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Abstract

With the ability to sample combinations of alchemical perturbations at multiple sites off a 

small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to 

conventional alchemical free energy methods for exploring large combinatorial chemical spaces. 

However, current software implementations dictate that combinatorial sampling with MSλD must 

be performed with a multiple topology model (MTM), which is non-trivial to create by hand, 

especially for a series of ligand analogs which may have diverse functional groups attached. 

This work introduces an automated workflow, referred to as msld_py_prep, to assist in the 

creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges 

between ligands to create a MTM, called charge renormalization, is also presented and rigorously 

evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use 

files and that charge renormalization can provide a successful approach for MTM generation, as 

long as bookending calculations are applied to correct small differences introduced by charge 

renormalization. Charge renormalization also facilitates the use of many different force field 

parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design.
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INTRODUCTION

Alchemical free energy calculations have become an integral part of hit-to-lead optimization 

in both academic and industrial structure-based drug design.1-7 The past two decades 

have seen a flurry of developments to improve both accuracy and efficiency of these 

methods, enabling more reliable prospective binding affinity predictions for small molecule 

derivatization and optimization.1-10 Of note, large efficiency gains have been observed from 

the collective sampling of multiple ligands in a single simulation with λ-dynamics,11-13 

enveloping distribution sampling,14-17 or λ-local elevation umbrella sampling (λ-LEUS) 

methods.18-20 λ-Dynamics, the subject of this manuscript, has similarly undergone a variety 

of advancements since its introduction in 1996 to position it as an attractive alternative to 

traditional free energy perturbation (FEP)21 or thermodynamic integration (TI)22 methods. 

Several recent reports have shown the utility of λ-dynamics for drug discovery,23-25 and a 

commercial workflow for widespread application of this approach has been developed.6

One advancement of λ-dynamics, termed multisite λ-dynamics (MSλD), enables multiple 

substituents to be alchemically perturbed at one or more sites of attachment off a common 

molecular core.13 This approach enables MSλD to break through an inherent scalability 

limitation associated with FEP or TI to sample large combinatorial alchemical spaces very 

efficiently. Baseline estimates suggest up to an order of magnitude speed up is obtainable 

with MSλD over TI for investigating a congeneric series of 10-30 compounds, and even 

larger efficiency gains of 20-75 times have been reported for sampling many hundreds of 

alchemical end-states.6,23-25

In the current implementation of MSλD in the CHARMM molecular simulation 

package,26,27 the alchemical sampling of multiple substituents is accomplished by using 

a multiple topology model (MTM).24 Similar to the double topology model used with 

FEP/TI methods,28 a MTM represents all alchemical substituent atoms explicitly and scales 

their atomic interactions with neighboring atoms and molecules via the alchemical coupling 

parameter, λ. In MSλD, each λs,i, for the ith substituent at site s off a ligand core, is 

holonomically constrained to be 0 < λs,i < 1, and all site specific λs,i must sum to 1.0 to 

ensure that only one physical end state is sampled at any given point in time. With these 

constraints in place, the λs,i parameters can then dynamically sample between interacting 

(λs,i ≅ = 1.0) and non-interacting (λs,i ≅ = 0.0) states in a continuous manner in conjunction 

with the forces in a molecular dynamics (MD) simulation using an extended Lagrangian 

approach.13,29 The dynamic nature of the λs,i parameters removes the need to define discrete 
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intermediate λs,i states and allows relative free energy differences between many ligands to 

be readily computed from a single MSλD simulation.

Though use of a MTM facilitates efficient sampling of multiple substituents within a single 

simulation, adaptation of force field parameters across a congeneric ligand series to fit this 

topological representation can be difficult. This is especially true when considering the 

varying electrostatic characteristics different functional groups may present. For example, 

it is well known that electron-withdrawing or electron-donating groups can shift the 

distribution of electrostatic charge around an aromatic ring.30 Thus, to create a MTM from a 

pre-selected group of ligand analogs, a single set of unperturbed core atoms and alchemical 

substituents that should be scaled by λ must be defined in such a way that the combination 

of any one substituent at each perturbation site combined with the core will yield a complete 

molecule with integer net charge. Correctly partitioning diverse sets of ligand analogs, which 

may feature substituents that vary in size, flexibility, or polarity, and their accompanying 

force field parameters to fit into a MTM is a non-trivial problem to solve manually. In 

this work, we first derive a workflow, expressed as a series of Python scripts collectively 

referred to as msld_py_prep, to automate the generation of MTM files for use with MSλD in 

the CHARMM software package. We then discuss our approach for partitioning force field 

partial atomic charges for an MTM, which we call charge renormalization, and show that it 

enables electrostatically different functional groups to be collectively sampled with MSλD.

