
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Experimental Validation of the Distributed Shortest-Distance Rendezvous Algorithm on a
Low-Cost Robot Platform

Permalink
https://escholarship.org/uc/item/7nh5x5sm

Author
Parikh, Kush Jay

Publication Date
2013

Supplemental Material
https://escholarship.org/uc/item/7nh5x5sm#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7nh5x5sm
https://escholarship.org/uc/item/7nh5x5sm#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Experimental Validation of the Distributed Shortest-Distance
Rendezvous Algorithm on a Low-Cost Robot Platform

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Electrical Engineering

by

Kush Jay Parikh

June 2013

Thesis Committee:
 Dr. Wei Ren, Chairperson
 Dr. Ertem Tuncel
 Dr. Eamonn Keogh

Copyright by
Kush Jay Parikh

2013

The Thesis of Kush Jay Parikh is approved:

 Committee Chairperson

University of California, Riverside

iv

To my parents

v

Table of Contents

Page

List of Figures ... vii
Chapter 1: Introduction .. 1

1.1 Literature Review ... 2
1.2 Motivation ... 3
1.3 Problem Statement .. 3
1.4 Proposed Solution ... 4
1.5 Outline for Chapters .. 4

Chapter 2: Shortest Distance Controller ... 6
2.1 Model .. 6
2.2 Principal Algorithm .. 6

2.2.1 Signum Function .. 7
2.2.2 Projection ... 7

2.3 Slight Change .. 12
Chapter 3: Shortest-Distance Controller with Collision Avoidance 13

3.1 Reason ... 13
3.2 Zone Offset Method .. 13
3.3 Possible Solutions ... 14
3.4 Potential Functions .. 16

Chapter 4: Hardware and Software ... 19
4.1 iRobot Create .. 19

4.1.1 Model ... 19
4.1.2 Specifications ... 19
4.1.3 Commands ... 19
4.1.4 Errors .. 20

4.2 Bluetooth ... 20
4.2.1 Specifications ... 20
4.2.2 Errors .. 20

4.3 Overhead Camera .. 21

vi

4.3.1 Model ... 21
4.3.2 Specifications ... 21
4.3.3 Errors .. 21

4.4 Computer ... 22
4.4.1 Specifications ... 22

4.5 Software .. 22
4.5.1 Programs .. 22
4.5.2 Libraries and Tools .. 23

4.6 Architecture ... 23
4.6.1 The Driver .. 24
4.6.2 The Client ... 24
4.6.3 The Server .. 24
4.6.4 The GUI ... 25

Chapter 5: Tests and Results ... 27
5.1 Implementation Process .. 27
5.2 Shortest-Distance Controller ... 27
5.3 Shortest-Distance Controller with Zone Offset .. 29
5.4 Shortest-Distance Controller with Collision Avoidance ... 31

Chapter 6: Conclusion and Future Work .. 33
6.1 Conclusion .. 33
6.2 Possible Improvements ... 33
6.3 Future Work .. 34

References ... 35
!

vii

List of Figures

Figure Page

1.1 Neighbor Topology ..2
2.1 Signum Function ..5

2.2 Circular Projections (a) Outside region (b) Inside region ..8
2.3 Elliptical Projections (a) Outside region (b) Inside region ..10

3.1 Paths of agents demonstrating collision in an experiment run ..11
3.2 (a) Shortest-distance algorithm (b) Shortest-distance algorithm with zone offset12

3.3 Potential function designed for non-neighbors (d!" = 2,R = 2.5) ..15

3.4 Potential function designed for neighbors (d!" = 2,R = 2.5) ...16

4.1 Patterns used for detecting robot pose by ArToolkit ...21
4.2 (a) The architecture based on the given neighbor topology (driver is omitted in this
experiment) ...23
4.2 (b) The neighbor topology (direction of arrow represents the path of information transfer) .23

4.3 Simple block diagram showing information flow through the experiment24

5.1 MATLAB Simulation using the basic shortest-distance consensus controller (α = 2000)26
5.2 Physical robot experiment demonstrating shortest-distance control (a) Start robot positions
(b) Final robot positions ..27
5.3 MATLAB Simulation using the shortest-distance consensus controller with a zone offset
(α = 2000, β = 1, h = 30) ...27

5.4 Physical robot experiment demonstrating shortest-distance control with zone offset (a) Start
robot positions (b) Final robot positions ...28

5.5 MATLAB Simulations demonstrating failure of shortest -distance control with a zone offset
 ...28
5.6 MATLAB Simulations demonstrating the shortest-distance control with collision avoidance
from different starting locations ..29
5.7 MobileSim Simulation (a) Start (b) Final ...29

5.8 Physical robot experiment demonstrating the shortest-distance control with collision
avoidance (a) Start robot positions (b) Final robot positions ..30

1

Chapter 1: Introduction

Multi-agent systems is a very prominent subject of research that is heavily applied in

modern fields of study such as transportation, communication, robotics, military technology,

energy, space, and many other. Achieving certain complex tasks can be done easily and

efficiently with the use of multiple agents. For example, in a domestic domain, multiple vacuum

cleaner robots can efficiently clean an entire house by communicating through some form of

consensus. This task would be done much faster than a single robot. Consensus is a very strong

method to achieve objectives through agreement amongst the agents. An example for an objective

would be to rendezvous between all agents at a certain location – an aspect this project follows.

