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Systematic feasibility analysis of a quantitative elasticity
estimation for breast anatomy using supine/prone
patient postures
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Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California 90095

(Received 28 September 2015; revised 8 January 2016; accepted for publication 29 January 2016;
published 17 February 2016)

Purpose: Breast elastography is a critical tool for improving the targeted radiotherapy treatment
of breast tumors. Current breast radiotherapy imaging protocols only involve prone and supine
CT scans. There is a lack of knowledge on the quantitative accuracy with which breast elasticity
can be systematically measured using only prone and supine CT datasets. The purpose of this
paper is to describe a quantitative elasticity estimation technique for breast anatomy using only
these supine/prone patient postures. Using biomechanical, high-resolution breast geometry obtained
from CT scans, a systematic assessment was performed in order to determine the feasibility of this
methodology for clinically relevant elasticity distributions.
Methods: A model-guided inverse analysis approach is presented in this paper. A graphics processing
unit (GPU)-based linear elastic biomechanical model was employed as a forward model for the
inverse analysis with the breast geometry in a prone position. The elasticity estimation was performed
using a gradient-based iterative optimization scheme and a fast-simulated annealing (FSA) algorithm.
Numerical studies were conducted to systematically analyze the feasibility of elasticity estimation.
For simulating gravity-induced breast deformation, the breast geometry was anchored at its base,
resembling the chest-wall/breast tissue interface. Ground-truth elasticity distributions were assigned
to the model, representing tumor presence within breast tissue. Model geometry resolution was varied
to estimate its influence on convergence of the system. A priori information was approximated and
utilized to record the effect on time and accuracy of convergence. The role of the FSA process was also
recorded. A novel error metric that combined elasticity and displacement error was used to quantify
the systematic feasibility study. For the authors’ purposes, convergence was set to be obtained when
each voxel of tissue was within 1 mm of ground-truth deformation.
Results: The authors’ analyses showed that a ∼97% model convergence was systematically observed
with no-a priori information. Varying the model geometry resolution showed no significant accuracy
improvements. The GPU-based forward model enabled the inverse analysis to be completed within
10–70 min. Using a priori information about the underlying anatomy, the computation time decreased
by as much as 50%, while accuracy improved from 96.81% to 98.26%. The use of FSA was observed
to allow the iterative estimation methodology to converge more precisely.
Conclusions: By utilizing a forward iterative approach to solve the inverse elasticity problem,
this work indicates the feasibility and potential of the fast reconstruction of breast tissue elas-
ticity using supine/prone patient postures. C 2016 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4941745]
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1. INTRODUCTION

Breast cancer is the most commonly diagnosed cancer for
women in the United States, with about one in eight U.S.
women developing invasive breast cancer over the course
of her lifetime.1 The general approach to early stage breast
cancer treatment usually involves a lumpectomy, followed by
postoperative radiotherapy, which significantly reduces the
risk of cancer recurrence. Postoperative breast radiotherapy
can be challenging because of the deformable nature of the
breast tissue. Day-to-day changes in breast anatomy and
positioning present an obstacle when trying to attain an
ideal and repeatable patient setup. It has been previously

documented that the breast alignment can vary by more than
5 mm in any dimension from one day to another without
the use of immobilization devices.2 Existing immobilization
devices designed for rigid anatomies are not suitable for
fixing the breast position. Engineering novel immobilization
devices for precise and reproducible breast setup require
modeling of the breast deformation for given forces applied
to the breast surface.3 Therefore, the first step in engineering
such immobilization devices is a systematic development of
subject-specific biomechanical breast models.

High-resolution biomechanical physics-based models have
been used to develop patient-specific representations of
deforming anatomy.4 Sophisticated biomechanical models can
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simulate deformations and physiological changes in different
anatomies, creating a dynamic physical atlas.5 It is necessary
that these models be patient-specific in order to use material
properties of soft tissue to correctly predict outcomes and
response to radiation therapy, calculate mechanical defor-
mation of surrounding tissue caused by tumor growth, and
accurately model tissue movement during radiation therapy
treatments.6–8 Biomechanical models of the breast have also
been used to more precisely locate cancerous tissue and
simulate breast shape during a variety of clinical applications.2

Biomechanical models must take into consideration the laws
governing the mechanical properties of tissue—elastography
is a noninvasive way to image the physical distribution of
these properties.9 Elastography techniques focus on mapping
the elastic properties of soft tissue into a spatial distribution
and have previously been used for modeling anatomic sites
such as the breast and prostate.10 Knowing the distribution
of elastic properties throughout soft tissue can lead to design
and development of immobilization devices in addition to
yielding valuable biomechanical information in a patient-
specific manner.

