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ABSTRACT OF THE THESIS

Survival Analysis on

United Network for Organ Sharing(UNOS)

Kidney Transplant Program

by

Seungyeon Lee

Master of Applied Statistics

University of California, Los Angeles, 2023

Professor Xiaowu Dai, Chair

This paper conducts survival analysis on the kidney transplant-related data collected by

United Network for Organ Sharing (UNOS) since 1987. We investigate which kidney transplant-

related variables from UNOS have significant effect on recipients’ survival time and the extent

of the effects. Standard Cox Proportional-Hazards model, Cox-Proportional Hazards model

with ridge, LASSO and elastic net penalty and lastly random survival forest model are used

to compute the survival function after kidney transplantations, which we use to estimate

patients’ survival probability at time t of a given transplant. Length of stay(LOS) at the

hospital after transplant comes out to be the most significant variable in determining pa-

tient’s survival probability. The longer the patient stayed post transplant, the higher the

survival probability. Following the modeling, we compare these models based on two differ-

ent scores: concordance index and the brier score. Concordance index checks whether the

models generate reliable ranking of survival times(i.e. discrimination), while the brier score

calculates the average squared distances(i.e. calibration). Random Survival Forest model
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provides the best result based on the brier score, while Kaplan-Meier model produces the

best outcome based on the concordance index.
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CHAPTER 1

Introduction

Chronic kidney disease is a serious health problem that poses a risk to the lives of countless

individuals around the globe. Kidney damage resulting from this disease can lead to per-

manent loss of organ function, ultimately resulting in kidney failure. To sustain life in such

cases, individuals need to undergo ongoing dialysis treatment or receive a kidney transplant.

Transplantation is the favored method of treatment for kidney failure. However, there

is a significant shortage of available donor kidneys compared to the demand. Patients can

receive a transplanted kidney from either a deceased individual or a living person. Ap-

proximately two-thirds of transplanted kidneys are obtained from deceased donors, while

the remaining one-third comes from healthy living donors who willingly offer their kidneys

[8]. Given the scarcity of kidneys available for transplant, it is crucial to understand what

factors are related to a higher graft survival rate post transplant. Information about which

factors are related to higher graft survival rate can be used during pre-transplant phase to

more efficiently distribute kidney and during post-transplant phase to better care for the

patients. In this paper, we analyze the kidney transplant data provided by United Network

for Organ Sharing (UNOS) organization compiled since 1987 and build three survival models

to unveil which tranplant-related variables significantly affect patients’ survival probability

and quantify their extent.

Our three models consist of the standard Cox Proportional-Hazards model, Cox Proportional-

Hazards with different penalty such as ridge, LASSO and elastic net, and lastly the random

survival forest model. Upon building the models, we compare the performance of the them
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on two different scales: the concordance index and the brier score. With concordance index,

we estimate the discrimination power of the model, while with the brier score we quantifies

the calibration power of the model.
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CHAPTER 2

Data

2.1 Data Source

Data for this paper comes from the United Network for Organ Sharing (UNOS) organization.

UNOS has compiled transplant data for different organs since 1987 . In this paper, we are

specifically interested in the kidney transplant program and how different variables affect

patients’s survival after the transplant.

To further describe the data, it includes both deceased and living donor transplants.

Each record is per waiting list registration/transplant event, and each record includes the

most recent follow-up information such as graft survival reported to Organ Procurement

and Transplantation Network (OPTN) on the date of file creation. If a patient registered

for a transplant, but either was removed before the transplant occurred or still waiting, all

transplant-related data is set to null. In other words, we have registration-related data but

not transplant-related data. On the other hand, if a patient received a transplant but was

never on the waiting list, we will have all transplant-related data but not the registration-

related data. Each registration and transplant has a unique code assigned in the data for

identification.