This paper presents the problem of finding the optimal rendezvous point that minimizes

the sum of squared distances to it from two or more preset convex regions (circles or ellipses)

using a set of mobile robots. Each robot only has information of its own region, its own position,

its neighbor(s), and their position(s). We employ the distributed shortest-distance algorithm

presented in [1] that minimizes one’s distance to its region while moving towards the direction of

its neighbor(s). This algorithm is implemented in an infrastructure built using Advanced Robot

Interface for Application (ARIA), which provides various tools to communicate and network in

C++. This framework is used to program a set of commercially available robots called iRobot

Create. Each robot is equipped with a Bluetooth module to send encoder data and receive control

commands to and from a central computer. A downward-looking web camera is affixed to the

ceiling to emulate proprioceptive and exteroceptive sensor data for each robot. The computer,

using the camera, runs ARToolkit to detect the pose of unique markers mounted on each robot.

The control data is calculated for each robot using self and neighbor position data and is sent back

2

to each robot from the central computer. We further improve the algorithm by introducing

potential functions in the control law to enable collision avoidance among robots.

1.1 Literature Review

There have been many areas of research involving different algorithms of consensus.

Furthermore, there have been many experimental validations proving these theorems to correctly

work on multi-robot platforms. Once a theory has been implemented into a real-world physical

system, then only can its true effectiveness can be seen and measured. [3] demonstrates the use of

distributed containment control with two cases in mind: one with leaders with the same velocity

and one with leaders with different velocities. In the results shown, the trajectories of the multi-

agent system are contained within a certain region. In [4], experimental validation is performed

on several consensus algorithms including rendezvous and axial alignment. The experiments

performed prove the theoretical results valid and demonstrate the effectiveness and robustness of

the consensus algorithms on a real-world system. The research done in [5] portrays consensus-

tracking algorithms on directed network topologies. These topologies can be dynamic throughout

the experiment; meaning leaders of the group can change. The algorithm has been tested through

experiments confirming its validation. Along with consensus algorithms, there are other

experiments that have been demonstrated using physical experiments. To demonstrate dynamic

coordination between robots, [6] uses experiments involving passing two balls between two

robots. This shows how robust the method of self-organized timing selection can be. The paper

proposed a hierarchical architecture for rhythmic coordination and movements to perform

juggling-like tasks. Another direction that is taken in distributed control is shown in [7]. The

technique, SWARMORPH, is a distributed morphology generation mechanism demonstrated on

3

autonomous self-assembling mobile robots. Therefore, as noticed, there have been several

experiments performed in several directions demonstrating the effectiveness of distributed

control.

1.2 Motivation

Imagine a scenario in military warfare with four different platoons

from four separate bases away from each other. For convenience, the

names of the bases and their platoons are A, B, C, and D. The platoons

need to find a rendezvous point that is not far from their respective

bases where they can trade intelligence, plan strategies, and trade

supplies. Suppose multiple bombs are detonated around this war site and several communication

lines are broken between the bases and platoons. So now, A can only talk to B, B can only talk to

C, and C and only talk to D as shown in figure 1.1. The meeting point will now be decided

through a scheme where the platoons will have to coordinate with their communication-able

“neighbors” to find their position data. Now, platoon A will have to move towards platoon B

while maintaining an acceptable distance from its base. This point will result in the center of all

the bases (this will depend on the shape and size of the bases). The platoons can cooperatively

find this location where going back to their home base will not be too much of an issue.

1.3 Problem Statement

How do we implement the control laws for the robots to reach an optimal point in the

scenario described above? Furthermore, how do we do this with the added constraints that each

robot only has knowledge of the position and size of its base and the position of its neighbors?

A B

C D

Figure 1.1: Neighbor
Topology

4

How can we implement some form of collision avoidance while maintaining the shortest-distance

scheme?

1.4 Proposed Solution

A way to reach the optimal point described in the motivation is to find one’s minimum

distance to its region and scaling it against the direction vector towards its neighbors as a function

of time. Given a predefined directed communication topology and predefined closed convex

regions, the problem will be use consensus to reach its destination.

To avoid robot collision, the algorithm from [1] is combined with the potential functions in

[2]. This prevents the robots from getting too close to each other and maintains an appropriate

distance all the way until the final location.

1.5 Outline for Chapters

 Chapter 2 covers the theoretical knowledge gained from [1] and its development into this

experiment. It goes through all the terms in the control expression and how they are derived.

 Chapter 3 shows the incorporation of the collision avoidance scheme to the control law

and its development in the experiment.

Chapter 4 covers the hardware and software used by the experiments. It includes

everything from the actual parts to the libraries used. It also lists what parts might bring in errors

to the system. Additionally, the software architecture of the system is also explained in depth.

