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ABSTRACT OF THE DISSERTATION

Heter ogeneity in Motorists Preferencesfor Travel Timeand Time Reliability:

Empirical Finding from Multiple Survey Data Sets and Its Policy Implications

By
JaYan
Doctor of Philosophy in Economics
Universty of Cdifornia, Irvine, 2002

Professor Kenneth A. Smdl, Chair

The deregulation experience in arline, banking, and telecommunication suggests
that the heterogeneity in consumers preferences has important policy sgnificance.
However, the varied nature in motorists  preferences has been hardly recognized in
urban passenger transportation sector. In this public sector, the public authority
generdly offers auniform class of servicesto dl potentia users. This dissertation
employs the new advances in econometrics on survey data sets from road pricing
experiment in Los Angdes areato study the diversity in motorists' preferences for
travel time and trave time rdiability. The empirica findings are used to explore the
efficiency and digtributiond effects of road pricing that accounts for users

heterogeneity.

Xi



This dissertation found substantia heterogeneity in motorists preferences for
both travel time and travel time reiability. Furthermore, based on a smulation mode,
this dissertation found that road pricing policies catering to varying preferences can
subgtantialy increase efficiency while maintaining the same palitica feesbility asthe
current experiments. This dissertation aso explores how to apply the recent
developmentsin Bayesian econometrics to estimate the multinomia probit models
combining different sources of data, which can be used to estimate the diversity in

peoples preferences with more flexibility in modd specification.

Xii



PREFACE

This dissartation is based on the findings of severa research projectsin which |
was involved. Thefird isthe research project from 1998 to 1999 funded by University of
Cdifornia Transportation Center to sudy the vigbility of value pricing on roads, in which
Prof. Kenneth Small is principle investigator. The main findings of this project were
summarized as a co-authored paper with Prof. Smal, “The Vaue of Vaue Pricing of
Roads. Second-Best Pricing and Product Differentiation”, published in Journal of Urban
Economics. Parts of contents of this paper appear in Chapter 4 of this dissertation. The
second research project is the one from 1999 to 2001 funded by University of Cdifornia
Trangportation Center and Brookings Indtitution to investigate the heterogeneity in
motorists preferences, in which Prof. Smdl and Dr. Clifford Winston & Brookings
Indtitution are principle investigators. This project is the basis for the paper, “Uncovering
Motorists Preferences Using Revedled and Stated Preference Dad’, which is co-
authored with Prof. Small and Dr. Winston and gppears in Chapters 1 and 2 of this

dissertation.

During the revisons and modifications for this paper, | enriched the data sample
by combining it with another data set collected by researchers at California Polytechnic
State University at San Luis Obispo, under the leedership of Edward Sullivan, and with
participation by Prof. Smdl and me. Additiondly, | added some new policy smulations
based on smulation model developed in the paper published in Journal of Urban

Economics. Thefind verson of the co-authored paper, with the title of “Uncovering the



Digribution of Motorists Preferences for Travel Time and Reliability: Implications for
Road Pricing”, has been submitted for publication and parts of its contents appear in

Chapters 2 and 4 of this dissertation.

Chapter 3 of this dissartation is drawn from work my own, in which | use
Hierarchical Bayesian Anaysisto estimate the heterogeneity in peoples preferences on

combined data sets.



INTRODUCTION

The experience with deregulaion in arline, tdecommunications, and banking has
taught us the variety of consumers preferences. Firms in these indudtries have learned to
succeed in tough competition by offering a variety of prices and services that respond to
different desres hed by consumers (Wingon, 1998). During this process, they have
increesed capecity, exploited niche markets, and learned to price discriminate. These
results a least suggest that the heterogenety in preferences has great policy sgnificance

in these indudtries.

Road transportation is not a typicad market. In this public sector, the public
authority generdly offers a uniform class of service to dl potentiad users. However, like
cusomers in other indudtries, motorists may have different preferences. For example,
some motorists might be willing to pay large amount to use express roadways that ensure
little delay, while others may be willing to pay a modest fee to achieve this purpose. A

uniform dass of servicein this case can not satisfy dl road users.

Recently a few tentative steps have been taken toward catering to heterogenety in
motorists preferences. In the Los Angdles, San Diego, and Houston areas some motorists
now can make a choice between a free but congested roadway and a priced but free-flowing
roadway. At the same time, researchers ae increasngly recognizing the role of
heterogeneity among people in underdanding red trangportation policies. For example,

recent papers have highlighted the role of the heterogeneity in motorists preferences for



time saving in understanding the politics and economics of road-pricing demondration
projects. Schemanske (1991, 1993), and Arnott et. al. (1992) show that with heterogeneous
users, differentid tolls on separate roadways may be superior to single toll.  Verhoef and
Smadl (2000), and Smdl and Yan (2001) show that the heterogenaty in vaue of time is
important for evaluaing congestion policies that offer pricing as an option, such as the three
experiments in Los Angdes, San Diego, and Houston. Generdly, the exigence of
heterogeneity favors these experiments because product differentiation then offers a greater
advantage: those with high vadue of time regp more benefits from the high-priced option,
while those with low vaue of time find it al the more important not to be subjected to

policies aimed at the average users.

Vey little research has focused on measuring the heterogengity in motorists
preferences, including their willingness-to-pay for saving travd time and reducing trave
time unrdiability on roads, which ae ds0 cdled as vdue of time and of rdiability
respectively. Previous studies on measuring vaue of time used in travel concentrated on
using data from peoples actua choice (reveded preference (RP) data) for transportation
mode. These measures can not represent motorists vaue of time, because they capture
the disutility that people attach to spending time on public trangt. Additiondly, athough
some of them have addressed the heterogeneity of people in vaue of time to some extent,
they mainly focused on how the vaue of time varies with observed characteristics, such
as income, trip purpose and travel mode (MVA consultancy et. d., 1987). Some recent
dudies have used hypothetical Stuations to obtain estimates more closdy reflecting the

vaue of time during automobile travel (Cafee and Wingon, 1998; Cdfee, Wington, and



Stempski, 2001); these are called stated preference (SP) studies. The stated preference
sudies are hampered by a doubt as to whether the behavior in hypothetica Stuations
goplies when motorits are confronted with Smilar choices in practice Vdue of
relidbility is ill a quite new topic and dmog dl the exiging dudies in this topic ae

based on stated preference data.

The three road pricing experiments in Los Angeles, San Diego, and Houston
provide us the opportunity to investigate the heterogeneity in motorists preferences in an
automobile-dominate environment. Some researchers have used the reveded preference
data from these experiments to investigate motorists choice behavior on route, time-of-
day, and mode choice. Parkany (1999) and Li (2001) used data collected in the 1997 and
1996 from Los Angeles road pricing experiment (Cdifornia Sete Route 91—i.e. SR91)
respectively to examine the determinants of SR91 toll lane use. Pakany especidly
focused on studying how travelers use traffic information to make route choice. Based on
newly collected data in November of 1999, Yan et. d. (2002) modeled travelers choices
of route, time-of-day, and mode on SR91, and different travel demand eadticities were
cdculated based on edimate results They aso edimaied SR91 commuters vaue of
time, which is in the range of $13 - $16 per hour. Lam and Smal (2001) used data
collected in the summer of 1998 on SR91 to measure travelers willingness to pay to
reduce both travel time and travel time uncertainty. Ther edimated vaue of time is
between $5 and $25 per hour, depending on different models. The most relisble model
gives the esimate of $23 per hour for vadue of time The travd time unrdiability in Lam

and Small’s research is defined as the difference between 90™ percentile and median of



the digribution of travel time. Ther best modd shows tha male would like to pay $15
per hour and femae would like to pay $32 per hour to reduce this uncertainty in travel

time

Severd researchers have modeed travel choice behavior using data from other
locations. Using data from Interstate 15 (115) road pricing experiment near San Diego,
Brownstone et. d. (2000, 2001) estimated travelers vaue of time and vaue of rdiability.
As in Lam and Small, trave-time unrelicbility is defined as the difference between 90™
percentile and median of travel time didribution. Their data shows that the vadue of time
is between $25 and $30 per hour, and vaue of rdiability is about $20 per hour. Ghosh
(2001) compared the vaue of time estimates from 115 reveded preference data with ones
from sated preference data aso on 115 users. His results show that revealed preference

data dways gives higher estimates for both vaue of time and vaue of reliability.

Among above dudies, only Ghosh (2001) investigated both the observed and
unobserved heterogeneity in values of time and of rdiability. He esimated heterogeneity
in vaues of time and of rdiability usng RP and SP data respectivdy, and found
substantial  unobserved heterogenaity in SP data Lam and Small (2001) addressed this
issue to the extent that vaues of time and of rdiability vary with income, trip distance,

and gender.

This thess is to investigate sysematicdly the heterogeneity in motorists values

of time and of time reliability, as wel as implications of the heterogenaty to road pricing



policies. It uses two survey data sets from SR91 road pricing experiment in estimation.
The fird one is a two-stage mail survey collected by Brookings Inditution including both
RP and SP surveys. The other one is a phone RP survey collected by researchers at
Cdifornia Polytechnic State Universty a San Luis Obispo (Cd  Poly). Many
econometric advances are used in this thess, and they make it possible to address the

following issues regarding the nature of motorists' preferences.

Unobserved Heterogeneity. Unobserved heterogeneity in preferences is the one
that can not be explained by observed characterigtics, and it can be captured by discrete
choice modds with random parameters. This thess uses mixed-logit specification, which
extends the stochadtic part of random utility into two parts, one capturing unobserved
heterogeneity in preferences, one with the extreme didtribution standard for logit models.

Mixed logit mode can be estimated usng Smulated Maximum Likelihood Estimation.

Revealed and Stated Preferences. Both RP and SP data have drawbacks. RP data
from road pricing experiments is often hindered by drong corrdaion among key
variables — travel time, money cog, and time rdiability. SP data overcomes this problem,
because the correation among variables is controlled by researchers. However, SP data
only represents peoples choice behavior under hypothetical settings. The doubt about
whether it can represent peoples choice behavior in redl world is reasonable. This thess
combines the advantages of these two types of data to investigate the heterogenety in

motorists preferences.



Reliability. Travd time rdiability is a criticd influence on any mode and route
choice, but it is hard to measure. In this thess, the travel time rdigbility is specified in SP
survey questions. Furthermore, this thess uses non-parametric quantile regresson on data
from actud driving conditions to develop feasble trave time rdiability measure for RP

data.

Chapter 1 of this thess is to summarize past literatures addressng above issues,
describe SR91 road pricing experiment in Los Angdes area, the survey data used in
edimation, as well as how to obtan measures of travd conditions facing survey

respondents in revealed preference data.

In Chapter 2, this thess uses the reveded preference and stated preference data
collected by Brookings Inditution, as well as the reveded preference data collected by
Cd Poly to edimate the heterogeneity in both vaue of time and vaue of rdidbility.
These data can be combined in estimation, as we will see, because they are from the same
population and were collected a the same time. Binary choice modds modding
motorists  route choice behavior—whether to take SRI1 toll lanes, are used to uncover
the didribution of ther preferences for time saving and trave time unreigbility. Both the
observed heterogeneity, which can be explained by observable individua characterigtics,
and unobserved heterogeneity, which arises from unobserved persondities, ae

investigated.



In Chapter 3, this thesis proposes a Bayesian approach of combining RP and SP
data sources to estimate the heterogeneity in peoples preferences based on probit model.
Up to now, dl studies combining RP and SP data have been based on logit modd and
classcd edimation method. The reasons are the computationd conveniences associated
with logit model and tedting difference between RP and SP choice processes using
classcd datisgic method. This chapter shows that how the recent developments in
Bayesan andlyss for multinomia probit modd can be used in combining RP and SP data
to estimate probit model capturing unobserved heterogeneity in peoples preferences, and

in testing difference between RP and SP choice processes.

Chapter 4 shows how the estimated heterogeneity in motorists preferences affects
both the efficency and political feeshbility of various congestion pricing policies The
dudies in this chapter are based on a smulation modd developed by Smal and Yan
(2000). This chepter extends Smdl and Yan's dudy in the following ways. Firg, it
evduates various proposed congestion pricing policies usng “red” heterogeneity in
travelers preferences. Second, based on estimated heterogeneity in Chapter 2, it tries to
find congedion policies which are both efficient and politicaly feesble Efficency and
politicd feadbility are in the sense that these policies generate nontrivid socid wefare
gan on the one hand, and introduce tolerable direct loss in consumer surplus as well as
diminate didribution disparities among people with different preferences on the other

hand.



CHAPTER 1
Literature Review, Description of California State Route 91 (SR91)

Road Pricing Experiment, and Data Used in Estimation

1.1: Literature Review

The literature review can be divided into three parts, literature on modeling
peoples’ heterogeneity, literature on combining different sources of datain discrete

choice modding, and literature on measuring travel time rdiability on highway.

1.1.1: Literature on modeling heter ogeneity in preferences

For most applications to measure consumers heterogeneity, the detais limited
and provideslittle individud-level information. For example, in travel demand modeling,
it is much harder to observe one individud’ s choices over along time period than to
observe multiple individuals choicesin ashort timerange. As aresult, the fixed-effects
method to modd heterogeneity is amost impossible, because it requires large Sze on
individua level observations. Literature on modeling heterogeneity in preferences mostly
relies on random:effects discrete-choice model devel oped by Heckman (1981), in which
individud level parameters are viewed as stochastic, and their digtributions may be
conditiona on individud characterigtics. The part of distributions explained by observed
individua characterigticsis caled observed heterogeneity in preferences, and the

remaining pure random part is caled unobserved heterogeneity in preferences.

10



Researchers have devel oped discrete choice models with random parameters
based on both logit and probit modd to investigate varied nature in consumers
preferences. The logit model with random coefficients or random componentsis dso
caled mixed logit (as described by McFadden and Train (2001)). Procedures for
estimating discrete choice models with random parameters have been developed in both
classcd and Bayesian framework. The classica method is based on Simulated Maximum
Likelihood Egtimation (SVILE) developed by Lee (1992), and Hgjivassiliou and Ruud
(1994). Revet and Train (1998) began to employ SMLE for mixed-logit modd. SMLE
can be aso used on multinomia probit model with random parameters based on GHK
probit smulator developed by Geweke (1989), Hgjivassiliou (1990) and Kean (1990).
The Bayesian gpproach for estimating multinomia probit mode has been developed by
Albert and Chib (1993), McCulloch and Ross (1994), Allenby and Ross (1998), and
McCulloch, Polson, and Ross (2000). Their method can be easily extended to estimate

multinomid probit models with random parameters by Hierarchicd Bayesan andyss.

Based on developed estimation method for the mixed-logit modd, Revelt and
Train (1998) modeled households' choices of gppliance efficiency level. Brownstone and
Train (1999) forecast new product penetration with flexible subgtitution patterns. Bhat
(2000) estimated both the observed and unobserved diversity in preferencesin urban

work travel mode choice moddling.

11



Based on Hierarchicd Bayesan Andyss, Aindie and Ross (1998) investigeted
amilaritiesin choice behavior across product categories. Allenby and Ross (1999)

measured the heterogeneity in consumers' brand choice.

1.1.2: Literature on Combining Different Sources of Data in Discrete Choice

Modeling

Traditionaly, empirical sudies on individud’s choice behavior rely on datafrom
peoples actual choice behavior, i.e., reveded preference data (RP). However, as
Hensher(1999) summarized, there are compelling reasons to use data from peoples
choices under hypothetical settings, i.e., stated preference data (SP). For example,
forecasting demand for new products with attributes unobserved in real market must use
sated preference data. In travel demand modeling, the key variables, such as money cogt,
trave time, and trave time reliability, in revealed preference data are likely to be highly
correlated, which leads to identification problem in estimation. SP data, in which the
correlaion between variables can be well contralled, is necessary in this case. Themain
drawback of SP datais that it can not overcome the doubt that the behavior exhibited in

hypothetical Stuations may not apply to red choices.

Ben-Akivaand Morikawa (1991) proposed an estimation method combining RP
and SP. data from the same respondents to estimate multinomid logit modd. This
methodology can improve the efficiency in estimation, correct the possible biasin SP

responses, and identify individua-level parametersthat can hardly be identified from RP

12



data only. The basic idea of this methodology is to assume that some parameters can be
combined to be the same across RP and SP data, and control for the difference in the two
data generating processes at the same time. The differencesin RP and SP data generating
processes are represented by letting some parameters be different across RP and SP data,
and assuming that the error termsin RP and SP random utility functions have different
variances, dthough they are till independent Gumbd digtributions. In estimetion, the
variance of SP error isre-scaled by a scae parameter to be the same as the variance of RP
error. Since the variances themselves are not identified in discrete choice models, the
variance of RP error is normaized and the scale parameter, dong with other parameters

representing peoples preferences, are estimated.

