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Untargeted lipidomic features associated
with colorectal cancer in a prospective
cohort

Kelsi Perttula1, Courtney Schiffman1, William M B Edmands1, Lauren Petrick1,7, Hasmik Grigoryan1, Xiaoming Cai1,
Marc J Gunter3, Alessio Naccarati4, Silvia Polidoro4, Sandrine Dudoit1,2,6, Paolo Vineis4,5 and Stephen M Rappaport1*
Abstract

Background: Epidemiologists are beginning to employ metabolomics and lipidomics with archived blood from
incident cases and controls to discover causes of cancer. Although several such studies have focused on colorectal
cancer (CRC), they all followed targeted or semi-targeted designs that limited their ability to find discriminating
molecules and pathways related to the causes of CRC.

Methods: Using an untargeted design, we measured lipophilic metabolites in prediagnostic serum from 66 CRC
patients and 66 matched controls from the European Prospective Investigation into Cancer and Nutrition (Turin,
Italy). Samples were analyzed by liquid chromatography-high-resolution mass spectrometry (LC-MS), resulting in
8690 features for statistical analysis.

Results: Rather than the usual multiple-hypothesis-testing approach, we based variable selection on an ensemble
of regression methods, which found nine features to be associated with case-control status. We then regressed
each selected feature on time-to-diagnosis to determine whether the feature was likely to be either a potentially
causal biomarker or a reactive product of disease progression (reverse causality).

Conclusions: Of the nine selected LC-MS features, four appear to be involved in CRC etiology and merit further
investigation in prospective studies of CRC. Four other features appear to be related to progression of the disease
(reverse causality), and may represent biomarkers of value for early detection of CRC.

Keywords: Colorectal cancer, Lipidomics, Metabolomics, EPIC, Untargeted, Biomarkers
Background
Colorectal cancer (CRC) accounts for over 25% of all
cancer-related deaths with global incidence rates steadily
rising [1–3]. Since less than 15% of CRC risk has been
attributed to heritable genetics [4, 5], non-shared expo-
sures and their contributions to gut inflammation are
believed to be important etiologic factors [6]. Increased
CRC risks have been associated with cigarette smoking,
alcohol use, lack of physical activity, obesity, abnormal
glucose metabolism, and consumption of red meat and
n-6 polyunsaturated fatty acids (PUFAs) [7–10]. Con-
versely, consumption of n-3 PUFAs, fruits, fish, vitamins
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D and E, and regular use of aspirin appear to reduce
CRC risks [7, 11, 12]. There are also persistent sugges-
tions that the interplay between dietary factors - particu-
larly red meat, lipids, and fiber - and the gut microbiota
are effect modifiers for CRC [6, 13–16].
Many of the associations between exposures and CRC

have been gleaned from epidemiological studies that
employed self-reported dietary and lifestyle factors [8, 9,
16, 17]. Given the inherent limitations of such data for
discovering causal exposures, investigators have recently
employed metabolomics to compare small-molecule fea-
tures between CRC cases and controls. This strategy is
based on the idea that small molecules in human blood
reflect chemical exposures from both internal and exter-
nal sources, including the diet, microbiota, psychosocial
stress, and pollutants [18]. However, since molecules
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that discriminate cases from controls in cross-sectional
studies can reflect both potential causes of CRC and dys-
regulation of metabolic processes that result from pro-
gression of the disease (reverse causality) [5, 19], it is
important that biospecimens be collected before diagno-
sis to gain insights into causes and effects. Indeed, a
class of ultra-long-chain fatty acids (ULCFAs) that dis-
criminated for CRC in several cross-sectional studies
[20, 21] was essentially ruled out as a causal factor in a
prospective cohort [22].
Metabolomic analyses of blood from prospective cohorts

have found some associations between CRC incidence and
small molecules, as summarized in Table 1, with periods of
follow-up ranging from 3.7 to 14.7 years [19, 22–27]. Inter-
estingly, all of these nested case-control studies followed
targeted or semi-targeted designs where relatively few mo-
lecular features were tested between cases and controls.
Two of the studies focused on metabolism of dietary cho-
line and found that the mammalian metabolite, betaine,
was moderately protective against CRC whereas trimethyla-
mine-N-oxide (TMAO), a metabolite mediated via intes-
tinal microbiota, was associated with increased risk [26, 27].
A genetic link between TMAO and CRC risk has also been
reported [28]. Intriguingly, red meat and other
phosphatidylcholine-rich foods appear to contribute to dys-
biotic microbiota that generate trimethylamine (the precur-
sor of TMAO) [15, 29], whereas fiber-rich foods appear to
encourage symbiotic bacteria that are associated with de-
creased CRC risk [15, 30].
Since untargeted metabolomics via liquid

chromatography-mass spectrometry (LC-MS) can detect
thousands of small-molecule features, traditional
hypothesis-testing approaches that adjust for multiple com-
parisons by controlling false positive error rates, such as the
Table 1 Studies that investigated associations of colorectal cancer w
cohorts