Chapter 5 covers the process of implementation, MATLAB simulations, physical and

simulated tests, and results achieved.

5

Chapter 6 goes over several possible improvements to the experiment, potential future

work and applications, and a conclusion.

6

Chapter 2: Shortest Distance Controller

2.1 Model

Before going into the algorithm itself, it is important to note that the model of this system

is a single-integrator dynamic. The state space for this system will be

! ! = ! !

!(!) = 1

u is the control input given from the algorithm which is converted to linear and angular velocities.

These velocities are then sent over to the robots with special commands. y is the final output, but

since this model is ideal, there is no sensor data adjustment. In the physical experiment, there will

be a y associated with the sensor data.

2.2 Principal Algorithm

The principal shortest distance algorithm, developed in [1], is

 !!(!) = ! !"#(!!(!) − !!
!∈!! !

(!)) + !!!(!!(!)) − !!(!), (2.1)

where !(!) denotes the position vector of a robot at time t, !! ! denotes the neighbor set of

agent i at time t, !!!(!! !) is the projection of the i’th robot’s position to its convex set, sgn is a

signum function, and ! is a scaling factor (! > 0). The resulting!!! will give the best position in

the time step.

 The u and θ are used to derive values for the linear and angular velocities, which are fed

to the iRobot Create wrapper (Marchant). The formulae are as follows,

! = !! cos ! + !! sin !

7

! = −!!
sin !
! + !!

cos !
! ,

where θ is the angle the robot is pointing towards and L is the radius of the robot.

2.2.1 Signum Function

 The signum function takes in the distance between a j’th neighboring agent and the i’th

agent. If the distance is negative, the signum function will return a -1. If the distance is positive, it

will return a 1. Lastly, if the distance is 0, the function will return a 0. All of the signum functions

for each neighbor are then summed up. This process is done for both, the x and y coordinates on

the Cartesian plane. The signum function is shown below in figure 2.1.

2.2.2 Projection

 The projection term,!!!(!!) denotes the projected point of i’th agent’s position upon its

closed convex region!!!. The projected point is the point on the region that has the minimum

distance to its agent. If the agent is inside its region, the projected point will be its own position.

This phenomena is shown in figures 2.2 and 2.3.

Figure 2.1: Signum Function

8

 The projected point is found using constrained optimization. We are trying to solve the

following equation:

 !! ! = argmin
!∈!

! − ! , (2.2)

where ! is the standard Euclidean norm. The methods that able to perform constrained

optimization are plenty. Possible methods include gradient projection, newton raphson, newton-

gauss, lagrangian multipliers, and more. For this project’s purpose, lagrangian multipliers are

used to solve for a closed form equation for certain convex regions. The closed form equation is

calculated analytically and provides the least computationally intensive algorithm to implement in

programming. There is, however, a tradeoff to using lagrangian multipliers. A region with a

specific shape will have a specific closed form equation to calculate the minimum x and y

coordinates.

Circles

 In the first implementation of the shortest distance algorithm, circles are used as the

regions. The derivation for the projection is as follows.

Constraint: (! − !)! + (! − !)! = !!

The cost function is determined from the argument in (2.2),

!
! − !

! = ! − ! ! + (! − !)!

Combining the cost function and constraint yields to a lagrangian function,

∴ Λ !, !, ! = ! − ! ! + (! − !)! + ! !! − 2!" + !! + !! − 2!" + !! − !! ,

where n and m are the agent’s coordinates, p and q are the center coordinates of the region, r is

the radius of the region, x and y are the coordinates of the projected point on the region, and λ is

the lagrangian multiplier.

The partial derivatives of the lagrangian function with respect to the x, y, and λ are taken:

9

 !Λ
!" =

! − !
!! − 2!" + !! +!! − 2!" + !!

+ ! 2! − 2! = 0! (2.3)

 !"
!" =

! −!
!! − 2!" + !! +!! − 2!" + !!

+ ! 2! − 2! = 0! (2.4)

 !Λ
!" = !! − 2!" + !! + !! − 2!" + !! − !! = 0 (2.5)

Solving for λ in (2.3),

! = ! − !
2(! − !) !! − 2!" + !! +!! − 2!" + !!

Solving for λ in (2.4),

! = ! − !
2(! − !) !! − 2!" + !! +!! − 2!" + !!

By setting the previous two equations equal to each other, an expression for y can be formed.

! − !
! − ! =

! − !
! − !

 ∴ !! = ! ! − ! − !" + !"
! − ! (2.6)

Substituting (2.6) into (2.5),

!! − 2!" + !! + ! ! − ! − !" + !"
! − !

!
− 2! ! ! − ! − !" + !"

! − ! + !! − !! = 0

This equation yields to a polynomial expression,

!!! ! − ! ! +!! − 2!" + !!

+ ! −2! ! − ! ! − 2!!! + 2!"# + 2!"# − 2!!! − 2!" ! − !

+ 2!! ! − !