The edtimation methods for joint RP and SP multinomid logit modd include
smultaneous estimation devel oped by Bernt Akiva and Morikawa (1991), Hensher and
Bradley (1993), and Bhat (1995), and sequentia estimation developed by Swait and
Louviere (1993). Morikawa (1994), and Bhat and Castelar (2002) aso discussed
incorporating and estimating the correlation between RP and SP observations from one

individud in joint RP/SP moddling.

The methodology of combing RP and SP data can be used to combine, compare,
and test process differencesin sources of data, not only for RP and SP data, but also for
RP and RP, aswell as SP and SP data. The null hypothesis that parameters representing

preferences are the same across data sources can be tested by likelihood-ratio test, as

13



proposed by Swait and Louviere (1993); Louviere, 1993; Bradley and Daly, 1994; Swait

and Adamowicz (1997).

In practice, Adamowicz, Louviere, and Williams (1994) combined RP with SP
data to study how people vaue environmenta amenities. Brownstone, Bunch, and Train

(2000) combined RP and SP to modd consumers choices for dternative-fud vehides.

1.1.3: Literatureon Measuring Travel Time Rdiability on Highway

The meaaures of travd time religbility here mean the measures for day-to-day
variability of trave time. They are hard to get in most empirica studies, most of which
have to rely on sated preference data to sudy the effects of travel time rdiability on
travelers choice behavior. The new technology advancements make it possible to use
data from red traffic conditions to congtruct measures for travel time reiability
nowadays. Traffic data from loop-detectors embedded in highways provides useful
information on travel time rdiability. Kazimi et d. (2000), Lam (2000), and Ghosh
(2001) both used loop detector data covering their research corridors within two months
to estimate the sample percentiles of travel time on the roads. Different measures for
trave time reliability can be condructed either usng variance of trave time or using the
distance between upper percentiles and the median. In their travel choice models, the
difference between 90 percentile and median of travel time works well as measure of
travel time reliability. However, as Brownstone et. d. (2000) pointed out, |oop-detector

dataislikely to give inaccurate estimates for actual travel time on roads. To correct the
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measurement error in loop detector data, they aso collected floating-car data, which was
collected by driving cars aong the corridor for many times over 5 days and is thought as
the most accurate measure for travel time. The limited Sze floating card data was then
used to congtruct an imputation model, in which the relaionship between floating car

data and loop detector data was estimated. The floating car data outside the five-day
period was predicted based on the imputation model, and measures of travel time

reliability were then constructed using predicted floating car data.

Cohen and Southworth (1999) proposed another procedure of measuring travel
timerdiability. They first constructed a mode based on queue theory representing the
delays due to highway incidents, which are main factors of causing travd time
uncertainty. Thereal incident data from highways was used to fit their model based on a
microamulation modd. In ther fina results, both the mean and variance of travel time
can be expressed as the functions of volume to capacity ratio, and the specific functiona

forms depend on designed capacity of hiways.

1.2: Empirical Setting

Thisthessinvedtigates the heterogeneity in motorists preferences for travel time

and travel time rdiability based on Cdifornia State Route 91 (SR91) road pricing

experiment in Los Angdles area.

1.2.1: Brief Description of SR91 Road Pricing Experiment
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SR91 connects rapidly growing resdentid areasin Riversde and San Bernadino
Counties to job centers in Orange and Los Angeles Counties. It had been one of the most
heavily congested freeway corridors of Caifornia. In December 1995, four new toll lanes
opened in the median of the exigting facility (16 kilometersin length), built and operated
by aprivate company. This resultsin two toll lanes (called the 91 Express Lanes) and
four free lanes in each direction. To use the Express Lanes, avehicle must have a
transponder to pay tolls dectronicaly. Tolls vary over time based on a preset toll
schedule and they are set by the private company to maximize its profit subject to a
maximum rate- of-return congtraint. V ehicles with three or more occupants pay only half
the published toll. Table 1 and Table 2 show the toll schedulesin 1999 and summer of
2000, which is the time periods covered by this thes's, on Westbound of SR91 (for
morning commuters) over morning peak period because this thesis focuses on morning
work trips. As showed, the toll schedules are amost the same across day's except for

some time dots on Monday and Friday

Table 1. Toll Schedule on Westbound in 1999

Monday Tuesday Wednesday Thursday Friday
4-5am $1.65
5-6 am $2.90
6-7 am $3.00 $2.90
7-8 am $3.25
8-9am $3.00 $2.90
9-10 am $1.95
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Table 2. Tall Schedule on Westbound in Summer of 2000

Monday Tuesday Wednesday Thursday Friday
4-5am $1.65
5-6 am $2.90
6-7 am $3.00 $2.90
7-8 am $3.30 $3.00
8-9am $3.10 $3.00 $2.90
9-10 am $2.25

1.2.2: Survey Data

Thisthess employs two survey data setsin andyss. Thefirst oneisateephone
RP survey composed of SR91 commuters obtained by random-digit diding and observed
license plates on the SRI1 corridor. The survey was conducted in November of 1999 by
researchers at Cdifornia Polytechnic State University at San Luis Obispo. The
respondents in this survey were asked about their most recent trip on aMonday through
Thursday during the morning pesak (4-10 am). These questions concern route choice (91
express lanes and free lanes), time of commute, trip distance, vehicle occupancy. The
respondents were also asked to provide various persona and household characterigtics, as
well aswhether they have flexible work arriva time. In latter analys's, this datais called

as Cd Poly data and the sample size of this data is 438 respondents.
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The second sample is a two-dage survey collected by Brookings Ingitution
(Brookings), including both RP and SP dements. For Brookings sample, a market research
firm, Allison-Fisher, Inc, conducted the survey using members of two nationwide
household pands, Nationa Family Opinions and Market Facts. An advantage of this setup
is that background information was dready on file from these pands, so our questionnaires
could be briefer and avoid sengtive questions like income.  Firg, the firm sent a screener
survey to identify people who used the road in question for its full length, so that they would
have the option of usng ether route. Those respondents who answered positively were then
sent a questionnaire which asked them to report on ther daily commute for an entire week,
on which they provided the same information as described in Cd Poly data By asking
about their choice on up to five weekdays, we create the opportunity to investigate whether
commuters ater their route choices from day to day depending on travel conditions and their

schedules.

People who returned the RP survey were dso given a dtated preference (SP)
survey in which they were presented with eight hypotheticd commuting “packages’ that
included the toll, trave time, and trave-time rdiability of a trip both on the express lane
and the free lane. In each case they were asked to indicate which lane they would
choose. Figure 1 shows an illudraive scenario and totaly there are eight hypothetica
commuting scenarios. Respondents who indicated that ther actua commute was less
(more) than 45 minutes were given scenarios that involved trips ranging fom 20-40 (50-

70) minutes.
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FreeLanes ExpressLanes
Usud Trave Time Usud Trave Time
25 minutes 15 minutes
Tal: Tal:
None $3.75
Frequency of Unexpected Delays Frequency of Unexpected Delays
of 10 minutes or more: of 10 minutes or more:
ldayin5 ldayin20
Your Choice (check one):
Free Lanes D Tall Lanes D

Figure 1. lllustrative Scenario of Brookings SP Survey

It turned out that many people who said they had a lane choice did not, and some
others failed to complete the survey. Thus the survey had to be conducted three waves of
potential respondents--in December 1999, July 2000, and September 2000--to assemble an
adequate sample. The find Brookings sample conssts of 89 respondents providing 385
daily observations dout actuad behavior (RP), and 74 respondents providing 577 separate
observations about hypothetical behavior (SP). The subsamples of 89 RP and 74 SP

respondents include 52 people in common who answered both surveys.

Table 3 shows the summary datistics of these survey samples. Vaues for the
Brookings data are broadly consstent with population summary datitics, indicating that we

have a representative sample’ The median household income (assigning midpoints to the

! The distributions of the RP sample's commuting times and route share are close to the onesin 1998
survey data collected by University of Caiforniaat Irvine (Lam and Small (2001)) and 1999 survey data
collected by California Polytechnic State University at San Luis Obispo (Sullivan et a. (2001)). The
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income intervas) is $46,250. We etimate the average wage rate to be about $23 per
hour? The Brookings sample contains information for multiple days and indicates that
inertia is a powerful force in route choice behavior because 87 percent of the RP
respondents made the same choice every day during the survey week. In fact, about haf of
the Brookings RP respondents do not have a transponder and thus have committed to not

choosing the express lanes on any of our survey days.

The Cd Poly sampl€'s route shares, commuting patterns, respondents age and
s, ahd 0 on are closdy digned with the Brookings sample.  Respondents in the Cd
Poly sample do have higher household incomes and shorter trip distances than the
Brookings respondents, apparently the Brookings sample drew from a wider gographica

areaincluding people who reside in lower-priced housing.

socioeconomic data are consistent with Census information, and diverge where appropriate. For example,
our median income (approximately $46,250) is higher than the averageincomein the two counties where
our respondents lived ($36,189 in Riverside County and $39,729 in San Bernardino County in 1995, as
estimated by the Population Research Unit of the California Department of Finance). But this should be
expected because our sample only includes people who are employed and commute to work by car. The
median number of people per household (which can be expected to be stable acrosstime) is2.81 and 3.47
inour RP and SP subsamples respectively; these are not far from the 1990 Census figures of 2.85 for
Riverside County and 3.15 for San Bernardino County.

2 Data from the US Bureau of Labor Statistics (BLS) for the year 2000 record the mean hourly wage rate by
occupation for residents of Riverside and San Bernardino Counties. We combine the BL S occupational
categoriesinto six groups that match our survey question about occupation, then assign to each personin
our sample the average BL S wage rate for the appropriate occupational group. We then add 10 percent to
reflect the higher wages likely to be attracting these people to jobs that are relatively far away.
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Table 3. Descriptive Statistics of Survey Samples

Value or Fraction of Sample

Cd Poly-RP Brookings-RP Brookings-SP

Route Share:

91X 0.26 0.25

91F 0.74 0.75
One-Week Trip Pattern:

Never Use 91X 0.68

Sometimes Use 91X 0.13

Always Use 91X 0.19
Percent of Tripsin Each Time Period:

4:00am-5:00am 0.11 0.15

5:00am-6:00am 0.22 0.13

6:00am-7:00am 0.23 0.26

7:00am-8:00am 0.20 0.21

8:00am-9:00am 0.14 0.15

9:00am-10:00am 0.10 0.10
Age of Respondents:

<30 0.11 0.12

30-50 0.62 0.62

>50 0.27 0.26
Sex of Respondents:

Mde 0.68 0.63

Femde 0.32 0.37
Household Income ($):

<40,000 0.14 0.23

40,000-60,000 0.24 0.60

60,000-100,000 0.40 0.15

>100,000 0.22 0.02
Hexible Arrivd Time:

Yes 0.40 0.55

No 0.60 0.45
Trip Digance (Miles):

Mean 34.23 44.76

Standard Deviation 14.19 28.40
Number of People in Household:

Mean 3.53 291

Standard Deviation 151 1.63
Number of Respondents 438 89
Number of Observations 438 385

0.10
0.64
0.26

0.63
0.37

0.24
0.59
0.13
0.04

0.50
0.50

42.56
26.85

3.44
1.55

81
633
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1.2.3: Egtimating Travel Time and Reliability for RP Sample

To egimate the demand modes using reveded preference (RP) data, we need the
most accurate possible measures of the travel time and rdiability faced by each traveler in
our survey, for either route. These differ greetly, of course, by time of day. They may differ
by day of the week as well, but that variaion is smaler and would require extensive data
collection to measure accuratdy, 0 it is not considered here. Our task is smplified by te
findings of Sullivan e d. (2000), confirmed by our own observations, that trave time is

essentidly constant on the Express Lanes.

This thess is to use actud fidd messurements of trave times taken a many
different times of day over the Sx-hour morning period covered by survey data. Our Strategy
furthermore assumes that for any given time of day (such as 7:42 am.), the travd times
observed are random draws from a digtribution which is known to travelers through their
past experience. By assuming that traveers decisons depend on "travel time' and
"rdiability”, what we mean is that travders pay attention to the centrd tendency of this
digtribution and its disperson. For centrd tendency, a plausible measure is ether the mean
or the median; the mean is most congstent with prior sudies on vadue of time. For
dispersion, there are a number of plausible measures; two that have been used in past studies
are (a) the standard deviation and (b) the difference between the 90 and 50" percentiles.
The latter difference is gppropriate if what concerns travelers the most about reliability is the

potential for occasond sgnificant delays, meaning they care more about the right-hand side
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of the didribution then its left-hand dde; since the didribution turns out to be highly

assymetric, thisseems a priori a better variable than the sandard deviation.

The importance of rdiability to the travder depends criticdly on information.
Noland and Smdl (1995) show that the dependence of utility on eiability can be derived
from a more primitive formulation in which the travder optimizes departure time in order
to minimize the expected cods of travel and schedule mismaiches. The more information
the travdler has before choosing the departure time, the smdler the resulting expected
costs. Furthermore, empirica estimates by Noland et ad. (1998) suggest that these
scheduling condderations account for virtudly dl the observed impact of rdiability on
choice. Thus if the traveler could learn the exact travel time early enough to reoptimize
departure time accordingly, rdiability would have little effect; however, empiricd

evidence suggests that in most Stuations travelers are far from having this capatility.

On the fadility in quedtion, there is no sgn before the express lane entrance with
traffic information. Previous surveys described by Parkany (1999) suggest that whatever
information travelers have about conditions that day is mosily acquired en route through
radio reports, and thus has limited value to them. Furthermore, based on our experience
in fidld measurements, congestion on the 10-mile trip is only weskly corrdated with
congestion encountered before the entrance of toll lanes. Rather, unexpected ddays on
the free lanes often occur within a one-mile segment just before the end of the tall lanes,
due to a busy entrance there and a lot of lane changing just upstream of a mgor freeway

intersection.
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We therefore assume that travders have no informetion, other than the
digribution of travel times across days, about the travel time on a given day. To the
extent this assumption is wrong, we will tend to overestimate VOR and underestimate
VoT because some traveers who we think are deterred by unrdiability may actudly be

deterred by the travel timeitsdf, which unbeknown to us they can observe or estimate.

Our fidd measurements condst of floaing-car data, collected by driving dong the

road with a stopwatch and clipboard.

We noticed that there was no congestion on the express lanes d any time during
the ten days when data were collected by us. We therefore gpproximate the travel time
on the express lanes a dl times by the trave time we observe on the free lanes when
there is no congestion (for example, a 4:.00 am). For the location covered by our
measurements, this travel time is 8 minutes, corresponding to a speed of 75 miles per

hour.

Floating-car data measuring travel times on the free lanes were collected on
eleven days. The first day's measurements were collected by the California Department of
Trangportation (Caltrans) on October 28, 1999. The other measurements were collected
by uson duly 10-14 and Sept. 18-22, 2000, which are exactly the time periods covered by

two later waves of the Brookings survey.
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Data were collected from 4:00 am to 10:00 am on each day, for a tota of 210
observations y; of the trave-time savings from usng the express lanes a times of day
denoted by x;, i=1,...210. Our objective is to estimate the mean and quantiles of the
distribution (across dys) of travel time y conditiond on time of day x. To do so, we use
non-parametric methods of the class of locally weighted regressions. In these methods, the
range of the independent variables (in our case, just one variable) is divided arbitrarily into a
grid, and a separate regression is estimated at each point of the grid. In our case, there is just
one variable, x. For given X, the regresson makes use only of observations with x; near X,
the importance of each being weighted in a manner that declines with [xi-x|. The weights are
based on a kernd function K(- ), and how rapidly they decline is controlled by a bandwidth

parameter h; typicaly only observations within one bandwidth of x get any postive weight.

The specific form of localy weighted regresson we use is known as local linear fit.
For each value of X, it edimaes alinear function y; = a + b(xj-X) + €; intheregion [x-h, x+h]
by minimizing aloss function of the deviations between observed and predicted y.

Denote the p-th quantile vaue of y, given X, by gp(x). Its estimator is then:

N

ap09=argmin, & g,ly,- a- bl X Ko - ) @

where gp(t) is the loss function. Similarly, denoting the mean of y given x by m(x), its

edimate is given by the same formula but with subscript p replaced by m.
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In the case of mean trave-time savings, we use a smple squared-error loss function,
g,,(t) =t2, in which case equation (1.1) becomes the local linear least square regression.

