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Benchmarking Adversarial Robustness of Compressed Deep Learning Models

Brijesh Vora * 1 Kartik Patwari * 2 Syed Mahbub Hafiz 1 Zubair Shafiq 1 Chen-Nee Chauh 2

Abstract
The increasing size of Deep Neural Networks
(DNNs) poses a pressing need for model compres-
sion, particularly when employed on resource-
constrained devices. Concurrently, the suscep-
tibility of DNNs to adversarial attacks presents
another significant hurdle. Despite substantial
research on both model compression and adver-
sarial robustness, their joint examination remains
underexplored. Our study bridges this gap, seek-
ing to understand the effect of adversarial inputs
crafted for base models on their pruned versions.
To examine this relationship, we have developed
a comprehensive benchmark across diverse ad-
versarial attacks and popular DNN models. We
uniquely focus on models not previously exposed
to adversarial training and apply pruning schemes
optimized for accuracy and performance. Our
findings reveal that while the benefits of prun-
ing – enhanced generalizability, compression, and
faster inference times – are preserved, adversarial
robustness remains comparable to the base model.
This suggests that model compression while of-
fering its unique advantages, does not undermine
adversarial robustness.

1. Introduction
Deep neural networks have continued to exhibit impres-
sive performance in various machine learning applications,
including computer vision, natural language processing,
object detection, and so on. However, the deployment of
these networks on resource-limited devices presents a chal-
lenge due to their substantial memory and computational
requirements (Chen et al., 2020a). A potential solution
to this is neural network compression via pruning (Zhao
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et al., 2019), which aims to decrease size by identifying
and eliminating connections that contribute less to the net-
work’s overall performance – pruning effectively reduces
the number of parameters and computations required dur-
ing inference. This compression technique optimizes the
network’s efficiency by focusing resources on the most criti-
cal connections, thereby enhancing its computational speed
and reducing memory requirements. Beyond these practical
constraints, another critical concern is the risk of adversar-
ial attacks (Chakraborty et al., 2018). These attacks craft
perturbations to input data that – while appearing benign or
imperceptible to humans – can mislead a machine learning
model into making incorrect predictions or classifications.
The potential implications of successful adversarial attacks
are considerable, particularly in critical applications such
as autonomous driving, smart health, and fraud detection
(Eykholt et al., 2018). The increasing reliance on machine
learning models in mission-critical IoT and edge devices fur-
ther underscores the importance of studying the relationship
between model compression and adversarial robustness.

Previous work has largely focused on pruning models
that have already undergone adversarial training and have
demonstrated robustness (Ye et al., 2019; Cheng et al., 2017;
Jordao & Pedrini, 2021). Their primary objective is to in-
vestigate how to compress the model without nullifying
the effects of adversarial training or undermining the meth-
ods that have been implemented to enhance adversarial ro-
bustness. However, there are cases where prior adversarial
training may not be feasible – there is often a large com-
putation cost of robust/adversarial training (Wang et al.,
2020). Furthermore, transferable adversarial samples have
been shown to overcome adversarial training (Tramèr et al.,
2017). Therefore, it becomes important to understand the
impact of adversarial attacks under scnearios where robust-
ness is not already guaranteed. Other works have also shown
the effect pruning and compression can have on improving
model generalization (Jin et al., 2022). Our focus is on
understanding the effects of pruning dense models that have
not been adversarially trained or that have not undergone
any adversarial robustness enhancement.

In this paper, we establish a comprehensive benchmark to
evaluate adversarial robustness in pruned convolution neu-
ral networks (CNNs). Our aim is to provide a detailed
understanding of the effects of existing pruning methods op-
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timized for accuracy on models that are not already offering
adversarial robustness. We consider a range of adversarial
attacks (more details in Section 3.3).

We generate adversarial inputs using multiple attacks on the
full and dense models, hereafter referred to as ‘base’ models.
Subsequently, we evaluate the effectiveness of these adver-
sarial inputs on various pruned versions of the respective
base models. We consider this a realistic threat model, given
that large and densely trained models such as ResNets (He
et al., 2016) are widely and publicly available in terms of
both architecture and weights. These can be utilized by an
attacker as surrogate models for the adversarial example
crafting procedure.

Our results reveal that the pruning process has a negligible
impact on the adversarial accuracy of the models. More
specifically, the adversarial robustness of these models nei-
ther significantly deteriorates nor improves post-pruning
while providing the benefits of pruning – increased infer-
ence speed and better generalizability. We further extend
our investigations to explore the transferability of adversar-
ial examples across different model architectures/families.
In these experiments, adversarial examples are generated
from a base model architecture or family and are then fed to
other base models and their pruned counterparts. These tests
exhibit the same pattern as earlier, reinforcing our findings –
the adversarial impact on pruned models aligns closely with
that of their base models.

2. Background and Related Works
2.1. Adversarial Attacks

Adversarial (evasion) attacks aim to craft input samples
that cause misclassification by models while appearing vi-
sually similar to the original input. Adversarial attacks have
continued to evolve, starting with the Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2014) and advancing to
multi-step iterative methods like Projected Gradient Descent
(PGD) (Madry et al., 2017) and optimization-based attacks
like Carlini Wagner (CW) (Carlini & Wagner, 2017). At-
tacks have been rapidly growing since, as well as reflecting a
dynamic cycle: as attacks grow more sophisticated, defenses
adapt in response, driving swift progress in the field on both
attack and defense fronts. Recent works have introduced
more complex iterative methods and optimization-based at-
tacks (Dong et al., 2018; Croce & Hein, 2020; Xu, 2020;
Wang et al., 2021; Chen et al., 2018; Wong et al., 2019;
Ghiasi et al., 2020). Novel attacks such as adversarial patch
attacks (Liu et al., 2018) and adversarial examples in the
physical world (Dong et al., 2022) have also emerged. Ad-
vancements have also been seen in enhancing attack robust-
ness through adversarial transferability (Guo et al., 2019;
Chen et al., 2020b; Andriushchenko et al., 2020) and utiliza-

tion of Generative Adversarial Networks (GANs) for attack
generation (Xiao et al., 2018; Mao et al., 2020).