+ !! + !! − ! ! − ! ! + !" − !" ! + 2!"# − 2!!! ! − ! = 0

10

Using the quadratic formula to find the roots of x from the polynomial equation. With this

information, the y for each root can be calculated from (2.6). By checking the calculated values in

the constraint formula, the correct projected coordinates can be determined.

Ellipses

 The second implementation uses ellipses at regions. According to the constraint, if values

a and b are equal, the regions can be set at circles.

Constraint: !!!
!

!! − !!! !

!! = 1

The cost function remains the same resulting in the following lagrangian function,

∴ Λ !, !, ! = ! − ! ! + (! − !)! + ! ! − !
!!

!
+ (! − !)

!

!! − 1 ,

where a and b are the horizontal and vertical stretch of the region. The rest of the variables are the

same.

The partial derivatives of the lagrangian function with respect to x, y, and λ are taken:

 !Λ
!" =

! − !
!! − 2!" + !! +!! − 2!" + !!

+ ! 2!
!! −

2!
!! = 0! (2.7)

Figure 2.2: Circular Projections (a) Outside region (b) Inside region

11

 !"
!" =

! −!
!! − 2!" + !! +!! − 2!" + !!

+ ! 2!
!! −

2!
!! = 0! (2.8)

 !Λ
!" =

!!
!! −

2!"
!! + !!

!! +
!!
!! −

2!"
!! + !!

!! − 1 = 0! (2.9)

Solving for λ in (2.7),

! = !!(! − !)
2(! − !) !! − 2!" + !! +!! − 2!" + !!

Solving for λ in (2.8),

! = !!(! − !)
2(! − !) !! − 2!" + !! +!! − 2!" + !!

Setting the two previous equation equal to each other will give an expression for y.

!!(! − !)
! − ! = !!(! − !)

! − !

 ∴ ! = !!!" − !!!" + !!!" − !!!"
!!! − !!! + !!! − !!! (2.10)

Substituting (2.10) into (2.9),

!!
!! −

2!"
!! + !!

!! +
!!!" − !!!" + !!!" − !!!"

!!! − !!! + !!! − !!!
!

!! −
2! !!!" − !!!" + !!!" − !!!"

!!! − !!! + !!! − !!!
!!

+ !!
!! − 1 = 0

This equation yields to a polynomial expression,

!!!!!! + !!!! 2!" − 2!!!

+ !! !! !! − 4!"# + !!!! + !!ℎ! − 2!!!ℎ! + !! !!!! − !!!!

+ ! !! 2!!!" − 2!!! + 2!!ℎ! − 2!!! ℎ! + !" + 2!" !!!! − !!!!

+ !!!!!! + !!!! − 2!!!!" + !! !!!! − !!!! = 0,

where

12

! = !! − !!

ℎ = !!! − !!!

! = !!! − !!!

! = !!!" − !!!"

Using a quartic solver, the roots can be extracted, one of which will be the potential x

value. With the roots of x, the respective y values can be calculated from (2.10). By checking the

values calculated in the constraint, the correct x and y values can be determined. These

coordinates will be the projected point on the ellipse.

2.3 Slight Change

 When implementing the principal algorithm into the physical experiments, the control

values are calculated to be large. These values are sent to the robots as very large velocity

commands. When the experimented is started, the robots either move out of camera vision,

cannot be sensed by the CV algorithm, or collide into each other. The cause of this is enormous

Figure 2.3: Elliptical Projections (a) Outside region (b) Inside region

13

projection values due to the distance unit of millimeters. To prevent this disruption, a scaling

parameter ! is added to the principal equation resulting in,

 !!(!) = ! !"#(!!(!) − !!
!∈!! !

(!)) + !(!!!(!!(!)) − !!(!)), (2.11)

where 0 < ! < 1. The proper value of ! is tuned through multiple trials for given experiment

environment.

Chapter 3: Shortest-Distance Controller with Collision Avoidance

3.1 Reason

 When running physical experiments, the ability to place

arbitrary regions are difficult. For example, in figure 3.1, the

circles represent the regions and the triangles represent their

respective agents. Now if this diagram is a simulation of a

physical experiment, the triangles will not be able to overlap

each other. The paths of these two agents, however, cross in

order to reach the optimal point. This will result in a collision rendering the results of this

experiment useless. In order for every experiment to be successful, a collision avoidance scheme

must be implemented with the shortest-distance algorithm.

3.2 Zone Offset Method

 To avoid collision at or before the rendezvous point in limited cases, the zone offset

method is used. This method gives an offset in position to each agent with respect to a certain

formation. The modified equation is as follows,

Figure 3.1: Paths of agents
demonstrating collision in an

experiment run

14

 !! ! = ! !"#(!!(!) − (!!
!∈!! !

! + ℎ)) + !(!!! !! ! + ℎ − (!! ! + ℎ)),! (3.1)

where h represents the offset value. h is different for every agent to develop a certain formation.