In the case of percentiles of trave-time savings, including the median, we follow Koenker
and Basst's (1978) suggestion and use the following loss function, which is asymmetric

except for the median (p=0.5):

g,(t)={t|+ (2p- 1t}/2 (1.2)

With this loss function, equetion (1.1) defines the local linear quantile regression (Yu and
Jones, 1997). It can be shown that the estimated percentile values converge in probability to
the actua percentile vaues as the number of observations n grows larger, provided the
bandwidth h is dlowed to shrink to zero in such a way that nh® ¥ . In the case of the
median (p=0.5), this is a least-absolute-deviation loss function, and therefore the estimator

can be thought of as a non-parametric least-absol ute-deviation estimator.

The choice of kernd function has no sgnificant effect on our results We use the

biweight kernd function, which has the following fornt

K(u)==0- u2f, juel (13)

andis zero for |uj>1.

26



The choice of bandwidth, however, is important. We firg tried the bandwidth

proposed by Silverman (1985):
— o0&l d 00 _os
h =0.9¢min; std(x),——y n (1.4)
AN

where dis the difference between the 75" and 25" percentile of x. This bandwidth turns
out to be about 0.5 hour for our deta. However, there is rather extreme variation in our
data a particular times of day, especidly around 6:00 am., due to accidents that occurred
on two days around tha time. While these accidents are part of the genuine history and
we want to include ther effects, they produce an unlikedy time peattern for reiability
when used with the bandwidth defined by equation (1.4) -- namely, one with a sharp but
narrow pesk in the higher percentiles around 5:30 am., followed by the expected broader
peak centered around 7:30 am. We therefore increased the bandwidth to 0.8 hour in

order smooth out thisfirst pesk.

The esimate results are shown in Figures 2 and 3. Figure 2 shows the raw field
observations of travel-time savings. The nonparametric estimates of mean, median, and
80" percentile are superimposed. Median time savings reach a pesk of 5.6 minutes

around 7:15 am.

Figure 3 shows the same raw observations after subtracting our non-parametric
edimae of median time savings by time of day. An interesting pattern emerges. Up to

7:30 am., the scatter of points is reasonably symmetric around zero with the exception of
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three data points But after that time the scater becomes highly asymmetric, with
disperdon in the podtive range (the upper hdf of the figure) continuing to increase until
after 8:00 am. while disperson in the negative range decreases. This feature is reflected
in the three measures of disperson, or unrdiability, that are dso shown in the figure the
standard deviation and the 80"-50 and 90'"-50'" percentile differences. The standard
deviation peaks a roughly 7:45 am., the other two between 8:15 and 9:30. The reason
for these differences is that traffic in the later pat of the peek is affected by incidents
occurring ether then or earlier. This modly affects the upper tals of the digtribution of
travel-time savings and s0 is most gpparent in the percentile differences. The standard
devidion, by contrast, is higher early in the rush hour because of days with little
congestion—showing up as negative points in Figure 2. Such digperson is probably less
relevant to travelers than digperson in the upper tails, leading us to prefer the percentile
differences as reliability measures. These measures are dso condderably less corrdated
with median travel time than is the sandard deviation. In our estimetions, we obtained

the best statistical fits using the 80™"-50™" percentile difference®

3 In our RP and joint RP/SP models, the 90"-50" percentile difference fit almost aswell as the 80™"-50"
difference (in terms of log-likelihood) and resulted in similar coefficient estimates. The 75"-50" percentile
difference, an additional measure, and the standard deviation fit noticeably lesswell and gave statistically
insignificant results for the reliability measure.
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CHAPTER 2
Uncovering the Distribution of Motorists Preferencesfor Travel Timeand Time

Reliability

All empirical reaults in this thess are based on discrete choice models, which can
be derived from a conditiond indirect utility function (which may represent expected
utility after optimizing over choice of time of day to dart the trip) for user i consdering

option j. Thisfunction is of the generd form:

U, = bxij +g;

where b is a coefficient vector, xj; is a vector of independent variables (which may
incdude dternative-specific condtants and user characterisics interacted with  travel
characterigtics), and e;j is a random term. Assuming that some messures of cost c, time t,
and rdiability r ae included among the variables, the two measures for motorists
preferences for travd time and time rdiability, vdue of time (VoT) and vdue of

reliability (VoR ) are defined as

In the models of thisthesis, these quantities are independent of the aternative labd, j.
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2.1: Results from Brookings Data

Brookings data includes one RP data, which records respondents actua choice

behavior up to 5 working days, and one SP data, which records respondents choice

behavior up to 8 hypothetical Stuations. We first modd the RP data.

2.1.1: Revealed Preference Estimates

Table 4 defines the independent variables used.

Table 4. Definitions of Independent Variablesin Brookings RP models

Generic Variables
(al conditiond on time of day)

MedTime | Median trave timein minutes

Cost : Posted toll for a solo vehicle in dollars, divided by 2 if car occupancy
' is3 or more

Dmp80  Unrdidbility of travd time on free lanes, given as the difference

between the median and 80% percentile time

Traveler and Trip
Characteristics :

Income + Annua per capita income in thousands of dollars, celculated as mid-
+ point of the household-income interval divided by household size

Dig i Digtance from origin to destination, in 10 miles

Fage | 1if female with age between 35 and 60, O otherwise

Dflex I 1if with flexible arrivd time, O otherwise

Brookings RP data records respondents route choice over up to 5 days. We begin
with dmple binary logit modds on the entire sample of observations induding
obsarvations on the same person on different days but ignoring the corrdaion among
them. These models are caled as trip-based. The dependent variable is Smply whether

the person chose the toll road on that day. Robinson (1982) shows for the case of probit

32



that the maximum likeihood edimate of such a modd is congdent, though inefficient.
Although we use logit here, we find using probit instead makes little difference® We
account for the corrdaion among multiple observaions of a sngle individud by

adopting arobust estimator for the standard errors of our estimates.

Let L(B) be the likdihood function obtaned on the assumption tha dl

observations are independent. Because B is condstent esimate of B, by delta method®,

we have

A\ &PInLO ae1|n|_oaq12|n|_o
A (B) gﬂBﬂB% ﬂB éﬂBﬂB%

2.1)

The middle factor on the right-hand dde, variance of the gradient, is estimated
empiricaly which makes equation (2.1) a “sandwich estimator’(Greene, 2000, pp. 490-

491). Consdering the panel structure of our data set, we have

finL ¢ ‘ﬂlnL "C oey finL 0 e
1o . (2.2)
1B ‘31 1B ?é B 5 2191

4 As a check on the influence of error correlation on our results, we also estimated pure cross-section
models by randomly drawing one day's observation per person. Some efficiency is lost by doing this, but
not too much because most respondents made the same choice each day. The processis repeated 500 times
and averaged the coefficient estimates. The estimated parameters from this method were smaller in
magnitude but had very similar ratios compared with the those from models on entire sample of
observations, indicating that there is more random variation in utility across people than across
observations for the same person. These results are not reported here.

InLg INLO  (~e°InLO
® Because, by deltamethod, we know Var(;:aéT 2 il — a(B%i
ﬂB @ ﬂBﬂB‘Fg 1BYBC¢g
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where NG is the tota number of respondents n;is the number of observations

NG
from jthrespondent, and N ° é_ n;is the totd number of observations. Because choice

j=1
behavior is independent among respondents, equation (2.2) means that we represent the

gradient of loglikeihood as the sum of NG independently and identically distributed

(iid) random variables. The sample mean of these NG random variables is zero because

of the condition for maximizing L.

A good empiricd edimator for the variance of the sum of NGiid random

variables g averaging to zero issmply the NG times the sample standard error,

6_ NG I
2.3
2= G- 1agg, (2.3

varga g,=

The robust estimator is then smply equation (2.1) with (2.3) used to cadculate the

middle factor on the right-hand side.

An dternative way to model RP data is to take multiple days observations of a
respondent as only one observation (the explanatory variables are averaged over days),
and creste a dependent varidble describing the frequency of usng toll lanes. These
modedls are caled as person-based. One advantage of a person-based modd is that it
captures the fact that the traveler’s decison to get a trangponder is not made daily, and

thus presumably is based on some averages of time savings and money cods over a long



time period. Another advantage is that persontbased RP models are easier to combine
later with SP models because their corrdation sructure is smpler. For person-based
modes, we eiminate respondents who have a transponder but who travel less than three

daysin our data, because defining a frequency for them involves too much error.

The possble interval [0,1] for the frequency of choosing the express lanes is
divided into two or more intervas j. For each individud | in our sample, let y; be the

choice variable, indicating which frequency category is observed. We can assume the

following choice process:

y, =] if k; , £ BX;, +€ <Kk (2.4
where the K's are threshold parameters to be etimated aong with utility coefficientsB .
If e has an extreme vaue digribution, the probability of individua i choosing category

jis

P. = 1 - :
! 1+exp(- Kj + Bxil) 1+eXF(- Kja BX”)

(2.5)

In generd, this is the ordered logit moddl; when there are only two categories, it reduces

to the smple binary logit modd.
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We firg specify the following two types of ordered-logit models based on
different ways of categorizing the intervad [0,1]. In the fird type there are three
caegories “never uxe toll lanes’, “sometimes usng toll lanes’ and “dways usng tall
lanes’. In the second type, there are four categories, with the open intervad (0,1) divided

into (0,0.5) and [0.5, 1); that is, we use the frequency of 50% as an additiond cut point.

For each type, we test whether some frequency categories can be combined. For
type 1, we test whether the categories "sometimes' and "dways' can be combined. For
type 2, we test whether the four categories can be combined into two, “less than 0.5 and
“greater than or equa to 0.5°. The test is that devised by Vuong (1989) for non-nested
models® In order to use Vuong's tes, it is necessary to adjust the dependent variable of
one modd to the same definition as the other one. For example, when tesing the
competing models for type 1, we compute both likelihoods as the sum of probabilities of

choodng "never” versus choosng "sometimes or dways'.

For both types, the results of Vuong's test accept the null hypothesis that these
competing models are equivdent. In other words, we cannot rgect any of the four
specifications in favor of a different one. However, for type 1 modd, we prefer the 3-

category specification (the firs one) considering the fact that about 13% of our sample

6 Vuong shows that the likelihood ratio of two non-nested models, f and g, has limiting distribution of

N (0,nW2) under the null hypothesis that these two models are equivalent, where n is the number of
observations and w is estimated consistently by:

2
€18  af @
——a élogg—— é-d |09g—$u
i-1 @ en =1 9 a
where f;,0; are densities at observation i of two models respectively.
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(11 respondents) chose the category of “sometimes’ and we hate to lose that information.
For type 2 mode, we prefer the 2-category specification (the second one) because the
other specification contains a rare case — only 5% of the sample (4 respondents) chose the

frequency intervd [0.5,1).

The edimated RP results are shown in Tables 5, 6, and 7. Table 5 shows the
results of trip-based modds (binary logit); Table 6 shows the results of person-based
modedls with three choice categories (ordered logit), and Table 7 shows the results of

person-based models with two choice categories (binary logit).

We found through experimentation that disance has a drong effect on the time
coefficient (hence on VoT), but it is a nonlinear one and seems best captured by a cubic
form with no intercept (i.e, "MedTime" is not entered by itsdf). In fact, as we show for a
subsequent table, the relationship between VoT and distance is concave throughout the
range of most of our data, and declines with distance for most of the sample. Following
conventional specifications we dso alowed VoT and VoR to depend on income (modes
2 and 4), which they arguably do but in fact the modes with income entered smply as a

taste-shifter for expresslanes (Modds 1 and 3) fit dightly better

Given reaults from earlier sudies such as Lam and Smdl (2001), we were

aurprised to find little clear-cut effect of gender on choice of express lanes. The strongest

effect we found, which is shown in Modds 3 and 4, is based on the hypothesis that
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women aged 35-60, who are rdativey likdy to have children living a home, place a

higher vdue on thar time.
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Tableb5. Trip-Based Models

Variables Modd 1 Mode 2 Mode 3 Modd 4
Congtant -0.9843 (1.1696) | 0.0541 (0.0059) | -1.5371(1.2483) | -0.6674 (1.2268)
Cost -1.6741 (0.6606) | -2.0409 (0.6975) | -1.2578 (0.6835) | -1.5592 (0.7066)
Cost * Income 0.0154 (0.0059) 0.0132 (0.0056)
Fage* MedTime -0.3515 (0.1935) | -0.3588 (0.1948)
Dig * MedTime | -0.4140 (0.1314) | -0.4226 (0.1320) | -0.2935 (0.1420) | -0.2983 (0.1419)
Dig“ * MedTime | 0.0827 (0.0218) | 0.0838 (0.0220) | 0.0631 (0.0219) | 0.0636 (0.0219)
Dis * MedTime | -0.0036 (0.0009) | -0.0037 (0.0009) | -0.0028 (0.0009) | -0.0028 (0.0009)
Dmp80 -0.8442 (0.3178) | -0.8238 (0.3144) | -0.6047 (0.3261) | -0.5890 (0.3211)
Income 0.0455 (0.0163) 0.0397 (0.0157)

Dflex 0.9384 (0.5412) | 0.9551 (0.5349) | 1.2218(0.6428) | 1.2390 (0.6378)
#of Obs. 385 385 385 385

# of Perosns 89 89 89 89
Log-likelihood -174.16 -175.90 -167.76 -169.24

Pseudo R 0.1945 0.1865 0.2241 0.2173

VoT:

Estimated Mean in Sample

95%-ile $29.79/hr $33.95/hr $44.91/hr $56.26/hr
50%-ile $16.71/hr $17.63/hr $17.80/hr $18.84/hr

5%-ile $3.99/hr $3.21/hr $-10.36/hr $-21.83/hr
Estimated SD Due to Observed Heterogeneity in Sample

95%-ile $33.28/hr $131.46/hr $123.30/hr $634.51/hr
50%-ile $11.16/hr $13.43/hr $16.04/hr $18.86/hr

5%-ile $5.65/hr $7.00/hr $6.43/hr $7.10/hr

VOR:

Estimated Mean in Sample

95%-ile $68.82/hr $71.56/hr $94.98/hr $85.43/hr
50%-ile $29.93/hr $29.65/hr $28.31/hr $26.93/hr

5%-ile $13.38/hr $11.15/hr $1.41/hr $-6.09/hr
Estimated SD Due to Observed Heter ogeneity in Sample

95%-ile $O/hr $162.68/hr $O/hr $531.79/hr
50%-ile $O/hr $4.46/nr $O/hr $5.24/nr

5%-ile $O/hr $1.09/hr $0/hr $0.81/hr

Note: Numbersin parentheses are robust standard errors.
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Table 6. Person-Based M odels (never, sometimes, or always)

Variables Modd 1 Mode 2 Mode 3 Modd 4

Cost -1.9240 (0.8985) | -2.1951 (0.9124) | -1.4296 (0.9413) | -1.6585 (0.9519)
Cost * Income 0.0128 (0.0063) 0.0111 (0.0063)
Fage* MedTime -0.4116 (0.1962) | -0.4175 (0.1964)
Dig* MedTime | -0.4176 (0.1654) | -0.4227 (0.1654) | -0.2841 (0.1751) | -0.2865 (0.1749)
Dis” * MedTime | 0.0851 (0.0309) | 0.0858 (0.0309) | 0.0633 (0.0324) | 0.0636 (0.0324)
Dis” * MedTime | -0.0037 (0.0013) | -0.0038 (0.013) -0.0028 (0.0014) | -0.0028 (0.0014)
Dmp80 -0.8175 (0.4196) | -0.8045 (0.4163) | -0.5171 (0.4501) | -0.5064 (0.4459)
Income 0.0380 (0.0174) 0.0334 (0.0177)

Dflex 1.0251 (0.5706) | 1.0288 (0.5687) | 1.3477 (0.6406) | 1.3551 (0.6395)
thresholdl 0.3464 (1.4547) | -1.1253(1.4292) | 0.3929 (1.5375) | -0.2748 (1.5097)
threshold2 0.5107 (1.4562) | -0.2758 (1.4237) | 1.3045 (1.5504) | 0.6300 (1.5157)
Summary Satistics

#of Obs. 84 84 84 84
Log-likelihood -61.25 -61.56 -58.95 -59.20

Pseudo R 0.1373 0.1329 0.1697 0.1662

VoT:

Estimated Mean in Sample

95%-ile $28.26/hr $29.24/hr $41.92/hr $63.30/hr
50%-ile $15.59/hr $16.03/hr $16.10/hr $16.80/hr

5%-ile $0.02/hr $0.29/hr $-17.53/hr $-21.75/hr
Estimated SD Due to Observed Heterogeneity in Sample

95%-ile $70.57/hr $112.66/hr $194.95/hr $740.26/hr
50%-ile $14.01/hr $15.62/hr $21.88/hr $23.04/hr

5%-ile $6.18/hr $6.50/hr $7.88/hr $8.05/hr

VOR:

Estimated Mean in Sample

95%-ile $62.40/hr $54.48/hr $68.87/hr $67.33/hr
50%-ile $24.67/hr $25.11/hr $20.57/hr $20.72/hr

