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Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits
access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells.
The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter
deconstruction carried out by tropical soil bacteria make these organisms useful templates
for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1
was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in
Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source
of the isolate was tropical forest soils that decompose litter rapidly with low and
fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play
an important role in decomposition. We have used transcriptomics and proteomics to
examine the observed increased growth of SCF1 grown on media amended with lignin
compared to unamended growth. Proteomics suggested accelerated xylose uptake and
metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin
degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase
enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins.
We also observed increased production of NADH-quinone oxidoreductase, other electron
transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters.
This suggested the use of lignin as terminal electron acceptor. We detected significant
lignin degradation over time by absorbance, and also used metabolomics to demonstrate
moderately significant decreased xylose concentrations as well as increased metabolic
products acetate and formate in stationary phase in lignin-amended compared to
unamended growth conditions. Our data show the advantages of a multi-omics approach
toward providing insights as to how lignin may be used in nature by microorganisms coping
with poor carbon availability.

Keywords: decomposition, anaerobic metabolism, phenol degradation, 4-hydroxyphenylacetate degradation

pathway, catalase/peroxidase enzymes, glutathione S-transferase proteins

INTRODUCTION
Lignocellulose is the most abundant biopolymer on earth, and a
recent joint analysis by the DOE and USDA shows that there is
sufficient national supply to make lignocellulosic biofuels tech-
nically feasible (Perlack, 2005). Development of renewable, sus-
tainable biofuels from plant feedstock material has emerged as a
key goal of the US Department of Energy. The use of lignocel-
lulose as a renewable energy source has many advantages, above
all that lignocellulose production is domestic and independent of
food agriculture (Lee et al., 2008). The deconstruction of plant
biomass is a key first step in the conversion of plant sugars to
biofuels, though this step has posed a great challenge to mak-
ing biofuels economically viable. The major hurdles involve lignin
occlusion of cellulose, as well as lignin derivatives that inhibit lig-
nocellulose deconstruction and fuel synthesis (Lee et al., 2008).
Lignin comprises up to 25% of plant biomass (Wei et al., 2009),

and as such is an abundant and potentially valuable waste stream
that is currently burned to produce energy as heat (Jaeger and
Eggert, 2002). Our primary goal is to improve biofuel production
through better saccharification of pretreated feedstock (switch-
grass) from pathways and enzymes of anaerobic bacterial lignin
degraders. By characterizing anaerobic lignin degradation in the
bacterium Enterobacter lignolyticus SCF1, we may be able to incor-
porate these enzymes and pathways into metabolic engineering of
biofuel- and biodiesel-producing bacteria. These discoveries also
promise to provide insight to the natural processes of bacterial
lignin decomposition.

Tropical soils are responsible for near complete decomposition
of leaf plant litter in as little as 18 months (Parton et al., 2007).
There is an apparent contradiction of tropical forest soils, where
rapid and efficient lignocellulose mineralization proceeds rapidly
under low or fluctuating redox conditions. Rapid decomposition
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may be fueled by fluctuating redox conditions that regenerate oxi-
dized iron; up to 10% of tropical bacteria are capable of iron
reduction (Dubinsky et al., 2010). Resident microbes are adapted
to the low and fluctuating redox potential in the soil (Silver et al.,
1999, in press; Pett-Ridge et al., 2006), in contrast to temperate
systems where oxidative enzyme activities are rate-limiting for
decomposition (Paul and Clark, 1996; Freeman et al., 2001; Fierer
et al., 2009). Thus wet tropical soils are attractive targets for dis-
covery of bacterial lignin-degraders, which would be amenable to
industrial engineering and efficient for removing lignin inhibitors
to cellulose availability for biofuels.

Though fungi are considered primary decomposers, capabili-
ties for genetic manipulation fungi are not as well-developed as
for other biological systems, and current fungal enzymes of com-
mercial interest have been too non-specific and too expensive to
produce industrially. Fungi have well-characterized mechanisms
for breaking open lignin phenol rings via oxygen free-radicals
generated by dioxygenase enzymes (Sánchez, 2009; Fujii et al.,
2013). Though fungi are thought to dominate decomposition in
terrestrial ecosystems, few fungi are known to be able to toler-
ate the frequent anoxic conditions characteristic of tropical forest
soils (Boer et al., 2005; Baldrian and Valášková, 2008). Based on
previous observations of considerable anaerobic decomposition
in the lab and field (Pett-Ridge and Firestone, 2005; DeAngelis
et al., 2010a,b, 2012), we suspect that tropical soil bacteria play
a larger role in decomposition under anaerobic and fluctuating
redox conditions.

Few bacteria are known to degrade lignin, and even fewer
anaerobically. Known potential lignin-degrading bacteria are in
the groups α-proteobacteria, γ-proteobacteria, Firmicutes and
Actinomycetes (Bugg et al., 2011b) and most bacteria employ
extracellular peroxidases, which require oxygen availability (Bugg
et al., 2011a). For example, the novel isolates in the phylum
Firmicutes Bacillus pumilus strain C6 and Bacillus atrophaeus
strain B7 were identified to have very high laccase activity as well
as the ability to aerobically degrade Kraft lignin and the lignin
model dimer guaiacylglycerol-b-guaiacyl ether (Huang et al.,
2013). Many bacterial processes have been successfully engineered
into consolidated bioprocessing for biofuels, such as cellulose
conversion to sugars (saccharification) and ionic liquid pretreat-
ment tolerance (Blanch et al., 2008; Lee et al., 2008; Singh et al.,
2009), with an emerging role for bacterial lignin degradation
(Bugg et al., 2011b). Among anaerobic bacterial lignin or phenol
degraders, Sphingomonas paucimobilis SYK-6 produces a β-aryl
etherase (Masai et al., 2007), and Rhodococcus sp. RHA1 con-
tains a β-ketoadipate pathway (McLeod et al., 2006); Kocuria and
Staphylococcus also likely degrade phenol (DeRito et al., 2005).
Another Enterobacter species, E. solis strain LF7, was isolated
from tropical forest soils in Peru based on its ability to degrade
alkali lignin as a sole C source under aerobic growth condi-
tions (Manter et al., 2011). E. solis strain LF7 and our strain
E. lignolyticus SCF1 share 97% sequence identify for their 16S
ribosomal RNA genes, which is a relatively low homology for
the Enterobacteraceae. E. lignolyticus SCF1 is a γ-proteobacteria,
and a novel isolate in the class Enterobacterales which has been
previously shown to be capable of anaerobic lignin-degradation
(DeAngelis et al., 2011), though the mechanisms are unknown.