Elastography imaging techniques have been previously
investigated by peers for differentiating benign from malignant
disease, possibly reducing the overall number of breast
biopsies.11–13 These methods generally assess tissue and lesion
stiffness by perturbing the tissue, measuring the internal tissue
displacements, and inferring a spatial distribution of mechan-
ical properties from the measured mechanical response.14–16

Popular elastography imaging techniques include shear wave
elastography, where the speed of a shear wave throughout
tissue provides a quantitative measure of lesion stiffness,
and freehand elastography, where a handheld transducer is
used to axially compress the tissue a few millimeters.17

Both ultrasound- and MR-based implementations of these
techniques have been shown as feasible ways to identify
and characterize cancerous tumors in soft tissues, as malig-
nant lesions exhibit considerably higher elasticity than the
surrounding parenchymal tissue.11,18,19

A critical limitation in performing breast elastography
within a radiotherapy setting is that the clinical breast
radiotherapy protocols only involve prone and supine CT
scans.20 With additional MR and ultrasound imaging being
unattainable within a clinical radiotherapy workflow, it is
important to study the feasibility and accuracy of deriving
breast tissue mechanical properties based on the two CT
scans.

The focus of this paper is to formulate a methodology for
performing breast elastography with subject-specific clinical
supine/prone CT data, and to systematically validate and
quantify the accuracy of this methodology. A linear elastic
biomechanical model, which has been previously used for
representing head and neck deformations,5 will be employed
as a deformation model to represent the breast anatomy. Each
mass element of the model denotes a single voxel from the
supine or prone CT image data. The underlying elasticity
is then estimated using a gradient descent binary search
algorithm coupled with a fast-simulated annealing (FSA)
based model parameter optimization.

2. MATERIALS AND METHODS

The primary aim of this study was to formulate a method
to estimate the Young’s moduli (YM) associated with each
voxel in the breast anatomy and to quantitatively assess
the accuracy of the estimated values using virtual breast
phantoms. From a mathematical perspective, reconstructing
the elasticity distribution of tissue can be approached in either
a direct or an inverse manner. The direct approach reconstructs
an elastographic image by converting the strain value at
each voxel to a relative Young’s modulus using a simple
model constraint, such as Hooke’s law.21 This approach is
limited, however, and has been shown to be inferior when
compared to the inverse approach.22 The inverse approach,
or model-based method, is an iterative approach that allows
for more reasonable and realistic model constraints. Peers
have formulated the inverse elasticity problem as a parameter
optimization problem with an objective to minimize the
difference between measured displacement and that computed
by a biomechanical model representing observed mechanical
behavior.19

In our approach, we formulated breast elastography as an
inverse problem. The supine-to-prone breast deformation is
known to be gravity-induced.23,24 We used the observed tissue
displacement between supine/prone postures as our measured
ground-truth displacement. A biomechanical simulation was
employed as the forward deformation model to evaluate the
inverse breast elasticity problem, with its parameters being
iteratively updated. It has been shown in Ref. 5 that the
deformation of the biomechanical model acted upon by gravity
matches the expected soft-tissue response, indicating its
potential for modeling the supine-to-prone breast deformation.
Implementation of this model in a graphics processing unit
(GPU) environment allowed for fast and accurate breast tissue
elasticity estimations.

In this section, we first present the GPU-based forward
deformation model that was devised to represent the breast
anatomy. We then present the inverse formulation that was
used to estimate the breast tissue elasticity. Finally, we present
our experiments in systematically assessing the accuracy of
the estimated tissue elasticity.

2.A. Forward problem

While the forward problem is previously discussed in
Ref. 5, for clarity, we hereby present the model.

2.A.1. Model initialization and geometry

The biomechanical model was constructed from clinically
acquired or virtually constructed CT data. We defined defor-
mation space as the virtual space where the model geometry
can be instantiated and deformed. The model geometry was
represented by mass elements corresponding to the center of
each voxel of anatomy in the CT image. Mass elements were
connected by mass-spring damping (MSD) connections in the
deformation space. Connecting the mass elements with each
other using a spring damper formulation ensured that the mass
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elements could deform in a physically realistic manner. The
connections were established as follows: A local neighbor-
hood search was performed in a parallelized manner around
each mass element to find nearby elements. When a nearby
element was within a threshold distance (determined by the
voxel size of the input CT, approximately 3 mm in our case)
from the search element, a MSD connection was established
and the nearby element became a connected element for
the given search element. The rest length and orientation of
each connection were then recorded and assigned a Young’s
modulus and a Poisson’s ratio as the final step in the model
initialization.

2.A.2. Forward deformation computation

The corrective forces on each mass element were calculated
as a summation of tensile force, shear force, and a dashpot
damping force. At rest state, the elastic internal corrective
forces were set to zero. When deformed, the model’s mass
elements were relocated to new positions inside the deforma-
tion space, which caused the internal corrective forces to be
nonzero. For each mass element, a, the tensile force,

⇀

f Y,ab,

shear force,
⇀

f S,ab, and the dashpot damping force,
⇀

f v,ab, were
calculated for each connected element, b, and summed to find
internal corrective force,

⇀

f a,
⇀

f a =

b

(
⇀

f Y,b+
⇀

f S,b+
⇀

f v,b
)
. (1)

Once the internal forces were computed, the new positions,
⇀xn+1
a , and velocities, ⇀

v n+1
a , of the mass elements were updated

from the values
�⇀xn

a,
⇀
v na
�

at the previous iteration n, using
implicit (backward) Euler integration,

⇀
v n+1
a =

⇀
v na+

*.
,

⇀

f a
ma
+

⇀
g+/
-
δ, (2)

⇀xn+1
a =

⇀xn
a+

⇀
v n+1
a δ, (3)

where δ was the time step between iterations, ma was the mass
of mass element a, and

⇀
g was the acceleration due to gravity.

