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Abstract

Local Models for Strongly Correlated Molecules

by

John Anthony Parkhill II
Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Martin Head-Gordon, Chair

The most striking and counterintuitive consequences of quantum mechanics play out in
the strong correlations of many-particle systems. The physics of these phenomena are
exponentially complicated and often non-local. In chemistry, these strong correlations are
vital to even qualitative pictures of chemical bonding, but they grow intractably more
numerous with the number of particles and remain a significant challenge for models of
chemical behavior. Luckily, the strong correlations relevant to most chemical situations can
be significantly simplified and compressed using the heuristics which have been developed
by chemists up to present day: ideas like bonding electron pairs, and resonance. In this
thesis we present a convergent and systematically improvable series of approximations to the
many-electron Schrödinger equation which exploit these patterns. Two themes dominate
the work: the use of bonding electron pairs as local units for developing efficient models,
and an exponential parameterization of the many-electron wave-function.
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(N2) at a N-N bond length of 7.50 Åwith unrestricted PP orbitals in the
minimal active space in the 6-31G* basis. . . . . . . . . . . . . . . . . . . . 42

4.1 CASSCF energies for symmetric water dissociation (Eh), and relative errors
of PQ, and non-local active-space models with the RPP orbitals. . . . . . . 53

4.2 Correlation Energies for symmetric water dissociation (Eh) with the RPP
orbitals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Correlation energies for dissociation of ethene(Eh) with restricted PP orbitals. 54
4.4 N2 Total energies (a.u.) and the error relative to CASSCF. (* includes

singles) with unrestricted PP orbitals. . . . . . . . . . . . . . . . . . . . . . 58

5.1 Energetic effects of the hybrid gradient with several OO-CC models of water
with the 6-31g** basis. Energies reported are Model - CASSCF(8,8) in Eh.
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Chapter 1

Introduction

1.1 Context

”What I cannot create, I do not understand” - Richard Feynman

Near the turn of the last century it became clear that an adequate description of matter at
small scales required [4–9] generalizations of the classical notions of ”state” and ”observ-
able”. The resulting quantum theory [10–18] revolutionized science, and barring relativity
provides a comprehensive theory of all chemical phenomena in principle. Realistically,
the extent of insight that can be afforded from these first-principles depends on how effi-
ciently and faithfully the calculation of a molecular wave-function can be performed by the
would-be theoretician. The goal of our work is to make that calculation more accurate and
affordable, for the special case of electrons in molecules.

The mathematical structure of quantum mechanics postulates that observables corre-
spond to the action of linear operators on a Hilbert space, a certain sort of inner-product
vector space. The state of the physical system is postulated to correspond to a vector
in this space and the corresponding dual vector guaranteed by the Riesz representation
theorem. These are colloquially called a ket and bra respectively, and together a wave-
function. The vectors themselves are not measurable. Concerning ourselves mostly with
time-independent problems we will usually imagine without explicitly noting that this
wave-function is prepared as a position-space vector. In this case the bra and ket are
both complex-valued, square-integrable functions of position, |ket〉 ∼ |Ψ(r1, r2, . . . , rN)〉
and 〈bra| ∼ 〈Ψ∗(r1, r2, . . . , rN)|. The probability of observing a particle in at a given po-
sition is then given (up to normalization) by the N-1 particle integral over all but one
coordinates ρ(r) =

∫
dr1...drN−1|Ψ|2.

To begin, we assume that all nuclei have negligible volume and infinite mass (the
Born-Oppenheimer approximation) and their contribution to molecular energies is simple
Coulombic repulsion. Even these basic approximations are too coarse for some interesting
chemical problems. We solve the Schrödinger equation (SE, Eq. 1.1) for a many electron
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wave-function |Ψ(r1, r2..., rN)〉 given a electronic Hamiltonian parameterized by the nuclei
and the absence of any other fields. We choose the atomic units and they will be omitted
throughout.

Ĥelec|Ψelec〉 = Eelec|Ψelec〉
Ĥelec = −

∑
i

1

2
∇2
i −

∑
i

∑
A

ZA
riA

+
∑
i

∑
j>i

1

rij
. (1.1)

The first term describes the kinetic energy of the electron, the second their attraction to
the nucleus and the third their repulsion from each other. Exact solutions to this equation
have a complex analytic structure, with derivative singularities anywhere the positions of
two electrons are the same and are not generally available.

To make progress we must guess state-vectors which we can easily express. To this
end we introduce an orthonormal basis of single electron states {χi} which we assume we
can grow until until complete. Ignoring relativity, we postulate that each of these states is
the product {χi(r, σ)} of a spatial function and a spin function which takes on one of two
possible orthonormal vectors with eigenvalues (±1

2
). The spatial functions can be expanded

with any sort of square-integrable functions we choose. The simplest wave-function ansatz
is a simple Hartree [19–22] product of these 1-electron functions:

|Ψ(r1, r2..., rN)〉 ≈
∏
i

χi(ri) (1.2)

However Fermions have an eigenvalue of -1 under parity (permutation of coordinates) and
this trial function does not have those statistics. The simplest possible modification which
ensures anti-symmetry is a linear combination of these Hartree products, summed over the
permutations {σi} on electrons with a sign factor for each index swap in that permutation.

|Ψ(r1, r2..., rN)〉 ≈
∑
σk

Sign(σk)
∏
i

χi(rσk(i)) (1.3)

This model is called a Slater [23–25] determinant, and it has the important property that
at any given position an electron excludes others of the same spin.

There is an alternative notation for an anti-symmetric product of single-particle states in
terms of creation {a†i} and annihilation {ai} field operators, called ”Second Quantization”
[26, 27]. In this notation, which we will rely upon heavily for the remainder of this work,
the physical state coordinates {ri} are abstracted away and replaced with summed indices
over single-particle basis states. In this thesis these single particle states are imagined
to be vectors in the position representation; for this reason we will omit resolutions over
position space. The representation chosen for the single-particle states (position eigenstates,
momentum eigenstates, etc.) usually doesn’t alter the physicality or notation of a state in
second quantization.
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The creation and annihilation operators are not a part of our intuitive reality (ie: they
are not Hermitian, and don’t possess real spectra), but so long as they span a space which
satisfies the hypotheses of our Hilbert space and obey the canonical commutation relations
(we construct them to do so), they provide an allowable representation of our quantum
mechanical system. We call the space they generate by action on the vacuum a Fock
space. The Fermion statistics are book-kept with the anti-commutation relations, and
normalization conditions which define the algebra on these operators:

Commutation: [ai, aj] = [a†i , a
†
j] = δi,j (1.4)

Anti-Commutation: [ai, aj]+ = [a†i , a
†
j]+ = 0 ; [ai, a

†
j]+ = δi,j (1.5)

Normalization: aiai = a†ia
†
i = 0; aia

†
i = 1 (1.6)

The eigenstates of the annihilation operators are those states which are unchanged by de-
tection, so-called coherent states but this thesis is not concerned with their properties.
Second-quantization makes the expression of many-particle states significantly easier be-
cause we don’t need to constantly rely on the complex (3N variable) analytic form of the
wave-function to express the operator algebra which is the essence of our quantum physical
system.

To employ this notation we assume the existence of some vacuum |0〉, a state of zero
particles. The Slater determinant is written as a simple product of creation operators on
the left of this state; each populating a previously vacant single particle state. It is useful
to introduce some conventions on the indices we will be using. Any sort of orbital may be
denoted: {p, q, r...}, occupied orbitals are denoted: {i, j, k...}, and virtuals {a, b, c...}. The
atomic orbital basis will be denoted: {µ, ν, λ...}. Any observable N-particle operator can
be written as a tensor of dimension 2N in second quantization. Commonly we will write an
operator in that fashion with a Xket

bra ie: 〈asar|Xrs
pqa
†
sa
†
rapaq|a†pa†q〉 denoted: Xrs

pq . The Slater
determinant can be denoted:∑

σk

Sign(σk)
∏
i

χi(rσk(i)) =
∏
i

a†i |0〉 (1.7)

This approximate form for the many-electron wave-function provides a useful starting point
for quantitative calculations and so we should describe how it may be calculated in detail.
There is a special class of operator strings, called normal-ordered, which vanish when their
expectation value is taken with the vacuum. In a normal-ordered operator string all creation
operators lie to the left of all annihilation operators. Although the utility of this class of
operator strings isn’t yet obvious it will be explored at length in Chapter 1.
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1.1.1 The Mean Field Approximation

Starting with a model of 1 determinant for molecular electronic structure, we hope to
approximately solve the SE. In most calculations the single particle basis is written as a
linear combination of atomic orbitals (φµ(r)) which are themselves expanded as sums of
Gaussian functions.

χi(r) =
∑
µ

Cµ
i φµ(r) (1.8)

The atomic orbitals are non-orthogonal with overlap matrix Sνµ = 〈φµ|φν〉. The first two
terms of the Hamiltonian, Eq. 1.1, do not present much difficulty so long as the right basis
functions are chosen they are simply integrated directly. We denote the matrix element
for the ”core” Hamiltonian (kinetic and electron-nuclear terms) ĥji = 〈χi| −

∑
i

1
2
∇2
i −∑

i

∑
A
ZA

riA
|χj〉. The mean-field approximation is equivalent to supposing that each electron

experiences an effective 1-particle (2-index) Hamiltonian parameterized by the others. The
inter-electronic repulsion term has second quantized representation: V rs

pq = 〈sr|1
r
|pq〉. There

are two two-index contributions:

Ĵ ji = 〈ij|1/rij|ij〉 =

∫
dr1χi(r1)[

∫
dr2|χj(r2)|21/rij]χi(r1) (1.9)

K̂j
i = 〈ij|1/rij|ji〉 =

∫
dr1χi(r1)[

∫
dr2χj(r2)1/rijχi(r2)]χj(r1). (1.10)

So we construct the best possible effective 1-particle Hamiltonian, the Fock operator:

f̂ ji = ĥji + Ĵ ji − K̂
j
i (1.11)

It should be immediately obvious that the mean-field wave-function is not an exact solution
of the many-electron problem, because it doesn’t even depend on the complete many-
electron Hamiltonian. However in the next section we will cover the exact solution. The
determinant which is the eigenfunction of this mean-field hamiltonian can be determined
[28–30] by solving the generalized eigenvalue problem:

fC = SCε (1.12)

ε is a vector containing the eigenvalues of f corresponding to each orbital. In the sim-
plest Roothan-Hall [31, 32] approach the generalized eigenvalue problem is simply solved
iteratively. Each new Fock operator generates a new determinant which generates a new
Fock operator until convergence. At each iteration the N lowest eigenvalue orbitals are
chosen to be occupied, and the remainder are called virtual. The Hartree-Fock energy is
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the expectation value of the true Hamiltonian with the converged determinant:

EHF =
∑
i

εi +
1

2

∑
i,j

J ji −KJ
i (1.13)

Orbital Rotations

One can arrive at any determinant of orthogonal spin-orbitals in a given basis from any
other by a series of unitary transformations of those basis vectors. Any unitary transfor-
mation can be parameterized as the exponential of an anti-Hermitian operator. In this way
we can express the converged HF orbitals in terms of an orthogonal set of guess orbitals
as:

C = C0U = C0e
θ (1.14)

δEHF
δU i

p

= 2f ip (1.15)

θ = −θ† (1.16)

the (NMO, NMO) matrix θ can be geometrically termed a rotation operator which mixes
two single-particle states. Using this orbital rotation picture we can develop a steepest
descent algorithm to solve the HF equations, by following the gradient of the energy with
respect to θ. At each iteration the chain rule is used to construct δE

δθ
from δE

δU
and δU

δθ
. The

Hartree-Fock energy is invariant to rotations within the occupied and virtual spaces, but
not between them.

1.1.2 The Exact Solution

The mean-field solution provides an orthogonal 1-particle basis partitioned into occupied
and virtual spaces, and an approximate wavefunction which lies entirely in the occupied
space. Within the given 1-particle basis the space of N-electron wave-functions is spanned
by a linear combination of all possible N-orbital determinants. These can be imagined as
resulting from the action of normal-ordered ”excitation operators” which replace a certain
number of indices, occupied in the HF wave-function with previously unoccupied 1-electron
states.

|Ψ〉Full-CI =
∑

p1,p2,...pN

Cp1,p2,...pN

∏
i

a†pi
=
∑
n=1..N

Ĉn · |ΨHF 〉 (1.17)

Where: Ĉn =
∑
ik,bk

Cb1,b2...bn
i1,i2...in

a†bn ...a
†
b1
ai1 ...ain (1.18)
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Given this ansatz of all possible configurations, the Full-Configuration Interaction ex-
pansion (FCI) [33–40], the ground state wave-function can be determined via the Ritz vari-
ational principle. In the simplest possible version the Hamiltonian is explicitly constructed
and diagonalized in the basis of Ĉn providing a complete manifold of bound states.

Ĥ =


EHF 〈0|Ĥ|Ĉ10〉 · · · 〈0|Ĥ|Ĉn0〉

0 C∗1C1〈µ1|Ĥ|µ1〉 · · · C∗1Cn〈µ1|Ĥ|µn0〉
...

. . .
...

0 C∗nC1〈µn|Ĥ|µ1〉 · · · C∗nCn〈µn|Ĥ|µn0〉

 (1.19)

Where: µn =
∑
ik,bk

a†bn ...a
†
b1
ai1 ...ain (1.20)

If only a few lowest-lying states are desired the matrix can be implicitly diagonalized
using a Lanzcos-type [41, 42] algorithm and only the lowest vector must be stored. How-
ever each vector must be represented in the basis of all possible n-electron determinants,
a space which grows as NMO!. To be concrete, imagine a water molecule with 8 valence
electrons. Minimally we may introduce two single-particle basis functions for each electron,
although chemical accuracy will not be achieved until much more than 30 are added. Even
in this insufficient basis there are 16!

8!(16!−8!)
= 12870, 8-electron determinants. If fifteen basis

functions are introduced there are roughly 782 gigabytes worth of determinants in the full
expansion. If thirty basis functions are introduced for each electron there are ≈ 2.4 ∗ 1014

expansion coefficients and so on. It is unlikely that more than 18 electrons can ever be
treated in this fashion within the author’s lifetime even with a basis which is very small.

The difference between the HF energy and the FCI energy defines the correlation en-
ergy. The remaining problem of this work is to find truncations of the FCI expansion which
can be expressed in a number of variables which can be practically manipulated on a mod-
ern computer. A multitude of possible approximations have been introduced, many with
significant success and application to chemistry. The variational theorem ensures that FCI
energy provides a lower bound for any approximate model which is determined by projec-
tion against the whole SE, and so often the cheaper approximate models will underestimate
the correlation energy. We will review some established approaches before proceeding into
our own work.

Size-Consistency

The most obvious first step to a tractable approximation of the electronic structure
problem is limiting the rank of Ĉn and solving the SE over that incomplete space. The
highest-rank excitation operators are the most costly to calculate, O(m2n+2), and often less
significant than the less numerous, lower-rank contributions. Unfortunately the accuracy of
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such a truncation varies when two non-interacting systems are treated as a unit rather than
apart. In chemistry, where particles are redistributed during the course of reactions between
reactants and products (which we can imagine to be independent), approximations which
are not size-consistent lack a significant cancellation of errors and are simply less-useful.

Intermediate Normalization

Often the Hartree-Fock wave-function has significant weight in the exact expansion of
the wave-function, and there is a convenient choice of normalization, Intermediate Normal-
ization, reflecting this fact which sets the weight of determinantal reference to 1. Formally
〈Ψ|0〉 = 1 where Ψ is some correlated improvement, and the energy of concern (now the
correlation energy) is given: 〈Ψ|H|0〉 = Ec. Throughout the remainder of this work we
largely imply this choice of normalization, and if not otherwise noted assume every energy
is a correlation energy.

1.1.3 Perturbation Theory, and the deficits of Hartree-Fock

The true many electron state includes information about electrons excluding each other
locally, and spin-coupling information which cannot be represented in a single determi-
nant or effective 1-particle field [43]. Conversely the exact answer has all of these effects,
but defies expression and so we seek something simpler. The simplest way to correct for
correlation is to perturb the HF wave-function with the missing components of Ĥ and cal-
culate the leading order perturbative correction [44, 45]. H|ΨHF 〉 is spanned by the space
of double excitations above the reference, because Ĥ is a two-body operator. As in every
perturbation theory we introduce a partitioning of the Hamiltonian: Ĥ = Ĥ0 + V̂ , in this
case (the Møller-Plesset partitioning) we choose Ĥ0 = f̂ . In kind we partition the space of
many electron determinants into space (0) which is spanned by the eigenfunctions of Ĥ0

such that E0 = 〈0|H0|0〉 and the remainder. Given these choices the correlation energy
and corrected wave-function are determined as usual in Rayleigh-Schrödinger Perturbation
Theory (RSPT) by collecting terms of each given order from expansion over the SE.

(Ĥ0 + V̂ )
∑
k

|Ψk〉 = (
∑
k

Ek)
∑
k

|Ψk〉 (1.21)
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We introduce the projectors onto each space: |0〉〈0| and P̂ = 1− |0〉〈0|. We determine the
amplitudes of the first order interacting space by projection onto the perturbation:

|Ψ〉MP1 = (1 + T̂2)|0〉 (1.22)

= −P̂ (Ĥ0 − E0)P̂ V̂ |0 > (1.23)

→ T̂2 =
〈0|V̂ a†ba†aaiaj|0〉
εa + εb − εi − εj

(1.24)

Then calculate the energy of the corrected wave-function with the SE:

Ec,MP2 = 〈0|V̂ |ΨMP1〉 = 〈0|V̂ T̂2|0〉 (1.25)

Strong Correlations

The MP2 wave-function significantly improves on HF, and gives nearly quantitative
molecular interaction and atomization energies. However there is serious cause for concern
in the details. In cases where the MP2 correction is large, one might be tempted to
continue the series to higher order to achieve greater accuracy, but such an expansion
often does not always converge. In fact, anytime a closed-shell molecule is dissociated into
radical fragments the perturbation theory will fail. We call these PT defeating correlations
”strong”. The most striking consequence of quantum many-body theory is that particles
can become non-locally ”entangled” with one another. These are precisely the situations
where no single determinant dominates the exact wave-function and a perturbation analysis
will fail. Often nearly degenerate single-particle spectra are indicative of such a situation.
Because this sort of correlation isn’t the same as the local-exclusion, ”dynamical” effect it
is also sometimes called a ”static” correlation problem.

A determinantal expansion of the exact wave-function in a strongly correlated situation
often has a number of significant determinants which compete for dominance. The number
of such determinants grows exponentially with the number of strongly correlated particles,
and forms the fascinating crux of the strong correlation problem. These are often related to
each other by greater-than-double replacements, and accompanied by the very large number
of small-weight configurations which model the dynamical exclusion of electrons from each
other. There are however models capable of capturing these strong correlation effects, to
which we turn our attention. We note in passing that our problem has a converse: strongly
correlated quantum systems can describe exponential complexity with linear numbers of
particles. This is the force behind the growing field of quantum computation.

1.1.4 The Complete Active Space Self-Consistent Field

FCI isn’t affordable for very many electrons, but usually the strong correlations of a
molecular system occur between just a few single-particle states and the remaining are well
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described by the Hartree-Fock model. To exploit this fact we can solve CI within a space
of only a few orbitals, and make those orbitals well-defined by introducing a variational
condition which determines them. The model which results from solving a CI in an ”active
space” of only a few electrons and orbitals and variationally minimizing the correlation
energy with respect to perturbations of these orbitals is called multiple configuration SCF
(MCSCF) [46–48]. If the CI is chosen to be complete the resulting model is called a
Complete Active Space Self-Consistent Field (CASSCF) model.

|Ψ〉CASSCF =
∑

Ĉ∈Active

Ĉ|0〉 (1.26)

|0〉 = Û |Ψ〉HF where Û = eθ (1.27)

s.t.
δE

δĈ
= 0, and

δE

δθ
= 0 (1.28)

(1.29)

Because the CI wave-function obeys a variational principle, the gradient is given trivially
by the Hellman-Feynman Theorem.

δEMCSCF

δU
= 〈Ψ|δĤ

δU
|Ψ〉MCSCF (1.30)

Starting with the HF MO’s a CASSCF wavefunction is determined by solving the active-
space CI, forming the orbital gradient, taking a step in θ and transforming the Hamiltonian
into the new basis until convergence. In addition to the occupied-virtual rotations which
must be optimized in HF, rotations must be performed between active and inactive occu-
pieds and virtuals. θ is a non-linear parameter meaning that there may be more than one
set of orbitals satisfying the CASSCF condition which could be chosen to model a given
electronic state. Still it is common to proceed as if there were a unique solution given
a number of orbitals chosen to be active, and a number of electrons chosen to fill those
orbitals. Admitting an active occupied and virtual orbital for each valence electron pair of
a molecule is often an excellent choice, and called the perfect-pairing valence active space.
When it is computable for the complete valence space the CASSCF wavefunction provides
a smooth and qualitatively correct model of electronic structure, but too often the small
active space which is affordable is not accurate.

Aside from the exponential scaling which permanently limits its range of applicabil-
ity, CASSCF also systematically underestimates the correlation energy because it largely
misses dynamical correlation. In most cases it has such significant overlap with the ex-
act wave-function that a perturbative correction for these missing correlations is largely
successful [47]. This divide-and-conquer approach to the correlation problem is a common
element of most multi-reference correlation methods.
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1.1.5 The Coupled Cluster Anstaze

Truncating the CI excitation operator at any level of excitation results in a model whose
errors grow with system size, and for chemistry where particle number changes in the course
of a reaction this is extremely undesirable. In statistical mechanics the exponential form
of the partition function is motivated by the extensivity of the energy. Likewise if we want
an extensive wave-function we should choose an exponential shape [49–51]. Suppose an
ansatze of exponentiated cluster operators up to rank n :

ΨCC〉 = eT̂ |0〉 (1.31)

T̂ =
∑
i=1,n

Tn and T̂n =
∑
i,b

T b1,b2...bni1,i2...in
a†bn ...a

†
b1
ai1 ...ain (1.32)

This is the trial wave-function of a coupled cluster model. These models are amongst
the most successful and accurate in quantum chemistry [52] and strongly influence the
models developed in this thesis, although they were first developed to model the interactions
between nucleons [53]. To solve for the parameters of the expression above, one might be
tempted to introduce the dual of the ket, and solve using the Ritz variational method [54].
Unfortunately even if T̂ is much smaller than the span of the Full-CI vector to do so
requires an exponential amount of computational effort. An alternative set of non-linear
homogeneous equations for each parameter can be derived if the ansatze above is inserted
into the SE and projected on the left with each level of excitation (µi) present in the cluster
operator:

ĤΨCC〉 = EeT̂ |0〉 → 〈µi|e−T̂ ĤeT̂ |0〉 = 0 (1.33)

With this prescription the computational cost of a coupled-cluster model is the same as the
similarly truncated CI,O(m2n+2) wherem is the dimension of the basis and n the rank of the
excitation operator), but the resulting model is extensive and significantly more accurate.
Unfortunately the price paid is the loss of the variational lower-bound. Most molecules
at their equilibrium geometry can be quantitatively described if the cluster operator is
truncated at triples. The coupled-cluster singles-doubles model (CCSD) is a ubiquitous
and highly successful variant. This expansion of the wave-function makes no differentiation
between weak-or-strong correlations, but fails if the truncation rank of the cluster operator
is smaller than the number of strongly correlated electrons in the molecule. At the time this
thesis is written computer resources are such that CCSD(T) [55] is the method-of-choice
if a system can be represented with roughly fewer than 2000 basis functions, and these
methods afford chemical accuracy if there is no strong correlation problem. Local variants
with near-linear scaling have been developed [56, 57], although we cannot yet reach the
regime where that linear scaling is cost-effective.

The cluster operator is isometric and so by similarity transforming the Hamiltonian
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e−̂T ĤeT̂ we do not alter its spectrum, although the spectral expansion of each state is
shifted downwards into the lower-rank blocks of the transformed Hamiltonian matrix. The
transformed Hamiltonian can be diagonalized, just like Ĥ itself providing correlated excited
states which are usefully accurate for states dominated by a single excitation, even at the
level of doubles. This is called Equation of Motion (EOM)-CC [58, 59]. However this
transformation does create an effective Hamiltonian which is non-Hermitian, and that has
some non-trivial computational and physical implications which are beyond our scope.