The original data has 982,456 entries and 491 variables. Through data cleaning and

preparation, the size of the data we conduct survival analysis is reduced to 7,257 entries and

47 variables. I will explain in more details about the data cleaning and preparation process

in the following sections.
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2.2 Data Cleaning

As mentioned in the previous section, the original data contains 982,456 entries and 491

variables. We filter out certain variables and entries based on the following logic:

- The dataset contains information on both kidney and pancreas transplant data. We

filter out kidney transplant entries when WL ORG variable is KI.

- Some variables were overlapping in information. For instance, HLAMIS variable is

based on A1/DA1, A2/DA2, B1/DB1, B2/DB2, DR1/DDR1, DR2/DDR2 variables.

Therefore in situations like these, we proceed with the most inclusive variable and drop

the variables used for calculation.

- Some variables convey the same information but in a slightly different way. In these sit-

uations, we proceed with the more informative variable and drop the other variables[1].

For example, PREV TX ANY shows whether patient has received any prior trans-

plants and NUM PREV TX is the count of the total number of previous transplants

for a given patient. Since NUM PREV TX variable includes information portrayed in

PREV TX ANY, we drop PREV TX ANY and proceed with NUM PREV TX.

- We drop variables with more than 60 percent of entries missing. We are assuming

entries are missing at random. I considered imputation however when more than

handful of entries are missing, imputation is not very feasible. Therefore we proceed

with dropping variables with more than 60 percent of entries missing [12].

- We also drop variables that we don’t have a clear understanding of due to lack of

documentation. For instance, DGN TCR is a categorical variable with 78 unique

categories; however it is unclear what each category represents.

Then we drop all entries with any missing information from the remaining variables.
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2.3 Data Preparation

After we clean the data as described in the previous section, AGE and AGE DON variables

are included in the dataset. However to utilize Cox Proportional Hazard model, which I

further explain in chapter four, we need all variables to be time-independent. Therefore

instead of these two variables, we calculate the difference in age between the recipient and

donor and take the absolute value and create a variable called AGE DIFF and add it to our

dataset. This allows to retain some degree of information regarding recipients’ and donors’

age while keeping all variables time-independent.

Based on the selected entries and variables for our final dataset, we plot a correlation ma-

trix(see figure 2.1) to see the relationships between different numeric variables. We confirm

that all numeric variables have low correlation, with correlation below 0.5 except correlation

between KDPI and AGE DON at correlation 0.70. We proceed with both variables since we

would like to estimate the effect on hazard ratio for both covariates.

2.4 Exploratory Data Analysis

In this section, I will provide visualization of our final dataset to provide better understanding

of it. First in figure 2.2, we see how many people are alive after kidney transplant at the

time of data collection. We are happy to see that our final dataset has a balanced count

between alive and dead patients.

Figure 2.3 provides a visual comparison of the survival functions between male and female.

We see a general trend where female has a higher survival function compared to male.

However, we do have to keep in mind visual comparisons are highly subjective and for a

more conclusive result on difference in survival functions, log-rank test is more appropriate.

In figure 2.4, we see a few interesting trends. Before I describe the plots, I’ll state what

each variable in figure 2.4 means: LOS stands for recipient length of stay post transplant,

5



Figure 2.1: Correlation Matrix
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Figure 2.2: Survival count after kidney transplant at the time of data collection

Figure 2.3: Kaplan-Meier Curve based on Gender
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Figure 2.4: LOS, AGE DON, ETHCAT of Living and Deceased Recipients

AGE DON is the age of the donor, and ETHCAT is the ethnicity category of the recipient.

First for deceased transplant recipients, the age of donors seem to be left skewed; whereas

for living recipients we see a relatively normally distributed curve. In other words, recipients

that passed away tend to receive kidneys from older donors. Moreover, we see recipients

with certain ethnic category with higher death rate. For instance, we see ethnic category 1

and 2 has a higher death rate than ethnic category 4 and 5. Lastly recipients that had a

longer length of stay(LOS) seem to have a lower death rate, which corresponds to the cox

proportional-hazards model results described later in the paper.