2.2. Neural Network Pruning

The goal of network pruning is to eliminate redundant or
unimportant connections and parameters from a neural net-
work while maintaining or improving its performance, with
techniques applied before, after, or even during training.

Post-training pruning techniques remove connections or
filters based on their magnitude or contribution to the output,
applied either once (single-shot) or iteratively (Han et al.,
2016; Liu et al., 2017; He et al., 2017; Yu et al., 2019). One-
shot pruning aims to remove a large portion of the network
in a single step (Molchanov et al., 2017; Liu et al., 2019)
whereas iterative pruning involves pruning a small portion
of the network at a time, then retraining the remaining part
of the network (Tan & Motani, 2020; Chijiwa et al., 2021;
Han et al., 2015).

Pre-training pruning is a technique applied before training
the model where the objective is to initialize a smaller net-
work that can be trained from scratch. The lottery ticket
hypothesis (Frankle & Carbin, 2019a) introduced the con-
cept of “winning tickets” in neural networks, which are
subnetworks that can be trained in isolation to achieve com-
parable performance to the original network. Since then,
various works have built upon this idea (Frankle & Carbin,
2019b; Evci et al., 2022; Frankle et al., 2020)

2.3. Pruning Adversarially Robust Networks

There has been a growing interest in pruning techniques
that sustain the robustness of adversarially trained neural
networks. Ye et al. (Ye et al., 2019) proposed a joint loss
function comprising the compression rate and a robustness
term, which guided the pruning of weights with the lowest
L1 norm. Sehwag et al. (Sehwag et al., 2020) introduced a
strategy that jointly optimizes the network’s accuracy and
adversarial robustness during pruning, achieved by adding
a robustness-encouraging regularization term. Bai et al.
(Bai et al., 2021) developed a Channel-wise Activation Sup-
pressing (CAS) strategy to enhance a network’s adversarial
robustness by suppressing redundant activation based on
their observation of uniform channel activation by adver-
sarial samples. Lim et al. (Lim et al., 2021) presented a
robustness-aware filter pruning algorithm that prunes con-
volution layer filters based on their robustness contribution,
calculated by the network’s output sensitivity to each filter’s
removal. Lastly, Li et al. (Li et al., 2022) proposed a pruning
algorithm focused on neuron instability as an adversarial
perturbation sensitivity metric, removing the most unstable
neurons to maintain robustness.

Investigating the interplay between pruning and adversar-
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Surrogate Base Model
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Base Model Pruned Model

Compare Accuracy Drop

Figure 1. Benchmark pipeline. Adversarial examples generated
by various attacks from (attacker’s) surrogate base models and
evaluated on (victim’s) base and pruned model.

ial robustness is crucial. This exploration extends beyond
adversarially trained base models, which may not always
be feasible or available due to large computation demands
(Zhang et al., 2019; Madry et al., 2017) and difficulty of
mining samples for robust training (Shrivastava et al., 2016).
Hence, we explore how adversarial robustness is affected
while pruning conventionally trained models. The bench-
marks we present are unique and unexplored in the litera-
ture.

3. Methodology
3.1. Threat Model

Our benchmark pipeline, which is indicative of our threat
model, is illustrated in Figure 1.

Attacker’s Goal: In adversarial attacks, the attacker can
have multiple goals, being an untargeted or targeted attack.
In a targeted attack, the attacker manipulates an input to
make the victim model predict a specifically chosen in-
correct class. Conversely, an untargeted adversarial attack
aims to induce any incorrect classification without targeting
a specific wrong class. Similar to the prior recent adver-
sarial robustness benchmark (on vision transformers) by
Mahmood et al. (Mahmood et al., 2021), we consider the
untargeted attack scenario.

Attacker’s Knowledge: We consider a white-box adversary

model, which is often chosen for benchmarking adversarial
attacks (Mahmood et al., 2021; Dong et al., 2020). In the
white-box attack scenario, the adversary typically has full
knowledge of the victim model’s architecture and param-
eters. However, in our relaxed threat model, we assume
the adversary lacks knowledge of the victim’s trained base
model parameters. Instead, the adversary can train a surro-
gate base model on the same dataset to generate adversarial
examples.

Attacker’s Capability: The attacker can manipulate inputs
by adding perturbations (noise), which are small enough to
be imperceptible by human inspection. All attacks we ana-
lyze typically confine adversarial perturbations within the
bounds of the lp norm, which is standard. Details about fur-
ther attack parameters, such as epsilon and iteration values,
are provided under Appendix A.1.

3.2. Base Models

For our base models, we choose well-known and read-
ily available models, including ResNet50 (RN50) (He
et al., 2016), DenseNet121 (DN121) (Huang et al., 2017),
VGG19 (VGG19) (Simonyan & Zisserman, 2014), and
MobileNetV1 (NM) (Howard et al., 2017). While the
VGGs, ResNets, and DenseNets models are large with mil-
lions of parameters, MobileNetV1 has been designed to be
lightweight and less dense, providing an interesting point
of comparison. Our choice of CNNs from the time and
resources in our arsenal. Also, it is worth noting that the
time it takes to generate adversarial examples is a few hours
to days(specification mentioned in Section 4.1. Therefore,
we test the adversarial robustness of the pruned versions
of these base models under the assumption that the adver-
sary has access to the base model to craft inputs. We train
these models on two standard datasets – CIFAR-10 and
CIFAR-100 (Krizhevsky et al., 2009).