Cohort Cases/
Controls

Follow-upa

(y)
Analytical method Desi

WHI-
OS

835/835 5.2 LC-MS Targ

EPIC [1] 1367/2323 3.7 LC-MS Targ

EPIC [2] 95/95 14.7 LC-MS Targ

EPIC [3] 1238/1238 3.8 Colorimetry and
turbidimetry

Targ

PLCO 254/254 7.8 LC-MS and GC-MS Sem
targe

WHI-OS Women’s Health Initiative Observational Study, EPIC European Prospective I
high-density lipoprotein cholesterol, LC-MS liquid chromatography-mass spectrome
trimethylamine-N-oxide, WHI-OS Women’s Health Initiative-Observational Study, (+)
aMean period of follow-up
false discovery rate (FDR) [31], can make it difficult to find
features whose levels differ significantly between cases and
controls. This may have motivated the semi-targeting strat-
egy of Cross et al. (Table 1) [25], who limited hypothesis
tests of the thousands of detected features to only 278 mole-
cules that had been fully annotated. Such a strategy is likely
to be biased towards well curated metabolites that partici-
pate in recognized human pathways [18], and thus can miss
novel exposures of potential importance to initiation of can-
cer, including those experienced predominately by either
cases or controls. Indeed, of the 278 small-molecules tested
by Cross et al. [25], only glycochenodeoxycholate (a second-
ary bile salt) was associated with increased CRC risk in
women (but not men) after using the conservative Bonfer-
onni correction of the p-value.
Here, we report results of an untargeted metabolo-

mics analysis of serum from 66 incident CRC cases and
matched controls from the European Prospective In-
vestigation of Cancer and Nutrition (EPIC). Given the
involvement of lipids in inflammatory processes and
CRC [32–34], the serum-extraction procedure favored
lipophilic molecules. As an alternative to the trad-
itional multiple-hypothesis-testing paradigm for select-
ing features of potential importance to CRC, we
developed a variable-selection strategy that employs an
ensemble of diverse prediction methods, including reg-
ularized linear regression and regression trees [35–37].
Such methods have recently been applied independ-
ently for analyzing metabolomic and other -omic data
[35, 36, 38]. Our analyses point to a small set of fea-
tures that were predictive of CRC-case status. How-
ever, as with all discovery studies, these potentially
important features and the molecules they represent
must be further validated with independent data sets.
ith small molecules in plasma or serum from prospective

gn Exposure variable Likely associations Ref.

eted Choline and its
metabolites

TMAO (+); betaine/choline
ratio (−)

[26]

eted Methionine and
choline metabolites

Methionine, choline,
and betaine (−)

[27]

eted 8 Ultra-long-chain
hydroxylated fatty acids

All associations (−)
diminished
with time to diagnosis
(reverse causality)

[22]

eted Triglycerides, cholesterol,
and lipoproteins

HDL (−) [19]

i-
ted

278 Annotated metabolites
detected in > 80%
of specimens

Glycochenodeoxycholate
(+) in women but not men

[25]

nvestigation into Cancer, GC-MS gas chromatography-mass spectrometry, HDL
try, PLCO Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, TMAO
positively associated with CRC, (−) negatively associated with CRC
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Methods
Study population
EPIC is a prospective cohort study with approximately
520,000 adult participants from across Europe that were
enrolled from 1992 through 2000 [39]. We had received
EPIC serum to test the hypothesis that ULCFAs were pro-
tective of colorectal cancer [22], and simultaneously per-
formed untargeted metabolomics to discover other
potentially causal features. For the current study, data
were analyzed from serum collected between 1993 and
1997 from 66 case-control pairs in Turin, Italy. Controls
were matched to incident cases by age, year and season of
enrollment, and gender. Dietary data were collected with
food frequency questionnaires [40, 41]. Summary statistics
for these subjects are listed in Table 2, including time to
diagnosis (ttd), gender, body mass index (bmi), waist cir-
cumference, smoking status, diabetes status, physical ac-
tivity, and alcohol and meat consumption. These variables
were selected based on previous evidence of associations
with CRC risk [7, 42, 43]. Across our subjects, the only
significant differences between CRC cases and controls
were observed for bmi and waist circumference, both of
which were higher in cases (Table 2).

