before, even if they now carried 
a slightly reduced absolute quantity of heat.  Because a larger fraction of heat is carried by long 
MFP phonons than before, it means that a larger fraction of the heat coming from a heat source 
with Lchar smaller than those long MFPs will be transported non-diffusively, and so a stronger 
suppression of kapparent will be measured.  Simultaneously, the new bulk thermal conductivity of 
the material, kbulk, will be reduced due to the further MFP reduction of short MFP phonons.  This 
combination of a reduced kbulk but an increased suppression of kapparent for fixed w is the precise 
combination of effects we observe in our SiGe data, with the trends growing stronger for 
increased alloying concentration. 

Accomplishing this would require a very selective scattering mechanism that primarily 
attacked short MFP phonons.  Indeed as previously discussed, alloy scattering is a result of point 
mass defects much smaller than the phonon wavelengths, hence it obeys Rayleigh scattering 
physics, and the scattering rate scales with the fourth power of phonon frequency [75], [137]–
[139].  Phonon MFP, l, is generally a monotonically decreasing function of phonon frequency, 
ω, meaning that high phonon frequencies correspond to short MFPs and vice-versa.  Therefore, 
alloying very selectively scatters the high frequency (short MFP) phonons, while minimally 
affecting the low frequency (long MFP) phonons.  This is the exact required behavior necessary 
to explain our results.  Additionally, the fact that even very light alloying (by only a few percent) 
significantly reduces kbulk (by over an order of magnitude [134]), means that alloy scattering is 
the dominant form of high frequency phonon scattering for SiGe at room temperature.  Thus the 
fourth power physics of alloy scattering governs the phonon frequency-dependence of high 
frequency phonon MFPs in our samples (Umklapp scattering governs the low frequency phonon 
scattering).  Our results are fully explained by the increased alloy scattering in SiGe. 
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4.5 Summary	of	Variable	Spot	Size	TDTR	Findings	
In this section, I will concisely reiterate the primary conclusions from all measured 

samples in one unified discussion, and make some final observations.  The bulk values of k for 
all samples, their reduced apparent values of k as measured using the smallest pump and probe 
laser spot 1/e2 radii of w ~1.6 µm, and the corresponding apparent relative suppressions in k, are 
summarized in Table 4-1.  Arrows indicate important and differing trends in the data.  Full data 
are plotted in Figure 4-4, Figure 4-5, and Figure 4-6. 

 
Table 4-1 Summary of Variable Spot Size TDTR Measurements of All Samples.  Arrows 

designate differing trends in kbulk and kapparent vs. k suppression. 

 
 
The fact that suppression does not track monotonically with bulk k indicates the rich 

physics governing our results.  We have examined two families of silicon-based samples, joined 
in the center by intrinsic single crystal silicon.  Both families introduce additional phonon 
scattering mechanisms that reduce bulk k from that of silicon, but the way in which the different 
scattering mechanisms reshape the distribution of heat among phonons leads to opposite trends 
in observed k suppression, as depicted in Figure 4-7. 

 

 
Figure 4-7 Qualitative concept schematic, not to scale, depicted values chosen to mirror Table 4-1.  Total k 
is calculated by integrating the area under the spectral k curves over all contributing MFPs.  Difference 
between the effect of alloying versus nanostructuring on the distribution of heat among different phonon 
MFPs shown schematically, consistent with the findings of Table 4-1.  Alloy scattering strength scales with 
ω-4 and so attacks high frequency (short MFP) phonons, while nanostructuring scattering strength depends 



 

 
 

92 

on how large the MFP is compared to the nanograin diameter with a Dgrain/MFP scaling, and so attacks long 
MFP phonons. 