ALGORITHMIC WORKFLOW

In this section we discuss our workflow for the creation of a multiple topology model 

to represent multisite substituent perturbations with MSλD in the CHARMM molecular 

simulation package. Collectively we refer to this algorithm as msld_py_prep, and a series 

of Python scripts have been written to perform each operation in the workflow (Figure 

1). The details of each step of msld_py_prep are described below. As an overview, a 

maximum common substructure search (MCSS) is first performed to identify a set of 

core atoms with matching chemical environments in all ligands of interest. These core 

atoms are characterized as sharing identical atom types and bonded neighbors; atoms with 

different chemical environments are categorized into alchemical functional groups. Second, 

appropriate partial atomic charges for core atoms and alchemical atoms are determined to 

yield correct net charges for all combinatorial molecule end-states. All other intramolecular 

parameters for the combinatorial system are then identified. Finally, all necessary files 

for running a MSλD simulation in CHARMM are written to disk. Prior to performing 

msld_py_prep, all ligand analogs should be docked and aligned within a protein’s binding 

site so that the identified ligand cores are spatially near one other. This is helpful for 

successful completion of the MCSS step of msld_py_prep, and it ensures that the ligands 

maintain the same binding orientation and pose within the binding site, thus enabling the 

sampling of a diverse set of ligands. Furthermore, molecule coordinate files should employ 

the Tripos Mol2 format with one molecule per file, all ligand atoms should have unique 

atom names per file, and appropriate topology and parameter files formatted for CHARMM 

should be generated for each molecule prior to running msld_py_prep. Incidentally, the 

Mol2 coordinate file requirements match what is needed to obtain CGenFF parameters from 

the ParamChem/CGenFF or MATCH atom typing programs, and msld_py_prep works with 

Vilseck et al. Page 3

J Chem Inf Model. Author manuscript; available in PMC 2022 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outputs obtained from both utilities.31-34 The following subsections describe each step of 

msld_py_prep in more detail.

Maximum Common Substructure Search (msld_mcs.py).

The first step in preparing a MTM for MSλD is a MCSS to identify which atoms will be 

in the ligand core and which will be in an alchemical substituent. With msld_mcs.py, a 

MCSS is performed by identifying atoms in separate molecules with identical force field 

atom types and lists of bonded neighbor atom types. This creates an effective fingerprint 

of each atom’s chemical environment, as defined by the force field. Similarities between 

atoms in different molecules are identified by matching atoms with the same atom type and 

then matching atoms with identical bonded-neighbor lists. This analysis generally resolves 

most atom-to-atom matches between molecules; however, any remaining discrepancies are 

resolved by calculating a coordinate root mean square deviation (RMSD) between potential 

atom matches, emphasizing the need for all ligand cores to be aligned prior to MTM 

construction. Atoms within a predefined RMSD threshold value of 0.8 Å are considered a 

match. Several redundancy checks are then performed to ensure that the same number of 

core atoms are matched from each molecule, resulting in a single uniform set of core atoms 

for use with MSλD. In a second stage of the MCSS routine, all non-core atoms in each 

molecule are categorized as alchemical atoms. Bonds between alchemical atoms are used to 

form alchemical fragments, and each substituent is grouped by its site of attachment to the 

ligand core. Bonds between alchemical substituents and different core atoms define unique 

perturbation sites around the core, and fragments at each site are filtered to remove possible 

duplicates. Finally, a formatted text file of the MCSS output is printed. This file identifies 

all core atom names from each molecule, the number of alchemical perturbation sites, 

and a list of all fragments and fragment atom names at each perturbation site. Within the 

msld_py_prep workflow, MCSS by msld_mcs.py is typically performed as an independent 

step with manual visualization of the MCSS results prior to charge renormalization (Figure 

1). This ensures that the user can visually examine the MCSS output and confirm that the 

ligand system has been partitioned into core and alchemical components correctly before 

proceeding with msld_py_prep. To assist with visual inspection of the MCSS output, the 

Python script vis_check.py can be used to quickly visualize core and fragment atoms in 

PyMOL (Figure S1).35 We also note that many other MCSS routines exist in a variety 

of open-source programs, such as RDKit, that could also be used for this step of the 

workflow.36 The advantages of the msld_mcs.py MCSS procedure used here is the ability to 

separate atoms based on their force field atom types and bonded-environments, rather than 

elemental identities alone.