3.3. Adversarial Attacks

We consider a subset of popular adversarial attacks that have
previously been used to benchmark adversarial robustness
(Mahmood et al., 2021; Dong et al., 2020). Hence, our
benchmark includes FGSM (Goodfellow et al., 2014), Deep-
Fool (DF) (Moosavi-Dezfooli et al., 2016), PGD (Madry
et al., 2017), Basic Iterative Method (BIM) (Kurakin et al.,
2018), Auto Projected Gradient Descent (APGD) (Croce &
Hein, 2020), and CW (Carlini & Wagner, 2017). We also in-
clude Universal Perturbation (UP) attack (Moosavi-Dezfooli
et al., 2017), which is a popular attack not considered in
the two prior benchmarks. We utilize the Adversarial Ro-
bustness Toolbox (ART) library to run the attacks and keep
default parameters for each attack provided by ART (see
Appendix A.1 for details).

We generate a unique adversarial test set for each attack
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using base models – that is, we transform the benign CIFAR-
10/CIFAR-100 test set into adversarial samples for every
distinct attack. We evaluate robustness by comparing the
model’s accuracy on the benign test set and each adversarial
test set, observing the change in performance.

Table 1. Base & pruned model accuracy on benign CIFAR-10 test
set. The pruning target ranges from 10% - 50% with L1, L2,
and Geometric Median (GM) criterion. Green marked numbers
represent the highest achieved accuracy for the specified base
model across all pruning specifications, while Red represents the
lowest. Here, max δ = max pruned accuracy − base accuracy and
min δ = min pruned accuracy − base accuracy.

Pruning Pruning Benign Test Accuracy
Type % MN DN121 RN50 VGG19

Base 0% 79.2 83.3 78.1 79.6

L1 10% 84.4 87 82.1 82.2
L1 20% 82.7 85.5 82.2 81.9
L1 30% 82.7 84.6 78.9 81.7
L1 40% 81.4 84.3 80.8 81.6
L1 50% 80.2 82 78.1 79.7

L2 10% 83.7 86.9 80.6 82.1
L2 20% 83.5 86.2 79 81.6
L2 30% 81.8 86.7 82 81.3
L2 40% 81.1 85.2 74.9 81.1
L2 50% 80.0 81.3 70.4 82.1

GM 10% 83.7 86.6 78.6 81.6
GM 20% 82.5 86.2 81.5 81.5
GM 30% 81.4 85.8 83.1 82.5
GM 40% 81.2 84.4 79.2 80.3
GM 50% 80.3 80.1 78.6 80.1

max δ 5.2 3.7 5 2.9
min δ 0.8 -3.2 -7.7 0.1

3.4. Pruning with NNCF

Our study concentrates on the popular and effective scheme
of Iterative Magnitude Pruning (IMP) (Zullich et al., 2021).
In IMP, weights beneath a specified magnitude threshold,
determined by a pruning criterion, are pruned. This thresh-
old can be set by a predefined sparsity level or a specific
percentage of weights with the lowest magnitudes. We use
the Neural Network Compression Framework (NNCF) li-
brary (Kozlov et al., 2021) to prune base models, employing
its filter pruning algorithm. This algorithm iteratively iden-
tifies and removes output filters in convolutional layers with
the lowest importance, based on filter importance criteria of
L1, L2, and geometric median. Pruning targets range from
10% to 50% in our study (in 10% increments), meaning
up to half of the least important filters are eliminated from
the network after the pruning process. Each pruning step is

followed by a fine-tuning phase to optimize performance.
Details about parameters for fine-tuning can be found in
Appendix A.2.

Table 2. Base and pruned model on CIFAR-10. Adversarial Test
Accuracies for the base model and the L2 filter-pruned model
with 10-50% pruning are shown. Examples are generated from the
base model and fed to the base and pruned models. Bold numbers
represent positive maximum δ and the respective maximum value
in the pruned model.

Attack Base L2-Pruned max
10% 20% 30% 40% 50% δ

MobileNet

CW 67.5 65.8 64.9 65.2 63.6 65.2 -1.7
DF 40.7 43 43 42.3 41.8 41.8 2.3
FGSM 12 12.4 12.3 11.3 12.8 11.1 0.8
BiM 5.1 4.1 3.5 3.8 3.9 5.6 0.5
PGD 7.4 4.1 4.6 4.2 4.7 6.7 -0.7
APGD 8.5 3.7 4.1 4.4 5.8 8 -0.5
UP 58.8 64.9 63 60.1 60.3 59 6.1

DenseNet121

CW 72.1 70 68.1 69.9 69.1 66.9 -2.1
DF 38.7 38.1 38.2 38.8 37.8 35.6 0.1
FGSM 11.3 11.6 12 10.9 10.6 10.3 0.7
BiM 8 6.5 6.1 6.7 6.5 6.7 -1.3
PGD 7.1 6.7 6.8 6.8 6.7 7.1 0
APGD 4.5 3.9 4 3.8 3.6 3.8 -0.5
UP 10.2 10 10.6 11.7 10.3 10 1.5

ResNet50

CW 68.3 71.4 69.4 72.7 65 60.4 4.4
DF 37.1 39.7 39.7 40.4 35.9 33.8 3.3
FGSM 15.4 11.9 13.6 13.6 13.2 13 -1.8
BiM 7 7.2 7.6 7.4 7.4 6.9 0.6
PGD 7.8 7.5 7.5 7.5 7.1 8.3 0.5
APGD 4.9 3.9 4.2 4.1 4.4 6.5 1.6
UP 15.6 14.1 11.8 14.9 11.4 11 -0.7