5%-ile $7.58/hr $6.30/hr $-26.46/hr $-24.80/hr
Estimated SD Due to Observed Heter ogeneity in Sample

95%-ile 0 $49.39/hr 0 $305.34/hr
50%-ile 0 $2.46/hr 0 $2.44/hr

5%-ile 0 $0.33/hr 0 $0.19/hr

Notes: 1. Numbersin parentheses are standard errors.
2. Independent variables of arespondent are averaged over different days.
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Table 7. Person-Based M odels (<0.5 or 3 0.5)

Variables Modd 1 Mode 2 Mode 3 Modd 4
Congtant -0.2546 (1.6169) | 0.7094 (1.5780) | -1.2284 (1.7946) | -0.4255 (1.7467)
Cost -2.1684 (1.0232) | -2.5269 (1.0477) | -1.6063 (1.1023) | -1.9064 (1.1197)
Cost * Income 0.0152 (0.0068) 0.0129 (0.0071)
Fage* Median -0.5009 (0.2403) | -0.5077 (0.2410)
Digt * Median -0.4314 (0.1858) | -0.4391 (0.1858) | -0.2714 (0.2006) | -0.2762 (0.2006)
Dig* * Median 0.0805 (0.0334) | 0.0861 (0.0334) | 0.0532(0.0355) | 0.0539 (0.0355)
Dist® * Median -0.0034 (0.0015) | -0.0035 (0.0015) | -0.0023 (0.0016) | -0.0023 (0.0016)
Dmp80 -0.9494 (0.4794) | -0.9368 (0.4745) | -0.5800 (0.5318) | -0.5770 (0.5272)
Income 0.0434 (0.0187) 0.0372 (0.0195)

Dflex 1.1756 (0.6723) | 1.1999 (0.6731) | 1.7509 (0.8493) | 1.7763 (0.8506)
Summary Statistics

#of Obs. 84 84 84 84
Log-likdihood -37.52 -37.72 -35.14 -35.29

Pseudo R 0.1863 0.1819 0.2378 0.2345

VoT:

Egtimated Mean in Sample

95%-ile $31.18/hr $34.25/hr $45.67/hr $50.22/hr
50%-ile $16.29/hr $17.38/hr $17.99/hr $18.51/hr

5%-ile $2.19/hr $1.48/hr $-11.88/hr $-36.07/hr
Estimated SD Due to Observed Heterogeneity in Sample

95%-ile $59.70/hr $155.66/hr $155.12/hr $766.16/hr
50%-ile $11.64/hr $12.29/hr $17.96/hr $20.96/hr

5%-ile $5.02/hr $5.34/hr $6.54/hr $6.71/hr

VoR:

Esimated Mean in Sample

95%-ile $59.34/hr $58.06/hr $67.02/hr $66.33/hr
50%-ile $25.88/hr $25.29/hr $21.34/hr $20.60/hr

5%-ile $8.67/hr $5.64/hr $-22.87/hr $-33.34/hr
Estimated SD Due to Observed Heterogeneity in Sample

95%-ile 0 $110.22/hr 0 $395.63/hr
50%-ile 0 $2.64/nr 0 $2.68/hr

5%-ile 0 $0.41/hr 0 $0.20/hr

Notes: 1. Numbersin parentheses are standard errors.
2. Independent variables of arespondent are averaged over different days.
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Lam and Smal (2001) dso find that dividing cost by vehicle occupancy improves
goodness of fit in ther modeds Our RP daa provide limited information on vehicle
occupancy, which is known for some respondents based on a question asked in the RP
survey. For others, some answered a question on the SP survey that provides occupancy,
but others did not. Because of our lack of certainty about occupancy, we do not use it as
in Lam and Smdl. However, we do use it to cdculate the 50% discount that applies to
carpool of three or more people, applying that discount to those respondents who tell us
the carpool with three or more in the car. We check the sability of modes to this data
problem by introducing a dummy for the uncertain observations (i.e. those people not
answering the occupancy question) and by interacting this dummy with cog; its
coefficient provides no indication that the results are influenced by these observations, so

those results are not shown here.

According to our mode specifications, VoT varies with trip disance in dl four
models and varies with income and gender/age categories in some models, VOR adso
varies with income in some models. Thus there is heterogeneity in VoT and VoR due to
obsarvable varidbles. This heterogenety is of great interest, so we want to characterize
the results in terms of not only the mean but dso the standard deviation (SD) of VoT or
of VoR across our sample. We do this by computing the quantities labeled "Estimated

Mean in the Sample" and "Estimated SD Due to Observed Heterogeneity in the Sample.”

Each of these quantities is subject to Satigticd uncertainty, which we characterize

by gving the median, 5" percentile and 95" percentile based on the Statistica
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uncertainty in our coefficient edimates. These are cdculated by a bootstrapping method.
In the trip-based models, we draw random vaues B for the coefficient vector B according
to its edimaed asymptotic didribution, which is multivarite normd with variance-
covariance matrix defined in equation (2.1). For each draw r we compute the appropriate
ratios of coefficients in order to compute the mean and sample standard deviation of VoT

and VoR across our sample. In the person-based modes bootstrap replicates are formed

by drawing dependent varidble y; (y; =1if y; =j) from a Bemoulli distribution with

probability of success given by B, which is edimated by evauaing equetion (2.5) &
Maximum Likdihood Edimae (MLE) of B. We re-edimae B for each replicate and
use it to cdculate the sample means and sandard deviations of VoT and VoR (This
method could not be used in trip-based models because it cannot account for the
correlation among multiple observetions for a given individud.). For dl modes we do
bootstrapping for 1000 replications and report the 57, 50", and 95 percentiles across

those replications.

We see the median estimate of mean VoT is quite stable across the tweve
specifications shown in these three tables, faling between $15.50 and $18.84 per hour.
Its standard deviation is of course higher in the specifications in which it varies with
income, since that adds additional observed heterogeneity. VOR is not quite as stable, but
dill the median estimate of its mean lies between $20.50 and $28.00 per hour. The
precison of edimation of these quantities fdls off makedy when the dummy for
middle-aged femaes (Fage) is incdluded as a shifter on the coefficient of trave time. (This

is ds0 reflected in the lower t-gatistics on the other variables containing cost and trave
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time) The precison is in fact S0 low that the 5%-ile vadues for both mean VoT and mean
VOR ae negdaive, indicating that in these modds one cannot say with 95% confidence
that VoT and VOR are positive. For this reason, we prefer Models 1 and 2 over Models 3

and 4.

Our edimation results suggest that VoT is the function of trip digance. In
Brookings RP data, 10%-ile of distance is 20.5 mles and 90%-ile of distance is 68 miles.
In Fgure 4, we plot VoT with respect to distance within this range usng results from the
three dternate forms of Modd 1 shown in Tables 5, 6, and 7. The reationship between

VoT and digance for other moddsis amilar.

We aso tried to estimate the person-based models with random parameters in
order to mesasure the unobserved heterogeneity in vaue-of-time and vaue-of-rdiahility.
We could hardly get convergent results for these models because of smdl size of RP data,

S0 they are not reported.
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Figure 4. The relaionship between VoT and trip distance
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2.1.2: Stated Preference Estimates

Because the Brookings SP data are more numerous than its RP data and because
the independent variables are less correlated with each other, we are able to go much
further in diginguishing random from sydemdtic effects In paticula, we edimae
models with random parameters, which can be used to sudy the unobserved
heterogeneity in people's preference. A specid case of random parameters is a random
dternative-specific congtant, which is precisely the error-components modd that enables
one to edimate ordinary logit modes more efficiently. In our empirica work, we firg
edimate this error-components model and then extend to a true random-parameters

model. For purposes of explanation, it is easiest to derive them both at the same time.

In generd, then, we consder the coefficient vector B (induding the constant) as

random with mean b and deviation h . Then the binary choice model can be written as

If b|'(>(it +hi Xit +eit >0

2.6
otherwise (26)

_i1

Yie = % 0

where h; is the random part of the coefficient vector. This is an example of the "mixed
logit" mode described by Brownstone and Train (1999). When dl the components of h;
are st to zero except that corresponding to the congtant term, we have the same modd as

before but estimated with the more redigic assumption that the random terms are

correlated across observations for a given survey respondent.
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The eror term of eguation (2.6), which we denote n; =h; X, +e;;, implies a

pand-type correation structure, which can depend on variables X asfollows.

Eh,) =0 (2.7a)
E(h,n,)= X WX, +s2 (2.7b)
E(,n.) = XWX, iftls (2.7¢)
Eh,n,)=0 N (2.7d)

where W is the variance-covariance matrix of h, and where s 2 is normdized to p#/3,

judt like the random term in asimple multinomid logit modd.

The probability of respondent i choosing the tall lanes a Stuaion t, conditiond

on hj,is

1
P _1|hi)_1+eXp(' bX - h; X ) &9

Then the unconditiona joint probability of respondent i's choice segquence (Yi:) over

severd choice dtuationst is

J
Pi:

C) P(yit | B, X¢.h; )Zf (hi |W)dhi (29)
hl ot

Ve
'~
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where f() represents the joint dengty function of h;. The integration in equation (2.9)
is caculated usng Monte-Carlo smulaion method. That is, we draw h; from the joint
digribution f() and evduate the probabilities conditiond on h;, repesting for r=1,...,R

Thesmulated vdueof P, in (2.9) isthen:
g%c:) P(y, | B.X, hf W )g 2.10)
We estimate B, W by maximizing the following smulated log-likelihood function

S(B,W) = ?? In(sP) (2.11)

Lee (1992) and Hgivassliou (1994) show that under regularity conditions, the
edimator is condstent and asymptoticdly norma, and when the number of replications
rises fasder than the square root of the number of observations the estimator is

asymptaticaly equivaent to the maximum likelihood estimator.

Table 8 presents the additiona variables used in the SP modds. In the case of
occupancy, respondents were asked to declare whether they were answering the questions
as solo drivers or as carpoolers, and in the latter case how many people they travel with if

they carpool. The measure of unrdiability here is entirdy different from tha in the RP
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data namdy, it is the probability of being ddayed by 10 minutes or more, a vaue

provided in the questionnaire as one of the atributes of aroute.’

Table 8. New Variablesfor SP moddls

Tall | Thetall lised in survey questions

Unrelighility | Unrdiability of travel time

Workers ! Number of workers at work site, in thousands

Transponder + 1 if with transponder, 0 otherwise

Long 1 if respondent received the questionnaire designed for people
» whose commute time is more than 45 minutes; 0 otherwise

Occupancy ' Number of peoplein vehide

Table 9 presents some results of estimating SP models with random coefficients.
We st the number of replications as 1000 for al these models. The modd specification

is chosen through testing using Smple logit modd.

In modds 1 and 2 of Table 9, only the congtant term is randomized, i.e. it Smply
adds an error-components panel structure to the smple logit modd. In models 3 and 4,
we dso randomize the coeffidents of time and unrdiability, assuming they have
independent normal digtributions. This leads to some probability of a traveer having the
"wrong' dgn for these two coefficients we tried unsuccessfully to use a log-normd
digribution and truncated normd for them. (We tried randomizing toll coefficient, but
this crestes problems in cdculaing VoT and VoR because the toll coefficient, which

appears in the denominator of those ratios, can take zero values.)

" The probability was always stated for the trip asawhole. It was given as 0.05 for all trips using 91X, and
either 0.05, 0.1, or 0.2 for tripsusing 91F.
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We show modds both with and without the varigble "transponder” in the SP
portion. This variable describes a choice made in red life that is closdly related to the RP
dependent variable. Thus it raises issues of the reationship between observed (RP)
choices and hypothetical (SP) choices, as discussed by Morikawa (1994).2 Models that
include "transponder” can be interpreted as dlowing for "inertid', that is true date
dependence; that is, the answers to SP questions are affected by the previoudy
determined condition of the respondent. As in SO many contexts, it is difficult to be sure
whether one is measuring state dependence or unobserved heterogeneity, but we think the
latter is controlled for adequatdly by the eror dructure. Thus including "trangponder”
may be viewed as edimating a short-run mode conditional on transponder choice,
whereas omitting it yiddlds a more long-run mode in which trangponder choice is
implicitly part of the decison to sometimes teke the express lanes. The fact that it is
highly sgnificant is not surprisng, athough it does suggest that respondents ignored our

ingructionsin the SP survey to "assume ... that you have atransponder.”

Agan, we etimate the digtributions of estimated means and standard deviations
of VoT and VoR by a Monte Carlo method, in whichBis drawn from its estimated

asymptotic multivariate norma distribution.

Modds 3 and 4 achieve quite good precison, and indicate that indeed there is
condderable heterogendty in the vauation of time and rdigbility. When SP choice

probabilities are conditioned on whether or not the person travels with a transponder

8 The reason we did not condition SP choices on the RP dependent variable, as does Morikawa, is that
many of our SP respondents did not take the RP survey. Fortunately, we asked in the SP survey if they

50



(Modd 3), the precison is greater. Vdue of time varies across the sample, but on average
is about two-thirds as large as in the RP reaults of Section 2.1.1. This replicates findings
of other studies, noted earlier, that SP surveys tend to produce lower vaues of time than

RP surveys.

travel with atransponder, permitting us to use this proxy for the RP choice.
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Table 9. SP Reaults: Binary Logit with Error Components

Variables Model 1 Model 2 Model 3 Model 4
Constant
Mean -4.7142 (1.0617) -4.0131 (1.2296) -5.8212 (1.259) -4.9157 (1.3025)
Std. dev. 3.1178 (0.4598) 3.3339 (0.4569) 3.6901 (0.7160) 3.9547 (0.8450)
Toll -1.0226 (0.2268) -1.0272 (0.2289) -1.2078 (0.2427) -1.3109 (0.3155)
Long* Time -0.1943 (0.0288) -0.2001 (0.0309) -0.2229 (0.0416) -0.2572 (0.0590)
(1-Long) * Time -0.2533 (0.0339) -0.2435 (0.0352) -0.3062 (0.0522) -0.2954 (0.0579)
Std. dev. of coef- 0.1089 (0.0414) 0.2031 (0.0526)
ficients of Time®
Unreliability
Mean -5.4261 (0.9993) -5.4214 (0.9991) -6.3574 (1.4369) -6.8667 (1.5952)
Std. dev. 6.9483 (2.0556) 7.8940 (2.3341)
Transponder 2.5476 (0.7996) 3.1471 (1.0756)
Occupancy 0.9560 (0.3568) 0.9975 (0.5573) 1.1478 (0.4918) 1.4135 (05735)
Workers -0.7110 (0.2543) -0.6359 (0.2983) -0.8840 (0.3607) -1.0022 (0.4121)
Dflex 0.8928 (0.7882) 1.3002 (0.7789) 1.4905 (1.0071) 21495 (1.0745)
Summary Statistics
#of Obs. 577 577 577 577
# of Persons 74 74 74 74
Log-likelihood -226.39 -231.36 -220.47 -223.28
Pseudo R® 0.3979 0.3847 04137 0.4062
VoT:
Estimated Mean in Sample
95%-ile $20.65/hr $20.58/hr $19.90/hr $21.41/hr
50%-ile $12.70/hr $12.59/hr $12.61/hr $12.50/hr
5%-ile $8.72/hr $8.58/hr $8.54/hr $7.84/hr
Estimated SD Due to Heter ogeneity in Sample®
95%-ile $4.19/hr $3.34/hr $17.59/hr $1945/hr
50%-ile $1.75/hr $1.15/hr $10.08/hr $10.98/hr
5%-ile $0.23/hr $0.10/hr $5.47/hr $5.81/hr
VoR:
Estimated Mean of VOR in Sample
95%-ile $8.57/incident $8.55/incident $8.43/incident $8.12/incident
50%-ile $5.32/incident $5.25/incident $5.11/incident $5.13/incident
5%-ile $3.48/incident $3.50/incident $2.95/incident $2.74/incident
Estimated SD Due to Heterogeneity in Sample”
95%-ile 0 0 $10.32/incident $10.34/incident
50%-ile 0 0 $6.11/incident $5.88/incident
5%-ile 0 0 $3.15/incident $2.98/incident

Note: Numbersin parentheses are standard errors.

® The coefficients of "Long*time" and "Short*time" are specified to have a single random error, whose

standard error is given by thisrow.