 
For the nano-grained silicon (ng-Si) family, grain boundaries scatter phonons with l > 

Dgrain significantly more than they scatter phonons with l < Dgrain.  This selectively reduces the 
amount of heat carried by long MFP phonons, shifting the heat toward shorter MFPs, as shown 
on the left of Figure 4-7.  As a result, a fixed size small laser spot, w, will measure less 
suppression of kapparent, because a larger fraction of the heat leaving w is transported diffusively 
due to the additional grain boundary scattering, and so Fourier’s law is still valid.  This is 
illustrated qualitatively in Figure 4-7 (left), where phonons with l > w do not contribute to the 
measured kapparent, because they travel ballistically and so are interpreted as carrying negligible 
heat flux by the fitted Fourier law model that over-estimates q” for ballistic phonons.  The 
increased scattering also reduces the bulk thermal conductivity (i.e. reduced area under the curve 
as compared to single crystal Si).  The phonon transmissivity through grain boundaries is quite 
high for some or all phonon frequencies, as evidenced by the fact that significant suppression can 
still be measured even for w more than 10x larger than Dgrain.  Note that some of the low MFP 
phonons in nano-grained silicon can actually carry more total heat than the corresponding low 
MFP phonons in single crystal Si.  This happens because the collection of all low MFP phonons 
in ng-Si includes all the phonons that used to have long MFPs in single crystal Si, but were 
moved to the “low MFP bin” by the grain boundary scattering.  The reverse is not true for SiGe, 
because alloy scattering of the short MFP phonons shortens rather than lengthens their MFPs, 
and so cannot move them up into the “long MFP bin.” 

For the SiGe alloy family, point mass defects introduced by Ge alloying reduce the bulk 
thermal conductivity.  The increased density of point scatterers in the Si90.1Ge9.9 sample leads to a 
stronger reduction of bulk k as compared to the relatively dilute Si99Ge1 sample.  The Ge atoms 
act as point scatterers that are much smaller than the phonon wavelengths and hence lead to 
Rayleigh scattering.  The predicted frequency dependence of the Rayleigh scattering strength 
(scaling as ω4) selectively scatters the high frequency (short MFP) phonons more than the low 
frequency (long MFP) phonons [75], [137]–[139].  Alloying thus redistributes the carried heat 
toward long MFP phonons, leading to an increase in the observed k suppression for fixed w, as 
shown in Figure 4-7 (right). 

Our measurements compare favorably with some literature values where available for 
silicon, sapphire, and Si90.1Ge9.9, and we observe a 10% to 20% stronger k suppression effect 
than what some others measured with different techniques for silicon and Si99Ge1.  Our 
measurements are in fairly good agreement with model theory predictions and first principles 
calculations. 

A final interesting observation, best seen in Table 4-1, is that while kbulk of the 76 nm 
nano-grained Si sample (28 W/m-K) is much less than kbulk of the Si99Ge1 sample (44 W/m-K), 
the suppressed kapparent of the 76 nm sample (22 W/m-K) is greater than the suppressed kapparent of 
the Si99Ge1 sample (19 W/m-K), using the same laser spot size of w = 1.6 µm and even though 
they are both silicon-based materials whose phonons have nearly identical properties other than 
MFP.  Because kapparent is a tool to effectively measure the spectral k of a material without 
changing its MFP spectrum in the process, this means that given the choice between the two 
materials, 76 nm ng-Si would be a superior choice over Si99Ge1 for the thermal management of 
microstructures, despite having a much lower bulk thermal conductivity than Si99Ge1.  This can 
be understood by again considering Figure 4-7.  Si99Ge1 might have a larger bulk value of k 



 

 
 

93 

when including all MFPs (total area under the curve), but because most of its heat is carried by 
long MFP phonons with lower limiting ballistic fluxes than short MFP phonons, Si99Ge1 loses 
heat carrying capacity more rapidly than ng-Si when microstructured.  This is a concrete 
example of the importance of understanding how the heat is distributed among the phonons in a 
material, as values of kbulk alone do not tell the whole story and can lead to very incorrect design 
decisions for microstructured systems. 

