
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
User-centric Natural Language Processing

Permalink
https://escholarship.org/uc/item/7nm5p7gd

Author
Majumder, Bodhisattwa Prasad

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7nm5p7gd
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

User-centric Natural Language Processing

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Bodhisattwa Prasad Majumder

Committee in charge:

Professor Julian McAuley, Chair
Professor Taylor Berg-Kirkpatrick
Professor Garrison W. Cottrell
Professor Arya Mazumder
Professor Lawrance Saul
Professor Sameer Singh

2023



Copyright

Bodhisattwa Prasad Majumder, 2023

All rights reserved.



The Dissertation of Bodhisattwa Prasad Majumder is approved, and it is accept-

able in quality and form for publication on microfilm and electronically.

University of California San Diego

2023

iii



DEDICATION

To the community that fosters innovations in computer science and social science

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 User-centric AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Knowledge Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Generating Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Engaging in Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Commonsense Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Definition of Commonsense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Language Generation Tasks Requiring Background Knowledge . . . . . . . . . . . . . . 15
2.3 Sequence Transduction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 COMPAC: Persona-grounded Dialog with Commonsense Expansions . . . . . 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Persona Grounded Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Persona Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 COMET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Paraphrasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Common sense and Persona Aligned Chatbot (COMPAC) . . . . . . . . . . . . . . . . . . . 24
3.4.1 Persona Choice Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Generator Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.3 Learning and Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Comparison of Dialog Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3 Human Evaluation for Dialog Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.4 Fine-grained Persona Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.5 Controllable Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.6 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 INTERVIEW: Large-scale Modeling of Media Dialog with Discourse Pat-
terns and Knowledge Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 INTERVIEW: A Media Dialog Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Comparison with Other Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 INTERVIEW Discourse Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Dialog Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Question Types as Dialog Acts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.3 Knowledge Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Modeling Media Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.1 Knowledge Grounded Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.2 Predicting Look-ahead Dialog Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.3 Predicting Question types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.1 Effect of Knowledge Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.2 Effect of Auxiliary Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.3 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 5 PABST: Unsupervised Enrichment of Persona-grounded Dialog with Back-
ground Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Unsupervised Persona Enrichment

with Background Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.1 Retrieving Relevant Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Gradient-based Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Automatic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 6 POKI: Achieving Conversational Goals with Unsupervised Post-hoc Knowl-
edge Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Post-hoc Knowledge for Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



6.2.1 Parametric knowledge sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.2 Non-parametric knowledge sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Unsupervised Knowledge Injection in Generated Dialog . . . . . . . . . . . . . . . . . . . . 71
6.3.1 Relevance-Redundancy Tradeoff for Knowledge Selection . . . . . . . . . . . . 71
6.3.2 Gradient-based Constrained Decoding for Knowledge Injection . . . . . . . 73
6.3.3 Unsupervised Ranking of Candidate Final Responses . . . . . . . . . . . . . . . . 74

6.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.1 Scenarios and Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.2 Baselines and Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5.1 Automatic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5.2 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5.3 User Study for Effectiveness of Knowledge Injection . . . . . . . . . . . . . . . . 80
6.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 7 Improving Clarification Question Generation using Global Knowledge . . . . 84
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2 Problem Setup and Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.1 Identifying Missing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.2 Generating Useful Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4.2 Baselines and Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 8 REXC: Knowledge Grounded
Self-rationalization via Extractive and Natural Language Explanations . . . . 103

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2 REXC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2.1 Extractive Rationales via Binary Latent Variables . . . . . . . . . . . . . . . . . . . 106
8.2.2 Knowledge about an Extractive Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.2.3 Knowledge Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2.4 NLE Generation and Task Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.2.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.4.1 Evaluating the Quality of the Explanations . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.4.2 Task Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4.3 Zero-shot NLEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vii



8.4.4 Generative vs. Retrieval-based Knowledge Module . . . . . . . . . . . . . . . . . . 116
8.5 Evaluating Faithfulness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.5.1 Faithfulness of the NLEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.5.2 Faithfulness of the ERs and Knowledge Snippets . . . . . . . . . . . . . . . . . . . . 119

8.6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 9 INTERFAIR: Debiasing with Natural Language Feedback for Fair Inter-
pretable Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.2 Controlling Bias Exposure via Rationales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.2.1 Rationales and Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.2.2 Training with Energy-based Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.3 Natural Language (NL) Feedback with INTERFAIR . . . . . . . . . . . . . . . . . . . . . . . . 124
9.3.1 Parsing NL feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.3.2 Modifying Task Rationales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Chapter 10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.1 Related Work for COMPAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.2 Related work for INTERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.3 Related Work for PABST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.4 Related Work for POKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.5 Related Work for Clarification Question Generation . . . . . . . . . . . . . . . . . . . . . . . . 134
10.6 Related Work for REXC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Chapter 11 Conclusion and Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.1 Future Work for Knowledge Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.2 Future Work for Generating Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
11.3 Future Work for Interactive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

viii



LIST OF FIGURES

Figure 1.1. Interactive explainability as the foundation of user-centric AI systems . . . . 3

Figure 1.2. Post-hoc Knowledge Injection (POKI) in a dialog model that was trained
on limited knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.3. REXC bridges extractive rationales and abstractive explanations using
background knowledge to improve plausibility, accuracy, and attribution. 6

Figure 1.4. INTERFAIR, a new interactive paradigm of controllable debiasing. Users
can update the model’s belief about sensitive information to mitigate bias
while maintaining the task performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.1. State-of-the-art generation models struggle to generate a factual text [IV
et al., 2019], respond a user’s query [Welleck et al., 2019], or generate a
story with plausible story-line [Guan et al., 2020]. . . . . . . . . . . . . . . . . . . . . 11

