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ABSTRACT OF THE DISSERTATION 

 

Heterogeneity in Motorists’ Preferences for Travel Time and Time Reliability: 

Empirical Finding from Multiple Survey Data Sets and Its Policy Implications 

 

By 

Jia Yan 

Doctor of Philosophy in Economics 

University of California, Irvine, 2002 

Professor Kenneth A. Small, Chair 

 

The deregulation experience in airline, banking, and telecommunication suggests 

that the heterogeneity in consumers’ preferences has important policy significance. 

However, the varied nature in motorists’ preferences has been hardly recognized in 

urban passenger transportation sector. In this public sector, the public authority 

generally offers a uniform class of services to all potential users. This dissertation 

employs the new advances in econometrics on survey data sets from road pricing 

experiment in Los Angeles area to study the diversity in motorists’ preferences for 

travel time and travel time reliability. The empirical findings are used to explore the 

efficiency and distributional effects of road pricing that accounts for users’ 

heterogeneity.  

 



 xii

This dissertation found substantial heterogeneity in motorists’ preferences for 

both travel time and travel time reliability. Furthermore, based on a simulation model, 

this dissertation found that road pricing policies catering to varying preferences can 

substantially increase efficiency while maintaining the same political feasibility as the 

current experiments. This dissertation also explores how to apply the recent 

developments in Bayesian econometrics to estimate the multinomial probit models 

combining different sources of data, which can be used to estimate the diversity in 

peoples’ preferences with more flexibility in model specification.  
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PREFACE 

 

 This dissertation is based on the findings of several research projects in which I 

was involved. The first is the research project from 1998 to 1999 funded by University of 

California Transportation Center to study the viability of value pricing on roads, in which 

Prof. Kenneth Small is principle investigator. The main findings of this project were 

summarized as a co-authored paper with Prof. Small, “The Value of Value Pricing of 

Roads: Second-Best Pricing and Product Differentiation”, published in Journal of Urban 

Economics. Parts of contents of this paper appear in Chapter 4 of this dissertation. The 

second research project is the one from 1999 to 2001 funded by University of California 

Transportation Center and Brookings Institution to investigate the heterogeneity in 

motorists’ preferences, in which Prof. Small and Dr. Clifford Winston at Brookings 

Institution are principle investigators. This project is the basis for the paper, “Uncovering 

Motorists’ Preferences Using Revealed and Stated Preference Data”, which is co-

authored with Prof. Small and Dr. Winston and appears in Chapters 1 and 2 of this 

dissertation.  

 

During the revisions and modifications for this paper, I enriched the data sample 

by combining it with another data set collected by researchers at California Polytechnic 

State University at San Luis Obispo, under the leadership of Edward Sullivan, and with 

participation by Prof. Small and me. Additionally, I added some new policy simulations 

based on simulation model developed in the paper published in Journal of Urban 

Economics. The final version of the co-authored paper, with the title of “Uncovering the 
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Distribution of Motorists’ Preferences for Travel Time and Reliability: Implications for 

Road Pricing”, has been submitted for publication and parts of its contents appear in 

Chapters 2 and 4 of this dissertation.  

 

Chapter 3 of this dissertation is drawn from  work my own, in which I use 

Hierarchical Bayesian Analysis to estimate the heterogeneity in peoples’ preferences on 

combined data sets. 
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INTRODUCTION 

 

The experience with deregulation in airline, telecommunications, and banking has 

taught us the variety of consumers’ preferences. Firms in these industries have learned to 

succeed in tough competition by offering a variety of prices and services that respond to 

different desires held by consumers (Winston, 1998). During this process, they have 

increased capacity, exploited niche markets, and learned to price discriminate. These 

results at least suggest that the heterogeneity in preferences has great policy significance 

in these industries. 

 

Road transportation is not a typical market. In this public sector, the public 

authority generally offers a uniform class of service to all potential users. However, like 

customers in other industries, motorists may have different preferences. For example, 

some motorists might be willing to pay large amount to use express roadways that ensure 

little delay, while others may be willing to pay a modest fee to achieve this purpose. A 

uniform class of service in this case can not satisfy all road users. 

 

Recently a few tentative steps have been taken toward catering to heterogeneity in 

motorists’ preferences. In the Los Angeles, San Diego, and Houston areas some motorists 

now can make a choice between a free but congested roadway and a priced but free-flowing 

roadway. At the same time, researchers are increasingly recognizing the role of 

heterogeneity among people in understanding real transportation policies. For example, 

recent papers have highlighted the role of the heterogeneity in motorists’ preferences for 
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time saving in understanding the politics and economics of road-pricing demonstration 

projects. Schemanske (1991, 1993), and Arnott et. al. (1992) show that with heterogeneous 

users, differential tolls on separate roadways may be superior to single toll.  Verhoef and 

Small (2000), and Small and Yan (2001) show that the heterogeneity in value of time is 

important for evaluating congestion policies that offer pricing as an option, such as the three 

experiments in Los Angeles, San Diego, and Houston. Generally, the existence of 

heterogeneity favors these experiments because product differentiation then offers a greater 

advantage: those with high value of time reap more benefits from the high-priced option, 

while those with low value of time find it all the more important not to be subjected to 

policies aimed at the average users. 

 

Very little research has focused on measuring the heterogeneity in motorists’ 

preferences, including their willingness-to-pay for saving travel time and reducing travel 

time unreliability on roads, which are also called as value of time and of reliability 

respectively. Previous studies on measuring value of time used in travel concentrated on 

using data from peoples’ actual choice (revealed preference (RP) data) for transportation 

mode. These measures can not represent motorists’ value of time, because they capture 

the disutility that people attach to spending time on public transit. Additionally, although 

some of them have addressed the heterogeneity of people in value of time to some extent, 

they mainly focused on how the value of time varies with observed characteristics, such 

as income, trip purpose and travel mode  (MVA consultancy et. al., 1987). Some recent 

studies have used hypothetical situations to obtain estimates more closely reflecting the 

value of time during automobile travel (Calfee and Winston, 1998; Calfee, Winston, and 
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Stempski, 2001); these are called stated preference (SP) studies. The stated preference 

studies are hampered by a doubt as to whether the behavior in hypothetical situations 

applies when motorists are confronted with similar choices in practice. Value of 

reliability is still a quite new topic and almost all the existing studies in this topic are 

based on stated preference data. 

 

The three road pricing experiments in Los Angeles, San Diego, and Houston 

provide us the opportunity to investigate the heterogeneity in motorists’ preferences in an 

automobile-dominate environment. Some researchers have used the revealed preference 

data from these experiments to investigate motorists’ choice behavior on route, time-of-

day, and mode choice. Parkany (1999) and Li (2001) used data collected in the 1997 and 

1996 from Los Angeles road pricing experiment (California Sate Route 91—i.e. SR91) 

respectively to examine the determinants of SR91 toll lane use. Parkany especially 

focused on studying how travelers use traffic information to make route choice. Based on 

newly collected data in November of 1999, Yan et. al. (2002) modeled travelers’ choices 

of route, time-of-day, and mode on SR91, and different travel demand elasticities were 

calculated based on estimate results. They also estimated SR91 commuters’ value of 

time, which is in the range of $13 - $16 per hour. Lam and Small (2001) used data 

collected in the summer of 1998 on SR91 to measure travelers’ willingness to pay to 

reduce both travel time and travel time uncertainty. Their estimated value of time is 

between $5 and $25 per hour, depending on different models. The most reliable model 

gives the estimate of $23 per hour for value of time. The travel time unreliability in Lam 

and Small’s research is defined as the difference between 90th percentile and median of 
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the distribution of travel time. Their best model shows that male would like to pay $15 

per hour and female would like to pay $32 per hour to reduce this uncertainty in travel 

time.  

 

Several researchers have modeled travel choice behavior using data from other 

locations. Using data from Interstate 15 (I15) road pricing experiment near San Diego, 

Brownstone et. al. (2000, 2001) estimated travelers’ value of time and value of reliability. 

As in Lam and Small, travel-time unreliability is defined as the difference between 90th 

percentile and median of travel time distribution. Their data shows that the value of time 

is between $25 and $30 per hour, and value of reliability is about $20 per hour. Ghosh 

(2001) compared the value of time estimates from I15 revealed preference data with ones 

from sated preference data also on I15 users. His results show that revealed preference 

data always gives higher estimates for both value of time and value of reliability.  

 

 Among above studies, only Ghosh (2001) investigated both the observed and 

unobserved heterogeneity in values of time and of reliability. He estimated heterogeneity 

in values of time and of reliability using RP and SP data respectively, and found 

substantial unobserved heterogeneity in SP data. Lam and Small (2001) addressed this 

issue to the extent that values of time and of reliability vary with income, trip distance, 

and gender.  

 

This thesis is to investigate systematically the heterogeneity in motorists’ values 

of time and of time reliability, as well as implications of the heterogeneity to road pricing 
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policies. It uses two survey data sets from SR91 road pricing experiment in estimation. 

The first one is a two-stage mail survey collected by Brookings Institution including both 

RP and SP surveys. The other one is a phone RP survey collected by researchers at 

California Polytechnic State University at San Luis Obispo (Cal Poly). Many 

econometric advances are used in this thesis, and they make it possible to address the 

following issues regarding the nature of motorists’ preferences. 

 

 Unobserved Heterogeneity. Unobserved heterogeneity in preferences is the one 

that can not be explained by observed characteristics, and it can be captured by discrete 

choice models with random parameters. This thesis uses mixed-logit specification, which 

extends the stochastic part of random utility into two parts, one capturing unobserved 

heterogeneity in preferences, one with the extreme distribution standard for logit models. 

Mixed logit model can be estimated using Simulated Maximum Likelihood Estimation. 

 

Revealed and Stated Preferences. Both RP and SP data have drawbacks. RP data 

from road pricing experiments is often hindered by strong correlation among key 

variables – travel time, money cost, and time reliability. SP data overcomes this problem, 

because the correlation among variables is controlled by researchers. However, SP data 

only represents peoples’ choice behavior under hypothetical settings. The doubt about 

whether it can represent peoples’ choice behavior in real world is reasonable. This thesis 

combines the advantages of these two types of data to investigate the heterogeneity in 

motorists’ preferences. 
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Reliability. Travel time reliability is a critical influence on any mode and route 

choice, but it is hard to measure. In this thesis, the travel time reliability is specified in SP 

survey questions. Furthermore, this thesis uses non-parametric quantile regression on data 

from actual driving conditions to develop feasible travel time reliability measure for RP 

data. 

 

Chapter 1 of this thesis is to summarize past literatures addressing above issues, 

describe SR91 road pricing experiment in Los Angeles area, the survey data used in 

estimation, as well as how to obtain measures of travel conditions facing survey 

respondents in revealed preference data.  

 

In Chapter 2, this thesis uses the revealed preference and stated preference data 

collected by Brookings Institution, as well as the revealed preference data collected by 

Cal Poly to estimate the heterogeneity in both value of time and value of reliability. 

These data can be combined in estimation, as we will see, because they are from the same 

population and were collected at the same time. Binary choice models modeling 

motorists’ route choice behavior—whether to take SR91 toll lanes, are used to uncover 

the distribution of their preferences for time saving and travel time unreliability. Both the 

observed heterogeneity, which can be explained by observable individual characteristics, 

and unobserved heterogeneity, which arises from unobserved personalities, are 

investigated.  
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In Chapter 3, this thesis proposes a Bayesian approach of combining RP and SP 

data sources to estimate the heterogeneity in peoples’ preferences based on probit model. 

Up to now, all studies combining RP and SP data have been based on logit model and 

classical estimation method. The reasons are the computational conveniences associated 

with logit model and testing difference between RP and SP choice processes using 

classical statistic method. This chapter shows that how the recent developments in 

Bayesian analysis for multinomial probit model can be used in combining RP and SP data 

to estimate probit model capturing unobserved heterogeneity in peoples’ preferences, and 

in testing difference between RP and SP choice processes. 

 

Chapter 4 shows how the estimated heterogeneity in motorists’ preferences affects 

both the efficiency and political feasibility of various congestion pricing policies. The 

studies in this chapter are based on a simulation model developed by Small and Yan 

(2000). This chapter extends Small and Yan’s study in the following ways. First, it 

evaluates various proposed congestion pricing policies using “real” heterogeneity in 

travelers’ preferences. Second, based on estimated heterogeneity in Chapter 2, it tries to 

find congestion policies which are both efficient and politically feasible. Efficiency and 

political feasibility are in the sense that these policies generate nontrivial social welfare 

gain on the one hand, and introduce tolerable direct loss in consumer surplus as well as 

eliminate distribution disparities among people with different preferences on the other 

hand. 
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CHAPTER 1 

Literature Review, Description of California State Route 91 (SR91) 

Road Pricing Experiment, and Data Used in Estimation 

 

1.1: Literature Review 

 

 The literature review can be divided into three parts, literature on modeling 

peoples’ heterogeneity, literature on combining different sources of data in discrete 

choice modeling, and literature on measuring travel time reliability on highway. 

 

1.1.1: Literature on modeling heterogeneity in preferences 

 

 For most applications to measure consumers’ heterogeneity, the data is limited 

and provides little individual-level information. For example, in travel demand modeling, 

it is much harder to observe one individual’s choices over a long time period than to 

observe multiple individuals’ choices in a short time range.  As a result, the fixed-effects 

method to model heterogeneity is almost impossible, because it requires large size on 

individual level observations. Literature on modeling heterogeneity in preferences mostly 

relies on random-effects discrete-choice model developed by Heckman (1981), in which 

individual level parameters are viewed as stochastic, and their distributions may be 

conditional on individual characteristics. The part of distributions explained by observed 

individual characteristics is called observed heterogeneity in preferences, and the 

remaining pure random part is called unobserved heterogeneity in preferences. 
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 Researchers have developed discrete choice models with random parameters 

based on both logit and probit model to investigate varied nature in consumers’ 

preferences. The logit model with random coefficients or random components is also 

called mixed logit (as described by McFadden and Train (2001)). Procedures for 

estimating discrete choice models with random parameters have been developed in both 

classical and Bayesian framework. The classical method is based on Simulated Maximum 

Likelihood Estimation (SMLE) developed by Lee (1992), and Hajivassiliou and Ruud 

(1994). Revelt and Train (1998) began to employ SMLE for mixed-logit model. SMLE 

can be also used on multinomial probit model with random parameters based on GHK 

probit simulator developed by Geweke (1989), Hajivassiliou (1990) and Kean (1990). 

The Bayesian approach for estimating multinomial probit model has been developed by 

Albert and Chib (1993), McCulloch and Rossi (1994), Allenby and Rossi (1998), and 

McCulloch, Polson, and Rossi (2000). Their method can be easily extended to estimate 

multinomial probit models with random parameters by Hierarchical Bayesian analysis.  

 

 Based on developed estimation method for the mixed-logit model, Revelt and 

Train (1998) modeled households’ choices of appliance efficiency level. Brownstone and 

Train (1999) forecast new product penetration with flexible substitution patterns. Bhat 

(2000) estimated both the observed and unobserved diversity in preferences in urban 

work travel mode choice modeling.  
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 Based on Hierarchical Bayesian Analysis, Ainslie and Rossi (1998) investigated 

similarities in choice behavior across product categories. Allenby and Rossi (1999) 

measured the heterogeneity in consumers’ brand choice. 

 

1.1.2: Literature on Combining Different Sources of Data in Discrete Choice 

Modeling 

 

 Traditionally, empirical studies on individual’s choice behavior rely on data from 

peoples’ actual choice behavior, i.e., revealed preference data (RP). However, as 

Hensher(1999) summarized, there are compelling reasons to use data from peoples’ 

choices under hypothetical settings, i.e., stated preference data (SP). For example, 

forecasting demand for new products with attributes unobserved in real market must use 

stated preference data. In travel demand modeling, the key variables, such as money cost, 

travel time, and travel time reliability, in revealed preference data are likely to be highly 

correlated, which leads to identification problem in estimation. SP data, in which the 

correlation between variables can be well controlled, is necessary in this case. The main 

drawback of SP data is that it can not overcome the doubt that the behavior exhibited in 

hypothetical situations may not apply to real choices.  

 

 Ben-Akiva and Morikawa (1991) proposed an estimation method combining RP 

and SP data from the same respondents to estimate multinomial logit model. This 

methodology can improve the efficiency in estimation, correct the possible bias in SP 

responses, and identify individual-level parameters that can hardly be identified from RP 
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data only. The basic idea of this methodology is to assume that some parameters can be 

combined to be the same across RP and SP data, and control for the difference in the two 

data generating processes at the same time. The differences in RP and SP data generating 

processes are represented by letting some parameters be different across RP and SP data, 

and assuming that the error terms in RP and SP random utility functions have different 

variances, although they are still independent Gumbel distributions. In estimation, the 

variance of SP error is re-scaled by a scale parameter to be the same as the variance of RP 

error. Since the variances themselves are not identified in discrete choice models, the 

variance of RP error is normalized and the scale parameter, along with other parameters 

representing peoples’ preferences, are estimated.  