® |n models 1 & 2, heterogeneity in VoT arises solely from observed heterogeneity, namely variation in
distance; there is no heterogeneity in VoR. In models 3 & 4, heterogeneity in VoT and VOR also arises

from unobserved heterogeneity, namely randomness in the coefficients of "time" and "unreliability".
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2.1.3: Combined RP/SP Results

In this section, we combine RP and SP data together to estimate the parameters,
following methods discussed by BentAkiva and Morikawa (1991) and Hensher and
Bradley (1993). We account for the differences between RP and SP data in two ways.
Firg¢, we dlow them to have random terms with different variances, we do this by
normdizing the RP variance as usud and estimating a separate scde parameter m for the
ratio of standard deviations. Second, we dlow some coefficients to have separate vaues
across the two data sets, hoping to use the RP coefficient to correct any survey bias that

may bein the SP.

We aso account for seria corrdation between the RP and SP eror terms. Like

Morikawa (1994), we do this by splitting the error terms into two components

el =1,+n% (2.12)
ey =dl +ng (213)
The first component, |, is assumed to be a standard norma variate; it represents

individua effects and therefore accounts for corrdaion among the responses for a given
individud, including (to the extent that g is podtive) corrdation between an individud's
RP and SP responses. The other components, v~ and v, are assumed independently

extreme vaue disributed with vaiances (p%/3) and (Unf)(p?/3), respectivdy. The

combined modd can then be written as follow:
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y =1 if BEXF +1,+n¥ >0 (2.14)

yitSP =1 i mBSPXitSP + ol +rmitSP >0 (2.15)

where the superscripts RP,SP represent the data source of the observetion; vy,

represents the dependent variable indicating toll lane choice by respondent i a Stuation

t: XF®

FOXF ae the vectors of exogenous vaiadbles, which indude some common
vaiables and some unique vaiabless B¥,B¥ are the vectors of unknown parameters,
some of which may be constrained to be equal across the RP and SP observations, and m

is a scale parameter to be estimated., defined as nt = var (nifp)/var(nif").

The purpose of multiplying the condition in (215) by m is so that the find terms
in the two eguations are independently and identicaly digtributed. Writing (2.15) in this
way dso reminds us that the estimated SP coefficients should be multiplied by m before
comparing them to estimates from ordinary logit equations such as in Table 9, or to BY
from (214). This scde adjusment is automatic for any "pooled" varigbles i.e for
vaiables tha ae common to the sats X7, X;7. Even with these provisos, the

magnitudes of the coefficients of each equation will adjust to reflect the other parts of the

error terms (2.12) and (2.13).

We edimate unknown parameters B, ¢, adm by Smulaed Maximum

Likdihood Egimation as described earlier. The results are shown in Tables 10-13. The



number of replications is 1000. In dl these modds we dlow coefficents of time and
reliability to differ between the RP and SP equations wheress we condrain the
coefficient of cost® to be the same (except for scale factor n), a constraint not rejected by

likdihood-ratio tests.

2.1.3.1 Fixed Coefficients

Tables 10 and 11 present edimated coefficients for models in which coefficients

B are dl fixed.

In Modd 1 and Modd 2 of Table 10, the RP choice is modeled as trip-based with
one exception: when there are multiple RP observations from people without a
trangponder, we treat them as a dngle observation with the independent varigbles

averaged over different days. The scde effect mis estimated to be very close to one. This

is presumably because the rather large vaue estimated for q alows the variance of n to
exceed that of n;Yeven with m near one. In Modd 2, the vaiable "transponder”,

representing the effect of an actua travel choice on the hypothetica SP responses, is no
longer datidticdly sgnificant. This is probably because some of the previoudy observed
effect of this varidble in SP modds (which of course is highly corrdated with the RP
responses) was actudly due to correlaion between the error terms of the RP and SP

equations.

® The cost variablein the SP data is here defined just asin the RP models, namely Toll if occupancy <3 and
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In Model 3 and Model 4 of Table 10, we diange the modd specification for RP
data to person-based with two choice categories (whether or not the observed frequency
of toll road use is less than 0.5), as in Modd 3 of Table 7. Thus there is only one RP
observation for esch respondent, so the assumption thet |, is dandard normd is

iNnocuUoUS.

In these two modds, the estimated scade factor is amadl, between 0.35 and 0.58,
because the within-individua random variaion in RP choices has been diminated. This
causes SP coefficients to be correspondingly larger. As in Modd 2, the effect on the SP

responses of having atrangponder in red life is not quite satisticaly sgnificant.

0.5*Toll otherwise; thisis slightly different from the variable “Toll” used in the SP-only models.
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Table 10. Joint RP/SP Results

Variables Modd 1 Modd 2 Modd 3 Modd 4
Pooled Variables

Congtant -0.5553 (1.0131) | -0.5108 (0.9308) | -0.4578 (1.6378) | 0.0100 (1.8411)
Cost -0.9781 (0.4933) | -1.0102 (0.4590) | -2.2689 (1.0189) | -2.6844 (1.0813)
Income 0.0242 (0.0136) | 0.0237 (0.0138) | 0.0356 (0.0211) | 0.0369 (0.0184)
Dflex 0.5486 (0.4278) | 0.5552(0.3984) | 2.2633(0.7654) | 2.3071 (0.9175)
Workers -0.3145 (0.1476) | -0.3492 (0.1498) | -1.6072 (0.7964) | -2.2856 (1.2283)
RP Variables

Dig* Time -0.2683 (0.1135) | -0.2840 (0.1100) | -0.4460 (0.2117) | -0.5270 (0.2214)
Dig* * Time 0.0647 (0.0226) | 0.0672 (0.0220) | 0.0907 (0.0388) | 0.1040 (0.0392)
Dist® * Time -0.0030 (0.0010) | -0.0031 (0.0010) | -0.0039 (0.0017) | -0.0044 (0.0017)
Fage* Time -0.3839 (0.1469) | -0.3691 (0.1487) | -0.5932 (0.2598) | -0.5765 (0.2604)
dmp80 -0.5335 (0.2879) | -0.5730 (0.2740) | -0.6984 (0.5382) | -0.8860 (0.5502)
SP Variables

Congant -2.3056 (2.1613) | -3.3935(2.3845) | -8.3108 (5.2998) | -13.553 (8.1356)
Long * Time -0.1877 (0.0962) | -0.1877 (0.0899) | -0.4723 (0.2260) | -0.5651 (0.2550)
(1-Long) * Time | -0.2138(0.1142) | -0.2339 (0.1124) | -0.5488 (0.2469) | -0.7091 (0.3379)
Unrelighility -4.9633 (2.6065) | -5.1614 (2.5019) | -12.383 (5.6130) | -15.191 (6.8418)
Occupancy 0.3277 (0.3755) | 0.2398 (0.2712) | 1.6538(1.0982) | 1.8258 (1.2805)
Transponder 2.2987 (1.2126) 7.2867 (3.6999)
Scale Parameter

m 1.0916 (0.5727) | 1.0504 (0.4940) | 0.4338(0.2073) | 0.3493 (0.1656)
Corr. Parameter

q 2.8327 (1.4914) | 2.8072(1.3269) | 7.8384 (3.3080) | 8.9635 (4.2287)
# of Obs. 802 802 660 660
# of Persons 109 109 108 108
Log-likdihood -331.55 -326.03 -261.68 -257.68

Note: Numbersin parentheses are standard errors.

We consider Models 3 and 4 of Table 10 to best represent choice behavior of this

st of survey respondents among the modds with fixed coefficients on codt, time, and

reliability. By combining data sets and accounting for plausble error sructures, we have

been able to measure the effects of the most important travel variables with quite good

precison. It is encouraging that the relevat margind rates of subditution, especidly the

value of time, are reasonably robust to variations in the modd structure and the particular

control variables included.
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The estimated VoT and VoR based on moddls of Table 10 are summarized in
Table 11. Compared with models usng RP data done, the precison of estimated VoT
and VoR in the RP sample isimproved sgnificantly by combining RP datawith SP data.
The estimated mean VoT for RP observations (the second row of numbersin Table 11) is
very stable across different mode specifications, about $17/hr in the RP sample and

about 80 percent of thisvaue in the SP sample.
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Table11. Estimated VoT and VoR from Modelsin Table 10

| Modd 1 | Modd 2 | Modd 3 | Modd 4
VoT:
Estimated Mean in Sample
RP Results
95%-ile $40.34/hr $40.73/hr $29.83/hr $28.19/hr
50%-ile $16.40/hr $17.16/hr $16.83/hr $16.59/hr
5%-ile $-1.38/hr $0.67/hr $3.61/hr $5.37/hr
SP Results
95%-ile $19.62/hr $17.96/hr $19.99/hr $21.84/hr
50%-ile $12.05/hr $12.07/hr $13.23/hr $13.67/hr
5%-ile $5.77/hr $7.10/hr $8.02/hr $6.72/hr
Estimated SD Due to Observed Heterogeneity in Sample
RP Results
95%-ile $126.08/hr $109.96/hr $48.95/hr $37.45/hr
50%-ile $24.94/hr $24.42/hr $13.39/hr $11.87/hr
5%-ile $11.70/hr $11.63/hr $6.79/hr $6.37/hr
SP Results
95%-ile $4.26/hr $4.22/hr $3.32/hr $3.02/hr
50%-ile $1.04/hr $1.42/hr $1.09/hr $1.61/hr
5%-ile $0.10/hr $0.17/hr $0.14/hr $0.33/hr
VOoR:
Estimated Mean in Sample
RP Results
95%-ile $84.18/hr $83.86/hr $43.02/hr $42.15/hr
50%-ile $32.01/hr $33.39/hr $18.52/hr $19.54/hr
5%-ile $0.47/hr $8.00/hr $-7.10/hr $-0.87/hr
SP Results
95%-ile $8.19/incident $7.83/hr $7.44/incident $9.00/incident
50%-ile $5.08/incident $5.09/hr $5.47/incident $5.65/incident
5%-ile $2.29/incident $2.65/hr $3.83/incident $2.82/incident

Vdue of time varies by trip distance. When measured from RP data it declines

noticeably with trip length for actud trips over 30 miles, when measured from SP data, it

is smdler for those people who had longer atud trips (and hence who received a survey

depicting long trips) than for others. The estimated standard deviation of VoT due to

obsarved heterogeneity in the RP sample is not quite stable. The median of estimated

dandard deviaion of VoT in the RP sample from Modd 1 and Modd 2 is dmost twice
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as big as the one from Moddl 3 and Modd 4. We prefer the results from Modd 3 and
Mode 4, because the estimated relationship between VoT and trip distance in Modd 1

and Modd 2 implies that about 15 percent of the RP sample have negetive vaue of time.

When unrliability is meesured as the 80"-50" percentile difference (RP data), its
vaue is dightly larger than vdue of travd time in Modd 3 and Modd 4, and twice as
large as vdue of travel time in Modd 1 and Mode 2; when measured as frequency of
ddlays of 10 minutes or more (SP data), its vaue is between $5 and $6 per incident of

such adelay and stable across models.

Findly, conditioning SP choice probabilities on transponder choice has little

effect on estimated results, but improves the precison of estimates dightly.

2.1.3.2 Random Cosfficients

In the next sep, we randomize the coefficients of time and unrdiability to
measure unobserved heterogeneity in VoT and VoR. First, we use Modd 2 n Table 10 as
the base modd. However, we can not randomize RP coefficients in this modd because
our model specification in equation (2.9) and (2.10) redricts the corrdation among RP
arors a 0.233. The estimated standard errors for the random terms of RP coefficients
would capture part of corrdation across RP observations, and hence bias the estimated
unobserved heterogeneity in VoT and VoR. Consdering this we only randomize time
and unrdiability coefficients in the SP sample, and the results are shown in Modd 1 of

Table 12.
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We can randomize the coefficients of time and unreiability both in the RP sample
and SP sample when using persontbased modes like Model 3 or Mode 4 in Table 10.
We assume that the coefficients of time in the RP sample and in the SP sample have the

same random component, thet is, the mode specification can be written as

R =a,dist +a,dist? +a,dist® +a, fage+d (2.16)

B® =c,Long +c,(1- Long)+d (2.17)

where d isanormd variate with meen zero and variance s 2.

Because the measures of unrdliability have different meaningsin RP and SP data,
we can not assume that the coefficients of them have the same random component.
However, we assume that the ratio between standard deviation and mean of the
unreliability coefficient is the same across RP and SP data. That is, we reparameterize the

model specification as

Bl.JRrE.reIiabilty = ERP + mRP = 5RP§+ [)—an g: BRP (1+V ) (218)
(%]
S5 b® + ¥ =p*H m* o —e
BUnveiianiy =0~ + M~ =b g +6—Spi=b (1+V ) (2.19
2

where m ~ N(O,s ,fk) k=RP,SP;andv ~ N(O,s VZ) . The edimated resuilts from this

modd are shown as Modd 2 of Table 12. Here we use Modd 3 rather than Modd 4 of



Table 10 as base modd because otherwise we encounter problems achieving
convergence; we guess the problem arises from the interaction between true state
dependence and spurious state dependence. Additiondly, we delete the variable

“occupancy” in order to get more precise estimates.
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Table 12. Joint RP/SP Model —with random time and unr diability coefficients

Variables Modd 1 Modd 2
Pooled Variables
Congtant -0.5145 (1.0162) -2.4635 (1.2947)
Cost -1.0171 (0.5131) -2.7725 (1.6302)
Income 0.0251 (0.0147) 0.0601 (0.0311)
Dflex 0.5431 (0.4384) 4.2402 (1.9901)
Workers -0.3286 (0.1520) -1.4872 (0.8383)
Std. dev. Of Time 0.3541 (0.1938)
Ratio between Std. dev. 1.2445 (0.3631)
and meen of unrdiability
RP Variables
Dig * Time -0.2759 (0.1119) -0.5038 (0.2805)
Dig” * Time 0.0642 (0.0221) 0.1108 (0.0556)
Dist * Time -0.0030 (0.0010) -0.0049 (0.0024)
Fage* Time -0.3496 (0.1529) -1.0295 (0.4609)
dmp80 -0.5654 (0.2853) -1.0503 (0.5489)
SP Variables
Congtant -3.4980 (2.6178) -4.6442 (4.1386)
Long* Time -0.1859 (0.0967) -0.5232 (0.3112)
(1-Long) * Time -0.2338 (0.1228) -0.5697 (0.3408)
Sd. dev. of Time 0.1138 (0.0634)
Unreiability
Mean -5.1326 (2.7243) -12.418 (7.1422)
Std. dev. 4.4131 (2.5701)
Occupancy 0.2849 (0.2657)
Transponder 2.2687 (1.3044)
Scale Parameter
m 1.2637 (0.7190) 0.5271 (0.3248)
Corr. Parameter
q 2.9838 (1.6308) 8.2660 (4.5338)
# of Obs. 802 660
# of Persons 109 108
Log likdihood -320.95 -253.42

Note: Numbersin parentheses are standard errors.

The esimated VoT and VOR from modds in Table 12 are summarized in Table
13. The results in Modd 1 are smilar to those of Modd 2 in Table 11, except that we get
measures for unobserved heterogeneity of VoT and VOR in the SP sample. When using
results from this modd, we may consder usng the estimated means of VoT and VOR in

the RP sample as the measures for mean VoT and VOR; using the estimated observed
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heterogeneity of VoT in the RP sample as the measure of heterogeneity in VoT,; and
usng the edimaed heterogeneity of VoR in the SP sample as the messure of

heterogeneity in VoR.



Table 13. Egtimated VoT and VoR from Modelsin Table 10

Modd 1 Modd 2
VoT:
Estimated Mean in Sample
RP Results
95%-ile $45.13/hr $35.22/hr
50%-ile $17.84/hr $15.32/hr
5%-ile $-0.52/hr $-1.30/hr
SP Results
95%-ile $19.69/hr $17.10/hr
50%-ile $11.96/hr $11.63/hr
5%-ile $5.83/hr $6.61/hr
Estimated SD Due to Heterogeneity in Sample®
RP Results
95%-ile $113.71/hr $82.58/hr
50%-ile $24.24/hr $23.21/hr
5%-ile $10.69/hr $16.08/hr
SP Results
95%-ile $15.25/hr $15.42/hr
50%-ile $8.73/hr $8.62/hr
5%-ile $2.88/hr $3.22/hr
VoR:
Estimated Mean in Sample
RP Results
95%-ile $87.76/hr $50.86/hr
50%-ile $32.41/hr $22.14/hr
5%-ile $1.84/hr $4.61/hr
SP Results
95%-ile $8.55/incident $8.77/incident
50%-ile $5.02/incident $4.42/incident
5%-ile $2.04/incident $1.99/incident
Estimated SD Due to Heterogeneity in Sample
RP Results
95%-ile $O/hr $64.64/hr
50%-ile $0/hr $26.98/hr
5%-ile $O/hr $5.10/hr
SP Results
95%-ile $7.89/incident $8.57/incident
50%-ile $4.32/incident $5.48/incident
5%-ile $0.91/incident $1.93/incident

21n model 1, heterogeneity in VoT in the RP sample arises only from observed heterogeneity; in model 2, it

also arises from unobserved heterogeneity.
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Modd 2 of Table 12 gives us nice results for heterogenety in VoT and VoR. The median
edimatied mean of VoT in the RP sample from this modd is dightly lower than the one

from other modds.