Figure 3.1. State-of-the-art models struggle to respond a user’s query, where generating
an engaging response depends on commonsense reasoning. . . . . . . . . . . . . 19

Figure 3.2. Expansions of an original persona via (a) human rewrite, (b) paraphrase,
and (c) COMET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.3. COMPAC samples a persona sentence from the prior and generates the
response conditioned on the dialog context and sampled persona. The
inference network is used only during training. . . . . . . . . . . . . . . . . . . . . . . 26

Figure 4.1. Our dialog model incorporates grounding documents alongside dialog
history. We also leverage the dialog patterns and interrogative positioning
by the host via auxiliary losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.2. Example conversation from INTERVIEW with annotated discourse analysis.
Text highlighted in blue indicates the question of interest, uttered by the
host. The dialog triplet is marked in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.3. (a) Bar plot depicts test perplexity for linking algorithms: None (no ground-
ing), TF-IDF, and PL/PL3 which indicate probabilistic linking with re-
assignment at every 1/3 epochs, respectively. Plotting validation perplexity
by epoch shows that PL3 converges faster to the optimum (b). . . . . . . . . . . 46

Figure 4.4. Knowledge grounded generator model with two discourse-specific auxiliary
tasks for media dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



Figure 5.1. We enrich agent personas with ‘background stories’ from an existing corpus. We
propose a gradient-based technique which encourages the generated response to
be fluent with the dialog history, minimally different from the retrieved story, and
consistent with the persona. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 6.1. Augmenting initial response from an existing dialog model with relevant external
knowledge leads to more engaging and informative responses improving the
success in achieving the conversational goal (here, finding a fun activity). . . . . . 67

Figure 6.2. Pipeline of POKI: It first retrieves post-hoc knowledge, then the most relevant
and diverse knowledge snippets are selected from the retrieved set. Each selected
snippet is individually injected through a constrained decoding to generate a
candidate response. The final response is selected via a ranking step. . . . . . . . . 69

Figure 6.3. POKI converses with a user who is looking for some restaurant options (left
column). In each turn, a knowledge snippet (right column) is injected into an
initial response (middle column). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 7.1. Test-time behaviour of our model in a Community-QA setup. 1. We obtain
a local schema, 2. the global schema, and 3. estimate the missing schema
for the clarification question. 4. A BART model generates a question and
5. a PPLM model further tunes it to be more useful. . . . . . . . . . . . . . . . . . . 85

Figure 7.2. Dependency tree and paths showing how we obtain schema triples for
a sentence: “Will this bag hold a gaming laptop and an iPad?” (from
Figure 7.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 7.3. Results of a pairwise comparison (on usefulness criteria) between our
model and baseline generated question on (a) 300 randomly sampled
product descriptions from the Amazon test set, (b) 150 randomly sampled
dialogs from the Ubuntu test set as judged by humans. . . . . . . . . . . . . . . . . 97

Figure 7.4. Average BLEU score difference between classes having longer (> 200 (me-
dian) words) and shorter descriptions; larger (> 200 (median) key-phrases)
and shorter global schema for the Amazon dataset. Lower differences
indicate more invariance toward the available information. . . . . . . . . . . . . . 101

Figure 8.1. Illustrative examples for REXC on (a) natural language and (b) vision-
language tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 8.2. Architecture of REXC. The knowledge module is frozen, while the rest of
the modules are trained jointly with the signals from the NLEs and outputs.
Deliverables from REXC are in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

x



Figure 8.3. Examples of NLEs and ERs generated from REXC along with selected
knowledge snippets vs. those from the previous SOTA for the correct
predictions for COSe and VCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 8.4. Feature importance agreement. Left: Accuracy when important features
(solid) vs when random features (dotted) are occluded. Right: Simulata-
bilities important features (solid) vs when random features (dotted) are
occluded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 8.5. Robustness equivalence analysis when noise is added to the (a) input and
(b) selected knowledge snippets. In each pair, the left chart shows % of
stable (unflipped) labels (solid), and accuracy (dashed). The right chart in
a pair depicts the simulatability of NLEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 9.1. Interactive setup for INTERFAIR where user provides feedback to update bias
rationales that in turn updates task rationales and subsequent task prediction. . . . 124

xi



LIST OF TABLES

Table 3.1. Summary of notation used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 3.2. Dialog quality metrics on the PERSONA-CHAT test set. PPL=Perplexity,
D-1/2=% of distinct uni- and bi-grams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 3.3. Pairwise comparison (in %) between responses generated by COMPAC vs.
other baselines (og: original, par: paraphrase) as well as the Gold response.
The highest entries are bolded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 3.4. Sample generations by different models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 3.5. Assessment of persona grounding with and without inference network us-
ing the DNLI entailment set. Human evaluation (eval.) was conducted to
measure the relevance when an expanded persona is chosen–all entries are
statistically significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 3.6. Conditional generation performance on the PERSONA-CHAT test set to
show the similarity between generated responses and grounding persona
sentences. We omit GPT2-based models since they do not select a particular
persona sentence for grounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 3.7. Controlled generation with edited persona . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 3.8. Examples showing correct and incorrect persona choices in various dialog
contexts by COMPAC model. COMPAC is capable of choosing a correct
persona sentence (original or expanded) but sometimes the prior network
fails to sample an appropriate one (third case). . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 4.1. Comparative media dialog dataset statistics. *RadioTalk does not contain
full conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 4.2. F1 Performance of question-type classifier models on the test set. . . . . . . . . 45