There is again a subtlety in properly understanding this result.  To make the explanation 
clearer, imagine a material, “SG,” whose spectral k distribution among different phonons looks 
like that of the Si99Ge1 sample (i.e. skewed toward long MFPs), and a material, “ngSi,” whose 
spectral k distribution looks like that of the 76 nm nano-grained Si sample (i.e. skewed toward 
short MFPs).  Except in our example, SG and ngSi have identical values of kbulk while SG still 
has a much lower value of kapparent than ngSi for the same w.  The reason SG has a lower 
suppressed kapparent than ngSi is not because a larger fraction of its phonons is being excluded by 
w.  These long MFP phonons still participate in heat transfer, only now for small w they 
participate ballistically instead of diffusively.  No matter how large a phonon’s bulk MFP may 
be, it will still participate in heat transfer for any size of w, but it will participate ballistically for 
comparatively small w.  Therefore, it is really the magnitude of a phonon’s ballistic limit heat 
flux that determines how well the material will still transport heat when in a non-diffusive 
regime.  However, ballistic heat fluxes represent a maximum possible flux, so one would 
therefore expect this to cause an increase in the heat carried by SG at small sizes relative to ngSi, 
because a larger fraction of its phonons will be carrying heat ballistically.  But this is incorrect, 
and here is the subtlety.  Because most of the heat in the bulk SG sample is carried by long MFP 
phonons, and because the total contribution to k from each phonon (indexed by its frequency, ω) 
is given by ⅓Cvl (Eq. (4-5) – each parameter itself a function of ω), it means that those phonons 
with large values of l must compensate by having smaller values of their Cv product in order to 
still only contribute the same amount to k as the same phonons (i.e. same ω phonons) in the ngSi 
sample that have smaller l.  This Cv product is what determines the magnitudes of the phonons’ 
ballistic heat fluxes (Eq. (4-8)).  Therefore, when comparing the relative magnitudes of 
suppressed kapparent between SG and ngSi, it is largely the fact that the long MFP phonons in SG 
must have smaller ballistic heat fluxes than the corresponding phonons in ngSi that causes 
kapparent of SG to be less than kapparent of ngSi.  It is not just simply because w “excludes” a larger 
chunk of spectral k at long MFPs in SG (although, this way of thinking fortuitously aligns with 
the fact that low ω phonons happen to simultaneously have longer MFPs and smaller Cv 
products in general, and vice-versa for high ω phonons).  While most of the phonons in SG have 
longer MFPs than in ngSi, the phonons with the highest Cv products have longer MFPs in ngSi 
than in SG, because these are the phonons with very high ω that the alloy scattering attacks most 
aggressively.  Said another way, SG gets most of its diffusive bulk k from its long MFPs, while 
ngSi gets most of its diffusive bulk k from its large Cv products.  Therefore, when MFP leaves 
the picture in the case of ballistic transport, ngSi phonons have the advantage, even if some of 
them are still travelling diffusively while most of the SG phonons are traveling ballistically.  

In conclusion, our results agree with the model that grain boundaries primarily scatter 
long MFP phonons and have high transmissivities for some or all phonon frequencies, while 
alloying primarily scatters short MFP phonons giving SiGe “long tails” in their k accumulation 
functions.  At room temperature, most of the heat in Si and its nanostructured cousins is carried 
by phonons with MFPs smaller than a few microns, while an appreciable fraction of the heat in 
SiGe is still carried by phonons with MFPs up to a few tens of microns.  More generally, we 
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show that different scattering mechanisms can have pronounced differences in how they 
redistribute the carried heat among different kinds of phonons, which in turn can have real and 
tangible consequences regarding the efficacy of different materials’ thermal management for 
nano and microstructures, sometimes contrary to expectations based on bulk values of k.  In 
particular, SiGe was found to be a poor choice for the thermal management of nano and 
microstructures. 

 

4.6 Suggestions	For	Future	Work	
Phonon mean free path spectroscopy is a rich landscape that is still largely uncharted.  

There are many opportunities for both experimental and theoretical developments that could 
immediately resolve controversies and ambiguities.  Here, we will discuss a few of the future 
research directions that we believe warrant time and investigation. 