Chemicals
Isopropanol (LC-MS grade, Fluka), methanol, water and
13C- cholic acid (internal standard) were from
Sigma-Aldrich (Milwaukee, WI, USA). Acetic acid
(LC-MS grade, Optima) and chloroform were from
Fisher Scientific (Santa Clara, CA, USA). All chemicals
were of analytical grade and were used without
purification.

Sample processing
Serum was stored after collection in 0.5-ml aliquots that
were placed in cryostraws, sealed, and stored in liquid
nitrogen (-196 °C) at the International Agency for Re-
search on Cancer in Lyon, France. Approximately 1 year
prior to analysis, cryostraws were transported (with dry
ice) to our laboratory in Berkeley, CA (USA), where they
were maintained at -80 °C. As previously reported [22],
20 μl of serum was mixed with 100 μl of a solvent mix-
ture (isopropanol/methanol/water = 60:35:5) containing
13C-cholic acid as an internal standard (final concentra-
tion of 3.0 μg/ml). After mixing samples for 1 minute
with a vortex mixer, samples were left at room
temperature for 10 min. to precipitate proteins, and
were then centrifuged for 10 min at 10,000 g. The super-
natant was retained and stored at 4 °C prior to LC-MS.
Case-control pairs were analyzed sequentially but in ran-
dom order. A local quality-control sample, prepared by
pooling aliquots from all serum specimens of each batch,
was analyzed after every ten samples to monitor system
stability and estimate the precision of the analyses.
Mass spectrometry
Analysis was performed with an Agilent LC (1100 series)
coupled to an Agilent high resolution MS (Model 6550
QTOF, Santa Clara, CA, USA) as previously reported
[22]. Briefly, 10 μl of extracts were slowly loaded on to a
Luna C5 column (Phenomenex, Los Angeles, CA) with a
22-min gradient elution of mobile phase A (methanol/
0.5% acetic acid = 5:95) and mobile phase B (isopropa-
nol/methanol/0.5% acetic acid = 60:35:5). The electro-
spray was operated in negative electrospray-ionization
(ESI) mode. Tandem MS/MS spectra were obtained on
the same platform in data-dependent mode (immediately
after data collection) or targeted mode (analysis of the
selected features). Full LC-MS acquisition parameters
were previously published [22].
Approximately one third of the serum samples had a

gelled consistency that resulted from an additive to the
cryostraws [22, 44, 45]. Pairs with at least one gelled
sample were analyzed in one batch (batch 1, n = 96), and
the remaining (non-gelled) pairs were analyzed in a sec-
ond batch (batch 2, n = 36).

Data processing
Raw data were converted to mzXML format for peak
picking using ProteoWizard software (Spielberg Family
Center for Applied Proteomics, Los Angeles, CA). Peak
detection and retention-time alignment were performed
as described previously [22], using the XCMS package
within the R statistical programming environment [46–
48]. The CAMERA package was used to identify iso-
topes, ESI adducts, and in-source fragments with the
custom rule set used from Stanstrup et al. [49, 50]. An-
notation of features was conducted using the compMS2-
Miner package [51], by comparing accurate masses and
MS2 fragmentation patterns with the Human Metabo-
lome Database (HMDB) and Metlin [52, 53].
Over 24,300 features were initially detected in negative

ESI mode. Features were filtered by removing those with
a mean fold-change in abundance less than 1.5 com-
pared to the same peaks in reagent blanks (background
noise) and those with coefficients of variation (CV) from
QC samples greater than 30% [54, 55]. This resulted in a
final dataset of 8690 features for statistical analysis. Fea-
ture intensities were (natural) log-transformed and ad-
justed for batch and gel-status effects using the
following linear regression model, previously described
in [22]:

logY i ¼ β0 þ β1Xi;gel þ β2Xi;batch þ ϵi; ð1Þ

where Yi denotes the intensity of a given feature for the
ith subject and Xi, gel and Xi, batch are the corresponding
categorical covariates for gel-status and batch. After fit-
ting the linear model, normalized (logged) intensities



