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Chapter 1: Introduction 

 

Multi-agent systems is a very prominent subject of research that is heavily applied in 

modern fields of study such as transportation, communication, robotics, military technology, 

energy, space, and many other. Achieving certain complex tasks can be done easily and 

efficiently with the use of multiple agents. For example, in a domestic domain, multiple vacuum 

cleaner robots can efficiently clean an entire house by communicating through some form of 

consensus. This task would be done much faster than a single robot. Consensus is a very strong 

method to achieve objectives through agreement amongst the agents. An example for an objective 

would be to rendezvous between all agents at a certain location – an aspect this project follows. 

This paper presents the problem of finding the optimal rendezvous point that minimizes 

the sum of squared distances to it from two or more preset convex regions (circles or ellipses) 

using a set of mobile robots. Each robot only has information of its own region, its own position, 

its neighbor(s), and their position(s). We employ the distributed shortest-distance algorithm 

presented in [1] that minimizes one’s distance to its region while moving towards the direction of 

its neighbor(s). This algorithm is implemented in an infrastructure built using Advanced Robot 

Interface for Application (ARIA), which provides various tools to communicate and network in 

C++. This framework is used to program a set of commercially available robots called iRobot 

Create. Each robot is equipped with a Bluetooth module to send encoder data and receive control 

commands to and from a central computer. A downward-looking web camera is affixed to the 

ceiling to emulate proprioceptive and exteroceptive sensor data for each robot. The computer, 

using the camera, runs ARToolkit to detect the pose of unique markers mounted on each robot.  

The control data is calculated for each robot using self and neighbor position data and is sent back 
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to each robot from the central computer. We further improve the algorithm by introducing 

potential functions in the control law to enable collision avoidance among robots.  

 

1.1 Literature Review 

There have been many areas of research involving different algorithms of consensus. 

Furthermore, there have been many experimental validations proving these theorems to correctly 

work on multi-robot platforms. Once a theory has been implemented into a real-world physical 

system, then only can its true effectiveness can be seen and measured. [3] demonstrates the use of 

distributed containment control with two cases in mind: one with leaders with the same velocity 

and one with leaders with different velocities. In the results shown, the trajectories of the multi-

agent system are contained within a certain region. In [4], experimental validation is performed 

on several consensus algorithms including rendezvous and axial alignment. The experiments 

performed prove the theoretical results valid and demonstrate the effectiveness and robustness of 

the consensus algorithms on a real-world system. The research done in [5] portrays consensus-

tracking algorithms on directed network topologies. These topologies can be dynamic throughout 

the experiment; meaning leaders of the group can change. The algorithm has been tested through 

experiments confirming its validation. Along with consensus algorithms, there are other 

experiments that have been demonstrated using physical experiments. To demonstrate dynamic 

coordination between robots, [6] uses experiments involving passing two balls between two 

robots. This shows how robust the method of self-organized timing selection can be. The paper 

proposed a hierarchical architecture for rhythmic coordination and movements to perform 

juggling-like tasks. Another direction that is taken in distributed control is shown in [7]. The 

technique, SWARMORPH, is a distributed morphology generation mechanism demonstrated on 
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autonomous self-assembling mobile robots. Therefore, as noticed, there have been several 

experiments performed in several directions demonstrating the effectiveness of distributed 

control. 

 

1.2  Motivation 

Imagine a scenario in military warfare with four different platoons 

from four separate bases away from each other. For convenience, the 

names of the bases and their platoons are A, B, C, and D. The platoons 

need to find a rendezvous point that is not far from their respective 

bases where they can trade intelligence, plan strategies, and trade 

supplies. Suppose multiple bombs are detonated around this war site and several communication 

lines are broken between the bases and platoons. So now, A can only talk to B, B can only talk to 

C, and C and only talk to D as shown in figure 1.1. The meeting point will now be decided 

through a scheme where the platoons will have to coordinate with their communication-able 

“neighbors” to find their position data. Now, platoon A will have to move towards platoon B 

while maintaining an acceptable distance from its base. This point will result in the center of all 

the bases (this will depend on the shape and size of the bases). The platoons can cooperatively 

find this location where going back to their home base will not be too much of an issue.  

 

1.3  Problem Statement 

How do we implement the control laws for the robots to reach an optimal point in the 

scenario described above? Furthermore, how do we do this with the added constraints that each 

robot only has knowledge of the position and size of its base and the position of its neighbors? 