Table 4.3. Performance on auxiliary tasks: Dialog Pattern prediction and Question
Type prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 4.4. Metrics on generated interviewer responses on test set. NPO/NEO = Noun-
phrase/Named entity overlap with context (C) and gold (G); QR = Question
rate. NIDF is a measure of specificity [See et al., 2019]. QR, NPO, NEO
are measured in percentages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xii



Table 4.5. Pairwise comparison (in %) between responses generated by our best model
(including both discourse analysis auxiliary tasks) vs. responses generated
by other baselines as well as the Gold response. The highest entries are
bolded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 4.6. Sample generated response on NFL’s new rule. When we add discourse
specific losses, the models generate questions that bears more coherence to
the context as well as ask clarifying questions. . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 5.1. Diversity metrics on the PersonaChat test set. D-1/2 is the % of distinct uni-
and bi-grams. ENTR is the geometric mean of n-gram entropy. Grad. Inf. is the
unsupervised gradient-based decoding as opposed to Nucleus sampling [Holtzman
et al., 2020]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 5.2. Pairwise comparison (% win/loss cases, ties not reported) between responses from
PABST and from other baselines as well as gold. All differences are significant
with p < 0.05. Cohen’s Kappa [Cohen, 1960] for sensibility and engagement were
0.79 and 0.82 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 5.3. Generations from different models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 6.1. Automatic metrics on the test set of MultiWoZ. Difference between bold
and non-bold numbers is statistically significant (p < 0.001). . . . . . . . . . . . . 76

Table 6.2. Automatic metrics on the test set of Wizard-of-Wikipedia. Difference
between bold and non-bold numbers is statistically significant (p < 0.001). 76

Table 6.3. Pairwise comparison (% win/loss cases, tie not reported) between responses from
POKI and from other baselines as well as ground truth. Difference between bold
and non-bold numbers is statistically significant (p < 0.001). κ denotes Cohen’s
Kappa [Cohen, 1960] between a pair of annotators. . . . . . . . . . . . . . . . . . . . . . . . 77

Table 6.4. Real-time user study with average # of turns for successful goal completion,
% of time the goal was achieved, % of success cases users were helped by
an additional knowledge (Know) that was not explicitly asked to reach their
goal, and if users would like to use the system in future. . . . . . . . . . . . . . . . . 81

Table 6.5. Evaluation for the quality of the knowledge snippets for random and DPP-
based selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 6.6. Mean and std. error of clock-time taken per token . . . . . . . . . . . . . . . . . . . . . . 82

Table 7.1. Product description from amazon.com paired with a clarification question
generated by our model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



Table 7.2. Number of data instances in the train, validation and test splits of Amazon
and Ubuntu datasets (Both datasets are in English.) . . . . . . . . . . . . . . . . . . . . 92

Table 7.3. Automatic metric results on the full test set of Amazon. The difference
between bold and non-bold numbers is statistically significant with p< 0.001. 94

Table 7.4. Automatic metric results the full test set of Ubuntu. The difference between
bold and non-bold numbers is statistically significant with p < 0.001. . . . . . 94

Table 7.5. Human judgment results (0-1) on 300 randomly sampled descriptions from
the Amazon test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 7.6. Human judgment results (0-1) on 150 randomly sampled dialog contexts
from Ubuntu test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 7.7. Model generations for an example product from Amazon and an example
dialog context from Ubuntu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 7.8. Missing information overlap (in %) between missing schema and output
generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 8.1. Our tasks: three Natural Language and two Vision-Language. . . . . . . . . . . . 110

Table 8.2. Task performance (Acc.) and NLE quality for the (a) NL and (b) VL tasks.
NLE Automatic metrics: METEOR, BERTScore, BLEURT, and NLE human
evaluation metrics: e-ViL score, Yes/No %s. Bold are the best numbers (p< 0.001).
Underline indicates best task performance for models with any explanations. . . . . 111

Table 8.3. ER quality. Comparison of previous SOTA models [DeYoung et al., 2020a] for
rationale extraction vs. REXC for ER quality. Best numbers are in bold. . . . . . . . . 113

Table 8.4. Comprehensiveness (Comp.) and Sufficiency (Suff.) metrics for ERs and se-
lected knowledge snippets generated by REXC vs. random ERs and knowledge
snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Table 9.1. NL feedback parser. Parse examples for IID and compositional (Comp) splits;
parsing accuracy on IID, compositional splits and overall test set. GPT-Neo has
2.7B parameters, GPT-J has 6B parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Table 9.2. Evaluation for task accuracy (Acc. ↑), bias (F1 ↓), and faithfulness for task
rationales: Comprehensiveness (Compre. ↑) and Sufficiency (Suff. ↓) . . . . . . . . . . 128

xiv



ACKNOWLEDGEMENTS

I am incredibly appreciative of the chance I was given to pursue my academic objectives.

I would not have been able to accomplish this feat without the steadfast support and assistance

of numerous people.

I would like to express my deepest gratitude to Julian McAuley, my advisor, for his

unwavering encouragement, guidance, and multiple chats over boba throughout my dissertation

journey. On multiple occasions, his valuable advice has helped me become an independent

researcher and alleviated my confidence in approaching other professional opportunities beyond

thesis research.

My heartfelt appreciation goes out to Taylor Berg-Kirkpatrick, Gary Cottrell, Arya

Mazumder, Lawrance Saul, and Sameer Singh, the other members of my dissertation committee,

for providing me with indispensable suggestions and encouragement that significantly contributed

to shaping my research direction.