The Euclidean distance between ⇀xn
a and ⇀xn+1

a for each mass
element was taken to be the ground-truth displacement for that
mass element, and then the biomechanical model was reset
with an initial guess elastic distribution. The iterative binary
search optimization scheme was utilized until convergence
occurred. The initial guess distributions and iterative binary
search optimization schemes are further discussed in Secs.
2.B and 2.C.

2.B. Inverse analysis

Solving the inverse elasticity problem was accomplished by
iteratively deforming the model from rest state, as described in
Sec. 2.A.2. A gradient-based binary search (further discussed
in Sec. 2.B.1) was used as an iterative optimization scheme
to update the spatial-elastic distribution in order to mini-
mize the discrepancy between ground-truth and computed
mechanical response, or displacement, for each voxel, while

a fast-simulated annealing algorithm was simultaneously
employed to optimize model parameters (further discussed in
Sec. 2.C.4).

2.B.1. Iterative elasticity estimation

The iterative scheme for recovering the Young’s modulus
distribution was derived from the relationship between
Young’s modulus and displacement.25 An elastic solid can
be viewed as a series of mass elements connected by a grid
of ideal linear elastic connections, where the elastic modulus
acts on each mass element similarly to a material constant.
Likewise, the resulting displacement can be related to the
stiffness of the material,

FE[i]= E[i]∆L[i]
L[i] , (4)

where FE is the elastic force upon mass element i, E is the
elastic modulus, ∆L is the change in length of the connections
connected to mass element i, and L is the initial length of the
connections for mass element i. This equation illustrates that
the elastic modulus and displacement are inversely related—
if elastic modulus increases then displacement must decrease
and vice versa. This principle defines the reasoning behind the
iterative process for estimating elasticity.

The general basis of our reconstruction technique is
to minimize the difference between the ground-truth and
calculated displacements. Given an initial Young’s modulus,
the biomechanical model will provide theoretical estimates of
mass element displacements. These displacements are then
compared with the ground-truth displacement vectors and
Young’s modulus is iteratively updated until convergence
is achieved. Intermittent mass element displacement values
are generated on a per voxel basis by updating the Young’s
modulus (E) values as follows:

(a) Initialize values of E[i], Emin[i], and Emax[i].
(b) Compute the displacement residual vector ∆d[i] by

subtracting the calculated displacements from the
ground-truth displacement at each voxel.

(c) Update Emin[i] and Emax[i]:
(i) If ∆d[i]> 0, Emin[i]= E[i] and Emax[i]= Emax[i],

(ii) If ∆d[i]< 0, Emin[i]= Emin[i] and Emax[i]= E[i].
(d) Estimate next values of E using E[i + 1] = (Emin[i]
+Emax[i])/2.

(e) Repeat steps (b)–(d) until a suitable stopping criterion
has been reached.

This iterative procedure is based upon the modified Gauss–
Newton method,26,27 which was chosen because it requires no
assumption about the homogeneity of the tissue in question,
the implementation is straightforward, and the convergence
occurs within O(log n) iterations. For our purposes, the
range of Young’s modulus values is given by Emin[i] < E[i]
< Emax[i], where Emin[i] and Emax[i] are typically 1 and
200 kPa for living soft tissues.27,28 Convergence was obtained
when each voxel of tissue was within 1 mm of the ground-truth
deformation.
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F. 1. Flow chart depicting fast-simulated annealing process.

2.B.2. Fast-simulated annealing

Besides elasticity, another parameter of the biomechanical
model that needs to be optimized is the number of iterations
for the biomechanical model. Iteration number refers to
the deformation time for each iteration of the simulation.
This is important because deformation time greatly impacts
whether the system reaches an equilibrium state or whether the
system is still in transition when the displacement values are
recorded.

FSA was chosen to optimize iteration number because even
in the presence of noisy data, it may not find the optimum
solution, but it will find a very good solution very quickly.
The FSA algorithm generates randomized iteration number
candidates and checks if this candidate solution is better than
the current solution. If so, the current solution is replaced
with the candidate solution, but if not, the current solution
is replaced with a given probability. This allows us to accept
iteration numbers that are not ideal in order to explore more
of the possible solution space. The probability decreases with
a logarithmic temperature scheme until the system converges
or a set computation time has been exhausted. The lowered
temperature limits the number of nonideal iteration numbers

that are accepted so that the solution is allowed to approach
the global minimum. A flow chart describing the FSA process
is shown in Fig. 1.

2.C. Numerical analysis

To enable a systematic study of the inverse analysis process,
the biomechanical model was employed to generate a hemi-
spherical geometry representing a breast in order to simulate
the ground-truth displacement vectors. The hemispherical
geometry was approximated from a volume rendered patient
CT image of a breast in the prone position [Fig. 2(a)]. The
chest-wall/breast tissue attachment interface is mimicked by
anchoring the base of the hemisphere to prevent motion
in the top layer of mass elements, which is illustrated in
Fig. 2(b).