8



CHAPTER 3

Methodology

3.1 Survival Analysis

Survival analysis is used to analyze time until an event of interest occurs. It is often used

in medical research but also in other areas such as engineering to calculate hardware failure

time, customer analytics for customer churn rate and even inventory management to track

time-to-sale. Survival analysis is particularly useful when dealing with censored data, where

the event of interest has not occurred for all subjects by the end of the study or when they

are lost to follow-up since it takes this into account this information to calculate time to

event and the probability of experiencing the event.

With survival analysis we are primarily interested in survival time, which represents the

time until the event of interest occurs. One thing to note is event doesn’t necessarily have

to be a negative outcome like death. It can also be a positive event, such as the time to

recovery or the time to achieving a particular milestone.

Currently, Kaplan-Meier estimator and Cox proportional hazard regression are most

commonly used survival analysis methods. Kaplan-Meier estimator is a non-parametric

estimator to measure the fraction of surviving units for a certain time after treatment taking

censored observations into account. However if we want to consider multiple covariates,

Kaplan-Meier quickly becomes infeasible because the size of subgroups will become very

small. Unlike Kaplan-Meier estimator, Cox proportional hazard regression allows for multiple

covariates and estimate the impact of each variable has on survival time. In this section,
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I will be explaining both Kaplan-Meier and Cox proportional Hazard methods as well as

Random survival forest, which are used in my modeling to establish connection between

covariates and survival time of kidney transplant patients from the time of transplant.

3.1.1 Censored Data

In survival analysis, we often find censored data where we do not know the exact time of

the event of interest. Depending on the industry, the event of interest can be referred to as

”failures”, ”deaths” or simply ”events”. For simplicity, I will either use ”event of interest”

or ”deaths” among the aforementioned options in this paper moving forward.

Generally there are two types of censored data: right censored and left censored. Right

censored data refers to data where survival time becomes incomplete on the right side of the

study end date or when the patient is lost to follow-up or is withdrawn. In other words, the

patients or subjects survived pass the study end date and death is expected to occur some

time in the future but not observed. In our analysis, kidney transplant patients that were

alive at the end of the data collection date would be considered ”right censored” as well as

patients that where lost to follow-up and have withdrawn. The plot below demonstrates the

different types of right censored scenarios that I have mentioned previously. Survival time of

subject A is unknown since he or she is lost. As for subject C, we do not know the survival

time since the subject dropped out of the study. Lastly, survival time of subject E surpasses

the study end date therefore, we do not have information on exact survival time of subject

E.

Moreover, data can be left censored. Left censored data can occur when true survival time

is shorter than or equal to observed survival time. For example, let’s say we are following

subjects until they test positive for a certain virus and our event of interest is the first

time they test positive for the given virus. Oftentimes, we may not know the exact time of

subjects’ first exposure to the virus, and therefore do not know exactly when the patients

first started testing positive to the virus. In other words when data is left censored, true

10



Figure 3.1: Right Censored Data [9]

survival time which ends at event of interest(i.e. first exposure in the virus case), is less than

the observed length for subjects to test positive. Differently put if a subject is left-censored,

we know event of interest occurred between time 0 and t, but do not know the exact time

of event.

On another note, right censored data are much more common than left censored data.

In our UNOS data, we indeed do see a handful of right censored observations; on the other

hand, left censored data does not apply to our UNOS dataset since each observation is based

on either a registration or transplant date.

Figure 3.2: Left Censored Data [4]
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3.1.2 Kaplan-Meier estimator

As mentioned previously, Kaplan-Meier is a non-parametric estimator which calculates the

survival function at a given time. In this section, I will describe how to estimate and graph

survival curves using Kaplan-Meier. Moreover, I will also explain how log-rank test can be

used to compare two or more survival curves.