A B 

C D 

Figure 1.1: Neighbor 
Topology 
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How can we implement some form of collision avoidance while maintaining the shortest-distance 

scheme? 

 

1.4  Proposed Solution 

A way to reach the optimal point described in the motivation is to find one’s minimum 

distance to its region and scaling it against the direction vector towards its neighbors as a function 

of time. Given a predefined directed communication topology and predefined closed convex 

regions, the problem will be use consensus to reach its destination.  

To avoid robot collision, the algorithm from [1] is combined with the potential functions in 

[2]. This prevents the robots from getting too close to each other and maintains an appropriate 

distance all the way until the final location. 

 

1.5 Outline for Chapters   

 Chapter 2 covers the theoretical knowledge gained from [1] and its development into this 

experiment. It goes through all the terms in the control expression and how they are derived. 

 Chapter 3 shows the incorporation of the collision avoidance scheme to the control law 

and its development in the experiment. 

Chapter 4 covers the hardware and software used by the experiments. It includes 

everything from the actual parts to the libraries used. It also lists what parts might bring in errors 

to the system. Additionally, the software architecture of the system is also explained in depth. 

Chapter 5 covers the process of implementation, MATLAB simulations, physical and 

simulated tests, and results achieved.  
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Chapter 6 goes over several possible improvements to the experiment, potential future 

work and applications, and a conclusion. 
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Chapter 2: Shortest Distance Controller 

 

2.1  Model 

Before going into the algorithm itself, it is important to note that the model of this system 

is a single-integrator dynamic. The state space for this system will be 

! ! = ! !  

!(!) = 1 

u is the control input given from the algorithm which is converted to linear and angular velocities. 

These velocities are then sent over to the robots with special commands. y is the final output, but 

since this model is ideal, there is no sensor data adjustment. In the physical experiment, there will 

be a y associated with the sensor data.  

 

2.2  Principal Algorithm 

The principal shortest distance algorithm, developed in [1], is 

 !!(!) = ! !"#(!!(!) − !!
!∈!! !

(!)) + !!!(!!(!)) − !!(!), (2.1) 

where !(!) denotes the position vector of a robot at time t, !! !  denotes the neighbor set of 

agent i at time t, !!!(!! ! ) is the projection of the i’th robot’s position to its convex set, sgn is a 

signum function, and ! is a scaling factor (! > 0). The resulting!!! will give the best position in 

the time step.  

 The u and θ are used to derive values for the linear and angular velocities, which are fed 

to the iRobot Create wrapper (Marchant). The formulae are as follows, 

! = !! cos ! + !! sin !  
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! = −!!
sin !
! + !!

cos !
! , 

where θ is the angle the robot is pointing towards and L is the radius of the robot. 

 

2.2.1  Signum Function 

 The signum function takes in the distance between a j’th neighboring agent and the i’th 

agent. If the distance is negative, the signum function will return a -1. If the distance is positive, it 

will return a 1. Lastly, if the distance is 0, the function will return a 0. All of the signum functions 

for each neighbor are then summed up. This process is done for both, the x and y coordinates on 

the Cartesian plane. The signum function is shown below in figure 2.1. 

 

 

2.2.2  Projection  

 The projection term,!!!(!!) denotes the projected point of i’th agent’s position upon its 

closed convex region!!!. The projected point is the point on the region that has the minimum 

distance to its agent. If the agent is inside its region, the projected point will be its own position. 

This phenomena is shown in figures 2.2 and 2.3. 

Figure 2.1: Signum Function 
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 The projected point is found using constrained optimization. We are trying to solve the 

following equation: 

 !! ! = argmin
!∈!

! − ! , (2.2) 

where !  is the standard Euclidean norm. The methods that able to perform constrained 

optimization are plenty. Possible methods include gradient projection, newton raphson, newton-

gauss, lagrangian multipliers, and more. For this project’s purpose, lagrangian multipliers are 

used to solve for a closed form equation for certain convex regions.  The closed form equation is 

calculated analytically and provides the least computationally intensive algorithm to implement in 

programming. There is, however, a tradeoff to using lagrangian multipliers. A region with a 

specific shape will have a specific closed form equation to calculate the minimum x and y 

coordinates. 

Circles 

 In the first implementation of the shortest distance algorithm, circles are used as the 

regions. The derivation for the projection is as follows. 