The facultative anaerobe E. lignolyticus (formerly cloaceae)
SCF1 was originally isolated on lignin as sole C source from
soil in the El Yunque Experimental Forest, Puerto Rico, USA
(DeAngelis et al., 2011). The genome sequence of SCF1 sug-
gested that two multi-copper oxidases (putative laccases) and a
putative peroxidase may be involved in lignin degradation, with
one or more glutathione S-transferase (GST) proteins involved
in cleaving β-aryl ether linkages. This is the case with LigE/LigF
in S. paucimobilis, where lignin is degraded by way of the pro-
tocatechuate pathway, catalyzed in part by the protocatechu-
ate 4,5-dioxygenase enzyme LigB and the extradiol dioxygenase
LigZ (Masai et al., 2007; Peng et al., 2008). However, SCF1
does not posses the core protocatechuate and 3-O-methylgallate
degradation pathways found in S. paucimobilis. Instead, lignin
catabolism seemed likely to proceed via homoprotocatechuate
through the 4-hydroxyphenylacetate degradation pathway, a gene
cluster that is conserved among the Enterobacter and Klebsiella
(Bugg et al., 2011a). In this study, we use proteomics, transcrip-
tomics, metabolomics analysis and measures of enzyme activities
to characterize the mechanism by which E. lignolyticus SCF1 is
able to degrade lignin during anaerobic growth conditions.

METHODS
CULTIVATION CONDITIONS
For the lignin degradation experiment, cultures were initially
streaked onto 10% tryptic soy broth (TSB), 1.5% agar plates, then
transferred after 24 h to 10 ml modified LS4D minimal media
(also referred to as xylose minimal media), which consists of
8 mM MgCl2, 20 mM NH4Cl, 2.2 mM KH2PO4, 2 mM Tris-Cl,
0.6 mM CaCl-2H20, and 0.8% xylose, buffered to pH 7. These
liquid cultures were incubated anaerobically for 24 h, until the
optical density at 600 nm achieved about 0.140 OD. At this point,
0.6 ml of cell culture was transferred to 100 ml of xylose mini-
mal media with and without 0.05% lignin. The lignin used in
these studies was alkali lignin (Sigma 45-471003), selected based
on relative solubility in water and low molecular weight. Cultures
were grown anaerobically in serum bottles with 5% hydrogen, 5%
CO2, and 90% (balance) N2 as headspace at 30◦C. During the
48 h growth, cell counts (by DAPI direct counts and optical den-
sity at 600 nm) and lignin degradation (by change in absorbance
at 310 nm) were measured. Samples were immediately placed
at −80◦C until further analysis. For analyzing supernatants, sam-
ples were filtered through a 0.22 um syringe filter into a sterile
microplate, with 200 uL of sample in each well covered with
sterile, pierce-able foil.

OXIDATIVE ENZYME ASSAYS
To perform measurements of oxidative enzyme activity, cells were
grown as above in xylose minimal media, and then amended with
L-3,4-dihydroxyphenylalanine (L-DOPA). L-DOPA is a lignin
analog, where reduction causes a color change detectable colori-
metrically (Saiya-Cork et al., 2002). For aerobic analysis, SCF-1
was grown in xylose minimal media broth for 12 h at 30◦C with
shaking at 200 RPM (for aerobic growth; no shaking for anaerobic
growth) until an average OD at 600 nm of 0.9 was reached, indi-
cating late log phase based upon previous growth curves of this
organism grown aerobically. For anaerobic analysis, SCF-1 was
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grown anoxically in xylose minimal media broth for 24 h until
an average OD at 600 nm of 0.1 was reached, indicating late log
phase based upon previous growth curves of this organism grown
anoxically. For phenol oxidase and peroxidase assays, 25 mM
L-DOPA substrate was prepared the same day as analysis, with 3%
H2O2 added for peroxidase assays. Phenol oxidase and peroxidase
were also measured using 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid) (ABTS) based on a published protocol (Floch
et al., 2007). The ABTS assays were prepared in the same way
as for the L-DOPA assays, where 2 mM ABTS was prepared, and
these assays performed only on aerobically grown cells. To mea-
sure enzyme activity, 500 uL of cell culture was combined with
500 uL of substrate. Time was recorded from the time substrate
was added to cell culture. Measurements were made at absorbance
at 460 nm. Each plate contained three biological replicates for
each assay, with eight technical replicates (wells) for each. For
each assay, negative controls included media, cell culture, and
media and substrate, and signal OD was calculated as: [(Assay
Value – Blank) – (Reference Standard – Blank)] where the blank
was media only, and the reference standard was media + DOPA or
ABTS. This accounted for any activity of trace metals in the media
(i.e., Mn and Fe). ABTS rates are reported as mU (106 cells)−1,
which is milliunits of ABTS (or 10−3 units) per million cells.

PROTEOMICS
After 48 h of growth, cells grown in lignin-amended or una-
mended xylose minimal media (as detailed above) were har-
vested for proteomics and transcriptomics assays. This time point
was chosen based on strong differences observed between lignin
degraded and cell growth in amended vs. unamended conditions,
with no further growth or significant lignin degradation observed
after around this time. For this analysis, three biological replicates
of cells grown in lignin-amended and unamended conditions
were analyzed. A methanol/chloroform extraction was done on
the supernatant to separate the protein, metabolites and lipids. Ice
cold (−20◦C) cholorform:methanol mix [prepared 2:1 (v/v)] was
added to the sample in a 5:1 ratio over sample volume and vigor-
ously vortexed. The sample was then placed on ice for 5 min and
then vortexed for 10 s followed by centrifugation at 10,000 xg for
10 min at 4◦C. The upper, water soluble metabolite phase and the
lower, lipid soluble phase were collected into separate glass vials,
and both samples were dried to complete dryness in a speed vac
and then stored at −80◦C until analysis. The remaining protein
interlayer was placed in a fume hood to dry.

The protein pellet was resuspended in 8M urea and assayed
with Bicinchoninic acid (BCA) (Thermo Scientific, Rockford, IL)
to determine the protein concentration. 10 mM DTT was then
added to the sample, sonicated and incubated at 60◦C for 30 min
with constant shaking at 800 rpm. Samples were then diluted 8-
fold for preparation for digestion with 100 mM NH4HCO3, 1 mM
CaCl2 and sequencing-grade modified porcine trypsin (Promega,
Madison, WI) was added to all protein samples at a 1:50 (w/w)
trypsin-to-protein ratio for 3 h at 37◦C. The samples were cleaned
using Discovery C18 50 mg/1 mL solid phase extraction tubes
(Supelco, St.Louis, MO), using the following protocol: 3 mL of
methanol was added for conditioning followed by 2 mL of 0.1%
TFA in H2O. The samples were then loaded onto each column

followed by 4 mL of 95:5: H2O:ACN, 0.1% TFA. Samples were
eluted with 1 mL 80:20 ACN:H2O, 0.1% TFA. The samples were
concentrated down to ∼30 μL using a Speed Vac and a final was
performed to determine the peptide concentration. The samples
were then vialed for mass spectrometric analysis.