For example, figure 3.2 shows the difference between the paths taken by agents from equation

(2.11) versus equation (3.1). Figure 3.2 (a) exhibits how paths will first join and collectively

approach the rendezvous point. By implementing a zone offset, as shown in figure 3.2 (b), the

paths not only avoid merging, but they maintain a formation throughout the entire run, even after

arriving at the point. The virtual center of all agents will be on the final point, thus fulfilling the

objective.

 The zone offset, however, is a very inefficient way to solve the collision avoidance

problem since the issue of overlapping paths if regions are changed still remains.

3.3 Possible Solutions

Bumper Collision Re-routing

 This scheme uses the bumpers provided on the robots. If the bumper on the robot(s) is

activated, the robot will reverse drive for a given distance and stop moving. The stop duration

will be the number of the robot in the experiment (eg. robot 1 will stop for 1 second). This way,

all robots will reach the rendezvous point even if collision(s) occur.

Figure 3.2: (a) Shortest-distance algorithm. (b)
Shortest-distance algorithm with zone offset

15

 This method fails in this particular physical system due to the break in the continuous

algorithm. When the bumpers are activated, the robots cannot receive control commands or send

encoder information. They are left with the previous control values thus giving incorrect

information in the next time step. Also, when the robots are required to drive in the reverse

direction instead of obeying the control law, the controller as well as the neighbors are

misinformed about the agent’s location. Additionally, the infrastructure is built in such a way that

the robots become disabled to new control commands after bumpers are activated. Lastly, if the

method results in success, it does not guarantee a perfect or close resulting final average position

to the optimal point.

Chivalry

 For this solution to work, one major assumption must be made – all agents are able to

communicate with each other. This method is similar to the bumper collision re-routing

procedure. When two robots are about to collide, the robot with a higher robot number will stop

and allow the other to continue. In cases of multiple agents colliding, the most “chivalrous” agent

will stop for the longest period.

 The problems associated with this technique are similar to the previous one. The stop

period overrides the control law, which might break the continuous operation of the algorithm.

The assumption of an undirected network topology also takes out a very large aspect of this

experiment. Lastly, as mentioned for the previous method, the resulting position average of all

agents might not be close enough to the optimal point.

Potential Functions

 This technique offers a solution to enforce collision avoidance by using special functions

for neighbors and non-neighbors. A network topology between all agents is set before the

experiment is initiated. An agent will have complete information about its neighbors and will use

16

a potential function to keep a certain distance away from them but also stay close enough to

achieve rendezvous in a process known as swarming. For non-neighbors, a different potential

function will be used. If a non-neighbor enters an agent’s field of vision, communication is

established. While in this field, the agent tries to keep a certain distance away from the non-

neighbor. If the non-neighbor leaves the field of vision, communication is lost.

 This method assumes the technology to make and break communication between at any

point during the experiment. It also assumes agents to have sensors to identify neighbors from

non-neighbors in the field of vision. In this experiment, due to the lack of such technology,

position data is given to the potential function for non-neighbors at all times, but is only used if a

non-neighbor enters an agent’s field of vision. Due to the highest possibility of implementation,

this solution is chosen.

3.4 Potential Functions

 The derivative of the potential function for a non-neighbor agent is as follows,

!!!"!
!!!

=

0, !! − !! > !
2! !! − !! sin 2! !! − !! − !!"

!! − !!
, !!" < !! − !! ≤ !

20 !! − !!
!! − !!

!! − !! − !!"
!! − !!

, !! − !! ≤ !!"

,

where !!" represents the radius of the robot and ! represents the maximum radius of vision. The

potential function itself is shown in figure 3.3. The function decreases to the point of !!" and has

a slight increase before saturating to a fixed value. The flat section of the graph represents the

non-neighbor being outside of the field of vision. As the non-neighbor approaches to the low

17

point in the function, the agent must start making distance between the two. This will avoid the

two colliding.

 The derivative of the potential function for a neighbor agent is as follows,

!!!"!
!!!

=

!! − !!
!! − !!

!! − !! − !!"
!! − !! − ! ! !!" < !! − !!

20 !! − !!
!! − !!

!! − !! − !!"
!! − !!

, !! − !! ≤ !!"

The potential function plot for this equation is shown in figure 3.4. For the neighboring agents,

swarming is used to keep the agents close enough together while maintaining a safe distance to

avoid collision. When the distance !! − !! approaches !!", the function !!"! decreases in value.

In order to counter this action, the controller must use the derivatives negatively. In the figure, !!"

is 2 and ! is 2.5. The ! in the function for neighbors simply represents how far one is willing to

allow the neighbors to go before swarming.

Figure 3.3: Potential function designed for non-neighbors (!!" = 2,! = 2.5)

18

By combining the algorithm in (2.11) and the potential functions from [2], we can attain

an algorithm to achieve proper rendezvous without physical collision. The revised algorithm is as

follows,

!! ! = −!!!"# !!!"

!!!!∈!! !
+ !(!!!(!!(!)) − !!(!))!

!