Constraint: (! − !)! + (! − !)! = !! 

The cost function is determined from the argument in (2.2), 

!
! − !

! = ! − ! ! + (! − !)! 

Combining the cost function and constraint yields to a lagrangian function, 

∴ Λ !, !, ! = ! − ! ! + (! − !)! + ! !! − 2!" + !! + !! − 2!" + !! − !! , 

where n and m are the agent’s coordinates, p and q are the center coordinates of the region, r is 

the radius of the region, x and y are the coordinates of the projected point on the region, and λ is 

the lagrangian multiplier.  

The partial derivatives of the lagrangian function with respect to the x, y, and λ are taken:  
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 !Λ
!" =

! − !
!! − 2!" + !! +!! − 2!" + !!

+ ! 2! − 2! = 0! (2.3) 

 !"
!" =

! −!
!! − 2!" + !! +!! − 2!" + !!

+ ! 2! − 2! = 0! (2.4) 

 !Λ
!" = !! − 2!" + !! + !! − 2!" + !! − !! = 0 (2.5) 

Solving for λ in (2.3), 

! = ! − !
2(! − !) !! − 2!" + !! +!! − 2!" + !!

 

Solving for λ in (2.4), 

! = ! − !
2(! − !) !! − 2!" + !! +!! − 2!" + !!

 

By setting the previous two equations equal to each other, an expression for y can be formed. 

! − !
! − ! =

! − !
! − !  

 ∴ !! = ! ! − ! − !" + !"
! − !  (2.6) 

Substituting (2.6) into (2.5), 

!! − 2!" + !! + ! ! − ! − !" + !"
! − !

!
− 2! ! ! − ! − !" + !"

! − ! + !! − !! = 0 

This equation yields to a polynomial expression, 

!!! ! − ! ! +!! − 2!" + !!

+ ! −2! ! − ! ! − 2!!! + 2!"# + 2!"# − 2!!! − 2!" ! − !

+ 2!! ! − !

+ !! + !! − ! ! − ! ! + !" − !" ! + 2!"# − 2!!! ! − ! = 0 
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Using the quadratic formula to find the roots of x from the polynomial equation. With this 

information, the y for each root can be calculated from (2.6). By checking the calculated values in 

the constraint formula, the correct projected coordinates can be determined.  

Ellipses 

 The second implementation uses ellipses at regions. According to the constraint, if values 

a and b are equal, the regions can be set at circles. 

Constraint:  !!!
!

!! − !!! !

!! = 1 

The cost function remains the same resulting in the following lagrangian function, 

∴ Λ !, !, ! = ! − ! ! + (! − !)! + ! ! − !
!!

!
+ (! − !)

!

!! − 1 , 

where a and b are the horizontal and vertical stretch of the region. The rest of the variables are the 

same. 

The partial derivatives of the lagrangian function with respect to x, y, and λ are taken: 

 !Λ
!" =

! − !
!! − 2!" + !! +!! − 2!" + !!

+ ! 2!
!! −

2!
!! = 0! (2.7) 

Figure 2.2: Circular Projections (a) Outside region (b) Inside region 
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 !"
!" =

! −!
!! − 2!" + !! +!! − 2!" + !!

+ ! 2!
!! −

2!
!! = 0! (2.8) 

 !Λ
!" =

!!
!! −

2!"
!! + !!

!! +
!!
!! −

2!"
!! + !!

!! − 1 = 0! (2.9) 

Solving for λ in (2.7), 

! = !!(! − !)
2(! − !) !! − 2!" + !! +!! − 2!" + !!

 

Solving for λ in (2.8), 

! = !!(! − !)
2(! − !) !! − 2!" + !! +!! − 2!" + !!

 

Setting the two previous equation equal to each other will give an expression for y. 

!!(! − !)
! − ! = !!(! − !)

! − !  

 ∴ ! = !!!" − !!!" + !!!" − !!!"
!!! − !!! + !!! − !!!  (2.10) 

Substituting (2.10) into (2.9), 

!!
!! −

2!"
!! + !!

!! +
!!!" − !!!" + !!!" − !!!"

!!! − !!! + !!! − !!!
!

!! −
2! !!!" − !!!" + !!!" − !!!"

!!! − !!! + !!! − !!!
!!

+ !!
!! − 1 = 0 

This equation yields to a polynomial expression, 

!!!!!! + !!!! 2!" − 2!!!