 

 The estimation methods for joint RP and SP multinomial logit model include 

simultaneous estimation developed by Ben-Akiva and Morikawa (1991), Hensher and 

Bradley (1993), and Bhat (1995), and sequential estimation developed by Swait and 

Louviere (1993). Morikawa (1994), and Bhat and Castelar (2002) also discussed 

incorporating and estimating the correlation between RP and SP observations from one 

individual in joint RP/SP modeling. 

   

 The methodology of combing RP and SP data can be used to combine, compare, 

and test process differences in sources of data, not only for RP and SP data, but also for 

RP and RP, as well as SP and SP data. The null hypothesis that parameters representing 

preferences are the same across data sources can be tested by likelihood-ratio test, as 
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proposed by Swait and Louviere (1993); Louviere, 1993; Bradley and Daly, 1994; Swait 

and Adamowicz (1997). 

 

 In practice, Adamowicz, Louviere, and Williams (1994) combined RP with SP 

data to study how people value environmental amenities. Brownstone, Bunch, and Train 

(2000) combined RP and SP to model consumers’ choices for alternative-fuel vehicles.  

 

1.1.3: Literature on Measuring Travel Time Reliability on Highway 

 

 The measures of travel time reliability here mean the measures for day-to-day 

variability of travel time. They are hard to get in most empirical studies, most of which 

have to rely on sated preference data to study the effects of travel time reliability on 

travelers’ choice behavior. The new technology advancements make it possible to use 

data from real traffic conditions to construct measures for travel time reliability 

nowadays. Traffic data from loop-detectors embedded in highways provides useful 

information on travel time reliability. Kazimi et al. (2000), Lam (2000), and Ghosh 

(2001) both used loop detector data covering their research corridors within two months 

to estimate the sample percentiles of travel time on the roads. Different measures for 

travel time reliability can be constructed either using variance of travel time or using the 

distance between upper percentiles and the median.  In their travel choice models, the 

difference between 90 percentile and median of travel time works well as measure of 

travel time reliability.  However, as Brownstone et. al. (2000) pointed out,  loop-detector 

data is likely to give inaccurate estimates for actual travel time on roads. To correct the 
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measurement error in loop detector data, they also collected floating-car data, which was 

collected by driving cars along the corridor for many times over 5 days and is thought as 

the most accurate measure for travel time. The limited size floating card data was then 

used to construct an imputation model, in which the relationship between floating car 

data and loop detector data was estimated. The floating car data outside the five-day 

period was predicted based on the imputation model, and measures of travel time 

reliability were then constructed using predicted floating car data. 

 

 Cohen and Southworth (1999) proposed another procedure of measuring travel 

time reliability.  They first constructed a model based on queue theory representing the 

delays due to highway incidents, which are main factors of causing travel time 

uncertainty. The real incident data from highways was used to fit their model based on a 

microsimulation model. In their final results, both the mean and variance of travel time 

can be expressed as the functions of volume to capacity ratio, and the specific functional 

forms depend on designed capacity of hiways. 

 

1.2: Empirical Setting 

 

 This thesis investigates the heterogeneity in motorists’ preferences for travel time 

and travel time reliability based on California State Route 91 (SR91) road pricing 

experiment in Los Angeles area. 

 

1.2.1: Brief Description of SR91 Road Pricing Experiment 
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 SR91 connects rapidly growing residential areas in Riverside and San Bernadino 

Counties to job centers in Orange and Los Angeles Counties. It had been one of the most 

heavily congested freeway corridors of California. In December 1995, four new toll lanes 

opened in the median of the existing facility (16 kilometers in length), built and operated 

by a private company. This results in two toll lanes (called the 91 Express Lanes) and 

four free lanes in each direction. To use the Express Lanes, a vehicle must have a 

transponder to pay tolls electronically. Tolls vary over time based on a preset toll 

schedule and they are set by the private company to maximize its profit subject to a 

maximum rate-of-return constraint. Vehicles with three or more occupants pay only half 

the published toll. Table 1 and Table 2 show the toll schedules in 1999 and summer of 

2000, which is the time periods covered by this thesis, on Westbound of SR91 (for 

morning commuters) over morning peak period because this thesis focuses on morning 

work trips. As showed, the toll schedules are almost the same across days except for 

some time slots on Monday and Friday 

 

Table 1. Toll Schedule on Westbound in 1999 
 Monday Tuesday Wednesday Thursday Friday 

4-5 am   $1.65   

5-6 am 
 

  $2.90   

6-7 am 
 

  $3.00  $2.90 

7-8 am 
 

  $3.25   

8-9 am 
 

$3.00  $2.90   

9-10 am 
 

  $1.95   
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Table 2. Toll Schedule on Westbound in Summer of 2000 

 Monday Tuesday Wednesday Thursday Friday 

4-5 am   $1.65   

5-6 am 
 

  $2.90   

6-7 am 
 

  $3.00  $2.90 

7-8 am 
 

  $3.30  $3.00 

8-9 am 
 

$3.10  $3.00  $2.90 

9-10 am 
 

  $2.25   

 

 

1.2.2: Survey Data 

 

This thesis employs two survey data sets in analysis. The first one is a telephone 

RP survey composed of SR91 commuters obtained by random-digit dialing and observed 

license plates on the SR91 corridor. The survey was conducted in November of 1999 by 

researchers at California Polytechnic State University at San Luis Obispo. The 

respondents in this survey were asked about their most recent trip on a Monday through 

Thursday during the morning peak (4-10 am). These questions concern route choice (91 

express lanes and free lanes), time of commute, trip distance, vehicle occupancy. The 

respondents were also asked to provide various personal and household characteristics, as 

well as whether they have flexible work arrival time. In latter analysis, this data is called 

as Cal Poly data and the sample size of this data is 438 respondents. 
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The second sample is a two-stage survey collected by Brookings Institution 

(Brookings), including both RP and SP elements. For Brookings sample, a market research 

firm, Allison-Fisher, Inc., conducted the survey using members of two nationwide 

household panels, National Family Opinions and Market Facts.  An advantage of this setup 

is that background information was already on file from these panels, so our questionnaires 

could be briefer and avoid sensitive questions like income.  First, the firm sent a screener 

survey to identify people who used the road in question for its full length, so that they would 

have the option of using either route. Those respondents who answered positively were then 

sent a questionnaire which asked them to report on their daily commute for an entire week, 

on which they provided the same information as described in Cal Poly data.  By asking 

about their choice on up to five weekdays, we create the opportunity to investigate whether 

commuters alter their route choices from day to day depending on travel conditions and their 

schedules. 

 

People who returned the RP survey were also given a stated preference (SP) 

survey in which they were presented with eight hypothetical commuting “packages” that 

included the toll, travel time, and travel-time reliability of a trip both on the express lane 

and the free lane.  In each case they were asked to indicate which lane they would 

choose. Figure 1 shows an illustrative scenario and totally there are eight hypothetical 

commuting scenarios. Respondents who indicated that their actual commute was less 

(more) than 45 minutes were given scenarios that involved trips ranging from 20-40 (50-

70) minutes.   
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Free Lanes Express Lanes 

Usual Travel Time: 
25 minutes 

Usual Travel Time: 
15 minutes 

Toll: 
None 

Toll: 
$3.75 

Frequency of Unexpected Delays 
of 10 minutes or more: 

1 day in 5 

Frequency of Unexpected Delays 
of 10 minutes or more: 

1 day in 20 

Your Choice (check one): 

Free Lanes   Toll Lanes  

 
                    Figure 1. Illustrative Scenario of Brookings SP Survey 

 

It turned out that many people who said they had a lane choice did not, and some 

others failed to complete the survey. Thus the survey had to be conducted three waves of 

potential respondents--in December 1999, July 2000, and September 2000--to assemble an 

adequate sample.  The final Brookings sample consists of 89 respondents providing 385 

daily observations about actual behavior (RP), and 74 respondents providing 577 separate 

observations about hypothetical behavior (SP).  The subsamples of 89 RP and 74 SP 

respondents include 52 people in common who answered both surveys. 

 

Table 3 shows the summary statistics of these survey samples. Values for the 

Brookings data are broadly consistent with population summary statistics, indicating that we 

have a representative sample.1  The median household income (assigning midpoints to the 

                                                 
1 The distributions of the RP sample’s commuting times and route share are close to the ones in 1998 
survey data collected by University of California at Irvine (Lam and Small (2001)) and 1999 survey data 
collected by California Polytechnic State University at San Luis Obispo (Sullivan et al. (2001)). The 
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income intervals) is $46,250.  We estimate the average wage rate to be about $23 per 

hour.2 The Brookings sample contains information for multiple days and indicates that 

inertia is a powerful force in route choice behavior because 87 percent of the RP 

respondents made the same choice every day during the survey week.  In fact, about half of 

the Brookings RP respondents do not have a transponder and thus have committed to not 

choosing the express lanes on any of our survey days. 

 

The Cal Poly sample’s route shares, commuting patterns, respondents’ age and 

sex, and so on are closely aligned with the Brookings sample.  Respondents in the Cal 

Poly sample do have higher household incomes and shorter trip distances than the 

Brookings respondents; apparently the Brookings sample drew from a wider geographical 

area including people who reside in lower-priced housing. 

                                                                                                                                                 
socioeconomic data are consistent with Census information, and diverge where appropriate.  For example, 
our median income (approximately $46,250) is higher than the average income in  the two counties where 
our respondents lived ($36,189 in Riverside County and $39,729 in San Bernardino County in 1995, as 
estimated by the Population Research Unit of the California Department of Finance). But this should be 
expected because our sample only includes people who are employed and commute to work by car.  The 
median number of people per household (which can be expected to be stable across time) is 2.81 and 3.47 
in our RP and SP subsamples  respectively; these are not far from the 1990 Census figures of 2.85 for 
Riverside County and 3.15 for San Bernardino County. 
 
2 Data from the US Bureau of Labor Statistics (BLS) for the year 2000 record the mean hourly wage rate by 
occupation for residents of Riverside and San Bernardino Counties. We combine the BLS occupational 
categories into six groups that match our survey question about occupation, then assign to each person in 
our sample the average BLS wage rate for the appropriate occupational group. We then add 10 percent to 
reflect the higher wages likely to be attracting these people to jobs that are relatively far away. 
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Table 3. Descriptive Statistics of Survey Samples 

 Value or Fraction of Sample 
 Cal Poly-RP Brookings-RP Brookings-SP 
Route Share:    
     91X 0.26 0.25  
     91F 0.74 0.75  
One-Week Trip Pattern:    
     Never Use 91X  0.68  
     Sometimes Use 91X  0.13  
     Always Use 91X  0.19  
Percent of Trips in Each Time Period:    
     4:00am-5:00am 0.11 0.15  
     5:00am-6:00am 0.22 0.13  
     6:00am-7:00am 0.23 0.26  
     7:00am-8:00am 0.20 0.21  
     8:00am-9:00am 0.14 0.15  
     9:00am-10:00am 0.10 0.10  
Age of Respondents:    
     <30 0.11 0.12 0.10 
     30-50 0.62 0.62 0.64 
     >50 0.27 0.26 0.26 
Sex of Respondents:    
     Male 0.68 0.63 0.63 
     Female 0.32 0.37 0.37 
Household Income ($):    
     <40,000 0.14 0.23 0.24 
     40,000-60,000 0.24 0.60 0.59 
     60,000-100,000 0.40 0.15 0.13 
     >100,000 0.22 0.02 0.04 
Flexible Arrival Time:    
     Yes 0.40 0.55 0.50 
     No 0.60 0.45 0.50 
Trip Distance (Miles):    
     Mean 34.23 44.76 42.56 
     Standard Deviation 14.19 28.40 26.85 
Number of People in Household:    
     Mean 3.53 2.91 3.44 
     Standard Deviation 1.51 1.63 1.55 
    
Number of Respondents 438 89 81 
Number of Observations 438 385 633 
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1.2.3: Estimating Travel Time and Reliability for RP Sample 

 

To estimate the demand models using revealed preference (RP) data, we need the 

most accurate possible measures of the travel time and reliability faced by each traveler in 

our survey, for either route.  These differ greatly, of course, by time of day.  They may differ 

by day of the week as well, but that variation is smaller and would require extensive data 

collection to measure accurately, so it is not considered here. Our task is simplified by the 

findings of Sullivan et al. (2000), confirmed by our own observations, that travel time is 

essentially constant on the Express Lanes. 

 

This thesis is to use actual field measurements of travel times taken at many 

different times of day over the six-hour morning period covered by survey data. Our strategy 

furthermore assumes that for any given time of day (such as 7:42 a.m.), the travel times 

observed are random draws from a distribution which is known to travelers through their 

past experience.  By assuming that travelers' decisions depend on "travel time" and 

"reliability", what we mean is that travelers pay attention to the central tendency of this 

distribution and its dispersion.  For central tendency, a plausible measure is either the mean 

or the median; the mean is most consistent with prior studies on value of time.  For 

dispersion, there are a number of plausible measures; two that have been used in past studies 

are (a) the standard deviation and (b) the difference between the 90th and 50th percentiles. 

The latter difference is appropriate if what concerns travelers the most about reliability is the 

potential for occasional significant delays, meaning they care more about the right-hand side 
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of the distribution than its left-hand side; since the distribution turns out to be highly 

assymetric, this seems a priori a better variable than the standard deviation. 

 

The importance of reliability to the traveler depends critically on information. 

Noland and Small (1995) show that the dependence of utility on reliability can be derived 

from a more primitive formulation in which the traveler optimizes departure time in order 

to minimize the expected costs of travel and schedule mismatches. The more information 

the traveler has before choosing the departure time, the smaller the resulting expected 

costs. Furthermore, empirical estimates by Noland et al. (1998) suggest that these 

scheduling considerations account for virtually all the observed impact of reliability on 

choice. Thus if the traveler could learn the exact travel time early enough to reoptimize 

departure time accordingly, reliability would have little effect; however, empirical 

evidence suggests that in most situations travelers are far from having this capability. 

 

On the facility in question, there is no sign before the express lane entrance with 

traffic information. Previous surveys described by Parkany (1999) suggest that whatever 

information travelers have about conditions that day is mostly acquired en route through 

radio reports, and thus has limited value to them. Furthermore, based on our experience 

in field measurements, congestion on the 10-mile trip is only weakly correlated with 

congestion encountered before the entrance of toll lanes. Rather, unexpected delays on 

the free lanes often occur within a one-mile segment just before the end of the toll lanes, 

due to a busy entrance there and a lot of lane changing just upstream of a major freeway 

intersection. 
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We therefore assume that travelers have no information, other than the 

distribution of travel times across days, about the travel time on a given day. To the 

extent this assumption is wrong, we will tend to overestimate VoR and underestimate 

VoT because some travelers who we think are deterred by unreliability may actually be 

deterred by the travel time itself, which unbeknown to us they can observe or estimate. 

 

Our field measurements consist of floating-car data, collected by driving along the 

road with a stopwatch and clipboard.  

 

We noticed that there was no congestion on the express lanes at any time during 

the ten days when data were collected by us.  We therefore approximate the travel time 

on the express lanes at all times by the travel time we observe on the free lanes when 

there is no congestion (for example, at 4:00 am).  For the location covered by our 

measurements, this travel time is 8 minutes, corresponding to a speed of 75 miles per 

hour.  

 

Floating-car data measuring travel times on the free lanes were collected on 

eleven days. The first day's measurements were collected by the California Department of 

Transportation (Caltrans) on October 28, 1999. The other measurements were collected 

by us on July 10-14 and Sept. 18-22, 2000, which are exactly the time periods covered by 

two later waves of the Brookings survey. 
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Data were collected from 4:00 am to 10:00 am on each day, for a total of 210 

observations yi  of the travel-time savings from using the express lanes at times of day 

denoted by xi, i=1,…210.  Our objective is to estimate the mean and quantiles of the 

distribution (across days) of travel time y conditional on time of day x. To do so, we use 

non-parametric methods of the class of locally weighted regressions.  In these methods, the 

range of the independent variables (in our case, just one variable) is divided arbitrarily into a 

grid, and a separate regression is estimated at each point of the grid.  In our case, there is just 

one variable, x.  For given x, the regression makes use only of observations with xi near x, 

the importance of each being weighted in a manner that declines with |xi-x|.  The weights are 

based on a kernel function K(•), and how rapidly they decline is controlled by a bandwidth 

parameter h; typically only observations within one bandwidth of x get any positive weight. 

 

The specific form of locally weighted regression we use is known as local linear fit.  

For each value of x, it estimates a linear function yi = a + b(xi-x) + ε i in the region [x-h, x+h] 

by minimizing a loss function of the deviations between observed and predicted y. 

Denote the p-th quantile value of y, given x, by qp(x).  Its estimator is then: 

 

             ( ) ( )[ ] ( )[ ]∑
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where gp(t) is the loss function.  Similarly, denoting the mean of y given x by m(x), its 

estimate is given by the same formula but with subscript p replaced by m.  
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In the case of mean travel-time savings, we use a simple squared-error loss function, 

( ) 2ttgm = , in which case equation (1.1) becomes the local linear least square regression.  