Charge Renormalization (msld_crn.py).

Following the correct identification of core atoms and alchemical functional groups for 

a series of congeneric ligands, a process called charge renormalization (CRN) begins. In 

this routine, partial atomic charges for each MTM group are identified such that any one 

alchemical fragment, at each perturbation site, combined with the ligand core will result 

in a physical ligand end-state with integer net charge (Figure 2). To begin, a preliminary 

set of partial atomic charges are identified for all core atoms by averaging together the 

atomic charges of equivalent atoms from each ligand. These initial charges are later adjusted 
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to neutralize a molecule’s net charge after determining the atomic charges for atoms in 

each alchemical fragment. Charges for atoms in alchemical fragments are obtained next. To 

facilitate correct combinatorial sampling with MSλD, each alchemical substituent at a single 

perturbation site must maintain the same net group charge, or in cases where one substituent 

may feature a charge change, have the same offset group charge with respect to the core’s 

net charge to yield an integer charge for the full molecule. Thus, to generate appropriate 

partial atomic charges to meet this criterion, a site-specific target group charge is first 

determined by averaging the net charges of all substituents at a single perturbation site. For 

substituents with charge changes, group charges are first offset by their charge change prior 

to averaging to avoid large deviations in computed averages. The difference between the 

site-specific target charge and a substituent’s actual group charge is calculated, and atomic 

charges within that group are iteratively adjusted by ± 0.000001 e− until the substituent’s 

net charge matches the target group charge. This is performed for all alchemical fragments 

at all perturbation sites connected to the common core. Finally, the partial atomic charges 

of the core atoms are revisited to ensure an integer net charge is obtained for a complete 

ligand end-state. A final target charge for the core is determined by subtracting each site-

specific alchemical group charge from the expected final net charge of the ligand series. 

The initial core atomic charges are then iteratively adjusted by ± 0.000001 e− until the 

core’s net charge matches the target charge. At the conclusion of charge renormalization, all 

functional group combinations should be feasibly sampled without introducing artifacts into 

the simulation caused by non-integer net charges for different physical end-states. Though 

charge renormalization formally changes the force field parameters of a ligand, we’ve found 

in practice that the changes are small. Functional groups that differ drastically in size or 

electrostatic characteristics can also be grouped by the user in such a way to minimize 

differences introduced by charge renormalization. As shown in the Results section below, 

errors introduced into computed free energy differences with this approach are mostly within 

statistical noise. However, because some outliers are observed, which may be difficult to 

predict in advance, quick bookending calculations (described below) can be performed post 
hoc to compute free energy differences between charge renormalized and original force field 

charge states to rigorously correct for differences introduced by charge renormalization.

Ligand Parameter Consolidation (msld_prm.py).

Following the conclusion of charge renormalization, the remaining intramolecular and 

Lennard-Jones force field parameters for the MTM are created. Because no atom type 

modifications occur with charge renormalization, or in msld_py_prep in general, all original 

intramolecular and Lennard Jones parameters can be consolidated and printed to a single 

CHARMM formatted parameter file. Thus, in this step, all force field parameters are 

extracted from each ligand analog, checked for duplication or potential differences in bond, 

angle, or dihedral parameter definitions, and written to disk.

File Generation (msld_wrt.py).

Finally, all files that are needed to run MSλD in CHARMM are written to disk. Core 

atom coordinates and topology definitions are generated first. All alchemical functional 

group coordinates and topology definitions are then written in a site-specific manner. 

Finally, a generic CHARMM script input file to setup and run ligand perturbations with 
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MSλD is created. This input script is system specific to the ligand series processed with 

msld_py_prep, and requires minimal modification prior to initiating a MSλD simulation, 

such as inserting the appropriate protein, solvent, and ion file designations.

COMPUTATIONAL DETAILS

With the assistance of msld_py_prep, the generation of a MTM for examining a wide 

range of small molecule perturbations with MSλD in CHARMM is readily accomplished. 