I was fortunate to be supported by the generous funds from NSF Award #1750063, and

an unrestricted gift from MeetElise. My research was recognized by the Qualcomm Innovation

Fellowship, Adobe Research Fellowship, and Friends of the International Center Fellowship, UC

San Diego—to whom I am deeply thankful.

Following, I would not have been able to give my research shape without the contribution

of the many mentors I was lucky to have during my internships: Marc Najork (Google AI),

Sandeep Tata (Google AI), Navneet Potti (Google AI), James Wendt (Google AI), Qi Zhao

(Google AI), Sudha Rao (Microsoft Research), Michel Galley (Microsoft Research), Y-Lan

Boureau (Meta AI), Asli Celikyilmaz (Meta AI), Peter Clark (AI2), Bhavana Dalvi (AI2), Oyvind

Tafjord (AI2), and Niket Tandon (AI2). I must express my ultimate gratitude to Harshit Surana,

Animesh Mukherjee, and Pawan Goyal, whose support was instrumental in me taking the maiden

step of my Ph.D. career.

My Ph.D. journey would have been much wary had it not been for my amazing collabo-

rators: Harsh Jhamtani, Oana-Maria Camburu, Thomas Lukasiewicz, Vered Shwartz, Shuyang

xv



Li, Jianmo Ni, Henry Mao, Zexue He, Zhouhang Xie, Sophia Sun, and all other labmates from

my lab (The Julian McAuley Lab)—help and guidance from all of them have been extremely

invaluable all throughout.

Eventually, it would have been very difficult to sustain without the continual support of

my friends-turned-family: Sumit Da, Sujoy, Aranya Da, Digbalay Da, Rajrup, Agnimitra, Ragini,

Brato Da, Shouvik Da, Varun, Rob, Sanandita, Veltu Da, Subho, Diya, Buria Di, Ronty, and

Mama-Mami from San Diego. And a special thanks goes to Sanchaita, a constant throughout the

good times and the bad.

Finally, without the sacrifices, guidance, and blessings of my parents, I would not have

had the opportunity to achieve my goals and wishes, and for that, I am forever grateful.

I am also grateful to my co-authors who kindly approved the following publications and

material to be included in my dissertation:

Chapter 3, in part, is a reprint of the material as it appears in “Like hiking? You probably

enjoy nature: Persona-grounded Dialog with Commonsense Expansions” by Bodhisattwa Prasad

Majumder, Harsh Jhamtani, Taylor Berg-Kirkpatrick, Julian McAuley, which was published

in Empirical Methods in Natural Language Processing, 2020. The dissertation author was the

primary investigator and author of this paper.

Chapter 4, in part, is a reprint of the material as it appears in “Interview: Large-scale

Modeling of Media Dialog with Discourse Patterns and Knowledge Grounding” by Bodhisattwa

Prasad Majumder*, Shuyang Li*, Jianmo Ni, Julian McAuley, which was published in Empirical

Methods in Natural Language Processing, 2020. The dissertation author was one of the primary

investigators and author of this paper.

Chapter 5, in part, is a reprint of the material as it appears in “Unsupervised Enrichment

of Persona-grounded Dialog with Background Stories” by Bodhisattwa Prasad Majumder, Taylor

Berg-Kirkpatrick, Julian McAuley, Harsh Jhamtani, which was published in Association for

Computational Linguistics, Main, 2021. The dissertation author was the primary investigator

and author of this paper.

xvi



Chapter 6, in part, is a reprint of the material as it appears in “Achieving Conversational

Goals with Unsupervised Post-hoc Knowledge Injection” by Bodhisattwa Prasad Majumder,

Harsh Jhamtani, Taylor Berg-Kirkpatrick, Julian McAuley, which was published in Association

for Computational Linguistics, 2022. The dissertation author was the primary investigator and

author of this paper.

Chapter 7, in part, is a reprint of the material as it appears in “Ask what’s missing

and what’s useful: Improving Clarification Question Generation using Global Knowledge”

by Bodhisattwa Prasad Majumder, Sudha Rao, Michel Galley, Julian McAuley, which was

published in North American Chapter of the Association for Computational Linguistics, 2021.

The dissertation author was the primary investigator and author of this paper.

Chapter 8, in part, is a reprint of the material as it appears in “Knowledge-grounded

Self-rationalization via Extractive and Natural Language Explanations” by Bodhisattwa Prasad

Majumder, Oana-Maria Camburu, Thomas Lukasiewicz, Julian McAuley, which was published

in International Conference on Machine Learning, 2022. The dissertation author was the primary

investigator and author of this paper.

Chapter 9, in part, is a reprint of the material as it appears in “InterFair: Debiasing

with Natural Language Feedback for Fair Interpretable Predictions” by Bodhisattwa Prasad Ma-

jumder*, Zexue He*, Julian McAuley, which is being prepared for submission. The dissertation

author was one of the primary investigators and authors of this paper.

xvii



VITA

2015 B.Tech in Electronics & Telecommunication Engineering, Jadavpur University

2017 Post Graduate Diploma in Business Analytics, IIT Kharagpur

2017–2018 Statistical Analyst, Walmart Labs

2020 M.S. in Computer Science and Engineering, University of California, San Diego

2023 Ph.D. in Computer Science and Engineering, University of California, San Diego

PUBLICATIONS

See the full list of publications on my website: https://www.majumderb.com/.