S(tf ) =

f∏
i=1

Pr[T > ti|T ≥ ti]

= S(tf−1) · Pr[T > tf |T ≥ tf ]

(3.1)

Kaplan-Meier survival probability at event time of interest is as the formula above. It is

the probability of surviving past tf−1, multiplied by the conditional probability of surviving

past time tf given surviving past tf−1. This formula can be also expressed as a product

limit when survival probability ˆS(tf−1) is substituted with the product of all conditional

probabilities for tf−1 or before.

We can understand Kaplan-Meier estimator in a pretty simple manner using the proba-

bility of joint event. As described below, probability of a joint event, say A and B, is equal

to the probability of event A times the conditional probability of the event B, given A[4].

Pr(A ∩B) = Pr(A) · Pr(B|A)

Furthermore, we often are curious in survival analysis if two different subgroups behave

similarly in their survival curves. Although comparing two different Kaplan-Meier curves

can provide visual comparison, log-rank test offers a statistical metric on whether the two

subgroups’ survival curves are equivalent. However, it is important to keep in mind that

the result of log-rank test does not indicate we have proof that the true survival curves are

equivalent.
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Log-rank test is essentially a large-sample chi-square test where we compare the expected

and observed values of deaths at a given f where f signifies each ordered failure time.

Let’s say we are interested in whether two subgroups’ Kaplan-Meier curves are equivalent.

Assuming there are two groups for comparison, we calculate below for each subgroup for

each time period t to get the expected count of deaths. For the first group,
n1f

n1f+n2f
is the

proportion of first group in risk set given time t and [m1f + m2f ] is the total number of

failures over both groups at time t. We can apply the same logic to calculate the expected

count of death for the second group.

e1f =
n1f

n1f + n2f

· [m1f +m2f ] (3.2)

e2f =
n2f

n1f + n2t

· [m1f +m2f ] (3.3)

Then, we calculate the difference between observed and expected for each subgroup for

each time period f and sum up the difference. Equation below describes this process. i

signifies which group the value is for and F means total number of failure times.

Oi − Ei =
F∑
i=1

(mif − eif ) for i = 1,2 (3.4)

Finally, we calculate thee log-rank statistics like below.

Log-rank statistics =
(Oi − Ei)

2

Var(Oi − Ei)
(3.5)

where

V ar(Oi − Ei) =
∑
f

n1fn2f (m1f +m2f )(n1f + n2f −m1f −m2f )

(n1f + n2f )2(n1f + n2f − 1)
for i = 1,2 (3.6)

Note that the variance is the same for two subgroups we are comparing. Finally, we find

the p-value of the log-rank statistic using chi-square distribution with one degree of freedom,

13



which will determine whether to reject the null hypothesis that states there is no difference

between survival curves.

We can also use the log-rank test to compare more than two Kaplan-Meier curves. We

simply update the null hypothesis to state all curves are the same, and use both variances and

covariances of difference between summation of observed minus expected for each subgroup.

Although Kaplan-Meier is a very intuitive way of presenting survival functions, it is not

very feasible if have more than one or two covariates since the size of subgroup can be very

small. When conducting survival analysis for data with multiple covariates, we can use Cox’s

proportional hazard’s model, which I will cover in the next section.

3.1.3 Cox’s Proportional Hazard’s Model

For survival analysis with multiple covariates, it is useful to use Cox’s proportional hazard’s

model as it provides information on the impact of different covariates on survival outcomes,

as well as it mitigates the issue of subgroups becoming too small which often occur in

Kaplan-Meier with multiple covariates[4].

With Cox’s proportional hazard’s model, our main metric of interest is the hazard ratio.

The hazard ratio is the ratio of hazard rates between two groups, which can be expressed

like below.

λ(t,Z)

λ0(t)
= e

p∑
i=1

βiZi

(3.7)

The hazard ratio will tell us how much each covariate contributes to the survival outcome.

As with the logistic model, this hazard ratio is expressed in terms of an exponential of one or

more regression coefficients in the model.To obtain the hazard ratio, we use the product over

the likelihood contribution like below, then maximize to get the partial maximum likelihood

estimator for β.