VGG19

CW 67.2 70.2 69.6 70 68.7 70.1 3
DF 38.9 39 38.8 39 37.1 38.1 0.1
FGSM 17.8 16.9 17.6 17.4 18.1 16.9 0.3
BiM 9.2 9.2 9.2 9.2 9.1 9.3 0.1
PGD 7.7 7.5 7.8 7.3 8.3 7.6 0.6
APGD 4.4 3.8 3.8 4 4 4.1 -0.3
UP 49.4 48.7 48.9 50.6 47.3 48.8 1.2

4. Results
4.1. Filter Pruning

Table 1 shows the benign test accuracies with the base model
and pruned models. We observe that the benign test accuracy
for all the model families initially increases (with pruning
10%-40%), offering better generalizability and model perfor-
mance while reducing the number of parameters. We notice
this improvement is in part due to the fine-tuned training
after every pruning step. At about 50% pruning rate, we see
that accuracy is generally similar to the original base model.
Notably, there is one outlier in this scenario, ResNet50 –
with L2 pruning up to 50%, which has a 7.7% drop-off.
Overall, we find that NNCF’s iterative magnitude filter
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Table 3. Inference time (ms) of base and L2-pruned models on
CIFAR-10. Inference time is calculated averaged over 100 runs
with batch size = 64.

Model Inference Time (ms)
Base 10% 30% 50%

VGG19 113.80 ± 7.81 104.95 ± 8.81 101.13 ± 6.12 103.65 ± 5.56
RN50 95.07 ± 4.82 88.35 ± 4.29 89.40 ± 5.71 81.41 ± 3.82
MN 23.48 ± 2.46 20.86 ± 2.08 20.39 ± 1.41 21.46 ± 1.97
DN121 71.13 ± 5.27 65.10 ± 3.80 61.09 ± 4.17 60.55 ± 4.05

pruning results in compressed models with fewer param-
eters and better generalizability, and fine-tuning helps
achieve close to the original base model performance,
if not better. Benchmarks on CIFAR-100 – presented in
Appendix A.4 – demonstrate similar trends.

Table 3 shows the inference time of base and various L2-
pruned models. The inference results were generated on a
CPU (AMD EPYC 7302 16-Core Processor @ 1.49GHz,
256GB of RAM). We aimed to mimic the constraints of real-
world deployment scenarios where high-end server-class
GPUs may not be available and their inference time per-
formance does not truly reflect the operational conditions
of constrained devices. Both the base and pruned models,
initially in the .h5 format, were converted to the OpenVINO
format (NNCF’s preferred format) for the purpose of infer-
encing. We ran inference 100 times using a batch size of 64
and reported both the mean and standard deviation of the
results. As expected, we find that as the models are pruned
from 0% to 50%, the inference time decreases.

Table 4 shows various sizes of the models after pruning.
The pruned model sizes are the same for 10% to 50% for
NNCF filter pruning (when measuring .h5 file size). From
both these tables, we conclude that the size of the models
reduces by around 66% and gets a boost in the inference of
about 8-10%. Thus, we see that filter pruning also helps
reduce the model size and inference time.

Table 4. Base and pruned model sizes (MB) on CIFAR-10.

Model Size (MB)
Type MN DN121 RN50 VGG19

Base 38 82 271 230
Pruned 13.2 29.4 95 77

4.2. Filter Pruning & Adversarial Robustness

Our primary goal is to understand the effect of iterative
filter pruning on adversarial robustness. Table 2 presents
the accuracy achieved on the CIFAR-10 adversarial test sets
crafted on the base models, comparing it to the performance
when the same test set is fed to their respective L2 pruned

models. We use the weights of the base models to fine-
tune the pruned model after removing 10% of the filters.
CIFAR-100 results are shown in Appendix A.4.

Table 5. Base and Pruned model on CIFAR-10. Adversarial Test
Accuracy and GM filter pruned model with 10- 50% pruning
and their Adversarial Test Accuracy are shown. Examples are
generated from the base model and fed to the base and pruned
models.

Attack Base GM Pruned max
10% 20% 30% 40% 50% δ

MobileNet

CW 67.5 64.6 66.5 64.7 64.3 67.5 0
DF 40.7 44 42.4 40.1 42.2 41.8 3.3
FGSM 12 21.8 12.5 13.6 11.9 12.1 9.8
BiM 5.1 8.4 3.5 3.8 3.8 4.4 3.3
PGD 7.4 18.3 4.6 4.6 5 5.8 10.9
APGD 8.5 19.3 4.9 5 5.1 5.6 10.8
UP 58.8 66.9 63 60.4 57.8 57 8.1

DenseNet121

CW 72.1 58.5 69.8 69.5 68.3 65.1 -2.3
DF 38.7 35.7 37.9 36.6 35.7 36 -0.8
FGSM 11.3 24.6 11.6 11.8 11.3 9.5 13.3
BiM 8 8.5 6.1 8 6.4 6.7 0.5
PGD 7.1 18.4 6.8 6.7 6.7 6.6 11.3
APGD 4.5 18.6 3.9 3.9 3.7 3.7 14.1
UP 10.2 16.3 10.7 10.4 9.7 10.1 6.1

ResNet50

CW 68.3 67.4 71.5 73.6 68.9 67.7 5.3
DF 37.1 34.8 37.5 40.6 38.5 36.7 3.5
FGSM 15.4 13.7 11.5 14.3 12.9 11.4 -1.1
BiM 7 7.2 7.3 7.3 7.3 7.2 0.3
PGD 7.8 7.2 7.4 7.5 7.3 7.5 -0.3
APGD 4.9 4 4 4.4 4.4 4.4 -0.5
UP 15.6 11.7 11.5 10.8 11.9 11.3 -3.7