Bodhisattwa Prasad Majumder, Harsh Jhamtani, Taylor Berg-Kirkpatrick, Julian McAuley,
“Like hiking? You probably enjoy nature: Persona-grounded Dialog with Commonsense Expan-
sions”, Empirical Methods in Natural Language Processing, 2020.

Bodhisattwa Prasad Majumder*, Shuyang Li*, Jianmo Ni, Julian McAuley, “Interview:
Large-scale Modeling of Media Dialog with Discourse Patterns and Knowledge Grounding”,
Empirical Methods in Natural Language Processing, 2020.

Bodhisattwa Prasad Majumder, Sudha Rao, Michel Galley, Julian McAuley, “Ask what’s miss-
ing and what’s useful: Improving Clarification Question Generation using Global Knowledge”,
North American Chapter of the Association for Computational Linguistics, 2021.

Bodhisattwa Prasad Majumder, Taylor Berg-Kirkpatrick, Julian McAuley, Harsh Jhamtani,
“Unsupervised Enrichment of Persona-grounded Dialog with Background Stories”, Association
for Computational Linguistics, Main, 2021.

Bodhisattwa Prasad Majumder, Harsh Jhamtani, Taylor Berg-Kirkpatrick, Julian McAuley,
“Achieving Conversational Goals with Unsupervised Post-hoc Knowledge Injection”, Association
for Computational Linguistics, 2022.

Bodhisattwa Prasad Majumder, Oana-Maria Camburu, Thomas Lukasiewicz, Julian McAuley,
“Knowledge-grounded Self-rationalization via Extractive and Natural Language Explanations”,
International Conference on Machine Learning, 2022.

Bodhisattwa Prasad Majumder*, Zexue He*, Julian McAuley, “InterFair: Debiasing with Nat-
ural Language Feedback for Fair Interpretable Predictions”, presented in Workshop on Interactive
Learning for Natural Language Processing, NeurIPS, 2022.

xviii

https://www.majumderb.com/


ABSTRACT OF THE DISSERTATION

User-centric Natural Language Processing

by

Bodhisattwa Prasad Majumder

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Julian McAuley, Chair

Artificial Intelligence (AI) systems that use language generation models hold incredible

promise to assist humans to perform complex decision-making tasks. State-of-the-art language

generation models can produce engaging content, reason about the world, and retrieve relevant

information for an information-seeking task. However, these models often ignore sparse, long-tail

knowledge about individual users, cultural subtleties, and domain-specific knowledge, preventing

end users from reaping the full benefit of the scale. In this dissertation, we redesign AI systems

to start with individual needs.

Ideally, a user-centric AI system must be grounded in the real-world, produce faithful

chains of reasoning to explain its prediction, and align with the user’s preferences. We elevate
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existing AI systems with knowledge, explanations, and interactions and develop both training-

time and post-hoc techniques to make these systems user-centric. We show additional knowledge-

grounding promotes user success in achieving conversational goals while using a conversational

AI system. We demonstrate that AI explanations, when attributed to world knowledge, render

them to be faithful and consistent. Finally, we discover that user-centric interventionist approach

can help users obtain more equitable predictions backed by faithful explanations as compared

to a black-box counterpart. In summary, our research establishes that increased effectiveness,

explainability, and equitability can be achieved through knowledge-grounding and user-centric

approaches to personalize AI models—a long-standing goal of artificial general intelligence.
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Chapter 1

Introduction

Artificial Intelligence (AI) systems that use large language models (LLMs), such as

GPT-31, have made incredible progress in performing complex tasks that humans otherwise do

effortlessly. Current AI models can reason about the world, follow instructions during navigation,

and generate multimedia content with remarkable efficiency. However, these AI models often

ignore the long tail of the information, such as user preferences, cultural nuances, and domain

knowledge, blocking end users from reaping the full benefit of the scale. Consequently, it is vital

to update these AI models to make them more user-centric. My research stands at the heart of

the following question:

What can we achieve by redesigning AI systems to start with individual needs?

1.1 User-centric AI

Users continuously seek to access information to make a decision, reduce uncertainty, or

accomplish a task. However, today’s AI systems can hardly assist in the above scenarios. First,

current systems highly focus on high-frequency information, ignore the long-tail (e.g., cultural

nuances), and become outdated or irrelevant in many situations. Second, current methods are

often not interpretable, limiting users from fully trusting the prediction. Even systems that

produce explanations primarily focus on low-level interpretations (e.g., just showing the most

1https://en.wikipedia.org/wiki/GPT-3
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toxic words to explain a tweet as toxic), failing to address the complex reasoning associated with

social and historical context. Third, existing AI systems only solve a narrow class of problems

(that have a unique correct answer) and cannot adapt to cases where outputs are personalized or

decisions are subjective (e.g., computational ethics).

Existing techniques for interpretable ML typically focus on producing (for example)

attention maps, visualizations of weight vectors, etc. These types of interpretations demonstrate

the features that were useful to make a prediction, but they require considerable expertise to

interpret. For example, an attention-map over image regions might be useful as an interpretation

from the perspective of a machine learning expert, but such an interpretations is generally not

useful to the general public or an end user who is not familiar with how an image classifier works.

As such, existing interpretable ML techniques are mostly useful as diagnostic tools (i.e., to assist

experts) rather than something useful by laypeople.

Furthermore, existing techniques often assume a single, objective explanation of a

prediction, i.e., that there is a unique, ‘correct’ answer or prediction that should be generated

by an interpretable ML system. This is an acceptable assumption e.g. in simple classification

scenarios, but is likely not effective in settings where (1) predictions depend on context which

must be included in the explanation; or (2) predictions need to be personalized to a user or

explained in terms of highly subjective factors.