MSλD can then be used to compute changes in solvation and binding free energies between 

multiple ligand analogs. Because charge renormalization formally changes a force field’s 

partial atomic charge model for a given molecule, it is important to evaluate how impactful 

these changes are to the final solvation or binding free energy results computed with MSλD. 

Small molecule hydration free energy calculations have long served as a test for both 

new alchemical free energy methods and force field parameterization schemes.37-42 Thus, 

to assess the impact of charge renormalization, relative hydration free energies between 

original force field (FF) and renormalized charges (ΔΔGℎyd
FF CRN) were computed for 

a variety of small molecule analogs grouped into congeneric-like series (Figure S2 - 

S7). Specifically, four sets of small molecules originating from CGenFF and two sets of 

drug-like molecules were investigated, including one set of compounds obtained from the 

ChEMBL database and another of known fatty acid amide hydrolase (FAAH) receptor 

inhibitors.31-33,43-45 The impact of charge renormalization on computed binding affinities 

was additionally investigated using the same group of FAAH inhibitors bound to the FAAH 

receptor.

CGenFF Small Molecule Setup.

A common functionalization approach in computer-aided lead optimization is to explore 

a variety of substituents at ortho, meta, and/or para positions off aromatic rings on a 

lead compound. Thus, four groups of aromatic compounds explicitly parameterized in the 

CGenFF force field were examined.31-33 These are referred to as “123benz, “12benz”, 

“12fused”, and “1benz” to reflect their patterns of substitution (Figures S2 - S5). A pdb 

file for each molecule was built with CHARMM,26,27 using the internal coordinate table 

definitions in the CGenFF topology file (version 4.1).31-33 A mol2 file was obtained with 

OpenBabel,46 and a CGenFF stream file was generated with the ParamChem/CGenFF 

program.32,33 Spatial alignment was performed in Chimera,47 and a MTM was created with 

msld_py_prep.

ChEMBL Small Molecule Setup.

A series of drug-like molecules obtained from the ChEMBL database was examined next 

(Figure S6; referred to as “ChEMBL”).43,44 By scanning the ChEMBL database with 

RDKit, a total of 45 molecules containing a common ‘c1ccc2c(N)ncnc2c1’ substructure 

was selected for study. This scaffold is a common bicycle frequently found in drug 

candidates.48,49 Filtering of compounds with this scaffold core was performed to allow for 

two sites of substitution off the ligand. Compound SMILES strings were used to generate 

mol2 files with RDKit,36 which were then used to obtain CGenFF parameters with the 
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ParamChem/CGenFF program.31-33 Ligands were aligned with RDKit and a MTM was 

created with msld_py_prep.

FAAH Inhibitor Setup.

Finally, a series of 32 FAAH inhibitors,45 which have been studied previously with MSλD,6 

was examined (Figure S7). Initial 3D ligand conformations were generated with RDKit 

from SMILES strings using the ETKDG method.50 The molecules were then aligned 

and minimized in RDKit using the MMFF94 force field.51-52 For hydration calculations, 

all ligands were aligned with respect to ligand 31. For FAAH binding calculations, the 

ligands were aligned to the prepared FAAH receptor’s co-crystalized ligand structure. All 

alignments were performed with RDKit.36,45 MCSS and charge renormalization were then 

performed with msld_py_prep.

FAAH Receptor Preparation.

Initial coordinates for the FAAH receptor-ligand complex were obtained from PDB ID: 

6MRG.45 Protonation states for titratable residues consistent with a pH of 7.4 were assigned 

with ProPKA.53 With the CHARMM-GUI, the protein-ligand complex was then solvated 

in a cubic box of TIP3P water with an NaCl concentration of 0.145 M, allowing for a 

minimum of 7.0 Å between the complex and the edge of the box.54,55 The protein was 

parameterized with the CHARMM36 force field.56,57 This setup matches what was used 

previously by Raman, et al., facilitating direct comparison between previously published 

MSλD results for FAAH-ligand binding with MATCH-parameterized ligands versus the use 

of ParamChem/CGenFF-parameterized ligands reported herein.6

Hydration Free Energy Calculations.

Following the creation of a MTM for each ligand series, including CGenFF, ChEMBL, 

and FAAH compounds, hydration free energies between original and renormalized partial 

atomic charges were computed for each small molecule. Each molecule was first solvated 

in a cubic box of TIP3P water with a 12.0 Å buffer between solute and box edge with 

the MMTSB utility convpdb.pl.58 Molecular dynamics simulations were then performed in 

vacuum and water-solvated states with both original and renormalized force field charges. 