VGG19

CW 67.2 70.9 69.6 70.4 69.4 66.7 3.7
DF 38.9 38.7 39 38.9 36.3 37 0.1
FGSM 17.8 15.6 18.3 18.4 17.2 17 0.6
BiM 9.2 9.2 9.3 9.3 9.2 9.2 0.1
PGD 7.7 7.7 7.8 7.5 8.4 8.6 0.9
APGD 4.4 3.9 3.7 3.8 3.8 4.2 -0.2
UP 49.4 49.7 51.3 50.1 45.3 48.3 1.9

Our findings indicate a minimal impact on adversarial ac-
curacy stemming from the pruning process, thus suggesting
a relative consistency in the adversarial robustness of the
models. Specifically, our experimental results highlight that
the process of pruning neither significantly degrades nor en-
hances the robustness of the models when exposed to adver-
sarial attacks. Primarily the maximum change in accuracy
(max δ) is between ±1%, with some attacks being slightly
higher. The most significant change occurs using UP attack
on MobileNet, where the 10% pruned MobileNet’s accuracy
on UP adversarial test set increases from its base model by
about 6%. Our findings underline an intriguing invariance
in adversarial robustness when examples are generated from
a base model and fed into its pruned models with no prior
adversarial robustness measures taken. The results for GM
pruned models are shown in table 5 and L1 in Appendix
A.3. While the same trend applies, we notice for GM pruned
models at 10% we see a slight boost in accuracy (3%-10%
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increase) for MobileNet and DenseNet121. However, this
is not a consistent trend across other models, and as the
pruning target increases up to 50%. The NNCF-based prun-
ing models initially removes the 10% unimportant filters
and then for a target pruning of 20-50% it iteratively fine
tunes and removes the filters and weights, which leads to
the PGD and APGD attack to show significant accuracy
change. Furthermore, the accuracy of the CW is >= 60%
because of the adversarial examples are generated using the
surrogate base model using a similar training scheme. Over-
all, our results show that pruning base models result in
compressed models that run faster while maintaining
comparable performance and adversarial robustness.

Table 6. Transferability results on CIFAR-10. The adversarial test
sets are generated from (surrogate) ResNet50 and fed to the victim
models with different architectures. Accuracies shown are for
victim models. Bold numbers represent positive maximum δ and
the respective maximum value in the pruned model.

Pruning % Surrogate Model: ResNet50
L2 APGD BiM CW DF FGSM PGD UP

MobileNet

0% 13.5 9.3 78.5 41 12.6 12.5 11.7
10% 9.1 9.1 83 45 13 9 11.3
20% 9.2 9.2 82.3 44 12.5 9.6 11.2
30% 8.7 9 81.6 43 12.8 8.5 11.2
40% 11.1 9.7 79.2 41.4 12.1 10.3 12
50% 10.8 9.9 78.1 41 10.9 9.8 11.4
max δ -2.4 0.6 4.5 4 0.4 -2.2 0.3

DenseNet121

0% 10.4 11.7 83 43.3 14.3 11.5 11.6
10% 6.5 8.7 85.7 45.3 12.4 8.2 10
20% 6.8 7.4 84.6 44.3 12.4 8.1 10.1
30% 6.2 8.2 85.3 44.4 12.2 8.6 9.9
40% 5.8 7.4 84.8 43.9 12.4 8.6 11
50% 6.1 7.2 80.5 39.6 12.1 9.7 10
max δ -3.6 -3 2.7 2 -1.9 -1.8 -0.6

VGG19

0% 7.9 8.5 78.5 41.3 17.2 8.6 12.4
10% 9.1 8.5 81.5 43.5 15.4 8.2 10.9
20% 9.5 7.6 80.5 43.7 15.5 8.5 12
30% 7.3 7.6 80.2 41.1 15.4 8.2 12.6
40% 8.6 8.1 80.5 43.5 15.6 8.5 14.5
50% 7.1 8.2 81.1 44.6 14.4 8 10.1
max δ 1.6 0 3 3.3 -1.6 -0.1 2.1

4.3. Adversarial Transferability

This study explores the effect of feeding adversarial ex-
amples generated from one model architecture family into
different model families. This departs from the previous
sections, where adversarial examples were tested within
the same model family. Here, we consider adversarial test
sets or examples created from the surrogate base model –
ResNet50, and these are now cross fed into all other base
models and their respective pruned models. The focus of
this investigation is to understand the phenomena and im-
plications of adversarial transferability (Guo et al., 2019;

Chen et al., 2020b; Andriushchenko et al., 2020) across
different pruned architectures. Table 6 demonstrates our
findings when ResNet50 is used as the surrogate base model
for adversarial example generation. Results for the remain-
ing models as surrogate models demonstrate similar trends
(see Appendix A.3.1). We observe that the pruned models
do not show any significant variations in their adversarial
transferability compared to their base models. This corrob-
orates our primary findings from Section 4.2. Even in a
cross-model testing environment, the pruned models ex-
hibit adversarial robustness comparable to their original
base models.

5. Conclusion and Future Work
In conclusion, this paper presents a rigorous evaluation of
the impact of filter pruning on the adversarial robustness of
neural network models. We demonstrate, using the CIFAR-
10 and CIFAR-100 datasets, that despite compressing the
model by up to 50% through filter pruning, the adversarial
robustness remains relatively unaffected as compared to the
base models. Our results offer promising implications, indi-
cating that while practitioners can enjoy the benefits of filter
pruning – such as accelerated inference time, curtailment
in over-parameterization, and enhanced generalization ca-
pabilities – they do not have to compromise on adversarial
resilience. Finally, our study supports the application of
filter pruning, showcasing no detrimental effects on adver-
sarial robustness with respect to the original base model.