Both of the above issues are particularly notable in user-facing applications. Examples

include recommendation algorithms, personalized health, and personalized education. For such

applications it is useful to provide explanations interpretable by laypeople, and those explanations

should be personalized to each individual user, e.g. an interpretable recommender system should

explain why the content was surfaced to them in particular.

Ideally, a user-centric AI system must be aware of the surrounding world (relevant),

produce faithful explanations (trustworthy), and align with the user’s preferences (adaptive)

[Miller, 2019]. My research concisely addresses the above through interactive explainability,

realized via three interwoven pillars:
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Figure 1.1. Interactive explainability as the foundation of user-centric AI systems

1. Knowledge: Discovering and deducing knowledge from context using external resources

or via clarifying conversations,

2. Explanations: Enhancing machine predictions and their explanations by aligning the

model’s reasoning process with world and personal knowledge,

3. Interactions: Enabling users to critique and update model beliefs to align predictions and

explanations to their personal, social, and subjective contexts.

1.2 Knowledge Grounding

Knowledge in its surface form is either propositional (facts) or the perception of skills,

objects, and events (commonsense). However, required contextual knowledge greatly varies

based on the personal preferences of the user, subjectivity associated with the context, and

availability of resources to acquire such knowledge.

When AI models act as experts in a knowledge-seeking scenario (e.g., seeking recom-

mendations, obtaining explanations), they often ignore subjective preferences or become limited

to the knowledge they are trained on. We discovered that a model trained on persona-grounded
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Find me something fun to do in 
San Diego in the daytime!

You can go to Balboa Park.

You should go to La Jolla Shores in 
San Diego in daytime. It has great 
size beaches, kayak rentals/tours, 
caves to explore, warm and semi 
clear water!

You should go to La Jolla Shores. It 
has great size beaches…

Relevant Knowledge

POKI

(irrelevant)

(new, 
relevant)

Knowledge 
Acquisition

Knowledge 
Selection

Constrained 
Decoding

invalid! closed due to COVID-19

Figure 1.2. Post-hoc Knowledge Injection (POKI) in a dialog model that was trained on limited
knowledge

conversations could not deduce implicit knowledge from the dialog context. For example, hu-

mans can easily infer that if someone likes hiking, they may love nature or want to be fit; in

contrast, traditional generative models fail to acknowledge it.

To remedy this, we devised a training-time knowledge augmentation paradigm that

expands a textual context into possible inferential knowledge and then augments therein. Criti-

cally, we used a retrieve-generate framework that first uses external commonsense knowledge

graphs (e.g., ATOMIC [Sap et al., 2019]), web-scale corpora (e.g., Yelp Reviews), or gener-

ative models (e.g., GPT3, COMET [Bosselut et al., 2019]) as knowledge sources and then

augments the retrieved knowledge in the dialog model using variational learning. We found that

humans predominantly prefer our generated responses as they are highly diverse, attributable,

and controllable with input persona.

Training-time knowledge augmentation requires continuous fine-tuning to keep models
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up-to-date, resulting in higher carbon footprints. We developed post-hoc approaches to knowl-

edge acquisition and injection for existing dialog models to make the process more lightweight

and greener. It also applies when the underlying model’s parameters are not accessible or

updatable. This time, we retrieved the additional knowledge and used a post-hoc gradient-based

method (POKI) to inject new knowledge into a generated dialog response both at inference time.

We showed (see Figure 1.2) that when we injected up-to-date knowledge (e.g., post-COVID

travel regulations) in an existing dialog model (let’s say, trained in pre-COVID time), users could

efficiently (re)use it to reach their conversational goals (e.g., planning their travel in 2022).

We further realized that knowledge-augmentation techniques detailed so far will still be

ineffective when the context is ambiguous. For example, suppose a user is looking for a travel

recommendation. Several nuances (e.g., number of travelers, location, and transport preferences)

can change the knowledge requirement given the same context. We later developed a question

generation framework to estimate the missing information, pose relevant and useful clarifying

questions to reduce ambiguity, and gather knowledge that aligns with user preferences.

Finally, we tested our knowledge-augmentation techniques at a scale of millions of

users. We showed a 65% improvement in user-satisfaction and more than 180% increase in

user-engagement by making a dialog agent knowledge-aware and up-to-date. Our proposal for

knowledge-grounded dialog system was selected in the finals of Amazon Alexa Prize, as 1 of 10

teams from 300 international participants, and awarded $250,000.

1.3 Generating Explanations

Machines often achieve near human-level performance in many tasks by mostly employ-

ing a different approach than humans. Hence, it is crucial to understand the model’s underlying

reasoning for better scientific understanding and improved trust. Moreover, to make models

more user-centric, these explanations must be comprehensive, personalized, and attributable to

world knowledge.
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Premise: Two men are 
competing in a bicycle 
race


Hypothesis: People 
are riding bikes

bicycle race requires bikes 

race requires riding bikes

bicycle race needs helmet 

two men are people

…

bicycle race requires bikes 

race requires riding bikes

bicycle race needs helmet 

two men are people

…

Competing in a 
bicycle race requires 
men riding bikes  entailment

Task: Natural Language Inference

Dataset: e-SNLI (Camburu et al., 2018)

Figure 1.3. REXC bridges extractive rationales and abstractive explanations using background
knowledge to improve plausibility, accuracy, and attribution.