MD simulations were run for 5 ns each, in the NPT ensemble at 25 °C and 1 atm, 

with CHARMM and the domain decomposition (domdec) module for running on graphic 

processing units (GPUs).26,27,59 Periodic boundary conditions were employed, and long-

range interactions were truncated with force-switching between 10 – 12 Å.60 MD frames 

were saved every 500 steps, and a timestep of 2 fs was used. Following the conclusion of 

MD sampling, the trajectories were postprocessed and hydration free energy differences 

(ΔGℎyd
FF CRN) were calculated with the Bennett acceptance ratio (BAR) free energy 

estimator.61 Free energies and percent overlap between end-point energy distributions 

were computed with pymbar.py.62,63 Final relative free energy differences with respect to 

the original force field (ΔΔGℎyd
FF CRN) were obtained with a thermodynamic cycle for 

modeling solvation processes (Figure S8A).
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MSλD FAAH Binding Calculations.

Retrospectively, FAAH – ligand binding affinities were investigated with MSλD for 32 

FAAH inhibitors,45 modeled with the CGenFF force field.31-33 The simulation setup 

and details matched what was performed previously by Raman, et al., except that the 

simulations were performed directly in CHARMM.6 Free energy differences were calculated 

by subdividing the full set of 32 ligands into 5 separate MSλD calculations. Perturbations 

were performed with ligands solvated in solution (“water-unbound”) and bound to FAAH 

(“protein-bound”), in accordance with a protein-ligand binding thermodynamic cycle 

(Figure S8B). Bias optimization with the Adaptive Landscape Flattening (ALF)23 algorithm 

was performed in three stages, with 100 iterations of 100 ps long MSλD simulations, 

followed by 13 iterations of 1 ns long MSλD simulations, and concluding with 5 

independent trials of 5 ns long simulations. Production MSλD simulations were then run 

with 5 independent trials for 20 ns and 50 ns for water-unbound and protein-bound states, 

respectively. Binding free energy differences (ΔGbind) for each state were calculated as a 

ratio of the amount of sampling compared to a single reference compound, using a λ-cutoff 

value of 0.99 to approximate the λ = 1.00 end-states.13,23-25 Final relative differences in 

free energies of binding (ΔΔGbind) between ligands were computed by taking the difference 

between water-unbound and protein-bound ligand states. As mentioned above, a MTM 

is necessary to sample multiple perturbations simultaneously, thus these MSλD binding 

calculations were performed with renormalized partial atomic charges (ΔΔGbind
CRN). Absolute, 

computed binding free energies (ΔGcomp) were determined with the following equation, 

which utilizes known experimental binding free energies (ΔGexpt) and the computed relative 

binding free energies (ΔΔGcomp)4:

ΔGcomp = ΔΔGcomp − ∑ΔΔGcomp
n − ∑ΔGexpt

n (1)

MSλD Bookending Corrections.

Similar to the hydration free energy calculations described above, single step charge 

perturbations were performed with BAR between original force field and renormalized 

atomic charges to assess the impact of charge renormalization on MSλD binding 

predictions. As shown in Figure 3, “bookending” correction terms (ΔGbind
FF CRN) were 

computed post hoc to correct the MSλD ΔGbind
CRN results obtained with renormalized charges 

to the true force field free energy result (ΔGbind
FF ). These correction terms were calculated 

by running MD simulations in water-unbound and protein-bound ligand states, with original 

and renormalized atomic charges separately. Simulation parameters matched what was used 

for the MSλD binding calculations to ensure sufficient overlap between simulations would 

be obtained, and simulations were run for 5 ns each. Although one bookending correction 

value requires four additional simulations to be run, these simulations are independent from 

MSλD and can be run in parallel with MSλD production calculations.