1.1.6 Orbital-Optimized CC as an approximation of CASSCF

CC is a size-extensive truncation of CI, and so one might wonder whether CC with an
orbital optimization condition would also make a useful and size-extensive truncation of
CASSCF. This direction was pursued by the Head-Gordon group roughly a decade ago. The
resulting Valence-Optimized Doubles model is defined by a pseudo-variational Lagrangian
and orbital optimization condition:

Ẽc = 〈0|(1 + Λ)e−T |Ĥ|eT0〉 (1.34)

Where: Λ̂n =
∑

i1...in,b1...bn

Λb1...bn
i1...in

a†in ...a
†
i1
ab1 ...abn (1.35)

dẼ

dT̂
= 0→ (Multiplier Condition) (1.36)

dẼ

dΛ̂
= 0→ (Amplitude Condition) (1.37)

dẼ

dθqp
= 〈0|(1 + Λ)e−T |[Ĥ, (aqp − apq)]|eT0〉 = 0 (1.38)

(1.39)

When the strong valence correlations have the character of two doublets coupled to a sin-
glet the VOD wave-function is an accurate approximation to CASSCF for non-interacting
systems. The computational costs of VOD grow with the sixth order of molecular size,
which is significantly smaller than NMO!, but if more than 1 electron pair is strongly corre-
lated (the dissociation of multiple bonds. metals, etc.), VOD is an unsatisfactory model of
the electronic structure. The 6th order effort required for these non-local models precludes
their application to large systems and they still lack dynamical correlation.

1.1.7 The Perfect Pairing Model

Bonding electron pairs are a useful idea [60] which have found ubiquitous applications
in chemistry since the invention of a Lewis dot-structure. This indicates that bonding pairs
may also be a useful way to concisely express a many electron wave-function. The minimal
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model which is exact for non-interacting electron pairs is called the Generalized-Valence-
Bond Perfect Pairing [61,62] method. The ansatze takes the form:

Ψpp〉 =
∑
i

T̂ i
∗ ī∗

īi |0〉 (1.40)

where {i, ī, i∗, ī∗} are an occupied alpha, occupied beta, virtual alpha and virtual beta or-
bital respectively. These ”pair” quartets of spin-orbitals are uniquely associated with one
another by rotating the orbitals self-consistently amongst themselves. This requires addi-
tional rotations beyond CASSCF within each space, because there is no longer invariance
between occupied rotations. One can solve the anstaze introduced above as a truncated
coupled-cluster doubles model [63,64] using the same equations presented above for VOD,
except only allowing each amplitude and multiplier to possess indices of one electron pair.
This approximate wave-function can be afforded for hundreds of electrons and usually
captures between 30 and 60 percent of the valence correlation energy. Unfortunately PP
exaggerates the locality of electron correlations, resulting in symmetry-breaking artifacts
for systems with multiple resonance structures (benzene, allyl radical etc.). It has been the
purpose of this thesis to find generalizations of this idea which provide improved accuracy,
approaching the accuracy of CASSCF, and finally approximate the total electronic energy.

Models Beyond PP

To address the symmetry breaking problem our group has pursued several directions
before this thesis. Attempts to reduce symmetry breaking by allowing 2-pair excitations
(in the doubles space) resulted in the Imperfect-Pairing (IP) [65–67] model, which captures
significantly more correlation energy but still exhibits most symmetry artifacts. The IP
model’s correlation energy also unphysically diverges for dissociation problems. This was
repaired by introducing a truncation of the amplitude equations inspired by GVB (GVB-
RCC) [68] which removes the offending terms, but is still physically lacking for multi-
bond dissociation processes. Later perturbative three-pair amplitudes were combined in a
hybrid Lagrangian from the IP model. The resulting three-center imperfect-pairing model
(TIP) [69, 70] improved correlation energy recovery into the 90% range for most systems.
A somewhat different approach attempted to add the missing projective information from
greater-than doubles by truncating the extended-coupled cluster model. The resulting
quadratic coupled-cluster doubles [71, 72] models improved on the performance of CCSD
for dissociation problems, at the price of increased cost.

Dynamical Corrections

Parallel to work developing an affordable reference for strong correlations our group
developed corrections which afford accurate total energies by adding back in the large
numbers of small correlation contributions which arise from orbitals outside of the valence
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virtuals. These corrections [73–77] were developed by introducing a matrix-based Löwdin
[45] style partitioning of the coupled cluster Hamiltonian, in a spirit much like MP2. The
numerical performance of these models relies entirely on the strength of the reference. In
cases where that reference is solid, but expensive (like CCSD), the resulting models are
remarkably accurate, but expensive (7th order).

1.1.8 The Elephant in the room: DFT

This thesis also describes some work on density functional models of chemistry. These
approaches are significantly cheaper than any other correlation method and can afford near
chemical accuracy, given a simple electronic structure and empirical fitting procedures.
However they achieve this efficiency by giving up the systematic improvability which is the
feature of the ab-inito models described above. In fact they largely ignore the non-local
strong correlation physics which are the thrust of this thesis.

The founding theorems [78] of this formalism state that the ground state density some-
how uniquely determines the ground state energy although the functional dependence of
the energy on the density is not constructively established. For a one-electron system it’s
relatively elementary to derive the exact functional (since there is a simple map between
density and wavefunction), but for many electron systems the exact functional is not avail-
able, unless the system is otherwise exactly soluble. To continue we postulate that for each
interacting many-electron system there exists a continuous map (an adiabatic connection)
to a fictitious non-interacting system under a local external potential which possesses the
same density as the true physical density. In the case of Kohn-Sham [78–81] DFT, the
noninteracting system we imagine to be the HF wave-function, resulting in an effective
HF-like equation for the fictitious orbitals:(

ĥ+ T̂diff + Ĵ + V̂xc{ρ(r)}
)
φi(r) = εiφi(r) (1.41)

V̂xc{ρ(r)} ≈
∫
δrρ(r)F (ρ(r),∇ρ(r), ...) (1.42)

Here T̂diff is the difference between the kinetic energies of interacting and non-interacting
systems (assumed 0 in our case) and V̂xc is a functional of the electron density absorbing
all exchange and correlation effects. The second line above reflects the functional form
which is applied in the vast majority of all DFT calculations. Note that this implies an
approximation that the exchange energy is semi-local (which it is not). The largest errors
of most functionals come about from the missing cancellation between Ĵ , and it’s anti-
symmetric partner, K̂ which causes electrons to repel themselves.

To construct models for V̂xc, early work focused on analytically soluble model systems,
like the uniform electron gas (UEG). As the functional is made more-and-more general
these approaches have been superseded in chemistry by empirical fits of functional forms
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against large sets of standardized chemical data [82,83], sometimes preserving the uniform
electron gas limit. This empiricism affords accuracy, especially for thermochemistry which
is dominated by local, dynamical correlations.

So there is a possible connection between the electron density and the true energy of
the ground state. Of course we can say something about how this functional must behave
for toy systems. It depends on the distributions of electrons everywhere, and cannot be
written as a semi-local gradient expansion of ρ(r). Even supposing that it was some integral
over two electron positions: Exc ≈

∫
δr1δr2F (ρ(r1), ρ(r2)) (and this is not so!) the cost

of such a construction would grow with the size of a molecule like MP2. No functional
in common use is exact for even a single-electron atom. If we had an expression for the
exact functional, such an expression would be intractable for large systems, and likely no
more appropriate a starting point than FCI. Nonetheless DFT is an enormously successful
model of dynamical correlations in chemistry. No thesis towards the correlation problem is
complete without some understanding of how DFT achieves this massive feat.

1.2 Outline of this Work

1.2.1 A Sparse Automation of Many-Fermion Algebra

Algorithms useful in the construction of electron correlation models are collected along-
side new developments for cases of high rank and sparsity. In the first part of this paper a
Brandow diagram manipulation program is presented. The complementary second section
describes a general-rank sparse contraction algorithm which exploits the permutational
symmetries of many-fermion quantities. Several recently published local correlation mod-
els (perfect quadruples and perfect hextuples) were built using these codes. This paper
should facilitate reproduction and extension of high-rank electron correlation models that
combine truncation by level of substitution with truncation by locality, such as the num-
ber of entangled electron pairs. This Chapter has been published as a paper in Molecular
Physics [84].

1.2.2 The numerical condition of electron correlation theories
when only active pairs of electrons are spin-unrestricted

The use of spin-unrestriction with high-quality correlation theory, like coupled-cluster
(CC) methods, is a common practice necessary to obtain high quality potential energy
surfaces. While this typically is a useful approach, we find that in the unrestricted limit of
ROHF fragments the CC equations are singular if only the strongly correlated electrons are
considered. Unstable amplitudes which don’t represent the physics of the problem are easily
found and could be unwittingly accepted without inspection. We use CCD stability analysis
and the condition number of the coupled-cluster doubles Jacobian matrix to examine the
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problem, and present results for several molecular systems with a variety of unrestricted
cluster models. Finally a regularization of the CC equations is proposed which allows us
to apply CC, and Lagrangian gradient formulas even with completely unrestricted orbitals.
This Chapter has been published as a paper in The Journal of Chemical Physics [85].

1.2.3 The Perfect Quadruples Model

A local approximation to the Schrödinger equation in a valence active-space is suggested,
based on coupled cluster (CC) theory. Working in a pairing active space with one virtual
orbital per occupied orbital, this Perfect Quadruples (PQ) model is defined such that elec-
trons are strongly correlated up to ”four-at-a-time” in up to 2 different (occupied-virtual)
electron pairs. This is a truncation of CC theory with up to quadruple substitutions (CCS-
DTQ) in the active space, such that the retained amplitudes in PQ are proportional to the
fourth root of the number of CCSDTQ amplitudes. Despite the apparently drastic nature
of the PQ truncation, in the cases examined this model is a very accurate approximation to
Complete Active Space Self-Consistent Field (CASSCF). Examples include deformations
of square H4, dissociation of two single bonds (water), a double bond (ethene), and a triple
bond (nitrogen). The computational scaling of the model (4th order with molecule size)
is less than integral transformation, so relatively large systems can be addressed with im-
proved accuracy relative to earlier methods such as perfect and imperfect pairing which are
truncations of CCSD in an active space. This Chapter has been published as a paper in
The Journal of Chemical Physics [86].

1.2.4 The Perfect Hextuples Model

We present the next stage in a hierarchy of local approximations to complete active
space self-consistent field model (CASSCF) in an active space of one active orbital per ac-
tive electron, based on the valence orbital-optimized coupled-cluster (VOO-CC) formalism.
Following the perfect pairing (PP) model, which is exact for a single electron pair and ex-
tensive, and the perfect quadruples (PQ) model, which is exact for two pairs, we introduce
the perfect hextuples (PH) model, which is exact for three pairs. PH is an approximation
to the VOO-CC method truncated at hextuples containing all correlations between three
electron pairs. While VOO-CCDTQ56 requires computational effort scaling with the 14th

power of molecular size, PH requires only 6th power effort. Our implementation also in-
troduces some techniques which reduce the scaling to fifth order, and has been applied to
active spaces roughly twice the size of the CASSCF limit. Because PH explicitly correlates
up to six electrons at a time, it can faithfully model the static correlations of molecules
with up to triple bonds in a size-consistent fashion and for organic reactions usually repro-
duces CASSCF with chemical accuracy. The convergence of the PP, PQ, PH hierarchy is
demonstrated on a variety of examples including symmetry breaking in benzene, the Cope
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rearrangement, the Bergman reaction and the dissociation of fluorine. This Chapter has
been submitted as a paper in The Journal of Chemical Physics.

1.2.5 Dynamical Correlations: The +SD correction

The multi-reference cluster approach based on single-reference formalism(SRMRCC) is
combined with paired, active space treatments of static correlation to produce a satisfyingly
simple cluster truncation amenable to strongly correlated problems. An implementation
of the method is compared to benchmark results for F2 and H2O dissociation problems,
the H4 and H8 model systems, and the insertion of beryllium into hydrogen. The model
demonstrates the simplicity, accuracy and compactness offered by orbital-optimized coupled
cluster models (OO-CC), and the possibility of a local method for strong correlation. This
Chapter has been submitted as a paper in The Journal of Chemical Physics.

1.2.6 A Density Functional Aside

The exchange energy of a uniform electron gas which experiences a novel 2-parameter
separation of the Coulomb interaction is derived as a local functional of the electron density.
The 2 parameter range separating function allows separate control of where and how rapidly
the Coulomb interaction is switched off, as opposed to conventional 1-parameter error
function attenuators. The usefulness of the functional is briefly assessed by combination
with a recently published pair of exchange and correlation functionals. The self-interaction
error (SIE) of noble-gas dimer dissociation is found to be reduced while thermochemistry
is relatively unperturbed. These results suggest that attenuator shape is a direction by
which range-separated exchange functionals may be further improved. This Chapter has
been published as a paper in Chemical Physics Letters [87].
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Chapter 2

Many Fermion Algebra

2.1 Introduction

There are no mysteries in the first-principles of quantum chemistry, but many prob-
lems in realizing these principles as usable models. Often the premise of an idea can be
expressed easily, but the path to code overwhelms human endurance. Shifting the effort
of many-Fermion algebra onto computers is not a new idea [88]. Some fundamental early
techniques like string-based configuration interaction [89, 90] already shifted symbolic ef-
forts onto the computer. These ideas had some early impacts exploring the performance
of high-orders of many-body perturbation theory [91]. Extensions of [92–94] similar ideas
were later used to create exponential operator strings and consequently an (unfactorized)
Coupled-Cluster(CC) code. Alongside these developments the diagrammatic bookkeeping
techniques [95] which are so useful many-body theory were pushed to their limits [96, 97].

A symbol manipulation program requires an investment of time, and it isn’t much of an
”end in itself”, and so until recent years these tools have been uncommon. The general CC
program of Kallay and Surjan [98], was a substantial step forwards. Near the same time
an ambitious project to use symbolic algebra to generate optimized correlation models be-
gan [99]. In recent years interesting demonstrations of these techniques have begun to yield
models which would not have been imaginable without them. In particular it became pos-
sible to formulate multi-reference state-specific cluster theories of very high-order [98,100],
some local static correlation models [101], and implement explicitly correlated cluster mod-
els [102] which approach spectroscopic accuracy amongst other applications [59, 103, 104].
Outside of the quantum chemical community similar ideas are also being pursued [105].

In this paper we document a framework for the automated derivation and subsequent
numerical evaluation of many-Fermion expressions. The algorithms presented feature a di-
agrammatic (Antisymmetrized-Brandow [106]) formalism which yields explicit equations,
implicit treatment of permutational symmetry and a general contraction algorithm. The
contraction algorithm introduced leverages sparsity on its arguments in a general way. This
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novel feature is especially important for high-rank correlation models, which would oth-
erwise be simply too expensive for all but the smallest applications. Virtually any sort
of localization scheme can be exploited, and we demonstrate that the cost of the result-
ing algorithm is insensitive to tensor rank. Subjects which have been the focus of other
work [107–109] (factorization and loop structure) are not investigated, but the ideas de-
scribed in those treatments can be leveraged in this scheme directly [108]. This work also
presents the details which make our recently published local correlation models [101] re-
producible, and hopefully extensible by other groups.

2.2 Many-Electron Algebra

Wick’s theorem [27], which governs the construction of virtually any electron correlation
model can be coded as a few recursive replacement rules: the Fermion anti-commutation
relations. In Mathematica this can be achieved in less than 10 lines of code, and in prin-
ciple it is enough to determine algebraic expressions for matrix elements of any operator.
Beginning with sums over every index of a string of operators, Wick’s theorem exploits a re-
ordering of the creation and annihilation operators so that the terms which vanish because
a†pa

†
p = 0 or apap = 0 can be easily eliminated. δ functions which restrict (”contract”) two

indices on different operators to be the same are introduced by the repeated application
of the anti-commutators. In quantum chemistry ”contraction” sometimes means making
these restricted sum expressions and often means evaluating these restricted sum expres-
sions. We will describe algorithms for both problems.

With a simple recursive sort implementation of Wick’s theorem as described above one
would not get very far because an exponential number of algebraically equivalent terms
are generated by such a procedure. We offer the ten-line Wick’s theorem in the supporting
information to illustrate that. If one desires a truly general formalism which can handle
high-rank tensors, contractions must be represented in a topologically unique way, only
recording the pattern of connectivity between the tensors introduced by the δ functions.
This amounts to employing a diagrammatic formalism, where the δ functions become lines
between vertices. This work is based on the antisymmetrized Brandow-type diagrams
which dominate the literature of coupled cluster theory and have been described many
times [52,110]. The resulting models are built on spin-orbitals.

Many readers may be unfamiliar with diagrams altogether, and this paper cannot re-
place the introductory reviews mentioned above, but we can try to express the basic
idea [26, 111] which is conceptually simple. The four sorts of operators that occur in a
second quantized picture of electrons are mapped onto 4 sorts of directed lines drawn away
from a vertex. Creation (a†) lines are drawn above (up) and annihilation (a) lines are drawn
down. If the operator involves a virtual (a†b or ab) the line is given an arrow going upwards.

Correspondingly if an occupied level is involved (a†j or aj, the arrow is downwards. At the
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Name
Vaccum 

Lines
Attached 

Operator 1 ....

Total 
Lines

Attached Operator Notation: Name
Lines 

Attaching
Total 
Lines

Line Notation: # Up Holes
# Down 
Holes

# Up  
Particles

# Down  
Particles

∑
ck

T̂ ck V̂
ac
ik → R̂1, Denoted: {V̂ , (1, 0, 1, 0), (1, 1, 1, 1), (T̂1, (1, 0, 1, 0), (1, 0, 1, 0))}

Where: T̂1 = T̂ ck = T cka
†
cak

(2.1)

Figure 2.1: An example of the diagram notation. Each box is a list of 4 integers (line notation)
characterizing the normal-ordered many-fermion operator.

base of the diagram you imagine the reference |ket〉 and above the 〈bra|. The advantage
of the diagram is that the ”contractions” between indices, which can be written so many
ways in a formula, are just one connection between matching arrows. The whole elegant
notation is somewhat isomorphic to the popular children’s toy called ”Lego” where the
arrows are the part of the brick which holds on to the one below.

Kallay and Surjan [112] introduced a very clear and compact notation for a diagram of
the coupled cluster amplitude equations, which strongly influences the notation employed
in this work. Operators are described by a name, a sequence of 4 integers (the number of
up and down hole and particle lines they possess), and another quartet for the number of
lines connecting to the Fermi vacuum (determinant |0〉). Diagrams are described by lists
of operators. Inside each operator the other tensors to which this tensor is connected are
listed by name, and another quartet of numbers for each sort of connection between them.
Figure 1 depicts this process. A diagram can be written more than one way with this
scheme, but contraction is fast.

Given a string of normal ordered Fermion operators represented in this fashion a matrix
element between two vacuums can be obtained from the complete set of unique diagrams
formed by the constituent operators as described in Algorithm 1. Unique in this context
means: ”Has the same number of connections of each sort between each pair tensors”. This
set is built up in the obvious fashion: operator-by-operator and line-by-line. Algorithm 1
is best thought of pictorially. Imagine two piles of Lego bricks left and right, which corre-
spond to summed operators Ĥ = (F̂oo + V̂oooo....) and eT̂ = T̂1 + T̂2 + T̂1T̂2 + .... We are

going to make the expressions for {ĤeT̂}c which are all the unique structures that sit an Ĥ
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brick on top of a brick from the right. Select a brick a from the left pile (say V̂oovv). Next
we pick up a brick from the right pile, say T̂1. V̂oovv has an open down virtual which can
connect with T̂1’s open up virtual when we place V̂ on top of T̂ . We connect those bricks
and set them aside. We grab another copy of V̂oovv from the left pile and another copy of
T̂1 from the right, then ask if there are any other connections we could sit Ĥ on T̂1. There
are not any such new connections and so we pick up a new brick from the right and repeat
the process until there are no new bricks on the right or left. In the supporting information
Algorithm 1 is given as a Mathematica routine called Kontract[].

for Diagram i ∈ Pool2 do
for Line type t ∈ (o†, o, v†, v) do

if a has open t line and i has t† open then
Attach a with i by t and append to output

end if
end for
Take unique union of pool and growing output;

end for
Algorithm 1: Contraction of Diagram a with Pool2

2.2.1 Coupled-Cluster Theory

The coupled-cluster(CC) theory has distinguished itself [52] amongst approaches to
the many-electron problem. This paper will apply the algorithm above to automate the
derivation and implementation of these equations. It is useful to cast CC theory in a pseudo-
variational language [58, 113, 114] even though it is not economical to optimize eT̂ |0〉 as a
variational trial wave-function [115] without the projective ansatze. In order to derive the
projective amplitude equations from a variational principle we introduce a de-excitation
operator Λ̂ = λa...i... a

†
i ...aa, as a Lagrange multiplier for each amplitude equation. Given a

Lagrangian pseudo-energy Ẽc = 〈0|(1 + Λ̂){ĤeT̂}c|0〉 a set of non-linear equations for T̂
can be derived by assuming this Lagrangian is stationary to variations in Λ̂ (equation 2).
The notation {}c means that T̂ must share at least one line with Ĥ if the diagram is to be

included, and {ĤeT̂}c = e−̂T ĤeT̂ .

∂Ẽc

∂Λ̂
= 〈0|(ai...a†a){ĤeT̂}c|0〉 = 0 (2.2)

We have already walked through the generation of diagrams for {ĤeT̂}c. To make an am-
plitude equation from this pool we simply select any diagrams which would be closed when
projected against the desired excitation manifold. In the notation of the code described
in Figure 1, this means selecting any diagram whose vacuum lines (the second quartet of
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indices) are that manifold, for singles: {1, 0, 1, 0}, for doubles: {2, 0, 2, 0} etc.. A routine
that performs these manipulations to produce the CC amplitude diagrams with the Kon-
tract[] routine is also given in the supporting information as AmplDiag[].

With {ĤeT̂}c in-hand generation of the coupled cluster Λ(multiplier) diagrams, effective
density matrices [113], Jacobian [59] etc. are straightforward matters of making the correct
pools of diagrams and operating this algorithm on them. For example, let us consider how
to generate the Λ equations which arise from the following:

0 =
dẼc
dT
→ 0 = 〈0|(1 + Λ)[{ĤeT̂}c, a†p...aq]0〉 (2.3)

Ĥ is contracted with eT̂ to construct {ĤeT̂}c, as described above and symbolically in

algorithm 2. Imagining the ”pile of bricks”, we have made for {ĤeT̂}c we now need to
sit (1 + Λ̂) on top of all the pieces in this pile in every unique way. The algorithm (2)
is made a little simpler to write down by noting at most quadratic amplitudes and linear
multipliers occur in Eq(3). In the language of the brick analogy it means that our eT̂ pile
contains structures with at most 4 bricks. We don’t need to worry about the 5 brick piece
T̂1T̂1T̂1T̂1T̂1 because it cannot make a connected diagram with Ĥ that only has 4 lines to
touch. So we make every unique product of amplitudes up to the 4th order in the first part
of algorithm 2, contract these with Ĥ and keep only the unique ones. Then we loop over
possible Λ̂n(0 ≤ n ≤ N) and contract each. This pool is finally then projected on the right
for the desired excitation level of multiplier, ie: {0, 1, 0, 1} for the Λ̂1 equation etc. This
algorithm is given in the supporting information as LamDiag[]

One need not generate the CC Lagrangian, (1 + Λ){ĤeT̂}c, in its entirety to construct
the multiplier diagrams, and for very high-rank equations that might not be advisable.
We have coded and described it in this way because with this quantity in hand most
interesting CC equations [116, 117] are just projections against the appropriate manifold.
Generalization to analytic second derivatives is also possible [118]. For some response
properties it is useful to write the Lagrangian [58, 119] as a dot product between Ĥ and
effective one(γqp) and two (Γrspq) particle density matrices. In our brick analogy, we look at

every structure from (1 + Λ){ĤeT̂}c which has no open lines; meaning it contributes to the
energy when we put the reference on either side. We can see the hamiltonian brick inside.
If we pull that hamiltonian brick out, the shell we leave behind is Γ, which now has the
lines which were shared with the Hamiltonian open.

Ẽc = F̂ q
p γ

q
p + V̂ rs

pq Γrspq (2.4)

To obtain diagrams for those density matrices from (1 + Λ){ĤeT̂}c, one only needs to first
select the diagrams which are closed on both ends, order them by the Ĥ block they contain
(if desired), and then delete the Ĥ operator and leave the lines dangling to the vacuum.
This is also automated in the supporting information in routine: DMDiag[].
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Converting a pool of diagrams into the usual strings of sums over basis functions is

Create all disconnected diagrams: T p1n1
T p2n2

T p3n3
T p4n4

s.t. 0 ≤ pi ≤ N and
∑
pi ≤ 4

for diagram hi ∈ Ĥ do
for diagram Dj ∈ amplitude pool do

Contract(hi, Dj)
Discard disconnected diagrams
Take unique union of results and growing {ĤeT̂}c.

end for
end for
for Λk, 0 ≤ k ≤ N do

for diagram Dj ∈ {ĤeT̂}c do

Contract(Λk, Dj) and gather to form (1 + Λ){ĤeT̂}c
end for

end for
for 0 ≤ l ≤ N do

Project (1 + Λ){ĤeT̂}c onto |µl〉 (the Λl residual equation)
end for

Algorithm 2: Construction of Multiplier Diagrams, rank N

ironically much more tedious to automate, but can be important for the beginner. To
begin, construct a skeletal list of tensors with dummy indices. Then for each internal line
on each internal tensor collapse two dummy indices from the appropriate tensors into a
single summed index. Sign is easily accomplished by listing the second-quantized version
of a diagram and counting the number of intersections between lines connecting the same
index. In Mathematica, one can just call Signature[] on a list of indices. The factor
arising from the number of equivalent tensors/lines is computed after the diagram has been
expressed as indexed tensors because its easier to establish subgroups of tensors and indices.
Permutation symbols aren’t generated at all because anti-symmetry of tensors is assumed
by the contraction algorithm. In the supporting information these tasks are performed by
DtA[] with some examples. It remains to describe how the resulting sums of high rank
tensors will be achieved, and we now turn to this question.