To generate the AMT database, pooled samples of equal mass
from each biological replicate of the lignin and xylose samples
were combined and run using a custom built 2D-LC system using
two Agilent 1200 nanoflow pumps and one 1200 capillary pump
(Agilent Technologies, Santa Clara, CA), various Valco valves
(Valco Instruments Co., Houston, TX), and a PAL autosam-
pler (Leap Technologies, Carrboro, NC). Full automation was
made possible by custom software that allows for parallel event
coordination and therefore near 100% MS duty cycle through
use of two trapping columns and two analytical columns. All
columns were manufactured in-house by slurry packing media
into fused silica (Polymicro Technologies Inc., Phoenix, AZ) using
a 1-cm sol-gel frit for media retention [a PNNL variation of
Maiolica et al. (2005)]. Samples were run as 15 fractions separated
in the 1st dimension by SCX fractionation and reversed-phase
separation in the 2nd dimension. Mobile phases consisted of
0.05% ACN in Nano H20 (A) and 500mM Ammonia Formate
(B) and 0.1% formic acid in water (A) and 0.1% formic acid
in acetonitrile (B) for the 1st and 2nd dimensions respectively.
Supplemental Table 1 describes the change in mobile phase for
each fraction.

MS analysis was performed using a Velos-LTQ-Orbitrap mass
spectrometer (Thermo Scientific, San Jose, CA) outfitted with a
custom-built electrospray ionization (ESI) interface. Electrospray
emitters were custom made using 150 um o.d. × 20 um i.d.
chemically etched fused silica (Kelly et al., 2006). The heated
capillary temperature and spray voltage were 300◦C and 2.2 kV,
respectively. Data was acquired for 100 min, beginning 65 min
after sample injection and 15 min into gradient. Orbitrap spectra
(AGC 1 × 106) were collected from 400–2000 m/z at a resolution
of 60 k followed by data dependent ion trap CID MS/MS (colli-
sion energy 35%, AGC 3 × 104) of the ten most abundant ions. A
dynamic exclusion time of 60 s was used to discriminate against
previously analyzed ions.

The quantitative samples were run using a custom HPLC sys-
tem configured using 65 mL Isco Model 65D syringe pumps (Isco,
Inc., Lincoln, NE), 2-position Valco valves (Valco Instruments
Co., Houston, TX), and a PAL autosampler (Leap Technologies,
Carrboro, NC), allowing for fully automated sample analysis
across four separate HPLC columns. Reversed-phase capillary
HPLC columns were manufactured in-house by slurry pack-
ing 5 μm Jupiter C18 stationary phase (Phenomenex, Torrence,
CA) into fused silica (Polymicro Technologies Inc., Phoenix, AZ)
using a 0.5 cm sol-gel frit for media retention [a PNNL varia-
tion of Maiolica et al. (2005)]. Mobile phases consisted of 0.1%
formic acid in water (A) and 0.1% formic acid in acetonitrile (B).
The mobile phase flowed through an in-line Degassex DG4400
degasser (Phenomenex, Torrance, CA). The HPLC system was
equilibrated at 10k psi with 100% mobile phase A. Fifty min after
sample injection the mobile phase was switched to 100% B, which
created a near-exponential gradient as mobile phase B displaced A
in a 2.5 mL active mixer. A 35 cm length of 360 μm o.d. × 15 μm
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i.d. fused silica tubing was used to split ∼18 μL min−1 of flow
before it reached the injection valve (5 uL sample loop). The split
flow controlled the gradient speed under conditions of constant
pressure operation (10 k psi). Flow through the capillary HPLC
column when equilibrated to 100% mobile phase A was ∼400 nL
min−1. MS analysis was identical to that of the 2D system.

The Accurate Mass and Time (AMT) tag (Hixson et al.,
2006; Monroe et al., 2007) approach was applied to produce
quantitative peptide abundance data. This method is an LC-
MS approach which matches LC-MS features to a previously
generated database using the metrics monoisotopic mass and nor-
malized elution time (NET). Peptide sequences were identified
using the SEQUEST v.27 (rev. 12) search engine and then rescored
using MS-GF (Mass Spectum-Generating Function) (Kim et al.,
2008). The feature database was populated using identifications
having an MSGF Score ≤ 1E-9, partially/fully tryptic or protein
terminal as well as a peptide prophet probability ≥ 0.5. Features
from the 1-D analysis were matched to this database and filtered
using a uniqueness probability ≥ 0.51 to ensure specificity of the
match.

Peak matching of the 1D data was performed against the
AMT database for peptide identification and peptide abundance.
Identifications which referenced multiple proteins were removed
from the peptide list. The quantitative information was then ana-
lyzed using the analysis suite DanteR (Taverner et al., 2012).
Within this framework the data were log2 transformed and
normalized using median central tendency. Technical replicate
abundances were averaged to get the abundance value for each
biological replicate and required at least two abundance values
to be used. Each protein had its member peptides fit to a lin-
ear model treating media and peptide as fixed effects to estimate
the effect due to media and p-value significance. The generated
p-values were then adjusted to compensate for multiple compar-
isons using Benjamini–Hochberg p-value correction (Benjamini
and Hochberg, 1995). Proteins with a corrected p-value ≤ 0.05
were considered significantly differentially regulated. Additionally
each peptide was fit to a simple model comparing the effect size
and direction due to media and this was compared to that of the
protein results to ensure reliability of the protein model.

Metabolic pathway analysis was performed using Pathway
Tools software version 16.5 (Karp et al., 2002). Pathway-Genome
Database (PGDB) for SCF1 was previously generated (Khudyakov
et al., 2012) based on the genome annotation from the Joint
Genome Institute’s Integrated Microbial Genomics (IMG) sys-
tem (Markowitz et al., 2010), and supplemented with additional
Enzyme Commission numbers from Rapid Annotation using
Subsystem Technology (RAST) (Aziz et al., 2008). It has under-
gone minimal manual curation and may contain some errors,
similar to a tier 3 BioCyc PGDB (Karp et al., 2005). Data visual-
ization was performed using omics viewer on Pathway Tool (Paley
and Karp, 2006). Proteomics data can be found in the public
proteomics repository at omics.pnl.gov via the link http://www.

peptideatlas.org/PASS/PASS00294.

TRANSCRIPTOMICS
Cells were harvested after 48 h growth in lignin-amended or una-
mended xylose minimal media (as detailed above), in order to

analyze transcripts and proteins from the same samples. For this
analysis, the same three biological replicates of cells grown in
lignin-amended and unamended conditions were analyzed for
transcripts as for proteins. RNA was extracted using Invitrogen
TRIzol® Reagent (cat#15596018), followed by genomic DNA
removal and cleaning using Qiagen RNase-Free DNase Set kit
(cat#79254) and Qiagen Mini RNeasy™ kit (cat#74104). Agilent
2100 Bioanalyzer was used to assess the integrity of the RNA sam-
ples. Only RNA samples having RNA Integrity Number between 8
and 10 were used. For RNA-Sequencing, the Applied Biosystems
SOLiDTM Total RNA-Seq kit (catalog number 4445374) was used
to generate the cDNA template library. The SOLiDTM EZ Bead
system was used to perform emulsion clonal bead amplification
to generate bead templates for SOLiDTM platform sequencing.
Samples were sequenced on the SOLiDTM 4 platform. The 50-
base short read sequences produced by the SOLiDTM 4 sequencer
were mapped in color space using SOLiDTM BioScopeTM soft-
ware version 1.3 using the default settings to map the short reads
onto E. lignolyticus SCF1 (NC_014618) reference genome; both
the fasta and the GFF files can be obtained from NCBI genome
database (http://www.ncbi.nlm.nih.gov/genome). The output of
the Whole Transcriptome analysis generates (1) a gene counts file,
with the base counts summed to a single value across the entire
gene length, and with a RPKM value also given for each gene;
(2) a BAM file containing the sequence of every mapped read
and its mapped location; (3) two pairs of ∗.wig files (one pair for
the two strands on each chromosome) giving the mapped counts
at each base position; and (4) a statistics summary on align-
ment and filtering report. The transcriptomics data are available
at the NCBI BioSample database under the accession numbers
SAMN02302475–SAMN02302483.