2.1.4: Summary of Results from Brookings Data

In Brookings data, the edtimated vaue of time is dstable across different mode
specifications, its median vaue is in the range of $16-$18 per hour in the RP sample, and
in the range of $11-$13 per hour in the SP sample. These results confirm the results from
other dudies, that is, the estimated mean of VoT usng RP dda is higher than the one
usng SP daa, dthough the difference between them in this paper is much smdler than in
Ghosh (2000q). The difference is probably due to misperceptions of travel-time savings,
as noted before, causng travelers to perceive the time differences in the SP questions as
indicating a smdler actud difference in sarvice qudity than they redly do. As argued
before, it is the RP vdue that is most germane to congestion modeding and cost- benefit

anayses.

We use different measures for time unreigbility in the RP and SP sample. In the
RP sample, VOR is imprecisdly measured and not too stable; its etimated vaue is in the
range $19-$30 per hour. In the SP sample, the estimate VOR is robugt, with vaue about

$5 per incident (of 10 minutes or more unexpected delay) for al modds.
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We find large heterogeneity in vaue of time. Our RP data show observed
heterogenaty in VoT which can be explained by trip and individua characteridics, with
estimated standard deviation across our sample between $13 and $25 per hour depending
on modd specification. We are unable to extract a satisfactory measure of the unobserved
heterogeneity (i.e. that unexplained by objective variables) in our RP data adone. In the
SP data, by contragt, the ability of trip distance to account for heterogeneity in VoT is
tenuous, but we find subgantid unobserved heterogeneity. Overdl, the estimated
gandard deviation of VoT is between $7 and $10 per hour across individuds in the SP

sample.

We did not find obvious evidence that vdue of reigbility varies with trip or
individua characterigtics. Additiondly, our RP data done cannot give us a precise
measure of unobserved heterogeneity in VoR. The SP sample, in contrast, shows that

there is Sgnificant unobserved heterogeneity in VoR.

By combining RP datawith SP data, we can overcome some of the limitationsin
the RP data because certain coefficients can plausibly be congtrained to be the sameiin
the RP and SP portions of the combined data set. This resultsin two mgor improvements
to our RP results. Firg, the precision of dl estimated coefficients in common with the RP
models isimproved substantialy compared to those using RP data done. Second, with
combined data we can measure unobserved heterogeneity in both VoT and VoR across

the RP sample.
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2.2: Combining Cal Poly Data with Brookings Data

In order to get more relidble etimates for the heterogeneity in vaues of trave
time and travd time rdiability, we combine the RP data collected by Cd Poly with
Brookings data in this section. The feashility of combining these data together is that

they are from the same population and collected at dmost the same time.

2.2.1: Revealed Preference Estimates

We firs combine two RP data together. Based on the modding experience in
above section, we choose the person-based modd with two choice categories to mode
Brookings RP data Cd Poly data is a smple cross-section. We account for the
differences between these two RP data sources by letting ther random terms have
different variances, and by specifying different dternative-specific congtants in them. Our
rationd is that other determinants for commuters route choice are the same across these
two data sats. In edtimation, the variance of Brookings RP error terms is normdized, and
the one of Ca Poly error terms is scded by a scae parameter. Brookings survey and Ca
Poly survey have different categories for household income. To keep the condstent of
income vaiadle, we define the fdlowing two dummies ingead of usng numerica
income calculated as median point of each category in modding:

1. High Income Dummy: 1 if household annud income is greater than $100,000, and O

otherwise.
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$100,000, and O otherwise.

The estimate results are shown in Table 14.

2. Medium Income Dummy: 1 if house hold annud income is between $60,000 and

Table 14. Resultsfrom Joint Model Combining Two RP Data

Variables Coefficients
Brookings Congtant -0.5150 (0.9674)
Cd Poly Congtant -1.7157 (0.7827)
Cost -1.3443 (0.5312)
Cost © High Income Dummy 0.9047 (0.3096)
Cost © Medium Income Dummy 0.4693 (0.2149)
Dig” Time -0.2618 (0.0917)
Dis?” Time 0.0412 (0.0162)
Dis® " Time -0.0017 (0.0007)
Dmp80 -0.5989 (0.2298)
Femde 1.1294 (0.3904)
Age30-50 1.1951 (0.4465)
Household Size -0.3874 (0.1846)
Dflex 0.2428 (0.3774)
Scale Parameter for Cd Poly sanple 0.5028 (0.1977)

# of Obervations 522

# of Persons 522

Log-Likelihood -267.84

Note: Numbersin parentheses are standard errors.

Even with much lager daa Sze mixed-logit mode capturing unobserved
heterogeneity in motorists preferences is gill unidentified usng RP only data Compared
with results usang only Brookings RP data, the efficiency of edimates is improved
ggnificantly. The parameter edimaies have the expected sgns. Same as earlier dudies,
femades and middle-aged motorists are more likey to choose SRI1 toll lanes. These
effects can not be identified solely in Brookings RP only modd. The effect of household

Sze is combined with household income in models with Brookings data We do not

69




modd like that here because we use income dummies ingead of numericd vaues. The
results show that motorists with smdler household sze are more likdy to choose toll

lanes.

By gpecification, the value time is nonlinear with respect to both household
income and trip digance, and the vaue of rdiability is nonlinear with respect to income.
Consgent with expectations, motorists with higher incomes are less responsve to the
toll.  Same as goecifications in aove section, the effect of digance on the time
coefficient is captured well by a cubic form with no intercept, but the pattern is dightly
different. When graphed, the dependence of the vaue of time on distance is characterized
by an inveted U, initidly risng but then fdling for trips grester than 45 miles and dl
respondents in our sample have postive value of time. Using Brookings RP data only, the
vaue of time fdls for trips greater than 30 miles and about 10 percent respondents have

negative vaue of time.

We tested whether Brookings and Cd Poly respondents react differently to the

cod, time, and unreigbility varidbles and found that there were no datidicaly sgnificart

differences.

2.2.2: Joint RP/SP Estimates

In this section, we combine dl the three data sets 3%  Brookings RP (BR),

Brookings SP (BS), and Cd Poly RP (C) to esimate the heterogeneity in motorists
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preferences for both travel time and travel time rdigbility. The latent utility differences

corresponding to these three data are like;

UPR 0 g™ + b2 XER +n PR +h PR (2.20)
Ui?s ° qus + biBSXi?S +r niBR + hi?s (2:21)
Uic ° Qic + bicxic +hic' (2.22)

where the superscripts BR, BS, and C represent different data sources, index i runs

through dl individuds in the data sets X is the vector including tdll, travd time, and
travel time unrdiability; n® is a random term with standard normd, thus the parameter
r captures the correlaion between RP and SP observations from the same individud in
Brookingsdata; h.°f, h®, and h areindependently logistic distributed; and

QX =" +F W +x ! (223)

b =b*+gkz* +V (2.24)

where the superscript k =BR,BS,C; W* and Z*are individud characteridtics capturing
observed heterogeneity in preferences, while unobserved heterogeneity is captured by the

random terms x* and V. The teem x indicates an individua’s unobserved dternaive

specific preferences, and V¥ represents an individua’s unobserved preferences regarding
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travel characterigics. Because the two RP data sets have only one observation for each

individud, x,°® and x© areredundant given h*® and h©.

In edimaion, it is the vaiance of h®® that is normdized, and two scae

parameters m®*and n° are estimated:

mS o g BR/g BS (2.25)

nt°s BR[gc (2.26)

whereeach s isthe standard deviation of the corresponding h .

Some parameters are assumed to be identical in two or three of above choice
processes in order to combine the advantages of RP and SP data. Especidly, like joint
RP/SP modd in Brookings only data, we assume that cost and time coefficients have the
same random components across RP and SP samples. The measures for travel time
unreliability in RP and SP samples are different, ingead of assuming the same random
components for the ther coefficients, we assume that the ratio of standard deviation to

the mean of the unrdiability coefficient is the same across samples. Thus we can have:

b*=b*+g“z¥ +V, (2.27)

(1+v ) (2.28)
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where b, refers to the vector of cost and time coefficients r, is the unrdigbility

coefficdent; V, is independent with v,, andV, ~N(OW) with Wdiagond,

v,~N(s, ).

The edtimate results of this joint mode are shown in Table 15. The coefficients
of dl the travd characteridics rdevant to the RP choice are edtimated with greater
precison than before. The parameters capturing unobserved heterogeneity in  the
coefficients of cog, time and unrdiability are dso precisdy edimated, as are the scae

and correlation parameters describing error structure.
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Table 15. Resultsfrom Joint Model Combining Three Data Sets

Variables Coefficients
RP Variables
Brookings Constant (q %) 0.2473 (0.7799)
Cal Poly Constant (q °°) -1.8389 (0.6860)
Cost -2.2682 (0.3589)
Cost ~ High Income Dummy 1.3147 (0.2794)
Cost © Medium Income Dummy 0.6566 (0.2088)
Dig " Time -0.4933 (0.1009)
Dis®”~ Time 0.0868 (0.0189)
Dis®" Time -0.0037 (0.0009)
Dmp80 -0.7049 (0.2550)
SP Variables
Constant (q_ c ) -1.2246 (0.8856)
Standard deviation of congtant (s , ) 0.1284 (0.6669)
Cost -1.0986 (0.3128)
Cost © High Income Dummy 0.1915 (0.6469)
Cost © Medium Income Dummy -0.0827 (0.2948)
Long " Time -0.1834 (0.0394)
(1-Long) ~ Time -0.2127 (0.0590)
Unrdigbility -5.1686 (1.1195)
Pooled Variables

Femde 1.3849 (0.4046)
Age30-50 1.3021 (0.3856)
Household Size -0.5902 (0.1738)
Dflex 0.7481 (0.4179)
Standard deviation of coefficient of cost (part of W) 0.6577 (0.1826)
Standard deviation of coefficient of time (part of W) 0.1268 (0.0471)
Ratio of dandard deviaion to the mean for 0.9886 (0.3136)

coefficients of dmp80 and unrdliability (s, )

Other Parameters
Scdle parameter for Cal Poly sample (n) 0.3743 (0.0981)
Scale parameter for Brookings SP sample ( m®®) 1.4723 (0.3585)
Correlation parameter between RPand SP(r ) 2.5493 (0.4969)
SUmmary Satistics

# of Obervations 1155

# of Persons 548

Log-Likelihood -501.28

Note: Numbersin parentheses are standard errors.
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The edimate results in Table 15 are used to caculate motorists implied vaues of
time and rdiability and indicate the extent of their heterogenety. The results are shown

in Table 16.

Table 16. Values of Time and Reliability from Resultsin Table 15

Median 90% Confidence Interval®
Estimate [5%-ile, 95%-il€]
RP Estimates
Value of time ($/hour)
Median in sample 20.20 [14.72, 25.54]
Unobserved heterogeneity” 11.01 [6.48, 16.74]
Totd heterogeneity in sample” 12.60 [8.30, 18.12]
Value of reliability ($/hour)
Median in sample 19.56 [8.03, 31.17]
Unobserved heterogeneity” 27.67 [11.56, 47.64]
Total heterogendity in sample” 28.13 [11.56, 48.58]
SP Estimates
Value of time ($hour)
Medianin sample 9.46 [6.18, 13.53]
Unobserved heterogeneity” 13.46 [7.41, 22.02]
Totd heterogendity in sample” 13.56 [7.52, 22.99]
Value of reliability ($/incident)
Medianin sample 4.17 [2.37, 6.30]
Unobserved heterogeneity in sample® 7.78 [4.36, 12.64]
Tota heterogeneity” 7.79 [4.36, 12.66]

All estimatesin Table 14 are Sgnificantly different from zero a a 5% sgnificance
level. The median vaue of time base don commuters' revealed preferencesis
$20.20/hour. In our data, median time savings at the height of rush hour are 5.6 minutes,
thus, the average commuter would pay $1.89 to redlize these savings. The median vaue

of rdiability is $19.56/hour. Unreligbility peeks at 3 minutes; thus, the average commuter
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would pay $0.98 to avoid this possihility of unanticipated delay. Given these estimates,
the actua peak toll of $3.30 would be expected to atract somewhat fewer than half of the

tota peak traffic—which, in fact, it does.

We are also interested in how much motorists preferences vary. We use the
interquartile difference (the difference between 75™ and 25" percentile values) as our
heterogeneity measure because it is unaffected by high upper-tail vaues occasondly
found in the caculations of ratios. This measure of heterogeneity exceeds 60% of the
median vaue of time and is greeter than the median vaue of unrdiability, indicating that

commuters exhibit awide distribution of preferences for speedy and rdiable travel.

It isinteresting that the heterogeneity isamost dl from unobserved sources,
verifying the importance of “taste variation” in motorists behavior and our atempt to
captureit. To be sure, unobserved heterogeneity reflects limitations on empirica work
and presumably could be reduced if it were possible to measure al variables that underlie

individuas preferences.

Theimplied SP vaues of time are smdler on average than the RP values. This
finding may reflect the aforementioned tendency of travelersto overdate the travel time
they lose or would lose in congestion. For example, suppose amotorist isin the habit of
paying $1.56 to save 10 minutes, but perceives that saving as 15 minutes. That motorist
may then answer SP questions as if he or she would pay $1.56 to save 15 minutes—

yielding an SP vaue of time that undergtates the value used in actud decisons. The SP
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vaue of unrdiability may be smilarly biased, but we have no point of comparison. The
median value of $4.17 per incident means that the median motorist in our sample would

pay $0.42 per trip to reduce the frequency of 10-minute delaysfrom 0.2to 0.1.
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CHAPTER 3

Bayesian Analysis of Combining RP and SP Data in Discrete Choice Modeling

This chapter isto show how the recently developmentsin Bayesian approach for
estimating the multinomia probit model can be used in joint RP and SP andyss. Most
literatures on combining reveded preference data (RP) with stated preference data (SP)
are based on logit mode. The reason is the computationa convenience of logit model.
The multinomid probit model is hard to compute, especidly when the number of choice
aternativesis large and the correlation between RP and SP observationsis not negligible.
However, multinomia probit modd has advantages in modding flexibility, especidly in
dedling with correlation over choice dternatives and between RP and SP observetions.
The recent papers by Albert and Chib (1993), and by McCulloch and Ross (1994)
developed a Bayesan gpproach for estimating the multinomid probit modd. Bayesan
gpproach has theoretica advantages in interpreting results from finite sample, aswdl as
in testing and model selection. In practice, Geweke, Keane, and Runkle (1997) found that
given sample size of data, Bayesian gpproach performs better than smulated maximum
likelihood estimation for multinomid probit moded in the sense that the estimates have
smaler RMSE. Bolduc (1996) found Bayesian approach to be about twice asfast as

classcd method in run time for their specifications on multinomid probit modd.

How istheidea of usng Bayesian approach to estimate multinomia probit mode

combining RP and SP observations? The method developed by Albert and Chib (1993),

and McCulloch (1994) has limitation for this problem, because their method solves the
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identification problem associated with probit modd (as we will describe later) by
introducing restriction via prior, that is, specifying prior for the full parameter space but
only report the margina posterior of identified parameters. In this case, it isvery possble
that the andlytic formsfor both the margina prior and posterior on identified parameters
are hard to get. As aresult, the method developed by Chib (1995) for calculating Bayes
factor can not be used, which makesit is difficult to test the difference between RP and

SP choice processes.

McCulloch, Polson, and Ross (2000) proposed a Bayesian approach for
multinomia probit mode with fully identified parameters. This method can be eesily
extended to multinomid probit models combining RP and SP data. We begin with the

binary choice case.

3.1: Binary Choice Case

3.1.1: Modeswithout Hierarchy

In this section, we discuss modd s with dl coefficients to be fixed across

individua. When RP and SP data sources are combined, we expect that at least some

parameters do not vary with sources of data. At the same time, we need account for the

their differences by letting other parameters be different and | etting the error terms have

different variances. Additionally, we need account for the correlation between RP and SP
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choices from the same individua. The latent variable z for individud i, can be written

as

z =X'B" +e (3.19)

25 = X°B° +e (3.1b)
(

e°ler e ~1DN(0S) (3.10)

where the superscripts r and sindicate RP and SP data respectively; 1IDN( ) represents
identica independently norma density function; the coefficient vector B includesthose

varying with data sources and those common across data sources, and where

TN

€ u
s=g' ° o7 (3.1d)
é rs S S 0
The obsarved individud' s choice
y“=1if z>0, k=r,s (3.2

In the following analysis welet vy, :(yir yf)(, z = (zir zf)(,
X, =diag(X! X?),and B=(B" B*)". Thismodel isunidenified because the

likelihood function ©) L, (B, S) will not changeif we muitiply both Band S by a



constant. The classical method isto normalize the variance of one error term, say s 7, as
congtant and maximize the reparameterized likelihood function with respect to identified
parameters (B/s ,S/s? ) . Bayesan gpproach has option of introducing restrictions via
prior digtribution, and it can adso define priors on identified parameters directly. Here we
employ the latter method to discuss how to estimate probit model combining RP and SP

obsarvations.