Vilseck et al. Page 8

J Chem Inf Model. Author manuscript; available in PMC 2022 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

To test the effectiveness of charge renormalization and measure the extent of error 

introduced by adjusting a small molecule’s partial atomic charges to fit within a MTM, 

hydration and binding free energy calculations were performed on a total of 191 compounds 

spanning 6 ligand series. The degree of change introduced by charge renormalization was 

analyzed as a charge root mean square deviation (Q-RMSD), and by measuring changes 

in dipole moment magnitudes (Δμ) and directions (Δμ(θ)). Complete data for each ligand 

and ligand series can be found in Tables S1 - S6 of the Supporting Information. As shown 

in Table 1, the average ΔΔGℎyd
FF CRN for all molecules is ca. 0.1 kcal/mol, which is 

generally within the limits of statistical noise for solvation transfer processes investigated 

with alchemical free energy methods.37-42 Overall, the Q-RMSD and the Δμ metrics, which 

represent the degree of change between renormalized and original force field charges, tended 

to be small. This suggests that, on average, differences introduced by charge renormalization 

should also be small. However, when larger deviations in Q-RMSD or Δμ occur, for instance 

for the 12fused series of molecules, larger differences in ΔΔGℎyd
FF CRN are subsequently 

observed. This trend is clear in Figure 4, which plots ΔΔGℎyd
FF CRN in relation to Q-RMSD 

and Δμ. As Q-RMSD grows larger than 0.001 e−, log10(Q-RMSD) > −3.0, large deviations 

in both Δμ and ΔΔGℎyd
FF CRN can occur. Above this Q-RMSD threshold, while most 

ΔΔGℎyd
FF CRN remains small, e.g., < 0.5 kcal/mol, some outliers with ΔΔGℎyd

FF CRN > 

1.0 kcal/mol are also observed. The largest outliers unanimously come from the 12fused 

series of molecules. In this series, the core is defined as two carbon atoms and two hydrogen 

atoms that are located opposite the bond connecting the fused rings. A deeper analysis of 

the electrostatic descriptions of these 41 compounds indicated that many of these molecules 

have significant charge discrepancies for these four equivalent core atoms. Thus, while there 

is sufficient atom type overlap to identify these atoms as core atoms by the MCSS routine in 

msld_py_prep, there is poorer electrostatic overlap which leads to large Q-RMSD and Δμ by 

charge renormalization and, subsequently, large ΔΔGℎyd
FF CRN differences. In ligands that 

have a larger number of core atoms, this situation may be remedied by manually assigning 

core atoms with large electrostatic discrepancies into adjacent alchemical substituents, 

thereby reducing the magnitude of charge modifications by charge renormalization. This can 

be easily performed with the “InFrag” option in msld_py_prep. Checking Q-RMSD values 

after running msld_py_prep can help identify if this is necessary. Furthermore, to eliminate 

potential ΔΔGℎyd
FF CRN errors, we recommend calculating ΔΔGℎyd

FF CRN bookending 

corrections whenever charge renormalization is used to create an MTM. Encouragingly, 

the drug-like ChEMBL and FAAH ligand series showed among the lowest ΔΔGℎyd
FF CRN

changes. Future applications of MSλD to ligand design and lead optimization will show 

how impactful charge renormalization is for analyzing many diverse sets of drug-like 

compounds.

To begin to explore this idea, binding free energy calculations were computed with MSλD 

for the 32 FAAH ligands bound to the FAAH receptor. The analogs contained a wide variety 

of phenyl ring substitutions with differing chemical properties. Charge renormalization 
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was performed on the entire set of ligands, and relative binding free energies were 

calculated from 5 separate MSλD calculations. Initial MSλD ΔGbind
CRN results obtained 

with renormalized charges were then corrected with bookending calculations to obtain 

ΔGbind
FF , the CGenFF force field result. Absolute free energies of binding are shown in 

Figure 5 for both data sets (see also Table S7). Overall, the uncorrected MSλD results 

yielded a Pearson correlation of 0.54 (± 0.001), a Spearman correlation of 0.56 (± 0.001), 

and a Kendall tau of 0.38 (± 0.001); yet the MUE was low at 1.07 (± 0.001) kcal/mol, 

a common target for alchemical binding free energy studies.4-10 Symmetric confidence 

intervals were computed at the 95% confidence level with the leave-one-out method 

using 1000 iterations.64 The corrected MSλD results, however, showed improved Pearson, 

Spearman, and Kendall tau coefficients of 0.60 (± 0.001), 0.64 (± 0.001), and 0.45 (± 

0.001), respectively, and the MUE slightly improved to 1.00 (± 0.001) kcal/mol. Though 

Table 1 suggests that the Q-RMSD and Δμ are small for the FAAH ligands, these binding 

results indicate that charge renormalization does affect MSλD free energy calculations in a 

non-trivial manner and that improved accuracy can be obtained by correcting MSλD results 

obtained with renormalized charges to the true force field result. Fortunately, a single step 

charge perturbation from original force field charges to renormalized charges allows charge 

renormalization differences to be corrected quickly without significantly impacting MSλD 

scalability. For example, the MSλD FAAH binding calculations performed herein utilized 

a total of 2.23 μs of sampling, with an extra 0.64 μs of MD for bookending corrections. 