+ !! !! !! − 4!"# + !!!! + !!ℎ! − 2!!!ℎ! + !! !!!! − !!!!

+ ! !! 2!!!" − 2!!! + 2!!ℎ! − 2!!! ℎ! + !" + 2!" !!!! − !!!!

+ !!!!!! + !!!! − 2!!!!" + !! !!!! − !!!! = 0, 

where 
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! = !! − !! 

ℎ = !!! − !!! 

! = !!! − !!! 

! = !!!" − !!!" 

Using a quartic solver, the roots can be extracted, one of which will be the potential x 

value. With the roots of x, the respective y values can be calculated from (2.10). By checking the 

values calculated in the constraint, the correct x and y values can be determined. These 

coordinates will be the projected point on the ellipse.  

 

 

2.3  Slight Change 

 When implementing the principal algorithm into the physical experiments, the control 

values are calculated to be large. These values are sent to the robots as very large velocity 

commands. When the experimented is started, the robots either move out of camera vision, 

cannot be sensed by the CV algorithm, or collide into each other. The cause of this is enormous 

Figure 2.3: Elliptical Projections (a) Outside region (b) Inside region  



 

13 

 

projection values due to the distance unit of millimeters. To prevent this disruption, a scaling 

parameter ! is added to the principal equation resulting in, 

 !!(!) = ! !"#(!!(!) − !!
!∈!! !

(!)) + !(!!!(!!(!)) − !!(!)), (2.11) 

where 0 < ! < 1. The proper value of ! is tuned through multiple trials for given experiment 

environment. 

Chapter 3: Shortest-Distance Controller with Collision Avoidance 

 

3.1  Reason 

 When running physical experiments, the ability to place 

arbitrary regions are difficult. For example, in figure 3.1, the 

circles represent the regions and the triangles represent their 

respective agents. Now if this diagram is a simulation of a 

physical experiment, the triangles will not be able to overlap 

each other. The paths of these two agents, however, cross in 

order to reach the optimal point. This will result in a collision rendering the results of this 

experiment useless. In order for every experiment to be successful, a collision avoidance scheme 

must be implemented with the shortest-distance algorithm.  

 

3.2  Zone Offset Method 

 To avoid collision at or before the rendezvous point in limited cases, the zone offset 

method is used. This method gives an offset in position to each agent with respect to a certain 

formation. The modified equation is as follows, 

Figure 3.1: Paths of agents 
demonstrating collision in an 

experiment run 
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 !! ! = ! !"#(!!(!) − (!!
!∈!! !

! + ℎ)) + !(!!! !! ! + ℎ − (!! ! + ℎ)),! (3.1) 

where h represents the offset value. h is different for every agent to develop a certain formation. 

For example, figure 3.2 shows the difference between the paths taken by agents from equation 

(2.11) versus equation (3.1). Figure 3.2 (a) exhibits how paths will first join and collectively 

approach the rendezvous point. By implementing a zone offset, as shown in figure 3.2 (b), the 

paths not only avoid merging, but they maintain a formation throughout the entire run, even after 

arriving at the point. The virtual center of all agents will be on the final point, thus fulfilling the 

objective.  

 

 The zone offset, however, is a very inefficient way to solve the collision avoidance 

problem since the issue of overlapping paths if regions are changed still remains. 

 

3.3  Possible Solutions 

Bumper Collision Re-routing 

 This scheme uses the bumpers provided on the robots. If the bumper on the robot(s) is 

activated, the robot will reverse drive for a given distance and stop moving. The stop duration 

will be the number of the robot in the experiment (eg. robot 1 will stop for 1 second). This way, 

all robots will reach the rendezvous point even if collision(s) occur. 

Figure 3.2: (a) Shortest-distance algorithm. (b) 
Shortest-distance algorithm with zone offset 
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 This method fails in this particular physical system due to the break in the continuous 

algorithm. When the bumpers are activated, the robots cannot receive control commands or send 

encoder information. They are left with the previous control values thus giving incorrect 

information in the next time step. Also, when the robots are required to drive in the reverse 

direction instead of obeying the control law, the controller as well as the neighbors are 

misinformed about the agent’s location. Additionally, the infrastructure is built in such a way that 

the robots become disabled to new control commands after bumpers are activated.  Lastly, if the 

method results in success, it does not guarantee a perfect or close resulting final average position 

to the optimal point. 