Table 2 Descriptive statistics of human subjects matched by age, study enrollment, gender, and selected covariates

Total n=132 CRC cases n=66 Controls n=66 p-value*

Gender Male 51 51

Female 15 15

Age at enrollment (y) median 56 56

min 35 35

max 65 65

Years to diagnosis median 7.52 –

min 0.10 –

max 14.40 –

BMI median 26.9 25.3 0.0246

min 19.7 18.7

max 36.7 33.6

Waist circumference (cm) median 97 90 0.0016

min 68 66

max 115 119

Diabetes yes 2 2

no 64 64

Smoking Status current 15 16 0.8423

former 27 23

never 21 22

NA 3 5

Alcohol consumption (ml/day) median 23.0 22.6 0.4038

min 0.0 0.1

max 79.8 113

Physical Activity (min/day) high 13 13 0.6102

medium 15 20

low 25 18

none 10 10

NA 3 5

Total meat consumption (g/day) median 75.6 67.6 0.4640

min 5.9 8.8

max 248.3 201.3

NA not available
*Nominal p-values calculated from two-sided Wilcoxon rank sum tests (dichotomous variables) or chi-square tests (categorical or continuous variables)
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were obtained by subtracting the estimated batch and
gel effects from the original (logged) intensities.
Upper-quantile scaling was used to render the distri-

butions of feature abundances more comparable across
all subjects [56, 57]. A correlation-network program
(Cytoscape, [58]) and an R package clustering algorithm
(RAMclust, [59]) were used to identify clustered ions
and assist with annotations.

Statistical methods: Variable selection
In order to identify discriminating features between
CRC cases and control, we shifted the paradigm from
multiple hypothesis testing to variable selection based
on a combination of three regression methods. First, we
considered the following standard linear regression
model for the raw intensity of a given feature Y in the ith

subject:

logY i ¼ β0 þ β1Xi;caco þ β2Xi;gel þ β3Xi;batch

þ β4Xi;age þ β5Xi;gender þ ϵi; ð2Þ

where caco, gel, and gender denote binary variables for
case-control status, presence or absence of gelled serum,
and the matched variables of gender and age (in years).
Features were then ranked based on the nominal un-
adjusted p-value for the case-control coefficient (β1).
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Second, a regularized logistic regression (LASSO: least
absolute shrinkage and selection operator) was per-
formed [35, 60] with case-control status as the binary
outcome variable regressed on the following covariates:
normalized log intensities from Eq. (1) for all 8690 me-
tabolites, age and gender. Although age and gender were
in the LASSO model, neither variable was selected by
the regularized regression.
In order to stabilize feature selection with LASSO, 500

bootstrap samples were taken for each of a variety of
penalty parameters [61]. Features chosen by LASSO in
at least 10% of the bootstrap samples, across a wide
range of penalty parameters, were retained. A
data-driven cutoff of 10% was chosen based on plots of
the percentage of time that each metabolite was selected
during the bootstrap iterations across various penalty
parameters, sorted in decreasing order. There was an
obvious gap between metabolites selected more than
and less than 10% of the time, which lead to choosing
this as a natural cutoff. Third, the random forest algo-
rithm [36, 62] was used to build a predictor of
case-control status, using the same covariates as for the
LASSO regression. No obvious jump in variable import-
ance could be seen for the sorted random forest variable
importance or the sorted linear regression p-values.
Therefore, a cutoff of 1% was selected for both of these
criteria because this cutoff is relatively stringent, yet still
included a reasonable number of variables for consider-
ation. In summary, to select a final set of variables, we
included only features that were selected by the boot-
strap LASSO and were also among the top 1% of fea-
tures ranked by linear regression p-values and random
forest variable importance.
When a set of features was selected that satisfied all

criteria, the extracted ion chromatographs were visually
inspected and those with poor peak morphology (ill-de-
fined Gaussian shape) or integration were removed.
Then, the three variable selection methods were re-
peated as needed to arrive at a final set of selected fea-
tures with good peak morphology and integration.
Initially, only covariates on which the samples were