2.3 Tensor Representation and Permutational Sym-

metry

Computational performance is heavily dependent on the way data is arranged in mem-
ory [107]. Ideally contraction can be mapped onto matrix multiplication with minimal
reordering, and for situations where tensors may represented as simple arrays in memory
there are codes which can optimize tiling for peak performance [108,120]. However we are
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interested in situations where dense representations of data are not tractable, and we also
need to deal with high permutational symmetry. One solution is to represent tensors as
strings of second quantized operators [90]. In this way symmetry concerns are easily dealt
with, but vectorization is sacrificed. We make a similar compromise, but choose a slightly
different format: a data structure which handles its own symmetries.

For the lesser ranks there are some standard formats [121] interfaced to sparse linear
algebra packages which generalize the common matrix formats. However for high ranks
there is an ordering problem which results if there is some ”leading dimension” which can
be iterated over more rapidly than the others. Our first approach was to introduce an
n-dimensional net in which each node knew the location of its nonzero neighbors in each
dimension. Sparse contraction can then be effected quite simply by traveling in the correct
direction along this net. Memory bandwidth limited the capability of this idea insofar as
we implemented it because element addition requires traversing each dimension of the grid
to find the appropriate niche. Nevertheless this structure was used to initially debug the
amplitude equations of the PQ [86] model.

If a sparsity pattern exists within the data because of spatial locality [56,122,123] or a
pair constraint [101, 124–126], or some other local model [127] this must also be leveraged
in the storage scheme. Desiring the most general code possible, we adopt the simple sparse
coordinate representation: {i1, i2, ...,Value}. The Fermion index symmetries are easily ex-
ploited in this representation by representing only those coordinate-value pairs which are
sorted with respect to an ordering on these symmetries. Each tensor data object is given
an attached symmetry object which lists the sets of dimensions which are antisymmetric to
one another. Because they are now a natural part of the data structure, contraction actu-
ally becomes simpler because there is no need to determine lengthy permutation symbols.
Before the evaluation of a contraction the symmetries of the two argument tensors are used
to establish the symmetry of the result if the result is an intermediate. If the result is an
amplitude, these symmetries are already known, and only the unique output coordinates
obeying the exclusion principle are incremented.

The storage of the coordinates adds substantial memory overhead, but in the most
general case there is no alternative. The costs of these symbolic operations are poised to
decrease, as computer scientists develop optimized, vectorized [128, 129] and parallelized
sort algorithms. Random-access writes are made cheapest with a hash-map data structure.
The data is usually written to a simple array when it must be sorted for the algorithms of
the next section. As development in high-rank methods continues, tensor decomposition
approximations will likely be used by ourselves and others to reduce the cost of storage and
contraction.
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2.4 Contraction

We assume a pair-wise factorization of each term of the electron correlation theory, both
because this has been given excellent attention by other authors [108,120] and because one
may achieve the ”correct” cost exponent with virtually any pairwise factorization of a
nonlinear contraction. An example is useful, and so consider this term of the CCSDTQ Λ̂2

residual equation:

1

16
Λ̂a,b,p11,p12
i,j,h7,h8

T̂ p9,p10,p11,p12h5,h6,h7,h8
V̂ p9,p10
h5,h6

→ 1

16
Λ̂a,b,p11,p12
i,j,h7,h8

Ip11,p12h7,h8
→ Λ̂ab

ij . (2.5)

We will use the contraction of Λ̂ (called Tensor 1) with the intermediate (Tensor 2) as
our example. Now to complete the calculation of an electron correlation model all that
remains is to evaluate an anti-symmetrized sum over internal dimensions with matching
indices. An anti-symmetrized sum means that the Λ̂ab

ij must be antisymmetric with respect
to permutations of the index labels (because it represents a Fermionic wavefunction), and
our contraction algorithm is made responsible for ensuring this. It quickly becomes impos-
sible to perform the products which are identical to each other by antisymmetry more than
once because these grow exponentially with tensor rank. We will now discuss how these
can be avoided using the storage scheme from the previous section. We often must talk
about whether an index is summed over or mapped onto the result. The former are called
”internal” and the latter ”external”.

Ignoring anti-symmetry the ”contraction” itself is uniquely defined (Alg number, line
number) [Alg.3:1] by a signed factor, C = 1

16
, a matched list of contracted dimensions

{(dk1, dk2)}, and another which determines the source dimension of a result dimension {(rk, sk)}.
If we number the dimensions of a tensor: T n+1,n+2...

0,1,...n then these lists would be denoted:
{(2, 0), (3, 1), (6, 2), (7, 3)} and {(0,Λ0), (1,Λ1), (2,Λ4), (3,Λ5)} in our example. Because
only elements with sorted indices have been stored and the other elements related to these
by permutation are implied, the dimensions in these lists must be permuted for the symme-
tries of each argument. This process is described generally in algorithm 3 and specifically
for our example below.

In our example both tensors have anti-symmetries between the contracted occupied
and virtual indices. If we simply applied every permutation of both tensors to {(dk1, dk2)}
some multiplications would be performed more than once. For example the permutations
Ip11,p12h7,h8

= Ip12,p11h8,h7
and Λ̂a,b,p11,p12

i,j,h7,h8
= Λ̂a,b,p12,p11

i,j,h8,h7
would only permute the contraction list and

give, {(3, 1), (2, 0), (7, 3), (6, 2)}. Likewise there are several {(dk1, dk2)} which would be empty
because of the sorting on the indices, like {(2, 1), (3, 0), (6, 2), (7, 3)}. In order to leverage
symmetry we must maintain the order of {dk1} and {dk2}.

For the special case of the CC equations this step is simplified by the fact that one
tensor’s symmetries will always contain the symmetries of the other. For the sake of the
routine that follows assume that the symmetries of {dk2} map to a subset of the symme-
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tries on {dk1} (as they do in our example) and in the other situation reverse the labeling.
First, obtain the number of redundant contractions from tensor 1 and multiply the factor
by the inverse [Alg. 3:9]. This number, Order(S2), is the product of the factorials of
the number of contracted dimensions which fall in each symmetrical set. In our example
there are two occupieds which are contracted and antisymmetrical to one another and like-
wise two virtuals so the factor is 1

2!2!
. Next, apply all the permutational symmetries of

tensor 1, denoted σk, to {dk1} and keep only those results {ck1} which are ordered, adjust-
ing the sign accordingly. For example beginning with {dk1} = {2, 3, 6, 7} the permutation
σ1 · Λ̂a,b,p11,p12

i,j,h7,h8
→ (−1) ∗ Λ̂a,p11,b,p12

i,j,h7,h8
produces another unique {ck1} = {2, 3, 5, 7} [Alg. 3:9].

Often σ produces a redundant {ck1}, and these are not added to the contraction list [Alg
3: 6,16]. When this process is finished for the example there are 36 unique {ck1} out of the
576 permutations which exist on Λ4. Likewise apply all the symmetries of tensor 2 to {dk2}
and keep only those which are ordered in tensor 2 and map to a {ck1} which is sorted in the
order of tensor 1, adjusting the sign accordingly [Alg. 3:19]. In our example there is only
one such {dk2}: {0, 1, 2, 3}. It’s immediately obvious how important the symmetries are.
We would be doing 576*4 = 2304 loops in the non-symmetric algorithm, instead of 36. If
our algorithm ignored symmetry and stored the tensors in a redundant fashion we would
be wasting the same amount of effort. Given loops over the lists of contracted dimensions
generated by algorithm 3, {ck1} and {ck2}, symmetry has been taken care of, and exploited.
We need only evaluate a simple sum when these contracted dimensions match and sort the
index of the result, which makes the greater task of sparse contraction somewhat simpler.

In local electron correlation models [57,122,130] amplitudes are so sparse that the poly-
nomial scaling exponent of cost with respect to system size can often be decreased by several
orders if floating point effort is not squandered on zero multiplications. One must somehow
identify the nonzero sets of matching internal dimensions, {dk1} and {dk2}, on each partner
without explicitly looping over both tensors or assuming every possible {dk1} is nonzero.
In yet another phrasing, alignment must be achieved between the internal dimensions of
the two contracted tensors to realize sparse contraction. Previous work on rank 3 and 4
tensors has employed sorting [131] or simulated annealing [57] to achieve this alignment.
Let’s make this concrete by returning to the example:∑

h7,h8,p11,p12

1

16
Λ̂a,b,p11,p12
i,j,h7,h8

Ip11,p12h7,h8
(2.6)

In a non-sparse correlation model this sum would be achieved as four nested loops over the
summed indices, and an 8th order amount of effort would be expended regardless of the
number of nonzero elements. A first guess at the sparse analogue might be to loop over
nonzero Λ and nonzero I, performing multiplication when they match on {h7, h8, p11, p12}.
This algorithm’s cost grows with the product of number of nonzero entries in each tensor,
even if there are no non-zero multiplications to be performed. If the number of nontrivial
elements in each grows in a greater-than-linear fashion, then this algorithm will also grow
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Input: (C, {dk1}, {dk2}, {(rk, sk)})
for σ1 ∈ One’s anti-symmetries do

3: Permute {ck1} = σ1 · {dk1}
if {ck1} disobeys sorting of One or Two then

Continue loop
6: else if {ck1} ∈ result then

Continue loop
else

9: add (Sign(σ1) C
Order(S2)

, {ck1}), to result list 1.
end if

end for
12: for σ2 ∈ Two’s anti-symmetries do

Permute {ck2} = σ2 · {dk2}
if {ck2} disobeys sorting of Two then

15: Continue loop
else if {ck2} ∈ result then

Continue loop
18: else

add (Sign(σ2), {ck2}), to result list 2.
end if

21: end for
Algorithm 3: Exploitation of Permutational Symmetry

unphysically with system size. However if the two tensors are given an order before the
summation, then by following the elements in sequence we can establish if there is a non-
zero partner without any effort.

The indices of nonzero elements on the dimensions {h7, h8, p11, p12} in Λ and I, called
{ck1} and {ck2} respectively, which we initially have stored as a simple unordered list, are
sorted in a lexical order. Suppose that {dk1} was {2, 3, 6, 7} as for our example. Then after
this sorting the list of elements representing Λ are strictly ordered as: (X,X, 1, 2, X,X, 3, 4) <
(X,X, 1, 2, X,X, 3, 5) < (X,X, 6, 2, X,X, 3, 5) etc. This ordering is exploited by the con-
traction code to avoid a nested loop over the elements of both tensors, as described in the
inner while() loop of algorithm 4. The loop begins with two pointers at the least elements
of both tensors. If the two elements do not match on the contracted dimensions the loop
advances the pointer which lexically precedes the other on the contracted dimensions and
otherwise the floating point effort of contraction is performed as usual. By construction
the number of comparison/skip operations cannot exceed the sum of the number of nonzero
elements in both tensors. Regardless of the sparsity pattern this means that the cost of
algorithm 4 only grows with the number of non-trivial products in each argument. In the
supporting information the inner while() loop is implemented for simple coordinate tensors
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as a C++ routine, SparseContract(). Quantum chemists are used to high-performance
matrix algebra packages, but there is a growing literature of computer science devoted to
more symbolic tasks [132] like sorting. Some codes have even been developed to perform
these operations on highly vectorized graphics processors, and these should be exploited in
future work.

At this point most of the notation in the algorithm 4 has been described. We also use a
shorthand for the {ck} indices of the ith element in a block : {ck}i . For example if Block1

were two elements: {(7, 6, 1, 2, 8, 9, 3, 5), (3, 1, 6, 2, 9, 0, 3, 5)} and {ck1} was {2, 3, 6, 7} then
{ck1}1 is {1, 2, 3, 5}. It is often useful to separate the elements of the tensor into blocks
because large numbers of indices are incompatible with one another, for example because
of spatial or spin symmetries. Algorithm 4 mentions this idea because in the application
which follows we have enforced a sparsity on tensors by blocking them into local groups of
orbitals. We assume that the reader can group elements of tensors into blocks based on
the dimensions which are contracted, and can decide whether two blocks will contribute to
the result with some compatibility rule.

for each {ck1} from Algorithm 3 do
Block One on {dk1}
for each {ck2} from Algorithm 3 do

Block Two on {ck2}
for Block1 ∈ Blocks of One do

Extract all compatible elements of Two into Block2.
(Note: Block1, Block2 raster sorted on {ck1}, {ck2})
Index in Block1, i1 = 0 and Index in Block2 i2 = 0
while i1 < Size(Block1) and i2 < Size(Block2) do

if {ck1}i1 < {ck2}i2 (Raster sense of <) then
++i1

else if {ck1}i1 > {ck2}i2 then
++i2

else if {ck1}i1 = {ck2}i2 then
Sort result index and keep the sign.
Result += (Value at i1)*(Value at i2)*(Sign from index sort)*C*(Sign and
symmetry factor from {ck1}, {ck2})

end if
end while

end for
end for

end for
Algorithm 4: Sparse contraction loop
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2.4.1 Rank insensitivity

To give a brief demonstration of the usefulness of this contraction algorithm consider
the following term which occurs in the CC/CI equations of any order ≥ 2:

T̂ a3,...an,b1,b2
i1,...in

〈a1b1||b2, a2〉 → R̂a1,...an

i1,...in
(2.7)

The naive cost of such a contraction is O(onvn+2), and so already at quadruples this term
makes CC intractable for all but the smallest systems. The feature of the contraction
algorithm developed in this section is that the CPU cost of this term can be limited by
defining some subsets of E ⊂ {i1, ...in, a1, ...an}, I ⊂ {b1, b2} and then the CPU cost of the
contraction is limited to O(E ∗I). In our pair-based models [86,125], we limit the growth of
these subsets using a particular labeling, but the contraction algorithm only requires that
one be able to quickly compute if an index belongs in E or I, so we could imagine labeling
them by spatial domain etc. For the purposes of demonstration we will limit the growth
of {E}, {I} with system size to some simple polynomial with a pair-labeling. The indices
of the amplitudes, integral and residual are each spanned by a certain number of mutually
exclusive orbital sets {oα, oβ, vα, vβ} which together span an entire orbital active space.

Supposing that T̂ , R̂ and V̂ are restrained to two pairs, the scaling of this contraction
is reduced to third order for n ≥ 2. In the three-pair case this summation takes on at most
4 pair labels, and so it ideally scales with the 4th order of system size regardless of rank.
For perspective we provide the size of the three-pair amplitudes in Figure 2. The nonzero
dimensions of all amplitude ranks between 2 and 6 vary over roughly an order of magnitude
between the (22,22) and (40,40) active spaces (where (X,Y) denotes the space formed by X
electrons in Y orbitals). For a growing number of pairs we separately timed this contraction
for amplitudes between doubles and hextuples with a three-pair approximation.

As the rank grows, the pre-factor due to coordinate storage grows, as does the cost of
sorting T̂ and V̂ on {b1, b2} for each permutationally unique contraction. Furthermore the
sorting cost is not strictly linear; it is sub-quadratic (NLogN). Still using algorithm 4 we
achieve virtually the same cost-exponent for the hextuples as we do for the doubles (Figure
3). Interestingly, the performance is less predictable in the large-space, high-rank region
of the plot. We can say with certainty this is not due to any peculiarities of a chemical
system (all tensors have been filled with noise).

2.5 Conclusions

The computational resources available to scientists interested in physical modeling con-
tinue to grow in a non-linear fashion (albeit now in parallel), and so there are ever-more
interesting applications of computable theories. However the number of man-hours which
can be devoted to such projects are much the same today as they were a long time ago,
and automation of the relevant mathematics will continue to spur new developments. To
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further reduce the amount of time spent by others seeking to reproduce these results we
include the routines described in Mathematica/C++ code as we have implemented them.
Extensions of these routines to other sorts of diagrams that integrate-out spin, or extended
normal ordering [133] to generate a multi-reference cluster theory would be quite useful
and interesting.

The algorithms presented were conceived with an emphasis on generality, and the goal
of correct scaling of cost (up to an exponent). They have proven useful for prototyping
electron correlation theories which would otherwise be intractable, but a large additional
pre-factor could be recovered through close attention to the introduction and re-use of inter-
mediates, memory layout and vectorization. The growing divide between highly symbolic
and multilinear correlation models, and the standard libraries at a computer scientist’s
disposal will need to be bridged.

It would also be quite valuable to develop a general scheme for representing sparse,
high-rank data without the memory bandwidth costs of the coordinate representation. If
the sparsity has at least some structure (like a pair-constraint), then these can be used to
address loops, but such a structure is not always available or so simple to order. Multi-linear
compression technologies [134–136] should prove useful in this respect.
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Chapter 3

Numerical Stability of Unrestricted
Correlation Models

3.1 Introduction

Many electron models often sidestep the complicated structure of separating electron
pairs by allowing approximate wavefunctions to break spin symmetry. The spin-unrestricted
wavefunction [28] has the strength that it matches the energy of non-interacting molecular
fragments in the limit of dissociation. As a consequence, spin-unrestricted Hartree-Fock
has become a standard reference for many sorts of correlated treatments including high-
quality coupled-cluster (CC) methods [52]. When correlated models are used to optimize
unrestricted orbitals [137] strong correlations between paired electrons are described re-
dundantly, and the two competing descriptions can cause difficulties. Multiple solutions
are one manifestation, and another which we have unfortunately encountered while devel-
oping orbital-optimized cluster models [138] is singular behavior of the amplitude equations.

Because of their great physical impact, the existence and character of solutions to the
coupled cluster equations are of interest in themselves. Despite the non-linearity and high
dimension of these equations much is now known about their solutions thanks to the efforts
of several groups [139–146]. Our focus in this paper is much more quotidian, we simply
explore why we were unable to combine valence-space CC with completely unrestricted
orbitals. We find, to our surprise, that the CC equations are quite generally singular in the
valence space if the one-particle basis is totally spin-polarized in an ROHF-sense, meaning
that the occupied space is comprised of ”valence” spin-orbitals perfectly localized on frag-
ments and ”core” spin-orbitals whose α and β parts are identical.

Poor numerical condition of the CC amplitude equations at restricted dissociation is
not new to any practitioner, but with unrestricted orbitals they are usually well-behaved.
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This case is noteworthy for a few reasons: it is a general feature of combining unrestricted
orbitals for dissociation with a correlation model in the unrestricted space, it is easy to find
”false solutions”, and we can offer a possible solution. The Jacobian and closely related
stability matrix [147] of the CC equations will be examined for these purposes. The former
has been examined before for the case of restricted linear [140] and multi-reference [142]
cluster theories.

Our analysis begins with a curious set of calculations on the N2 molecule. Orbitals were
prepared such that the only the 6 valence electrons were unrestricted and localized on each
fragment so that a dissociation curve could be followed inwards from the correct asymp-
tote at a separation of a few Angstrom. We attempted to apply CCD in the active space,
and with simple amplitude iterations convergence was sluggish. Inspection of the ampli-
tudes revealed that they were a scaled unit vector. Employing a standard DIIS [148] solver
the correction vector was zeroed in a few iterations, but again the amplitudes appeared
unphysical. The gradient obtained from these amplitudes took strange orbital optimiza-
tion steps, and the same results were found independently in our two totally independent
implementations of the theory, and so we proceeded to examine them further.

3.2 Results

In all that follows CC calculations were performed in the active space formed by the
pairs relevant to a bond-dissociation process. The orbitals were unrestricted such that
each fragment reproduces the ROHF limit, this will be called the unrestricted limit. It is
important to stress that our conclusions only hold for an cluster model where all occupied
spin-orbitals are localized on high-spin fragments. They do not hold for the usual UHF or-
bitals because of the spin-polarization of pairs which would be restricted in the ROHF case.

Many attempts were made to obtain a solution by continuation. At N-N separations
of less than 1.7Å the S2 of the reference determinant is well below the spin-polarized limit
(3) even for simple Hartree-Fock orbitals and the coupled cluster equations can be solved
easily, but this solution cannot be followed to the dissociation limit. Even at the dissocia-
tion limit, one can easily solve the CC equations if a single term linear in the amplitudes
is neglected. We attempted to continue this solution by introducing a simple continuous
deformation parameter λ as the coefficient of a term and solving the equations along the
real axis between λ = [0, 1], but were unsuccessful. Convergence stagnated, but no single
element of the amplitude diverged. A similar situation has been observed in some other
studies of singular CC equations [141]. The same attempts were made for several other
dissociation problems (Ethene, H2, etc.) with the same results. Further analysis of homo-
topies [143–146] can completely characterize the solutions of non-linear equations should
they exist, and can establish the precise identity of a non-linear singularity (pole, branch,
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pinch etc.), but any such distinction is of mathematical, not physical, concern as was es-
tablished the pioneering work of others [139] (c.f. Section IV(d)). We will instead focus
on firmly establishing the singularity of the Jacobian, the scope of the problem, develop-
ing a similar set of well-conditioned equations, and heuristic understanding of this situation.

The Jacobian characterizes the response of the coupled cluster equations to a linear
perturbation:

∂2Ẽ

∂T∂Λ
=
∂〈Φβγ

uv |{ĤeT}c|Φ0〉
∂tλµlm

. (3.1)

This matrix is the size of the amplitude vector squared; if one of it’s eigenvalues should
become non-positive either the equations have no well-behaved solution, or solutions meet
at this point. In either of the previous cases the amplitude vector to which the the Ja-
cobian belongs should not be regarded a good approximation to a physical ground state.
Furthermore one may say that as a linear approximation of an amplitude iteration step, the
”condition number” (the ratio of the Jacobian’s smallest and largest eigenvalues) measures
how rapidly the equations can be solved by iteration. This non-hermetian matrix has been
derived and coded into programs many times [149–151] in the history of quantum chem-
istry. For the purposes of this paper we produced a computer-generated implementation,
as have others [152, 153]. The results of the automatic implementation are complemented
by a separate program derived and coded by hand for the cases of our local cluster models
with which all stability matrix calculations were performed. In all cases the Jacobian was
explicitly constructed and diagonalized to avoid the art of guess construction.

Figure X depicts the lowest eigenvalue of the CC Jacobian for the case of ethene disso-
ciation as obtained by explicit diagonalization. The orbitals were prepared at the ROHF
dissociation limit, then allowed to restrict as the fragments coalesce. Several sets of ampli-
tudes were examined: the null guess (alternatively this can be considered the Linear Cou-
pled Cluster (LCC) Jacobian), the MP2 guess, the best amplitudes which can be reached
by simple iteration (as seen in the figure), those produced by DIIS, and even amplitudes
iterated from random noise, all to the same effect. The increase of the lowest eigenvalue on
the inclusion of single excitations is noteworthy. Performing the same exercise for analo-
gous dissociation problems produces the same results. By 5Å the condition numbers of all
of these dissociation processes are so large that convergence seems impossible with double
precision arithmetic. Of the cases examined Mo2 is the most stable, with a smallest Jaco-
bian eigenvalue of roughly 1 ∗ 10−4 at 7Å.

If the active space is expanded so that not all the orbitals are spin-polarized, the equa-
tions become immediately well-behaved; the resulting Jacobian eigenvalues are strictly
positive at any displacement. The reader is undoubtedly familiar with the reasonable
condition of UCC calculations and so this should be evidence enough. Having converged
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Figure 3.1: Smallest Jacobian eigenvalue for various fragment dissociations, in the 6-31G basis
for all cases except Mo2.

these amplitudes for the case of ethene (12,12), they were projected on the completely
unrestricted (4,4) active space as a guess (the orbitals are unchanged between these two
calculations only the amplitude space) and the singularity remains whether one tries to
converge from this guess, or immediately diagonalizes the Jacobian. Based on these results
and the previous observations we argue that the singularity can be understood with the
linear part of the Jacobian which does not depend on the amplitudes. Inspection of the
fragment orbitals provides another simple argument, all non-linear CCD terms depend on
integrals of the sort 〈oo‖vv〉 and for these fragment localized spin-orbitals (Figure X) these
are separated across space and vanishing.