First and foremost, the kinds of sub-diffusion measurements presented in this dissertation 
should be repeated at varying temperatures, ideally going down to low cryogenic (< 10 Kelvin) 
temperatures.  Reducing T changes k of silicon in very well studied and predictable ways [105] 
by reducing C of the phonons and reducing Umklapp phonon scattering rates.  Therefore, 
comparing the expected shifts in phonon spectra and their corresponding shifts of k with different 
samples’ actual observed k shifts can be used to further confirm or refute the way in which 
alloying and nanostructuring redistributes heat among phonons.  For example, initial reductions 
in T from 300 K should increase phonon MFPs due to reduced Umklapp scattering, without yet 
decreasing C because samples will still be in the saturated Dulong and Petit limit for C [105], 
[140].  Therefore, we would expect to see a relatively small change in the kapparent suppression of 
ng-Si samples when reducing T because the nanograins keep phonon MFPs from getting too long 
even after the removal of Umklapp scattering, and so heat will not be significantly redistributed 
to longer MFPs to increase suppression.  On the other hand, because most of the heat in SiGe is 
carried by long MFP phonons and the alloying only attacks short MFP phonons, we would 
expect reduced T and hence reduced Umklapp scattering to further increase phonon MFPs, 
shifting the heat toward even longer MFPs, and hence further increasing the kapparent suppression 
of SiGe at reduced T.  At very increased T, we would expect Umklapp scattering to become 
dominant in both classes of samples, greatly reducing phonon MFP, reducing kbulk, and reducing 
the kapparent suppression. 

On the theoretical side, it would be very beneficial to the field if a full closed form 
solution to the 3-D spectral BTE could be attained for the full TDTR geometry and temporal 
distributions, capable of rigorously incorporating interfaces and finite domains.  This would 
enable the calculation of suppression functions in order to directly convert measurements of 
kapparent into k MFP accumulation functions.  Full implementation of such a solution would also 
require knowledge of both the phonon transmission and specularity coefficients for the 
Al/sample interface.  There has already been considerable effort toward this goal [122], [123], 
[130], [131], [141], and it is likely that a fully implementable solution with known coefficients 
may be realizable soon. 

Ref. [135] and the sharp “U” shape of the SixGe1-x k vs. x plot [100], [134] indicate a 
possible saturation effect of k of SiGe alloys as a function of alloying concentrations.  It would 
therefore be interesting to carry out phonon MFP spectroscopy measurements on SiGe of varying 
alloying concentrations varying from very dilute (almost pure Si or Ge) to very heavily alloyed 
(≥ 35%), to see if this resulted in a loss of influence of alloying on suppression for high alloying 
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concentrations.  Additionally, the rate at which kapparent suppression (relative to a lowering kbulk) 
changed for different heater sizes, especially combined with temperature-dependent 
measurement, would yield spectral information regarding how the alloying affects different 
phonons and progressively shifts the phonon spectrum toward longer MFPs.  This will be 
challenging, however, as growing single crystal bulk SiGe samples with controlled and varying 
alloy concentrations is non-trivial. 

We also believe that it would be beneficial to the field to have an independent 
measurement of the pump laser modulation frequency-dependence of kapparent suppression.  At 
only two separate frequencies, we had insufficient data to draw any definitive conclusions 
regarding possible trends.  Ref. [79] hypothesizes and presents data in support of a frequency-
dependent kapparent suppression that should be stronger for SiGe alloys (i.e. phonon spectra shifted 
toward long MFPs) while weaker for Si.  It would also be beneficial in general to repeat our 
measurements using a different phonon MFP spectroscopy technique to verify that the results are 
repeatable.  We measured around a 10% - 20% stronger kapparent suppression in Si at 300 K as 
compared to other groups using different techniques, and so it would be helpful to be able to 
compare measurements for other samples spanning a variety of phonon spectral distributions. 