METABOLITES
NMR data was acquired on a Varian Direct Drive (VNMRS) 600
MHz spectrometer (Agilent Technologies) equipped with a Dell
Precision T3500 Linux workstation running VNMRJ 3.2. The
spectrometer system was outfitted with a Varian triple resonance
salt-tolerant cold probe with a cold carbon preamplifier. A Varian
standard one dimensional proton nuclear Overhauser effect spec-
troscopy (NOESY) with presaturation (TNNOESY) was collected
on each sample, using the Chenomx standard data collection pro-
tocol: non-selective 90◦ excitation pulse, a 100 ms mixing time,
acquisition time of 4 s, spectral width of 12 ppm, and tempera-
ture control set to 25◦C. A presaturation delay of 1.5 s was used to
optimize water suppression. Metabolites analysis was performed
using NMR on media as well as cell-free supernatant samples after
60 h of growth. Collected spectra were analyzed using Chenomx
7.6 software (Edmonton, Alberta Canada), with quantifications
based on spectral intensities relative to 0.5 mM 2,2-dimethyl-
2-silapentane-5-sulfonate, which was added as a spike to each
sample.

HPLC was run on a Shimadzu LC-20AD liquid chromato-
graph with a DGU-20A5 degasser and SIL-20ACHT autosam-
pler, run by a CBM 20A control module. The CTO-20A oven
was equipped with an Aminex HPX-87H column and a Biorad
Microguard Cation H guard column at 30◦C. The machine
pumped 0.6 mL/min for the duration of the cycle, with 5 mM
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H2SO4 as running buffer. Each injection was 20 μL and was mea-
sured by an RID-10A refractive index detector for 30 min. A
xylose standard ran from 0.1% to 1% xylose in water, with an
R2 of 0.9798. The lowest peak was easily visible, and thus our
lower detection limit for this study was 0.1%, or 6.25 mM xylose.
Samples were run in triplicate.

RESULTS AND DISCUSSION
SCF1 is capable of degrading 56% of the lignin under anaer-
obic conditions within 48 h, with increased cell abundance in
lignin-amended compared to unamended growth (Figure 1).
Lignin degradation is measured by absorbance at 310 nm, where
decreases in absorbance indicate decreasing concentrations of
soluble phenolic and polyphenolic compounds (Ahmad et al.,
2010). During growth, we also observed color change of the cul-
tures, and production of bubbles that likely signify CO2 evolution
during the metabolism of the xylose and lignin in the media.
We performed experiments to observe lignin degradation during
growth on xylose minimal media amended with lignin, because
we were unable to detect growth of SCF1 on lignin as sole C
source under anaerobic conditions. While this strain was origi-
nally isolated growing anaerobically under conditions of minimal
agar media with lignin as the sole C source (DeAngelis et al.,
2011), the colonies took about 12 weeks to form, and we have
been unable to recreate these growth conditions in liquid media
for cell biomass sufficient to perform detailed genetic and pro-
teomic analysis. Because of this, genetic, metabolic and proteomic
analysis of lignin degradation is performed by comparing lignin-
amended xylose minimal media to unamended xylose minimal
media, and lignin degradation mechanisms and pathways are
inferred by differential gene expression and protein production.

Proteomics analysis produced 7883 unique peptides and 871
unique proteins. Our previous study showed that the SCF1
genome encodes 4449 protein encoding genes (DeAngelis et al.,
2011). There were 229 proteins that were significantly differ-
entially abundant between the lignin-amended and unamended

growth conditions. Of these, 127 proteins were at least 2-
fold up-regulated in the presence of lignin. Pathways with
the most hits included proteins associated with metabolism,
biosynthesis of secondary metabolites, and ABC transporters
(Supplemental Table 2). We further examined proteins and path-
ways likely associated with xylose degradation, lignin degrada-
tion, and dissimilatory lignin reduction to explore the ways in
which SCF1 might be gaining a growth advantage in lignin-
amended compared to unamended cultivation conditions.

Transcripts were sequenced as 50 bp tags on ABI SOLiD4, and
aligned to the SCF1 genome. Data (number of transcripts) was
normalized to reads per kilobase of gene per million reads. Of the
4716 genes detected by transcriptomics, 273 were differentially
regulated, and 147 were up-regulated in the lignin-amended com-
pared to the xylose only control (Table 1). These included mostly
genes associated with metabolism, biosynthesis and transporters
(Supplemental Table 3).

We chose to analyze both transcripts and proteins after 48 h
of anaerobic growth of SCF1 in lignin-amended and unamended
xylose minimal media. Sampling during stationary phase was
chosen because at this time point, cells had demonstrated lignin
degradation, and no further cell growth or significant lignin
degradation was observed after around this time. However, we
recognize that the choice of stationary phase likely precluded the
observation of many transcripts that may have been illuminating

Table 1 | Proteomic and transcriptomic data and differential

regulation in lignin-amended compared to unamended samples.

Unique Significant Up-regulated Down-

(P < 0.05) regulated

Peptides 7883 855 626 229

Proteins 869 285 207 79

Transcripts 4716 273 147 126

FIGURE 1 | Anaerobic growth and lignin degradation by E. lignolyticus

SCF1. (A) This replicated growth curve experiment (n = 3) shows increased
cell abundance with lignin, and decreased lignin over time. The arrow
denotes the time that samples were collected for transcriptomics,

proteomics and metabolomics studies. After 48 h of growth, color change in
the lignin media and bubbles indicating CO2 gas formation (B and C)

inoculated with SCF1 (bottles lig1–3) is evident when compared to the darker,
uninoculated control [“(−) ctl”].
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for lignin degradation. Indeed, at the gene level, there was little
observed overlap between the sequenced transcripts and the
observed expressed proteins: of the 871 unique proteins detected,
only 11 lignin up-regulated proteins and 4 lignin down-regulated
proteins were also observed in the transcripts (Table 2). These
constitutively expressed gene products detected by both methods
were likely important to growth and survival during the transi-
tion into stationary phase, because they had been expressed for
lignin degradation and continued to be expressed during tran-
sition into stationary phase. For the lignin-amended cultures,
the up-regulated and highly transcribed genes included mostly
transporters and proteins in the TCA cycle. A carbon starva-
tion protein CstA (Entcl_3779) encoding a predicted membrane
protein, also had significantly more transcript and protein in
lignin-amended conditions (Schultz and Matin, 1991). The CstA
protein is located just upstream of the 4-hydroxyphenylacetate

degradation pathway (Entcl_3796-3806), which is also the case
for E. coli (Prieto et al., 1996). Carbon starvation genes have long
been associated with metabolism of aromatic compounds (Blom
et al., 1992), and are thought to be a result of membrane toxicity
of hydrocarbons that can integrate into cell membranes and cause
a leak of the proton motive force (Sikkema et al., 1995). The CstA
protein is thought to be involved in transport of nucleic acids,
where expression is a hallmark of the cell trying to avoid entry
into stationary phase (Schultz and Matin, 1991; Kraxenberger
et al., 2012).