The coupled cluster stability matrix contains information very similar to the Jacobian,
but can be used to understand the convergence properties of the iterative process we rely
upon to solve these equations. Surján [147] and coworkers recently published work exam-
ining this matrix for several solutions of the CC equations along dissociation curves. Their
results showed that the CC equations may exhibit a diverse range of iterative behavior
(convergence, chaos and divergence) if manipulated by a denominator shift, and that ex-
trapolative methods like DIIS [148] can be misleading as they seem to converge on what
appear to be stable fixed points. We reiterate the formulas for this matrix given CCD and
the usual partitioning. One can see that it is essentially the Jacobian dressed by factors
which reflect the conventional form we use to solve the CC equations.
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J22
uvβγ,lmλµ = δulδvmδβλδγµ −

∂〈Φβγ
uv |{ĤeT}c|Φ0〉/∂tλµlm
fββ + fγγ − fuu − f vv

(3.2)

The Lyapunov exponents are the central object of this analysis, the logarithm of the Sta-
bility Matrix’s eigenvalues. If these should equal or exceed zero iterations are not con-
vergent. We turned to this tool because we wanted to understand what was occurring
when simple iterations would stagnate at very small residual values. Table X depicts
the results for several small molecules obtained with a hybrid of our local CC methods:
The Perfect Pairing (T̂PP =

∑
ti
∗i
∗

ii
â†i∗ â

†
i∗ âiâi) [61, 137, 154, 155], and Imperfect Pairing

(T̂IP = T̂PP +
∑

i 6=j t
i∗j∗

ij â†j∗ â
†
i∗ âj âi + tj

∗i∗

ij â†i∗ â
†
j∗ âj âi) [65, 66, 68, 124] models. Note that even

if the species is asymmetrical the same trend is observed.

These results firmly establish the singularity of the CC equations in the unrestricted
limit, but what meaning, if any, does this have for UCC as it is practiced when complete
spin polarization is almost never the case? We can imagine one situation when this should
be kept in mind, if the restricted core electrons are cut from a calculation by a pseudo-
potential the results are essentially the same as those which would be obtained from the
minimal active space. Figure X depicts the CCD Jacobian’s lowest eigenvalue for the dis-
sociation of Mo2 with the CRENBS basis and matching pseudo-potential.

3.3 Modified Equations Which are Well-Conditioned

Since the instability and ill-conditioning of the CC amplitude equations at the unre-
stricted limit has been established, we seek to restore solubility to these cluster models
when the appropriate ROHF fragment orbitals are desired. Here we will discuss a few
possible solutions based on the idea of regularization [156]. We will rate them based on a
simple set of criteria: a) does it stabilize the CC amplitudes, b) is it simple to define and
implement, c) how heavily does it affect the energetics of the molecular system at equilib-
rium, and d) will it allow us to optimize orbitals with active space CC Lagrangian methods.

The first and simplest correction is to add a constant denominator shift. As shown
by Surján et al. [147], this enables us to make the amplitude equations stable. However,
it requires a constant shift of at least 12 kcal/mol to be able to optimize the orbitals
along the entire ethene dissociation curve. This is a very strong penalty near equilibrium
bond lengths where the amplitude equations are usually well-conditioned. We also took
a non-linear equation solving approach and tried to identify the source of the singular-
ity, eliminate it, solve the system when it is non-singular, and follow a homotopy back
closely [157]. In the section below we attribute the singularity to the structure of the block
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orbitals in a minimal active space with the 6-31G* basis (a). (b) is an enhancement around
the unrestriction point.

1

Figure 3.2: Lyapunov Exponents along the Dissociation Coordinate.

of the linear coupling matrix containing the PP and the IP exchange type amplitudes,
and created a stable nonlinear system and solution by eliminating the off-diagonal matrix
elements. The CC amplitude equations are easily solved in that diagonal representation,
and the homotopy can be followed in very closely to the original problem. However the ho-
motopy could only be followed in to a scaling parameter of at maximum around 80.0% for
the IP level of correlation, and it is prohibitively expensive to follow the homotopy properly.

Another approach can be taken from our recent work [70]. A denominator shift remi-
niscent to amplitude regularization that has the form −γ(e(t/tc)2n − 1) can be constructed
to affect the amplitudes similarly to a static shift. Unlike the static denominator shift the
penalty function approach is flexible enough to be very small before the unrestriction point
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on the dissociation PES where amplitudes are typically small, and large when amplitudes
become large (typically on non-variational surfaces the amplitudes are greater than one).
Of course to apply a gradient in the presence of such a penalty we must propagate this
modification through the derivatives of the Lagrangian, but the resulting gradient ”works”
in the sense that we can use it to optimize orbitals and geometries.

The simple choice for the critical value of t parameter, tc, is one, since that prevents a
complete inversion of the reference and the doubly excited state. The other parameters (γ
and n) should be chosen to balance making the corrections small at equilibrium, with ensur-
ing that orbitals can be optimized towards dissociation. The shift we propose is −8(et

6−1)
Eh, and a corresponding shift of −8(et

6
(1+6t6)−1) Eh for the Lagrange multipliers. There

is only a cost in correlation energy of 9.1 µ Eh for ethene at its equilibrium geometry with
the IP+DIP method, and a mean absolute error of 11.5 µ Eh for the PP active space G2a
and G2b sets [158,159] done with 6-31G*. A choice of a γ of 2 and a power of 4 also works
quite well, but it bears an energy cost around twice as large (both RMS and MAE) to
our suggested parameters. Although the CC equations need to be penalized to be solved,
this approach seems to be preferable as only modification to the amplitude and lagrange
multipliers need to be made, and there is only a very slight cost in terms of correlation
energy.

3.4 Heuristic Understanding of the Problem

There is a very simple argument for linear dependence in the basis composed of excita-
tions from the orbitals of the unrestricted limit. For the usual UHF method at equilibrium
one can imagine spin-polarization as a degree of freedom provided by the basis of excita-
tions (and orbital rotations), and it is plain that in the unrestricted limit with only the
spin-polarized orbitals excitations do not span this degree of freedom but the number of
parameters is the same. One can also ask how this is manifest in the representation of
the hamiltonian in this basis explicitly, and this is much less straightforwards. The results
demonstrate that generally this singularity is present in the coupled cluster equations and
strongly suggest that it lies in the linear part of the Jacobian. There is a possibility that
both the linear and non-linear equations are singular but for different reasons, but we will
assume that their conditions stem from the same problem.

The simplest possible case is the dissociation of a H2 molecule in the minimal STO-3G
basis. There is only one unique amplitude in the wavefunction, and one unique orbital
unrestriction parameter which reflects the rotation of the beta bonding MO into the beta
anti-bonding MO. The coupled cluster equations for the amplitude have the simple form
of a quadratic equation, whose coefficients can be constructed for any distance, R and any
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Figure 3.3: CCD parameters for H2 in STO-3G basis, horizontal axis θ, vertical axis R (Å).

orbital rotation, θ, these surfaces are plotted in Figure X.

0 = A+BT̂ + CT̂ 2 (3.3)

First notice on the plot of energy that variational determination of the orbitals would
not unrestrict at any distance. The simple 1-amplitude CCD expansion can handle the
open-shell singlet. Next focus on the line passing through 45o, both the constant and
quadratic terms vanish, but the linear term doesn’t, so one of the two roots diverges in this
unrestricted limit, while the other goes to zero. We can dissect the linear term further and
find that there is a single diagram responsible for the non-vanishing term with the usual
algebraic form: ∑

kc

< ka||ic > T̂ kjcb ⇒ BT̂2 (3.4)

In the numbering of Figure X the 2-electron integral that appears in this term is 〈11
∗||11

∗〉.
The coulomb operator lies between orbitals lying on the same atom, and so it fails to decay
as the bond is broken.

Considering a more general case, such as ethene dissociation, the CCD equations are
now of much higher dimension, but we maintain that the essential features of this singularity
are the same. The linear part of the equations is now multidimensional, and the coefficient
of the linear term is a matrix which is precisely the well-known LCCD Jacobian [140],
alternatively the CCD Jacobian for the null guess, also known as the matrix Û in the
notation of some other papers [138]. For complete CCD the dimension is too large to
permit direct inspection, but we can examine truncated block of amplitudes (Table X)
spanned by a local model for physical insight, remembering that they exhibit the same
behavior seen in the full active-space CC models examined in section 2, and were the root
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Figure 3.4: Orbital labeling for H2 dissociation.

t1
∗1

∗

11
t2

∗1
∗

12
t1

∗2
∗

21
t2

∗2
∗

22

t1
∗1

∗

11
0.093 -0.047 -0.047 0.000

t2
∗1

∗

12
-0.047 0.093 0.000 -0.047

t1
∗2

∗

21
-0.047 0.000 0.093 -0.047

t2
∗2

∗

22
0.000 -0.047 -0.047 0.093

Table 3.1: Linear coupling matrix for the PP and IP exchange amplitudes for ethene (H2C=CH2)
at a C-C bond length of 7.50 Åwith unrestricted PP orbitals in the minimal active space in the
6-31G* basis.

of our interest in this problem. A figure labeling the relevant 1 particle functions is also
included for clarity (Figure X).

Ironically, orbitals that lack any spin-symmetry impart a fragment symmetry onto this
matrix which causes it’s determinant to vanish. The off-diagonal matrix elements are found
to arise in the same diagram examined above and the troublesome 〈ov‖ov〉 integral. We
can provide further argument for the structure of this matrix for our local models because
the number of amplitudes is manageable, and general formulas for the determinant given
this structure, and the interested reader is referred to the appendix.

3.5 Conclusions

Recently an interesting study was directed at the question, ”Do broken-symmetry ref-
erences contain more physics than the symmetry adapted ones?” [160]. In that case the
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Figure 3.5: Orbital labeling for ethene dissociation.

concern was for RHF orbitals with broken spatial symmetries, and it was found that it was
difficult for single-reference CC theories to correct the symmetry-broken wavefunction. In
a similar vein, we have found that in the case of completely broken spin symmetry, the
physics of spin correlation is removed from the cluster equations such that they are singular.
This manifests itself in poor numerical condition of the cluster equations which prevents
us from finding physical solutions and hampers orbital optimization. Ad-hoc manipulation
of the Lagrangian using a penalty of the form −γ(e(t/tc)2n − 1) can render the equations
soluble, even in this situation, and it seems that the remaining correlations are relatively
unperturbed. Philosophically, our results suggest that CC based on UHF references suc-
ceeds (in the sense that most dissociation curves are reasonable even in the intermediate
region) largely through the independence of strong spin correlations from others. This
bodes well for correlation models designed on the principle of dividing these problems.

3.6 Appendix

3.6.1 Singularity in constrained cluster wavefunctions

In the arguments that follow, a pair correspondence between alpha and beta spin orbitals
will be assumed by our notation. We enforce such a correspondence on our constrained
CC models, however we note that by the pairing theorem [161] it is valid to apply such
language to unrestricted wave-functions generally, as they may be cast into this form.
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0.102 -0.047 -0.056 0.000

t2
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∗
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-0.047 0.102 0.000 -0.056

t1
∗2

∗

21
-0.056 0.000 0.102 -0.047

t2
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∗
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0.000 -0.056 -0.047 0.102

Table 3.2: Linear coupling matrix for the PP and IP exchange amplitudes for fluoroethene
(HFC=CH2) at a C-C bond length of 7.50 Åwith unrestricted PP orbitals in the minimal ac-
tive space.

The electronic Hamiltonian is separable into operators affecting each fragment separately
Ĥ = Ĥ1 + Ĥ2, and because of the high-spin structure of our reference any opposite-spin
doubles amplitude doesn’t alter the number of electrons on a fragment (only their spin),
and spatial symmetry dictates that the spatial parts of the orbital in each pair should be
the same on both fragments.

The Two Electron-Pair Case.

The situation of the 2-pair case of two-atom dissociation (an active space with 4 spa-
tial, 8 spin orbitals) is similar physically to that of the 1-pair case. However, instead of
two degenerate states that we can use the amplitudes to decide between, there is a larger
degenerate subspace leading to far more zeroes in our Hamiltonian. The couplings between
these degenerate states again leads to potentially infinite amplitudes, and the necessity of
solving the CC equations iteratively leads to quite a problem here. A simple description of
these degenerate doubly excited references can obtained with the pairing notion, as there
are amplitudes that show coupling within a pair (PP), ie: T̂ 1∗1

∗

11
, and opposite spin (OS)

exchange-type amplitudes that couple the two pairs (IP), ie: T̂ 21
∗

12
. Because the determi-

nants generated by all of these amplitudes only differ from the reference by flipping the
spins of two of the spin-orbitals, the diagonal of the doubles-doubles block of the Hamil-
tonian is some value, a. Breaking down the off-diagonal matrix element coupling a PP
amplitude to an IP amplitude, 〈Φ1∗1

∗

11
|Ĥ|Φ2∗1

∗

12
〉, over the two fragments, we see that on one

fragment the projections of these determinants are the same as generated on the diagonal
of Ĥ. Because the two determinants differ by 2 spin-orbitals the matrix element is a single
integral, 〈11

∗|22
∗〉 which may be identified with the integral examined in the 1-pair case.

These matrix elements which share a single index may be denoted b. Matrix elements which
share no indices, ie. PP of one pair with PP of the other, differ by more than two spin
orbitals and are thus zero. The result is that the Hamiltonian has the following structure
(in the basis: T̂ 1∗1

∗

11
, T̂ 2∗1

∗

12
, T̂ 1∗2

∗

21
, T̂ 2∗2

∗

22
):
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t1
∗1

∗

11
t2

∗1
∗

12
t3

∗1
∗

13
t1

∗2
∗

21
t2

∗2
∗

22
t3

∗2
∗

23
t1

∗3
∗

31
t2

∗3
∗

32
t3

∗3
∗

33

t1
∗1

∗

11
0.142 -0.036 -0.036 -0.036 0.000 0.000 -0.036 0.000 0.000

t2
∗1

∗

12
-0.036 0.142 -0.036 0.000 -0.036 0.000 0.000 -0.036 0.000

t3
∗1

∗

13
-0.036 -0.036 0.142 0.000 0.000 -0.036 0.000 0.000 -0.036

t1
∗2

∗

21
-0.036 0.000 0.000 0.142 -0.036 -0.036 -0.036 0.000 0.000

t2
∗2

∗

22
0.000 -0.036 0.000 -0.036 0.142 -0.036 0.000 -0.036 0.000

t3
∗2

∗

23
0.000 0.000 -0.036 -0.036 -0.036 0.142 0.000 0.000 -0.036

t1
∗3

∗

31
-0.036 0.000 0.000 -0.036 0.000 0.000 0.142 -0.036 -0.036

t2
∗3

∗

32
0.000 -0.036 0.000 0.000 -0.036 0.000 -0.036 0.142 -0.036

t3
∗3

∗

33
0.000 0.000 -0.036 0.000 0.000 -0.036 -0.036 -0.036 0.142

Table 3.3: Linear coupling matrix for the PP and IP exchange amplitudes for nitrogen (N2) at a
N-N bond length of 7.50 Åwith unrestricted PP orbitals in the minimal active space in the 6-31G*
basis.

Ĥ = (Ĥ1 + Ĥ2) =


a b b 0
b a 0 b
b 0 a b
0 b b a

 (3.5)

This matrix is singular if b = −a/2 which is empirically found to be the case, and explained
below. Of course this is only a sub-block of the linear coupling matrix, U, which would
occur in complete CCD, and we affirm with calculations that in unrestricted CCD as it is
usually practiced this is not a concern.

The Many-Pair Case.

In general, for a given PP amplitude there are three classes of possible OS exchange
IP amplitudes: those which share no indices, those which excite from the same α orbital
(we will call this one the fragment 1 corresponding IP amplitude) and those which excite
from the same β orbital (fragment 2). The matrix elements of these combinations were
examined above. If two IP amplitudes excite from a common index they will also have a
nonzero matrix element b, and with these rules in hand one may construct Ĥ. Consider a
blocking of ĤIJ such that a PP amplitude I and its corresponding fragment 1 IP amplitudes
(indexed by J) are grouped together in a block which is ordered by their beta indices. In
conventional spin-orbital notation this ordering is written: {T̂ 1∗ ī∗

i1̄ , T̂ 2∗ ī∗

i2̄ , T̂ i
∗ ī∗

īi , ..., T̂ n
∗ ī∗

in̄ }.
Symbolically one may construct the diagonal block (A) for the general case and see that it
has the shape below, and determinant (a− b)n−1(a+ (n−1)b). The off diagonal blocks (B)
are themselves diagonal, with value b and determinant bn. The complete matrix has the
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following block structure with this ordering, and the determinant of Ĥ for n pairs (n > 2) is
(a−2b)(n−1)2(a+(n−2)b)2(n−1)(a+2(n−1)b). The matrix will be singular when b = −a/2,
or if (a+ (n− 2)b) = 0 or (a+ 2(n− 1)b) = 0. In the full space, correlations of spin-paired
basis functions often lift this linear dependence by coupling to this block, explaining the
robust strength of unrestricted coupled cluster demonstrated in the literature.

A =


a b · · · b
b a · · · b
...

. . .
...

b b · · · a

 ; B =


b 0 · · · 0
0 b · · · 0
...

. . .
...

0 0 · · · b

 ; Ĥ =


A B · · · B
B A · · · B
...

. . .
...

B B · · · A

 (3.6)
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Chapter 4

The Perfect Quadruples Model

4.1 Introduction

The chemical community benefits greatly from systematically improvable single refer-
ence ab initio electronic structure methods that can be applied to molecules when Hartree-
Fock (HF) is a valid approximation. Recent advances in computational technology have
made methods such as coupled-cluster (CC) singles and doubles (CCSD) routinely appli-
cable to dozens of heavy atoms [56, 57, 162, 163]. Some post-HF methods are becoming
appreciably cheaper than HF itself [127, 164], and likewise the cost of hybrid DFT. When
the mean-field HF reference doesn’t provide an accurate basis for perturbation theory or
low-rank coupled cluster techniques such as CCSD, the situation is quite different. The
most commonly applied approach for coping with strong correlation is complete active
space self-consistent field (CASSCF) [46, 165], but the growth of cost with the size of the
correlated space is prohibitive and unphysical considering the dimension of the electronic
Hamiltonian [166]. Moreover, CASSCF cannot provide chemically accurate energetics, and
remains an exponential bottleneck behind dynamically-corrected treatments built upon it
like CASPT2 [167] and multi-reference cluster theories [168–172]. There is a need for a
tractable, black-box, approximation which can be used in lieu of CASSCF for large sys-
tems.

Many clever models have been proposed to overcome the CASSCF bottleneck for the
problem of strongly correlated electrons. Broadly they can be divided into two groups :
one that tries to overcome the complexity of the wavefunction by resorting to alternative
descriptions of the system often based on the density matrices (density matrix renormaliza-
tion group (DMRG) [173,174], variational reduced density matrix (RDM) [175–177], etc.),
and another group that tries to build the strong correlations into an accurate zero order
wavefunction (valence bond [60,63,178,179], the related geminal models [180], renormalized
cluster methods [116], spin-flip models [181–183], etc.). Despite a large body of work no
single model has become attractive and reliable enough to consider the problem solved, and



4.1. INTRODUCTION 45

the direct consequence is that quantitative studies of reactivity are usually only possible
when a handful of important (strongly correlated) electrons can be modeled in a CASSCF
calculation.

The importance of local correlation methods to the future of ab-initio many-electron
theory cannot be exaggerated, because in virtually all cases of chemical interest we al-
ready have procedures which, if computable, would be exact. The greatest deficiencies
in our understanding of the many electron problem are reflected in the way our physical
expressions become unbearably complicated if only a handful of new bodies are added. To
combat this problem local methods were introduced early in the history of quantum chem-
istry [122,184–186], and continue to reduce the cost of useful calculations [123,130,162,187].
For dynamical correlation problems like dispersion, the locality of the Coulomb interaction
has been appreciated for a long time, but this information is rarely exploited in non-
dynamical correlation methods. DMRG is a notable exception, but it is naturally best
suited to exploit locality in one dimension.

For several years our group has developed a family of orbital-optimized coupled-cluster
(OO-CC) [188] models for static correlation. Locality [125] is incorporated into these mod-
els naturally through the definition of chemically relevant electron pairs, via a pairing
active space in which each electron pair is described by 2 orbitals, one nominally occu-
pied or bonding, and the other nominally empty or antibonding. For a given electron
pair, providing one double substitution amplitude for promotion of two electrons from the
bonding to the antibonding level defines the perfect pairing model [60, 61, 63, 189], which
is exact within the active space for a single electron pair, and is size-consistent. Providing
additional amplitudes that simultaneously promote two electrons from two different pairs
defines the imperfect pairing (IP) model [1, 65], which recovers a significant fraction of
the interpair correlation energy. It is also possible to include the pair correlations that
transfer electrons between 2 pairs [125] or couple three different pairs [190], which gives an
accurate approximation to the complete treatment of all active space double substitutions.
However, both PP and IP cluster amplitudes are truncated at double substitutions, usually
rendering these methods unsuitable for more than two simultaneously strongly correlated
electrons. This can lead to non-variational breakdowns with restricted orbitals. They can
be partially addressed by modifying either the energy expression, as in quadratic coupled
cluster doubles [71, 72], or the amplitude equations, as in the GVB-RCC [191] variant of
IP. However, neither of these improved approaches can exactly solve the problem of even
4 strongly coupled electrons (e.g. a double bond breaking) in the pairing active space ,
because they still correlate only 2 electrons at a time.

Here we lift this restriction, by defining the truncated cluster model that exactly re-
produces the wavefunction of two electron pairs coupled to each other. In a paired cluster
framework this is possible through the addition of a single quadruple amplitude to couple
each pair of PP amplitudes. Additionally one requires the triple substitutions that couple
each pair of amplitudes. The idea is made concrete in the diagram below which enumerates
the correlations contained in the resulting model, which we term Perfect Quadruples (PQ).
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PP

IP

PQ:

Figure 4.1: Correlations in the PQ approximation. Horizontal lines represent different orbital
pair spaces, occupied below and virtual above.

The PQ model exactly treats the problem of 4 electrons in 4 orbitals (2 pairs) and is size-
consistent. By restricting ourselves to include only electron correlations between two pairs
with a cluster operator limited at quadruples, we obtain a model which is also balanced
from a perspective of computational cost: PQ is a truncation of active space CCSDTQ
which as a function of molecular size, M , retains only O(M2) of the O(M8) amplitudes of
the parent theory. This model is realized and its performance is evaluated below.

4.2 The PQ Model

Coupled cluster theory has a storied history in quantum chemistry that has been well
reviewed in recent literature [52, 110], so we will only make our ansatz clear and refer the
reader for further information. The formulas below assume that the 1-particle basis has
been divided into active and inactive subspaces in a well-defined way; the orbitals we name
are exclusively active. Occupied orbitals are denoted i, j, ... virtuals are denoted a, b, ... the
symbols p, q, ... represent any sort of index. One begins by expressing the ket of the CC
wavefunction (1) as the exponential of an excitation operator operating on the reference,
which in this case will be the orbitals of a perfect pairing calculation. It is this exponential
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that ensures a size-extensive treatment of correlation as is required for chemical systems.
If a complementary de-excitation operator, Λ, is introduced then a set of equations that
determine the amplitudes and the gradient may be derived by zeroing the partial derivatives
of a quasi-energy Lagrangian, Ẽ. If the excitation operator T̂ is truncated at some rank
the expansion of the exponential contributing to an amplitude equation ends after a certain
number of terms and at most quartic powers of an amplitude occur.

|Ψcc > = eT
∣∣ 0 > ; T̂ =

∑
n

T̂n ; ; Λ̂ =
∑
n

Λ̂n

T̂n = T̂
a1,a2,...,an

i1,i2,...,in
= t

a1,a2,...,an

i1,i2,...,in
a†a1...a†an

...ain ...ai1 ; Λ̂
a1,a2,...,an

i1,i2,...,in
= λ

a1,a2,...,an

i1,i2,...,in
ain ...ai1 ...a

†
a1

...a†an

Ẽ =< 0|(1 + Λ̂)(ĤeT )c|0 > ;
∂Ẽ

∂Λ
= 0 ;

∂Ẽ

∂T
= 0

(4.1)

To couple four electrons exactly, amplitudes up to those in T̂4 must be included, defining
the CCSDTQ method. The resulting triples and quadruples equations are summarized
in (2) below. Complete symbolic expressions for the resulting matrix elements have been
available in the literature for many years [96] [97], but their long derivation is equalled by the
difficulty of programming these equations into a computer. For this reason we automated
the diagrammatic derivation of second quantized expressions as have others [103,109,112].

0 =< µ3|H(T̂2 + T̂3 + T̂4 + T̂1T̂2 + T̂2T̂3 + T̂1T̂3 + T̂1T̂4 +
1

2!
T̂ 2

2 +
1

2!
T̂ 2

2 T̂1

+
1

2!
T̂ 2

1 T̂2 +
1

3!
T̂ 3

1 T̂2 +
1

2!
T̂ 2

1 T̂3)|c0 >

0 =< µ4|H(T̂3 + T̂4 + T̂2T̂3 + T̂1T̂3 + T̂1T̂4 + T̂2T̂4 + T̂1T̂2T̂3 +
1

2!
T̂ 2

2 +
1

2!
T̂ 2

3

+
1

3!
T̂ 3

2 +
1

3!
T̂3T̂

3
1 +

1

2!
T̂ 2

1 T̂4 +
1

2!
T̂ 2

1 T̂3 +
1

2!2!
T̂ 2

1 T̂
2
2 +

1

2!
T̂1T̂

2
2 )|c0 >

(4.2)

Computing the matrix elements of the second term of the quadruples equations with-
out approximation takes O(M10) computational operations, and O(M8) data storage as a
function of molecular size, M . This rapidly becomes impractical for all but the smallest
systems so we adopt a local ansatz based on electron pairs. Within a pairing active space,
each pair is described by four orbitals, alpha occupied, alpha virtual, beta occupied, beta
virtual, which in principle should be optimized to minimize the total energy. If this is done
consistently then because orbital variations are nearly redundant with single substitutions,
the singles amplitudes become very small. However, if one uses pairing orbitals optimized
at a lower level of theory (for instance we shall employ PP orbitals in the tests reported
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later of the PQ model), then single excitations within the active space can serve usefully
as a surrogate for orbital optimization within the active space when the higher level wave
function differs significantly from the one employed to optimize the orbitals. Therefore we
retain single excitations.