Because the heat diffusion equation and the BTE under relaxation time approximation are 
linear differential equations, they can be described using transfer functions and Green’s 
functions.  This creates an exchange symmetry between heaters and thermometers [79], implying 
that swapping the heater and thermometer in a system should not change the thermal transfer 
function.  However, as discussed in this dissertation, kapparent suppression requires a non-
equilibrium and at least quasi-ballistic transport of the energy carriers, which in turn means 
significant temperature gradients on the order of dominant phonon MFPs.  In the case of optical 
thermoreflectance thermometers such as used in TDTR, there is no heat flow into the 
thermometer for detection.  Rather, the local temperature of the metal transducer layer can be 
sampled via its temperature-dependent reflectivity.  In contrast, there is heat flux out of the 
heater, as the pump beam deposits energy in the transducer layer (the probe beam also deposits 
energy, but this is not at the modulation frequency of the lock-in and so is not picked up as a part 
of the final signal or represented in the temperature measurement, which is really a measure of 
the magnitude of temperature oscillations at the modulation frequency).  Therefore, it is 
reasonable to expect that kapparent suppression effects may only be observed with shrinking heater 
sizes and not shrinking thermometer sizes.  If the pump spot is on the order of l, then some of the 
radiated phonons travel ballistically away from the heated region, resulting in suppression of 
kapparent.  However, in the case of a very large pump spot beam, but a probe spot on the order of l, 
there is no reason why there should exist any more or less ballistic transport or non-equilibrium 
in the vicinity of the probe spot, as there is no heat transfer to or from the probe spot (at the 
modulation frequency) to set up ballistic transport and a non-equilibrium among energy carriers.  
This prediction, that suppression effects in TDTR (or FDTR) might only be observable for 
constrained pump spot radii and not probe radii, is in contradiction to the expectations of a linear 
BTE and some literature [79].  This makes it a very intriguing experiment to conduct.  In our set 
up, our pump and probe laser spots are the same size and we lack the ability to easily vary the 
size of one significantly as compared to the other.  Such capabilities, however, are not difficult to 
implement, making this somewhat of a low-hanging fruit.  If proven true, this would also mean 
that the correct way to compare spot size-based MFP spectroscopy data among different 
experiments and research groups, as well as theoretical k accumulation functions, would be 
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based on the pump spot size, not the probe size or some combination of pump and probe spot 
sizes. 

There has been increasing attention regarding understanding thermal interfaces using 
detailed phonon frameworks [73], [141].  In light of the expectation for the existence of a strong 
non-equilibrium among energy carriers in the immediate vicinity of an interface experiencing 
directional heat flow, it would be interesting to investigate whether there exists a correlation 
between the spectral transmissivity of an interface, the breadth of the k accumulation function of 
the material into which heat is flowing, and the magnitude of the thermal boundary conductance 
(TBC).  If the heat receiving material has very long MFPs, particularly for those phonons that 
transmit through the interface most easily, then it means that ballistic transport will persist much 
farther past the interface than for a material with very short MFPs.  This thermalization length 
may offer an additional “ballistic resistance,” and effectively decrease the apparent TBC 
measured by an experiment based on Fourier’s law.  On the other hand, the same may not be true 
for a material in which the phonons that carry most of the heat across the interface have very 
short MFPs. 
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Dissertation	Summary	and	Conclusions	
 

In this thesis, I have presented new theoretical formulations, measurement techniques, 
and experimental data in support of measuring thermal conductivity in challenging regimes.  
Measurements of soft, chemically sensitive, and hydrated samples; single-micron scale 
measurements of samples with nanometer scale features; and the very definition and physical 
origins of thermal conductivity itself are all explored. 