Genome sequence analysis of SCF1 had revealed a lack of
core protocatechuate and 3-O-methylgallate degradation path-
ways like those found in S. paucimobilis (Masai et al., 2007; Peng
et al., 2008). Instead, lignin catabolism seemed likely to proceed
via homoprotocatechuate through the 4-hydroxyphenylacetate
degradation pathway, a gene cluster that is conserved among

Table 2 | Genes significantly differentially detected both by transcriptomics and proteomics, where positive fold change in ratios of transcripts

or proteins indicates up-regulation in lignin compared to unamended growth, and negative fold-change indicates down-regulation in lignin

compared to unamended growth.

GeneID Protein description Pathway Fold change for

transcripts

Fold change

for proteins

Entcl_0332 Phosphoenolpyruvate carboxykinase (ATP)
(complement(365954..367573))

Citrate cycle (TCA cycle) 2.670 3.102

Entcl_3179 UspA domain-containing protein
(3394773..3395201)

None given 3.080 2.953

Entcl_4175 Periplasmic binding protein/LacI transcriptional
regulator (complement(4503494..4504456))

ABC transporters 2.170 2.796

Entcl_3779 Carbon starvation protein CstA (4066791..4068944) None given 2.670 2.701

Entcl_1304 Malic protein NAD-binding (1376647..1378926) Pyruvate metabolism 3.770 2.490

Entcl_0617 AI-2 transport system substrate-binding protein
(642484..643485)

ABC transporters 3.180 1.780

Entcl_4402 Periplasmic binding protein/LacI transcriptional
regulator (complement(4764359..4765249))

ABC transporters 2.020 1.704

Entcl_1207 ABC transporter, substrate-binding protein
(complement(1260320..1261303))

ABC transporters 2.380 1.564

Entcl_2658 Isocitrate dehydrogenase, NADP-dependent
(complement(2808830..2810080))

Glutathione metabolism 2.010 1.091

Entcl_0176 D-xylose ABC transporter, periplasmic
substrate-binding protein
(complement(183475..184470))

ABC transporters 2.410 1.035

Entcl_3614 2-oxo-acid dehydrogenase E1 subunit,
homodimeric type
(complement(3877006..3879669))

Glycolysis/Gluconeogenesis 2.500 −0.229

Entcl_1941 Phosphoribosylglycinamide formyltransferase 2
(complement(2053388..2054566))

Purine metabolism −2.080 −0.779

Entcl_1559 Cytidine deaminase
(complement(1657176..1658060))

Pyrimidine metabolism −3.710 −1.169

Entcl_0641 Cys/Met metabolism
pyridoxal-phosphate-dependent protein
(complement(670311..671459))

None given −2.000 −1.757

Entcl_3443 Taurine dioxygenase
(complement(3672816..3673664))

Taurine and hypotaurine metabolism −14.850 −2.995

Frontiers in Microbiology | Microbial Physiology and Metabolism September 2013 | Volume 4 | Article 280 | 6

http://www.frontiersin.org/Microbial Physiology and Metabolism
http://www.frontiersin.org/Microbial Physiology and Metabolism
http://www.frontiersin.org/Microbial Physiology and Metabolism/archive


DeAngelis et al. SCF1 lignin degradation

the Enterobacter and Klebsiella. Proteomics supports this, and
metabolomics suggests that lignin may also act as a terminal
electron acceptor, increasing the growth efficiency on xylose. For
these studies, SCF1 was grown in xylose minimal media with and
without lignin. All reported differences below have minimum 2-
fold changes with significant corrected P-values (Benjamini and
Hochberg, 1995).

XYLOSE UTILIZATION
The SCF1 genome encodes many proteins related to xylose degra-
dation. D-xylose is likely recognized by an ABC related substrate
binding protein (SBP) and transported into the cells by ATP-
driven ABC transport system. Once inside the cell, xylose iso-
merase converts it to D-xylose and subsequently converted in to
D-xylose 5-phosphate by xylulokinase. D-xylulose 5-phosphate
then enters pentose phosphate pathway with the help of certain
transketolase enzyme. The proteins D-xylose ABC transporter
ATPase and D-xylose ABC transporter periplasmic substrate-
binding protein, xylose isomerase, and xylulokinase were all
detected in our growth conditions.

More efficient xylose utilization in the presence of lignin
was suggested by the fact that many proteins associated with
xylose uptake and degradation were significantly up-regulated
in the lignin-amended compared to the unamended controls

(Table 3, Figure 2A). Xylose transport system proteins were sig-
nificantly up-regulated, as were both ATPase transport and SBPs
related to D-xylose ABC type transport system: D-xylose ABC
transporter ATPase subunit (Entcl_0175) and D-xylose ABC
transporter periplasmic SBP (Entcl_0176). While the expression
of xylose isomerase (Entcl_0177) was detected but not signifi-
cantly up-regulated in our lignin-amended sample, xylulokinase
(Entcl_0178) was significantly up-regulated in the lignin treated
sample. Various proteins related to transketolase were also up-
regulated in lignin-amended sample (Entcl _0820, Entcl_1430,
and Entcl_1431), though only transketolase (Entcl_1430) was sig-
nificant. Adav et al. (2012) has shown up-regulation of xylose
isomerase in the secretome of the thermostable filamentous bac-
teria Thermobifida fusca when grown on different lignocellulosic
biomass. As our proteomics were performed on cell pellets, it is
possible that secretomes were either missed or not induced due to
the soluble nature of lignin. Adav et al. also showed expression of
different ABC type-sugar transport systems depended upon the
type of lignocellulosic biomass T. fusca was grown on, consistent
with our observations of up-regulated ABC transporters.

Because we observed reproducible increased cell abundance on
xylose minimal media amended with lignin compared to controls,
we also looked for evidence of increased efficiency in respira-
tion, hypothesizing that SCF1 may be using lignin as a terminal

Table 3 | Proteins over-expressed in lignin-amended compared to unamended controls.