Turning to pair-based truncation of CCSDTQ, at least two pairs must be used to con-
struct a quadruples amplitude, and retaining the S,D,T,Q substitutions that couple only
up to pairs of electron pairs defines a quadratic sparsity pattern that we call the Perfect
Quadruples (PQ) approximation. This will be the fewest terms necessary to be exact for 4
electrons in the pairing active space. Symbolically this means that the spin orbital indices
of an amplitude may originate in at most two distinct pairs as summarized as a diagram
(Figure 1) and a definition below (3).

T̂ = T̂1 + T̂2 + T̂3 + T̂4 ; with T̂
a1,a2,...,an

i1,i2,...,in
:= s.t.{ak, ik} ⊂ {Pair1} × {Pair2} (4.3)

The amplitude equations are simply those of CCSDTQ [96, 97] when one neglects all am-
plitudes which belong to more than two pairs. If one neglects the triple and quadruple
substitutions, a two pair approximation is very similar energetically to the Imperfect Pair-
ing (IP) [1] [65] wavefunction previously developed in our group, but includes amplitudes
that do not conserve the number of electrons in a pair [125]. These singly and doubly
ionic amplitudes were omitted from the IP model to avoid the generation of some classes
of integrals, but these are included here.

The coupled cluster energy depends on at most double substitutions, and so the triples
and quadruples are necessary only insofar as they correct the doubles amplitudes. It was
realized some years ago that the poor dissociation behavior of coupled cluster active space
methods is rooted in their failure to obey a Pair Exclusion Principle [68]. Terms nonlinear
in the amplitudes introduce excitations that recouple the spins of pairs to themselves and
exaggerate the correlation energy. Deleting these terms as was done in the GVB-RCC model
can repair the dissociation behavior of the model, but is deleterious near equilibrium. The
quadruples fill this role, but one may imagine that they are turned-on naturally by the
amplitude equations when important so equilibrium performance is conserved.

Finally, it is known that low-scaling correlation models based on localized orbitals can
be affected by symmetry breaking artifacts. As the imposed sparsity on the amplitudes
is relaxed, these artifacts are lifted by the inherent orbital-invariance of coupled cluster
theory at the expense of steeper scaling of computational cost. This local truncation error
is exemplified by the preference of benzene for D3h rather than D6h geometry at the PP
and IP levels, a problem which can be almost entirely removed by additionally including
double substitutions that couple 3 electron pairs at a time [126]. This local truncation
error leads to a slight energetic preference for localized valence structures over delocalized
ones, as in benzene. We mention the role of 3-pair couplings for the sake of completeness,
but focus in this publication on the role of the new high-rank excitations. Any chemist
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can recognize situations where two resonance structures are important to the electronic
structure of a molecule, and these are the cases when the more costly three pair model
should be employed.

4.3 Implementation

The lengthy coupled cluster equations truncated at quadruples were symbolically de-
rived in closed form using a diagram-based symbolic manipulator developed by one of
the authors (JAP) within the Mathematica package. The framework developed includes
routines to automatically construct C++ codes for the amplitude equations that were in-
tegrated in a developmental version of the Q-Chem electronic structure package [192]. All
contractions are performed as a series of pair-wise contractions with appropriately intro-
duced intermediates so that the resulting cluster models scale with the familiar O(M2s+2)
rule, where s is the highest retained substitution (4 here). The very large (242) pre-factor
associated with ignoring the antisymmetry of T4 would make the PQ method impractical
for all but the smallest systems, but the contraction algorithm developed exploits the per-
mutational symmetries of all amplitudes and intermediates. The correctness of the coupled
cluster implementation was verified by comparing with benchmark results for the CCSDT
and CCSDTQ models. Local paired models like PP, IP, and the complete valence-optimized
doubles were also re-implemented in the course of testing.

A method that preserves only a quadratic number of quadruples amplitudes should
scale formally much more cheaply than the traditional CCD. To achieve that is a challenge
because sparsity imposed on T4, an eighth rank tensor, must be completely exploited. To
meet this challenge we have developed a tensor library and contraction algorithm capable
of performing these high rank contractions with the correct scaling. A structure is kept on
the tensor such that any subset of dimensions may be fixed and the non-zero entries of the
others may be iterated over without sorting or re-alignment. The effort of maintaining and
operating on the sparse structure is spent entirely during element addition. Convergence
of the amplitudes is accelerated with the DIIS algorithm [193].

The intermediates introduced for the nonlinear terms must also be generated with con-
sideration for the sparsity imposed on the amplitude results. Because of the large number
of intermediates this was done by simply limiting the number of pairs on the external di-
mensions of the intermediate destined for the result amplitude. This is sufficient to realize
formal M4 scaling with molecule size, which is the same as a local doubles model where
ionic couplings are retained. Formally the slowest step of our algorithm for large systems
is the production of the complete set of two-electron integrals in the active space. Table
2 collects the average number of floating point operations performed in contraction per
iteration of the coupled cluster equations for some of the models considered here as imple-
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Figure 4.2: Scaling of methods in the 6-31G basis.

mented in this pilot code. The model system is a set of alkanes of increasing size in the
geometry of an adamantane molecule in a 6-31G basis with full-valence PP active spaces
(ie: methane, ethane, etc. ). No spatial symmetry information was employed.

As a pilot implementation it is premature to judge by our program what the limits of
a nearly optimal code would be. Even so, the pilot code is economical enough such that
active spaces much larger than those usually approachable with CASSCF can be explored in
modest amounts of time and memory. An optimal implementation would employ an integral
approximation such as the resolution of the identity, or Cholesky decomposition. These
approximations were recently applied to the CASSCF model [194], however in that case
the exponential cost of solving for the amplitudes in the active space means that integral
approximations cannot significantly extend the range of systems that can be explored.
Because only a quadratic number of amplitudes are retained, the PQ model is well suited
to take advantage of integral approximations, and this will most likely be done in future
development.
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4.4 Results

For the model systems considered below, the PQ approximation reproduces valence
CASSCF within less than ≤ 10 kcal/mol of absolute error. Energies obtained parallel the
CASSCF results over the entire surface within ≤ 5 kcal/mol. The local pair approximation
and the limitation placed on the level of excitation both introduce limited errors into our
model. Further improvement depends on disentangling and quantifying these errors for
systems which are well understood. CASSCF calculations were performed with the aid of
the GAMESS [195] package. Unless otherwise noted the cc-pVDZ basis and perfect pairing
optimized orbitals were employed in the PP valence active space. All models except PP
included single excitations.

4.4.1 H4

The rectangular arrangement of four hydrogen atoms can exhibit strong static correla-
tions [196], with complete configurational degeneracy at the square geometry. It is perhaps
the simplest system for which the local doubles models PP, IP and their parent method
CCD possess severe artifacts: an underestimated correlation energy and unphysical cusp
at the square geometry. Note that in the figure CCD was performed without an active
space, and so it includes dynamical correlation whereas the other methods do not. H4 is
also perhaps the simplest model one could construct for a polyradicaloid transition state.
The PQ model exactly reproduces CASSCF (4,4) for this system by construction as is seen
in Figure 3, while the PP and IP methods yield barriers that are too high by about 20
kcal/mol, using unrestricted orbitals.

4.4.2 Water

The simultaneous dissociation of water is a common performance benchmark for models
of non-dynamical correlation [169]. If only double excitations are included from reference
the restricted coupled cluster expansion becomes qualitatively incorrect away from equilib-
rium. In Figure 4 the PQ model is compared with CASSCF, and the same model without
triples and quadruples (2P) (which is slightly better than the IP model). The correspond-
ing energies are shown in Table 1. The cc-pVDZ basis was employed with the restricted
orbitals of the PP wavefunction in the (8,8) active space. Near equilibrium, the doubles
model and PQ both provide a reasonable approximation to CASSCF. Beginning at 2 Å the
quality of the PQ approximation is made plain, as it continues to track CASSCF, while
the 2P doubles curve falls to an incorrect asymptote. If the model were allowed to break
spin symmetry, doubles models would capture the dissociation potential curve qualitatively,
though in the intermediate regime they remain quantitatively inaccurate because they lack
the configurations which complete the spin eigenfunction.
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Figure 4.3: Potential energy curve for the rectangular dissociation of H2—H2 with the cc-pVDZ
basis and restricted 2-pair doubles orbitals. (H-H distance 1 Å)

To decompose the difference relative to CASSCF, the local models are compared in
Table 2 against their non-local counterparts CCD, and CCSDTQ within the active space.
We want to distinguish local truncation error (due to coupling only 2 pairs) from excitation
level truncation at quadruples. Within the doubles space, 3 and 4-pair correlations absent
in the 2-pair models (and PQ) account for 24 percent of the doubles correlation near equi-
librium, which is roughly the same percentage of correlation energy that is missing from
PQ vs. CCSDTQ at equilibrium even though the two pair locality constraint neglects a
much larger fraction of triples and quadruples than doubles. At dissociation the correla-
tions missing from the two pair models no longer contribute appreciably to the correlation
energy and the local models both approximate their nonlocal counterparts with ≤ 1mEh
of error.

Insofar as correlation energy is additive with respect to the spaces of amplitudes included
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R(O–H)Å CASSCF(8,8) 2p (8,8) PQ (8,8) CCD CCSDTQ
1.1 -76.12104205 0.0087 0.0084 0.0056 0.0048
1.3 -76.04248739 0.0096 0.0091 0.0059 0.0045
1.5 -75.96406087 0.0085 0.0076 0.0056 0.0037
1.7 -75.90366501 0.0061 0.0053 0.0044 0.0023
1.9 -75.86333002 0.0042 0.0058 0.0028 0.0032
2.1 -75.83961132 -0.0046 0.0046 -0.0054 0.0028
2.3 -75.82726866 -0.0161 0.0040 -0.0167 0.0027
2.5 -75.82129839 -0.0259 0.0036 -0.0263 0.0027
2.7 -75.81841092 -0.0330 0.0033 -0.0334 0.0027
2.9 -75.81696701 -0.0380 0.0031 -0.0384 0.0027
3.1 -75.81622269 -0.0414 0.0030 -0.0418 0.0028
3.3 -75.81583025 -0.0438 0.0029 -0.0443 0.0028

Table 4.1: CASSCF energies for symmetric water dissociation (Eh), and relative errors of PQ,
and non-local active-space models with the RPP orbitals.

(empirically this is often true), one might imagine decomposing the errors of PQ by their
origin. In Figure 5 the quadruples truncation error (CASSCF - CCSDTQ), doubles locality
error (Error(2P) - Error(CCD)), and triple/quadruple locality error (Error(PQ)-quadruples
truncation error - doubles locality error) are plotted. The encouraging conclusion is that
higher excitations in the valence space are often even more effectively captured by the local
approximation than the doubles. This contrasts with the case of dynamical correlation
where local models for higher excitations have been a more difficult challenge [197,198]. At
2.5 Å in the nonlocal quadruples the dimension of T2, T3 and T4 are respectively 328, 1184
and 1810, and in the PQ model 100, 48 and 6.

4.4.3 Ethene

The dissociation of ethene and simultaneous dissociation of water are very similar static
correlation problems, but in the former case the strongly correlated pairs are nearer to one
another and the valence correlation space is three times larger. As shown in Figure 6, PQ
reproduces CASSCF (12,12) faithfully using the RPP orbitals with an NPE of 9 mEh and
the resulting wave-function is spin-pure. Whereas IP falls to an incorrect over-correlated
asymptote. If we allow IP to employ spin-contaminated orbitals it will meet the correct
asymptote, but it under-correlates in the intermediate region as will be shown in the next
section.
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R(O–H)Å 2p (8,8) PQ (8,8) CCD CCSDTQ Reference Energy
1.1 -0.1254 -0.1257 -0.1286 -0.1294 -75.98691672
1.3 -0.1470 -0.1476 -0.1508 -0.1521 -75.88583379
1.5 -0.1786 -0.1795 -0.1815 -0.1834 -75.77699934
1.7 -0.2208 -0.2217 -0.2226 -0.2246 -75.67668994
1.9 -0.2713 -0.2697 -0.2727 -0.2723 -75.58780651
2.1 -0.3339 -0.3246 -0.3347 -0.3265 -75.51033499
2.3 -0.3997 -0.3795 -0.4003 -0.3808 -75.44373647
2.5 -0.4598 -0.4303 -0.4602 -0.4313 -75.38736158
2.7 -0.5111 -0.4748 -0.5115 -0.4754 -75.34032152
2.9 -0.5534 -0.5123 -0.5538 -0.5126 -75.30158291
3.1 -0.5876 -0.5432 -0.5881 -0.5434 -75.27001032
3.3 -0.6152 -0.5685 -0.6157 -0.5686 -75.24442247

Table 4.2: Correlation Energies for symmetric water dissociation (Eh) with the RPP orbitals.

R(CH2-CH2) CASSCF (12,12) PQ Error 2P Error CCSD Error
1.2 -78.145341 0.0110 0.0112 0.0053
1.4 -78.179446 0.0109 0.0112 0.0059
1.6 -78.142116 0.0108 0.0114 0.0065
1.8 -78.087149 0.0103 0.0115 0.0072
2 -78.035113 0.0096 0.0115 0.0079
2.2 -77.993032 0.0090 0.0109 0.0079
2.4 -77.962413 0.0086 0.0081 0.0056
2.6 -77.942196 0.0084 0.0022 0.0003
2.8 -77.929896 0.0083 -0.0049 -0.0065
3 -77.922803 0.0081 -0.0114 -0.0127
NPE 0.0029 0.0225 0.0130

Table 4.3: Correlation energies for dissociation of ethene(Eh) with restricted PP orbitals.
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Figure 4.4: Potential energy curve for the symmetric dissociation of water with cc-pVDZ basis
with RPP orbitals.

4.4.4 Nitrogen Molecule

The deceptively simple nitrogen molecule is a very rigorous test for models of elec-
tron correlation [199], and even very recently continues to be a benchmark for costly and
sophisticated [200] models of static correlation [201]. Because it lacks hextuple excita-
tions PQ ”turns over” towards an over-correlated asymptote when restricted PP orbitals
are employed. This can likely be ameliorated (without relaxing the spin symmetry con-
straint) by either including six-particle components of H̄ or observing a ”Pair Exclusion
Principle” [191]; we hope to pursue these ideas in future papers, but for now, we employ
unrestricted orbitals to avoid this issue.

With unrestricted orbitals, PQ should reproduce the entire CASSCF curve qualitatively,
and the agreement should be quantitative at the dissociation limits. U-CCSDTQ’s energies
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Figure 4.5: Error decomposed approximately by source for symmetric water dissociation with
RPP orbitals.

are known to approximate full-CI very well for this system with only a few kcal/mol of NPE.
In the highly correlated intermediate regime we may gauge the accuracy of PQ by comparing
it against CASSCF. The switch to unrestricted orbitals complicates our assessment of the
PQ model because the UPP’s orbitals are more unrestricted (ie. unrestricted at shorter
internuclear distances) than PQ’s optimized orbitals would be. Single excitations assist
in this capacity by relaxing the PP orbitals, and the resulting energies compare well with
those of the restricted model before non-variational collapse.

Figure 7 and Table 4 compare PQ and the related doubles models with CASSCF in the
valence PP active space. PQ outperforms the related doubles models, and maintains a very
modest NPE error of only 3.83 kcal/mol (6.1 mEh). Predictably the underestimation of
correlation energy is concentrated in the bond breaking region where the hextuples play an
important role in configuration space, but unlike UPP this doesn’t result in an unphysical
barrier to dissociation. To put this result in perspective, an O(M6) scaling method based
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Figure 4.6: Electronic energy of ethene (R(C–H) = 1.07 Å) in (12,12) space with cc-pVDZ basis

on variational (but approximately N-representable) reduced density matrices was recently
applied to this same system in the same basis set and a (6,6) active space with an NPE of
18.9 mEh [202]. At 1.8 Å in the nonlocal quadruples the dimension of T2, T3 and T4 are
respectively 825, 4360 and 8070, and in the PQ model 165, 80 and 10.

4.5 Discussion and Conclusions

We have introduced a model called Perfect Quadruples (PQ) for static electron corre-
lation in a pairing active space. It’s worthwhile to compare PQ with other efficient models
of static correlation. The recent progress made in DMRG is impressive given the short
history of the theory [203] [174], but chemical applications have all employed a decimation
operation which is essentially one-dimensional. The even treatment of excitation regardless
of rank is appealing, and the cost per sweep of the method is on the order of PQ. It will
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R[N-N] (Å) CASSCF (10, 10) PP IP PQ
1.1 -109.12969 0.0876 0.0207 0.0077
1.2 -109.11145 0.0907 0.0216 0.0069
1.3 -109.06683 0.0935 0.0229 0.0068
1.4 -109.0148 0.0958 0.0253 0.0082
1.5 -108.96273 0.0950 0.0265 0.0089
1.6 -108.91571 0.0856 0.0252 0.0096
1.7 -108.87631 0.0682 0.0224 0.0102
1.8 -108.84984 0.0553 0.0217 0.0129
1.9 -108.82789 0.0412 0.0165 0.0104
2 -108.81368 0.0308 0.0125 0.0083

Table 4.4: N2 Total energies (a.u.) and the error relative to CASSCF. (* includes singles) with
unrestricted PP orbitals.
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Figure 4.7: Unrestricted potential energy curve for the dissociation of N2 in the cc-pVDZ basis.
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be exciting to see with further numerical testing how this method performs as a reference
for an efficient total energy calculation. Methods like canonical transformation [204] could
provide a fair assessment of different references as models for the complete electronic energy.

Two modifications of valence bond theory [180,205] have been recently published which
produce spin eigenfunctions remarkably with costs comparable to PQ. The valence-bond ap-
proaches are physically pleasing because they satisfy a property of the exact wave-function,
but their correlation energies are much smaller than CASSCF near equilibrium. These
methods represent a significant advance in the way we understand correlated spins. Spin-
purity may be important for some applications, but likewise may not be most important
for reproducing some sorts of data and one may imagine complementary niches for both
VB and MO based methods.

There is also a model based on the spin-flip formalism [206], which describes quadruply
radical systems and their excited states again with roughly the cost of the method just
presented. The spin-flip approach and PQ both treat 4 electron problems well, the former
with the strength that excited states are trivially obtained, and the drawback that it de-
pends on an ROHF reference and doesn’t treat the non-interacting ensembles of strongly
correlated systems that occur in large molecules.

Of all these methods, PQ is distinguished as the one which most strongly resembles
the CASSCF approach quantitatively and qualitatively. It is a size-extensive truncation of
CASSCF within the active space, which is exact for two electron pairs in that space. This
means that the perfect quadruples model is appropriate for molecules with tetraradical
character and can describe such systems over their entire surface. At the same time,
because correlations only connect pairs of electron pairs, the overall cost scales only as
(M4) with molecule size. This means all valence electrons can be taken as active without
the CASSCF problem of trying to choose a very small (feasible) active space that is still
reasonably accurate. The preliminary implementation and benchmark tests suggest that
the PQ method is a useful step forward over existing lower rank truncations.

There are many interesting possible extensions, a number of which we hope to develop
in the future. One conceptually obvious, though practically very challenging extension is
to generalize the paired concept to still higher excitations (hextuple excitations coupling 3
different electron pairs would be the next member of the family defined by PP and PQ, and
would be exact for 3 strongly coupled electron pairs). Considering appropriate dynamical
correlation corrections is obviously important for practical applications requiring chemical
or near-chemical accuracy. Algorithmic improvements that increase efficiency and permit
direct orbital optimization are desirable.
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Chapter 5

The Perfect Hextuples Model

5.1 Introduction

Quantum chemists distinguish two sorts of correlation, one which is captured easily
by perturbation theory called dynamic, and another called ”static”, or ”non-dynamical”
which afflicts molecules whose bonds are nearly broken [168, 196], or which are otherwise
poorly described by methods that depend strongly on a mean-field reference. Quantita-
tive ab-initio studies of chemical reactivity are most straightforwardly possible when a
computational method capable of tackling static correlation can be applied to the entire
system of interest. However the standard approach to static correlation, the complete ac-
tive space self-consistent field (CASSCF) method [46,207,208], is exponentially costly as a
function of the number of active electrons. As a result, a number of fundamental reactions
of interest are exceedingly difficult to address with CASSCF, such as the Cope rearrange-
ment [209–212], due to the need to choose a truncated active space. A wide variety of
on-going work is directed at developing more feasible methods for treating strongly corre-
lated molecular problems [116,174,175,177,178,180,199,202,213–219].

It is desirable to have a systematically improvable hierarchy of approximations for static
correlation whose cost increases with accuracy and system size in as tractable a way as
possible, to eliminate CASSCF’s drastic limitations on the number of active orbitals. In
other words, we need active space analogs of the large body of work directed at devel-
oping approximations to the Schrodinger equation, as exemplified by the coupled cluster
(CC) hierarchy of models: CCSD (truncation at double substitutions from the reference),
CCSDT (triples), CCSDTQ etc [52,110,220,221]. One possibility is a hierarchy of valence
active space orbital-optimized cluster theories (VOO-CC). VOO-CC methods were first
proposed some years ago [188], and implemented at the CCD level, and later extended
to the quadratic CCD model [72]. VOO-CCD is exact for isolated pairs of electrons in
the active space, and is extensive. Higher VOO-CC methods (VOO-CCDT, VOO-CCDTQ
etc) would constitute a systematically improvable hierarchy of approximations to CASSCF,
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as we desire. However, direct implementation of higher VOO-CC methods (VOO-CCDT,
VOO-CCDTQ etc) seems unpromising because their scaling with the number of active elec-
trons mirrors that of conventional CC theory, and it is possible that even higher excitations
may be required for strongly correlated problems.

An alternative approach that appears much more promising replaces the VOO-CCD
starting point with one of the simplest models of strong correlations, perfect pairing (PP).
The PP model [60,61,179] describes the jth electron pair by two configurations, made from
two orbitals, one bonding, φj and one antibonding, φj

∗, and a single amplitude, tj:

Gj = |φjφ̄j〉+ tj|φ∗j φ̄∗j〉 (5.1)

For a system of multiple electron pairs, the intermediate-normalized PP wave function is
then an antisymmetrized product of the geminal corresponding to each pair, Gj, which is
alternatively a local active space variant of CCD [63] where only one-pair amplitudes are
retained:

|ΨPP 〉 = exp(T̂PP )|Φ0〉 (5.2)

Here |Φ0〉 is the reference with all bonding orbitals occupied, and,

T̂PP |Φ0〉 =
∑
j

tj|Φj∗j̄∗

jj̄
〉 (5.3)

where |Φj∗j̄∗

jj̄
〉 is a doubly substituted determinant where the jth bonding level has been

replaced by the antibonding level, reflecting the second configuration of Eq. (5.1). The PP
energy is minimized with respect to variations in the amplitudes and the orbitals. The
number of non-redundant orbital degrees of freedom is increased relative to VOO-CCD,
because rotations of the active occupied (or virtual) orbitals amongst themselves also af-
fect the PP energy. Within the active space, PP is exact for isolated electron pairs, and
extensive, just like VOO-CCD. And, as it is a cluster operator, it can be improved. A
variety of augmentations that include the most important inter-pair correlations at the
level of double excitations have been suggested [65, 190], which approach the accuracy of
VOO-CCD in the pairing active space at much lower computational cost [222].

How should the PP starting point (exact for a single pair of electrons and extensive)
best be extended to more strongly correlated systems in the CC framework? One very
promising approach is to seek exactness for larger numbers of electrons at minimum cost.
The next model should achieve exactness for two pairs (4 electrons), meaning that the
cluster operator must be truncated only at quadruples (i.e. a version of VOO-CCDTQ).
To keep the complexity as low as possible subject to this goal, we chose keep only those
active space amplitudes that couple either 1 or 2 electron pairs together. We have recently
proposed and implemented this idea, which we call the perfect quadruples model (PQ) [86].
PQ is an enormous simplification over VOO-CCDTQ which can couple up to 8 different
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pairs together. As a function of the number of valence electrons, o, VOO-CCDTQ involves
O(o8) amplitudes and O(o10) computation, while PQ retains only O(o2) amplitudes with
O(o4) computation. Numerical tests were generally very encouraging – for instance the
PQ absolute error relative to CASSCF(10,10) for N2 dissociation was less than 0.33 eV,
while the non-parallelality error was less than 0.2 eV. Of course this performance must
degrade for problems where the number of strongly correlated electrons increases, which
makes extensions of PQ desirable.