2.C.1. Virtual breast phantoms

Two different hemispherical geometries were constructed
with 1 mm3 voxels to represent different model resolutions.
The lower resolution simulation contained 100 000 voxels and
had a 64 voxel diameter, while the higher resolution model
contained about 600 000 voxels with a 128 voxel diameter.
A homogeneous elastic modulus distribution of 20 kPa was
initially used to represent a mixture of fatty and glandular
breast tissue.22 Spherical inhomogeneities with diameters of
5, 10, and 15 mm were placed within the geometry.29 These
spherical masses, representing breast tumors within the tissue,
were used to signify ductal carcinomas in situ (DCIS), invasive
ductal carcinomas (IDC), and fibroadenomas, with elasticity
values of 75, 90, and 110 kPa, respectively, as derived from
the literature and shown in Table I.30 The breast geometry was
divided into quadrants and for each distribution, a tumor was
placed either in the center of the hemisphere or the center of
one of the quadrants. Combining the different types, sizes, and
locations of tumors along with the different image resolutions
resulted in 90 different ground-truth elasticity distributions.
The biomechanical breast model was deformed in turn with
each of these ground-truth elasticity distributions, with the
resulting ground-truth displacements calculated as explained
above.

F. 2. Volume renderings of prone DICOM CT (a) and biomechanical simulation with anchored base of a 128-voxel diameter hemisphere to mimic chest-wall
interface (b).

Medical Physics, Vol. 43, No. 3, March 2016
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T I. Elasticity values for different components of breast tissue found from the literature (Ref. 26).

Breast tissue type
Fatty/glandular

tissue (kPa)
Fibrous tissue

(kPa)
Ductal carcinoma

in situ (kPa)
Invasive ductal

carcinoma (kPa)

Tissue elastic modulus 20 110 75 90

2.C.2. Inverse analysis with no a priori information

After the ground-truth deformation was recorded, the
estimated elasticity was reset to an initial guess elasticity
distribution. Primarily, the elasticity was reset to a homoge-
neous initial guess in which no assumptions were made about
the anatomy in question. This initial guess was used in order to
investigate the robustness of our methodology by showing that
the system could converge regardless of the disparity between
the initial guess and the ground-truth elastic distribution. The
time and accuracy of the convergence for each ground-truth
distribution were recorded and analyzed.

2.C.3. Inverse analysis with a priori information

We then performed the same study using a priori infor-
mation, which would be gained from the HU values obtained
from the supine/prone CT images. For the purposes of our
feasibility study, HU values were simulated and assigned
to each voxel with values from the literature depending on
whether the voxel represented normal fibroglandular tissue or
was a part of one of our simulated spherical tumors.31 These
HU values were input into our simulation, and if the HU
value for a voxel was above a certain threshold, that voxel
was assigned a higher initial elastic modulus. It is expected
that, using the a priori information, we can more precisely
define the boundary of a tumor and decrease the computation
time.

2.C.4. Fast-simulated annealing

A FSA algorithm is used to optimize iteration number
while the binary search to optimize elasticity is performed
simultaneously, which is illustrated in Fig. 3. To ascertain
whether the fast-simulated annealing obtained an optimum

F. 3. Illustration of the simultaneous binary search and FSA algorithms.
The red lines indicate that a FSA jump was performed, where the binary
search process is illustrated by the points (see color online version).

solution, displacements were recorded for a random sample
of the ground-truth elasticity distributions, and then the
simulation attempted to recreate the ground-truth elasticity
distributions both with and without the FSA optimization. For
scenarios, when the FSA algorithm was not employed, the
iteration number was set to 4000, which was the ground-truth
iteration number. The accuracy of the FSA algorithm is further
explored in Sec. 3.C.

2.C.5. Error metric

The metric used for quantifying the accuracy of the inverse
analysis was a combination of both the estimated elasticity and
the displacement error produced using the estimated elasticity.
Higher elasticity values of the tumor voxels represent stiffer
connections, so a small error in the elastic moduli did not
as greatly increase the displacement error when compared to
the more elastic interactions with the normal tissue voxels.
To determine whether or not our elasticity accuracy will
translate to the required clinical accuracy, we deformed the
synthetic phantoms and plotted the maximum displacement
versus elasticity for hemispheres with different homogeneous
elastic moduli distributions, and fit a curve to the plotted
points, which is shown in Fig. 4. The resulting equation
is

d � 16.11−0.231 297 ∗ E+0.001 122 46 ∗ E2, (5)

which fit the data with an R2 value of 0.996. Using this
equation, we concluded that a displacement differential of
∆1 mm (or submillimeter clinical accuracy) corresponds
to an elasticity differential of ∆0.5 kPa for voxels with
elastic moduli falling somewhere in the normal tissue range
(around 15–25 kPa). Similarly, a displacement differential of

F. 4. Displacement versus Young’s modulus fitted plot.
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∆1 mm corresponds to an elasticity differential of ∆3 kPa
for voxels with higher elasticity values in the tumor range
(around 70–100 kPa). The values of 0.5 and 3 kPa were
approximated to 1 and 5 kPa for more robust binning and
were used to bin the elasticity differentials between estimated
and ground-truth elasticity distributions for the purposes of
our study.