Locus Tag Protein Description Pathway Fold change p-value

XYLOSE DEGRADATION

Entcl_0175 D-xylose ABC transporter ATPase subunit ABC transporters 4.2 2.5e-08

Entcl_0176 D-xylose ABC transporter periplasmic SBP ABC transporters SBP 2.0 2.1e-10

Entcl_0178 Xylulokinase Xylose degradation I 2.0 2.0e-04

Entcl_1430 Transketolase Pentose phosphate 2.3 4.2e-02

Entcl_0081 Glycoside hydrolase family 31 – 2.6 7.4e-10

PUTATIVE LIGNIN DEGRADATION

Peroxidase

Entcl_4301 Catalase/Peroxidase HPI Tryptophan metabolism 3.5 1.5e-29

Entcl_1327 Dyp-type peroxidase family – 2.7 1.5e-02

β-aryl linkage

Entcl_2195 Glutathione S-transferase domain Glutathione metabolism 2.6 4.3e-12

Entcl_0481 Glutathione S-transferase domain Glutathione metabolism 2.5 9.2e-04

LIGNIN AS ELECTRON ACCEPTOR

Entcl_1442 NADH:quinone oxidoreductase B subunit Electron transport 4.5 4.2e-03

Entcl_1445 NADH:quinone oxidoreductase F subunit Electron transport 3.1 1.8e-04

Entcl_1446 NADH:quinone oxidoreductase G subunit Electron transport 4.7 3.6e-22

Entcl_0986 NADH dehydrogenase (ubiquinone) Electron transport 2.4 2.3e-04

Entcl_0361 Nitrite reductase [NAD(P)H)] Electron transport 3.5 1.8e-04

Entcl_2895 DMSO reductase subunit A Electron transport 2.7 3.0e-12

Transporters

Entcl_4417 ATP synthase F0, β subunit Energy metabolism 2.5 3.4e-04

Entcl_4419 ATP synthase F1, α subunit Energy metabolism 2.2 4.8e-12

Entcl_0286 Branched chain polypeptide extracellular SBP ABC transport SBP 4.3 6.2e-20

Entcl_0288 Branched chain polypeptide extracellular SBP ABC transport SBP 3.2 1.9e-02

Entcl_1207 ABC transporter ABC transport 2.9 1.0e-03

All listed were either 2-fold over-expressed or greater (Ratio) or had a significant p-value.
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electron acceptor and thus increasing its efficiency of growth.
After 60 h of growth, we observed no difference in xylose remain-
ing in the media by NMR, but we detected significantly higher
levels of acetate and formate produced in the lignin amended
media compared to the unamended control (Table 4). However,
differences in metabolites in lignin-amended media (no cells)
compared to unamended revealed that the lignin may obscure
some of the NMR signals of metabolites, so we analyzed xylose
concentrations using HPLC. HPCL is not as sensitive (detec-
tion limits are in the mM range, compared to NMR which has
limits in the μM range), but there is no interference of lignin.
HPLC demonstrated that both lignin-amended and unamended
samples were degrading xylose. After 48 h the lignin-amended
samples had 5% less measurable xylose compared to the una-
mended samples (0.703 ± 0.012% xylose in the xylose only
growth conditions, compared to 0.667 ± 0.012% xylose in the

lignin-amended growth conditions, P = 0.09). This could suggest
that the degradation of lignin somehow aids in the breakdown of
xylose, which may support lignin as a terminal electron acceptor.

LIGNIN DEGRADATION
Because lignin concentrations based on absorbance decreased
significantly over the course of SCF1 growth, we expected to
find lignin degradation pathway proteins up-regulated in the
lignin-amended compared to the unamended controls. We iden-
tified SCF1 homolog targets that have been implicated in other
lignin or poly-phenolic degrading bacteria. Targets consisted of
enzymes associated with lignin or polyphenolic degradation,
and other genes that might be involved in sugar utilization
(Ramachandra et al., 1988; Harwood and Parales, 1996; Masai
et al., 2007; Rakotoarivonina et al., 2011). This included the
enzymes of the protocatechuate pathway found in S. paucimobilis

FIGURE 2 | Pathways associated with (A) xylose degradation, (B) lignin

degradation, the 4-hydroxyphenylacetate degradation pathway, a

possible pathway of lignin catabolism, and (C) dissimilatory lignin

reduction via the electron transport chain. For each pathway, the number

next to the protein ID denotes the fold-level induction in lignin-amended
compared to unamended growth conditions. All genes listed were
statistically significantly up-regulated in lignin-amended compared to
unamended controls; see Table 3 for values.

Table 4 | Metabolite analysis based on NMR of supernatants for SCF1 grown in xylose minimal media with and without lignin.

Xylose only media Xylose + lignin media P Cells + Xylose only Cells + Xylose + lignin P

Xylose 47352 ± 1380 51464 ± 541 ** 59512 ± 4948 67402 ± 1068 n.s.

Acetate 22.0 ± 3 3.0 ± 0.1 ** 841 ± 51.2 1340 ± 126 *

Ethanol 175 ± 32 122 ± 30 ** 6715 ± 4699 4788 ± 624 n.s.

Formate 161 ± 2.6 110 ± 4.7 ** 1625 ± 149 1908 ± 0 ***

Averages are listed (n = 3), and P-values are denoted as not significant (n.s.s), *P < 0.05, **P < 0.01, ***P < 0.001. All concentrations are in μM.
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(Masai et al., 2007), proteins of the protocatechuate pathway
conserved among Pseudomonas, Acinetobacter, and Arthrobacter
species (Harwood and Parales, 1996), a Thermobacillus xylanilyti-
cus feruloyl esterase and two hypothetical β-aryl esterases from
Bacillus clausii (Rakotoarivonina et al., 2011), and extracellular
lignin peroxidase from Streptomyces viridosporus (Ramachandra
et al., 1988). A commonly found bond in the complex heteropoly-
mer lignin is the diphenyl, a simplified type of di-aryl ether bond,
which should be degraded by phenol oxidase, peroxidase or lac-
case enzymes (Ramachandra et al., 1988; Chang, 2008). Based
on our initial genomics analysis and reports of other lignin-
degrading microbes, we identified the 4-hydroxyphenylacetate
degradation pathway, catalase/peroxidase enzymes, and the glu-
tathione biosynthesis and GST pathways as likely implicated in
SCF1 lignin degradation.

The catabolite 4-hydroxyphenylacetate is an intermediate
in the degradation of lignin monomers (Grbić-Galić, 1985),
and can be degraded under anaerobic conditions by a num-
ber of denitrifying and sulfate-reducing bacteria (Heider and
Fuchs, 1997; Gibson and Harwood, 2002). In this pathway, 4-
hydroxyphenylacetate is degraded into the TCA cycle interme-
diate succinate and in this way provides energy to the bacteria
(Martín et al., 1991). The SCF1 genome encodes the entire 4-
hydroxyphenylacetate degradation pathway gene in a single gene
cluster HpaRGEDFHIXABC (DeAngelis et al., 2011). Protein
abundance data showed several proteins typically associated with
this pathway activated under lignin-amended samples. Proteins
encoded by HpaE (Entcl_3798) and HpaG (Entcl_3797) genes
were present in lignin-amended sample.