One crucial area for future investigation involves the explo-
ration of alternative compression techniques that go beyond
the scope of NNCF-based pruning. It is essential to expand
the repertoire of compression methods to find innovative
approaches that can further enhance the efficiency of neural
network models. By venturing into unexplored territories,
researchers can discover novel ways to compress models
effectively, reducing their size and computational require-
ments while maintaining high performance, including com-
parable robustness against evasion attacks. Furthermore, we
encourage future research to continue exploring the inter-
section of model compression and adversarial robustness,
contributing further to the creation of efficient, secure, and
robust models ready for real-world deployment.
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A. Appendix
A.1. Adversarial Attack Details

Table 7. Attack details
Attack Epsilon Epsilon Step Max iteration

CW - 0.01 10
DF 1e-6 - 5
FGSM 0.2 100
BiM 1 0.1 100
PGD 0.3 0.1 100
APGD 0.3 0.1 100
UP 10 - 1

A.2. Neural Network Pruning Details

The batch size is 128 and 10 epochs for (base) training. The models have been trained on CIFAR-10/CIFAR-100 trainset.
We choose the optimizer as SGD with a learning rate of 0.1, gamma as 0.1 and steps as [10, 20, 30]. The momentum of 0.9
and nesterov is set to true. The schedule step is multistep. For compression we use algorithm as filter pruning, and schedule
as exponential. The pruning init is set to 0.1 for all the L1 and L2 and GM but the pruning target varies from 0.1 to 0.5 [10 -
50%]. The filter importance is [L1 and L2 and GM].

A.3. CIFAR-10 Results

Table 8. Base and Pruned model on CIFAR-10. Adversarial Test Accuracy and L1 filter pruned model with 10- 50% pruning and their
Adversarial Test Accuracy are shown. Examples are generated from the base model and fed to the base and pruned models.

Attack Base L1 Pruned max
10% 20% 30% 40% 50% δ

MobileNet

CW 67.5 65.6 65.8 66.2 66.2 65.3 -1.3
DF 40.7 42.7 43.3 41.2 39.4 40.1 2.6
FGSM 12 12.3 12.5 13.7 13.1 12.8 1.7
BiM 5.1 4.6 4.1 3.8 3.1 3.1 -0.5
PGD 7.4 4.8 4.5 4.7 4.6 4.4 -2.6
APGD 8.5 3.8 4 4.4 4.6 4.6 -3.9
UP 58.8 65 60.4 61.2 56.7 56.6 6.2

DenseNet121

CW 72.1 70.3 69.1 68.1 67.9 69.7 -1.8
DF 38.7 38 36.2 33.3 34.9 35.7 -0.7
FGSM 11.3 11.9 12 12.7 11.4 9.8 1.4
BiM 8 7.7 8.4 6.2 6.4 7.2 0.4
PGD 7.1 6.7 7.1 6.8 6.8 8 0.9
APGD 4.5 4 4 3.9 3.7 3.7 -0.5
UP 10.2 10 9.8 10.2 10 10 0

ResNet50

CW 68.3 73.1 72.4 69.2 71.2 68.1 4.8
DF 37.1 39.8 40.2 39.3 38.7 37.8 3.1
FGSM 15.4 12.4 12.2 13.1 13.1 11.9 -2.3
BiM 7 7.3 7.6 7.4 7.7 7.3 0.7
PGD 7.8 7.6 7.5 7.5 7.2 7.5 -0.2
APGD 4.9 4.1 4 3.8 3.7 4.7 -0.2
UP 15.6 11.7 15.2 11.8 11.9 17.3 1.7

VGG19

CW 67.2 70.4 70.4 69.2 69.6 67.6 3.2
DF 38.9 38.8 39.2 38.9 37.2 38.8 0.3
FGSM 17.8 16.5 18 17.8 18.8 15.3 1
BiM 9.2 9.2 9.2 9.3 9.1 9.4 0.2
PGD 7.7 7.6 7.9 7.8 8.1 7.7 0.4
APGD 4.4 4.1 4 4.5 4.3 4.4 0.1
UP 49.4 49.9 48.1 48.3 47.6 46.6 0.5
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A.3.1. ADVERSARIAL TRANSFERABILITY

Table 9. Transferability results on CIFAR-10. The adversarial test sets generated from (surrogate) DenseNet121 and fed to the victim
models with different architectures. Accuracies shown are for victim models.

Pruning % Surrogate Model: DenseNet121
L2 APGD BiM CW DF FGSM PGD UP

MobileNet

0% 7.1 8.2 78.2 39.2 14 9.6 12.6
10% 4.5 6.8 81.8 42.4 11.7 8.9 11.3
20% 3.8 7 81.5 41.4 13.5 8.9 11.2
30% 4.9 7.8 80.2 39.3 12.2 9.4 11.2
40% 5.5 9.2 80 39 12.4 9.6 11.2
50% 6 9.7 77.8 37 12.1 11.2 11.3

ResNet50

0% 8.6 9.4 76.2 36.9 18.3 10.6 14.2
10% 3.8 6.6 78.8 40.2 17.8 8.5 13.2
20% 3.7 9.2 77.9 37.9 18.7 9.2 11.6
30% 4.1 5.8 80.8 40.4 17.2 7.8 13.5
40% 5.8 8.6 73.6 38 19.1 12.5 9
50% 7.9 7.4 68.7 34.4 17 11.7 10.6

VGG19

0% 4.5 8.8 78.2 38.9 18.7 9.1 10.9
10% 4.1 8.4 80.5 41.6 18.2 9.3 10.7
20% 4.1 8.2 80.2 40.5 17.9 10.4 11.2
30% 4.4 8.5 80.5 40.7 15.8 10.5 12.2
40% 5.1 8.8 79.5 39.8 17.5 10.8 12.5
50% 4.2 7.5 81.2 41.2 16.7 3.8 8.4

Table 10. Transferability results on CIFAR-10. The adversarial test sets generated from (surrogate) MobileNet and fed to the victim
models with different architectures. Accuracies shown are for victim models.