The results can then be given in terms of both elasticity
accuracy and displacement accuracy. Elasticity error was
derived by using a L1 norm (subtracting the resulting elasticity
distribution from the ground-truth elasticity distribution),
binning the elasticity error into 1 and 5 kPa bins, and calculat-
ing the percentage of mass elements that fell in each bin. We
calculated displacement accuracy by subtracting the resultant
displacement of each mass element from the ground-truth
displacement, and focusing on the results with submillimeter
accuracy. Other elastography estimation methods, such as
combined ultrasound and FE models, strive for displacement
error that is less than the smallest tumor diameter that can be
found in breast tissue, which is around 3 mm.32 For a direct
comparison, the displacement accuracy that is less than 3 mm
is also presented for individual cases in Sec. 3.

Besides looking at the results averaged over all of the
distributions, we present the three other criteria that were
also investigated: (a) relation between the use of a priori
information and accuracy, (b) relation between the image
resolution geometry and the accuracy, and (c) effectiveness
of the FSA algorithm. A two-sample t-test was performed to
analyze whether the statistical significance of the differences
in the means of each population for each of the three criteria
listed above. Volume renderings of the resultant and ground-
truth elasticity distributions were also used to visually analyze
the results as an addendum to the numerical results. The
results gleaned from the systematic study are presented in
Sec. 3.

3. RESULTS

In this section, we present the results obtained from the
systematic study. To illustrate the aptitude of the forward
model for representing gravity-induced soft-tissue deforma-
tions, the biomechanical simulation was used to establish
geometry from a prone breast DICOM CT [(a) and (b)] with a
homogeneous elasticity distribution. This geometry was then
deformed with gravity to simulate the supine orientation [(c)
and (d)], illustrating that the model can accurately represent
the soft-tissue deformation between prone and supine breast
postures. Figure 5 shows DICOM CT [(a) and (c)] and
biomechanically simulated [(b) and (d)] prone and supine
breast positions. Figure 5(e) shows an overlay of images (c)
and (d). ImageJ was used to perform an image comparison
and the images were shown to be 85.23% similar. The
mismatch between the two images, highlighted in yellow,
can be explained by segmentation errors, as the breast was
manually segmented from the DICOM CT images, and
intensity differences between the DICOM CT and the mass
elements in the biomechanical simulation.

3.A. Model resolution

To analyze the impact of the breast model resolution
on the estimated elasticity, the simulation was performed
with two different resolutions of hemispheres, as mentioned
in Sec. 2.C.1. The lower resolution, 64 voxel diameter
hemisphere converged on average with 98.87% of the voxels
within 1 mm of the ground-truth results. This corresponded
to 92.02% of voxels being within 1 kPa of their ground-
truth elasticity values, and 96.92% of voxels converging
within a 5 kPa window. The higher resolution, 128 voxel
diameter hemisphere converged on average with 96.19% of
the voxels within 1 mm of the ground-truth displacement,
resulting in 86.15% of voxels converging within a 1 kPa
elasticity window and 98.38% converging within 5 kPa. These
results are summarized in Table II. A two-sample t-test of
20 different images shows that the differences between the
results of the lower and higher resolution datasets were not
significant (P > 0.05). Though the average elasticity error for
the 1 kPa bins in each instance seems to be dissimilar, the t-test
considers a one-to-one correspondence between the values in
the samples. For example, the elasticity error of every ground-
truth elasticity distribution is compared between the lower and
higher resolution cases.

Because a multitude of distributions were considered, the
differences between the average values were not significant.
This implies that regardless of image resolution, we can
produce results with similar accuracy, which is paramount
to implementation in the clinical setting. More specifically,
Table III shows examples of the results of lower and higher
resolution datasets for a large fibroid in the center, a small
IDC in quadrant II, and a medium DCIS in quadrant
IV. These results again illustrate that for multiple tumor
locations, regardless of tumor type or size, both the low
and high-resolution reconstructions produce similar elasticity
distribution. Figure 6 shows volume renderings of a medium
IDC located in quadrant II for both the low-resolution (a) and
the high-resolution (b) hemispheres. Both cases are visually
and numerically similar—the boundary between the differing
elasticity values is well-differentiated for both low- and high-
resolutions. The inverse elasticity algorithm is invariant to
image resolution, further indicating that image resolution will
not hinder the accuracy of our reconstruction.

3.B. A priori information

Two different initial guess distributions of elasticity values
were investigated. The first required no a priori information
about the underlying anatomy—the initial guess was set to
a homogeneous elasticity value of 10 kPa. In the second
case, a priori information was developed to be indicative
of representative HU values that would come from the
prone/supine CT scans taken in the clinic. Each ground-truth
elasticity distribution was investigated starting with both types
of initial guess. Table II shows the results averaged over every
distribution both with and without the a priori initial guess.
It can be seen that the a priori information increased the
elasticity and displacement accuracy overall. Table IV shows a
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F. 5. Prone DICOM CT (a) and biomechanically simulated (b) data. Supine DICOM CT (c) and biomechanically simulated (d) data. The biomechanical
simulation shown in (b) and (d) was generated from the DICOM CT images which had a resolution of 134×144. (c) and (d) were overlaid in (e) to give a direct
comparison of our simulation to the DICOM CT (see color online version).

further breakdown of these results in terms of image resolution
along with the average time.