matched (i.e. age and gender) were included in the
models used for variable selection. We did not include
other dietary or health related covariates because we did
not want to obscure possible associations between the
metabolites and case-control status. However, we did
subsequently test for associations between the nine se-
lected metabolites and the following covariates weight,
bmi, smoking status, and consumption of beef, pork, and
alcohol. As shown in Additional file 1, only one feature
(ID 839) was marginally associated with any of the co-
variates (i.e. bmi and consumption of beef ). Also, when
each of these covariates was added to the LASSO model
(Eq. (2)) with case-control status as the binary outcome
variable none of them was selected by the regularized
regression.
Results
Features that discriminate for CRC
After applying the three variable-selection methods de-
scribed above, two of which prioritize predictive ability
(LASSO and random forest), nine features were selected.
The volcano plot in Fig. 1 relates case-control fold
changes and –log10 p-values (for the model in Eq. 2) for
all features and highlights the nine selected metabolites
(shown in Table 3). Case-control fold-changes ranged
from approximately 0.2 to 3.0 overall and between 0.40
and 1.40 for the nine selected features. Due to the nature
of our variable selection method, the p-values of the se-
lected features were not necessarily the smallest, nor
were their fold-changes necessarily the largest. Neverthe-
less, the nine selected metabolites resulted in a 79% cor-
rect classification rate when they were used to fit a
logistic regression model on the learning set to predict
case-control status. Although this correct classification
is likely optimistic because the same data were used to
perform the variable selection and to build and test the
predictor, the selected features are worthy of validation
in independent samples of CRC cases and controls from
prospective cohorts.
Potentially causal and reactive biomarkers
The nine selected features were evaluated to determine
their associations with time to diagnosis (ttd) as a means
of discerning whether they represent potentially causal
exposures or reactive effects of disease progression [22].
If the log fold-change for a given feature was constant
across the whole range of ttd in a linear model (p-value
> 0.05), the feature was classified as potentially causal
(C) and if the case-control difference decreased with in-
creasing ttd, the feature was classified as potentially re-
active (R). These (C) and (R) classifications are listed in
Table 3 for the nine selected features and the plots for
the ttd linear models are shown in Fig. 2. (See Add-
itional file 1 for regression coefficients and p-values).
This process resulted in four potentially causal features
(no apparent effect of ttd for IDs: 5080, 3207, 6054 and
839), four potentially reactive features (case-control dif-
ferences diminish with ttd for IDs: 235, 4250, 4294 and
14,963), and one feature that could not be classified as
either (C) or (R) (case control differences increased with
ttd, ID 5749). The four potentially causal metabolites re-
sulted in a 72% correct classification rate to predict
case-control status (with the same caveats mentioned
above). While the four potentially causal features may be
linked to exposures that contribute to CRC, the four re-
active features may be useful pre-diagnostic biomarkers.



Fig. 1 Volcano plot of analyzed features; the nine selected features are highlighted in red with the ID labels from Table 3. An arbitrary p-value =
0.05 threshold line is present for reference. p-values and fold-changes are calculated based on the regression model in Eq. (2)
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Discussion
Using untargeted metabolomics in serum samples from
66 pairs of CRC cases and controls from the EPIC co-
hort, we sought evidence linking lipophilic molecules
with the etiology of CRC. The LC-MS data collected
from these samples included over 24,000 features. After
filtering for noise (mean fold-change above blank sam-
ples), reproducibility (CVs), and likely artifacts (CAM-
ERA), 8690 features were available for evaluating
potential associations with CRC case status.
It has been standard practice in metabolomics to iden-

tify features that discriminate for case-control status
using a multiple-testing approach, e.g., based on a cutoff
Table 3 Untargeted features selected as predictors of case-control s

Feature ID Observed m/z a, b Ret. time (sec)

235 391.2832 596.4

4250 453.3592 605.5

4294 467.3744 605.6

5080 519.1965 595.9

3207 531.1558 563.9

6054 551.1781 563.9

839 577.2698 620.6

5749 882.6393 718.2

14,963 907.4806 617.6

m/z mass-to-charge ratio, p-value from the regression model (Eq. 2), C potentially c
aObserved m/z values correspond to singly-charged negative ions
bFeature selected by bootstrap LASSO and by being in the top 1% of features ranke
random forest variable importance measure
cBased on regression of case-control difference on time to diagnosis (ttd, Fig. 2)
for p-values that have been adjusted to control for a false
positive error rate such as the FDR [63]. Since untar-
geted metabolomics can detect thousands of features,
FDR correction is severe [63] and can drastically reduce
the number of selected metabolites, thereby resulting in
false negatives. Thus, we shifted our paradigm to a
variable-selection approach, based on an ensemble of di-
verse regression methods, in order to uncover a reliable
set of features for further investigation. This led to selec-
tion of 9 features that discriminated for CRC (Table 3)
with a correct classification of 79%. Based on regressions
of case/control fold changes on ttd (Fig. 2), four of these
features appear to be related to causal factors for CRC,
tatus