Chivalry 

 For this solution to work, one major assumption must be made – all agents are able to 

communicate with each other. This method is similar to the bumper collision re-routing 

procedure. When two robots are about to collide, the robot with a higher robot number will stop 

and allow the other to continue. In cases of multiple agents colliding, the most “chivalrous” agent 

will stop for the longest period. 

 The problems associated with this technique are similar to the previous one. The stop 

period overrides the control law, which might break the continuous operation of the algorithm. 

The assumption of an undirected network topology also takes out a very large aspect of this 

experiment. Lastly, as mentioned for the previous method, the resulting position average of all 

agents might not be close enough to the optimal point.  

Potential Functions 

 This technique offers a solution to enforce collision avoidance by using special functions 

for neighbors and non-neighbors. A network topology between all agents is set before the 

experiment is initiated. An agent will have complete information about its neighbors and will use 
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a potential function to keep a certain distance away from them but also stay close enough to 

achieve rendezvous in a process known as swarming. For non-neighbors, a different potential 

function will be used. If a non-neighbor enters an agent’s field of vision, communication is 

established. While in this field, the agent tries to keep a certain distance away from the non-

neighbor. If the non-neighbor leaves the field of vision, communication is lost. 

 This method assumes the technology to make and break communication between at any 

point during the experiment. It also assumes agents to have sensors to identify neighbors from 

non-neighbors in the field of vision. In this experiment, due to the lack of such technology, 

position data is given to the potential function for non-neighbors at all times, but is only used if a 

non-neighbor enters an agent’s field of vision. Due to the highest possibility of implementation, 

this solution is chosen. 

 

3.4  Potential Functions 

 The derivative of the potential function for a non-neighbor agent is as follows, 

!!!"!
!!!

=

0, !! − !! > !
2! !! − !! sin 2! !! − !! − !!"

!! − !!
, !!" < !! − !! ≤ !

20 !! − !!
!! − !!

!! − !! − !!"
!! − !!

, !! − !! ≤ !!"

, 

where !!" represents the radius of the robot and ! represents the maximum radius of vision. The 

potential function itself is shown in figure 3.3. The function decreases to the point of !!" and has 

a slight increase before saturating to a fixed value. The flat section of the graph represents the 

non-neighbor being outside of the field of vision. As the non-neighbor approaches to the low 
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point in the function, the agent must start making distance between the two. This will avoid the 

two colliding. 

 

 The derivative of the potential function for a neighbor agent is as follows, 

!!!"!
!!!

=

!! − !!
!! − !!

!! − !! − !!"
!! − !! − ! ! !!" < !! − !!

20 !! − !!
!! − !!

!! − !! − !!"
!! − !!

, !! − !! ≤ !!"
 

The potential function plot for this equation is shown in figure 3.4. For the neighboring agents, 

swarming is used to keep the agents close enough together while maintaining a safe distance to 

avoid collision. When the distance !! − !!  approaches !!", the function !!"! decreases in value. 

In order to counter this action, the controller must use the derivatives negatively. In the figure, !!" 

is 2 and ! is 2.5. The ! in the function for neighbors simply represents how far one is willing to 

allow the neighbors to go before swarming. 

Figure 3.3: Potential function designed for non-neighbors (!!" = 2,! = 2.5) 
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By combining the algorithm in (2.11) and the potential functions from [2], we can attain 

an algorithm to achieve proper rendezvous without physical collision. The revised algorithm is as 

follows, 

 
!! ! = −!!!"# !!!"

!!!!∈!! !
+ !(!!!(!!(!)) − !!(!))!

!

(3.2) 

The signum function in this equation returns the vector of magnitude in the quadrant in which the 

average of the potential function lies. As mentioned earlier, the term including the derivate of the 

potential functions is used negatively in order to keep away from other agents while swarming.   

Figure 3.4: Potential function designed for neighbors (!!" = 2,! = 2.5) 
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Chapter 4: Hardware and Software 

 

4.1  iRobot Create 

The Create is mobile ground robot created by iRobot for research purposes. It is based on 

the commercially available Roomba robotic vaccuum cleaner. The reason for using this robot is 

for ease of programming, experimentation, and availability. 

 

4.1.1  Model 

 The model used is known as differential drive kinematics. The robots take wheel velocity 

commands, which are calculated using linear and angular velocities from the controller. Since 

ARIA does not interface with iRobot Creates, a wrapper, developed by Scott Marchant, have 

appropriate values sent to the robots.  