Average time decreased appreciably, especially for the
higher resolution hemisphere with 128 voxel diameter where
the average time decreased by about 30 min. Overall, both
accuracy and computation time improved notably between
simulations run with the homogeneous initial guess and the

a priori initial guess, which is also illustrated in Fig. 7 for a
random selection of ground-truth distributions. Figure 8 shows
volume renderings of the ground-truth elasticity distribution
(a), the resultant elasticity distribution when no a priori
information was considered (b), and the resultant elasticity
distribution when a priori information was used to form an
initial guess (c) for a large IDC in quadrant I. Visually, it can

Medical Physics, Vol. 43, No. 3, March 2016
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T II. Overall results and results for simulations run with and without a priori information, with and without
the FSA algorithm, and with lower and higher resolutions.

Elasticity window Displacement error

Overall results ±1 kPa (%) ±5 kPa (%) <1 mm (%)

87.60±3.18 97.15±4.73 96.81±3.62
Averages ±1 kPa (%) ±5 kPa (%) <1 mm (%)

Mean of datasets without a priori 87.60±4.42 97.15±1.26 96.81±3.62
Mean of datasets with a priori 90.57±3.23 98.15±2.52 98.26±2.82
Averages ±1 kPa (%) ±5 kPa (%) <1 mm (%)

Mean of datasets without FSA 96.57±2.38 98.75±0.78 98.78±1.01
Mean of datasets with FSA 96.40±1.14 97.88±1.31 97.48±1.72
Averages ±1 kPa (%) ±5 kPa (%) <1 mm (%)

Mean of datasets with lower resolution 92.02±3.48 96.92±1.32 98.87±0.65
Mean of datasets with higher resolution 86.15±4.10 98.38±2.41 96.19±1.87

be seen that Fig. 8(c) more closely matches the ground-truth
distribution, without the distortion along the chest-wall and
boundary distortions seen in Fig. 8(b). When the a priori
information was not utilized, as in Fig. 8(b), the magnitude
discrepancies and edge distortions are clear, which both agrees
with, and thus strengthens, our numerical results. Table V
shows excerpts of the individual results for a large IDC in
quadrant II, a small fibroid in quadrant I, and a medium DCIS
in quadrant III.

These results are selected to illustrate that regardless
of tumor type, location, or size, the addition of a priori
information significantly improves the results. This is further
illustrated when considering the statistical significance of
the average accuracy values. When a priori information
was used to form an initial guess, the average displacement
accuracy for the lower and higher resolution hemispheres
increased, respectively, from 94.94% and 98.67% to 97.44%
and 99.07%. A two-sample t-test between 20 different
distributions confirmed that the improvements resulting from
the use of a priori information were significant (P < 0.05).
These results suggest that taking advantage of a priori HU
data obtained from the clinical CT scans can reduce the
convergence time of our simulation while improving the
accuracy of the resulting elastic distribution.

3.C. Fast-simulated annealing

For ground-truth displacement distributions, the ground-
truth elasticity distribution was prescribed as described in
Sec. 2.C.1, and the ground-truth iteration number was set
to 4000 iteration steps to allow the breast simulation adequate
time to deform. The ground-truth iteration number was set to
4000 to allow the breast simulation adequate time to deform.
The deformation of the particles was recorded for multiple
iteration numbers, and at an iteration number of 4000, the
maximum deformation increased by less than 0.01 mm, or
1% of our convergence criteria, indicating that the simulation
had reached a state of equilibrium within 4000 iteration steps.

The FSA algorithm returned an average iteration number
value of 2960± 590 iteration steps. The small discrepancy
between this result and the ground-truth iteration number
occurs because the combination of iterative binary search
and the FSA algorithm allows for multiple solutions. More
relevant is the resulting displacement and elasticity accuracy
for the simulation run both with and without the FSA
algorithm. Table II lists the resulting estimations of average
elasticity and displacement accuracy for the distributions
computed both with and without the FSA algorithm. The
submillimeter convergence percentage of each instance (i.e.,

T III. Example 64 and 128 voxel (lower and higher resolutions) test cases for a large fibroid in the center of
the hemisphere, a small IDC in quadrant II, and a medium DCIS in quadrant IV.

Elasticity window Displacement error

Large fibroid center ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Lower resolution 88.25 96.36 94.98 100.00
Higher resolution 80.42 98.45 89.95 100.00
Small IDC quadrant II ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Lower resolution 85.28 98.85 96.58 100.00
Higher resolution 86.91 98.12 94.92 100.00
Medium DCIS quadrant IV ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Lower resolution 74.86 99.31 99.83 100.00
Higher resolution 75.89 99.22 99.19 100.00
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F. 6. Volume rendered comparison of a medium IDC in quadrant II within the (a) lower and (b) higher resolution hemispheres.