We primarily worked with expressive forms of explanations, such as rationales (predictive

parts of input) or natural language explanations, that could provide more accessibility to users and

cover subjective contexts. Upon investigation, we found that existing explainable models often

lack background knowledge, affecting task performance and explanation quality. We showed

adequate knowledge grounding for three natural language tasks and two vision-language tasks

could improve the quality of the explanations to be state-of-the-art (in REXC, see Figure 1.3).

Additionally, we achieved the best task performance across all equivalent explainable models—

indicating that REXC closes the critical gap between task performance and explainability.

Knowledge-grounding to improve explanation quality further gave rise to several emer-

gent properties of the explanations: factuality, robustness, and faithfulness—critical for enabling

the user to take actions based on the explanations. We observed that generated explanations ex-

hibit a high degree of faithfulness; a similar observation was made for T5-based self-rationalizing

models [Wiegreffe et al., 2021a]. Similarly, these models are more robust to knowledge-based

adversarial attacks (e.g., change of entity, negations) than not knowledge-grounded models. This

effect is more pronounced in domain-specific applications, such as e-commerce, where several

state-of-the-art explainable models succumb to the issue of hallucination.

1.4 Engaging in Interactions

Despite our best efforts to make AI systems knowledgeable and explainable, data around

us will still be inherently biased and limited by its origin. The models we build will be less than
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Fashion 
Designer

Consider using [word] model 
Don’t use any name

Model

Input Prediction Task Rationales Bias Rationales

Debiasing 
Classifier

Debiasing 
Classifier

Angela Lindvall is a model and 
she has represented almost 
every major fashion brand

Angela Lindvall is a model and 
she has represented almost 
every major fashion brand

Angela Lindvall is a model and 
she has represented almost 
every major fashion brand

Angela Lindvall is a model and 
she has represented almost 
every major fashion brand

Angela Lindvall is a model and 
she has represented almost 
every major fashion brand

Angela Lindvall is a model and 
she has represented almost 
every major fashion brand

1. Feedback updates bias rationales 
2. Influences task rationales 

3. Lowers bias in task rationales 
4. Influences prediction

Figure 1.4. INTERFAIR, a new interactive paradigm of controllable debiasing. Users can
update the model’s belief about sensitive information to mitigate bias while maintaining the task
performance.

perfect. Moreover, humans also constantly modify their expectations from the AI models. Hence,

the gold solution remains to make the user a part of the learning paradigm. To this end, designing,

building, and evaluating interactive models can propel our progress toward anthropomorphic AI

systems. My proposal was supported by Adobe Research Fellowship (2022) and Qualcomm

Innovation Fellowship (2020).

We merely understand black-box models and how they encode complex social contexts

into model parameters. In contrast, we are first to show that rationales are useful in exposing the

model’s understanding of complex social contexts. We discovered that most debiasing models

remove sensitive information too harshly disregarding task performance. In [He et al., 2022], I

proposed remedies to constrain the model explanations to be minimally biased but retain the high

task performance. We build a critiquing framework to improve debiasing performance bringing

users into the loop (INTERFAIR). I observed that the trade-off between task performance and

bias mitigation greatly varies between users [Yaghini et al., 2021] and is often hard to achieve

via purely learning from data [Zhang et al., 2018a]. Figure 1.4 shows how users can modify

the amount of bias (here, removing the gendered name) in model explanations to balance bias

mitigation and prediction accuracy.
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1.5 Summary

While chapter 1 introduces the motivation behind a user-centric AI systems, chapter

2 lays the foundation of various knowledge sources and text generative models—the building

blocks of our proposed user-centic systems.

Chapter 3, 4, 5, 6, and 7 broadly concerns knowledge grounding.

Chapter 3 discusses a variational learning framework to capture commonsense implica-

tions of input persona in a persona-grounded dialog agent using richer expansions obtained from

existing commonsense knowledge bases.

Chapter 4 includes the first large-scale analysis of discourse in media dialog ("Interview"

- 105K conversations) and its impact on generative modeling of dialog turns, with a focus on

interrogative patterns and use of external knowledge.

Chapter 5 discusses an unsupervised gradient-based rewriting framework to adapt poten-

tial background stories to an existing persona-grounded dialog.

Chapter 6 proposes a post-hoc knowledge-injection technique that first retrieves and

selects a diverse set of relevant knowledge snippets and further inject them into an initial

response from an exisiting dialog model. Enriching dialog responses at decoding time with

external knowledge (without re-training the existing models) promotes achieving conversational

goals.

Chapter 7 introduces a two-stage framework that 1) estimates missing information from

the global knowledge of similar contexts, and 2) conditionally generates useful questions using

gradient-based decoding based on a usefulness scorer at the inference time.

Chapter 8 invests in generating explanations. It proposes a unified framework to map

extractive rationales and abstractive natural language explanations (NLE) of AI models using

commonsense. In this chapter, we establish new state-of-the-art in NLE generation, rationale

extraction and predictive task performance.

Chapter 9 hints at the possibility of engaging users in interactions with an AI system. We
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tackle the issue of fairness in debiasing (i.e. balancing task performance and bias mitigation) and

argue that it is subjective and difficult to learn from data. Using an interactive setup, we enable

users to provide feedback and achieve a better balance, supported by controllable explanations.

Chapter 10 refers to the related work for all novel work introduced in previous chapter.

Chapter 11 concludes the dissertation while discussing the novel possibilities and future outlook

towards user-centric AI systems.