Pruning % Surrogate Model: MobileNet
L2 APGD BiM CW DF FGSM PGD UP

DenseNet121

0% 13.3 8.6 82.3 46.5 16.1 11.5 65.2
10% 9.8 9.4 85.5 45 14.5 8.1 70.3
20% 10.5 8.5 84.7 44.1 14.5 8.9 70.2
30% 10.4 9.8 85.6 45.1 13.2 8.5 69.5
40% 10.9 6.1 84.2 44.6 13.4 8.8 68.7
50% 9.7 8.4 79.7 40.2 13.8 8.1 67.9

ResNet50

0% 18.4 9.5 77 41.1 19.7 15.1 62.5
10% 16.9 8 80.3 45.8 19.4 15 67.3
20% 15 7.9 77.7 45.5 19.7 13.6 65.3
30% 14.8 6.8 81.4 45.2 20.1 13.3 66.5
40% 16 5.8 74.2 41 21.5 14.7 61.7
50% 15.5 9.5 69.6 39.8 19.5 15.7 56.8

VGG19

0% 16.3 5.4 77.7 42.2 18.6 12.9 67.7
10% 14.6 5.9 81.1 44.6 16.6 9.2 68.7
20% 17.2 5.5 80.4 44.7 16.5 11 69.3
30% 15.6 5.6 80.4 43.3 16.8 10.2 69.3
40% 14.2 6 80.3 43.6 16.6 8.8 67.1
50% 13.7 6 80.8 43.9 15.1 10.3 68



A Benchmark for Adversarial Robustness of Pruned DNN Models

Table 11. Transferability results on CIFAR-10. The adversarial test sets generated from (surrogate) VGG19 and fed to the victim models
with different architectures. Accuracies shown are for victim models.

Pruning % Surrogate Model: VGG19
L2 APGD BiM CW DF FGSM PGD UP

MobileNet

0% 12.9 11.3 74.5 49.8 15.9 15.3 49.2
10% 11.5 10.9 82.1 53.5 17.4 10.6 53.4
20% 10.5 12.4 81.6 51.4 16.8 9.7 52.5
30% 11.3 12.1 80.9 50.4 17.7 12 51.9
40% 11.5 12.2 78.6 49.4 16.5 10.5 48.5
50% 12.5 13.1 77.5 49.2 15 11.7 47.9

DenseNet121

0% 14.7 13.1 81.1 53.6 16.5 15.4 52.8
10% 9.5 9.9 85.3 54.3 19.4 10.7 60.6
20% 9.9 10.2 84.3 54.3 19.2 11.4 61.7
30% 10.3 12.2 84.7 51.4 17.4 11.5 60
40% 12 13.2 83.8 52.4 16.7 12.2 61
50% 11.4 12 79.1 48 16 12.9 56.4

ResNet50

0% 17.1 12 77.1 49.2 20.8 17.2 53.8
10% 14.6 10.7 79.3 51.8 21.5 11.5 59.7
20% 13.7 12.3 77.8 49.3 21.5 12.8 59.7
30% 10 82.2 82.2 56.2 24.2 12.5 59.9
40% 14.4 10.5 74.1 43.6 24.1 11.1 54.2
50% 16.5 9.4 68.9 41.9 23.7 16 50.7

Table 12. Inference time (ms) of base and L2 pruned models on CIFAR-10. Inference time calculated averaged over 100 runs with batch
size = 32

Model Inference Time(ms)
Base 10% 30% 50%

VGG19 102.54 ± 8.35 91.30 ± 4.96 94.23 ± 5.25 93.21 ± 5.49
RN50 93.92 ± 5.50 93.82 ± 4.48 90.42 ± 5.17 87.93 ± 3.63
MN 20.43 ± 1.61 19.41 ± 2.09 19.65 ± 1.98 19.60 ± 1.80
DN121 63.77 ± 5.67 59.39 ± 3.64 59.23 ± 3.88 57.26 ± 4.10

A.4. CIFAR-100 Results

Since we are NNCF-based pruning the models for which we initially remove the 10% unimportant filters and then for a
target pruning of 20-50% it iteratively fine tunes and removes the filters and weights which are unimportant to reach target
pruning, and for 10% of pruning target it just fine-tunes the model, so that leads to the DF attack as shown in table 14, 15,
16, to show significant accuracy change.
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Table 13. Base & pruned model accuracy on benign CIFAR-100 test set. The pruning target ranges from 10% - 50% with L1, L2, and
Geometric Median (GM) pruning criterion.

Pruning Pruning Benign Test Accuracy
Type % MN DN121 RN50

Base 0% 50.33 49.97 43.3

L1 10% 57.35 62.11 34.22
L1 20% 55.79 60.48 46.34
L1 30% 54.58 58.09 50.68
L1 40% 53.05 57.04 50.54
L1 50% 51.04 53.63 51.3

L2 10% 57.24 62.07 39.32
L2 20% 55.41 61.09 43.49
L2 30% 54.42 59.66 39.83
L2 40% 53.01 58.27 44.03
L2 50% 51.4 53.94 45.97

GM 10% 56.95 62.17 41.59
GM 20% 55.22 60.9 44.56
GM 30% 54.51 59.25 46
GM 40% 52.97 58.05 47.38
GM 50% 51.44 54.57 42.6

Max Delta 7.02 12.2 8
Min Delta 0.71 3.66 -9.08

Table 14. Base and Pruned model on CIFAR-100. Adversarial Test Accuracy and L2 filter pruned model with 10- 50% pruning and
their Adversarial Test Accuracy are shown. Examples are generated from the base model and fed to the base and pruned models.