with and without FSA) was observed to be 97.45% and
98.78%, respectively. A two-sample t-test of 20 different
distributions indicated that the difference between the mean
values of each population was not significant (P > 0.05);
therefore, use of the FSA algorithm allowed the iterative
estimation process to converge correctly without reducing
the integrity of the results. Figure 9 shows volume rendered
elasticity distributions of the ground-truth (a) and estimated
distributions with and without use of the FSA algorithm
for a large IDC located in the center of the hemisphere
[(b) and (c)]. It can be seen that both instances [(b) and
(c)] result in a very similar volume rendering, where the
location of the IDC is located accurately with some small
discrepancies around the boundary of the tumor. From the
numerical and visual results, we can conclude that use of the
FSA algorithm allows our simulation to converge correctly.
This will allow for us to more easily transition to clinical
data—we will not have any preconceived notions of iteration
number, yet we can still expect our simulation to determine
accurate results. Comparing Figs. 8(b) and 9(b), it can be seen
that elasticity was reconstructed with similar discrepancies in
each case, indicating that tumor location does not obstruct
our elasticity reconstruction. The use of a priori information,
however, greatly impacted the resultant distribution, as shown
in Fig. 8(c). A minor fact to note is that Fig. 9(a) is also
much “brighter” than Fig. 8(a)—because the tumor was
located in the center instead of the upper back quadrant, the
window/level of the volume reconstruction did not have to be
changed in order to see it.

Overall, our simulation converged with about 97% submil-
limeter accuracy. Though the errors were minimal, the largest

elastic moduli discrepancies were seen around the boundary of
the simulated tumors, and the largest displacement errors were
seen both around the boundary of the tumor and the edge of the
hemisphere. The use of a priori information greatly improved
our results, while both use of the FSA algorithm and image
resolution size do not affect the accuracy of our results. Tumor
location also does not affect the accuracy of our outcome. The
implications of these results are further discussed in Sec. 4.

4. DISCUSSION

In this work, a methodology for performing breast elasticity
estimation using deformation resulting from the transition
between supine and prone patient postures was presented. The
procedure was developed and systematically assessed using a
biomechanical simulation representing a breast in the prone
position with a spherical tumor located within the breast.
In order to investigate the accuracy and robustness of the
approach for any given scenario, the synthetic tumors were
given elasticity values from the literature used to represent
three different common breast tumors: ductal carcinoma’s in
situ, invasive ductal carcinomas, and fibroadenomas and were
positioned with different sizes throughout the breast tissue.

The biomechanical breast simulation was based on a
physics-based approach. This choice was motivated by the
previously shown accuracy of the approach for head and
neck applications that were readily transferrable to the breast.5

In addition, this model was validated for simulating motion
caused by gravity, and the supine-to-prone deformation is
known to be gravity-induced.5,23,24 The implementation of this

T IV. Table showing average values for low (64 voxel diameter) and high (128 voxel diameter) resolution
hemispheres, both with and without a priori information.

Hemisphere size Elasticity window Displacement error

Averages ±1 kPa (%) ±5 kPa (%) <1 mm (%) Average time (s)

64 voxel mean 89.76±1.12 96.40±4.73 98.67±3.62 272.50±236.12
64 voxel with a priori mean 94.27±6.38 97.43±3.37 99.07±1.08 218.06±216.17
128 voxel mean 85.43±4.37 97.89±2.33 94.94±4.09 3345.38±1618.00
128 voxel with a priori mean 86.87±3.23 98.87±2.52 97.44±2.17 1595.69±1012.2
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F. 7. (a) shows a time comparison for distributions with and without a priori information for random distributions, while (b) shows an accuracy comparison
for the same datasets.

approach in a GPU environment enabled a high-resolution
biomechanical simulation in nearly real-time. Inversing the
forward deformation model allowed us to obtain elasticity
maps for patient-specific biomechanical models that will be
useful for reducing positioning errors in adaptive radiotherapy.
Using the well-validated constitutive model previously used
for head and neck allowed us to purely focus on the accuracy
and feasibility of the inverse analysis, rather than the model’s
accuracy in regards to simulating gravity-induced deforma-
tions. While the usage of such a GPU-based, biomechanical
model has been recently validated for head and neck tissues,
future studies will focus on the usage of such a model for
breast tissue, which needs to be clinically validated using
an extensive patient study. Model errors in such studies
typically stem either from tissue elasticity estimation errors
or from the model’s inability to represent the complex
anatomical deformation. Having shown in this paper that the
tissue elasticity estimation errors will be minimal for this
biomechanical model, future work will focus on a clinical
study to enumerate the model’s ability to quantitatively
represent the anatomy.

While most deformable modeling efforts may be insensitive
to soft-tissue elasticity data, our approach has a direct
relationship with the properties of soft tissue since it relies
on the supine-to-prone breast deformation, which is driven
by gravity. The ground-truth displacements required for our
methodology depend on the ability to register prone and
supine breast images with a one-to-one correspondence.

Due to the large deformation induced to the breast tissue,
image registration between these postures is a challenging
problem. Various deformable image registration algorithms
have been investigated by peers specifically for the prone-
to-supine breast transition.24,33,34 Future work will focus
on further investigating a deformable image registration
technique that provides accurate ground-truth data and a one-
to-one correspondence between breast tissue in the prone and
supine positions.

In our approach, we have employed a linear elastic
deformation model to deform the breast anatomy from supine
to prone patient posture. Such a deformation may be large
enough to cite a need for hyperelastic model to represent the
tissue behavior. Our future work will focus on extending the
method to a hyperelastic regime. Such an analysis will require
more patient postures to be imaged.