 

4.1.2  Specifications 

iRobot Create 

- Velocity Range: -500 to 500 mm/s 

- Encoder Range: -32768 to 32767 

- Commands refresh rate: 15ms 

 

4.1.3  Commands 

Drive: [145][Right velocity high byte][Right velocity low byte][Left velocity high byte][Left 

velocity low byte] 

Distance: [142][2] 
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4.1.4  Errors   

- Inefficient encoders calculate incorrect distance measurements 

- When bumpers are activated, the robots are unable to take in new commands, thus disrupting the 

experiment 

  

4.2  Bluetooth 

The Bluetooth modules are mounted on each robot into a port. These modules are specially 

designed for the iRobot Create. The Bluetooth dongle is connected to the central computer and 

communicates with all the robots simultaneously during the experiment. 

 

4.2.1  Specifications 

Element Direct Bluetooth Adapter Module (BAM) 

 - Range: 500ft 

 - Frequency: 2.4GHz 

 - Ability to combat external RF interference 

 

4.2.2  Errors 

- Delay in transmitting and receiving information every 15ms (due to the Create refresh rate) plus 

the Bluetooth delay. This can provide inaccurate information and transmit false commands. 

- Multiple agents can introduce further delay in communication. 
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4.3  Overhead Camera 

The overhead camera is a wired webcam connected to the central computer. This camera 

works as an onboard sensor for the robots. The camera uses computer vision algorithms to detect 

printed markers placed on each robot to identify the pose and robot number on a 2D plane.  

 

4.3.1  Model 

The computer vision algorithm from ArToolkit uses the basic pinhole model, where the 

z-axis is perpendicular to the camera and the observed plane. The resulting image has the x and y 

axis. 

 

4.3.2  Specifications 

Logitech® Webcam C600 

 - 2.0-megapixel sensor 

 - 1600x1200 resolution 

 

4.3.3  Errors 

- Improper lighting can make the camera completely useless 

- Image will be skewed due to improper fixture of the camera 

- Camera has a limited field of view. If robots (with patterns) leave this field, their pose 

information will only come from the encoders 

- FPS lag can give improper position coordinates 

- Image blur will restrict the CV algorithm from detecting patterns 
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4.4  Computer 

 This is the central authority that bring the entire experiment together (robots and camera). 

The robots simply act as dummies to the computer’s commands, which are given after computing 

position data and various other variables.  

 

4.4.1  Specifications 

CPU: Intel® Core™ i7 Processor 3.33GHz 

RAM: 12Gb 

 

4.5  Software 

The central computer runs on Ubuntu 10.10, Maverick Meerkat. All the software used are 

provided and licensed.  

 

4.5.1  Programs 

Netbeans – Used for camera calibrations 

MobileSim – A simulator using the model of the physical robot. This program is linked with 

ARIA, therefore the simulation is conducted using the C++ code.  

MATLAB – Used to test and simulate algorithms before implementing them in C++.  

MATLAB Simulink – Toolkit in MATLAB usedin development of block models of the 

controllers and easier scripting of the algorithms. 

Sublime Text 2 – Text editor used for programming.  
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QT Creator – Used in developing Graphical User Interface and pattern position detector code 

using the CV tools. 

 

4.5.2  Libraries and Tools 

Advanced Robot Interface for Applications (ARIA) – Libraries used in development of the entire 

project. Provides functions and tools to create architecture, network, and controllers for the 

experiments. 

ArToolkit – Computer Vision tools used in detecting patterns through camera data and extracting 

pose on an x-y plane.  

Eigen – Library used to define Matrix types and perform linear algebraic operations with ease. 

 

 

4.6  Architecture 

 The main project’s architecture, developed by Scott Marchant, consists of three 

levels: Driver, Client, and Server. Networking through these three layers are done using TCP. The 

Figure 4.1: Patterns used for detecting robot pose by ArToolkit 
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library used for this process is known as ArNetworking (a subset of ARIA). Please refer to 

figures 4.2 and 4.3 for a better visual understanding. 

The architecture is set up in such a way where that if each robot had an on-board 

computers, there would be no need for a central computer. The control law for each robot would 

be calculated on the on-board computer using data from the prioceptive sensors. 

 

4.6.1  The Driver 

 The driver is the commander on what formation the robots shall take and what path they 

should follow. The driver only sends information and never receives any. In this project, since 

there is no typical formation or a path to follow, the driver portion of the architecture is omitted. 