(3.2)

The signum function in this equation returns the vector of magnitude in the quadrant in which the

average of the potential function lies. As mentioned earlier, the term including the derivate of the

potential functions is used negatively in order to keep away from other agents while swarming.

Figure 3.4: Potential function designed for neighbors (!!" = 2,! = 2.5)

19

Chapter 4: Hardware and Software

4.1 iRobot Create

The Create is mobile ground robot created by iRobot for research purposes. It is based on

the commercially available Roomba robotic vaccuum cleaner. The reason for using this robot is

for ease of programming, experimentation, and availability.

4.1.1 Model

 The model used is known as differential drive kinematics. The robots take wheel velocity

commands, which are calculated using linear and angular velocities from the controller. Since

ARIA does not interface with iRobot Creates, a wrapper, developed by Scott Marchant, have

appropriate values sent to the robots.

4.1.2 Specifications

iRobot Create

- Velocity Range: -500 to 500 mm/s

- Encoder Range: -32768 to 32767

- Commands refresh rate: 15ms

4.1.3 Commands

Drive: [145][Right velocity high byte][Right velocity low byte][Left velocity high byte][Left

velocity low byte]

Distance: [142][2]

20

4.1.4 Errors

- Inefficient encoders calculate incorrect distance measurements

- When bumpers are activated, the robots are unable to take in new commands, thus disrupting the

experiment

4.2 Bluetooth

The Bluetooth modules are mounted on each robot into a port. These modules are specially

designed for the iRobot Create. The Bluetooth dongle is connected to the central computer and

communicates with all the robots simultaneously during the experiment.

4.2.1 Specifications

Element Direct Bluetooth Adapter Module (BAM)

 - Range: 500ft

 - Frequency: 2.4GHz

 - Ability to combat external RF interference

4.2.2 Errors

- Delay in transmitting and receiving information every 15ms (due to the Create refresh rate) plus

the Bluetooth delay. This can provide inaccurate information and transmit false commands.

- Multiple agents can introduce further delay in communication.

21

4.3 Overhead Camera

The overhead camera is a wired webcam connected to the central computer. This camera

works as an onboard sensor for the robots. The camera uses computer vision algorithms to detect

printed markers placed on each robot to identify the pose and robot number on a 2D plane.

4.3.1 Model

The computer vision algorithm from ArToolkit uses the basic pinhole model, where the

z-axis is perpendicular to the camera and the observed plane. The resulting image has the x and y

axis.

4.3.2 Specifications

Logitech® Webcam C600

 - 2.0-megapixel sensor

 - 1600x1200 resolution

4.3.3 Errors

- Improper lighting can make the camera completely useless

- Image will be skewed due to improper fixture of the camera

- Camera has a limited field of view. If robots (with patterns) leave this field, their pose

information will only come from the encoders

- FPS lag can give improper position coordinates

- Image blur will restrict the CV algorithm from detecting patterns

22

4.4 Computer

 This is the central authority that bring the entire experiment together (robots and camera).

The robots simply act as dummies to the computer’s commands, which are given after computing

position data and various other variables.

4.4.1 Specifications

CPU: Intel® Core™ i7 Processor 3.33GHz

RAM: 12Gb

4.5 Software

The central computer runs on Ubuntu 10.10, Maverick Meerkat. All the software used are

provided and licensed.

4.5.1 Programs

Netbeans – Used for camera calibrations

MobileSim – A simulator using the model of the physical robot. This program is linked with

ARIA, therefore the simulation is conducted using the C++ code.

MATLAB – Used to test and simulate algorithms before implementing them in C++.

MATLAB Simulink – Toolkit in MATLAB usedin development of block models of the

controllers and easier scripting of the algorithms.

Sublime Text 2 – Text editor used for programming.

23

QT Creator – Used in developing Graphical User Interface and pattern position detector code

using the CV tools.

4.5.2 Libraries and Tools

Advanced Robot Interface for Applications (ARIA) – Libraries used in development of the entire

project. Provides functions and tools to create architecture, network, and controllers for the

experiments.

ArToolkit – Computer Vision tools used in detecting patterns through camera data and extracting

pose on an x-y plane.

Eigen – Library used to define Matrix types and perform linear algebraic operations with ease.

4.6 Architecture

 The main project’s architecture, developed by Scott Marchant, consists of three

levels: Driver, Client, and Server. Networking through these three layers are done using TCP. The

Figure 4.1: Patterns used for detecting robot pose by ArToolkit

24

library used for this process is known as ArNetworking (a subset of ARIA). Please refer to

figures 4.2 and 4.3 for a better visual understanding.

The architecture is set up in such a way where that if each robot had an on-board

computers, there would be no need for a central computer. The control law for each robot would

be calculated on the on-board computer using data from the prioceptive sensors.

4.6.1 The Driver

 The driver is the commander on what formation the robots shall take and what path they

should follow. The driver only sends information and never receives any. In this project, since

there is no typical formation or a path to follow, the driver portion of the architecture is omitted.

The algorithm simply results in a rendezvous.