The iterative binary search optimization algorithm, along
with the FSA algorithm, allowed for the estimation of
elastic properties for the biomechanical model based upon
the deformation of each mass element. The performance of
the algorithm was confirmed with the high elasticity and
displacement accuracy that was achieved. The iterative opti-
mization algorithm allowed each mass element to converge
individually, so that even tumors with diameters as small as
5 mm were located accurately. While our simulation study
used a simplified framework that modeled tumors spherically,
the per voxel approach of our inverse analysis should allow
sufficient delineation of irregular tumors shapes as well. We

F. 8. Volume renderings of small IDC located in quadrant II. (a) shows the ground-truth distribution, (b) shows the reconstruction with a random initial guess,
and (c) shows the reconstruction using a priori information to make an informed initial guess.
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T V. Example of individual cases with and without a priori information for a large IDC in quadrant II, a
small fibroid in quadrant I, and a medium DCIS in quadrant III.

Elasticity window Displacement error

Large IDC quadrant II ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Without a priori 86.43 97.68 88.30 100.00
With a priori 96.90 98.25 100.00 100.00

Small fibroid quadrant I ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Without a priori 72.20 99.62 90.02 100.00
With a priori 81.24 99.64 96.47 100.00

Medium DCIS quadrant III ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Without a priori 80.86 92.29 68.38 100.00
With a priori 91.20 99.03 95.49 100.00

believe the algorithm has potential to recognize other items
of interest that may be located within the breast that were not
investigated here. Future work will investigate the accuracy
of our approach for irregular tumor shapes and sizes, as well
as for irregular breast shapes.

Our results showed that an accuracy of 98% was achieved
in estimating the ground-truth elasticity. Because of the per
voxel nature of our approach, variations in the size of the
tumor and the breast geometry had negligible impact on the
accuracy of the estimation process. Our analysis indicated that
the elasticity can be successfully reconstructed for tumors
with a diameter as small as 5 mm and as large as 1.5 cm
within the breast tissue. Changes in image resolution and
geometry size showed no significant impact on the resulting
accuracy, indicating that the CT image resolution should not
influence the resulting elasticity estimation. The geometry size
alternatives also indicated that the biomechanical simulation
successfully represented different breast sizes.

The elasticity information that we obtain through this meth-
odology will be used to design a new immobilization device
specifically for precise and reproducible breast positioning.
Ideal breast geometry for radiotherapy is similar to that
achieved in the prone orientation, without the discomfort and
associated normal tissue doses.35 With the robotic assistance
of an immobilization device, this ideal position can be

achieved in a more comfortable, supine orientation. Our high-
resolution, physics-based breast model will act as a control
module for such a robotic system, simulating patient-specific
breast geometry and its deformation when interacting with
the robotic system.3 Future work will focus on improving
the breast simulation to more realistically simulate the breast
anatomy, eventually progressing to patient data. We believe
this methodology can also be readily transitioned to other
anatomies such as the lung, liver, and head and neck for
radiotherapy applications.

Because of the imaging techniques within current radio-
therapy workflows, our current methodology uses DICOM
CT images to construct the biomechanical model. Future work
will focus on expanding this methodology to be coupled with
US and MR measurements to further improve the model-
guided elasticity estimation process. Evolutionary algorithms
will be investigated and their functionality compared to that
of the FSA and binary search algorithms. The linear elasticity
assumptions will be expanded into a hyperelastic regime in
order to more accurately depict the biological tissue. Finally,
the biomechanical simulation will be implemented on a multi-
GPU platform to increase the resolution of the model and
decrease the computation time. These efforts are crucial
in order to apply the methodology in clinical radiotherapy
practice.

F. 9. Volume rendering of a large IDC located in the center of hemisphere. (a) shows the ground-truth distribution, (b) shows the reconstruction without the
use of the FSA algorithm, and (c) shows the reconstruction using the FSA algorithm.
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5. CONCLUSIONS

In this paper, we present a systematic study of a novel
GPU-based inverse analysis methodology for breast tissues
using supine/prone CT image datasets. The methodology was
investigated using a forward model, GPU-based, physics-
based breast simulation that was iteratively deformed to
represent the deformation of the breast between supine
and prone orientations. The inverse analysis consisted of
a gradient-based binary search optimization scheme that,
coupled with a fast-simulated annealing algorithm, updated
the spatial elasticity distribution of the breast tissue. Our
analysis showed that the methodology enables a 97% accuracy
in elasticity estimation of homogeneous breast tissue and
an embedded tumor with regards to our novel error metric
only using the two postures. These results indicate that our
methodology has the potential to be readily applied with great
accuracy to advance breast positioning techniques in clinical
radiotherapy practice.
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NOMENCLATURE

a Mass element
b Connected element
⇀

f Y,ab Tensile force on element a from connected
element b

⇀

f S,ab Shear force on element a from connected element
b

⇀

f v,ab Dashpot damping force on element a from con-
nected element b

⇀

f a Internal corrective force on element a
⇀
v n+1
a Velocity of mass element a at iteration n+1

⇀xn+1
a Position of mass element a at iteration n+1

δ Time step between iterations
ma Mass of mass element a
⇀
g Acceleration due to gravity
FE,a Elastic force on mass element a
E[i] Elastic modulus of voxel i
d[i] Displacement of voxel i
L Inter element distance before deformation
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