In this work, we therefore implement and explore the next member of this systematically
improvable pair-based hierarchy of approximations to CASSCF. The next level should be
exact for isolated systems of 3 electron pairs (6 active electrons), which makes it a subset
of the VOO-CCDTQ56 method. To preserve exactness for 3 pairs, we choose to retain
only those VOO-CCDTQ56 amplitudes that involve 3 electron pairs or fewer. We will
refer to this truncation of VOO-CCDTQ56 as the Perfect Hextuples (PH) model. PH will
reduce the O(o12) amplitudes and O(o14) computation of VOO-CCDTQ56 to only O(o3)
amplitudes with O(o6) computation. Indeed, as will be discussed later, the computation
can be further reduced to O(o5) with a further approximation. PP, PQ and PH together
comprise the lowest 3 levels of a hierarchy of pair approximations which cost O(o2p) before
further approximations, where p is the number of electron pairs for which we demand exact
agreement with CASSCF. Each step of the hierarchy improves upon the previous one in
two respects: first, by inclusion of two additional levels of substitution, and second, by the
inclusion of correlations that entangle one additional electron pair at the existing lower
level of substitutions.

The restriction on the number of electron pairs that are coupled in the correlation ampli-
tudes is essentially a local correlation approximation [122] that is inherent in this hierarchy.
The strongest correlations entangle one or relatively few pairs, and balanced truncation by
excitation level (2p) and number of coupled pairs (p) enables the cost to increase so much
more gradually than truncation by excitation level only. Therefore improved results at each
new level reflect error reduction from one or both of these two aspects of truncation. It is
also possible to separate the two types of truncation, by separately choosing the maximum
level, n, of substitutions and the maximum number of different pairs, p whose orbitals are
allowed to comprise such an index, to define an (n, p) pairing approximation. We shall
occasionally make use of this additional flexibility. For instance, symmetry breaking in
benzene in PP is known to be a result of neglecting 3-pair double substitutions, rather
than neglect of higher substitutions [190].

CASSCF itself requires a companion treatment of the neglected dynamical correlation,
such as by multireference perturbation theory [64,167,223,224], in order to approach quan-
titative accuracy. So too will any approximation in the PP, PQ, PH hierarchy, and the
reader may be concerned that it will be more difficult to construct such a model for PH.
Even with only a density matrix there are now very promising methods which can provide
dynamical correlation [204,225–229]. There are further options for PH because we possess
a good 0th-order wavefunction and a well-defined partitioning of the Hamiltonian. Our
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group has developed perturbation theories for active-space cluster models based on Löwdin
partitioning [73], which have been applied to the PP starting point [230]. It is also possible
to reformulate the state-universal multi-reference cluster theory (MRCC) [201] for incom-
plete active spaces. It is especially appealing to adapt the state-specific single-reference
MRCC [171] formalism for use with the PP, PQ, PH hierarchy since it produces a unified
model which amounts to an alternative truncation of the CC hierarchy which accounts for
total correlation, and we will soon publish results along this line.

5.2 The perfect hextuples model

5.2.1 Overview of VOO-CC theory

Our goal is to employ coupled cluster (CC) theory to approximate CASSCF within a
perfect pairing active space, optimizing both correlation amplitudes and orbitals [188]. We
begin with the usual CC ansatz which parameterizes a many-electron state, |Ψ〉, as the
exponential of a correlation operator, T̂ , acting on a reference determinant, |0〉 (written as

|Φ0〉 in the Introduction): |Ψ〉 = eT̂ |0〉. This correlation operator is restricted to an active
space of orbitals, generally one occupied (in the reference) for each valence electron totaling
o and the same number of unoccupied single-particle states. We denote active occupied
orbitals as ik, and active virtual orbitals ak.

Following usual CC theory [52,110], the operator T̂ is chosen to include every possible
orbital substitution, T̂

a1,a2,...,an

i1,i2,...,in
,

T̂
a1,a2,...,an

i1,i2,...,in
= t

a1,a2,...,an

i1,i2,...,in
â†a1

...â†an
âi1 ...âin (5.4)

up to some maximum level of substitution, n. These sets of all possible T̂ for substitutions of
a given level n, are called T̂n. The equations that determine the amplitudes corresponding to
each retained active space orbital substitution, ts are obtained by projecting the Schrödinger

equation with the corresponding substituted determinant, 〈µs| = 〈0|
(
â†a1

...â†as
âi1 ...âis

)†
:

〈µs|e−̂T ĤeT̂ |0〉 = 〈µs|{ĤeT̂}c|0〉 = 0 (5.5)

The VOO-CC energy that approximates CASSCF follows from projecting with the refer-
ence:

E = 〈0|e−̂T ĤeT̂ |0〉 = 〈0|{ĤeT̂}c|0〉 (5.6)

In order to have an energy that can be varied with respect to orbital rotations, it is
convenient to define a pseudo-energy, Ẽ that augments the VOO-CC energy, Eq.(6), with
Lagrange multipliers, λs multiplying each CC amplitude equation, Eq.(5). Defining a de-
excitation operator Λ̂ analogous to the excitation operator T̂ , the pseudo-energy can be
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written as:
Ẽ = 〈0|(1 + Λ̂)e−̂T ĤeT̂ |0〉 = 〈0|(1 + Λ̂){ĤeT̂}c|0〉 (5.7)

The non-linear equations which determine the amplitudes, energy and gradient can be de-
rived by making the pseudo-energy stationary with respect to variations of T̂ and Λ̂, and
finally with respect to orbital variations, θ:

∂Ẽ

∂T̂
= 0 ;

∂Ẽ

∂Λ̂
= 0 ;

∂Ẽ

∂θ
= 0 (5.8)

These θ̂ = θqp(a
q
p − apq) parametrize a unitary transformation U = eθ̂, mapping the guess

orbitals to the optimal orbitals Ĥ → U †ĤU . In the traditional OO-CC orbital variations
include occupied-virtual mixings (θai ), as well as active-inactive mixings in both the occu-
pied and virtual spaces. Equation 8 has some appealing formal consequences: active space
optimization is possible; the response theory of the model does not exhibit spurious poles,
and some properties are rendered Gauge invariant [231]. However, it should be noted that
if single excitations are neglected [232] Equation 8 does not exactly recover recover the
CASSCF energy. Including the singles would require some improved algorithms to obtain
orbital convergence in a reliable and practical manner, and as of yet this problem remains
unsolved, but can be side-stepped if the orbital gradient is modified. We discuss this fur-
ther below, and address this technicality such that the model reproduces CASSCF for 3
electron pairs.

With the truncation of T̂ at T̂n, Eq. (5.8) must be solved iteratively with O(o2n+2) oper-
ations per iteration, as follows from contractions associated with the O(o2n) amplitudes. A
quantitative picture of an n-electron singlet dissociation problem often requires some am-
plitudes in the nth rank cluster approximation, which means O(o2n+2) effort. For chemical
systems undergoing 6-electron processes (e.g. the Cope rearrangement) this corresponds to
O(o14) computation. This effort, while far better than exponential, is scarcely affordable
for anything beyond toy calculations at present. We must therefore follow an alternative
path that does not simply truncate the VOO-CC hierarchy by substitution level alone.

5.2.2 Definition of the model

As already mentioned in the Introduction, instead of truncating T̂ by substitution level
alone, in the PP, PQ, PH hierarchy, amplitudes are chosen so that a certain number of
electron pairs, p, can be treated exactly, while amplitudes that couple more than p pairs
are discarded. With this simultaneous truncation by the maximum excitation level, 2p for
the p-pair model, and by the number of pairs coupled (p), the p-pair dissociation problem
can be solved with vastly lower cost than simply truncating T̂ at T̂2p.

The PP model was already reviewed as motivation in the Introduction, and is a subset
[63] of VOO-CCD [188]. VOO-CCD uses T̂2 as the cluster operator, which contains all
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O(o4) double substitutions, T̂ a1a2
i1i2

. PP replaces T̂2 by T̂PP , Eq. (5.3), which contains only
O(o) amplitudes, tj. Each amplitude belongs to a pair of two electrons, labelled as j, and
described by 2 orbitals, as in Eq. (5.1). Therefore all 4 indices in each double substitution

refer to only 1 particular pair: T̂ j
∗j̄∗

jj̄
. This association between orbitals and pairs is made

well-defined (and informative) when the energy ẼPP is minimized by varying the orbitals
to find bonding and anti-bonding levels that best describe pairs of electrons. The resulting
orbitals often localize in physically meaningful ways, as is mathematically required in order
to exactly describe the behavior of truly isolated electron pairs. From that PP starting
point, we recently then defined and implemented the PQ model [86], which is exact in the
active space for isolated 4-electron systems (2 pairs). PQ is thereby a subset of VOO-
CCDTQ, where amplitudes and integrals are only retained if they couple ≤ 2 different pair
indexes (in contrast to PP which couples only one).

We turn now to the next level of the hierarchy, the PH model, which is designed to be
exact for isolated systems of 3 electron pairs (6 electrons), as well as properly extensive.
To accomplish this objective, the equations of the PH model are defined to be those of
the valence optimized orbital coupled cluster theory truncated at hextuples (ie. VOO-
CCDTQ56), where amplitudes and integrals are allowed to possess indices originating in
at most three different pairs, as indicated below:

T̂ =
∑
n≤6

T̂n ; with T̂
a1,a2,...,an

i1,i2,...,in
s.t.{ak, ik} ⊂ {Pair1} × {Pair2} × {Pair3} (5.9)

There are an enormous variety of amplitudes that satisfy the condition of Eq. (5.9), begin-
ning with every PP amplitude and every additional PQ amplitude (since they couple only
1 and 2 pairs respectively).

Additionally the D, T and Q substitutions that couple 3 different pairs are included in
PH. For example, if there are 4 pairs in the active space (a CASSCF (8,8) space), PH would
include doubles that might be denoted as T̂ 3α3β

1α2β , which are omitted in PQ. Their inclusion,
without increasing the level of substitution, serves to reduce the truncation error associated
with only including amplitudes with 2 distinct pair indexes in the PQ model. There is still
a remaining pair truncation error at the D, T, and Q levels of substitution. In the same 4
pair example mentioned above, the double substitution, T̂ 3α4β

1α2β , does not satisfy Eq. (5.9)
and is omitted from PH. Similar considerations apply to the T and Q substitutions. In
addition, pentuple and hextuple substitutions that couple 3 pairs are included in the PH
model, which permits exactness for a system of 3 electron pairs. Regardless of the level
of substitution, all amplitudes retained in the PH model can be labeled with indices that
grow cubically with the size of the system, giving O(o3) amplitudes.

PH is a much more severe approximation to VOO-CCDTQ56 than PQ is to VOO-
CCDTQ. There are O(o8) quadruples in the nonlocal VOO-CCDTQ model, of which only
O(o2) are retained in PQ – a fraction that goes as O(o−6). For hextuples in VOO-CCDTQ56
and PH, these figures change to O(o12) and O(o3), meaning the fraction of amplitudes re-
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tained has diminished from O(o−6) in PQ to O(o−9) in PH. This is quantified in the next
section, but it should be clear that simultaneous truncation by maximum substitution level
and by number of pairs coupled permits levels of substitution that would otherwise be
possible only for toy systems.

Given the definition, Eq. (5.9), of the substitutions to be retained in the PH trunca-
tion, the remainder of the model is specified at least implicitly by the VOO-CC machinery
summarized in the previous sub-section. There is one retained equation for each retained
amplitude, of the form of Eq. (5.5). There is one Lagrange multiplier for each retained
equation, enabling the construction of the pseudo-energy, Eq. (5.7), in terms of the re-
tained equations. The pseudo-energy of the PH model must be made stationary with
respect to all energetically signficant degrees of freedom, following Eq. (5.8). We replace
the occupied-virtual orbital rotation condition with the Bruckner condition to ensure ex-
actness (see below). While this prescription is clear and well-defined in outline, the PH
model is none-the-less enormously algebraically complex – even the CCSDTQPH equations
do not (to our knowledge) appear explicitly in the literature, let alone the VOO-CCDTQ56
equations, orbital variations and all! Therefore we turn next to the challenge of implement-
ing the PH model for practical calculations.

5.2.3 Single excitations, orbital-optimization and exactness

We claim exactness for 3 electron pairs but as realized by others [232], and mentioned
in the PQ paper, OO-CC [233] is not generally exact without singles, except in situations
where the odd-particle numbered amplitudes are zero because of a symmetry. Without
them the Schrödinger equation has not been projected against singles and expanded com-
pletely over the given many-body basis, although there is very little correlation physics in
that block of e−T ĤeT . The error caused by this approximation is small relative to the local
approximation (tens of µEh), and usually of opposite sign, so we have avoided treating this
technicality until now.

To satisfy the SE exactly within the active space, our model must satisfy the SE pro-
jected against singles, the Bruckner [234] condition:

〈0|µ1{ĤeT̂}c|0〉 = 0 (5.10)

To ensure this without introducing T̂1, we provide a hybrid variational/Bruckner [234–236]
orbital gradient as first suggested by Olsen and Kohn [232]. At each orbital iteration we
calculate the few terms of the singles residual which do not depend on T̂1:

F̂ p01
h02 + F̂ p3

h1 T̂
h02h1
p01p3 +

1

2
T̂ h02h2

p4p5 V̂ p4p5
h2p01 +

1

2
T̂ h2h3

p01p4V̂
h02p4

h2h3 +
1

4
T̂ h02h1h2

p01p4p5 V̂
p4p5

h1h2 → R1 (5.11)
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Model Variational Hybrid
VOD 0.000737 0.000740
PQ 0.001467 0.001468
PH 0.000060 0.000060

Table 5.1: Energetic effects of the hybrid gradient with several OO-CC models of water with
the 6-31g** basis. Energies reported are Model - CASSCF(8,8) in Eh. R(O-H) = 1Å, and
∠(HOH) = 103.1◦.

The active-occupied → active-virtual block of this matrix is divided by usual eigenvalue
denominator, multiplied by negative one, and inserted into the usual variational expression
for δẼc/δU

q
p as a gradient descent step. δẼc/δU

q
p is used with the current θ to form δẼc/δθ

q
p

and extrapolated with DIIS alongside the amplitudes [237]. Given that the cluster model’s
energy is invariant to the occupied-occupied and virtual-virtual orbital rotations (and PH
is invariant to these rotations in the limit of 3 electron pairs) this recipe is now exact.

For our purposes this hybrid doesn’t have any computational cost drawbacks and is alge-
braically much simpler than evaluating the Λ1 equation. However in any useful application
the singles omission error which exaggerates the correlation energy is much less significant
than the error induced by three-pair correlation which diminishes Ec. Quantitatively, con-
sidering N2 in a 6-31G basis at 1.1Å, PH is above the CASSCF (10,10) energy by 323µEh
with the variational gradient; application of the hybrid gradient increases that number to
328µEh. Likewise for the case of H2O (Table 5.1) the hybrid gradient slightly increases
the energy at a scale which isn’t meaningful for our method as it is intended. Our ap-
proximate Hessian for Eq. (5.10) is of lower quality than the variational gradient, and so in
the results of this paper we always employ the latter although the code exists for the former.

5.2.4 Implementation

Coupled cluster theory becomes algebraically cumbersome as the level of substitution is
increased. The level of complexity of the working equations at a given level of substitution
is further increased (even as the scaling of the actual computational complexity is reduced!)
if a sparsity pattern is imposed, such as neglect of all amplitudes and integrals coupling
more than 3 pairs in PH. Never-the-less, the theory which produces these equations is
well-known, and the rules that lead to the governing algebra have been automated by
several groups [103, 109, 112, 238], to permit high level benchmark CC calculations. We
have developed our own automated code generation tools for the purposes of this work,
which include the additional feature essential for PH of exploiting an imposed sparsity. It
has been discussed in detail in a separate publication [239]. For completeness, the resulting
equations specifying our implementation of the PH model (i.e. the particular factorizations
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chosen) are given in the supporting information.
It is as important to demonstrate the tractability of the PH model as its accuracy,

so we will describe how our approximations lead to affordable scaling. At convergence
∂Ẽc/∂Λ̂6 = 0, but on intermediate iterations we call this quantity the hextuples residual,
R6. It is composed of 135 separate terms, which are up to quartic in the operator T̂ . In the
non-local VOO-CCDTQ56 model, computation of this quantity dominates the CPU cost
in the T̂ iterations. Consider one particular term of the hextuples residual for illustration:

T̂ a1,b1
i1,i2

(T̂ a2,a3

j1,i3
(T̂ a4,b2

i4,i5
(T̂ a5,a6

j2,i6
V̂ b1,b2
j1,j2

)))→ R̂a1,a2,a3,a4,a5,a6

i1,i2,i3,i4,i5,i6
(5.12)

Summation over repeated indices is implied and the parentheses indicate one choice of
factorization. Assuming only a three-pair approximation on the amplitudes and integrals
the contraction of the inner-most intermediate with the next amplitude is O(o6). This is
easily seen if the contraction is re-indexed by pair labels, {Pn} in one of the many possible
ways:

T̂ a4,b2
i4,i5

(T̂ a5,a6

j2,i6
V̂ b1,b2
j1,j2

)→ T̂ a4,b2
i4,i5

(Ia5,a6,b1,b2
i6,j1

)→ T̂ P1,P5

P6,P1
(IP1,P2,P4,P5

P1,P3
) (5.13)

In our code (and most others), the CC equations are represented like the middle expres-
sion of Eq. (5.13), where pairwise contractions are replaced by intermediate quantities like
Ia5,a6,b1,b2
i6,j1

and performed in series. The 3-pair constraint on the residual dictates that the
{ak} and {ik} are cubic and reduces the cost of this term by several orders of magnitude.
Pair labels are not used to index the summation loops. Instead the contraction algorithm
skips multiplications which would produce an element indexed by more than three pairs.

In the usual CC theory the cost of the nonlinear and linear (CI-like) terms grow with the
same power, but the linear terms of this model increase as only O(o5) while the non-linear
ones, such as the example in Eq. (5.13) above, are order O(o6). Of course, if not just the
residuals, but also all intermediates could be indexed by three-pairs this property would
be restored. The resulting intermediate pair approximation seems ambitious at first blush,
but would reduce the cost of the method by one more power of system size. We did not
enforce the three-pair constraint on intermediates lightly because in principle the accuracy
now rests on the choice of factorization, but experiments on every system we’ve examined
(see representative examples in Table (5.2) ) suggest that use of the 3-pair approximation
for intermediates gives error that is insignificant relative to the accuracy of the PH model.
Additionally the intermediate-pair approximation conserves the pair-exact property. It is
similar in spirit to the recursive commutator decomposition approximation introduced by
Yanai and Chan in their canonical transformation [204] work. In the supplementary in-
formation the factorization used in this code is listed, but we emphasize that only Figure
1 would be significantly altered by omission of this approximation. In other words: this
computational convenience does not compromise the reproducibility of the model and both
cases have an implementation.

Our pilot implementation captures the essential feature of PH: the exponent of cost.
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System Local Intermediates Exact Intermediates

F2 (14,14) R=1.4Å -198.914613 -198.914619

N2 (10,10) R=1.1Å -109.119738 -109.119746

Cope R=1.642Å(14,14) -232.848401 -232.848381
Dioxirane (18,18) -188.869097 -188.869109

Table 5.2: Typical energetic effects of the intermediate-pair approximation. Frozen PP-orbitals
and 6-31g* basis employed in all cases.

To verify this a series of small diamondoid hydrocarbon molecules were chosen for tim-
ing benchmarks. Their bonding grows in a three-dimensional way, but they are otherwise
random1. The wall computation times verify that the algorithm scales more cheaply than
the 6th power (Figure 1) of molecular size. The number of parameters in the model grows
more slowly than even the lowest order non-local VOO-CCD method, and the pre-factor is
such that storage required becomes smaller for more than 31 electron pairs (Figure 2). The
accuracy of the CCSDTQ56 implementation was verified by comparison with 6-electron
Full-CI results provided by the PSI3 [240] program package.

New algorithmic refinements are required beyond the tools already developed for the
PQ model [86] to make PH tractable. If one has two tensors with quadratic numbers of
nonzero elements apiece, 4th order scaling can be realized by simply focusing on the nonzero
entries in coordinate representation. The same algorithms would scale 9th order for cubic
numbers of significant elements. In order to realize the correct scaling for PH one must
only contract together blocks of amplitudes whose results will obey the 3-pair constraint
and be able to construct those block pairs cheaply. The permutational symmetries of all
tensors must also be leveraged.

Spin and pair-blocking were incorporated in such a way that spatial symmetries and
further locality could be added as well in future work. The price paid for this generality
is that each floating point operation is accompanied by many integer manipulations which
vectorize poorly. Floating point effort of contraction is performed as a matrix-matrix or
vector-double product in the BLAS package [241]. The algorithm has been described in a
separate publication [239].

Optimization of orbitals is a highly nonlinear problem and deserves more attention than
it can be given here. Our implementation of PH includes a two-step [48, 242, 243] OO-CC
solver. Formally these self-consistent orbitals are desirable, but technically it is challeng-
ing to make their CPU costs outweigh their energetic benefits relative to RPP. When the
orbital-optimized three-pair doubles model (3p) does not collapse these orbitals are often
found to be converged for PH within tolerance. Because of the significant costs of calculat-
ing PH’s orbitals we observe a simple protocol for choosing orbitals, attempting increasingly

1geometries are provided in the supplement
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Figure 5.1: Scaling of amplitude iteration wall-time with system size. Calculations performed on
one core of an Apple XServe (Fall 08). Largest system: t-butane (24,24) pictured. Parameters of
a linear least-squares fit are inset.
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Figure 5.2: Scaling T̂ with system size. Same systems represented by each data point as Figure
1, as included in the supplementary information. Least-Squares fits by quartic polynomials are
inset.
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accurate orbital optimizations (PP, 2p, PQ, PH) until convergence. This compromise is
proven practical in the results. The odd-numbered multiplier equations which were also
avoided in our previous work have been included in the current implementation, along with
the contributions to the gradients which arise from the odd-hole-numbered density:

γov · ∂〈f vo 〉/∂U q
p + Γovvv · ∂〈ov||vv〉/∂U q

p + Γooov · ∂〈oo||ov〉/∂U q
p →

δẼc
δU q

p
(5.14)

There are several directions where this implementation could be improved to bring
it in line with the codes of related methods [244]. The model is trivially parallel up to
hundreds of processors because there are literally hundreds of independent terms which
involve the contraction of two three-pair objects. Only cubic quantities would need to be
communicated to/from cores where 5th order CPU effort would be performed. Lastly we
should comment on the possibility of an implementation like those available for the PP
and imperfect-pairing [1] models where the pair sparsity is built into loop structure and
not recomputed ”on-the-fly”. We can estimate the speedup which might result by measur-
ing the amount of time this code spends in integer manipulations vs. BLAS. In a typical
profiling run of the code roughly .6% of the process’ samples find the code in BLAS. The
work presented here is essentially a pre-requisite for the pair-indexed algorithm because
the number of unique loops will skyrocket.

5.3 Results

The PH model was implemented in a developmental version of the QChem [192] pack-
age. CASSCF calculations were performed with the aid of the GAMESS [195] package
and/or PSI3 [240]. Unless otherwise noted a model employs its own orbitals which are
restricted in all cases.

We have chosen the model systems to probe the approximations of PH, or a failure of it’s
parent. Benzene addresses spatial symmetry breaking and performance. The Cope rear-
rangement addresses the neglect of singles in the orbital gradient. F2 addresses active space
locality (in the context of a simple multi-reference situation), and the Bergman reaction
tests locality and rank truncation simultaneously. Our figure of merit is the non-parallelity
error vs. CASSCF (NPE). In every case we follow a continuous geometrical coordinate.
We do this to ensure we follow a single orbital solution, and eliminate solution hopping
as a source of error. To follow a continuous curve with most CASSCF implementations
requires similar care, although OO-CC is somewhat more sensitive to the guess provided.
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Figure 5.3: D3h→D6h deformation of benzene in the 6-31G basis

5.3.1 Benzene

The resonant delocalization of π-electrons in a benzene ring, and the resulting D6h

symmetry are undoubtedly elementary to the chemistry of carbon, however local valence
correlation models are known to favor bond alternation if the locality demanded of the
wavefunction is beyond reality of the electronic structure [125, 126, 190]. A similar effect
can be seen with other popular correlation models if an insufficient basis is employed [245].
Given that the 3-pair constraint treats 6 electrons quantitatively, we would expect it to
repair this deficiency. Indeed we find this to be the case in both the (6,6) and (30,30)
active spaces (Figure 2). Even given the orbitals of the PP model (which are severely
symmetry broken) the PH amplitude equations distort benzene by less than .1mEh. An
iteration of the CC-6 amplitude equations in the (30,30) space given 3-pair constraint and
local intermediate approximation requires roughly 30,000 seconds of wall-time in our most
recent implementation on one core of a typical cluster node. No spatial or spin symmetries
are exploited. Our sparse storage scheme and factorization of the CC equations require
roughly 10GB of disk for applications of this size. The deformation angle is the difference
between consecutive C-X-C angles, where X is the center of benzene’s mass. R(X-C) =
1.3Å, and R(X-H) = 2.0 Å.
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R(Allyl-Allyl) Å CASSCF (6,6) PP PQ PH
1.64 -232.98024 0.00778 0.00112 0.00002
1.695 -232.97954 0.01074 0.00174 0.00002
1.75 -232.97820 0.01453 0.00259 0.00002
1.805 -232.97703 0.01892 0.00360 0.00001
1.86 -232.97635 0.02350 0.00466 0.00000
1.915 -232.97615 0.02794 0.00570 -0.00001
1.97 -232.97628 0.03208 0.00666 -0.00001
2.025 -232.97656 0.03589 0.00754 -0.00001
2.08 -232.97685 0.03941 0.00832 -0.00001
2.135 -232.97706 0.04268 —— -0.00001
2.19 -232.97713 0.04577 —— -0.00002
NPE(kcal/mol) —— 23.84 4.52 0.02

Table 5.3: Energies along the D2h coordinate of the Cope rearrangement in the (6,6) space and
6-31g* basis. Total energies are given for CASSCF in Eh, while deviations from CASSCF in Eh
for PP, PQ, PH.