In the case of percentiles of travel-time savings, including the median, we follow Koenker 

and Bassett's (1978) suggestion and use the following loss function, which is asymmetric 

except for the median (p=0.5): 

  

                            ( ) ( ){ } 2/12 tpttg p −+=                                 (1.2) 

 

With this loss function, equation (1.1) defines the local linear quantile regression (Yu and 

Jones, 1997).  It can be shown that the estimated percentile values converge in probability to 

the actual percentile values as the number of observations n grows larger, provided the 

bandwidth h is allowed to shrink to zero in such a way that ∞→nh . In the case of the 

median (p=0.5), this is a least-absolute-deviation loss function, and therefore the estimator 

can be thought of as a non-parametric least-absolute-deviation estimator. 

 

The choice of kernel function has no significant effect on our results. We use the 

biweight kernel function, which has the following form: 

             

                           ( ) ( )221
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and is zero for |u|>1. 
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The choice of bandwidth, however, is important. We first tried the bandwidth 

proposed by Silverman (1985): 
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where d is the difference between the 75th and 25th percentile of x . This bandwidth turns 

out to be about 0.5 hour for our data. However, there is rather extreme variation in our 

data at particular times of day, especially around 6:00 a.m., due to accidents that occurred 

on two days around that time.  While these accidents are part of the genuine history and 

we want to include their effects, they produce an unlikely time pattern for reliability 

when used with the bandwidth defined by equation (1.4) -- namely, one with a sharp but 

narrow peak in the higher percentiles around 5:30 a.m., followed by the expected broader 

peak centered around 7:30 a.m. We therefore increased the bandwidth to 0.8 hour in 

order smooth out this first peak. 

 

The estimate results are shown in Figures 2 and 3.  Figure 2 shows the raw field 

observations of travel-time savings.  The non-parametric estimates of mean, median, and 

80th percentile are superimposed.  Median time savings reach a peak of 5.6 minutes 

around 7:15 a.m. 

 

 Figure 3 shows the same raw observations after subtracting our non-parametric 

estimate of median time savings by time of day. An interesting pattern emerges. Up to 

7:30 a.m., the scatter of points is reasonably symmetric around zero with the exception of 



 28

three data points. But after that time the scatter becomes highly asymmetric, with 

dispersion in the positive range (the upper half of the figure) continuing to increase until 

after 8:00 a.m. while dispersion in the negative range decreases. This feature is reflected 

in the three measures of dispersion, or unreliability, that are also shown in the figure: the 

standard deviation and the 80th-50th and 90th-50th percentile differences. The standard 

deviation peaks at roughly 7:45 a.m., the other two between 8:15 and 9:30.  The reason 

for these differences is that traffic in the later part of the peak is affected by incidents 

occurring either then or earlier. This mostly affects the upper tails of the distribution of 

travel-time savings and so is most apparent in the percentile differences. The standard 

deviation, by contrast, is higher early in the rush hour because of days with little 

congestion—showing up as negative points in Figure 2.  Such dispersion is probably less 

relevant to travelers than dispersion in the upper tails, leading us to prefer the percentile 

differences as reliability measures. These measures are also considerably less correlated 

with median travel time than is the standard deviation.  In our estimations, we obtained 

the best statistical fits using the 80th-50th percentile difference.3 

 

                                                 
3 In our RP and joint RP/SP models, the 90th-50th percentile difference fit almost as well as the 80th-50th  

difference (in terms of log-likelihood) and resulted in similar coefficient estimates.  The 75th-50th percentile 
difference, an additional measure, and the standard deviation fit noticeably less well and gave statistically 
insignificant results for the reliability measure. 
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Figure 2. Time Saving 
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Figure 3. Dispersion of Time Saving 
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CHAPTER 2 

Uncovering the Distribution of Motorists’ Preferences for Travel Time and Time 

Reliability 

 

All empirical results in this thesis are based on discrete choice models, which can 

be derived from a conditional indirect utility function (which may represent expected 

utility after optimizing over choice of time of day to start the trip) for user i considering 

option j. This function is of the general form: 

 

                                                   ijijij xU εβ +=                                                         

 

where β  is a coefficient vector, xij is a vector of independent variables (which may 

include alternative-specific constants and user characteristics interacted with travel 

characteristics), and ε ij is a random term. Assuming that some measures of cost c, time t, 

and reliability r are included among the variables, the two measures for motorists’ 

preferences for travel time and time reliability, value of time (VoT) and value of 

reliability (VoR ) are defined as 
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In the models of this thesis, these quantities are independent of the alternative label, j.  
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2.1: Results from Brookings Data 

 

 Brookings data includes one RP data, which records respondents’ actual choice 

behavior up to 5 working days, and one SP data, which records respondents’ choice 

behavior up to 8 hypothetical situations. We first model the RP data. 

 

2.1.1: Revealed Preference Estimates 

 

Table 4 defines the independent variables used.  

 
Table 4. Definitions of Independent Variables in Brookings RP models 

Generic Variables  
(all conditional on time of day) 
MedTime Median travel time in minutes 
Cost 
 

Posted toll for a solo vehicle in dollars, divided by 2 if car occupancy 
is 3 or more  

Dmp80 Unreliability of travel time on free lanes, given as the difference 
between the median and 80% percentile time 

Traveler and Trip 
Characteristics 

 

Income Annual per capita income in thousands of dollars, calculated as mid-
point of the household-income interval divided by household size  

Dist Distance from origin to destination, in 10 miles  
Fage 1 if female with age between 35 and 60, 0 otherwise 
Dflex 1 if with flexible arrival time, 0 otherwise 
 
 

Brookings RP data records respondents’ route choice over up to 5 days. We begin 

with simple binary logit models on the entire sample of observations, including 

observations on the same person on different days but ignoring the correlation among 

them. These models are called as trip-based. The dependent variable is simply whether 

the person chose the toll road on that day. Robinson (1982) shows for the case of probit 
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that the maximum likelihood estimate of such a model is consistent, though inefficient. 

Although we use logit here, we find using probit instead makes little difference.4 We 

account for the correlation among multiple observations of a single individual by 

adopting a robust estimator for the standard errors of our estimates. 

 

Let L(B) be the likelihood function obtained on the assumption that all 

observations are independent. Because B̂  is consistent estimate of B , by delta method5, 

we have 
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The middle factor on the right-hand side, variance of the gradient, is estimated 

empirically which makes equation (2.1) a “sandwich estimator”(Greene, 2000, pp. 490-

491). Considering the panel structure of our data set, we have 
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4 As a check on the influence of error correlation on our results, we also estimated pure cross-section 
models by randomly drawing one day's observation per person. Some efficiency is lost by doing this, but 
not too much because most respondents made the same choice each day. The process is repeated 500 times 
and averaged the coefficient estimates. The estimated parameters from this method were smaller in 
magnitude but had very similar ratios compared with the those from models on entire sample of 
observations, indicating that there is more random variation in utility across people than across 
observations for the same person. These results are not reported here. 
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where NG  is the total number of respondents, jn is the number of observations 

from jth respondent, and ∑
=

≡
NG

j
jnN

1

is the total number of observations. Because choice 

behavior is independent among respondents, equation (2.2) means that we represent the 

gradient of log-likelihood as the sum of NG  independently and identically distributed 

(iid) random variables. The sample mean of these NG random variables is zero because 

of the condition for maximizing L.  

 

A good empirical estimator for the variance of the sum of NG iid random 

variables gj averaging to zero is simply the NG times the sample standard error,  
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The robust estimator is then simply equation (2.1) with (2.3) used to calculate the 

middle factor on the right-hand side. 

 

An alternative way to model RP data is to take multiple days’ observations of a 

respondent as only one observation (the explanatory variables are averaged over days), 

and create a dependent variable describing the frequency of using toll lanes. These 

models are called as person-based. One advantage of a person-based model is that it 

captures the fact that the traveler’s decision to get a transponder is not made daily, and 

thus presumably is based on some averages of time savings and money costs over a long 
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time period. Another advantage is that person-based RP models are easier to combine 

later with SP models because their correlation structure is simpler. For person-based 

models, we eliminate respondents who have a transponder but who travel less than three 

days in our data, because defining a frequency for them involves too much error.  

 

The possible interval [0,1] for the frequency of choosing the express lanes is 

divided into two or more intervals j. For each individual I in our sample, let yi be the 

choice variable, indicating which frequency category is observed. We can assume the 

following choice process: 

 

jyi =  if jiij1j kBXk <+≤− ε     (2.4) 

 

where the s'k  are threshold parameters to be estimated along with utility coefficients B . 

If ε i has an extreme value distribution, the probability of individual i  choosing category 

j  is 
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In general, this is the ordered logit model; when there are only two categories, it reduces 

to the simple binary logit model. 
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We first specify the following two types of ordered-logit models based on 

different ways of categorizing the interval [0,1]. In the first type, there are three 

categories: “never use toll lanes”, “sometimes using toll lanes” and “always using toll 

lanes”. In the second type, there are four categories, with the open interval (0,1) divided 

into (0,0.5) and [0.5, 1); that is, we use the frequency of 50% as an additional cut point. 

 

For each type, we test whether some frequency categories can be combined. For 

type 1, we test whether the categories "sometimes" and "always" can be combined. For 

type 2, we test whether the four categories can be combined into two, “less than 0.5” and 

“greater than or equal to 0.5”. The test is that devised by Vuong (1989) for non-nested 

models.6 In order to use Vuong’s test, it is necessary to adjust the dependent variable of 

one model to the same definition as the other one. For example, when testing the 

competing models for type 1, we compute both likelihoods as the sum of probabilities of 

choosing "never" versus choosing "sometimes or always". 

 

For both types, the results of Vuong’s test accept the null hypothesis that these 

competing models are equivalent. In other words, we cannot reject any of the four 

specifications in favor of a different one. However, for type 1 model, we prefer the 3-

category specification (the first one) considering the fact that about 13% of our sample 

                                                 
6 Vuong shows that the likelihood ratio of two non-nested models, f and g , has limiting distribution of 

( )2nw,0N  under the null hypothesis that these two models are equivalent, where n is the number of 

observations and w is estimated consistently by:  
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(11 respondents) chose the category of “sometimes” and we hate to lose that information. 

For type 2 model, we prefer the 2-category specification (the second one) because the 

other specification contains a rare case – only 5% of the sample (4 respondents) chose the 

frequency interval [0.5,1). 

 

The estimated RP results are shown in Tables 5, 6, and 7. Table 5 shows the 

results of trip-based models (binary logit); Table 6 shows the results of person-based 

models with three choice categories (ordered logit), and Table 7 shows the results of 

person-based models with two choice categories (binary logit). 

 

We found through experimentation that distance has a strong effect on the time 

coefficient (hence on VoT), but it is a nonlinear one and seems best captured by a cubic 

form with no intercept (i.e., "MedTime" is not entered by itself). In fact, as we show for a 

subsequent table, the relationship between VoT and distance is concave throughout the 

range of most of our data, and declines with distance for most of the sample. Following 

conventional specifications we also allowed VoT and VoR to depend on income (models 

2 and 4), which they arguably do but in fact the models with income entered simply as a 

taste-shifter for express lanes (Models 1 and 3) fit slightly better 

 

Given results from earlier studies such as Lam and Small (2001), we were 

surprised to find little clear-cut effect of gender on choice of express lanes. The strongest 

effect we found, which is shown in Models 3 and 4, is based on the hypothesis that 
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women aged 35-60, who are relatively likely to have children living at home, place a 

higher value on their time. 
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Table 5. Trip-Based Models 
Variables Model 1 Model 2 Model 3 Model 4 
Constant -0.9843 (1.1696) 0.0541 (0.0059) -1.5371 (1.2483) -0.6674 (1.2268) 
Cost -1.6741 (0.6606) -2.0409 (0.6975) -1.2578 (0.6835) -1.5592 (0.7066) 
Cost * Income  0.0154 (0.0059)  0.0132 (0.0056) 
Fage * MedTime   -0.3515 (0.1935) -0.3588 (0.1948) 
Dist * MedTime -0.4140 (0.1314) -0.4226 (0.1320) -0.2935 (0.1420) -0.2983 (0.1419) 
Dist2 * MedTime 0.0827 (0.0218) 0.0838 (0.0220) 0.0631 (0.0219) 0.0636 (0.0219) 
Dist3 * MedTime -0.0036 (0.0009) -0.0037 (0.0009) -0.0028 (0.0009) -0.0028 (0.0009) 
Dmp80 -0.8442 (0.3178) -0.8238 (0.3144) -0.6047 (0.3261) -0.5890 (0.3211) 
Income 0.0455 (0.0163)  0.0397 (0.0157)  
Dflex 0.9384 (0.5412) 0.9551 (0.5349) 1.2218 (0.6428) 1.2390 (0.6378) 
 
#of Obs. 385 385 385 385 
# of Perosns 89 89 89 89 
Log-likelihood -174.16 -175.90 -167.76 -169.24 
Pseudo R2 0.1945 0.1865 0.2241 0.2173 
 
VoT: 
Estimated Mean in Sample 
95%-ile $29.79/hr $33.95/hr $44.91/hr $56.26/hr 
50%-ile $16.71/hr $17.63/hr $17.80/hr $18.84/hr 
5%-ile $3.99/hr $3.21/hr $-10.36/hr $-21.83/hr 
 
Estimated SD Due to Observed Heterogeneity in Sample 
95%-ile $33.28/hr $131.46/hr $123.30/hr $634.51/hr 
50%-ile $11.16/hr $13.43/hr $16.04/hr $18.86/hr 
5%-ile $5.65/hr $7.00/hr $6.43/hr $7.10/hr 
 
VOR: 
Estimated Mean in Sample 
95%-ile $68.82/hr $71.56/hr $94.98/hr $85.43/hr 
50%-ile $29.93/hr $29.65/hr $28.31/hr $26.93/hr 
5%-ile $13.38/hr $11.15/hr $1.41/hr $-6.09/hr 
 
Estimated SD Due to Observed Heterogeneity in Sample 
95%-ile $0/hr $162.68/hr $0/hr $531.79/hr 
50%-ile $0/hr $4.46/hr $0/hr $5.24/hr 
5%-ile $0/hr $1.09/hr $0/hr $0.81/hr 
Note:  Numbers in parentheses are robust standard errors. 
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Table 6. Person-Based Models (never, sometimes, or always) 
Variables Model 1 Model 2 Model 3 Model 4 
Cost -1.9240 (0.8985) -2.1951 (0.9124) -1.4296 (0.9413) -1.6585 (0.9519) 
Cost * Income  0.0128 (0.0063)  0.0111 (0.0063) 
Fage * MedTime   -0.4116 (0.1962) -0.4175 (0.1964) 
Dist * MedTime -0.4176 (0.1654) -0.4227 (0.1654) -0.2841 (0.1751) -0.2865 (0.1749) 
Dist2 * MedTime 0.0851 (0.0309) 0.0858 (0.0309) 0.0633 (0.0324) 0.0636 (0.0324) 
Dist3 * MedTime -0.0037 (0.0013) -0.0038 (0.013) -0.0028 (0.0014) -0.0028 (0.0014) 
Dmp80 -0.8175 (0.4196) -0.8045 (0.4163) -0.5171 (0.4501) -0.5064 (0.4459) 
Income 0.0380 (0.0174)  0.0334 (0.0177)  
Dflex 1.0251 (0.5706) 1.0288 (0.5687) 1.3477 (0.6406) 1.3551 (0.6395) 
threshold1 0.3464 (1.4547) -1.1253 (1.4292) 0.3929 (1.5375) -0.2748 (1.5097) 
threshold2 0.5107 (1.4562) -0.2758 (1.4237) 1.3045 (1.5504) 0.6300 (1.5157) 
Summary Statistics 
#of Obs. 84 84 84 84 
Log-likelihood -61.25 -61.56 -58.95 -59.20 
Pseudo R2 0.1373 0.1329 0.1697 0.1662 
 
VoT: 
Estimated Mean in Sample 
95%-ile $28.26/hr $29.24/hr $41.92/hr $63.30/hr 
50%-ile $15.59/hr $16.03/hr $16.10/hr $16.80/hr 
5%-ile $0.02/hr $0.29/hr $-17.53/hr $-21.75/hr 
Estimated SD Due to Observed Heterogeneity in Sample 
95%-ile $70.57/hr $112.66/hr $194.95/hr $740.26/hr 
50%-ile $14.01/hr $15.62/hr $21.88/hr $23.04/hr 
5%-ile $6.18/hr $6.50/hr $7.88/hr $8.05/hr 
VoR: 
Estimated Mean in Sample 
95%-ile $62.40/hr $54.48/hr $68.87/hr $67.33/hr 
50%-ile $24.67/hr $25.11/hr $20.57/hr $20.72/hr 
5%-ile $7.58/hr $6.30/hr $-26.46/hr $-24.80/hr 
Estimated SD Due to Observed Heterogeneity in Sample 
95%-ile 0 $49.39/hr 0 $305.34/hr 
50%-ile 0 $2.46/hr 0 $2.44/hr 
5%-ile 0 $0.33/hr 0 $0.19/hr 
Notes: 1. Numbers in parentheses are standard errors. 
          2. Independent variables of a respondent are averaged over different days. 
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Table 7. Person-Based Models (<0.5 or ≥ 0.5) 
Variables Model 1 Model 2 Model 3 Model 4 
Constant -0.2546 (1.6169) 0.7094 (1.5780) -1.2284 (1.7946) -0.4255 (1.7467) 
Cost -2.1684 (1.0232) -2.5269 (1.0477) -1.6063 (1.1023) -1.9064 (1.1197) 
Cost * Income  0.0152 (0.0068)  0.0129 (0.0071) 
Fage * Median   -0.5009 (0.2403) -0.5077 (0.2410) 
Dist * Median -0.4314 (0.1858) -0.4391 (0.1858) -0.2714 (0.2006) -0.2762 (0.2006) 
Dist2 * Median 0.0805 (0.0334) 0.0861 (0.0334) 0.0532 (0.0355) 0.0539 (0.0355) 
Dist3 * Median -0.0034 (0.0015) -0.0035 (0.0015) -0.0023 (0.0016) -0.0023 (0.0016) 
Dmp80 -0.9494 (0.4794) -0.9368 (0.4745) -0.5800 (0.5318) -0.5770 (0.5272) 
Income 0.0434 (0.0187)  0.0372 (0.0195)  
Dflex 1.1756 (0.6723) 1.1999 (0.6731) 1.7509 (0.8493) 1.7763 (0.8506) 
Summary Statistics 
#of Obs. 84 84 84 84 
Log-likelihood -37.52 -37.72 -35.14 -35.29 
Pseudo R2 0.1863 0.1819 0.2378 0.2345 
 