Because €' and e° have ajoint norma didtribution, we can derive the following

conditiona distribution

eder ~1IDN(l e/ d) 3

where| =s  /s?,andd =s2-s?/s?.Let S=S/s?,then

=
éﬁ\ <

(349

w
1
M@D> Dy

Thesquareroot of m % s /s, iscaled as scaled parameter in the literature of combing

RP and SP observations. By normdizing s *as 1, S can be written as

G (3.40)
u
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The mode is estimated by drawing random numbers from the following posterior

distribution:
p(B.S,4y)n &C p(yilzi)p(zi|B,§)%><p(8,§) (35)

The random draws are taken by Gibbs sampling, which draws in turn from the following

complete conditionds.

1. Z|z°,B,S,y'

Because z, ~ IIDN(XiB,é),Wecan get Z'|z5,B,S ~ IIDN(g" f ), and

| 2

(z2- x°B), f " =1-

Then,

'=X/B+ :
g T od+I? d+l?

TNy f ) iy =1
Zir ZiS,B,é, Yir "'Il (3.6)
}'TN(_H)(q e )’ if y =0

where TN, , (¥ represents truncated normal distribution which is truncated below a and

above b.

2. 2’|z’ ,B,S,y¢

Smilar to step 1, we can know that
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I TN a%d) ity =1
z’\z, B,S, y© ~ : (37)
.IITN(-¥,0)©S’d)1 if y =0

where q° = X°B+| (zir - X! B).

3. B|z,§,y

Let z={z}", y={y.}.,, X ={X}",, and define aconjugate normal prior on B, that is,

B~N(B,,Lg), wecan get
BzS,y~ N(xovix L) (xoviz+L g, ) (x v ix + L)) (38)
where W= ,AS.

4.S|z,B,y

The drawsfor S aretaken by constructing e® =1 e +n,, them, ~1IDN(0,d), and we

candraw | and d from thefollowing univariate regresson model

e*=le' +v (3.9)



where e® = {e.s}ile, e'= {eir }iNzl, andn ={n, }". . Define conjugate Norma %  Inverse

Gammaprioron | andd , that is, (I d)~ N(I oL )ﬁG%,gg,wethmcmha/e
a

| |z.B.d,y~ Nftv t) (3.10)

dlz,Bl,y~1G@,b) (3.11)

In equations (3.10) and (3.11),

ed 2 O J
calz - X'B - a\z - XIB\z’- X’B
t:(;izl( ) +i_ LV :i:l( X )+L|I0,a:N+k,
¢ d L, = d 2
({‘ -
e 4]
L1
b :Eeémsg 2z - x=8)- 1 (z - xB)['2 .
e i=1 a

Smulation Example 3.1

The smulation example is designed as.

2 =-08-12* X +e/

z°=-04-12*x’ +e’



Thevarianceof €' is2, andtheoneof e’is3. The correlation between e’ and
e’isset as 0.5. By this setting, the true values of identified parameters are
B/s, » (- 0.57,-0.28-0.85), 1 °s _/s2>»0.61,d =(s?-s2/s?)/s ? »1.13. The
independent variable x and x’ are generated independently from a uniform distribution

with support [- 2,2]. We use last 5000 Gibbs draws from atotal of 6000 to form our

posterior distributions of estimated parameters.

we employ two priors: thefirst is proper but diffuse, and the second isimproper

on d . Specifically, under prior 1, p(B) = N(0,1071), and p(i ,d) = N(1,4)IG%,29.
e 1]

Under prior 2, p(B)=N(0,071),and p(l ,d)=N(0,10°)IG(0,). Figure 5, from top to
bottom, shows the estimated resultsfor B, | , and d respectively under prior 1 with

sample size of 3000. The results are reasonable.
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Figure 5. Smulation Exmaple 3.1 with Prior 1 and Sample Size 3000

Figure 6, in the same order as figure 5, shows the estimated results under prior 2

with sample sze of 2000. This dgorithm sill works well.
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Figure 6. Smulation Example 3.1 with Prior 2 and Sample Size 2000
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3.1.2: Hierarchical Analysis

The above adgorithm can be easly extended to hierarchical anayss combining
RP and SP data, which can be used to uncover individud’s preference. In hierarchica

modd, the latent utilities in equation (3.1a) and (3.1b) are rewritten as

z' =X/B' +e' (3.129)
z'=X’B°+e’ (3.12b)

The parameters B, °© (Bir B® )( representing individuas preferences are conditiond on

individuds characteristics W, and include a stochastic pat e capturing unobserved

heterogeneity, that is,

B =Wg+e¢ (3.13)

The error term can be modeled generally as ¢ © (€ ef)( ~1IDN(0,Y ). Thusif both B
and B® are k™ 1 vectors, Y isa 2k” 2k matrix. In above mode, some parametersin

g° (gr g° )( and Y are constrained to be the same across data sources. The Gibbs

sampling for this modd adds one more layer, specificdly the random draws are drawn

from the following steps



Thefirst layer:

Z'|z°,B,S Y (3.149)
z°|z',B,,S, y¢ (3.14b)
B|z.Sy, (3.14¢)
Sjz,B,y (3.14d)

where B = { B }iN:l. In the first layer, draws from (3.14a), (3.14b), and (3.14d) are the same

asstep 1, 2, and 4 respectively in the model without hierarchy. For (3.14c¢), if

-1

B ~ ”DN(BiO’La)’ Bi|zi,§, y, ~N(Dd, D), and D:Eg(iag_lxi +|—Bi-1g

d=X,S'z +L, B,
The second layer:

g|Y,B (3.15a)

Ylo,B (3.15b)

We define conjugate Normd % Inverse Wishart prior forgand Y
(@ Y)~N(goL,)¥wW(r, rR)

89



then

olv,B~N[we WL, ) we B+l g, ) We WL, Y} @169

Ylg,B~IW(r +K,rR+V) (3.16b)

In equations (3.16a) and (3.16b), W :{V\/i}iNfl, K isthedimensonof Band K> N,

F :IKAY,de=§(Bj'ng)(Bi -ng)¢.

j=1

Smulation Example 3.2

We design the following smulaion example:

z' =ax; +b/'w +e/

z; =ax’ +biw +e7

b/ =b" +m
b®=b°*+m

e ~1IDN(0,S)
m ~ IIDN(0;s 2)



2 0.5/24/38
23 3

_ _ @
wherea=-12, 6" =-08, b*=-04, s:go5 S, =06. Note

that we assumethat b and b,® have common random term in this example. The purpose

of doing thisisthat in some applications, SP data is combined with RP data to estimate
the unobserved heterogeneity in consumers preferences, which can not be identified

using RP data only. Because of this assumption, we modified the Gibbs sampling like
Thefirst layer:

Zir Zisy(aa b_r 153)1 m’ yir

ZiS Zir1(aa Er!b_s)’m’ yi's

The second layer:
s om

We choose the following proper but diffuse priors: (a b, b S)( ~ N(O;LO7 I )

| ~N(110), d ~ IGEQ,EQ, si~IG —29 and the sample size is set as 3000. The
e2 2g e2 2g

results are shown in figures 7 and 8, and we get good results.
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Figure 7. Edtimate Results for Smulation Example 3.2 (a,b ", b ® from top to bottom)
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3.2: Multinomial Case

Extending above anadlyss to multinomid probit model is aso straightforward.

Suppose there are J choice dternativesin RP dataand K choice dternatives in SP data,
thatis, y 1 {01...,d- §,and y; T (OL...K - 1). Since choices only depend on utility

difference, the multinomia probit model can be described by the following utility

differences with respective to choice dternative O:

z; =X;B"+¢], j=1.J-1 (3.179)
z;, =X B°+e,,k=1..,K-1 (3.17b)
and
(
e°fe..e,, e,.e .} ~IIDN(O,S) (3.17¢)

The obsarved individud' s choice

i0 if max(z}i)<0
yi =1 (3.18)
Ih if max (zi‘j ) =z >0



wheret =r,s, andif t=r, j,h1 {1..,3- 1;if t=<, jhi {1...K- 1}. Stll, to get
identification, thefirgt diagond dement of S isnormdized as 1, and smilar to binary

case, the identified variance matrix can be written as

I R
>%8 psird

(3.19)
where | isalby (J- 2+K - 1)vector representing normalized covariance between e,

and other eementsin e, ; D isthe variance matrix of the conditiond distribution

fer, ,...,e{J_l,eisl,...,eisK_l}(|var(e{l) = 1. The Giblbs sampling of estimating this mode is like:

R CZMMIRCTY WY

ij

This draw is taken from univariate truncated norma which is truncated below max (z{h) if

y; = j and istruncated above max(O, max(z{h)) ifyi* j,where jt h.

2.z, {Zirj}j;ll’{zish}hl oBLS Y

Smilarly, thisdraw is taken from univariate truncated norma which istruncated below

max(th) if y7 =k and istruncated above max(O, max(th)) ify7* k,wherek?® h.

3. B|z, S,y

Thisgep isthe same asin binary case.



4. §|z, B,y
The only difference between this step and the one in binary caseisthat instead of

drawing from a univariate norma regression model, wedraw S from the following

multivariate norma regresson moded

h=xl(+n

r S

where h = (hl,...,hN)(, and h, = (e{z,...,eiJ_l,eil,...,efK_l)(; X = (xl,...,xN)(, and

x, = diag(g], ) with dimensionof J- 2+K - 1;n, ~ 1IDN(0,D).

3.3: Summary

By smulation examples, this chapter shows how the newly advancesin Bayesan
econometrics for estimating the multinomia probit modd can be extended with no
trouble to anayze probit models combing RP and SP data sources. The Bayesian
approach works wel on these smulation examples, and by combining with method for
caculating Bayes factor proposed by Chib (1995), it can be employed to estimate joint
RP/SP model, compare and test the differences between different choice processes.
Bayesian gpproach can provides us more flexibility in mode specification, and more

advantages in interpreting estimate results, testing hypothesis and model sdection.



CHAPTER 4

Policy Implications of Heter ogeneity in Motorists Preferences

In this chapter, we combine the estimate results in former chapters and the smulation
modd developed by Smdl and Yan (2001) to invedigate the policy implications of

heterogeneity in motorists' preferences.

4.1: The Modél

This modd consders two roadways, A and B, connecting the same origin and
degtination. Both have the same length L and the same free-flow trave-time T;L. A user of
type i (i=1,2) traveling on road r (r=A,B) incurs travel cost ¢ which conggts of operating
cost b plus atime cost a;T, per unit distance. The parameter a; is the vaue of time, and it
is this parameter for which we introduce heterogenety, by assuming that a;>a». Unit
trave time T, (the nverse of speed) is represented by flow congestion of a standard type,

depending on volume-capecity ratio Ni/K; so that:

c(N)=bL+aT L[ 1+g(N/ k)| i=12r=AB (4.)

where g and k are parameters. The congestion-dependent part of cost, di, © a;TiLg(N/K,)¥,
iswhat wecdl delay cost. This particular functiona form has the property that the
margina externd cost isk timesthe average delay cost:

MEC, ° & N, Tc, /TN, =k <& N, d, )/ N, , where N, is the number of type-i userson
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road r. We use values g=0.15 and k=4, following common practice.*°
Demand by each group has the linear form
Ni(P)=a-b P 4.2)

where @ and by are postive parameters and P; is the "indusve pricg' or “full price’,

defined as the minimum combination of travel cogt plustall (t) for this user group:

P = Min{cir +t r} . 4.3)
r

The inverse demand function corresponding to (4.2) is denoted Pi(N;).

The socid wdfare function is defined as the area under the inverse demand curve,

less total codt:

Ni

W: é OPI (t)dt - é Nir Cir (44)
0

Qow

[y
[y
1l

A

Thisfunction is gtrictly concave in the four variables N;,.

10 See Small (1992), pp. 69-72, for adiscussion of empirical evidence for thisfunctional form. These particular
parameters are known as the Bureau of Public Roads formula.
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4.1.1: Typesof Solution

The equilibrium conditions are those of Wardrop (1952), dstating (i) that users of a
given type choose the road or roads that minimize inclusve price, and (ii) that inclusve
price be equalized across the two roads for any user group that uses both roads. We
assume that if the roads are differentiated it is road A that offers fagter travel, so that N1a>0
and N2g>0. (This is a subdantive assumption if the roads are of unequa capecity.)

Wardrop's conditions can then be written:

CalNL)+t £ (NG )+t (4.53)
Coa(NL )+t , 3 Cp(Ng )+t g (4.5b)
N,z X{C +t o~ Cp-15)=0 (4.50)
N,, {Cyp +t o - Cpg -1 5)=0 (4.5d)
Ny Ny ® 0 (4.5¢)

It is useful to distinguish four possible cases, depending on whether each of (4.53)

and (4.5b) isan inequdity or an equdity.

Case SE: fully separated equilibrium. Both (4.58) and (4.5b) are inequalities, i.e,

each group gdrictly prefers a different roadway. Because we assumed ai>a», these
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conditions require that road A be more expensive but less congested than road B, ! ie,

ta>tg and (NA/KA)<(NB/KB).

Case SE1: partially separated equilibrium with group 1 separated. Group 1 gtrictly
prefers road A but group 2 is indifferent: that is, (4.58) is an inequdity but (4.5b) an
equdity. Like the fully separated equilibrium, SE1 requires that road A have higher toll
but lower travel time. Note it is not impossble that N2a=0, if this conditions hagppens to

yield indifference for group 2; but we would expect this only by coincidence.

Case SE2: partially separated equilibrium with group 2 separated. Group 2 strictly
prefers road B, but group 1 is indifferent: (4.58) is an equdity, (4.5b) an inequaity. Again,
road A mugt have a higher toll but is faster. The boundary solution N1g=0 can occur, but

again only by chance.

Case IE: fully integrated equilibrium. Both groups are indifferent between the two
roads; (4.5a-b) both hold with equdities. Since the two groups have different vaues of

time, this can occur only if the roads have equd tolls and equal speeds.

1 Subtracting (4.5b) from (4.5a) and applying (4.1) yields (a; -a,)(Na/Ka)<(a;- a,)(Ng/Kg)¥, which
(given a; >a,and k>0) implies No/Ka<Ng/Kg. This in turn implies c,, <c,z, S0 (4.5b) requires

ta>tp
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4.1.2: Pricing Regimes

We consder the following dterndtive pricing regimes, dso cdled policies.

First-best regime (FB): a public operator charges tolls on both roads that maximize
welfare (4.4). It can be shown that this policy yidds conventiond margind-cost pricing on

each road.

Second-best regime (SB): the same objective is pursued but subject to the congtraint

t 5 =0.

Profit-maximizing regime (PM): t , is chosen to maximize revenues on road A
subject to the congraint t ;=0. (By cdling this “profit-maximizing”, we implicitly assume

there are no variable cogs to the road owner of serving traffic.)

No-toll regime (NT): t ,=t ;=0.