5.3.2 Cope Rearrangment

The Cope rearrangement is a classic of organic chemistry and has been carefully exam-
ined [211,212] in a quantum chemical context, especially by the group of Davidson [209,210].
An interesting coordinate to examine is the inter-alyllic distance along the D2h slice of the
potential surface the reaction coordinate passes through. Two qualitatively different min-
ima are found by CASSCF as this distance increases, one ”concerted” and another of
biradicaloid character. We will examine several geometries along this curve obtained from
CASSCF optimizations with the inter-allylic distace constrained2.

The most often used CASSCF space for this problem is (6,6), the same number of
electron pairs we have constructed PH to treat quantitatively and so we use it as another
control experiment to assess the neglect of singles with the variational gradient. Table 1
compares the performance of PH to its predecessor PQ. Distinguishing between the two
minima separated by only 3mEh on the CASSCF surface requires resolution beyond the
usual 15mEh that can be expected from PQ for a system of this size. The NPE indicates
the difference between the maximum and minimum deviation from CASSCF. Neglect of the
singles block does not hinder PH’s ability to faithfully reproduce CASSCF for this system.

2We would like to acknowledge Troy Van Voorhis for generating these geometries during his Ph.D. and
Greg Beran for a related conversation. See Supporting info.
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Figure 5.4: Three representative points along the path of the Bergman reaction followed in this
study. From left to right, Step 0.0 (eneyne), 0.5 (near transition structure, and 1.0 (p-benzyne).

5.3.3 Bergman Reaction

The Bergman reaction is interesting for many reasons, not the least of which is its role as
a fuse for a class of cytotoxic natural products with therapeutic potential. The mechanism
of the reaction is well-understood theoretically and experimentally, and is known to be a
difficult case [246, 247] for correlation models making it an ideal benchmark system. The
product: p-benzyne [215, 248], is a singlet diradical. DFT calculations can provide poor
results for such systems, even predicting a bond-stretch isomer of m-benzyne which upon
further examination appears not to exist [249]. Adopting the eneyne and transition state
geometries of Cramer, and the benzyne geometry optimized with Spin-Flip DFT [182], we
will make a very coarse study of a reaction coordinate obtained by a quadratic interpola-
tion between these geometries (Figure 2) in Cartesian coordinates3 and compare against
CASSCF(8,8) (the space employed by Mazziotti for benzynes) to assess our model on a
practical problem with a strongly delocalized electronic character.

PH’s parent model PQ provides a semi-quantitative picture of the reaction coordinate
with accuracy in keeping with our previous findings, usually with correlation energies a few
mEh less than CASSCF for only a few seconds of CPU time. Immediately at Cramer’s
Transition state (step 0.5) where we expect most multi-reference character, we see that
PQ over-correlates presumably because of strong non-separable correlations of more than
4 particles whereas PH remains variational. These geometries likely deviate significantly
from the lowest energy path between endpoints, but that only adds difficulty to the problem
of reproducing this slice of the CASSCF surface. Without the intermediate-pair approx-
imation the cost of the calculation increases significantly, but the result does not change
much. For meta-benzyne (step 1) the correlation energy of PH without the intermediate-
pair approximation is 0.4mEh larger, and for the ene-yne the same figure is 0.2 mEh.

3The coordinates of each point are available in the supplementary information.
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Figure 5.5: Electronic energy along Bergman reaction coordinate. CASSCF(8,8) in the 6-31g*
basis.

Step (arb.) CASSCF(8,8) PP PQ PH
0.0 229.49761 0.02789 0.00227 0.00090
0.1 -229.48047 0.02530 0.00129 -0.00002
0.2 -229.45835 0.02487 0.00124 0.00001
0.3 -229.46065 0.02601 0.00224 0.00003
0.4 -229.45690 0.02885 0.00350 0.00012
0.5 -229.43533 0.03809 -0.00532 0.00092
0.6 -229.42281 0.03541 0.00327 0.00061
0.7 -229.44270 0.03237 0.00301 0.00170
0.8 -229.46354 0.04247 0.00842 0.00129
0.9 -229.47450 0.03843 0.01017 0.00118
1.0 -229.47767 0.03924 0.00977 0.00117
NPE(kcal/mol) —– 11.0 9.7 1.1

Table 5.4: Study of Bergman Reaction in the (8,8) space 6-31g* basis. Total energies are given
for CASSCF in Eh, while deviations from CASSCF in Eh for PP, PQ, PH
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R(F-F) Å CASSCF PP PQ PH
1.6 -198.94906 0.09720 0.01590 0.00091
1.9 -198.92881 0.08053 0.01311 0.00095
2.2 -198.91505 0.07110 0.01049 0.00121
NPE(kcal/mol) 16.37 3.40 0.19

Table 5.5: F2 dissociation in the DZ basis and (14,14) space. Total energies are given for CASSCF
in Eh, while deviations from CASSCF in Eh for PP, PQ, PH.

5.3.4 F2

A pair of fluorine atoms nominally share a single bond, but the extreme reactivity of the
gas and poor performance of CCSD [250,251] demonstrate significant multi-reference char-
acter. The full-valence active space (14,14) is also roughly the limit of a routine CASSCF
calculation and large enough to seriously assess the energetic impact of the three-pair local-
ity constraint. Table 3 quantitatively compares CASSCF, PP, PQ and PH for this problem
with the DZ [252] basis and (14,14) active space. Again PQ semi-quantitatively parallels
the CASSCF curve whereas PH maintains accuracy throughout. Without the intermediate-
pair approximation the energy does not change significantly even with this very large active
space. At 1.5Å with the approximation PH yields an energy of: -198.943619Eh, and with-
out it: -198.943622Eh. In the absence of symmetry are 11,778,624 determinants in the CI
space, and 11,102 amplitudes in PH.

PH can be seen as two approximations to CASSCF: rank truncation and spatial locality.
This model system is directed largely at the latter approximation. We only enforce locality
implicitly through orbital optimization of the correlation energy. The rank-truncation ap-
proximation is more explicit, in the sense that we know what determinants are relevant for
a given bond dissociation process and we know that our model will be faithful if it contains
those determinants. These results are not predictable by construction, and interesting for
that reason.

5.4 Discussion and Conclusions

We have presented a tractable approximation to CASSCF asymptotically containing
fewer parameters than MP2 with many nice properties. The foremost of these is the sys-
tematic improvement of PH over PQ which results from the well-tempered nature of the
pair approximation. The pair-approximation based models (PP, PQ, PH) can now be made
into something bigger than the sum of their parts because one may calibrate affordable cal-
culations with quantitative calculations; for carbon systems this is now possible at a cost
which is tractable in many new and exciting cases of interest on a single processor. This
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may be contrasted with the situation at present: if an active space larger than 16 electrons
is needed there is no routine approach, but many promising candidates which may find
broader application soon [180, 205, 215, 242]. In future work dynamical correlation must
be added to the OO-CC references in an efficient way; we have mentioned many possible
approaches already and have some results in-hand which will immediately follow this paper.

The success of this model for first-row systems stems from the fact these atoms partici-
pate in at most three bonds. Moving down the periodic table to higher nuclear charge more
electron pairs are forced into a smaller region of space and correlate with each other. The
effectiveness of the pair approximation in transition metal bonding is an open question;
however the infrequent appearance of Lewis structures with more than triple bonds in the
chemical literature offers a reason for optimism.

A comprehensive understanding of the efficiency of this model relative to other ap-
proaches is also desirable, but challenging to realize. There are two obvious measures
which can be tested easily: wall computation time and number of parameters. In a Density
Matrix Renormalization Group(DMRG) calculation the dimension of the many-body basis
is a free parameter and so there is an opportunity to compare ”apples to apples”. It is
not necessarily enough to judge each active-space method without dynamical correlation
because ultimately exact solution within the active space may prove inefficient.

The pair-approximation idea might be fruitfully combined with other formalisms. The
renormalized cluster models [116] could be combined with PH, projecting the generalized
moments onto the cubic subset of hextuples which we know are relevant and avoiding ex-
plicit construction of T6. We could apply the dynamical correlation theories [225] that were
originally conceived for density-matrix based approaches to our own work. Incomplete ac-
tive spaces are required to address large systems, and these ideas can provide them in an
accurate and well-defined way.
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Chapter 6

The +SD Correction

6.1 Introduction

The electronic structure of molecules can often be captured by an approximate wave-
function consisting of a single determinant. This is usually the case for molecules near their
equilibrium geometries. For these situations the combination of coupled cluster methods
with techniques for tackling the basis-set problem [102] can be relied on to reproduce or
predict chemical phenomena given some polynomial amount of computational time which
is always decreasing. If more than one determinant is required to qualitatively treat a
problem, even obtaining a qualitatively correct electronic structure becomes challenging.
Efforts in the quantum chemical community have largely adopted a divide-and-conquer
approach where the static and dynamic correlation problems are handled separately. The
Complete Active Space Self-Consistent Field (CASSCF) wavefunction [46] is used routinely
to solve the former, although its cost scales exponentially limiting the method to roughly
16 electrons. Dynamical correlation is most often dealt with by second-order perturbation
theory [167]. Correlations near the interface can cause ”Intruder-State” problems [253],
which must be pushed away by level-shifts.

This artificial separation of correlation problems is not reflected in the coupled cluster
theory itself [50, 254]. It is non-perturbative, and only made unsuitable for multireference
problems because of the rank-truncation of the correlation problem. Even double exci-
tations have significant flexibility [54], but the Schrödinger equation must be projected
against the significant high-rank determinants [116] to maintain pseudo-variational be-
haviour. Rank truncation is motivated by Möller-Plesset perturbation theory and compu-
tational convenience. For situations where perturbation theory fails [255], we can do much
better than rank truncation. This paper explores one such choice, based on our local,
orbital-optimized coupled-cluster (OO-CC) models [86,126].

The formalism is nothing more than the standard CC theory applied everywhere in
quantum chemistry (Eqns. 3-4), but with an unconventional truncation of T̂ . Like CASSCF,
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OO-CC moves the strong correlations into an active space of a few orbitals. Orbital opti-
mization is also used to localize the active space, reducing the number of amplitudes we
introduce by several orders of magnitude [86] especially for the higher ranks. To treat the
dynamical correlations we must allow for excitations from these configurations into the
external space. The resulting model blurs the line between static and dynamic correlation.
A strong analogy can be drawn between this model and MRCI [256–259].

The traditional coupled cluster theory has many nice properties: orbital insensitivity,
size-consistency, and formal simplicity. Unfortunately no multireference version has been
so uniquely defined, although given an extended normal ordering [133] it’s formulation
may be possible. Even generalizing without sacrificing vital features required a large body
of work [169, 260–263] which is now growing into mature implementations [201, 264–266].
There are two points of departure between these ideas and the model presented here. The
MkMRCC, and its relatives are based on a wave-operator formalism [267], which presents
the advantage that they are truly free of a 1-determinant reference [268], and several chal-
lenges: redundant amplitudes, intruder states, and size-intensivity.

The second difference is the choice of an incomplete reference space. Most all de-
velopmental MRCC codes have been based on complete active spaces, which make them
effectively exponentially scaling and limited in scope. Of course the wave-operator meth-
ods are easy to imagine with a reduced space [269], but this isn’t often done. The ideas
presented in this paper for limiting the cost of the active-space treatment with a controlled
size-consistent approximation are transferrable to other MRCC formalisms. However in-
complete active spaces are somewhat at odds with the orbital invariance feature. Indeed
the goal of a local model often becomes strong orbital variance for the sake of efficiency.
Making this compromise we must be careful that the orbitals are well-defined, and well-
behaved with respect to symmetry breaking. This paper exists largely to see how well we
can tackle those problems.

Shortly after the appearance of the first coupled cluster quadruples (CCSDTQ) imple-
mentations [96, 97] the resulting code was adjusted to formulate a coupled cluster model
for 2-configuration multi-reference problems [171, 172], and this idea enjoys continued ap-
plication and development today under many names [270–278]. The advent of general-rank
symbolic coupled cluster codes [112, 199, 279] have made these ideas commonly available,
and this work owes much to the significant literature in the area. In this paper we use the
conventional name SRMRCC (Multi-reference Coupled-Cluster Theory based on a Single
Reference formalism) for these models.

Given only a two-electron density matrix there are also techniques which can dynami-
cally correct towards a total electronic energy [204, 226]. These have a clear strength that
their cost is insensitive to the size of the reference space, although through extended normal
ordering [133] this property could be brought to any model. One of the features of this work
relative to the aforementioned models is that with minimal modification there are already
(freely available) codes capable of iterating the coupled cluster equations as this paper will
describe. Some of these are highly-optimized, well-understood, and are accompanied by
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code for their gradients and response properties. Furthermore the orbitals of OO-CC are
orthogonally localized [56,122], and this sparsity can be used to construct affordable local
models with techniques already known [57] to the quantum chemistry community. Because
the model proposed in this paper can be described with minimal formalism, and coded
with minimal effort (beyond a general CC implementation), it offers a simple test-bed for
local models of the total energy.

6.2 The Models

We assume the usual spin-orbital basis of orthogonal, but non-canonical spin-orbitals.
These are divided into four subspaces: external occupied {Ok}, active occupied {ik}, active
virtual {ak}, and external virtual {Ak}. The active space is further partitioned into pair-
quartets of spin orbitals {iα, aα, jβ, bβ} and all these labels are defined by the orbital-
optimization of the underlying active-space cluster model. Occupied and virtual orbitals
in either space are denoted {oi} and {vk}, respectively.

These local approximations to CASSCF are uniquely defined by a number of pairs
n, and any rank truncation imposed on the OO-CC amplitude. If the rank truncation
is implied by the pair constraint, because n pairs can make at most 2n excitations, we
call the model the ”perfect”-”2n-tuple” by analogy with the perfect pairing model (ie:
PP, PQ, PH). These models are exact for non-interacting n-pair systems by construction.
If the excitation rank is separately limited we just give it a ”pair number”-”rank limit”
appellation, ie: the three-pair quadruples are abbreviated ”3Q”. With certain algorithms
the cost of 3Q scales like PH, but the former can usefully save on pre-factor. Unlike a string-
based MCSCF code OO-CC is naturally extensive in all cases, and often cheap enough that
the reliable, uniquely defined valence active space can be chosen.

The basic idea is now quite simple (but simplicity should never be regarded as a vice).
We would like to dynamically correlate any determinant within a reference space, and based
on our experiences with the traditional cluster theory we say these dynamic correlations lie
in the space of doubles above this reference space. This suggests we allow any amplitude
of the form:

T̂
a1,a2,...,an,A1...Ak

i1,i2,...,in,O1...Ol
; s.t.{ak, ik} ⊂ {n-pair model}, and 0 ≤ k, l ≤ 2 (6.1)

and allow this truncation to replace any concerns of rank in our cluster theory. We only do
this after the orbitals have been optimized. This truncation, which will be called Ansatz
(6.1) in the remainder of the paper, includes the underlying OO-CC model, external and
semi-internal doubles, and singles over the whole space space. An n-pair model excites to
at most 2n particles, and the model described above excites to 2n+2. If the frozen-core and
valence-PP active space are chosen (as we recommend) then this model doesn’t increase
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the maximum excitation rank above PQ/PH because {Oi} is empty. The storage costs and
computational scaling grow with reference size and basis-set size like the usual state-specific
SRMRCC [280].

We have performed experiments with another choice Ansatz (6.2) which relaxes the
locality of the active space by including any amplitude which is related to its parent by the
replacement of at most two labels (pair labels or spin-orbital labels for the external space):

T̂ =


T̂
a1,a2,...,an,v1,v2
i1,i2,...,im

+ T̂
a1,a2,...,an,v1
i1,i2,...,in,o1

+ T̂
a1,a2,...,an

i1,i2,...,im,o1,o2
s.t.{ak, ik} ⊂ {n-pair model}

T̂
a1,a2,...,an,v1
i1,i2,...,im

+ T̂
a1,a2,...,an

i1,i2,...,in,o1
s.t.{ak, ik} ⊂ {n+1-pair model}

T̂
a1,a2,...,an

i1,i2,...,im
s.t.{ak, ik} ⊂ {n+2-pair model}

(6.2)

E = 〈0|e−̂T ĤeT̂ |0〉 = 〈0|{ĤeT̂}c|0〉 (6.3)

〈µs|{ĤeT̂}c|0〉 = 0 (6.4)

Note every amplitude of Ansatz (6.1) is also an amplitude of (6.2), along with most of
the non-local excitations although the gross storage cost scales similarly in the large-basis
limit, (pairs)v2 ≈ NMO3 for PP+Ansatz 2, and (pairs)3v2 ≈ NMO5 for PH+Ansatz 2.
This model is more appropriate if the reference is far from exactness, but likewise more
costly.

Given a perfect pairing active space of 2n electrons in 2n orbitals and v external virtual
orbitals, in the most costly case (PHSD) and assuming a three-pair constraint on amplitudes
and intermediates the storage cost of Ansatz (6.1) scales n3v2, and the CPU effort scales
n3v4 These scalings are frankly prohibitive for molecules of appreciable size, but before
we can experiment with local dynamical approximations in the external space we must
determine the accuracy of this base model. The difference between these models and the
SRMRCC [270] is two-fold. The active-space problem is not solved separately in a CI,
and the expansion in the active-space is not complete. All amplitudes are on the same
footing (most amplitudes are not clearly static or dynamical) and every correlation is made
consistent with the others during CC iterations. This is much like what occurs if Ĉ and T̂
are solved in a two-step iterative process [270] in the SRMRCC.

The simplicity of these models is pleasing. Every amplitude possesses a unique nonlinear
equation it must satisfy derived from projections of the Schrödinger equation, and these
equations are well known [281]. There are no sufficiency conditions [169], or intruder
state problems [282, 283], but experience with the usual SRMRCC [280, 284] raises some
concerns. Because the coefficient of the OO-CC’s reference determinant is set to one by
intermediate normalization, in a situation where its relative weight in the wavefunction
drops to zero, convergence of the amplitude equations will become difficult. This doesn’t
differ from the usual CC and isn’t much of a practical concern. A denominator shift
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gradually relaxed during iterations is usually all which is required. In a similar vein,
only the formal determinant experiences the highest rank of excitation and so when the
dominant configuration changes abruptly the correlation energy may not behave smoothly.
In the literature of SRMRCC this is called a Fermi vacuum or orbital invariance problem
[279, 280]. Luckily the CC-theory is strikingly insensitive to choice of reference because
of the exponential single excitations, and our model includes these naturally between all
spaces. Moreover, orbital-invariance was already sacrificed to introduce locality into the
underlying OO-CC model, a sacrifice which must be made to escape exponential scaling.
We emphasize that our goal for this work was to demonstrate the strength of the local
OO-CC as a reference in a conceptually straightforwards, but quantitative model. Like any
formal drawbacks, the final measure should be the results.

6.3 Results

For the purposes of this paper ansatz (6.1) will be called ”+SD”, and that will be at-
tached to the name of the OO-CC model underneath (ie: PPSD, PQSD, PHSD, etc...).
Applications of ansatz (6.2) will be specifically noted. Our figure of merit will be the non-
parallelity error (NPE), the difference between the maximum and minimum error relative
to the exact result. In future work the external space should also be made local. Until
then larger active spaces will imply a more local model and necessarily smaller correlation
energies. Still if the pair approximations are good (and they usually are) the NPE should
remain good and this will be shown below.

We employ some common benchmark systems to evaluate the performance of our mod-
els. The double dissociation of H2O demonstrates the compactness and chemical accuracy
afforded by this truncation. F2 largely probes the impact of active-space locality. BeH2

is troublesome from an orbital invariance standpoint, but the PQ model is non-local and
rank-complete for the reference problem. H8 provides an example where orbital invariance,
symmetry and locality are all challenging at once.

The ”+SD” models have been implemented in a developmental version of the QChem
[192] package. Exact results were furnished by the PSI3 [240] program package. We also
compare against the previously available dynamical correlation correction to OO-CC [230]
developed by our group. The valence PP active space is generally assumed, as is the frozen-
core approximation. The basis is generally DZ [285] as obtained from EMSL’s Basis Set
Exchange [286,287].

6.3.1 H2O

We examined the simultaneous dissociation of water with PQSD and the (8,8) active
space, the errors relative to complete solution in the DZ basis with the frozen-core approx-
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Figure 6.1: Simultaneous dissociation of H2O in the DZ basis. Orbitals are those of the GVB-RCC
model [1].

imation are pictured in Figure 1. In the absence of symmetry the complete expansion is
1,656,369 determinants and there are 2,745 amplitudes in CCD. PQSD is a significant trun-
cation of the correlation problem with only 2,984 amplitudes, but maintains a very modest
non-parallelity error (NPE) of 1.07 kcal/mol, re-enforcing the efficiency of the pair-based
reference. Even with rather crude PP orbitals PH+SD maintains an NPE of 0.19 kcal/mol.

6.3.2 F2

Electrons are loosely paired between Fluorine atoms in a multi-referenced bond that
is poorly described by low-rank single-reference cluster theory [288, 289]. We also include
the best unrestricted curve which can be coaxed from B3LYP [290] for any newcomers to
this area. The valence perfect-pairing space, (14,14), is also roughly the limit of complete
diagonalization, and so this one of the more stringent tests of the locality approximation
we can produce. We’ve previously demonstrated that the PH model provides chemical
accuracy for the valence CASSCF correlation problem. In the same study we saw that
two-pair locality can only provide an NPE to CASSCF of roughly 4 kcal/mol.

The truncation introduced in this paper does not relax active-space locality, and so we
expect the errors relative to CASSCF to translate almost quantitatively into error relative
to the total correlation energy (if we have captured the bulk of the dynamical correlations).
Unfortunately we are unable to provide a FCI curve, but for the purposes of this work the
complete CCSDTQ model should provide near-exact results and the errors for this example
are reported relative to this benchmark. The core orbitals are frozen in all cases. In the
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Figure 6.2: Dissociation of F2 in the DZ basis, Errors relative to CCSDTQPH (frozen-core).
PHSD employs the intermediate-pair approximation.

nonlocal model there are 4,597 doubles, 112,236 triples and 1,697,198 quadruples. In the
3-pair model those figures are reduced by factors of roughly 1

2
and 1

10
respectively.

The PH paper also introduced an intermediate-pair approximation which offers a palpa-
ble reduction in computational complexity of a three-pair model. This approximation only
takes effect when the number of active pairs significantly exceeds the locality constraint
(as it does in this example). The same idea can be applied to the ”SD” model without any
modification. The results of Figure 2 are obtained in the presence of that approximation.
If this approximation did not carry to the ”+SD” models accurately, other avenues would
have to be pursued to relax the cost of this method. One direction would be including only
rank density-matrix information from the reference as is done in Canonical Transforma-
tion [227].

6.3.3 BeH2

Insertion of Beryllium into a hydrogen molecule is a classic multi-reference problem be-
cause of an avoided crossing in the intermediate region. Of the examples recently considered
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Figure 6.3: Insertion of Be into H2. PQSD is built on the (4,4) active space. Orbitals are those
of PQ.

by Hanrath [280] with several MRCC approaches this system posed the most difficultly for
SRMRCC. The dominant reference changes symmetry between endpoints with the highest-
occupied molecular orbital shifting(3a1 → 1b2). We employ the geometry and basis set of
Evangelista [265]1 from whom we also borrow benchmark results. At either endpoint the
orbitals are optimized for PQ from a guess of GVB-RCC [68]. All internal data points use
an orbital guess provided by the previous geometry.

In Figure X the errors relative to FCI are shown for MkCCSD(2,2), PQSD(4,4) and
CCSD. The active spaces employed in MkCCSD (2,2) and PQSD (4,4) are not the same.
We stress that MkCCSD possesses strong orbital invariance properties which this model
does not, and the fact that they perform similarly in different active spaces is a reflection of
that strength in MkCCSD. This graph suggests that orbital-invariance isn’t a fatal concern
for these PQSD. With larger spaces the locality we exploit in PQ or PH is a more significant
error.