14



n∏
i=1

[
eβZi∑

j∈R(Xi)
eβZj

]δi (3.8)

R(Xi) is the risk set at the failure time of individual i, δi is the failure/censoring indica-

tor(1 is death; 0 is censored), and Zi represents a set of covariate.

Once we have the β, we can obtain the hazard ratio. Log hazard ratio can be expressed

like below.

log
λi(t,Zi)

λ0(t)
= β1Z1i + β2Z2i + β3Z3i + ...+ βpZpi (3.9)

As shown above, we can obtain β without any assumption on λ0(t), therefore we can

say Cox’s proportional hazard’s model is semi-parametric. However we do have to keep in

mind the model assumes hazard ratios for the covariates remain constant over time. In other

words, the hazard functions of different groups would be proportional to each other.

3.1.4 Random Survival Forests

In this section, I explain how random forest can be applied to survival analysis. Random

forest is most commonly applied to classification and regression to reduce overfitting hence

produces robust outcome to noise and outliers. With random survival forest, we expect this

same benefit but in the context of survival analysis. On a high level, random survival forest

works like the following [7].

1. We draw bootstrap samples from the training data.

2. For each bootstrap sample, we generate a survival tree with p randomly selected vari-

ables. We split each node with the variable that will maximize survival difference

between children nodes.

3. We grow each tree until the last node have at lease one unique death.
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4. Then we calculate the ensemble cumulative hazard function for each tree, and average

those values.

5. Lastly, we use the training data to calculate the prediction error of the ensemble

cumulative hazard function.

Mathematically, each tree’s cumulative hazard function is as below. t1,h < t2,h < t3,h... <

tN(h),h are distinct event times where individual l is said to have died at time tl,h. dl,h and

Yl,h are number of deaths and individuals at risk at time tl,h respectively.

Ĥh(t) =
∑
tl,h≤t

dl,h
Yl,h

(3.10)

Based on the above equation, w we can calculate the bootstrap ensemble cumulative

hazard function like below where B is the number of survival trees.

He(t|xi) =
1

B

B∑
b=1

Hb
(t|xi) (3.11)

given H(t|xi) = Ĥh(t) if xi ∈ h.

3.2 Evaluating Survival Models

The previous section covered different ways of modeling hazard and survival functions. In

this section, we explore how to compare and evaluate those different survival models. I will

go over the most commonly used Harrell’s concordance index, also known as the c-index or

c-statistics, as well as Receiver Operating Characteristic (ROC) curve which is useful when

comparing survival models on a specific time range. And lastly, I explain Brier score that

assesses calibration, which is not assessed with the c-index [13].
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3.2.1 Harrell’s concordance index

Harrell’s concordance index provides insights on the models’ discrimination power. In other

words, it checks for whether the models generate reliable ranking of survival times based on

individual risk scores [11]. The c-index can be calculated like below.

C-index =

∑
i,j 1Tj<Ti

· 1ηj>ηi · δj∑
i,j 1Tj<Ti

· δj
(3.12)

ηi is the risk score of unit i and if Tj < Ti, then 1Tj<Ti
= 1 ;otherwise 0. Similarly, if

ηj < ηi, then 1ηj>ηi = 1 ;otherwise 0. More intuitively, the above formula can be expressed

as the following.

C- index =
number of concordant pairs

number of concordant pairs + number of discordant pairs
(3.13)

We call (i, j) is a concordant pair if ηi > ηj and Ti < Tj, and it is a discordant pair if

ηi > ηj and Ti > Tj.

The closer the C-index is to 1, the better the model prediction. On the other hand

C-index of 0.5 means the prediction is as good as a random prediction.