The no-toll regime is determined by solving (4.1)-(4.3) and (4.5) with equdities in
(459 and (4.5b); the solution is assumed to be of the integrated equilibrium (IE) type,
gnce there is nothing to digtinguish the two roadways from each other. (This is in fact the
only regime where |E can occur, due to our assumption of grictly unequa vaues of time)

Each of the other regimes cdls for maximizing ether wdfare, as given by (4.4), or

revenuesté_ L N, , whileimposing congraints (4.5)
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4.1.3: Solutions

We assume that at least some type 1 users use road A and at least some type 2 users

use road B. We consder a congested traffic condition, so the toll charged under a policy

regime is drictly greater than zero. The generd form of the first-best (FB) problem is

therefore:

Ny a*+Nip N2atN2p

maxW = (Rt + Rlt)t- & & N,c,
0 0 i r

st.hy © B(Njy+ Nig )= Ca(Njy + N -t =0
h, © P,(N,, + Nog)- Cop(Njg + N, ) -t =0
h,© NgX{P,- ¢ -t)=0
h, © Npu XP,- Co - t,)=0
9, ° P(N;, +Nyg) - cp(Njg + N, )-t  £0
92 ° Po(N +Nyg)- Cu(Nip + N, )t £0
95° - Ny £0

940 'N2A£O

where P(>) and c(>) are the functions defined by (4.2) and (4.1). Certain congraints are
added for the SB, TB, and PM policy, and the objective function is replaced by toll revenues
in PM policy. Because we assume N, ,, N,; >0, (4.6a-b) are the same as (4.3) of the paper;

(4.6¢-d) are equivdent to (4.5¢-d); (4.6e-f) to (4.5a-b); and (4.6g-h) to (4.5€).
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Suppose | ,,1 ,,I 5,1 ,ae the Lagrangian multipliers for the four equality condrants,
and 9,,9,,9,,9,ae those for the inequality constraints. According to the Kuhn-Tucker
theorem, the necessary condition for the optima solution N° :(NIA,NIB,N;A,N;B),

1 =(0050505), 07 =05 05,95 .9, ) ae

Rw(N*)- él*iNhi(N*)- énggI(N*):o (4.79)
i=1 i=1

g.9,(N)=0,j=1234 (4.7b)

g;30,j=1234 (4.7¢)

g, £0, j=1234 (4.7d)

If congraints (4.6e) and (4.6f) are binding at the same time, the tolls on both routes
must be equa as shown in section 2. This is impossible for SB, TB and PM policy and our
numerica results dso show that this case is never optima for FB policy. As a result, the

possible solution cases for the programming problem are only three:

1.9, =0,9; >0 (SED);
In this case, (4.7c)P g, =0, i.e, (46f) must be binding. This means type 2 users are
indifferent for two routes. Then (4.6€) cann't be binding, i.e, type 1 users srictly prefer road

A and, from (4.6c), N,; =0.

2.9, >0,9, =0 (SE2);

108



In this case, congtraint (4.6€) is binding and congtraint (4.6f) is not binding, and N, = 0.

3.9, =0 and g, =0;
In this case, we can only say (from the argument above) that (4.6€) or (4.6f) or both must be
non-binding, therefore N;; or N,, or both must be zero. Thus there are three solution
cases.

3a. (4.6f) ishinding and (4.6€) isnot; N, =0 (SE1).

3b. (4.6€) is binding and (4.6f) isnot. N, =0 (SE2).

3c. Both (4.6€) and (4.6f) are nonthinding. N, =N, =0 (SE).

In the paper, we divide the programming problem into different cases (SE, SE1, SE2)
and solve each case under each policy. The above classfication shows that the solutions

from these casesinclude al of the possible solutions for the whole problem.

a). FB Policy
Case SE.  Subdtituting N,; =0 and N,, =0 into the wdfare function, the wefare

maximizing problem can be written as

Nia N2g

maXW: (‘)Pl(t)dt+ (‘jDZ(t)dt_ NlA )clA(NlA)- NZB )CZB(NZB)
0 0

The objective function is grictly concave because it equals the sum of four drictly concave

functions. Therefore, the solution to the firg-order conditions must be unique. The optima
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traffic (N,,, N,5) in this case can be solved out from those firg-order conditions. The

corresponding tolls on the two routes, determined by (4.6a-b), are:

t A~ Pl - Ca = NlA XCEA(NlA)O MEClA

tg =P, - Cx =Ny >(:5B(|\123)() MEC,,

The optima toll on each road is equd to the difference between socid and private margind

cost on that road, known as "margind externa cost” MEC, jugt asin asingle-route modd.
Case SE1. Subdgtituting N, = O into the welfare function, we get:

max W =

NlA N2A+N2E!

(‘)Pl(t)dt + (\j:)z(t)dt - NlA >ClA(NlA + NzA)' N2A >C2A(N1A + NzA)' N25C25(N25)
0 0

This objective function is dso drictly concave because it equds the sum of five drictly

concave functions. The corresponding tolls are;

t,= Pl(NlA)' Cia = quA(NlA + NZA)+ NzAC§A(N1A + NZA)O MEC, =P, - C;,

t B = PZ(NZA + NZB)- CZB(NZB) = NZBch (NZB)O MECZB

The tolls are again the differences between socid and private margina costs on each route.

The socid cost on route A includes the users of both groups, the socid cost on route B
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includes just the users of group 2. We dso check the corner solution of N,, =0 in the

smulaion study.

Case SE2: Thiscaseis symmetric to SEL.

b). B Policy

Case SE. The wdfare maximizing problem under second-best pricing policy for the

fully separated equilibrium case can be written as

NlA N2 B

maXW: (\)F?L(t)dt-l- GDZ(t)dt- NlAclA(NlA)- NZBCZB(NZB)
0 0

st. PZ (NZB) = CZB (NZB)

N,; is determined solely by the condraint and numerica results in the paper show that
there is only one postive red solution for N,,. The objective function is a gtrictly concave

function of N,,, S0 if this case can occur, the solution is unique. The corresponding toll on

route A is
t,= NlAC_L(A(NlA)O MEC, ,

This tall is just the difference of socid and private margind cost on that road, the socid cost
including just the usars of group 1. There are no route spill-overs in fully separated

equilibrium: that is, road A istreated just asin the FB policy.
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Case SE1. The corresponding Lagrangian is.

Nia N2a*tN2p

L= (\j:'l(t)dt + d:)z (t)dt - N1AC1A(N1A + NzA)' N2AC2A(N1A + NzA)' stczs (N 2B)
0

0
- | 1[P1(N1A)' ClA(NlA + NZA)' Pz +CZA(N1A + NZA)]
- | 2[P2(N2A + NZB)' CZB(NZB)]

where the congraints (4.6a-b) have been rewritten using (4.6f) as an equdity in order to
diminate t , as a variable. The Lagrangian Multiplier | , represents the shadow price of not

price discriminating on road A, that is, it represents the increase of socid welfare that could
be achieved by charging type-1 users more than type-2 users, since the latter have a sub-

optimally priced subgtitute (road B). This problem can be solved for N, ,, N,,, N5, | 1, and

| 2. Thetoll which decentrdizes the solution dlocation is then determined by (4.6a) as:

PN, c4 X PS¢ cf, +cg,)u
t , = Nj,ch +N,,.c, - é : Pzg)q:_ é@l F/:@ A)Q
é P4 Pef - PRE 4

The toll on route A equds to margind externa cost minus a podtive adjustment term which

depends on the dope of demand function and cost function.

Case SE2. ThelLagrangianis

L=W-I Z[PZ(NZB) - Czs(le + st)] - gl[Pl(NlA + NlB) - ClB(NlB + NZB)]
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where (4.6€) has been used as an equdity with Larangian multiplier g, which represents the

"shadow price' of not being able to price discriminated on road B.

Again, we solve and use (4.6a) to determine the toll on route A as.

é(N4gCfis +Npcss JPIPQ
€ P®Ps- Pogs - Pz 1)

t po =NiaCfa -

The toll here equds to the margina congestion cost plus a adjustment term which depends
on the dopes of the demand and cost functions. When the users are identical, so that

cGg=ctp and PG¢=P¢, this formula reduces to equation (4.2) of Verhoef et d. (1996).

It is difficult to judge andyticdly whether these solution for cases SE1 and SE2 are unique,
because of the non-linear form of the condraints. In the smulaion sudy, we use different
initid vaues to show that in these cases no more than one equilibrium solution can be

found.

c). PM Policy

The maximizing problem here has the same condraints as the ones in the SB policy. The

only different is that the objective function now is.

R= (NlAIPI(NlA)- ClA(NlA + NZA)] + NZA[PZ(NZA + NzB)' CZa(NlA + NZA)]
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Case SE. The solution of this case must be unique because the same reason as SE case in

SB policy. Thetall which maximizes revenueisfound to be:

th= NlA[Cﬁ\(NlA)' Pl(]

The toll is set & margind socid cost plus a monopolistic mark-up which is inversdy rdaed
to the demand dadticity of group 1 (compare Smdl (1992, eg. (4.41))). Equivdently, this
equation can be written as t , + N;,B(=N,,c{,, that is, margind revenue equas margind

cost.

Case SE1. Thetall isfound to be:

é(N, ,P&¢. + N, ,P®PS- N, P&g )P ct +c§,)u
t A — NlAClq:A + NZAch - NlAF)l¢+ é( 2A" 2 ?B 1A' 1Y 2 1A 12% )( 1 C’lA g:A)l:l
é RS- Peg, - 2(P9° + PRy, 0

Again thetoll equas margina congestion cost plus a monopolistic mark-up.

Case SE2. Therevenue-maximizing toll on route A is

éN,, (P4 (Pg- cg,)u
— _ G oAV 2 p
ta NlACFA Ni. P gpl‘épzq:' C%)' Cl% qu%l

Again, the uniqueness of equilibrium solution for case SE1 and SE2 is proved numericadly.
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4.2: Smulation Results
In above modd, time and unreigbility are not disinguished, but can be assumed to
be functionally related. To use the modd with the estimate results in chapter 2, we specify

the full price pir for a user of type i onroadway r to be p, =t, +j T, +d,R,where t is

toll, T is travel-time delay (time less free-flow time), and R is unrdiability. We assume that
for each roadway, R /T, isfixed & a vadue s=0.3785, which is the ratio of the average R
to average T over the 4-hour peak period (5-9 am.) in the unpriced lanes in our floating car

data. Thus p, =t +a T,

r?

where a, =j  +sd,. For j , and d, weusethe VOT and VOR
estimates in table 16 based on RP behavior, taking the two user groups to be represented by
the 75" and 25" percentiles'? This yields values of a, =$40.86/hr , and a, = $17.62/

hr.

The other parameters in cost and demand functions are calibrated to reproduce red
traffic conditions observed on SRI1 in fal 1999. In the cost function, the length of two
routes is 10 miles, and the capacity of toll lanes (route A) is 2000, haf of the one of free
lanes (route B). The free-flow travel time 0.9231 minute per mile given the speed limit of 65
miles per hour. In the demand functions, the parameters are calibrated so that the price
eadticity for the two groups is —0.58, based on the estimate by Yan, Smdl, and Sullivan
(2001) usng Ca Poly data, and the time difference between the toll lanes and the free lanes

is 6 minutes under profit maximizing toll. As a result, the intercepts of demand functions for

12 The third and sixth rows of table 14 show the difference between 75" and 25" percentiles. The percentiles
themselves are: $27.70 and $15.10 for VOT, and $34.79 and $6.66 for VOR.
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group 1 and group 2 people are both 7200, and the dopes of the demand functions for group
1 and group 2 are aout —1.66 and —2.75 respectively. Given these sttings, the profit-

maximizing toll is $4, which is quite plausble

Table 17 shows the smulation results. The first column in this table is the base case,
thet is, there are no talls on both two routes. The fourth column shows the results for firgt-
best pricing policy. Substantid socid welfare gain can be gained by pricing roads optimaly,
however the direct loss in consumers surplus in this case is dso big especidly for people
with lower vaue of time This creates a politicd barrier to implement firg-best pricing on
roads. Given the estimated heterogendty in vaue of time, a politicaly feasble policy %
second-best pricing (the second column) only charging toll on rout A improves socid
wdfae by $0.16 per vehide which is much less efficient than firg-best pricing.
Heterogeneity in preferences increases efficiency of second-best pricing. As shown in the
third column, without heterogeneaty, the socid wdfare gan from second-best pricing is

negligible

Can we find a pricing policy which is as paliticaly feasble as second-best pricing but
with much larger efficiency? To answer this quedion, we resolve the non-linear
programming problem for firg-best pricing (equation (4.6)) but adding a politicad feashility
condrant, that is, the largest consumer surplus loss no greater than that in the second-best
pricing policy shown in the second column. We solve this complicated problem numericaly
by searching in 2dimensond space for the tolls on route A and route B within the range

between zero and first-best tolls. The reaults are shown in the fifth column of Table 17, and
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the tall is cdled as limited differentiated toll. Compared with the fird-best tall, the toll is
lower but more sharply differentiated, and it causes substantially smdler losses in consumer
aurplus for both groups. Furthermore, it narrows the gap between losses in consumer surplus
for the two groups. The socid welfare gain from this policy is more than one third that of

firg-best pricing and much larger than that of second-best pricing.

Catering to heterogeneity is apparently the key to softening the distributiona effects
of more efficient road pricing. Thisisindicated by a*limited uniform toll” policy shownin
the last column of the table, defined to generate the same efficiency gain asthe limited
differentiated toll. It harms the low-VOT group far more than the high-VOT group. Thusif
andyds consider only uniform tolls, they are likdly to find that policymakers pay little

attention to the efficiency gains because of large distributiona disparities.

Traffic on SR91 has increased congderably since 1999. We show the effects of
differentiated pricing with grester congestion by recdibrating the smulation modd to
double the time difference between the lanes that existed in the fal of 1999 (again, assuming
that the operator’ s toll maximizes profit). The results, shown in table 18, indicate that the
welfare gains from dl the policies are more than doubled with increased congestion, yet the
consumer-surplus losses in constrained policies are only about 50 percent greeter. If we
ignore heterogeneity, distributional concerns aso increase as evidenced by the grester
digparity among users groups with the limited uniform toll (last column). But this digparity
isvirtudly diminated by the limited differentia toll. As congestion on mgor highways

continues to grow, the case for accounting for heterogeneity will only strengthen.
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Table 17. Smulation Results— Fall 1999 Traffic Conditions

PRICING REGIME Base case: Second-besttall:  Second-best tall: Firs-best Limited Limited uniform
no toll heterogeneity heterogeneity differentiated differentiated toll
present not present toll toll
Tal:
Express lanes 0 $1.80 $0.97 $4.51 $1.34 $0.78
Regular lanes 0 0 0 $4.18 $0.47 $0.78
Travd time (minutes):
Express lanes 14 11 12 10 12 13
Regular lanes 14 15 14 11 14 13
Consumer surplus?
High-VOT users 0 -$0.45 -$2.41 -$0.44 -$0.40
Low-VOT usars 0 -$0.26 -$2.82 -$0.45 -$0.55
Homogeneous users 0 -$0.23
Socid wefare?
All users 0 $0.16 $0.06 $0.86 $0.28 $0.28

& Consumer surplus and social welfare are measured relative to the no-toll scenario and divided by the number of usersin the no-toll scenario to put themin per capita

terms. Social welfareisequal to the sum of the two groups’ consumer surplus plus revenue, divided by total number of usersin the no-toll scenario.
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Table 18. Simulation Results—Increased Congestion

PRICING REGIME Base case: Second-besttall:  Second-best tall: Firs-best Limited Limited uniform
no toll heterogeneity heterogeneity differentiated differentiated toll
present not present toll toll
Tal:
Express lanes 0 $4.42 $2.68 $8.51 $2.81 $1.43
Regular lanes 0 0 0 $7.93 $0.77 $1.43
Travd time (minutes):
Express lanes 20 14 15 12 16 18
Regular lanes 20 21 20 13 19 18
Consumer surplus?
High-VOT users 0 -$0.71 -$2.66 -$0.68 -$0.54
Low-VOT usars 0 -$0.42 -$3.31 -$0.71 -$0.89
Homogeneous users 0 -$0.38
Socid wefare® 0 $0.48 $0.23 $2.18 $0.67 $0.67
& See the footnotes of Table 5.
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CONCLUSION

This dissertation has applied recent econometric advances to andyze the behavior
of commutersin Southern Cdiforniaand found substantia heterogeneity in commuters
preferences for both travel time and travel time reliability. As expected, commuterswith
higher household income have higher values of time and of rdiability. Additiondly,
commuters with long trip distance have lower vaues of time, which is conggent with
resdentid sdectivity. However, mos of the heterogeneity in commuters' preferences can
not be explained by observed characterigtics. One possible explanation isthat in very
expensve and congested metropolitan areas such as Southern Cadifornia, consumers face

sgnificant condraints in trading off housing expense for commuting time.

Based on asmulation modd and the uncovered heterogeneity, this dissertation
found pricing policies with agreater chance of public acceptance by catering to varying
preferences. Recent “vaue pricing” experiments have made a tart to account for varying
preferences by letting motorists make an option between priced and unpriced roads.
However, as shown in the smulation results of this dissertation, leaving part of roadway
unpriced severdy reduces the efficiency. Differentiated pricing taking preference
heterogeneity into account can redlize substantid efficiency gains on the one hand, and
amdiorate digtributiona concerns on the other hand. Differentiated pricing isaso
politicaly feasible by reducing the direct loss in consumer surplus. This policy may thus

be the key to bresk the impasse in efforts to relieve highway congestion.
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This dissertation aso investigated how to employ the new advances in Bayesian
gpproach for estimating the multinomia probit modd in travel demand andysis
combining different sources of data. Multinomia probit modd has advantages to mode
the correlation across choice aternatives and across observations of different data from
the same individud, and Bayesian approach, aso with theoreticd advantagesin
interpreting results, makes the multinomia probit moddl more feasible to handlein
practice. Bayesian gpproach provides us with anew tool to measure commuters behavior

based on more flexible modd specifications.
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