4.6.2 The Client

 This portion is where all of the control calculations take place. The client receives

information from the driver (not necessary in this experiment) and from the servers. A client

exists for every robot and is able to communicate with servers set through the neighbor topology.

In figure 4.2 (a), client 1 can receive information from servers 1, 2, and 3, but not from server 4.

Client 1 receives position data from 1, 2, and 3 from the encoders and camera, and computes

control commands from the algorithm and sends them to server 1.

4.6.3 The Server

 The server is the commander for the robots. The server receives information from the

encoders and camera about its robot’s position and sends this data to its own client and its

neighbors’ clients. There exists one server for each robot.

25

4.6.4 The GUI

 The graphical user interface (ConsensusGUI), developed by Scott Marchant, is used for

presetting various elements. It is used to set up the neighbor topology, decide the number and

type of robots used, what controller to use, and what formation and path is needed. The GUI also

helps boot up all the driver, clients, and servers, and set up the communication between them.

Driver

Client 1 Client 2 Client 3 Client 4

Server 1 Server 2 Server 3 Server 4

Figure 4.2 (a): The architecture based on the given neighbor topology (driver is omitted in this experiment)

1 2

3 4

Figure 4.2 (b): The neighbor topology
(direction of arrow represents the path of

information transfer)

26

Client

Server

Robot

Camera

Weighted Position Data Velocity Control Commands

Encoder Pose Data

Robot Pose through ArToolkit

Robot Commands

Figure 4.3: Simple block diagram showing information flow through the
experiment

27

Chapter 5: Tests and Results

5.1 Implementation Process

 There is a formal process before implementing any type of change into the C++

algorithm. The reason for this is that it might be very difficult to catch an error that can

potentially disrupt the experiment in the future.

To avoid this, an algorithm (or change) is first tested using MATLAB and Simulink. The

simulations give a good visual on what the controller does and what values are being calculated.

Any errors and irregularities can be easily spotted and fixed. After that, the controller or change is

developed in C++ as a class (to fit into the pre-built architecture). Before testing the physical

experiments, simulations are conducted in MobileSim. These simulations use the C++ code to run

and use the physical models of the robots. Even though MobileSim might not use the same

scaling factor values in the algorithms, it still shows whether the controller works or fails. Before

entering physical experiments, the camera is calibrated to avoid any erroneous pose readings.

Once all preparation is complete, the physical experiments with the iRobot Create robots are

conducted.

5.2 Shortest-Distance Controller

 The algorithm in (2.1) is first simulated using MATLAB and Simulink. The projection

component needed to be tested thoroughly (shown in figures 2.2 and 2.3) before testing the entire

controller. Once the controller was tested and delivered successful results, the scaling parameter

! needed to be tuned. It was then discovered that ! needed to be tuned according to the size of

the x-y plane. If the scale is bigger, the projection values are larger, which overpowers the signum

28

function term. Figure 5.1 demonstrates a successful MATLAB simulation of the algorithm in

(2.1). The phenomena of agents merging and collectively moving towards the optimal point,

shown in figure 3.2 and explained in section 3.2, is demonstrated in this simulation.

To implement this in C++, the pre-built architecture must be thoroughly understood and

all the components must be correctly working. When simulating on MobileSim, it was realized

that another scaling constant was required. This resulted into the algorithm in (2.11). After finally

physically experimenting the controller, the parameters ! and ! are tuned. For the experiment

environment this project is done in, ! = 20 and ! = 0.1. The following figure shows a snapshot

of the starting and final positions of the robots using the controller with ellipse regions. The final

position of the robots might not necessarily average to the optimal point due to camera skew and

erroneous information but the result is still very close.

Figure 5.1: MATLAB Simulation using the basic shortest-
distance consensus controller (! = 2000)

29

5.3 Shortest-Distance Controller with Zone Offset

Using the algorithm in (3.1), multiple MATLAB simulations tuned the offset parameter ℎ

to be 200. The result is shown in the figure below.

3

4 1

2 3

4 1

2

Figure 5.2: Physical robot experiment demonstrating shortest-distance control (a) Start robot positions (b) Final robot
positions

Figure 5.3: MATLAB Simulation using the shortest-distance
consensus controller with a zone offset

(! = 2000,! = 1, ℎ = 30)

30

The implementation done in C++ is shown in the start and final figures below. After

multiple physical experiments, the best value of the offset parameter ℎ is 20.

As mentioned in a previous chapter, the zone offset tends to fail in circumstance that

involves agents crossing paths. This problem is recognized in the following figures. If the

regions are noticed in figure 5.5 (a), the blue and cyan agents switch sides to be closer to their

respective regions. The same is demonstrated in (b) except all the agents intersect due to opposite

agent formation and region locations.

Figure 5.4: Physical robot experiment demonstrating shortest-distance control with zone offset (a) Start robot positions
(b) Final robot positions

4 1

3 2

4 1

3 2

Figure 5.5: MATLAB Simulations demonstrating failure of shortest -distance control with a zone offset

31

5.4 Shortest-Distance Controller with Collision Avoidance

 The final controller stated in (3.2) required several simulations to get proper values for

all the parameters. The resulting values for the parameters in the MATLAB simulations are:

! = 300,! = 0.1,! = 500,!!" = 250.