VoT: 
Estimated Mean in Sample 
95%-ile $31.18/hr $34.25/hr $45.67/hr $50.22/hr 
50%-ile $16.29/hr $17.38/hr $17.99/hr $18.51/hr 
5%-ile $2.19/hr $1.48/hr $-11.88/hr $-36.07/hr 
Estimated SD Due to Observed Heterogeneity in Sample 
95%-ile $59.70/hr $155.66/hr $155.12/hr $766.16/hr 
50%-ile $11.64/hr $12.29/hr $17.96/hr $20.96/hr 
5%-ile $5.02/hr $5.34/hr $6.54/hr $6.71/hr 
 
VoR: 
Estimated Mean in Sample 
95%-ile $59.34/hr $58.06/hr $67.02/hr $66.33/hr 
50%-ile $25.88/hr $25.29/hr $21.34/hr $20.60/hr 
5%-ile $8.67/hr $5.64/hr $-22.87/hr $-33.34/hr 
Estimated SD Due to Observed Heterogeneity in Sample 
95%-ile 0 $110.22/hr 0 $395.63/hr 
50%-ile 0 $2.64/hr 0 $2.68/hr 
5%-ile 0 $0.41/hr 0 $0.20/hr 
Notes: 1. Numbers in parentheses are standard errors. 
           2. Independent variables of a respondent are averaged over different days. 
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Lam and Small (2001) also find that dividing cost by vehicle occupancy improves 

goodness of fit in their models. Our RP data provide limited information on vehicle 

occupancy, which is known for some respondents based on a question asked in the RP 

survey. For others, some answered a question on the SP survey that provides occupancy, 

but others did not. Because of our lack of certainty about occupancy, we do not use it as 

in Lam and Small. However, we do use it to calculate the 50% discount that applies to 

carpool of three or more people, applying that discount to those respondents who tell us 

the carpool with three or more in the car. We check the stability of models to this data 

problem by introducing a dummy for the uncertain observations (i.e. those people not 

answering the occupancy question) and by interacting this dummy with cost; its 

coefficient provides no indication that the results are influenced by these observations, so 

those results are not shown here. 

 

According to our model specifications, VoT varies with trip distance in all four 

models and varies with income and gender/age categories in some models; VoR also 

varies with income in some models. Thus there is heterogeneity in VoT and VoR due to 

observable variables. This heterogeneity is of great interest, so we want to characterize 

the results in terms of not only the mean but also the standard deviation (SD) of VoT or 

of VoR across our sample. We do this by computing the quantities labeled "Estimated 

Mean in the Sample" and "Estimated SD Due to Observed Heterogeneity in the Sample." 

   

Each of these quantities is subject to statistical uncertainty, which we characterize 

by giving the median, 5th percentile, and 95th percentile based on the statistical 
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uncertainty in our coefficient estimates. These are calculated by a bootstrapping method. 

In the trip-based models, we draw random values Br for the coefficient vector B according 

to its estimated asymptotic distribution, which is multivariate normal with variance-

covariance matrix defined in equation (2.1). For each draw r we compute the appropriate 

ratios of coefficients in order to compute the mean and sample standard deviation of VoT 

and VoR across our sample. In the person-based models bootstrap replicates are formed 

by drawing dependent variable ijy ( 1y ij = if jyi = ) from a Bernoulli distribution with 

probability of success given by ijP , which is estimated by evaluating equation (2.5) at 

Maximum Likelihood Estimate (MLE) of B . We re-estimate B  for each replicate and 

use it to calculate the sample means and standard deviations of VoT and VoR (This 

method could not be used in trip-based models because it cannot account for the 

correlation among multiple observations for a given individual.). For all models, we do 

bootstrapping for 1000 replications and report the 5th, 50th, and 95th percentiles across 

those replications.  

 

We see the median estimate of mean VoT is quite stable across the twelve 

specifications shown in these three tables, falling between $15.50 and $18.84 per hour. 

Its standard deviation is of course higher in the specifications in which it varies with 

income, since that adds additional observed heterogeneity. VoR is not quite as stable, but 

still the median estimate of its mean lies between $20.50 and $28.00 per hour.  The 

precision of estimation of these quantities falls off markedly when the dummy for 

middle-aged females (Fage) is included as a shifter on the coefficient of travel time. (This 

is also reflected in the lower t-statistics on the other variables containing cost and travel 
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time.) The precision is in fact so low that the 5%-ile values for both mean VoT and mean 

VoR are negative, indicating that in these models one cannot say with 95% confidence 

that VoT and VoR are positive. For this reason, we prefer Models 1 and 2 over Models 3 

and 4. 

 

Our estimation results suggest that VoT is the function of trip distance. In 

Brookings RP data, 10%-ile of distance is 20.5 miles and 90%-ile of distance is 68 miles. 

In Figure 4, we plot VoT with respect to distance within this range using results from the 

three alternate forms of Model 1 shown in Tables 5, 6, and 7. The relationship between 

VoT and distance for other models is similar. 

 

We also tried to estimate the person-based models with random parameters in 

order to measure the unobserved heterogeneity in value-of-time and value-of-reliability. 

We could hardly get convergent results for these models because of small size of RP data, 

so they are not reported. 
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                               Figure 4. The relationship between VoT and trip distance 
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 2.1.2:  Stated Preference Estimates 

 

Because the Brookings SP data are more numerous than its RP data and because 

the independent variables are less correlated with each other, we are able to go much 

further in distinguishing random from systematic effects. In particular, we estimate 

models with random parameters, which can be used to study the unobserved 

heterogeneity in people’s preference. A special case of random parameters is a random 

alternative-specific constant, which is precisely the error-components model that enables 

one to estimate ordinary logit models more efficiently. In our empirical work, we first 

estimate this error-components model and then extend to a true random-parameters 

model. For purposes of explanation, it is easiest to derive them both at the same time. 

 

In general, then, we consider the coefficient vector B  (including the constant) as 

random with mean b and deviation η . Then the binary choice model can be written as 
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XXb ititiitit 0>++ εη
                (2.6) 

 

where ηi is the random part of the coefficient vector. This is an example of the "mixed 

logit" model described by Brownstone and Train (1999). When all the components of ηi 

are set to zero except that corresponding to the constant term, we have the same model as 

before but estimated with the more realistic assumption that the random terms are 

correlated across observations for a given survey respondent. 
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The error term of equation (2.6), which we denote ititiit X εην += , implies a 

panel-type correlation structure, which can depend on variables X as follows: 

 

                                    ( )itE ν    0=                    (2.7a) 

              ( ) 2'
εσνν +Ω= itititit XXE      (2.7b) 

   ( ) isitisit XXE Ω= 'νν   if st ≠    (2.7c) 

              ( ) 0=jsitE νν    if  ji ≠    (2.7d) 

    

where Ω  is the variance-covariance matrix of iη  and where 2
εσ  is normalized to π2/3, 

just like the random term in a simple multinomial logit model. 

 

The probability of respondent i  choosing the toll lanes at situation t , conditional 

on  ηi, is 
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Then the unconditional joint probability of respondent i 's choice sequence (yit) over 

several choice situations t is 
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where ( )•f  represents the joint density function of iη . The integration in equation (2.9) 

is calculated using Monte-Carlo simulation method.  That is, we draw r
iη  from the joint 

distribution ( )•f  and evaluate the probabilities conditional on r
iη , repeating for r=1,...,R.  

The simulated value of iP  in (2.9) is then: 
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We estimate Ω,B  by maximizing the following simulated log-likelihood function 

 

   ( ) ( )∑=Ω
i

iSPBSL ln,                                                (2.11) 

 

Lee (1992) and Hajivassiliou (1994) show that under regularity conditions, the 

estimator is consistent and asymptotically normal, and when the number of replications 

rises faster than the square root of the number of observations, the estimator is 

asymptotically equivalent to the maximum likelihood estimator.  

 

Table 8 presents the additional variables used in the SP models.  In the case of 

occupancy, respondents were asked to declare whether they were answering the questions 

as solo drivers or as carpoolers, and in the latter case how many people they travel with if 

they carpool. The measure of unreliability here is entirely different from that in the RP 
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data: namely, it is the probability of being delayed by 10 minutes or more, a value 

provided in the questionnaire as one of the attributes of a route.7 

 
Table 8. New Variables for SP models 

Toll The toll listed in survey questions 
Unreliability Unreliability of travel time 
Workers Number of workers at work site, in thousands 
Transponder 1 if with transponder, 0 otherwise 
Long 1 if respondent received the questionnaire designed for people 

whose commute time is more than 45 minutes; 0 otherwise 
Occupancy Number of people in vehicle 
 

 

Table 9 presents some results of estimating SP models with random coefficients.  

We set the number of replications as 1000 for all these models. The model specification 

is chosen through testing using simple logit model. 

 

In models 1 and 2 of Table 9, only the constant term is randomized, i.e. it simply 

adds an error-components panel structure to the simple logit model.  In models 3 and 4, 

we also randomize the coefficients of time and unreliability, assuming they have 

independent normal distributions. This leads to some probability of a traveler having the 

"wrong" sign for these two coefficients; we tried unsuccessfully to use a log-normal 

distribution and truncated normal for them. (We tried randomizing toll coefficient, but 

this creates problems in calculating VoT and VoR because the toll coefficient, which 

appears in the denominator of those ratios, can take zero values.) 

 

                                                 
7 The probability was always stated for the trip as a whole.  It was given as 0.05 for all trips using 91X, and 
either 0.05, 0.1, or 0.2 for trips using 91F. 
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We show models both with and without the variable "transponder" in the SP 

portion. This variable describes a choice made in real life that is closely related to the RP 

dependent variable. Thus it raises issues of the relationship between observed (RP) 

choices and hypothetical (SP) choices, as discussed by Morikawa (1994).8 Models that 

include "transponder" can be interpreted as allowing for "inertia", that is true state 

dependence; that is, the answers to SP questions are affected by the previously 

determined condition of the respondent. As in so many contexts, it is difficult to be sure 

whether one is measuring state dependence or unobserved heterogeneity, but we think the 

latter is controlled for adequately by the error structure. Thus including "transponder" 

may be viewed as estimating a short-run model conditional on transponder choice, 

whereas omitting it yields a more long-run model in which transponder choice is 

implicitly part of the decision to sometimes take the express lanes. The fact that it is 

highly significant is not surprising, although it does suggest that respondents ignored our 

instructions in the SP survey to "assume ... that you have a transponder." 

 

Again, we estimate the distributions of estimated means and standard deviations 

of VoT and VoR by a Monte Carlo method, in whichB is drawn from its estimated 

asymptotic multivariate normal distribution. 

 

Models 3 and 4 achieve quite good precision, and indicate that indeed there is 

considerable heterogeneity in the valuation of time and reliability. When SP choice 

probabilities are conditioned on whether or not the person travels with a transponder 

                                                 
8 The reason we did not condition SP choices on the RP dependent variable, as does Morikawa, is that 
many of our SP respondents did not take the RP survey. Fortunately, we asked in the SP survey if they 



 51

(Model 3), the precision is greater. Value of time varies across the sample, but on average 

is about two-thirds as large as in the RP results of Section 2.1.1. This replicates findings 

of other studies, noted earlier, that SP surveys tend to produce lower values of time than 

RP surveys. 

                                                                                                                                                 
travel with a transponder, permitting us to use this proxy for the RP choice. 
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Table 9. SP Results: Binary Logit with Error Components 
Variables Model 1 Model 2 Model 3 Model 4 
Constant     
     Mean -4.7142 (1.0617) -4.0131 (1.2296) -5.8212 (1.2596) -4.9157 (1.3025) 
     Std. dev. 3.1178 (0.4598) 3.3339 (0.4569) 3.6901 (0.7160) 3.9547 (0.8450) 
Toll -1.0226 (0.2268) -1.0272 (0.2289) -1.2078 (0.2427) -1.3109 (0.3155) 
Long * Time -0.1943 (0.0288) -0.2001 (0.0309) -0.2229 (0.0416) -0.2572 (0.0590) 
(1-Long) * Time -0.2533 (0.0339) -0.2435 (0.0352) -0.3062 (0.0522) -0.2954 (0.0579) 
Std. dev. of coef-
ficients of Timea 

  0.1089 (0.0414) 0.2031 (0.0526) 

Unreliability     
    Mean -5.4261 (0.9993) -5.4214 (0.9991) -6.3574 (1.4368) -6.8667 (1.5952) 
    Std. dev.   6.9483 (2.0556) 7.8940 (2.3341) 
Transponder 2.5476 (0.7996)  3.1471 (1.0756)  
Occupancy 0.9560 (0.3568) 0.9975 (0.5573) 1.1478 (0.4918) 1.4135 (0.5735) 
Workers -0.7110 (0.2543) -0.6359 (0.2983) -0.8840 (0.3607) -1.0022 (0.4121) 
Dflex 0.8928 (0.7882) 1.3002 (0.7788) 1.4905 (1.0071) 2.1495 (1.0745) 
Summary Statistics 
#of Obs. 577 577 577 577 
# of Persons 74 74 74 74 
Log-likelihood -226.39 -231.36 -220.47 -223.28 
Pseudo R2 0.3979 0.3847 0.4137 0.4062 
 
VoT: 
Estimated Mean  in Sample 
95%-ile $20.65/hr $20.58/hr $19.90/hr $21.41/hr 
50%-ile $12.70/hr $12.59/hr $12.61/hr $12.50/hr 
5%-ile $8.72/hr $8.58/hr $8.54/hr $7.84/hr 
Estimated SD Due to Heterogeneity in Sampleb 
95%-ile $4.19/hr $3.34/hr $17.59/hr $1945/hr 
50%-ile $1.75/hr $1.15/hr $10.08/hr $10.98/hr 
5%-ile $0.23/hr $0.10/hr $5.47/hr $5.81/hr 
 
VoR: 
Estimated Mean of VoR in Sample 
95%-ile $8.57/incident $8.55/incident $8.43/incident $8.12/incident 
50%-ile $5.32/incident $5.25/incident $5.11/incident $5.13/incident 
5%-ile $3.48/incident $3.50/incident $2.95/incident $2.74/incident 
Estimated SD Due to Heterogeneity in Sampleb 
95%-ile 0 0 $10.32/incident $10.34/incident 
50%-ile 0 0 $6.11/incident $5.88/incident 
5%-ile 0 0 $3.15/incident $2.98/incident 
Note: Numbers in parentheses are standard errors. 
a The coefficients of "Long*time" and "Short*time" are specified to have a single random error, whose 
standard error is given by this row. 
b In models 1 & 2, heterogeneity in VoT arises solely from observed heterogeneity, namely variation in 
distance; there is no heterogeneity in VoR.  In models 3 & 4, heterogeneity in VoT and VoR also arises 
from unobserved heterogeneity, namely randomness in the coefficients of "time" and "unreliability". 
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2.1.3: Combined RP/SP Results  
 

 

In this section, we combine RP and SP data together to estimate the parameters, 

following methods discussed by Ben-Akiva and Morikawa (1991) and Hensher and 

Bradley (1993).  We account for the differences between RP and SP data in two ways.  

First, we allow them to have random terms with different variances; we do this by 

normalizing the RP variance as usual and estimating a separate scale parameter µ  for the 

ratio of standard deviations.  Second, we allow some coefficients to have separate values 

across the two data sets, hoping to use the RP coefficient to correct any survey bias that 

may be in the SP. 

 

We also account for serial correlation between the RP and SP error terms. Like 

Morikawa (1994), we do this by splitting the error terms into two components 

 

                                                     RP RP
it i itε λ ν= +                                                           (2.12) 

                                                    SP SP
it i itε θλ ν= +                                                           (2.13) 

 

The first component, iλ , is assumed to be a standard normal variate; it represents 

individual effects and therefore accounts for correlation among the responses for a given 

individual, including (to the extent that θ is positive) correlation between an individual's 

RP and SP responses. The other components, RP
itv  and SP

itv , are assumed independently 

extreme value distributed with variances (π2/3) and (1/µ2)(π2/3), respectively. The 

combined model can then be written as follow: 
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                                     1RP

ity =      if  0RP RP RP
it i itB X λ ν+ + >                                        (2.14) 

                                     1SP
ity =      if  0SP SP SP

it i itB Xµ µθλ µν+ + >                               (2.15) 

 

where the superscripts ,RP SP  represent the data source of the observation; ity  

represents the dependent variable indicating toll lane choice by respondent i  at situation 

t ; ,RP SP
it itX X  are the vectors of exogenous variables, which include some common 

variables and some unique variables; ,RP SPB B  are the vectors of unknown parameters, 

some of which may be constrained to be equal across the RP and SP observations; and µ  

is a scale parameter to be estimated., defined as ( ) ( )2 var varRP SP
it itµ ν ν= . 