Attack Base L2 Pruned max
10% 20% 30% 40% 50% δ

MobileNet

DF 20.6 35.07 34.13 33.92 33.25 32.99 14.47
FGSM 7.9 2.29 2.45 2.19 2.6 2.49 -5.3
BiM 1.5 0.86 0.84 0.77 0.64 0.66 -0.64
PGD 7.7 0.95 0.95 0.94 1.21 1.29 -6.41
APGD 8.6 0.79 0.86 0.77 1.19 1.07 -7.41
UP 25.5 39.62 38.96 36.66 35.18 33.67 14.12

DenseNet121

DF 13.49 35.76 35.1 34.18 33.64 31.27 22.27
FGSM 1.45 1.61 1.98 1.54 1.81 1.2 0.53
BiM 0.92 0.9 1.01 1.23 0.82 0.82 0.31
PGD 3.22 5.95 6.1 5.16 5.85 4.07 2.88
APGD 1.03 1 1 1.05 0.96 1.11 0.08
UP 3.75 6.59 6.5 5.6 6.94 4.21 3.19

ResNet50

DF 22.1 29.55 31.59 29.2 31.24 32.94 10.84
FGSM 13.2 4.85 2.43 2.94 1.81 2.52 -8.35
BiM 1.7 0.78 0.79 0.75 0.9 0.76 -0.8
PGD 14.7 14.72 7.99 8.41 6.08 7 0.02
APGD 11.7 3.56 1.31 1.42 1.21 1.31 -8.14
UP 26.5 20.93 16.65 13.98 11.84 13.03 -5.57
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Table 15. Base and Pruned model on CIFAR-100. Adversarial Test Accuracy and L1 filter pruned model with 10- 50% pruning and
their Adversarial Test Accuracy are shown. Examples are generated from the base model and fed to the base and pruned models.

Attack Base L1 Pruned max
10% 20% 30% 40% 50% δ

MobileNet

DF 20.6 35.2 34.14 34.07 32.89 32.37 14.6
FGSM 7.9 2.11 2.3 2.37 2.05 2.23 -5.53
BiM 1.5 0.86 0.81 0.74 0.58 0.7 -0.64
PGD 7.7 0.74 0.76 1.07 0.99 1.22 -6.48
APGD 8.6 0.83 0.81 0.99 0.99 1.07 -7.53
UP 25.5 39.46 37.55 37 35.91 34.64 13.96

DenseNet121

DF 13.49 35.97 34.75 33.4 33.3 30.6 22.48
FGSM 1.45 1.56 1.87 1.82 1.69 1.11 0.42
BiM 0.92 1.25 0.97 0.99 1.03 1.06 0.33
PGD 3.22 5.62 5.91 5.2 4.98 3.75 2.69
APGD 1.03 1.07 1.13 1.2 1 0.95 0.17
UP 3.75 5.67 5.26 5.61 5.83 3.04 2.08

ResNet50

DF 22.1 25.66 33.56 36.8 36.77 37.19 15.09
FGSM 13.2 4.51 3.24 1.64 2.46 2.52 -8.69
BiM 1.7 0.63 0.8 0.82 0.77 0.71 -0.88
PGD 14.7 14.17 8.75 7.23 7.62 7.39 -0.53
APGD 11.7 3.71 1.21 1.26 1.24 1.09 -7.99
UP 26.5 19.9 15.66 13.16 14.23 15.02 -6.6

Table 16. Base and Pruned model on CIFAR-100. Adversarial Test Accuracy and GM filter pruned model with 10- 50% pruning and
their Adversarial Test Accuracy are shown. Examples are generated from the base model and fed to the base and pruned models.

Attack Base GM Pruned max
10% 20% 30% 40% 50% δ

MobileNet

DF 20.6 34.83 33.89 33.93 33.74 33.45 14.23
FGSM 7.9 2.27 1.94 2.43 2.2 2.39 -5.47
BiM 1.5 0.83 0.84 0.72 0.67 0.68 -0.66
PGD 7.7 0.87 0.88 0.99 1.12 1.2 -6.5
APGD 8.6 0.89 0.81 1.09 1.29 1.1 -7.31
UP 25.5 39.72 37.72 36.62 34.61 34.15 14.22

DenseNet121

DF 13.49 35.89 34.59 34.01 33.61 32.05 22.4
FGSM 1.45 1.65 1.8 1.61 1.4 1.51 0.35
BiM 0.92 1.27 0.94 1.26 1.24 0.82 0.35
PGD 3.22 6.03 5.66 4.69 5.62 5.33 2.81
APGD 1.03 1.06 0.97 0.88 1.16 1.31 0.28
UP 3.75 6.56 6.11 4.65 6.81 6.27 3.06

ResNet50

DF 22.1 30.69 31.42 34.09 34.5 30.29 12.4
FGSM 13.2 3.3 2.04 3.95 3.29 2.62 -9.25
BiM 1.7 1.03 0.88 0.91 0.83 0.75 -0.67
PGD 14.7 10.18 6.3 12.05 9.15 7.6 -2.65
APGD 11.7 1.93 1.08 1.88 1.17 1.28 -9.77
UP 26.5 21.67 11.35 25.03 17.9 15.67 -1.47

Table 17. CIFAR-100 -Base and Pruned Model sizes.
MODEL SIZE (MB)

BASE PRUNED %REDUCTION

RESNET50 273 92 66.30
MOBILENET 39 13 66.67
DENSENET121 84 29 65.47