1We would like to thank the authors of this important paper for providing very clear and complete data
throughout.
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α/π FCI PQSD Error (Eh)
0.0 -2.07753 0.00321
0.1 -2.17098 0.00449
0.2 -2.21589 0.00438
0.3 -2.23302 0.00433
0.4 -2.23958 0.00434
0.5 -2.24131 0.00434
NPE (kcal/mol) 0.80109

Table 6.1: The H4 model system. Zero is a 2-Bohr square of hydrogen atoms, and .5 is the linear
configuration. The orbitals are those of PQ. The reference space is (4,4) and basis DZP.

6.3.4 H4

Four hydrogen atoms are arranged in a 2 Bohr square, and the opposite sides of that
square are folded downwards by an angle determined by parameter, α. As a square (α =
0) the electronic structure is dominated by two equally important determinants which are
separate as the structure is made linear (α = 1

2
). This model was introduced by Jankowski

and Paldus, and has been previously examined by several authors [201,280,291,292].
Table 1 summarizes the error of PQSD relative to FCI in the DZP basis. Given that

this is a 4 electron system PQ is not a local approximation and the anstaze closely resem-
bles SRMRCC. The orbitals are orbital-optimized doubles-quadruples rather than CASSCF
(2,2), and there is no CC/CI separation. There are far fewer amplitudes in PQSD (501)
than the complete CCSDTQ model(6529). The performance of PQSD is satisfactory, but
predictable. We include this example mostly for the sake of completeness.

6.3.5 H8

In this standard MRCC test system [201, 291–295] eight hydrogen atoms are arranged
in a 2 Bohr octagon. Two opposite faces are pulled away from each other by a displacement
α (Figure 4). As in the previous examples two determinants differing by the replacement of
an orbital (b1g → ag) exchange dominance in the wavefunction becoming quasi-degenerate
when the molecule is symmetric. MkCCSD built on CAS(2,2) has an NPE of 2.019 mEh
for this system [201], a PP(2) calculation with the (2,2) space has an NPE of 18 kcal/mol.
Table 2 examines the the errors of PPSD(2,2) and PHSD(8,8) (with intermediate pair ap-
proximation) relative to complete solution in the DZ basis. The orbitals are optimized for
the PH reference. In the (2,2) space there are no symmetry breaking problems for PPSD,
and we obtain a curve of quality comparable to MkCCSD. The most inexpensive OO-CC
models (PP, IP [1]) over-localize orbitals, and under-correlate weak bonds at the expense
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Figure 6.4: Graphical depiction of H8 model for α = -0.4, 0.4 Bohr

of stronger bonds. Aside from the same multi-reference problems addressed elsewhere in
this paper, this symmetry breaking presents a real challenge for a 3-pair local model of the
valence electronic structure in H8.

For the compressed geometries the three-pair approximation and PHSD(8,8) fares well,
and the orbitals can be converged easily. When α > 0 the 3-pair orbitals become sub-
stantially more difficult to converge than the non-local doubles indicating that the local
approximation is being forced on a somewhat non-local problem. The errors shown in Ta-
ble (6.2) for α > 0 reflect errors of 3p against CASSCF much more than they reflect any
deficiency of ”+SD” itself. This motivated us to develop the less-local Ansatz 2.

However Ansatz 2 restores quantitative accuracy, even when built on a two-pair refer-
ence as shown in Figure (6.5).

6.4 Discussion and Conclusions

The pair-approximation based models have been developed with computational cost
and practicality as the guiding principle. The assumption that an accurate total energy
model could be made from PQ or PH given positive comparison to CASSCF has been
justified in this paper. Because they make the valence active space affordable, and because
the OO-CC orbitals are well-defined Fermi-vaccuum invariance isn’t the main challenge for
this scheme. The symmetry breaking inherited from GVB, and largely ameliorated with a
3-pair constraint is the dominant source of error.

We do not claim that this work is the grand-unified, black-box correlation model, but
the results indicate that the ideas introduced are useful. Combinations of OO-CC with
other ideas like MkCC [169], the anti-hermitian contracted Schrödinger equation [226] or
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α(Bohr) FCI (Eh) PPSD (2,2) Error 3QSD (8,8) Error
-0.4 -4.35706 0.00085 -0.00141
-0.3 -4.35063 0.00101 -0.00178
-0.2 -4.34176 0.00134 -0.00222
-0.15 -4.33701 0.00167 -0.00238
-0.1 -4.33266 0.00223 -0.00232
-0.05 -4.32954 0.00314 -0.00169
0.0 -4.32872 0.00425 -0.00004
0.05 -4.33074 0.00304 0.00929
0.1 -4.33509 0.00209 0.00526

NPE kcal/mol 2.13 7.32

Table 6.2: Automerization of H8. The basis is DZ. MRPH employs the intermediate pair
approximation
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Figure 6.5: Automerization of H8. The reference space is (8,8) and basis is DZ.
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Canonical Transformation [227] would also be interesting.
Given the attractive simplicity of this work, it is interesting to ask how this dynamical

correction might be made as efficient as it’s static correlation counterpart. We are working
off this footing to produce a entirely local correlation model. Along similar lines some
recent studies [296,297] made local correlation models from the renormalized cluster theory.
Another fascinating direction would replace the Gaussian orbitals of the external space
with explicitly correlated geminals. Given sustained growth of computational resources,
systematically-improvable approximations like these whose cost grows with some reasonable
polynomial are poised to make a large impact.
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Chapter 7

A Novel Range Separation of
Exchange

7.1 Introduction

Despite rough beginnings [25], the local density approximation (LDA) has been devel-
oped through decades of work on the Kohn-Sham (KS) [80] construction into one of the
most successful approximations in quantum chemistry and solid state physics. Within this
framework, the LDA exchange correlation functional is combined by an adiabatic connec-
tion with a non-interacting wavefunction so that an approximate kinetic energy may be
extracted and there is no need to develop accurate functionals for the kinetic energy [298]
which have proven elusive. Along these lines, Becke [290] realized that the accuracy of
Kohn-Sham energy functionals could be improved by the admixture of ”exact” exchange
coming from the explicit exchange energy of the fictitious Kohn-Sham wavefunction. The
resulting hybrid density functionals have been the most commonly applied model chem-
istry for many years [299] because they have been found to be remarkably accurate with
computational costs virtually equivalent to those of the Hartree-Fock (HF) method.

One of the few remaining substantial defects of the Kohn-Sham construction which
has attracted theoretical effort is the so-called self-interaction problem [300–306], and it is
directly related to the treatment of the exchange energy [83]. In the HF energy expres-
sion the Coulomb repulsion of a 1-electron function with itself is cancelled exactly by the
corresponding exchange integral. In the KS construction with a pure, local functional the
Coulomb energy is non-local, but the exchange energy is not. Considering the 1-particle
functions provided by the KS wavefunction we might say that the electron repels itself if
the particle is spread over space because the antisymmetric complement of the Coulomb
interaction, non-local exchange, is missing. At equilibrium geometries the effect on pre-
dicted ground state energies is not severe, but this defect means that dissociation problems
may lead to fragments which only possess a fractional number of electrons [307,308], or re-
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sponse properties which reflect serious artifacts if charge is significantly redistributed [309].
If globally a fraction of the exchange energy of the KS determinant is mixed with the DFT
exchange energy these artifacts are partially remediated. To a stranger unfamiliar with the
history of hybrid DFT’s development the situation must seem confusing, because it is not
obvious why any mixture of ”exact” exchange with (semi-)local exchange is advantageous.
The answer is that the accuracy of most DFT functionals lies in a cancellation of errors be-
tween exchange and correlation functionals. Both are compensating for the single-reference
nature of the fictitious KS determinant [310,311]. From another angle, one might say that
these two non-local objects [312] are best considered together because what results is more
local.

A way to preserve the local cancellation of errors yet recover correct exchange at long
range has emerged in the form of range separated hybrid functionals. The idea which goes
back to the pioneering work of Gill and Savin [214, 313, 314], is to divide 1/r by multiply-
ing it with a function which varies between 0 and 1, such that both this function and its
complement are integrable. The greatest fraction of work in this very active area [315–320]
has employed the standard error function to achieve this separation:

1/r = erf(ωr)/r + erfc(ωr)/r (7.1)

The LDA exchange functional corresponding to erfc(ωr)/r, and integral kernel for the ex-
act exchange over erf(ωr)/r can then be derived so that locally exchange is provided by
the LDA and at a distance exchange is provided by the KS wavefunction. The position
where the transition is smoothly made between the two treatments is determined by the
adjustable parameter 1/ω. The choice of the error function as a Coulomb attenuator is both
practical (for most implementations one must be able to perform the integral of Gaussians
over the function analytically [321]) and arbitrary because the error function is just one
of many which possess this property. In some recent studies promising results have been
attributed to more flexible range separation [322].

One can extend the idea of mixing ab-initio and DFT strengths further by imagining
range separation of the correlation part of the functional as well. In this scheme (which we
will not pursue in this work beyond mention) the ab-initio method is made responsible for
static and long range dispersion effects while the LDA correlation functional is adjusted
for the modified coulomb interaction to avoid double counting. Savin and coworkers have
experimented with the choice of another attenuated Coulomb interaction for these purposes
[323] , a linear combination of an error function and a Gaussian which offers a sharper
separation:

vee,erfgau = erf(ωr)/r − (2µ)/
√
π ∗ e−(1/3)µ2∗r2 (7.2)

More recently this erf-gau LDA functional was combined with a standard GGA in an
attempt to surpass the accuracy of exchange-hybrid functionals based on erf [324] with
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a GGA correlation treatment. Another 1-parameter attenuated Coulomb interaction, the
Yukawa potential, has also been the subject of recent investigations [325,326].

vee,yukawa = exp(−γr)/r (7.3)

Improved performance of the resulting functional was attributed to an increased fraction
of short-range exchange [327].

Our group has recently published an analytical integral over a more general sort of
Coulomb attenuator which allows for separate control of where and how rapidly the shift
is made between parts of the Coulomb interaction [328]. It allows continuous variation of
sharpness between the limits of erf and the Heavyside function. The function is a linear
combination of two error functions (although note that the erf formulas aren’t sufficient to
describe it) and so we have adopted the name ”terf”:

terfr0,ω(r) = (1/2)(erf(ωr − r0) + erf(ωr + r0)) (7.4)

Investigations into the performance of range-separated hybrids [329] have found that exist-
ing separations cannot simultaneously describe ground-state and excited state properties
with a single choice of ω. Along these lines a common area of intersection has been located
amongst many optimized attenuators at roughly .8 Bohr [330] in the (r, Voptimal(r)) plane
. The physical implication is that cancellation of GGA-exchange and GGA-correlation
errors in this region is balanced with the error induced by semi-local exchange, and our
attenuator should be shaped similarly in this region for thermochemical accuracy. Yet to
repair self-interaction error the attenuator should reach its asymptote as rapidly as possible
once we leave this region. The terf functional form can pass through this point while still
reaching its asymptote more rapidly than erf, and so there is reason to hope that terf may
be useful in this respect. Another nice feature of this choice of separation is that it reduces
to the erf attenuator if the r0 parameter is chosen to be zero. The attenuator is plotted for
several choices of parameters in Figure 1.

7.2 The terf-attenuated LDA

The exchange energy of a many-fermion system, charge balanced by a structureless
positive background is our starting point. This matrix element is [331]. (where θ denotes
the Heaviside function)

Ex =
−k3

f

12π4

∫ ∞
0

q2vee(q)(1−
3

2
x+

1

2
x3)θ(1− x)dq ; where: kf = (3π2n)1/3, x = q/(2kf )

(7.5)
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Figure 7.1: Various attenuators plotted for comparison. The first two are equivalent to Erf (ω =
.3, .4).

So we must obtain the Fourier transform of terfcr0,ω(r)/r.

F{terfcr0,ω(r)/r} = vee(q) =
4π(1− e−

q2

4ω2 cos( qr0
ω

))

q2
(7.6)

The integration of this function is algebraically quite tedious, but can be done. Unfor-
tunately the complex error function enters. Note that for z ∈ C, erf(z∗) = erf(z)∗ and
for z ∈ R, erfi(z) ∈ R. We report the exchange energy per particle of the Fermion gas
experiencing this interaction, εxc which may be readily implemented in any KS-DFT code.

Ex =

∫
n(R)εxc(n(R))dR (7.7)
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The spinless kf can be easily replaced to obtain the spin-density functional.

εω,r0x (n) =
ω4

192A4π3

{
(

8Ae−r
2
0
√
π

(
Ar0(3 + A2(4r2

0 − 6))(erfi[r0] + Im(erf(
1

2A
− ir0))) + Re(erf(

1

2A
− ir0)

))
+
(
−(3 + 24A2 + 32A4(r2

0 − 1)) + e−
1

4A2 16A2((1 + 2A2(r2
0 − 1))cos(

r0

A
) + Ar0sin(

r0

A
))
)}

where: A =
ω

2kf
(7.8)

One may easily verify that this expression matches the known erf expressions for εx as
r0 → 0 [313, 332]. For large values of A (>1), a series expansion in powers of 1/A is em-
ployed up to 10th order in our implementation for purposes of numerical stability.

7.3 Application to Range Separated Hybrids

Without semi-local gradient information the thermochemistry of this functional would
be undoubtedly poor and it would be difficult to determine if terf could improve function-
als in use today. There are several recipes for combining this LDA exchange functional
with a GGA enhancement factor ranging in degrees of technical difficulty and empiricism.
Ideally the GGA factor will depend on the attenuating parameters [333], but recent results
have shown that superior accuracy [83] can be obtained even if this is only done implicitly
through optimized parameters of the GGA. At the end of the day the choice of ω param-
eter is quite empirical, as will be r0, even if we introduce them for physical reasons. The
final measure of a range-separated hybrid is optimization over a large training set, and
evaluation over an independent test set, roughly a year of computer effort. We seek some
justification for such an effort and so we combine the terfc-LDA exchange energy with the
GGA exchange enhancement factor and correlation functionals of ωB97X [83] and run
some basic tests to establish whether the resulting functional shows promise. To be pre-
cise, the resulting functional is obtained directly from ωB97X by replacing the F (aσ) of
equation (7) in that paper with the corresponding terfc-LDA F (aσ) obtained from equation
(8) above. To begin from a functional as close as possible to the parent (see the previous
paper to clarify the notation), we also incorporate a variable fraction of short-range HF
exchange in such a way that the UEG limit is respected (Eqns 9, 10).

ESR−DFA
x =

∑
σ

∫
eterfc−LSDAxσ (ρσ)gωB97X

xσ (s2
σ)dr (7.9)
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Exc = ELR−HF
x + cxE

SR−HF
x + (1− cx)ESR−DFA

x + EωB97X
c (7.10)

Aside from the many parameters associated with the GGA we must choose reason-
able guesses of {r0, ω, cx}. The physically motivated guess is to reach the asymptote as
rapidly as possible while still overlapping significantly with the established attenuators in
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ω (a.u.) r0 (a.u.) cx MAE He+
2 Error Ne+

2 Error Ar+
2 Error Kr+

2 Error
BLYP† - - - -87.55 -80.37 -48.51 -49.0

0.3∗ 0 0.1577 2.09 -38.9 -34.4 -14.0 -11.2
0.4∗∗ 0 0 2.53 -35.1 -33.3 -9.7 -7.7

1 1.48 0.2395 5.71 -31.7 -29.3 -6.7 -4.2
1.016 1.2 0.1577 4.02 -24.9 -24.7 -3.0 -1.5
1.4 1.345 0.248 5.77 -26.6 -26.2 -2.9 -1.2
2 1.329 0.316 9.16 -23.2 -21.9 -0.4 0.0
2 0.98 0.138 7.38 -13.0 -16.2 -.03 0.0

Table 7.1: Mean absolute error (kcal/mol) of G2 set atomization energies and errors of dimer
cation asymptotes for various functionals. *(ωB97X), **(ωB97) †(pure Becke 88 exchange [2] and
LYP [3] correlation, errors in this row are upper bounds.)

the previously mentioned critical region [330]. An initial choice of parameters {r0, ω, cx} =
{1.2, 1.016, cωB97X

x } was made by this physically motivated criterion, and the usefulness of
the resulting functional was assessed on noble gas dimer-cation dissociation (Figures 3,4).
Even with only very conservative changes made to the functional form of the attenuator,
terf was able to significantly increase the accuracy (relative to its predecessor ωB97X) of
the dissociation asymptote associated with the self-interaction problem (SIE) (Figure 4).
In the case of He+

2 the valence density lies so close to the neighboring atom that it seems
challenging to reach a compromise between thermochemistry and exact exchange within a
transferable range-separated exchange functional but the results for Ar+

2 are encouraging.
The solid thermochemical performance of the parent functional seemed more-or-less con-
served, and so we investigated a little further. We make the approximation that the GGA
parameters are unchanged between Erf (ωB97X) and Terf attenuated coulomb interactions.
Undoubtedly this should be improved upon in future work and the literature already de-
scribes many ways this may be done.

A few more sets of attenuator parameters were obtained by maximizing the least-
squared overlap of a terf attenuator with those of ωB97 and ωB97X varying r0, cx for
a given ω. Noble gas dissociation curves and atomization energies were calculated for the
standard G2 [334] thermochemical test set in the 6-311++G(3df,3pd) basis with a satu-
rated quadrature grid. The purpose was not to search for parameters which would surpass
ωB97X, because gradient corrections are vital to thermochemical accuracy, but rather to
document the balance between thermochemistry and correction of the self-interaction error
(Table 1). As expected the results were quite sensitive to the steepness of the attenuator
and the amount of middle-range exchange, but note that the further this attenuator de-
parts from Erf the more severe becomes the GGA approximation. An accurate asymptote
cannot be obtained by simply increasing the amount of exact exchange in the attenuator
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(because eventually the correlation part of the problem is disturbed), but by maximiz-
ing overlap with the established ones in the critical region we do obtain reduction of SIE
with increasing ”exact” exchange. At the moment where the singly-occupied MO’s bond
is breaking if this MO’s density around atom 2 is far enough from the bulk of this MO’s
density around atom 1 so that it experiences Hartree exchange the density will localize on
an atom (as it should physically). Smaller atoms cause greater difficulty in general de-
pending specifically on shell structure. The results suggest that if the GGA enhancement
factor of the functional were polished it would possess thermochemistry much like ωB97X
with a significantly larger amount of exact exchange, and even in its current incarnation is
accurate enough to be used in lieu of others for problems where ”exact” exchange might
be important.

7.4 Discussion and Conclusions

Owing largely to the popularity of hybrid functionals range separation of exchange
has become an intense area of research, and more flexible range separation may prove de-
sirable [311]. Indeed this has already been done with the erf-gau type attenuator [324],
although in this case this was done at the expense of abandoning a physically motivated
choice of a parameter. An analytical formula [328] is available for the exact exchange
energy with the terf attenuation, and this expression has already been efficiently imple-
mented in the publicly available release of the Q-Chem package [192]. This paper provides
the other building block, the short-range LDA exchange energy and a proof-of-concept
GGA functional. Preliminary results with unoptimized parameters indicate that the new
functional may be a useful improvement and development should continue in the area of
more general exchange attenuators. Further improvement over the functional developed
here might realized through complete reoptimization [83]. Alternatively one could derive
the corresponding PBE type GGA-functional [333,335,336]. In either case, the path is clear
and only limited by one’s curiosity. It will be especially interesting to see if the flexibility
of the new attenuator can simultaneously describe ground state electronic structure and
excited states. Special attention should be paid to the size of the chromophore relative to
the scale of the attenuator, and the distance over which electron density is redistributed.
This direction is currently being pursued in our group.
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Chapter 8

Conclusions & Outlook

8.1 Summary

In this work we have presented a convergent hierarchy of approximations to the CASSCF
method for strong valence correlations and the extension of those methods to a models of
the total electronic energy. The cost of these methods grows with accuracy and system
size in a tractable, polynomial fashion and systems much larger than those which can be
tackled with CASSCF can be addressed already with the implementations developed here.
The most accurate choices in this menu afford chemical accuracy for the test cases we have
examined. We have also presented a density functional with reduced self-interaction error.

If a chemist is interested in a problem of multiple broken bonds or otherwise uncertain
about how to assign a certain number of formal bonds a typical approach with existing
technology may have been difficult. One of these local, high-rank cluster approximations
could provide significant accuracy and insight. Because they are well-defined for a given
chemical situation it is obvious how one should proceed. The user can begin with the most
affordable option, choose the well-defined and reliable valence active space, and proceed
until convergence or exhaustion of computational resources.

As said on the first page of this thesis, the purpose of this work, and the substance of the
insights are to express the wave-function with less and less complexity. In that respect we
have indeed made a little progress. With a 5th order number of variables we can offer a very
accurate and reliable model for chemistry. A companion problem is to efficiently calculate
that model on computers which we have in hand. We have demonstrated that it is possible
to do so, but the computer science which would make it as efficient as implementations of
DFT is an open question.
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8.2 Future Research Directions

The models we have presented are so complex that they could not be perfected in
the duration of a single Ph.D. and there are several points of entry where they could be
improved significantly and rapidly. The directions of improvement are both physical and
algorithmic. In both cases new and interesting systems could be calculated with new levels
of accuracy and it seems likely that these directions will be pursued soon.

Excited States

One clear physical shortcoming is that these models have been developed with only
the electronic ground state in mind, but excited states need even more strong correlation
and are poorly understood. A starting point would be to exploit the CC underpinnings
of these models and take an Equation-of-Motion approach, diagonalizing the similarity-
transformed Hamiltonian for excited states. Such an approach would have limited accuracy
because the localized orbitals (which have been optimized to fit the ground state) are not
equally appropriate for the target excited states. In order to achieve an even-tempered
treatment, the response of the orbitals to excitation must be included. The formalism for
these responses could follow the example of Linear-Response MCSCF [337].

Efficient Dynamical Correlation

+SD was presented as an iterative correction to an active space correlation model, how-
ever it’s likely that a perturbative correction would provide intermediate accuracy at a
significantly smaller cost, and with more easily optimized code. Just as MP2 arises natu-
rally as the first iteration of CCSD, the +SD correction may be calculated perturbatively as
the first iteration of it’s iterative counterpart. In most applications that correlation energy
lies between the active-space reference and the converged energy. The success of a perturba-
tive model relies on a cancellation of errors. Before a specialized code is developed for such
a model, this cancellation of errors should be carefully evaluated over several model systems.

Density Functionals

Range-separated density functionals have emerged as a near systematic improvement
over global hybrids like B3LYP because they repair a physical deficiency of the base func-
tional, but the more general terf -separated version would likely offer even better perfor-
mance. To develop such a hybrid with the code currently available one should begin with
the GGA optimized for ωB97X, and develop a test set which includes several difficult ex-
change problems then perform a simultaneous optimization of both GGA and attenuator
parameters. Isomerizations of branched, saturated alkanes are emerging [338] as one such
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class of difficult problems, which might otherwise seem perfectly well-suited for DFT.

Algorithmic Improvments

The code itself limits the scope of possible applications and so I’ll outline the places
where it can be most rapidly improved. It is difficult to appreciate how significantly the
performance of a program can vary based on memory access patterns. To deliver codes
which scale properly with system size we introduce significant logical overhead to avoid
calculating the parts of the correlation problem we truncate. In the codes developed for
this work that logical overhead always takes the shape of just a few operations: lexical
sorting of an array of integers, ripping stripes of integers from arrays, and collecting those
integers into tagged blocks. Although some attention has been paid to each operation, none
of the relevant routines even approach the optimal operation count of a modern processor
because a significant amount of time is spent waiting for information from distant regions
of memory. Careful computer science on each operation would recover significant perfor-
mance boosts.

A spin-orbital formalism has been employed, although the target systems usually con-
tain an equal number of α and β electrons. The symmetry between these two sorts of
spin-orbitals is not exploited in the code (ie: each αα contribution is calculated separately
from ββ even though these are the same). In general each amplitude has an identical spin-
flip partner which is redundantly calculated, but should be omitted. If it were, storage
costs would immediately be halved.

The electron correlation models we have presented are composed of literally hundreds
of nonlinear terms, however there is a significant degree of repetitious effort which can be
avoided by proper factorization. For example each term in the coupled-cluster multiplier
residual originates in a term of the amplitude equations, and if that amplitude residual
term is stored, we can avoid repeating that calculation, algebraically:

V̂ T̂ n = V̂ T̂ n−1T̂ → ΛV̂ T̂ n−1 (8.1)

Save and reuse: V̂ T̂ n−1 (8.2)

This algorithmic improvement would reduce the cost of the gradient by roughly a factor of
two.

Self consistent orbitals require repeated integral transformation which costs 5th order,
the same exponent governing the cost of the correlation calculation itself. However by em-
ploying a tensor decomposition approximation like the resolution of the identity [127, 222]
the pre-factor on the transformation operation can be reduced by a factor of more than a
hundred. Algebraically implementing this change in the code would be accomplished by re-
placing the integral in each term with the contraction of two tensors over an auxiliary basis.
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