 

The purpose of multiplying the condition in (2.15) by µ  is so that the final terms 

in the two equations are independently and identically distributed. Writing (2.15) in this 

way also reminds us that the estimated SP coefficients should be multiplied by µ  before 

comparing them to estimates from ordinary logit equations such as in Table 9, or to BRP 

from (2.14). This scale adjustment is automatic for any "pooled" variables, i.e. for 

variables that are common to the sets ,RP SP
it itX X . Even with these provisos, the 

magnitudes of the coefficients of each equation will adjust to reflect the other parts of the 

error terms (2.12) and (2.13). 

 

We estimate unknown parameters B, θ, and µ  by Simulated Maximum 

Likelihood Estimation as described earlier. The results are shown in Tables 10-13. The 
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number of replications is 1000. In all these models we allow coefficients of time and 

reliability to differ between the RP and SP equations; whereas we constrain the 

coefficient of cost9 to be the same (except for scale factor µ), a constraint not rejected by 

likelihood-ratio tests. 

 

2.1.3.1 Fixed Coefficients 

 

Tables 10 and 11 present estimated coefficients for models in which coefficients 

B are all fixed.  

 

In Model 1 and Model 2 of Table 10, the RP choice is modeled as trip-based with 

one exception: when there are multiple RP observations from people without a 

transponder, we treat them as a single observation with the independent variables 

averaged over different days. The scale effect µ is estimated to be very close to one. This 

is presumably because the rather large value estimated for θ allows the variance of RP
itν  to 

exceed that of SP
itν even with µ near one. In Model 2, the variable "transponder", 

representing the effect of an actual travel choice on the hypothetical SP responses, is no 

longer statistically significant. This is probably because some of the previously observed 

effect of this variable in SP models (which of course is highly correlated with the RP 

responses) was actually due to correlation between the error terms of the RP and SP 

equations. 

 

                                                 
9 The cost variable in the SP data is here defined just as in the RP models, namely Toll if occupancy <3 and 
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In Model 3 and Model 4 of Table 10, we change the model specification for RP 

data to person-based with two choice categories (whether or not the observed frequency 

of toll road use is less than 0.5), as in Model 3 of Table 7. Thus there is only one RP 

observation for each respondent, so the assumption that iλ  is standard normal is 

innocuous.  

 

In these two models, the estimated scale factor is small, between 0.35 and 0.58, 

because the within-individual random variation in RP choices has been eliminated. This 

causes SP coefficients to be correspondingly larger. As in Model 2, the effect on the SP 

responses of having a transponder in real life is not quite statistically significant. 

 

                                                                                                                                                 
0.5*Toll otherwise; this is slightly different from the variable “Toll” used in the SP-only models. 
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Table 10. Joint RP/SP Results 
Variables Model 1 Model 2 Model 3 Model 4 
Pooled Variables     
Constant -0.5553 (1.0131) -0.5108 (0.9308) -0.4578 (1.6378) 0.0100 (1.8411) 
Cost -0.9781 (0.4933) -1.0102 (0.4590) -2.2689 (1.0189) -2.6844 (1.0813) 
Income 0.0242 (0.0136) 0.0237 (0.0138) 0.0356 (0.0211) 0.0369 (0.0184) 
Dflex 0.5486 (0.4278) 0.5552 (0.3984) 2.2633 (0.7654) 2.3071 (0.9175) 
Workers -0.3145 (0.1476) -0.3492 (0.1498) -1.6072 (0.7964) -2.2856 (1.2283) 
RP Variables     
 Dist * Time -0.2683 (0.1135) -0.2840 (0.1100) -0.4460 (0.2117) -0.5270 (0.2214) 
 Dist2 * Time 0.0647 (0.0226) 0.0672 (0.0220) 0.0907 (0.0388) 0.1040 (0.0392) 
 Dist3 * Time -0.0030 (0.0010) -0.0031 (0.0010) -0.0039 (0.0017) -0.0044 (0.0017) 
 Fage * Time -0.3839 (0.1469) -0.3691 (0.1487) -0.5932 (0.2598) -0.5765 (0.2604) 
 dmp80  -0.5335 (0.2879) -0.5730 (0.2740) -0.6984 (0.5382) -0.8860 (0.5502) 
SP Variables     
 Constant -2.3056 (2.1613) -3.3935 (2.3845) -8.3108 (5.2998) -13.553 (8.1356) 
 Long * Time -0.1877 (0.0962) -0.1877 (0.0899) -0.4723 (0.2260) -0.5651 (0.2550) 
 (1-Long) * Time -0.2138 (0.1142) -0.2339 (0.1124) -0.5488 (0.2469) -0.7091 (0.3379) 
 Unreliability -4.9633 (2.6065) -5.1614 (2.5019) -12.383 (5.6130) -15.191 (6.8418) 
 Occupancy 0.3277 (0.3755) 0.2398 (0.2712) 1.6538 (1.0982) 1.8258 (1.2805) 
 Transponder  2.2987 (1.2126)  7.2867 (3.6999) 
Scale Parameter     
 µ  1.0916 (0.5727) 1.0504 (0.4940) 0.4338 (0.2073) 0.3493 (0.1656) 
Corr.  Parameter     
θ  2.8327 (1.4914) 2.8072 (1.3269) 7.8384 (3.3080) 8.9635 (4.2287) 
# of Obs. 802 802 660 660 
# of Persons 109 109 108 108 
Log-likelihood -331.55 -326.03 -261.68 -257.68 
Note: Numbers in parentheses are standard errors.  
 
 

We consider Models 3 and 4 of Table 10 to best represent choice behavior of this 

set of survey respondents among the models with fixed coefficients on cost, time, and 

reliability. By combining data sets and accounting for plausible error structures, we have 

been able to measure the effects of the most important travel variables with quite good 

precision. It is encouraging that the relevant marginal rates of substitution, especially the 

value of time, are reasonably robust to variations in the model structure and the particular 

control variables included. 
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 The estimated VoT and VoR based on models of Table 10 are summarized in 

Table 11. Compared with models using RP data alone, the precision of estimated VoT 

and VoR in the RP sample is improved significantly by combining RP data with SP data. 

The estimated mean VoT for RP observations (the second row of numbers in Table 11) is 

very stable across different model specifications, about $17/hr in the RP sample and 

about 80 percent of this value in the SP sample. 
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Table 11. Estimated VoT and VoR from Models in Table 10 

 Model 1  Model 2 Model 3 Model 4 
VoT: 
Estimated Mean in Sample 
RP Results     

95%-ile $40.34/hr $40.73/hr $29.83/hr $28.19/hr 
50%-ile $16.40/hr $17.16/hr $16.83/hr $16.59/hr 
5%-ile $-1.38/hr $0.67/hr $3.61/hr $5.37/hr 

SP Results     
95%-ile $19.62/hr $17.96/hr $19.99/hr $21.84/hr 
50%-ile $12.05/hr $12.07/hr $13.23/hr $13.67/hr 
5%-ile $5.77/hr $7.10/hr $8.02/hr $6.72/hr 

Estimated SD Due to Observed Heterogeneity in Sample 
RP Results     

95%-ile $126.08/hr $109.96/hr $48.95/hr $37.45/hr 
50%-ile $24.94/hr $24.42/hr $13.39/hr $11.87/hr 
5%-ile $11.70/hr $11.63/hr $6.79/hr $6.37/hr 

SP Results     
95%-ile $4.26/hr $4.22/hr $3.32/hr $3.02/hr 
50%-ile $1.04/hr $1.42/hr $1.09/hr $1.61/hr 
5%-ile $0.10/hr $0.17/hr $0.14/hr $0.33/hr 

VoR: 
Estimated Mean in Sample 
RP Results     

95%-ile $84.18/hr $83.86/hr $43.02/hr $42.15/hr 
50%-ile $32.01/hr $33.39/hr $18.52/hr $19.54/hr 
5%-ile $0.47/hr $8.00/hr $-7.10/hr $-0.87/hr 

SP Results     
95%-ile $8.19/incident $7.83/hr $7.44/incident $9.00/incident 
50%-ile $5.08/incident $5.09/hr $5.47/incident $5.65/incident 
5%-ile $2.29/incident $2.65/hr $3.83/incident $2.82/incident 

 
 

Value of time varies by trip distance. When measured from RP data it declines 

noticeably with trip length for actual trips over 30 miles; when measured from SP data, it 

is smaller for those people who had longer actual trips (and hence who received a survey 

depicting long trips) than for others. The estimated standard deviation of VoT due to 

observed heterogeneity in the RP sample is not quite stable. The median of estimated 

standard deviation of VoT in the RP sample from Model 1 and Model 2 is almost twice 
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as big as the one from Model 3 and Model 4. We prefer the results from Model 3 and 

Model 4, because the estimated relationship between VoT and trip distance in Model 1 

and Model 2 implies that about 15 percent of the RP sample have negative value of time.  

 

When unreliability is measured as the 80th-50th percentile difference (RP data), its 

value is slightly larger than value of travel time in Model 3 and Model 4, and twice as 

large as value of travel time in Model 1 and Model 2; when measured as frequency of 

delays of 10 minutes or more (SP data), its value is between $5 and $6 per incident of 

such a delay and stable across models. 

 

Finally, conditioning SP choice probabilities on transponder choice has little 

effect on estimated results, but improves the precision of estimates slightly. 

 

2.1.3.2 Random Coefficients 
 
 

In the next step, we randomize the coefficients of time and unreliability to 

measure unobserved heterogeneity in VoT and VoR. First, we use Model 2 in Table 10 as 

the base model. However, we can not randomize RP coefficients in this model because 

our model specification in equation (2.9) and (2.10) restricts the correlation among RP 

errors at 0.233. The estimated standard errors for the random terms of RP coefficients 

would capture part of correlation across RP observations, and hence bias the estimated 

unobserved heterogeneity in VoT and VoR. Considering this, we only randomize time 

and unreliability coefficients in the SP sample, and the results are shown in Model 1 of 

Table 12. 
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We can randomize the coefficients of time and unreliability both in the RP sample 

and SP sample when using person-based models like Model 3 or Model 4 in Table 10. 

We assume that the coefficients of time in the RP sample and in the SP sample have the 

same random component, that is, the model specification can be written as 

     

                        δαααα ++++= fagedistdistdistB RP
Time 4

3
3

2
21                              (2.16) 

                        ( ) δ+−+= LongcLongcBSP
Time 121                                                    (2.17) 

 

where δ  is a normal variate with mean zero and variance 2
δσ . 

 

Because the measures of unreliability have different meanings in RP and SP data, 

we can not assume that the coefficients of them have the same random component. 

However, we assume that the ratio between standard deviation and mean of the 

unreliability coefficient is the same across RP and SP data. That is, we reparameterize the 

model specification as 

 

                 ( )ϖ
µ

µ +=



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                 ( )ϖ
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ityUnreliabil b
b

bbB                            (2.19) 

 

where ( )2,0~ k
k N µσµ , SPRPk ,= ; and ( )2,0~ ϖσϖ N  . The estimated results from this 

model are shown as Model 2 of Table 12. Here we use Model 3 rather than Model 4 of 
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Table 10 as base model because otherwise we encounter problems achieving 

convergence; we guess the problem arises from the interaction between true state 

dependence and spurious state dependence. Additionally, we delete the variable 

“occupancy” in order to get more precise estimates. 
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Table 12. Joint RP/SP Model – with random time and unreliability coefficients 
Variables Model 1 Model 2 
Pooled Variables   
Constant -0.5145 (1.0162) -2.4635 (1.2947) 
Cost -1.0171 (0.5131) -2.7725 (1.6302) 
Income 0.0251 (0.0147) 0.0601 (0.0311) 
Dflex 0.5431 (0.4384) 4.2402 (1.9901) 
Workers -0.3286 (0.1520) -1.4872 (0.8383) 
Std. dev. Of Time  0.3541 (0.1938) 
Ratio between Std. dev. 
and mean of unreliability 

 1.2445 (0.3631) 

RP Variables   
    Dist * Time -0.2759 (0.1119) -0.5038 (0.2805) 
    Dist2 * Time 0.0642 (0.0221) 0.1108 (0.0556) 
    Dist3 * Time -0.0030 (0.0010) -0.0049 (0.0024) 
    Fage * Time -0.3496 (0.1529) -1.0295 (0.4609) 
    dmp80  -0.5654 (0.2853) -1.0503 (0.5489) 
SP Variables   
    Constant -3.4980 (2.6178) -4.6442 (4.1386) 
    Long * Time -0.1859 (0.0967) -0.5232 (0.3112) 
    (1-Long) * Time -0.2338 (0.1228) -0.5697 (0.3408) 
    Std. dev. of Time 0.1138 (0.0634)  
    Unreliability 
      Mean 
      Std. dev. 

 
-5.1326 (2.7243) 
4.4131 (2.5701) 

 
-12.418 (7.1422) 

    Occupancy 0.2849 (0.2657)  
    Transponder 2.2687 (1.3044)  
Scale Parameter   

µ  1.2637 (0.7190) 0.5271 (0.3248) 
Corr. Parameter   

θ  2.9838 (1.6308) 8.2660 (4.5338) 
# of Obs. 802 660 
# of Persons 109 108 
Log-likelihood -320.95 -253.42 
Note: Numbers in parentheses are standard errors.  
 
 

The estimated VoT and VoR from models in Table 12 are summarized in Table 

13. The results in Model 1 are similar to those of Model 2 in Table 11, except that we get 

measures for unobserved heterogeneity of VoT and VoR in the SP sample. When using 

results from this model, we may consider using the estimated means of VoT and VoR in 

the RP sample as the measures for mean VoT and VoR; using the estimated observed 
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heterogeneity of VoT in the RP sample as the measure of heterogeneity in VoT; and 

using the estimated heterogeneity of VoR in the SP sample as the measure of 

heterogeneity in VoR.      
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Table 13. Estimated VoT and VoR from Models in Table 10 
 Model 1 Model 2 

VoT: 
Estimated Mean in Sample 

  

RP Results   
95%-ile $45.13/hr $35.22/hr 
50%-ile $17.84/hr $15.32/hr 
5%-ile $-0.52/hr $-1.30/hr 

SP Results   
95%-ile $19.69/hr $17.10/hr 
50%-ile $11.96/hr $11.63/hr 
5%-ile $5.83/hr $6.61/hr 

Estimated SD Due to Heterogeneity in Samplea   
RP Results   

95%-ile $113.71/hr $82.58/hr 
50%-ile $24.24/hr $23.21/hr 
5%-ile $10.69/hr $16.08/hr 

SP Results   
95%-ile $15.25/hr $15.42/hr 
50%-ile $8.73/hr $8.62/hr 
5%-ile $2.88/hr $3.22/hr 

VoR: 
Estimated Mean in Sample 

  

RP Results   
95%-ile $87.76/hr $50.86/hr 
50%-ile $32.41/hr $22.14/hr 
5%-ile $1.84/hr $4.61/hr 

SP Results   
95%-ile $8.55/incident $8.77/incident 
50%-ile $5.02/incident $4.42/incident 
5%-ile $2.04/incident $1.99/incident 

Estimated SD Due to Heterogeneity in Sample   
RP Results   

95%-ile $0/hr $64.64/hr 
50%-ile $0/hr $26.98/hr 
5%-ile $0/hr $5.10/hr 

SP Results   
95%-ile $7.89/incident $8.57/incident 
50%-ile $4.32/incident $5.48/incident 
5%-ile $0.91/incident $1.93/incident 

a In model 1, heterogeneity in VoT in the RP sample arises only from observed heterogeneity; in model 2, it 
also arises from unobserved heterogeneity. 
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Model 2 of Table 12 gives us nice results for heterogeneity in VoT and VoR. The median 

estimated mean of VoT in the RP sample from this model is slightly lower than the one 

from other models. 

 

2.1.4: Summary of Results from Brookings Data 

 

In Brookings data, the estimated value of time is stable across different model 

specifications; its median value is in the range of $16-$18 per hour in the RP sample, and 

in the range of $11-$13 per hour in the SP sample. These results confirm the results from 

other studies, that is, the estimated mean of VoT using RP data is higher than the one 

using SP data, although the difference between them in this paper is much smaller than in 

Ghosh (2000a). The difference is probably due to misperceptions of travel-time savings, 

as noted before, causing travelers to perceive the time differences in the SP questions as 

indicating a smaller actual difference in service quality than they really do. As argued 

before, it is the RP value that is most germane to congestion modeling and cost-benefit 

analyses. 