The algorithm simply results in a rendezvous. 

 

4.6.2  The Client 

 This portion is where all of the control calculations take place. The client receives 

information from the driver (not necessary in this experiment) and from the servers. A client 

exists for every robot and is able to communicate with servers set through the neighbor topology. 

In figure 4.2 (a), client 1 can receive information from servers 1, 2, and 3, but not from server 4. 

Client 1 receives position data from 1, 2, and 3 from the encoders and camera, and computes 

control commands from the algorithm and sends them to server 1. 

 

4.6.3  The Server 

 The server is the commander for the robots. The server receives information from the 

encoders and camera about its robot’s position and sends this data to its own client and its 

neighbors’ clients. There exists one server for each robot.  
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4.6.4  The GUI 

 The graphical user interface (ConsensusGUI), developed by Scott Marchant, is used for 

presetting various elements. It is used to set up the neighbor topology, decide the number and 

type of robots used, what controller to use, and what formation and path is needed. The GUI also 

helps boot up all the driver, clients, and servers, and set up the communication between them. 

Driver 

Client 1 Client 2 Client 3 Client 4 

Server 1 Server 2 Server 3 Server 4 

Figure 4.2 (a): The architecture based on the given neighbor topology (driver is omitted in this experiment) 

1 2 

3 4 

Figure 4.2 (b): The neighbor topology 
(direction of arrow represents the path of 

information transfer) 
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Client 

Server 

Robot 

Camera 

Weighted Position Data Velocity Control Commands 

Encoder Pose Data 

Robot Pose through ArToolkit 

Robot Commands 

Figure 4.3: Simple block diagram showing information flow through the 
experiment 
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Chapter 5:  Tests and Results 

 

5.1  Implementation Process 

 There is a formal process before implementing any type of change into the C++ 

algorithm. The reason for this is that it might be very difficult to catch an error that can 

potentially disrupt the experiment in the future.  

To avoid this, an algorithm (or change) is first tested using MATLAB and Simulink. The 

simulations give a good visual on what the controller does and what values are being calculated. 

Any errors and irregularities can be easily spotted and fixed. After that, the controller or change is 

developed in C++ as a class (to fit into the pre-built architecture). Before testing the physical 

experiments, simulations are conducted in MobileSim. These simulations use the C++ code to run 

and use the physical models of the robots. Even though MobileSim might not use the same 

scaling factor values in the algorithms, it still shows whether the controller works or fails. Before 

entering physical experiments, the camera is calibrated to avoid any erroneous pose readings. 

Once all preparation is complete, the physical experiments with the iRobot Create robots are 

conducted. 

 

5.2  Shortest-Distance Controller 

 The algorithm in (2.1) is first simulated using MATLAB and Simulink. The projection 

component needed to be tested thoroughly (shown in figures 2.2 and 2.3) before testing the entire 

controller. Once the controller was tested and delivered successful results, the scaling parameter 

! needed to be tuned. It was then discovered that ! needed to be tuned according to the size of 

the x-y plane. If the scale is bigger, the projection values are larger, which overpowers the signum 
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function term. Figure 5.1 demonstrates a successful MATLAB simulation of the algorithm in 

(2.1). The phenomena of agents merging and collectively moving towards the optimal point, 

shown in figure 3.2 and explained in section 3.2, is demonstrated in this simulation.  

 

To implement this in C++, the pre-built architecture must be thoroughly understood and 

all the components must be correctly working. When simulating on MobileSim, it was realized 

that another scaling constant was required. This resulted into the algorithm in (2.11). After finally 

physically experimenting the controller, the parameters ! and ! are tuned. For the experiment 

environment this project is done in, ! = 20 and ! = 0.1. The following figure shows a snapshot 

of the starting and final positions of the robots using the controller with ellipse regions. The final 

position of the robots might not necessarily average to the optimal point due to camera skew and 

erroneous information but the result is still very close.  

Figure 5.1: MATLAB Simulation using the basic shortest-
distance consensus controller (! = 2000) 
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5.3  Shortest-Distance Controller with Zone Offset 

Using the algorithm in (3.1), multiple MATLAB simulations tuned the offset parameter ℎ 

to be 200. The result is shown in the figure below.  