Lignin degradation has been extensively studied in fungi,
which produce extracellular peroxidases/catalase that are able to
degrade lignin (Wong, 2009). Similarly, several published studies
also report soil bacteria that are able to degrade lignin with the
use of catalase or peroxidase enzymes. Streptomyces viridosporous,
Nocardia autotrophica, and Rhodococcus sp. are well studied aer-
obic lignin degrading bacteria that produce extracellular per-
oxidase (Zimmermann, 1990). We found two peroxidase type
proteins which are significantly up-regulated in lignin-amended
sample: catalase/peroxidase HPI (Entcl_4301) and DypB-type
peroxidase (Entcl_1327) (Figure 2B). The dyp type peroxidase
protein family was identified in Rhodococcus jostii RHA1 (Ahmad
et al., 2011) and was suggested for lignin degradation by β-
aryl ether breakdown. This enzyme is activated by Mn2+ ions
and was shown to degrade lignin and produce monoaryl like
2, 6-dimethaoxybenzoquinone (Singh et al., 2013). However,
the nature of the involvement of peroxide in anaerobic lignin
degradation is still unclear.

We expected to find strong phenol oxidase and peroxidase
activity in SCF1, because it was isolated from the Luquillo LTER
soils, where soil phenol oxidase and peroxidase activities were
detected across an elevational gradient spanning 2.5 km (Silver
et al., 1999, in press). Soils from the Short Cloud Forest site
(SCF) were highest in phenol oxidase and peroxidase activity
compared to the lower elevation, fluctuating redox and aerobic
sites (DeAngelis et al., 2013). Though L-DOPA is an inexpen-
sive and easily detectable assay for cell cultures, it has been
criticized as a poor soil assay substrate because it is susceptible

to chemical oxidation (Sinsabaugh, 2010), which likely com-
prised some of the background activity we detected in our soils
(DeAngelis et al., 2013). Enzyme activity analysis of SCF1 using
L-DOPA as a substrate revealed no peroxidase production, or
phenol oxidase production, under aerobic and anaerobic con-
ditions. We also used ABTS as a substrate and detected phenol
oxidase activity at 3.3 mU (106 cells)−1, and peroxidase activity
at 2.3 mU (106 cells)−1. These rates potentially support a path-
way for lignin degradation that includes catalase and peroxidase
enzymes, but further study will be required to understand if
these proteins are expressed anaerobically as well as aerobically.
However, the enzyme assay method will continue to be hindered
by substrate specificity, where there are many substrates in nature
and available for analysis (Mayer and Staples, 2002; Sinsabaugh,
2010).

GST has been studied as a method of detoxification
metabolism in eukaryotes (Yin et al., 2000; Cho et al., 2001).
A few Proteobacteria genomes also contain large sets of GST
genes and are known to be involved in the degradation of aro-
matic compounds (Lloyd-Jones and Lau, 1997; Vuilleumier and
Pagni, 2002). GST has been shown to have etherase activity
and involved in β-aryl ether cleavage in lignin degradation in
S. paucimobilis SYK-6 (Masai et al., 1999, 2007). The activity
of GST for lignin degradation is enhanced by the addition and
presence of glutathione (Masai et al., 1993). Glutathione syn-
thesis from its precursor glutamate takes place in the cytosol,
and we found glutamate/cysteine ligase (Entcl_1035) and glu-
tathione synthetase (Entcl_0809) proteins involved in glutathione
biosynthesis expressed in our cultures, though with no difference
in abundance between lignin-amended and unamended growth
conditions (Figure 2B). We also found ABC transport related to
glutamate/aspartate transport system (Entcl_3149) up-regulated
in lignin-amended samples. Similarly, different sets of GST pro-
tein (Entcl_2195 and Entcl_0481) and ABC transport related
glutathione transport system (Entcl_2986) were significantly up-
regulated in lignin-amended sample. Thus, the presence of glu-
tathione biosynthesis proteins and transport system, and GST
protein and its transport system could suggest a possible mech-
anism of lignin depolymerization by β-aryl ether cleavage in
lignin-amended sample.

DISSIMILATORY LIGNIN REDUCTION
It is possible that SCF1 is using lignin as a terminal electron
acceptor, and in this way degrading lignin in a dissimilatory
manner. Various substituted quinones have been identified as
key intermediates in the degradation of lignin model com-
pounds (Ander et al., 1980; Buswell and Eriksson, 1988; Schmidt
et al., 1989). These intermediates include substituted quinones,
hydroquinones, benzaldehydes, benzoic acids, and ring-opened
fragments (Buswell and Eriksson, 1988; Higuchi et al., 1990).
Because lignin is a complex heteropolymeric molecule, it is
possible that any of these intermediates could exist as analo-
gous moieties and be used by the SCF1 as a terminal electron
acceptor. Intracellular NADH-quinone oxidoreductase reduces 2-
methoxyquinone and several other substituted quinones to their
hydroquinones (Buswell et al., 1979; Buswell and Eriksson, 1988).
Quinones have been studied as potential electron acceptor in
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anaerobic environment by facultative anaerobes (Newman and
Kolter, 2000) and are important electron-accepting groups in
humic substances (Scott et al., 1998). While lignin is made up
of only three monolignol builfinh blocks, including coniferyl
alcohol, sinapyl alcohol, and p-coumaryl alcohol, they are poly-
merized during biosynthesis in the plant by way of oxidative rad-
icalization and coupling of phenols, which creates a wide variety
of molecular moieties available for reduction or depolymeriza-
tion via biotic degradation (Vanholme et al., 2010). Because of
this variety, NMR analysis would be required to both elucidate
the structure of the lignin as well as the chemical characters of the
reduced and possibly depolymerization products that result from
SCF1 degradation. We have applied proteomics to elucidate the
reduction pathways of SCF1 in lignin-amended vs. unamended
growth on xylose minimal media.

We found three NADH-quinone oxidoreductase proteins
(Entcl_1446, Entcl_1442, and Entcl_1445) significantly up-
regulated in lignin amended samples (Figure 2C). These proteins
are integral in electron transport chain (Brandt, 2006) and are
involved in transfer of electron from NADH to quinone like
molecule as electron acceptor. Since lignin may be a precur-
sor to humic substances, we assume degradation of lignin may
result in quinone molecules used as electron acceptors to har-
vest the energy for microbial respiration. These reduced seim-
iquinones abiotically transfer electrons between dehydrogenase
and the reductase enzyme, and this electron transfer would yield
energy for bacterial growth (Scott et al., 1998). We also found
significant up-regulation of NADH dehydrogenase (Entcl_0986),
nitrite reductase (Entcl_0361) and DMSO reductase (Entcl_2895)
in lignin amended sample. NADH serves as the electron donor,
nitrite/DMSO as the electron acceptor and seimiquinones as
mediator and could form a modular electron transport chain.

We assume the addition of lignin is enhancing efficiency of
energy production in SCF1 in lignin-amended samples. This was
distinct from high cell abundance and high growth of SCF1 in
treatment samples. Addition of vanillin, an intermediate dur-
ing fungal lignin degradation, has shown to enhance energy
productions in basidomycetes which seem to be required for
xenobiotic metabolism and as well for cell growth (Shimizu et al.,
2005). Enhanced energy production in this study was related
to the up-regulation of ATP synthase. We also found proteins
related to various subunits of ATP synthase F0/F1 (Entcl_4417,
Entcl_4418, Entcl_4419, Entcl_4420, and Entcl_4421). Significant
up-regulation of ATP synthase in lignin-amended sample could
be justified as SCF1 may require more energy to overcome the
high energy barrier for ring reduction in lignin.