 

We use different measures for time unreliability in the RP and SP sample. In the 

RP sample, VoR is imprecisely measured and not too stable; its estimated value is in the 

range $19-$30 per hour. In the SP sample, the estimate VoR is robust, with value about 

$5 per incident (of 10 minutes or more unexpected delay) for all models. 
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We find large heterogeneity in value of time. Our RP data show observed 

heterogeneity in VoT which can be explained by trip and individual characteristics, with 

estimated standard deviation across our sample between $13 and $25 per hour depending 

on model specification. We are unable to extract a satisfactory measure of the unobserved 

heterogeneity (i.e. that unexplained by objective variables) in our RP data alone. In the 

SP data, by contrast, the ability of trip distance to account for heterogeneity in VoT is 

tenuous, but we find substantial unobserved heterogeneity. Overall, the estimated 

standard deviation of VoT is between $7 and $10 per hour across individuals in the SP 

sample. 

 

We did not find obvious evidence that value of reliability varies with trip or 

individual characteristics. Additionally, our RP data alone cannot give us a precise 

measure of unobserved heterogeneity in VoR. The SP sample, in contrast, shows that 

there is significant unobserved heterogeneity in VoR.  

 

By combining RP data with SP data, we can overcome some of the limitations in 

the RP data because certain coefficients can plausibly be constrained to be the same in 

the RP and SP portions of the combined data set. This results in two major improvements 

to our RP results. First, the precision of all estimated coefficients in common with the RP 

models is improved substantially compared to those using RP data alone. Second, with 

combined data we can measure unobserved heterogeneity in both VoT and VoR across 

the RP sample.  
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2.2: Combining Cal Poly Data with Brookings Data 

 

 In order to get more reliable estimates for the heterogeneity in values of travel 

time and travel time reliability, we combine the RP data collected by Cal Poly with 

Brookings data in this section. The feasibility of combining these data together is that 

they are from the same population and collected at almost the same time. 

 

2.2.1: Revealed Preference Estimates 

 

 We first combine two RP data together. Based on the modeling experience in 

above section, we choose the person-based model with two choice categories to model 

Brookings RP data. Cal Poly data is a simple cross-section. We account for the 

differences between these two RP data sources by letting their random terms have 

different variances, and by specifying different alternative-specific constants in them. Our 

rational is that other determinants for commuters’ route choice are the same across these 

two data sets. In estimation, the variance of Brookings RP error terms is normalized, and 

the one of Cal Poly error terms is scaled by a scale parameter. Brookings survey and Cal 

Poly survey have different categories for household income. To keep the consistent of 

income variable, we define the following two dummies instead of using numerical 

income calculated as median point of each category in modeling: 

1. High Income Dummy:  1 if household annual income is greater than $100,000, and 0 

otherwise. 
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2. Medium Income Dummy: 1 if house hold annual income is between $60,000 and 

$100,000, and 0 otherwise. 

 

The estimate results are shown in Table 14. 

 

Table 14.  Results from Joint Model Combining Two RP Data 
Variables Coefficients 
     Brookings Constant -0.5150 (0.9674) 
     Cal Poly Constant -1.7157 (0.7827) 
     Cost -1.3443 (0.5312) 
     Cost × High Income Dummy 0.9047 (0.3096) 
     Cost × Medium Income Dummy 0.4693 (0.2149) 
     Dist × Time -0.2618 (0.0917) 
     Dist2 × Time 0.0412 (0.0162) 
     Dist3 × Time -0.0017 (0.0007) 
     Dmp80 -0.5989 (0.2298) 
     Female 1.1294 (0.3904) 
     Age30-50 1.1951 (0.4465) 
     Household Size -0.3874 (0.1846) 
     Dflex 0.2428 (0.3774) 
     Scale Parameter for Cal Poly sanple 0.5028 (0.1977) 
  
# of Obervations 522 
# of Persons 522 
Log-Likelihood -267.84 
Note: Numbers in parentheses are standard errors.  
 

 Even with much larger data size, mixed-logit model capturing unobserved 

heterogeneity in motorists’ preferences is still unidentified using RP only data. Compared 

with results using only Brookings RP data, the efficiency of estimates is improved 

significantly. The parameter estimates have the expected signs. Same as earlier studies, 

females and middle-aged motorists are more likely to choose SR91 toll lanes. These 

effects can not be identified solely in Brookings RP only model. The effect of household 

size is combined with household income in models with Brookings data. We do not 
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model like that here because we use income dummies instead of numerical values. The 

results show that motorists with smaller household size are more likely to choose toll 

lanes.  

 

 By specification, the value time is nonlinear with respect to both household 

income and trip distance, and the value of reliability is nonlinear with respect to income. 

Consistent with expectations, motorists with higher incomes are less responsive to the 

toll.  Same as specifications in above section, the effect of distance on the time 

coefficient is captured well by a cubic form with no intercept, but the pattern is slightly 

different. When graphed, the dependence of the value of time on distance is characterized 

by an inverted U, initially rising but then falling for trips greater than 45 miles and all 

respondents in our sample have positive value of time. Using Brookings RP data only, the 

value of time falls for trips greater than 30 miles and about 10 percent respondents have 

negative value of time.  

 

 We tested whether Brookings and Cal Poly respondents react differently to the 

cost, time, and unreliability variables and found that there were no statistically significant 

differences. 

 

2.2.2: Joint RP/SP Estimates 

 

 In this section, we combine all the three data sets   Brookings RP (BR), 

Brookings SP (BS), and Cal Poly RP (C) to estimate the heterogeneity in motorists’ 



 71

preferences for both travel time and travel time reliability.  The latent utility differences 

corresponding to these three data are like: 
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where the superscripts BR, BS, and C represent different data sources;  index i  runs 

through all individuals in the data sets; X  is the vector including toll, travel time, and 

travel time unreliability; BR
iν  is a random term with standard normal, thus the parameter 

ρ  captures the correlation between RP and SP observations from the same individual in 

Brookings data;  BR
iη , BS

itη , and C
iη  are independently logistic distributed; and  
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where the superscript CBSBRk ,,= ; k
iW  and k

iZ are individual characteristics capturing 

observed heterogeneity in preferences, while unobserved heterogeneity is captured by the 

random terms k
iξ  and k

iς . The term k
iξ  indicates an individual’s unobserved alternative 

specific preferences, and k
iς  represents an individual’s unobserved preferences regarding 
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travel characteristics. Because the two RP data sets have only one observation for each 

individual, BR
iξ  and C

iξ  are redundant given BR
iη  and C

iη .  

 

 In estimation, it is the variance of BR
iη  that is normalized, and two scale 

parameters BSµ and Cµ are estimated: 

 

  BSBRBS σσµ ≡       (2.25) 

  CBRC σσµ ≡       (2.26) 

 

where each σ  is the standard deviation of the corresponding η . 

 

 Some parameters are assumed to be identical in two or three of above choice 

processes in order to combine the advantages of RP and SP data. Especially, like joint 

RP/SP model in Brookings only data, we assume that cost and time coefficients have the 

same random components across RP and SP samples. The measures for travel time 

unreliability in RP and SP samples are different, instead of assuming the same random 

components for the their coefficients, we assume that the ratio of standard deviation to 

the mean of the unreliability coefficient is the same across samples. Thus we can have: 
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where iβ  refers to the vector of cost and time coefficients; ir  is the unreliability 

coefficient; iς  is independent with iϖ , and ( )Ω,0~ Niς  with Ω diagonal, 

( )ϖσϖ ,0~ Ni . 

 

 The estimate results of this joint model are shown in Table 15. The coefficients 

of all the travel characteristics relevant to the RP choice are estimated with greater 

precision than before. The parameters capturing unobserved heterogeneity in the 

coefficients of cost, time and unreliability are also precisely estimated, as are the scale 

and correlation parameters describing error structure.  
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  Table 15.  Results from Joint Model Combining Three Data Sets 
Variables Coefficients 

RP Variables  
     Brookings Constant ( BRθ ) 0.2473 (0.7799) 

     Cal Poly Constant ( BSθ ) -1.8389 (0.6860) 
     Cost -2.2682 (0.3589) 
     Cost × High Income Dummy 1.3147 (0.2794) 
     Cost × Medium Income Dummy 0.6566 (0.2088) 
     Dist × Time -0.4933 (0.1009) 
     Dist2 × Time 0.0868 (0.0189) 
     Dist3 × Time -0.0037 (0.0009) 
     Dmp80 -0.7049 (0.2550) 

SP Variables  
     Constant ( Cθ ) -1.2246 (0.8856) 
     Standard deviation of constant ( ξσ ) 0.1284 (0.6669) 

     Cost -1.0986 (0.3128) 
     Cost × High Income Dummy  0.1915 (0.6469) 
     Cost × Medium Income Dummy -0.0827 (0.2948) 
     Long × Time -0.1834 (0.0394) 
     (1-Long) × Time -0.2127 (0.0590) 
     Unreliability -5.1686 (1.1195) 

Pooled Variables  
     Female 1.3849 (0.4046) 
     Age30-50 1.3021 (0.3856) 
     Household Size -0.5902 (0.1738) 
     Dflex 0.7481 (0.4179) 
     Standard deviation of coefficient of cost (part of Ω ) 0.6577 (0.1826) 
     Standard deviation of coefficient of time (part of Ω ) 0.1268 (0.0471) 
     Ratio of standard deviation to the mean for      
coefficients of dmp80 and unreliability ( ϖσ ) 

0.9886 (0.3136) 

Other Parameters  
     Scale parameter for Cal Poly sample ( Cµ ) 0.3743 (0.0981) 

     Scale parameter for Brookings SP sample ( BSµ ) 1.4723 (0.3585) 
     Correlation parameter between RP and SP ( ρ ) 2.5493 (0.4969) 

Summary Statistics  
# of Obervations 1155 
# of Persons 548 
Log-Likelihood -501.28 
Note: Numbers in parentheses are standard errors.  
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 The estimate results in Table 15 are used to calculate motorists’ implied values of 

time and reliability and indicate the extent of their heterogeneity. The results are shown 

in Table 16. 

 

Table 16. Values of Time and Reliability from Results in Table 15 
 Median 

Estimate 
90% Confidence Intervala 

[5%-ile, 95%-ile] 
 
RP Estimates 

  

Value of time ($/hour)   
  Median in sample 20.20 [14.72, 25.54] 
  Unobserved heterogeneityb 11.01 [6.48, 16.74] 
  Total heterogeneity in sampleb  12.60 [8.30, 18.12] 
   
Value of reliability ($/hour) 
  Median in sample 

 
19.56 

 
[8.03, 31.17] 

  Unobserved heterogeneityb 27.67 [11.56, 47.64] 
  Total heterogeneity in sampleb  28.13 [11.56, 48.58] 
   
 
SP Estimates 

  

Value of time ($/hour)   
  Median in sample 9.46 [6.18, 13.53] 
  Unobserved heterogeneityb 13.46 [7.41, 22.02] 
  Total heterogeneity in sampleb 13.56 [7.52, 22.99] 
   
Value of reliability ($/incident)   
  Median in sample 4.17 [2.37, 6.30] 
  Unobserved heterogeneity in sampleb 7.78 [4.36, 12.64] 
  Total heterogeneityb 7.79 [4.36, 12.66] 

 

All estimates in Table 14 are significantly different from zero at a 5% significance 

level. The median value of time base don commuters’ revealed preferences is 

$20.20/hour.  In our data, median time savings at the height of rush hour are 5.6 minutes; 

thus, the average commuter would pay $1.89 to realize these savings.  The median value 

of reliability is $19.56/hour. Unreliability peaks at 3 minutes; thus, the average commuter 
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would pay $0.98 to avoid this possibility of unanticipated delay. Given these estimates, 

the actual peak toll of $3.30 would be expected to attract somewhat fewer than half of the 

total peak traffic—which, in fact, it does. 

 

We are also interested in how much motorists’ preferences vary. We use the 

interquartile difference (the difference between 75th and 25th percentile values) as our 

heterogeneity measure because it is unaffected by high upper-tail values occasionally 

found in the calculations of ratios. This measure of heterogeneity exceeds 60% of the 

median value of time and is greater than the median value of unreliability, indicating that 

commuters exhibit a wide distribution of preferences for speedy and reliable travel. 

 

It is interesting that the heterogeneity is almost all from unobserved sources, 

verifying the importance of “taste variation” in motorists’ behavior and our attempt to 

capture it. To be sure, unobserved heterogeneity reflects limitations on empirical work 

and presumably could be reduced if it were possible to measure all variables that underlie 

individuals’ preferences. 

 

The implied SP values of time are smaller on average than the RP values. This 

finding may reflect the aforementioned tendency of travelers to overstate the travel time 

they lose or would lose in congestion.  For example, suppose a motorist is in the habit of 

paying $1.56 to save 10 minutes, but perceives that saving as 15 minutes. That motorist 

may then answer SP questions as if he or she would pay $1.56 to save 15 minutes—

yielding an SP value of time that understates the value used in actual decisions. The SP 
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value of unreliability may be similarly biased, but we have no point of comparison. The 

median value of $4.17 per incident means that the median motorist in our sample would 

pay $0.42 per trip to reduce the frequency of 10-minute delays from 0.2 to 0.1. 
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CHAPTER 3 

Bayesian Analysis of Combining RP and SP Data in Discrete Choice Modeling 

 

This chapter is to show how the recently developments in Bayesian approach for 

estimating the multinomial probit model can be used in joint RP and SP analysis.  Most 

literatures on combining revealed preference data (RP) with stated preference data (SP) 

are based on logit model. The reason is the computational convenience of logit model. 

The multinomial probit model is hard to compute, especially when the number of choice 

alternatives is large and the correlation between RP and SP observations is not negligible. 

However, multinomial probit model has advantages in modeling flexibility, especially in 

dealing with correlation over choice alternatives and between RP and SP observations. 

The recent papers by Albert and Chib (1993), and by McCulloch and Rossi (1994) 

developed a Bayesian approach for estimating the multinomial probit model.  Bayesian 

approach has theoretical advantages in interpreting results from finite sample, as well as 

in testing and model selection. In practice, Geweke, Keane, and Runkle (1997) found that 

given sample size of data, Bayesian approach performs better than simulated maximum 

likelihood estimation for multinomial probit model in the sense that the estimates have 

smaller RMSE. Bolduc (1996) found Bayesian approach to be about twice as fast as 

classical method in run time for their specifications on multinomial probit model. 

 

How is the idea of using Bayesian approach to estimate multinomial probit model 

combining RP and SP observations? The method developed by Albert and Chib (1993), 

and McCulloch (1994) has limitation for this problem, because their method solves the 
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identification problem associated with probit model (as we will describe later) by 

introducing restriction via prior, that is, specifying prior for the full parameter space but 

only report the marginal posterior of identified parameters. In this case, it is very possible 

that the analytic forms for both the marginal prior and posterior on identified parameters 

are hard to get. As a result, the method developed by Chib (1995) for calculating Bayes 

factor can not be used, which makes it is difficult to test the difference between RP and 

SP choice processes.   

 

McCulloch, Polson, and Rossi (2000) proposed a Bayesian approach for 

multinomial probit model with fully identified parameters. This method can be easily 

extended to multinomial probit models combining RP and SP data. We begin with the 

binary choice case.  

 

3.1: Binary Choice Case 

  

3.1.1: Models without Hierarchy 

  

In this section, we discuss models with all coefficients to be fixed across 

individual. When RP and SP data sources are combined, we expect that at least some 

parameters do not vary with sources of data. At the same time, we need account for the 

their differences by letting other parameters be different and letting the error terms have 

different variances. Additionally, we need account for the correlation between RP and SP 
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choices from the same individual. The latent variable iz  for individual i , can be written 

as   

 

                        r
i

rr
i

r
i BXz ε+=        (3.1a) 

s
i

ss
i

s
i BXz ε+=           (3.1b) 

[ ] ( )Σεεε ,~ 0IIDNs
i

r
ii

′
≡       (3.1c) 

                                                                                 

where the superscripts r and s indicate RP and SP data respectively; ( )IIDN  represents 

identical independently normal density function; the coefficient vector B  includes those 

varying with data sources and those common across data sources, and where 

 

  







=
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2

srs

rsr

σσ
σσ

Σ         (3.1d)  

 

The observed individual’s choice  

 

1=k
iy  if 0>k

iz ,  srk ,=       (3.2) 

 

 In the following analysis, we let ( )′= s
i

r
ii yyy , ( )′= s

i
r
ii zzz , 

( )s

i
r
ii XXdiagX = , and ( )′= sr BBB . This model is unidentified because the 

likelihood function ( )∏
i

i BL Σ,  will not change if we multiply both B and Σ by a 
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constant. The classical method is to normalize the variance of one error term, say 2
rσ , as 

constant and maximize the reparameterized likelihood function with respect to identified 

parameters ( )2, rrB σσ Σ . Bayesian approach has option of introducing restrictions via 

prior distribution, and it can also define priors on identified parameters directly. Here we 

employ the latter method to discuss how to estimate probit model combining RP and SP 

observations.  