 

 

 

 

3 

4 1 

2 3 

4 1 

2 

Figure 5.2: Physical robot experiment demonstrating shortest-distance control (a) Start robot positions (b) Final robot 
positions 

Figure 5.3: MATLAB Simulation using the shortest-distance 
consensus controller with a zone offset  

(! = 2000,! = 1, ℎ = 30) 
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The implementation done in C++ is shown in the start and final figures below. After 

multiple physical experiments, the best value of the offset parameter ℎ is 20.   

 

As mentioned in a previous chapter, the zone offset tends to fail in circumstance that 

involves agents crossing paths.  This problem is recognized in the following figures. If the 

regions are noticed in figure 5.5 (a), the blue and cyan agents switch sides to be closer to their 

respective regions. The same is demonstrated in (b) except all the agents intersect due to opposite 

agent formation and region locations. 

 

Figure 5.4: Physical robot experiment demonstrating shortest-distance control with zone offset (a) Start robot positions 
(b) Final robot positions 

4 1 

3 2 

4 1 

3 2 

Figure 5.5: MATLAB Simulations demonstrating failure of shortest -distance control with a zone offset 
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5.4  Shortest-Distance Controller with Collision Avoidance 

  The final controller stated in (3.2) required several simulations to get proper values for 

all the parameters. The resulting values for the parameters in the MATLAB simulations are: 

! = 300,! = 0.1,! = 500,!!" = 250.  

 

 As shown in figure 5.5, the agents have a “reason” to intercept paths due to the location 

of their regions but are not able to because of the potential functions. Throughout the experiment, 

no two or more agents ever overlap each other.  

Figure 5.6: MATLAB Simulations demonstrating the shortest-distance control with collision avoidance from different 
starting locations  
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  Figures 5.7 and 5.8 use the following values for the parameters: ! = 100,! = 0.1,! =

2000,!!" = 1000. With such values, the collision avoidance scheme works with any region 

orientation.   

4 3 

1 2 

4 3 

1 2 

1 

2
 

3 

4 

Figure 5.7: MobileSim Simulation (a) Start (b) Final 

4 3 

1 2 

4 3 

1 2 

Figure 5.8: Physical robot experiment demonstrating the shortest-distance control with collision avoidance (a) Start 
robot positions (b) Final robot positions  
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Chapter 6: Conclusion and Future Work 

 

6.1  Conclusion 

 This paper demonstrates the shortest-distance consensus controller derived in [1] in an 

experimental fashion. It shows how the controller can be implemented, what changes must be 

made, and the process of experimentation. It solves the problem of achieving rendezvous in a 

multi-agent system under directed and undirected network topologies in a physical robot system. 

The location for rendezvous is determined by the average center of all regions. This point is 

found by every agent weighting its projection onto its region to the direction of its neighbors. 

Through physical experiments it is realized that a collision avoidance scheme is necessary for the 

controller to work in any given case. By combining the algorithm in [1] and potential functions 

derived in [2], it is possible to develop a scheme to avoid robot collision while maintaining a 

swarm all the way to and the final rendezvous point. Even through various extraneous errors 

caused by the low-cost system, the experiments are successful in achieving the desired goal.  

 

6.2  Possible Improvements  

 There are many possible improvements that can be added to this project. For one, the 

technology used can be upgraded for a better result in experimentation. By using robots with 

strong encoders and radar sensors, it is possible to eliminate the use of the camera. Another 

option would be to use a better camera with a stronger fixture to achieve improved pattern 

detection thus leading to a more precise pose. In addition to distance measurements, the 

communication between the central computer and the robots can be improved by using Xbee® 
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wireless RF modules. This technology will ensure faster communication, which will result in 

more efficient commanding of the robots.  

 Alongside technology improvements, the software has areas that might cause problems as 

well. The architecture, though robust, uses tools not directly supported for the iRobot Create 

robots. A better option to ARIA would be to use Robot Operating System (ROS). The libraries 

included can be of great help and are used widely in modern research and experimentation.  

 

6.3  Future Work 

 There are several directions that this research might progress into. An addition to this 

project itself can be to implement dynamically changing regions through the continuous operation 

of the experiment. The collision avoidance scheme can be improved and implemented in 

autonomous transportation systems, robotic research, and many more.  

 Applications can range from domestic and educational use to military and space 

implementations.  As demonstrated in the motivation of this paper, there is use for such military 

technology (using autonomous robots). In space, satellites can easily rendezvous without relying 

on a high magnitude of communication.   
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