 As shown in figure 5.5, the agents have a “reason” to intercept paths due to the location

of their regions but are not able to because of the potential functions. Throughout the experiment,

no two or more agents ever overlap each other.

Figure 5.6: MATLAB Simulations demonstrating the shortest-distance control with collision avoidance from different
starting locations

32

 Figures 5.7 and 5.8 use the following values for the parameters: ! = 100,! = 0.1,! =

2000,!!" = 1000. With such values, the collision avoidance scheme works with any region

orientation.

4 3

1 2

4 3

1 2

1

2

3

4

Figure 5.7: MobileSim Simulation (a) Start (b) Final

4 3

1 2

4 3

1 2

Figure 5.8: Physical robot experiment demonstrating the shortest-distance control with collision avoidance (a) Start
robot positions (b) Final robot positions

33

Chapter 6: Conclusion and Future Work

6.1 Conclusion

 This paper demonstrates the shortest-distance consensus controller derived in [1] in an

experimental fashion. It shows how the controller can be implemented, what changes must be

made, and the process of experimentation. It solves the problem of achieving rendezvous in a

multi-agent system under directed and undirected network topologies in a physical robot system.

The location for rendezvous is determined by the average center of all regions. This point is

found by every agent weighting its projection onto its region to the direction of its neighbors.

Through physical experiments it is realized that a collision avoidance scheme is necessary for the

controller to work in any given case. By combining the algorithm in [1] and potential functions

derived in [2], it is possible to develop a scheme to avoid robot collision while maintaining a

swarm all the way to and the final rendezvous point. Even through various extraneous errors

caused by the low-cost system, the experiments are successful in achieving the desired goal.

6.2 Possible Improvements

 There are many possible improvements that can be added to this project. For one, the

technology used can be upgraded for a better result in experimentation. By using robots with

strong encoders and radar sensors, it is possible to eliminate the use of the camera. Another

option would be to use a better camera with a stronger fixture to achieve improved pattern

detection thus leading to a more precise pose. In addition to distance measurements, the

communication between the central computer and the robots can be improved by using Xbee®

34

wireless RF modules. This technology will ensure faster communication, which will result in

more efficient commanding of the robots.

 Alongside technology improvements, the software has areas that might cause problems as

well. The architecture, though robust, uses tools not directly supported for the iRobot Create

robots. A better option to ARIA would be to use Robot Operating System (ROS). The libraries

included can be of great help and are used widely in modern research and experimentation.

6.3 Future Work

 There are several directions that this research might progress into. An addition to this

project itself can be to implement dynamically changing regions through the continuous operation

of the experiment. The collision avoidance scheme can be improved and implemented in

autonomous transportation systems, robotic research, and many more.

 Applications can range from domestic and educational use to military and space

implementations. As demonstrated in the motivation of this paper, there is use for such military

technology (using autonomous robots). In space, satellites can easily rendezvous without relying

on a high magnitude of communication.

35

References

[1] P. Lin, W. Ren, “Distributed Shortest Distance Consensus Problem in Multi-agent Systems”,
in Proceedings of IEEE Conference on Decision and Control, 2012, pp. 4696–4701.

[2] Y. Cao, W. Ren, “Distributed Coordinated Tracking With Reduced Interaction via a Variable
Structure Approach”, IEEE Transactions on Automatic Control, vol. 57, no. 1, pp. 33–48,
2012.

[3] Y. Cao, D. Stuart, W. Ren, “Distributed Containment Control for Multiple Autonomous
Vehicles With Double-Integrator Dynamics: Algorithms and Experiments”, IEEE
Transactions on Control Systems Technology, vol. 19, no. 4, pp. 929-938, 2011.

[4] W. Ren, H. Chao, W. Bourgeous, N. Sorenson, Y. Chen, “Experimental Validation of
Consensus Algorithms for Multivehicle Cooperative Control”, IEEE Transactions on Control
Systems Technology, vol. 16, no. 4, pp. 745-752, 2008.

[5] W. Ren, “Consensus Tracking Under Directed Interaction Topologies: Algorithms and
Experiments”, IEEE Transactions on Control Systems Technology, vol. 18, no. 1, 2010.

[6] H. Hirai, F. Miyazaki, “Dynamic Coordination Between Robots: Self-Organized Timing
Selection in a Juggling-Like Ball-Passing Task”, IEEE Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics, vol. 36, no. 4, pp. 738-754, 2006.

[7] R. O’Grady, A. L. Christensen, M. Dorigo, “SWARMORPH: Multirobot Morphogensis

Using Directional Self-Assembly”, IEEE Transactions on Robotics, vol. 25, no. 3, pp. 738-
743, 2009.

Special Thanks to:

- Scott Marchant, Nathan Sorenson, Larry Ballard, and Steven Swenson for developing the

architecture

- Vaibhav Ghadiok for guidance