 

 Because r
iε and s

iε have a joint normal distribution, we can derive the following 

conditional distribution 

 

  ( )δλεεε ,~ r
i

r
i

s
i IIDN        (3) 

 

where 2
rrs σσλ = , and 222

rrss σσσδ −= . Let 2~
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The square root of µ   rs σσ is called as scaled parameter in the literature of combing 

RP and SP observations. By normalizing 2
rσ as 1, Σ~ can be written as 
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The model is estimated by drawing random numbers from the following posterior 

distribution:  

 

  ( ) ( ) ( ) ( )ΣΣΣ ~,~,,~, BpBzpzypyzBp
i

iii ⋅







∝ ∏    (3.5) 

 

The random draws are taken by Gibbs sampling, which draws in turn from the following 

complete conditionals: 
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where ( ) ( )⋅baTN ,  represents truncated normal distribution which is truncated below a and 

above b . 

 

2. s
i

r
i

s
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Similar to step 1, we can know that 
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where ( )BXzBX r
i

r
i

s
i

s −+= λθ . 

 

3. yzB ,~,Σ  

Let { }N
iizz 1== , { }N

iiyy 1== , { }N

iiXX
1=

= , and define a conjugate normal prior on B , that is, 

( )BBNB Λ,~ 0 , we can get 

 

 ( ) ( ) ( )( )111
0

11111 ,~,~,
−−−−−−−− +′+′+′ BBB XXBzXXXNyzB ΛΩΛΩΛΩΣ    (3.8) 

 

where ΣΩ
~

⊗= NI . 

 

4. yBz ,,
~
Σ  

The draws for Σ~ are taken by constructing i
s
i

s
i νλεε += , then ( )δν ,0~ IIDNi , and we 

can draw λ  and δ  from the following univariate regression model 

 

  vrs += λεε         (3.9) 
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where { }N

i
s
i

s
1== εε , { }N

i
r
i
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ii 1== νν . Define conjugate Normal    Inverse 
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Simulation Example 3.1 

 

 The simulation example is designed as: 

 

  r
i

r
i

r
i xz ε+−−= *2.18.0  

  s
i

s
i

s
i xz ε+−−= *2.14.0  
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The variance of r
iε  is 2, and the one of s

iε is 3. The correlation between r
iε and 

s
iε is set as 0.5. By this setting, the true values of identified parameters are 

( )85.0,28.0,57.0 −−−≈rB σ , 61.02 ≈≡ rrs σσλ , ( ) 13.1// 2222 ≈−= rrrss σσσσδ . The 

independent variable r
ix and s

ix  are generated independently from a uniform distribution 

with support [ ]2,2− . We use last 5000 Gibbs draws from a total of 6000 to form our 

posterior distributions of estimated parameters. 

 

 We employ two priors: the first is proper but diffuse, and the second is improper 

on δ . Specifically, under prior 1, ( ) ( )I100 7,NBp = , and ( ) ( ) 





=

2
5

,
2
5

4,1, IGNp δλ . 

Under prior 2, ( ) ( )I100 7,NBp = , and ( ) ( ) ( )0,010,0, 3 IGNp =δλ . Figure 5, from top to 

bottom, shows the estimated results for B , λ , and δ  respectively under prior 1 with 

sample size of 3000. The results are reasonable. 
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Figure 5. Simulation Exmaple 3.1 with Prior 1 and Sample Size 3000 

 

Figure 6, in the same order as figure 5, shows the estimated results under prior 2 

with sample size of 2000. This algorithm still works well.  
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Figure 6. Simulation Example 3.1 with Prior 2 and Sample Size 2000 
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3.1.2: Hierarchical Analysis 

  

 The above algorithm can be easily extended to hierarchical analysis combining 

RP and SP data, which can be used to uncover individual’s preference. In hierarchical 

model, the latent utilities in equation (3.1a) and (3.1b) are rewritten as 

 

r
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i BXz ε+=        (3.12a) 

s
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s
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s
i

s
i BXz ε+=           (3.12b) 

       

The parameters ( )′≡ s
i

r
ii BBB  representing individuals’ preferences are conditional on 

individuals’ characteristics iW , and include a stochastic part ie  capturing unobserved 

heterogeneity, that is, 

 

iii eWB += γ         (3.13) 

 

The error term can be modeled generally as ( ) ( )Ψ
′

≡ ,~ 0IIDNeee s
i

r
ii . Thus if both r

iB  

and s
iB  are 1×k  vectors, Ψ is a kk 22 ×  matrix. In above model, some parameters in 

( )′≡ sr γγγ  and Ψ are constrained to be the same across data sources. The Gibbs 

sampling for this model adds one more layer, specifically the random draws are drawn 

from the following steps:   
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The first layer: 
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where { }N
iiBB 1== . In the first layer, draws from (3.14a), (3.14b), and (3.14d) are the same 

as step 1, 2, and 4 respectively in the model without hierarchy. For (3.14c), if 
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The second layer: 

  

B,Ψγ          (3.15a) 

B,γΨ          (3.15b) 

 

We define conjugate Normal    Inverse Wishart prior for γ and Ψ , 

 

( ) ( ) ( )RIWN ρργγ γ ,,~ 0 ⋅ΛΨ   
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then 
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In equations (3.16a) and (3.16b), { }N
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Simulation Example 3.2 

 

 We design the following simulation example: 
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where 2.1−=a , 8.0−=rβ ,  4.0−=sβ , 







=Σ

3325.0
325.02

, 6.02 =µσ . Note 

that we assume that r
iβ  and s

iβ  have common random term in this example. The purpose 

of doing this is that in some applications, SP data is combined with RP data to estimate 

the unobserved heterogeneity in consumers’ preferences, which can not be identified 

using RP data only. Because of this assumption, we modified the Gibbs sampling like 

 

The first layer: 
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The second layer: 

 

  µσ µ
2  

 

We choose the following proper but diffuse priors: ( ) ( )I0 710,~,, Nsr ′
ββα , 

( )10,1~ Nλ , 
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,
2
5

~2 IGµσ , and the sample size is set as 3000. The 

results are shown in figures 7 and 8, and we get good results.  
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Figure 7. Estimate Results for Simulation Example 3.2 ( sr ββα ,,  from top to bottom) 
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Figure 8. Estimated Results for Simulation Example 3.2 ( 2,, µσδλ , from top to bottom) 
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3.2: Multinomial Case 

 

 Extending above analysis to multinomial probit model is also straightforward. 

Suppose there are J choice alternatives in RP data and K choice alternatives in SP data, 

that is, { }1J,...,1,0y r
i −∈ , and 1K,...1,0ys

i −∈ . Since choices only depend on utility 

difference, the multinomial probit model can be described by the following utility 

differences with respective to choice alternative 0:   

 

  r
ij

rr
ij

r
ij BXz ε+= , 1J,...1j −=        (3.17a) 

  s
ik

ss
ik

s
ik BXz ε+= , 1K,...,1k −=      (3.17b)  

 

and 

 

  { } ( )Σ
′

εεεε≡ε −− ,IIDN~,...,,,..., s
1iK

s
1i

r
1iJ

r
1ii 0     (3.17c) 

 

The observed individual’s choice 

 

  

 
( )

( )







>=

<
=

0zzmaxifh

0zmaxif0
y

t
ih

t
ij

t
ij

t
i      (3.18) 

 



 95 

where s,rt = , and if rt = , { }1J,...,1h,j −∈ ; if  st = , { }1K,...,1h,j −∈ . Still, to get 

identification, the first diagonal element of Σ  is normalized as 1, and similar to binary 

case, the identified variance matrix can be written as 
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where λ  is a 1 by ( )1K2J −+− vector representing normalized covariance between r
1iε  

and other elements in iε ; ∆  is the variance matrix of the conditional distribution 
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εεεε −− . The Gibbs sampling of estimating this model is like: 
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This draw is taken from univariate truncated normal which is truncated below ( )r
ihzmax  if 

jy r
i =  and is truncated above ( )( )r

ihzmax,0max  if jy r
i ≠ , where hj ≠ . 
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Similarly, this draw is taken from univariate truncated normal which is truncated below 

( )s
ihzmax  if kys

i =  and is truncated above ( )( )s
ihzmax,0max  if kys

i ≠ , where hk ≠ . 

 

3. y,~,zB Σ  

This step is the same as in binary case. 
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4. y,B,z
~
Σ  

The only difference between this step and the one in binary case is that instead of 

drawing from a univariate normal regression model, we draw Σ~  from the following 

multivariate normal regression model 

 

  ν+λ′ξ=η  

 

where ( )′ηη=η N1 ,..., , and ( )′εεεε=η −−
s

1iK
s
1i

r
1iJ

r
2ii ,...,,,..., ; ( )′ξξ=ξ N1 ,..., , and 

( )r
1ii diag ε=ξ  with dimension of 1K2J −+− ; ( )∆,~ 0IIDNiν . 

 

3.3: Summary 

  

 By simulation examples, this chapter shows how the newly advances in Bayesian 

econometrics for estimating the multinomial probit model can be extended with no 

trouble to analyze probit models combing RP and SP data sources. The Bayesian 

approach works well on these simulation examples, and by combining with method for 

calculating Bayes factor proposed by Chib (1995), it can be employed to estimate joint 

RP/SP model, compare and test the differences between different choice processes. 

Bayesian approach can provides us more flexibility in model specification, and more 

advantages in interpreting estimate results, testing hypothesis and model selection. 



 97

CHAPTER 4 

 Policy Implications of Heterogeneity in Motorists’ Preferences 

 

 In this chapter, we combine the estimate results in former chapters and the simulation 

model developed by Small and Yan (2001) to investigate the policy implications of 

heterogeneity in motorists’ preferences. 

 

4.1: The Model 

 

 This model considers two roadways, A and B, connecting the same origin and 

destination.  Both have the same length L and the same free-flow travel-time TfL.  A user of 

type i (i=1,2) traveling on road r (r=A,B) incurs travel cost cir which consists of operating 

cost β  plus a time cost αiTr per unit distance.  The parameter αi is the value of time, and it 

is this parameter for which we introduce heterogeneity, by assuming that α1>α2.  Unit 

travel time Tr (the inverse of speed) is represented by flow congestion of a standard type, 

depending on volume-capacity ratio Nr/Kr so that: 

 

( )[ ]K/N+1  LT + L = )N(c          rr
k

firir γαβ     BAri ,;2,1 ==    (4.1) 

 

where γ and k are parameters.  The congestion-dependent part of cost, dir ≡ αiTfLγ(Nr/Kr)k, 

is what we call delay cost.  This particular functional form has the property that the 

marginal external cost is k times the average delay cost: 

( ) ri iriri ririrr NdNkNcNMEC // ∑∑ ⋅=∂∂≡ , where Nir is the number of type-i users on 
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road r.  We use values γ=0.15 and k=4, following common practice.10 

 

 Demand by each group has the linear form 

 

Pb - a = )P(N          iiiii       (4.2) 

 

where ai and bi are positive parameters and Pi is the "inclusive price" or “full price”, 

defined as the minimum combination of travel cost plus toll (τ) for this user group: 

 

{ }τ r+cir
r

Min = Pi           .       (4.3)   

 

The inverse demand function corresponding to (4.2) is denoted Pi(Ni). 

 

 The social welfare function is defined as the area under the inverse demand curve, 

less total cost: 

 

cN - (t)dtP  = W          irir

B

A=r

2

1=i
i

N

0

2

1=i

i

∑∑∫∑       (4.4) 

 

This function is strictly concave in the four variables Nir. 

 
                                                 
 
10 See Small (1992), pp. 69-72, for a discussion of empirical evidence for this functional form. These particular 
parameters are known as the Bureau of Public Roads formula. 
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4.1.1: Types of Solution 

 

 The equilibrium conditions are those of Wardrop (1952), stating (i) that users of a 

given type choose the road or roads that minimize inclusive price, and (ii) that inclusive 

price be equalized across the two roads for any user group that uses both roads.  We 

assume that if the roads are differentiated it is road A that offers faster travel, so that N1A>0 

and N2B>0.  (This is a substantive assumption if the roads are of unequal capacity.)  

Wardrop's conditions can then be written: 

 

          ( ) ( ) BBBAAA NcNc ττ +≤+ 11                                            (4.5a) 

         ( ) ( ) BBBAAA NcNc ττ +≥+ 22                                                                    (4.5b) 

         ( ) 0111 =−−+⋅ BBAAB ccN ττ                                                               (4.5c)   

         ( ) 0222 =−−+⋅ BBAAA ccN ττ                                                                 (4.5d)  

         0, 21 ≥AB NN                                                                                              (4.5e)  

 

 It is useful to distinguish four possible cases, depending on whether each of (4.5a) 

and (4.5b) is an inequality or an equality. 

 

 Case SE: fully separated equilibrium.  Both (4.5a) and (4.5b) are inequalities, i.e., 

each group strictly prefers a different roadway.  Because we assumed α1>α2, these 
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conditions require that road A be more expensive but less congested than road B, 11 i.e., 

τA>τB and (NA/KA)<(NB/KB). 

 

 Case SE1: partially separated equilibrium with group 1 separated.  Group 1 strictly 

prefers road A but group 2 is indifferent:  that is, (4.5a) is an inequality but (4.5b) an 

equality.  Like the fully separated equilibrium, SE1 requires that road A have higher toll 

but lower travel time. Note it is not impossible that N2A=0, if this conditions happens to 

yield indifference for group 2; but we would expect this only by coincidence. 

 

 Case SE2: partially separated equilibrium with group 2 separated.  Group 2 strictly 

prefers road B, but group 1 is indifferent: (4.5a) is an equality, (4.5b) an inequality.  Again, 

road A must have a higher toll but is faster.  The boundary solution N1B=0 can occur, but 

again only by chance. 

 

 Case IE: fully integrated equilibrium.  Both groups are indifferent between the two 

roads; (4.5a-b) both hold with equalities.  Since the two groups have different values of 

time, this can occur only if the roads have equal tolls and equal speeds. 

 
 
 
 
 

 
                                                 
 
11 Subtracting (4.5b) from (4.5a) and applying (4.1) yields ( )( )k

AA21 K/Nαα − < ( )( )k
BB KN /21 αα − , which 

(given 21 αα > and 0k > ) implies BBAA K/NK/N < . This in turn implies ,cc B2A2 <  so (4.5b) requires 

BA ττ >   
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4.1.2: Pricing Regimes 

 

We consider the following alternative pricing regimes, also called policies. 

 

             First-best regime (FB): a public operator charges tolls on both roads that maximize 

welfare (4.4).  It can be shown that this policy yields conventional marginal-cost pricing on 

each road. 

 

             Second-best regime (SB): the same objective is pursued but subject to the constraint 

Bτ =0. 

 

      Profit-maximizing regime (PM): Aτ  is chosen to maximize revenues on road A 

subject to the constraint Bτ =0.  (By calling this “profit-maximizing”, we implicitly assume 

there are no variable costs to the road owner of serving traffic.) 

 

 No-toll regime (NT): Aτ = Bτ =0. 

 

 The no-toll regime is determined by solving (4.1)-(4.3) and (4.5) with equalities in 

(4.5a) and (4.5b); the solution is assumed to be of the integrated equilibrium (IE) type, 

since there is nothing to distinguish the two roadways from each other.  (This is in fact the 

only regime where IE can occur, due to our assumption of strictly unequal values of time.)  

Each of the other regimes calls for maximizing either welfare, as given by (4.4), or 

revenues R=∑r rr Nτ , while imposing constraints (4.5)  



 102 

4.1.3: Solutions  

  

 We assume that at least some type 1 users use road A and at least some type 2 users 

use road B. We consider a congested traffic condition, so the toll charged under a policy 

regime is strictly greater than zero. The general form of the first-best (FB) problem is 

therefore: 

 

( ) ( ) ∑∑∫∫ −+=
++

i r
irir

NNNN

cNdttPdttPW
BABA 2211

0
2

0
1max  

..ts ( ) ( ) 02111111 =−+−+≡ AAAABA NNcNNPh τ     (4.6a) 

        ( ) ( ) 02122222 =−+−+≡ BBBBBA NNcNNPh τ     (4.6b) 

        ( ) 01113 =−−⋅≡ BBB cPNh τ       (4.6c) 

       ( ) 02224 =−−⋅≡ AAA cPNh τ       (4.6d) 

       ( ) ( ) 02111111 ≤−+−+≡ BBBBBA NNcNNPg τ     (4.6e) 

       ( ) ( ) 0212222 ≤−+−+≡ AAAAB NNcNNPg τ     (4.6f) 

       0Ng B13 ≤−≡         (4.6g) 

        024 ≤−≡ ANg         (4.6h) 

 

where ( )⋅P  and ( )⋅c  are the functions defined by (4.2) and (4.1). Certain constraints are 

added for the SB, TB, and PM policy, and the objective function is replaced by toll revenues 

in PM policy. Because we assume 0, 21 >BA NN , (4.6a-b) are the same as (4.3) of the paper; 

(4.6c-d) are equivalent to (4.5c-d); (4.6e-f) to (4.5a-b); and (4.6g-h) to (4.5e).  
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 Suppose 4321 ,,, λλλλ are the Lagrangian multipliers for the four equality constraints, 

and 21 ,γγ , 43 ,γγ are those for the inequality constraints. According to the Kuhn-Tucker 

theorem, the necessary condition for the optimal solution ( )*
2

*
2

*
1

*
1

* ,,, BABA NNNNN = , 

( )*
4

*
3

*
2

*
1

* ,,, λλλλλ = , ( )*
4

*
3

*
2

*
1

* ,,, γγγγγ =  are: 

 

( ) ( ) ( ) 0
4

1

**
4

1

*** =∇−∇−∇ ∑∑
== j

jj
i

ii NgNhNW γλ     (4.7a) 

( ) 0** =Ng jjγ , 4,3,2,1=j        (4.7b) 

0* ≥jγ , 4,3,2,1=j         (4.7c) 

0≤jg , 4,3,2,1=j         (4.7d) 

 

 If constraints (4.6e) and (4.6f) are binding at the same time, the tolls on both routes 

must be equal as shown in section 2. This is impossible for SB, TB and PM policy and our 

numerical results also show that this case is never optimal for FB policy. As a result, the 

possible solution cases for the programming problem are only three: 

 

1. 0*
1 =γ , 0*

2 >γ  (SE1); 

In this case, (4.7c) 02 =⇒ g , i.e., (4.6f) must be binding. This means type 2 users are 

indifferent for two routes. Then (4.6e) cann't be binding, i.e., type 1 users strictly prefer road 

A and, from (4.6c), 0*
1 =BN .  