Although the C-index is intuitive to interpret and calculation is not complicated, there

are some drawbacks. First, it tends to be too optimistic when there is more censored data

present [10]. Second, it is not helpful in estimating performance if we are interested in event

of interest occurring within a specific time range. The first issue can be addressed using an

an alternative c-index estimator where we use the c-index for right-censored data based on

inverse probability of censoring weights [9]. The second issue can be mitigated by utilizing

the receiver operating characteristic curve (ROC curve). With ROC, we can compute how

well a model can predict whether subjects will experience the event or not at a given time

using sensitivity and specificity. I will cover ROC in more details in the following section.
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3.2.2 Time-dependent Area under the ROC

Area under the receiver operating characteristics curve (ROC curve) is a well-known perfor-

mance estimator for binary classification. Based on the predicted risk score, the ROC curve

visualizes the specificity against the sensitivity rate [5]. When applying the ROC curve to

survival time in particular, we have to keep in mind the subject’s status changes over time.

As a consequence, the sensitivity and specificity become dependent on time. Therefore, we

calculate the ROC curve for a given time using cumulative cases where subjects experience

the event prior or at time t(ti ≤ t) and dynamic controls who are subjects with ti > t [6].

Then obtain area under curve (AUC) information for each ROC curve, which can be visual-

ized like the following. We have to keep in mind this method is most relevant when we are

interested in predicting up to time t instead of a specific point in time.

Figure 3.3: Example Plot of Area Under Curve (AUC) for Survival Analysis [9]
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3.2.3 Time-dependent Brier Score

Although the concordance index and the ROC curve provide metrics for discrimination,

which confirms whether the model’s predicted risk scores correctly determine the order of

events, they lack in assessing calibration [2]. Fortunately, Brier score works as a metric for

calibration as well as discrimination. The Brier score is used to evaluate the accuracy of a

predicted survival function at a given time t. It calculates the average squared distances be-

tween the observed survival status and the predicted survival probability. It ranges between

0 and 1, with 0 representing the most accurate model. If no right censoring is present in the

data, the Brier score can be calculated like below.

BS(t) =
1

N

N∑
i=1

(1Ti>t − Ŝ(t|xi))
2

(3.14)

However, when the dataset has subjects that are right-censored, we must adjust the score

by using inverse probability of censoring like below.

BS(t) =
1

N

N∑
i=1

(
(0− Ŝ(t|xi))

2 · 1Ti≤t,δi=1

Ĝ(T−
i )

+
(1− Ŝ(t|xi))

2 · 1Ti>t

Ĝ(t)
) (3.15)

Ĝ(t) = P [C > t] is the estimator of the conditional survival function of the censoring

times calculated using the Kaplan-Meier method, where C is the censoring time. A predictive

model will have a Brier score lower than 0.25.
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CHAPTER 4

Modeling

In this chapter, I summarize our modeling results. We will look into and compare results of

three models: regular cox proportional-hazards model, cox proportional-hazards model with

different penalties, and lastly the random survival forest model.

4.1 Regular Cox Proportional-Hazards Model

Covariates Feature Importance Coefficient eCoeffcient

LOS 0.5155 -0.0010 0.9990

ETHCAT 0.5155 0.0292 1.0296

AGE DON 0.5152 -0.0035 0.9965

EDUCATION 0.5144 -0.0002 0.9998

RT KI BIOPSY=Y 0.5115 0.0109 1.0109

GENDER=M 0.5113 0.0674 1.0698

KDPI 0.5112 0.0016 1.0016

HIST HYPERTENS DON=Y 0.5108 -0.1281 0.8797

ON DIALYSIS=Y 0.5094 -0.0006 0.9994

COLD ISCH KI 0.5094 -0.0007 0.9993

Table 4.1: Top 10 Covariates based on Feature Importance

Of the 47 variables in the final dataset, I list coefficients of top ten covariates based on

their feature importance in table 4.1. To calculate the feature importance, we fit a cox model
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to each variable individually and obtain the c-index. Based on the feature importance, we

interpret LOS, which represents the length of stay at the hospital after transplant, to have

the most predictive power [3].