Raman, et al.’s estimate for running FEP or TI calculations for all 32 FAAH ligands, with 

cycle closure loops and 5 duplicate production calculations to match our MSλD procedure, 

suggests 14.4 μs of sampling would be required with FEP/TI methodologies to obtain 

equivalent ΔGbind results. Based solely on amounts of sampling, MSλD alone is ca. 6.5 

times more efficient than FEP/TI. This comparison negates the contribution of uncertainty in 

computed estimates of computational efficiency. MSλD efficiency dips only slightly to ca. 

5.0 times more efficient when bookending correction simulations are included. Thus, MSλD 

remains highly efficient, in terms of sampling along, even when ΔGFF→CRN corrections are 

included. It is important to note that accuracy and correlation to experiment are force field 

dependent and, thus, an ancillary focus of this paper. Fortunately, charge renormalization 

provides a means to employ new or non-CHARMM-based force field parameters with 

MSλD, allowing accuracy to be tuned if necessary for specific systems of interest, while 

still using a highly efficient and scalable free energy method.

Finally, the results from a previous MSλD investigation6 of the same set of 32 FAAH 

inhibitors bound to the FAAH receptor can be discussed.45 That work employed commercial 

MATCH/CGenFF ligand parameters34 and reported a MUE of 0.70 kcal/mol for computed 

free energies of binding compared to experiment.6 An analysis of their force field 

parameters was performed to understand potential sources of differences compared to the 

ParamChem/CGenFF parameters we used. This revealed large deviations in the partial 

atomic charges, with an average Q-RSMD of 0.069 e−. The trends in Figure 4 suggest large 

relative free energy differences would be highly likely, a pertinent reminder that electrostatic 

definitions can have strong impacts on ΔGhyd or ΔGbind calculations. Differences in dihedral 

parameters were also observed. Table S8 shows 6 dihedral angles found in the FAAH 

ligands where energetic differences between MATCH and ParamChem/CGenFF dihedral 
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definitions were notable (RMSD > 1.0 kcal/mol). Most of these definitions can be mapped to 

the more flexible regions of the FAAH molecule core, such as torsions in the linker between 

the 4-aminopyrimidine and hydroxyl groups. Differences in torsional preferences could lead 

to sampling alternative ligand conformations or lead to increased ligand stain upon binding, 

which could also help explain MUE differences between this work and Raman, et al. Thus, 

this comparison emphasizes the importance of obtaining accurate ligand dihedral parameters 

and partial atomic charges when performing free energy calculations.

DISCUSSION AND CONCLUSIONS

In this work, we’ve derived a new framework, instantiated as a set of Python scripts 

collectively called msld_py_prep, to automate the creation of multiple topology models 

to investigate single- and multi-site perturbations of small molecule functional groups with 

MSλD in the CHARMM molecular simulation package. As a key step in this workflow, 

a process called charge renormalization has been introduced to facilitate the collective 

modeling of a series of structurally diverse ligands with substituent changes at potentially 

many different sites of attachment. Within msld_py_prep, a MCSS partitions ligands 

into a set of core atoms and groups of alchemical fragments for sampling with MSλD; 

charge renormalization then processes and adjusts atomic charges to facilitate sampling 

of many alchemical substituents with a single ligand core, while maintaining correct 

integer net charges for each ligand end-state. Our evaluation of the effects of using charge 

renormalization for computing free energy differences has shown that while most differences 

introduced by charge renormalization are small (ΔΔGFF→CRN < 0.5 kcal/mol), significant 

outliers (ΔΔGFF→CRN > 1.0 kcal/mol) are sometimes observed. Since the ΔΔGFF→CRN 

magnitude cannot be estimated a priori for an arbitrary ligand series, it is recommended that 

post hoc bookending corrections be calculated and applied whenever charge renormalization 