 

2. 0*
1 >γ , 0*

2 =γ  (SE2); 
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In this case, constraint (4.6e) is binding and constraint (4.6f) is not binding, and 0*
2 =AN .  

 

3. 0*
1 =γ  and 0*

2 =γ ; 

In this case, we can only say (from the argument above) that (4.6e) or (4.6f) or both must be 

non-binding, therefore *
1BN  or *

2 AN  or both must be zero.  Thus there are three solution 

cases:  

  3a. (4.6f) is binding and (4.6e) is not; *
1BN =0 (SE1). 

  3b. (4.6e) is binding and (4.6f) is not. *
2 AN =0 (SE2). 

  3c. Both (4.6e) and (4.6f) are non-binding. *
1BN = *

2 AN =0 (SE). 

 

 In the paper, we divide the programming problem into different cases (SE, SE1, SE2) 

and solve each case under each policy. The above classification shows that the solutions 

from these cases include all of the possible solutions for the whole problem.  

 
a). FB Policy 
 
       Case SE.  Substituting 01 =BN  and 02 =AN  into the welfare function, the welfare 

maximizing problem can be written as: 

 

( ) ( )∫ ∫ ⋅−⋅−+=
A BN N

BBBAAA NcNNcNdttPdttPW
1 2

0 0
22211121 )()(max  

 

The objective function is strictly concave because it equals the sum of four strictly concave 

functions. Therefore, the solution to the first-order conditions must be unique. The optimal 
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traffic ( *
2

*
1 , BA NN ) in this case can be solved out from those first-order conditions. The 

corresponding tolls on the two routes, determined by (4.6a-b), are: 

 

( ) AAAAAA MECNcNcP 111111 ≡′⋅=−=τ                                                                         

( ) BBBBBB MECNcNcP 222222 ≡′⋅=−=τ                                                                        

 

The optimal toll on each road is equal to the difference between social and private marginal 

cost on that road, known as "marginal external cost" MEC , just as in a single-route model.   

 

      Case SE1. Substituting 01 =BN  into the welfare function, we get: 

 

  ( ) ( ) ( ) ( ) ( )∫ ∫
+

−+⋅−+⋅−+

=
A BAN NN

BBBAAAAAAAA NcNNNcNNNcNdttPdttP

W
1 22

0 0
2222122211121

max

 

  

This objective function is also strictly concave because it equals the sum of five strictly 

concave functions. The corresponding tolls are: 

 

( ) ( ) ( ) AAAAAAAAAAAAA cPMECNNcNNNcNcNP 2221222111111 −=≡+′++′=−=τ            

( ) ( ) ( ) BBBBBBBAB MECNcNNcNNP 222222222 ≡′=−+=τ                                                   

 

The tolls are again the differences between social and private marginal costs on each route. 

The social cost on route A includes the users of both groups; the social cost on route B 
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includes just the users of group 2. We also check the corner solution of 02 =AN  in the 

simulation study. 

 

     Case SE2: This case is symmetric to SE1. 

 
 b).  SB Policy  

       Case SE. The welfare maximizing problem under second-best pricing policy for the 

fully separated equilibrium case can be written as: 

 

( ) ( ) ( ) ( )∫ ∫ −−+=
A BN N

BBBAAA NcNNcNdttPdttPW
1 2

0 0
22211121max      

..ts ( ) ( )BBB NcNP 2222 =                                                                                        

 

BN2  is determined solely by the constraint and numerical results in the paper show that 

there is only one positive real solution for BN2 . The objective function is a strictly concave 

function of AN1 , so if this case can occur, the solution is unique. The corresponding toll on 

route A is: 

 

( ) AAAAA MECNcN 1111 ≡′=τ                                                                  

 

This toll is just the difference of social and private marginal cost on that road, the social cost 

including just the users of group 1. There are no route spill-overs in fully separated 

equilibrium: that is, road A is treated just as in the FB policy. 
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                Case SE1. The corresponding Lagrangian is: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )[ ]
( ) ( )[ ]BBBA

AAAAAAA

BBBAAAAAAAA

NNN

NcNNP
NNcPNNcNP

NcNNNcNNNcNdttPdttPL
BAA

222222

2122211111

22221222111
0

2
0

1

221

−+−
++−+−−

−+−+−+= ∫∫
+

λ
λ  

 

where the constraints (4.6a-b) have been rewritten using (4.6f) as an equality in order to 

eliminate Aτ  as a variable. The Lagrangian Multiplier 1λ  represents the shadow price of not 

price discriminating on road A, that is, it represents the increase of social welfare that could 

be achieved by charging type-1 users more than type-2 users, since the latter have a sub-

optimally priced substitute (road B).  This problem can be solved for BAA NNN 221 ,, , λ1, and 

λ2. The toll which decentralizes the solution allocation is then determined by (4.6a) as: 

 

( )








′′−′′−′′

′+′−′⋅′′
−′+′=

BB

AABB
AAAAA cPcPPP

ccPcNP
cNcN

221121

211222
2211τ                                           

 

The toll on route A equals to marginal external cost minus a positive adjustment term which  

depends on the slope of demand function and cost function. 

 

          Case SE2.  The Lagrangian is: 

 

( ) ( )[ ] ( ) ( )[ ]BBBBABBBB NNcNNPNNcNPWL 2111111212222 +−+−+−−= γλ  
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where (4.6e) has been used as an equality with Larangian multiplier 1γ which represents the 

"shadow price" of not being able to price discriminated on road B.  

 

Again, we solve and use (4.6a) to determine the toll on route A as: 

 

( )








′′−′′−′′

′′′+′
−′=

BB

BBBB
AAA cPcPPP

PPcNcN
cN

122121

122211
11τ                                                                                   

 

The toll here equals to the marginal congestion cost plus a adjustment term which depends 

on the slopes of the demand and cost functions.  When the users are identical, so that 

c′1B=c′2B and P′1=P′2, this formula reduces to equation (4.2) of Verhoef et al. (1996).  

 

It is difficult to judge analytically whether these solution for cases SE1 and SE2 are unique, 

because of the non-linear form of the constraints.  In the simulation study, we use different 

initial values to show that in these cases no more than one equilibrium solution can be 

found.     

 
c). PM Policy 

 

The maximizing problem here has the same constraints as the ones in the SB policy. The 

only different is that the objective function now is: 

 

( ) ( ) ( )[ ] ( ) ( )[ ]AAaBAAAAAAA NNcNNPNNNcNPNR 2122222211111 +−+++−=  
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      Case SE. The solution of this case must be unique because the same reason as SE case in 

SB policy. The toll which maximizes revenue is found to be: 

 

( ) ][ 1111
′−′= PNcN AAAAτ                                                      

 

The toll is set at marginal social cost plus a monopolistic mark-up which is inversely related 

to the demand elasticity of group 1 (compare Small (1992, eq. (4.41))).  Equivalently, this 

equation can be written as AAAA cNPN 1111 ′=′+τ , that is, marginal revenue equals marginal 

cost.   

 

     Case SE1. The toll is found to be: 

 

( )








′′+′−′′−′′

′+′−′′′−′′+′′
+′−′+′=

BB

AABAABA
AAAAAA cPPcPPP

ccPcPNPPNcPN
PNcNcN

22
2

22121

211211211222
112211 )(2

)(
τ          

 

Again the toll equals marginal congestion cost plus a monopolistic mark-up. 

       Case SE2.  The revenue-maximizing toll on route A is: 

( ) ( )
( ) 








′′−′−′′

′−′′
+′−′=

21221

22
2

11
1111 PccPP

cPPN
PNcN

BB

BA
AAAAτ                                                                  

 

Again, the uniqueness of equilibrium solution for case SE1 and SE2 is proved numerically.  
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4.2: Simulation Results 

  In above model, time and unreliability are not distinguished, but can be assumed to 

be functionally related. To use the model with the estimate results in chapter 2, we specify 

the full price pir for a user of type i on roadway r to be riririr RTp δϕτ ++= , where τ is 

toll, T is travel-time delay (time less free-flow time), and R is unreliability.  We assume that 

for each roadway, rr TR /  is fixed at a value s=0.3785, which is the ratio of the average R 

to average T over the 4-hour peak period (5-9 a.m.) in the unpriced lanes in our floating car 

data. Thus ririr Tp ατ += , where iii sδϕα += .  For iϕ  and iδ  we use the VOT and VOR 

estimates in table 16 based on RP behavior, taking the two user groups to be represented by 

the 75th and 25th  percentiles.12  This yields values of hr/86.40$1 =α , and 2α  = $17.62 / 

hr. 

 

 The other parameters in cost and demand functions are calibrated to reproduce real 

traffic conditions observed on SR91 in fall 1999. In the cost function, the length of two 

routes is 10 miles, and the capacity of toll lanes (route A) is 2000, half of the one of free 

lanes (route B). The free-flow travel time 0.9231 minute per mile given the speed limit of 65 

miles per hour. In the demand functions, the parameters are calibrated so that the price 

elasticity for the two groups is –0.58, based on the estimate by Yan, Small, and Sullivan 

(2001) using Cal Poly data, and the time difference between the toll lanes and the free lanes 

is 6 minutes under profit maximizing toll. As a result, the intercepts of demand functions for 

 
                                                 
 
12 The third and sixth rows of table 14 show the difference between 75th and 25th percentiles. The percentiles 
themselves are: $27.70 and $15.10 for VOT, and $34.79 and $6.66 for VOR. 
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group 1 and group 2 people are both 7200, and the slopes of the demand functions for group 

1 and group 2 are about –1.66 and –2.75 respectively. Given these settings, the profit- 

maximizing toll is $4, which is quite plausible. 

 

 Table 17 shows the simulation results. The first column in this table is the base case, 

that is, there are no tolls on both two routes. The fourth column shows the results for first-

best pricing policy. Substantial social welfare gain can be gained by pricing roads optimally, 

however the direct loss in consumers’ surplus in this case is also big especially for people 

with lower value of time. This creates a political barrier to implement first-best pricing on 

roads. Given the estimated heterogeneity in value of time, a politically feasible policy    

second-best pricing (the second column) only charging toll on rout A improves social 

welfare by $0.16 per vehicle, which is much less efficient than first-best pricing. 

Heterogeneity in preferences increases efficiency of second-best pricing. As shown in the 

third column, without heterogeneity, the social welfare gain from second-best pricing is 

negligible. 

 

 Can we find a pricing policy which is as politically feasible as second-best pricing but 

with much larger efficiency? To answer this question, we resolve the non-linear 

programming problem for first-best pricing (equation (4.6)) but adding a political feasibility 

constraint, that is, the largest  consumer surplus loss no greater than that in the second-best 

pricing policy shown in the second column. We solve this complicated problem numerically 

by searching in 2-dimensional space for the tolls on route A and route B within the range 

between zero and first-best tolls. The results are shown in the fifth column of Table 17, and 
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the toll is called as limited differentiated toll. Compared with the first-best toll, the toll is 

lower but more sharply differentiated, and it causes substantially smaller losses in consumer 

surplus for both groups. Furthermore, it narrows the gap between losses in consumer surplus 

for the two groups. The social welfare gain from this policy is more than one third that of 

first-best pricing and much larger than that of second-best pricing. 

 

 Catering to heterogeneity is apparently the key to softening the distributional effects 

of more efficient road pricing. This is indicated by a “limited uniform toll” policy shown in 

the last column of the table, defined to generate the same efficiency gain as the limited 

differentiated toll. It harms the low-VOT group far more than the high-VOT group. Thus if 

analysts consider only uniform tolls, they are likely to find that policymakers pay little 

attention to the efficiency gains because of large distributional disparities. 

 

            Traffic on SR91 has increased considerably since 1999. We show the effects of 

differentiated pricing with greater congestion by recalibrating the simulation model to 

double the time difference between the lanes that existed in the fall of 1999 (again, assuming 

that the operator’s toll maximizes profit).  The results, shown in table 18, indicate that the 

welfare gains from all the policies are more than doubled with increased congestion, yet the 

consumer-surplus losses in constrained policies are only about 50 percent greater. If we 

ignore heterogeneity, distributional concerns also increase as evidenced by the greater 

disparity among users groups with the limited uniform toll (last column). But this disparity 

is virtually eliminated by the limited differential toll.  As congestion on major highways 

continues to grow, the case for accounting for heterogeneity will only strengthen.  
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Table 17. Simulation Results— Fall 1999 Traffic Conditions 
PRICING REGIME Base case: 

no toll 
Second-best toll: 

heterogeneity 
present 

Second-best toll: 
heterogeneity 
not present 

First-best 
differentiated 

toll 

Limited 
differentiated 

toll 

Limited uniform 
toll 

Toll:       
     Express lanes 0 $1.80 $0.97 $4.51 $1.34 $0.78 
     Regular lanes 0 0 0 $4.18 $0.47 $0.78 
Travel time (minutes):       
     Express lanes 14 11 12 10 12 13 
     Regular lanes 14 15 14 11 14 13 
Consumer surplus:a       
     High-VOT users 0 -$0.45  -$2.41 -$0.44 -$0.40 
     Low-VOT users 0 -$0.26  -$2.82 -$0.45 -$0.55 
     Homogeneous users 0  -$0.23    
Social welfarea       
     All users 0 $0.16 $0.06 $0.86 $0.28 $0.28 
 
a Consumer surplus and social welfare are measured relative to the no-toll scenario and divided by the number of users in the no-toll scenario to put them in per capita 

terms. Social welfare is equal to the sum of the two groups’ consumer surplus plus revenue, divided by total number of users in the no-toll scenario. 
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Table 18. Simulation Results—Increased Congestion 
PRICING REGIME Base case: 

no toll 
Second-best toll: 

heterogeneity 
present 

Second-best toll: 
heterogeneity 
not present 

First-best 
differentiated 

toll 

Limited 
differentiated 

toll 

Limited uniform 
toll 

Toll:       
     Express lanes 0 $4.42 $2.68 $8.51 $2.81 $1.43 
     Regular lanes 0 0 0 $7.93 $0.77 $1.43 
Travel time (minutes):       
     Express lanes 20 14 15 12 16 18 
     Regular lanes 20 21 20 13 19 18 
Consumer surplus:a       
     High-VOT users 0 -$0.71  -$2.66 -$0.68 -$0.54 
     Low-VOT users 0 -$0.42  -$3.31 -$0.71 -$0.89 
     Homogeneous users 0  -$0.38    
Social welfarea 0 $0.48 $0.23 $2.18 $0.67 $0.67 
 
a See the footnotes of Table 5.  
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CONCLUSION 

 

 This dissertation has applied recent econometric advances to analyze the behavior 

of commuters in Southern California and found substantial heterogeneity in commuters’ 

preferences for both travel time and travel time reliability. As expected, commuters with 

higher household income have higher values of time and of reliability. Additionally, 

commuters with long trip distance have lower values of time, which is consistent with 

residential selectivity. However, most of the heterogeneity in commuters’ preferences can 

not be explained by observed characteristics. One possible explanation is that in very 

expensive and congested metropolitan areas such as Southern California, consumers face 

significant constraints in trading off housing expense for commuting time.  

 

 Based on a simulation model and the uncovered heterogeneity, this dissertation 

found pricing policies with a greater chance of public acceptance by catering to varying 

preferences. Recent “value pricing” experiments have made a start to account for varying 

preferences by letting motorists make an option between priced and unpriced roads. 

However, as shown in the simulation results of this dissertation, leaving part of roadway 

unpriced severely reduces the efficiency. Differentiated pricing taking preference 

heterogeneity into account can realize substantial efficiency gains on the one hand, and 

ameliorate distributional concerns on the other hand.  Differentiated pricing is also 

politically feasible by reducing the direct loss in consumer surplus. This policy may thus 

be the key to break the impasse in efforts to relieve highway congestion. 
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 This dissertation also investigated how to employ the new advances in Bayesian 

approach for estimating the multinomial probit model in travel demand analysis 

combining different sources of data. Multinomial probit model has advantages to model 

the correlation across choice alternatives and across observations of different data from 

the same individual, and Bayesian approach, also with theoretical advantages in 

interpreting results, makes the multinomial probit model more feasible to handle in 

practice. Bayesian approach provides us with a new tool to measure commuters’ behavior 

based on more flexible model specifications.  
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