The transport of small aromatic molecules after lignin degra-
dation is important because these small molecules likely account
for a significant source of energy and biomass among lignin-
degrading microbes (Michalska et al., 2012). Aromatic com-
pounds derived from lignin degradation could be imported by
an ATP-depended mechanism (Paulsen et al., 2000; Chaudhry
et al., 2007). These transportations are mediated by ATP-binding
cassette (ABC) transporters. The bacterial ABC transporter
is composed of a transmembrane permease, a cytoplasmic
ATPase subunit, and a periplasmic solute-binding protein
(SBP) (Michalska et al., 2012). In known lignin degrading

bacteria, these SBPs are identified as branched-chain amino
acid-binding proteins (Giuliani et al., 2008; Oda et al., 2008).
In Rhodopseudomonas palustris, a cluster of ABC transporter
genes are likely involved in the uptake of benzoate into cells
(Egland et al., 1997). This bacterium also contains several
periplasmic binding-protein components of an ABC system
involved in active transport for lignin-derived aromatic sub-
strates (Salmon et al., 2013). We have also found signifi-
cant up-regulation of an ABC transporter (Entcl_1207) and
branched chain polypeptide extracellular ligand-binding receptor
(Entcl_0286 and Entcl_0288) in lignin amended samples. These
ABC system proteins with SBP could be involved in active trans-
portation of lignin derived simpler aromatic compounds into
the cells after degradation by putative lignin degrading proteins
produced by SCF1.

While the proteomics and metabolomics data support the
hypothesis that lignin is being used by the SCF1 as an addi-
tional terminal electron acceptor as well as a C source, we wanted
to rule out the possibility that were contaminants in the lignin
that might contribute to the observed increased cell growth and
activity. By HPLC, no sugar peaks or peaks of any size appeared
after 7.5 min, specifically none between 9 and 13 min, where any
sugars should appear. For example, glucose runs at 10.16 min,
fructose at 10.39, xylose at 10.39, rhamnose at 11.20, and ara-
binose at 11.34 min. The detection limit of the HPLC is in the
mM range for sugars. We also used NMR to test the media
for sugars. Only xylose was detected, and although there was
significantly more xylose detected in the lignin-amended com-
pared to the unamended samples (51.7 ± 2.95 mM xylose in the
lignin-amended media, 47.4 ± 5.4 mM unamended xylose mini-
mal media, mean ± standard deviation, P < 2e-5), NMR did not
detect any other sugars, with detection limits in the μM range.
NMR may also be subject to peak interference of lignin, suggest-
ing that increased xylose detection is an artifact. Metabolomics
analysis of the media by HPLC and NMR both showed that it
is extremely unlikely that the increased cell biomass and micro-
bial activity were due to sugar contamination in the lignin. In
addition, the increased production of proteins in the hydrox-
yphenylacetate pathway, analogous to pathways of lignin degra-
dation observed for other bacteria, further support the hypothesis
that SCF1 is using lignin in both assimilatory and dissimilatory
pathways.

Despite the molecular microbial evidence that E. lignolyticus
SCF1 is able to use lignin in both assimilatory and dissimila-
tory pathways, there are still unanswered questions. For one,
the products of SCF1 anaerobic lignin reduction remain unclear.
These products could include phenolic aldehyde, acid, or ketone
monomers that are observed to be released during alkaline CuO
oxidation (Thevenot et al., 2010), or any of the catabolic path-
way intermediates that have observed during anaerobic lignin
degradation of other bacteria, such as the catabolic pathways
described for degradation of lignin and lignin-derived com-
pounds in S. paucimobilis SYK-6 (Masai et al., 2007) and others
(Harwood and Parales, 1996; DeRito et al., 2005; McLeod et al.,
2006; Bugg et al., 2011b; Huang et al., 2013). The use of lignin
dimers or model lignin compounds such as artificial or naturally
occurring aromatics would permit measurement of specific rates
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of degradation of specific bonds present in lignin (Kato et al.,
1998; Koga et al., 1999; Chang, 2008). However, dissimilatory
reduction of the complex heteropolymer lignin might result in
increased saturation of bonds or hydrolysis of end groups, which
would not result in production small molecules. To make these
measurements would require high resolution molecular analysis
using NMR, mass spectrometry or FTIC, where specific struc-
tural details of chemical bonds and end groups indicative of
specific breakdown products can be identified (Morreel et al.,
2010; Vanholme et al., 2010). These methods in combination with
tracer experiments using 13C labeled lignin should be used in the
future to determine specific degradation pathways and moieties
of lignin that are released. For example, growth of Fibrobacter
succinogenes S85 on 13C-wheat straw revealed succession of dif-
ferent fractions of wheat straw without preferential degradation
of amorphous vs. crystalline cellulose (Matulova et al., 2005). This
type of study would strongly advance our understanding of anaer-
obic bacterial lignin degradation, though currently 13C-lignin
studies seem to be concentrated on determining the structure
of lignin, which may preclude knowing degradation products in
detail (Morreel et al., 2010; Foston et al., 2012). Finally, the inves-
tigation of a single time point potentially masked detection of
other degradation pathways or control points that would have
been evident in early or mid logarithmic growth, before signifi-
cant lignin had been degraded. An examination of the transcripts
and proteins over a time-course of lignin degradation should
be analyzed in order to link the controls over initiation and
termination of assimilatory and dissimilatory lignin degradation.

CONCLUSIONS
Previous work has shown that E. lignolyticus SCF1 possesses a
suite of membrane pumps that confer tolerance to high con-
centrations of both salt and ionic liquids, which are used as an
alternative pre-treatment for lignin removal in plant feedstock
material (Khudyakov et al., 2012). We also know that SCF1 is
derived from a wet tropical forest soil environment that is char-
acterized by low and fluctuating redox conditions as well as very
fast rates of litter decomposition (Parton et al., 2007; Silver et al.,
in press). This work shows that E. lignolyticus SCF1 is able to

use lignin in both assimilatory and dissimilatory pathways, where
assimilatory pathways are glycolysis and the pentose phosphate
pathway, and dissimilatory reduction seem to occur by oxidative
phosphorylation via the electron transport chain. Dissimilatory
reduction of lignin-model compounds and aromatics has been
well established (Harwood and Parales, 1996), as has the abil-
ity for a range of bacteria to shuttle electrons via quinones and
soluble humic substances (Newman and Kolter, 2000). It is also
remarkable that SCF1 is able to grow so well in the presence of
lignin, which contains many soluble products that have proven
to be inhibitory to growth of many other organisms includ-
ing popular model organisms for metabolic engineering such as
E. coli. While there are many studies that demonstrate degrada-
tion of lignin for assimilatory pathways (Bugg et al., 2011a), this
is the first to demonstrate both assimilatory and dissimilatory
reduction of the complex heteropolymer plant lignin by a soil
bacterium.
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