Fold change p-value Feature type c

0.702 0.000261 R

0.753 0.001082 R

0.741 0.000569 R

1.308 0.000432 C

0.661 0.000468 C

0.404 0.001750 C

1.370 0.000359 C

0.880 0.000168 I

1.373 0.000133 R

ausal feature, R potentially reactive feature, I indeterminate

d by both the p-values from the case-control regression (Eq. 2) and the



Fig. 2 Scatterplots of case-control log fold-change vs. time to diagnosis (ttd) for the 9 selected features. The blue line is the linear regression fit and
the gray band represents a 95% confidence intervals, calculated with the ‘lm’ method of the R function ‘geom_smooth’ in the package ‘ggplot2’
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four appear to be related to cancer progression, and one
is indeterminate.
As mentioned earlier, the top 1 % of features in terms of

smallest p-values were considered for variable selection.
However, many of these roughly 90 features were not also
high ranking in terms of predictive importance, as
assessed by random forest and LASSO. Indeed, inspection
of data from the features with very small p-values found
some to have small standard errors rather than meaning-
ful case-control differences, while other features with large
fold changes had great uncertainties in fold-change esti-
mates. This reinforces the value of using an ensemble of
Table 4 Results of tandem MS/MS analyses of features associated w
Feature ID Observed m/z Ret. time (s) Prominent MS2 fragments

with possible fragment IDs

235 391.2832 596.4 347.2961(loss of CO2), 197.0725 ([C10

4250 453.3592 605.5 59.0131, 409.3687 (loss of CO2),
391.3568 (loss of CO2 and H2O),
279.2336 ([C18H31O2]-), 435.3462
(loss of H2O)

4294 467.3744 605.6 449.3639 (loss of H2O), 263.2368
([C18H31O]-), 423.3842 (loss of CO2),
162.8392, 405.3724 (loss of CO2 and

5080 519.1965 595.9 No MS2 spectra

3207 531.1558 563.9 481.3110, 256.2357

6054 551.1781 612.3 478.2903, 515.1326 (loss of 2 H2O;),
253.2165 ([C16H29O2]-)

839 577.2698 596.8 No MS2 spectra

5749 882.6393 718.2 124.0075, 822.6453 (loss of acetate)

14,963 907.4806 617.6 No MS2 spectra
regression methods to evaluate biological variability rather
than a single measure such as a small p-value or a large
case-control fold change.

Possible annotations
Potential annotations of the nine selected features were
based on comparisons of MS2 spectra with human me-
tabolome database (HMDB) entries as summarized in
Table 4. Focusing first on the four potentially causal
features shown in Table 3, MS2 were only obtained for
IDs 3207 and 6054, which were positively correlated
(Pearson correlation coefficient of 0.64) and were both
ith case-control status
Putative ID Species Molecular formula Δ ppm

H13O4]-) possible fatty acid [M-H]- C24H40O4 4.22

possible ULCFA [M-H]- C27H50O5 −2.76

H2O)

ULCFA 468 [M-H]- C28H52O5 −1.56

unknown

unknown

possible ceramide

unknown

unknown [M + HAc-H]-

unknown
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present at lower levels in cases than in controls, indicat-
ing possibly protective effects. The two MS2 fragment
ions detected for ID 3207 could not be identified. How-
ever, ID 6054 had fragments characteristic of
[C16H29O2]

− and losses of two H2O molecules, consist-
ent with the loss of two hydroxyl groups and a hexade-
cenoic acetate fragment. These fragments are suggestive
of ceramide lipids [64], a class of molecules that has
been implicated in the regulation of cancer cells [65]. Al-
though IDs 3207 and 6054 and the two other potentially
causal features (IDs 5080 and 839) could not be fully an-
notated, the identified characteristics of accurate mass,
retention time, and MS2 fragments can be used for val-
idation in future studies.
Turning now to the likely reactive features, ID 4294 was