A novel reusable bi-directional 3ω sensor that is capable of accurately measuring the 
thermal conductivity of hydrated biological tissues down to 100 µm thicknesses is presented.  
This device is an electrothermal measurement technique based on simple microfabrication 
processes.  The measurement technique is rigorously validated on control samples of water, ice, 
and agar gel, and then demonstrated on both frozen and non-frozen mouse liver tissues, ranging 
in thickness from 100 µm to 3 mm.  Such a technique is capable of measuring not only biological 
tissues, but any potentially delicate sample ill-suited to direct microfabrication or other more 
invasive or destructive measurement techniques.  A single sensor can be used repeatedly and 
rapidly to measure multiple different samples in succession. 

A simple data analysis scheme for the bi-directional 3ω sensor, the generalized slope 
method, is presented in conjunction with the hardware design in order to make the experiment 
easily accessible and very computationally inexpensive.  Comprehensive numerical as well as 
analytical studies of the full system are used to quantify and bound the error of the generalized 
slope method as well as all experimental parameters.  Extensive error quantification maps and 
guides are presented to aid future researchers in optimally designing sensors and experiments.  
Exact analytical solutions for the full geometry are presented for situations where the generalized 
slope method is insufficient.  This technique holds the promise for fast and easy thermal 
conductivity measurement of biomedically relevant tissues and similarly challenging samples. 

A laser-based variable spot size TDTR technique is presented to measure phonon spectral 
properties of inorganic solids.  Extensive documentation of the system hardware is given, along 
with explanations for the inclusion and selection of each component and how it improves the 
measurement.  A robust method for consistently focusing and measuring the laser spot sizes, 
even in the presence of elliptical distortions and considerable chromatic aberrations, is presented 
and compared to traditional spot size measurement techniques.  This is of particular utility to 
small spot size measurements where uncertainty in the laser spots can be the overwhelming 
dominant source of error in thermal conductivity measurements.  Extensive sensitivity plots for 
all experimental parameters are presented and discussed, and consolidated into “quick reference” 
plots that can aid future researchers in optimal experimental design. 

A careful explanation for the microscopic physical origins of thermal conductivity 
suppression at small length scales is discussed.  A subtle but often confused distinction between 
the reduced thermal conductivity of nanostructured materials compared to an observed apparent 
reduction in thermal conductivity as measured by tiny heaters with characteristic lengths on the 
order of the phonon mean free paths is also discussed, and related back to physically intuitive 
principles. 

Sub-continuum thermal conductivity measurements are performed on sapphire, Si, nano-
grained Si, and SiGe samples.  Results are compared favorably with literature measurements and 
theoretical predictions where available.  Our results show that the thermal conductivity 
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accumulation function of SiGe has a “long tail,” with much of the heat still being carried by 
phonons with mean free paths up to tens of microns even at room temperature.  In contrast, at 
room temperature most of the heat in sapphire, Si, and nano-grained Si is found to be carried by 
phonons with mean free paths of a couple microns or smaller.  Measurements show that 
nanostructuring and alloying scatter phonons so as to redistribute the heat in opposite ways.  
Nanostructuring primarily scatters long mean free path phonons, shifting the heat toward shorter 
mean free paths, while alloying does the opposite and pushes the heat toward the long mean free 
path end of the phonon spectrum.  While both scattering mechanisms reduce thermal 
conductivity of bulk materials, the differences in how they distribute heat throughout the 
spectrum of phonons means SiGe is a worse choice than nano-grained silicon for thermal 
management of nano and microstructures, even when it sometimes has a higher bulk k. 

The results and measurement capabilities of the bi-directional 3ω sensor can directly 
benefit thermal biomedical procedures such as thermal- and cryo-ablation to treat cancer and 
atrial fibrillation, and cryogenic preservation for organ transplants and skin grafts.  The variable 
spot size TDTR results and phonon MFP spectrum measurement capabilities can directly benefit 
the heat dissipation and thermal engineering of microelectronics, batteries, LED lighting, HAMR 
disk drive technology, nanoparticle-based thermal cancer treatments, and advanced 
thermoelectric materials.   
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