Furthermore we can use the rankings from above to select which variables to include in

our final dataset, but still need to determine the optimal number of covariates. We perform a

grid search to select the optimal cut-off. In table 4.2, I list the optimal number of covariates

based on their mean test score. Based on the result, we conclude the optimal number of

variables to be seventeen.

Number of Covariates Mean Test Score

17 0.521801

15 0.52136

18 0.520827

16 0.52066

13 0.520368

Table 4.2: Mean Test Score based on Number of Covariates

4.2 Penalized Cox Proportional-Hazards Models

The standard Cox Proportional-Hazards model provides great insight into how each covariate

affects the hazard function. However when we have to estimate coefficient of many covariates,

the standard model may not work since it cannot invert a matrix that becomes non-singular

due to correlations among features.

4.2.1 Ridge

Aforementioned mathematical issue can be mitigated by using the ridge penalty, which adds

the l2 term on the coefficients and brings down the coefficients to zero like the equation
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below.

arg maxβ = logPL(β)− α

2

p∑
j=1

β2
j (4.1)

where PL(β) is the partial likelihood function of the Cox Proportional-Hazards model.

In plot 4.1 below, we can see how the coefficient values decrease as the penalty weight al-

pha increases. Moreover we see variables such as EXH VASC ACCESS=Y, TRTREJ6M KI=

Y, EXH PERIT ACCESS=Y, DIAB=998 and DIAB=4 decrease in a steeper fashion than

the other coefficients, which shows that these variables are crucial predictors in determining

post-transplant kidney failure.

Figure 4.1: Cox Proportional-Hazards model with Ridge penalty

4.2.2 LASSO

Instead of shrinking coefficients to zero like we see with the ridge penalty, Least Absolute

Shrinkage and Selection Operator (LASSO) performs a continuous subset selection of vari-
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ables, where the selected variables are set to zero and therefore excluded from the model.

This allows for reductions in the number of covariates used for prediction. We use the

equation below to maximize on the β values.

arg maxβ = logPL(β)− α

p∑
j=1

|βj| (4.2)

where PL(β) is the partial likelihood function of the Cox Proportional-Hazards model.

Figure 4.2: Cox Proportional-Hazards model with LASSO penalty

Figure 4.2 shows that the LASSO penalty selects a small subset of covariates when α is

bigger. To be more specific, we see only a couple covariates with a non-zero coefficient when

α is 0.01. We see similar variables indicated as crucial predictors as we saw in ridge penalty

plot. EXH VASC ACCESS=Y, TRTREJ6M KI= Y, , DIAB=998 and DIAB=4 stands out,

in addition to MALIG TCR KI = Y, which states whether the recipient had previous history

of malignancy.
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4.2.3 Elastic Net

Elastic Net is a middle ground between ridge and lasso penalty. Generally if we know only

a few covariates will be useful for prediction, we prefer LASSO or elastic net over ridge

penalty. Between LASSO and elastic net, elastic net is preferred because when there are

several strongly correlated features elastic net tend to select all; whereas LASSO chooses one

randomly. Elastic Net uses the equation below to maximize on the β values.

arg maxβ = logPL(β)− α(r

p∑
j=1

|βj|+
1− r

2

p∑
j=1

β2
j ) (4.3)

where PL(β) is the partial likelihood function of the Cox Proportional-Hazards model

and r ∈ [0; 1] is the relative weight of the two penalties in the equation above. Usually it is

sufficient to give the second penalty a small weight to improve stability of the model. For

the elastic net model in this paper, I give second penalty a weight of 0.1.

Figure 4.3: Cox Proportional-Hazards model with Elastic Net penalty

As for selecting an appropriate α value, we use GridSearchCV to train our training set
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on a range of α values, then apply the compute coefficient values on five different sets of

testing data to calculate the mean c-index score. Our result shows α value of 0.0178 results

in highest mean c-index score of 0.521845 among the testing data as shown in figure 4.4.