putatively identified as ULCFA 468, which had been evalu-
ated separately in our targeted study of 8 ULFCAs [22] and
had been first reported by Ritchie et al. [24]. This feature
had neutral losses of H2O and CO2, characteristic of a hy-
droxylated fatty acid and a likely molecular formula for
[M-H]− of C28H52O5, within 1.56 ppm of the exact mass.
Another reactive feature (ID 4250) also displayed these
characteristic neutral losses of H2O and CO2 and was
highly correlated with ID 4294 with a correlation coefficient
of 0.85. This suggests that ID 4250 is a previously unchar-
acterized ULCFA with molecular formula for [M-H]− of
C27H50O5, within − 2.76 ppm. While odd-numbered fatty
acids are less common in humans, microbial single carbon
metabolism in very long chain fatty acids has been reported
[66]. As a class, ULCFAs tend to be present at higher levels
among controls compared to paired cases, but this differ-
ence diminishes with ttd, suggesting that they result from
disease progression [22]. Nonetheless, the fact that these
two ULCFAs were selected from approximately 9000 fea-
tures that survived filtering of the untargeted metabolomics
data offers partial validation to our variable-selection strat-
egy. Based on correlation maps (data not shown) both of
these features clustered with five other ULCFAs that have
been described by Ritchie, et al. [24] (ULCFAs 465, 466,
492, 518, and 538; exact masses within 10 ppm of calcu-
lated m/z), and were also analyzed in our targeted study
[22]. Another selected feature (ID 235) exhibited similar re-
active (R) behavior to the ULCFAs (Fig. 2), and the pres-
ence of a neutral loss of CO2, indicating that ID 235 may
be a fatty or bile acid. Deoxycholic acid (3α,
12α-dihydroxy-5β-cholanic acid) [M-H]−, chenodeoxy-
cholic acid (3α, 7α-dihydroxy-5β-cholanic acid) [M-H]−,
and adrenic acid [M+HAc-H]− were eliminated as possible
annotations of feature 235 by comparison of retention
times between the experimental data and analytical stan-
dards. However, these two tested molecules are just two
isomers of a large class of bile acids, some of which are
positively correlated with CRC [25, 67]; in our study, fea-
ture 235 was negatively correlated with CRC.
Limitations
Limitations of this study include the small sample size,
which reduced the power to detect differences between
case-control pairs, and lack of information regarding as-
pirin consumption and a family history of CRC, two co-
variates that have been associated with CRC incidence
[1, 68]. Any bias (and potential confounding) introduced
by the gelling of some samples from the cryostraws
should have been removed by adjustment via Eq. (1).
Nonetheless, gelling complicated sample processing and
was, therefore, a source of random variation that prob-
ably reduced our ability to detect differences between
cases and controls. Gelling of EPIC serum resulted from
a ‘gel powder’ that had been added to seal one end of
the cryostraw (https://patents.google.com/patent/
US7056727B2/en). This illustrates how proper storage of
biological specimens for decades is challenging because
preservation of cells, DNA, RNA, proteins and small
molecules must be considered. However, decades later,
shortcomings of then-contemporary technology (such as
gelling of serum) can be revealed and their reporting can
improve the design of future investigations.
Conclusions
In summary, of the nearly 9000 filtered features sub-
jected to statistical analysis, four appear to be poten-
tially causal features that are worthy of following up
in an independent set of prospective CRC cases and
controls. When these four features alone were used
to build a logistic regression predictor of case/control
status on the learning set, they resulted in a correct
classification rate of 72%. Again, this is likely an opti-
mistic correct classification rate, but given that only
four features were used for prediction, it is quite
promising. Four other selected features, notably some
ULCFAs and related fatty acids, appear to be prod-
ucts of disease progression and, therefore, could be
useful diagnostic biomarkers for early detection of
CRC. Since ULCFAs had previously been shown to
discriminate CRC cases from controls in several
cross-sectional investigations, it is reassuring that two
putative ULCFAs (IDs 4294 and 4250) were selected
as predictive features in this untargeted analysis.
While the relatively modest number of samples lim-
ited the power to detect other associations, the nine
features selected in our study correctly predicted
case-control status in 79% of the samples. The stabil-
ity of these features across three disparate
feature-selection methods is promising. Furthermore,
based on m/z and annotation information, these nine
features appear to be different than those reported in
the prospective CRC study by Cross et al. [25], war-
ranting further identification and validation.

https://patents.google.com/patent/US7056727B2/en
https://patents.google.com/patent/US7056727B2/en
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