is used. Fortunately, these corrections are easy to setup and can be run in parallel with 

an MSλD calculation. Because charge renormalization makes only minor adjustments to a 

molecule’s original set of atomic charges, bookending calculations can consist of a single 

step charge perturbation with BAR.61 Convergence in these calculations is established by 

measuring the degree of overlap between energy distributions of ligand states featuring 

original or renormalized charges with pymbar.62,63 In this work, high levels of overlap were 

observed for all charge perturbations (Figures S9 - S15). Furthermore, we note that charge 

normalization is only required when alchemical functional groups have different net group 

charges. For example, with the MATCH atom typing program,34 atoms are charged in such 

a way that groups of nearby atoms have a neutral or integer net charge; this is not true of 

ParamChem/CGenFF parameters or most other force fields in popular use. This means that 

with MATCH parameters it is often feasible to define alchemical fragments in the MTM 

such that no charge renormalization is needed at all, and in such instances bookending 

calculations are unnecessary because msld_py_prep has no effect on the original MATCH 

parameters. In addition, charge renormalization facilitates the use of many additional force 

fields with MSλD, which may be useful for modeling many diverse series of congeneric 

ligands. Finally, files generated with msld_py_prep are fully compatible with other MSλD 

utilities, specifically the ALF algorithm,23 thus adding to the continued and accelerated use 

of MSλD in a variety of research endeavors, including structure-based drug discovery.
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Figure 1. 
The msld_py_prep workflow for generating a multiple topology model for use with MSλD 

in the CHARMM molecular simulation package. Input files should be CHARMM formatted 

and generated prior to running msld_py_prep. While inspection of the MCSS results can be 

performed in any molecular visualization software package, vis_check.py works specifically 

with PyMOL.
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Figure 2. 
Example charge renormalization (CRN) of toluene and chlorobenzene into a dual topology 

model. On the left, CGenFF charges obtained from the ParamChem/CGenFF program have 

been grouped into core (blue box) and alchemical (red box) atom groups. Net group charges 

differ between toluene and chlorobenzene. Following small charge adjustments via CRN, 

net core (orange box) and alchemical (green box) group charges now match between these 

molecules, facilitating their use with MSλD.
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Figure 3. 
Thermodynamic bookending corrections for investigating alchemical transformations with 

MSλD and renormalized ligand charges within a specific state (gas, water-unbound, or 

protein-bound). The true force field L1 → L2 free energy difference (ΔGbind
FF (L1 L2)) is 

composed of the MSλD free energy difference between two ligands with renormalized 

charges (ΔGbind
CRN(L1

∗ L2
∗)), plus bookending free energy terms (ΔGbind

FF CRN) to correct 

for charge renormalization differences.
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Figure 4. 
Charge RMSD (e−) and changes in dipole moments (D) for 191 small molecules due to 

charge renormalization. Computed relative free energies of hydration (kcal/mol) between 

original and renormalized partial atomic charges are color coded as a heatmap.
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Figure 5. 
(A) Correlation between experimental and MSλD computed FAAH – ligand binding 

affinities (kcal/mol) obtained with renormalized partial atomic charges. (B) Correlation 

between experimental and corrected MSλD computed binding affinities (kcal/mol), 

representing the original force field’s free energy results.
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Table 1.

Signed Average Deviations in Computed Relative Free Energies of Hydration (kcal/mol), Charge RMSD (e−), 

Dipole Moment Magnitudes (D) and Directions (radians) Induced by Charge Renormalization for Six Series 

of Small Molecules.

Series
Name 〈ΔΔGhyd

FF CRN〉 ± σ
(kcal/mol)

⟨Q – RMSD⟩ (e−) ⟨Δμ⟩

(D)
a

⟨Δμ(θ)⟩

(radians)
b

123benz 0.072 ± 0.002 0.006 −0.018 0.348

12benz 0.200 ± 0.002 0.008 0.112 0.254

12fused 0.451 ± 0.004 0.022 0.034 0.146

1benz 0.028 ± 0.000 0.001 −0.001 0.072

ChEMBL −0.098 ± 0.002 0.003 0.090 0.077

FAAH −0.044 ± 0.001 0.002 0.015 0.042

all series 0.101 ± 0.002 0.007 0.039 0.157

a
Difference in dipole moment magnitudes between original and renormalized charges

b
Angle between dipole vectors
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