Figure 4.4: Finding α value for Elastic Net Cox Proportional-Hazards

4.3 Random Survival Forest Model

The random survival forest model selects different combination of entries and covariates from

the training dataset to train on each instance. On each instance, it splits the training data

into different leaves based on the log-rank test, which results in a tree. When we repeat

this process numerous times, we end up with multiple trees, which will call a forest. For our

training data, I fit a random survival forest with 1,000 trees. After fitting, I use the testing

data to c-index score which comes out to 0.5469.

We are curious how much each feature is to the random survival forest model. To esti-

mate this, we use permutation importance function of scikit-learn package in Python, which
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calculates the amount of decrease in log-rank test statistic due to a split in a tree. In table

4.3, I list covariates of top ten mean importance and corresponding standard deviation.

Variables Mean of Importance σ of Importance

LOS 0.017313 0.005098

SERUM CREAT 0.006445 0.003396

AGE DON 0.004997 0.00149

ETHCAT 0.004168 0.006387

TOT SERUM ALBUM 0.003832 0.001653

END CPRA 0.003501 0.001523

BMI TCR 0.002878 0.003264

SHARE TY=5 0.002269 0.000799

HIST HYPERTENS DON=Y 0.00223 0.001842

RT KI BIOPSY=Y 0.002021 0.000839

Table 4.3: Mean and Standard Deviation of Importance Test Scores

The result shows that length of stay after transplant at the hospital (LOS) is by far the

most important feature. If its relationship to survival time is removed (by random shuffling),

the concordance index on the test data drops on average by 0.017313 points.

I would like to stress that features that are deemed to have low importance for a

model with low cross-validation score could be more important for a model with high cross-

validation score.
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CHAPTER 5

Conclusion

5.1 Conclusion

In this paper, we conducted survival analysis with three different models: the standard

Cox Proportional-Hazards model, Cox Proportional-Hazards with penalties, and lastly the

random survival forest model. Table 5.1 below describes the performance of these models

using the concordance index as well as the brier score.

c-index IBS

RSF 0.527812 0.134962

CPH 0.52254 0.135007

Random 0.5 0.250831

Kaplan-Meier NaN 0.134953

Table 5.1: Comparison of Model Performance

Random Survival Forest provides the best result in calibration(brier score; IBS) while

Kaplan-Meier comes out to be the best for discrimination(c-index). The third line stating

”Random” is how a completely random model would perform and listed in the table to

provide a benchmark.
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5.2 Further Discussion

In further modeling, I plan to improve upon our current models as well as experiment

with other models such as Gradient Boosted Models and Survival Support Vector Machine.

From our current models, I would like to choose a smaller subset of variables, as well as

try out different kinds of transformation, such as log transformation or non-linear terms,

and interactions. In the following sections, I describe two new models that I would like to

implement on survival analysis of the UNOS Kidney Transplant program.

5.2.1 Gradient Boosted Models

Gradient Boosting is not referring to a particular model, but a framework that optimizes on

many loss functions. It combines the predictions of multiple base learners to build a powerful

overall model. The base learners are often simple models that might perform a little better

than a random model.Theses predictions are put together in an additive manner, where each

base model addition provides a boost to the final model.

This method is similar to a Random Survival Forest, since it uses multiple base learners

a final prediction, but different in how they are combined. RSF fits each tree independently,

then takes the average of all predictions; whereas gradient boosted model combines each

prediction sequentially in a greedy stagewise method.

5.2.2 Survival Support Vector Machine

Survival Support Vector Machine’s main forte is that it can take in non-linear, or complex

relationships between variables utilizing the kernel function. The kernel function implicitly

maps the input into high-dimensional space where the survival can be written by a hyper-

plane.This makes the Survival SVM vey sophisticated and allows for a wide range of data to

utilize the Survival Support Vector Machine. On the other hand the main disadvantage is

that predictions cannot be quite related to the survival function and the cumulative hazard
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function.
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