9



Chapter 2

Background

Language generation is one of the core tasks in natural language processing that has

seen tremendous performance enhancement in recent years. On the other hand, achieving

commonsense reasoning by machines has been a long-standing goal of artificial intelligence.

Despite an increased focus on language generation, recent works revealed that state-of-the-art

generative systems often struggle to generate plausible text consistent with the real-world. With

the availability of good-quality datasets and strong computational models, we have made progress

towards machine reasoning. In this chapter, we provide a background of various downstream

generation tasks that require commonsense and external knowledge.

Commonsense knowledge, such as knowing that “nature has a healing effect over mind"

or “ice makes the road slippery," is crucial for everyday navigation in the real world [Davis and

Marcus, 2015]. But making machines to understand such human-like commonsense is yet to

be fully achieved. Still, the tremendous advancement of artificial intelligence has shown that

machines are somewhat capable of understanding real-world concepts. More so, they are capable

of generating content that can easily be perceived by a human. Language generation is one

such machine capability that has been investigated recently with great interest. While many

previous works mainly focused on commonsense understanding, a few targeted to incorporate

commonsense in generative systems. This is particularly useful since generated text should be

meaningful, factual, and consistent with the real world.
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Figure 2.1. State-of-the-art generation models struggle to generate a factual text [IV et al., 2019],
respond a user’s query [Welleck et al., 2019], or generate a story with plausible story-line [Guan
et al., 2020].

While the literature on language generation is rich, recent works [IV et al., 2019, Welleck

et al., 2019, Guan et al., 2020] showed that these systems are often not useful in real-world

settings, mainly due to the inconsistency and factual incoherence. For example, a machine-

generated dialog will not be helpful if it becomes inconsistent with its already uttered facts.

Similarly, a generated story will not be accepted well if the plot outline lacks commonsense

or temporal reasoning. Incorporating commonsense was particularly challenging due to a lack

of commonsense resources, lack of strong computational models, and improper representation

techniques, to name a few. See Figure 2.1 for erroneous generations by state-of-the-art models

across various language generation tasks.

Recent studies have slowly started focusing on addressing the above issues. A great effort

is made to standardize the commonsense knowledge bases and expands them to a reasonable scale.

Strong pre-trained language models have shown how to accomplish reasonable performance in

generation tasks; those were impossible even a few years back [Brown et al., 2020]. Multi-task

learning, and graph neural networks have provided efficient ways to infuse external knowledge
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and obtain better representations of concepts. We believe that this is a timely survey that tries to

cover various recent approaches towards generating language with commonsense.

Here, we first define commonsense and discuss various available resources to aid down-

stream generation tasks. After giving a preview of generation tasks that require commonsense, we

discuss a way of incorporating commonsense in a generative system: using sequence transduction

models.

2.1 Commonsense Knowledge

In his work on bounded rationality, Kahneman [Kahneman, 2003] defined three cognitive

systems – perception, intuition, and reasoning. Perception and intuition are fast processes that

get initiated automatically but can be realized in parallel. For example, a human can trigger

a series of intuitive mechanisms at a time and can process them simultaneously. These two

cognitive, though, come with a cost of slow learning more than the real world’s association. On

the other hand, the reasoning process is slow that generally involves a series of intermediate

steps to resolve. This process is more controlled though it can be learned directly from observing

rules and axioms.

The knowledge acquired to perform these three cognitive tasks is often termed as com-

monsense knowledge. This knowledge is usually associated with real-world observations and

elements, hence often interchangeable terms as real-world knowledge too. As commonsense

understanding is crucial and fundamental to human intelligence, it is believed to be instrumental

for machine intelligence.

2.1.1 Definition of Commonsense

Commonsense can be defined as the necessary level of practical knowledge and reasoning

concerning everyday situations and events commonly shared with most of the people1. For

example, it is acceptable to keep the closet door open, but it is not acceptable to keep the fridge

1https://homes.cs.washington.edu/~msap/acl2020-commonsense/
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door open, as it might spoil the food inside. There are always counterexamples to such scenarios

such a fridge door can be kept open when it is empty – but these cases are rare and not ‘common’

to ‘most’ of the people.

2.1.2 Resources

Commonsense knowledge is acquired through the world’s human experiences and gener-

ally reasoned by an individual’s mental model. But to incorporate commonsense knowledge into

machine intelligence, we need tangible resources that a machine can rely on or draw inference

from. Commonsense resources are generally represented as a bank of knowledge that enables

machines to reason about the world [Kintsch, 1988].

Existing Knowledge Bases are represented in two formats – 1. in symbolic logic

(e.g. LISP-style logic) and 2. in natural language. Representations stored in symbolic for-

mat can be extracted automatically, whereas knowledge represented in natural language requires

extra supervision. Even though they are of high quality, symbolic representation is often re-

stricted to the experts, whereas knowledge represented in natural language can be accessible

to non-experts. We will show later that knowledge represented in natural language is more

useful than symbolic representations for specific downstream tasks. Here, we will briefly survey

existing commonsense resources used in various capacities in the downstream tasks.

NELL

NELL is a dynamic bank of knowledge that ‘reads’ the web and represents facts into a

symbolic representation [Carlson et al., 2010, Mitchell et al., 2015]. NELL has collected over

50 million facts with associated confidence in the facts extracted. Primarily NELL works on

employing an information extraction algorithm that finds out entities or nouns and tried to relate

them via a defined relation. For example: ‘San Diego Zoo is a popular travel attraction’ –

where San Diego Zoo is attributed as a travel attraction. While these facts are useful for historical

consistency and correctness, NELL also contains various attributes of a range of objects in
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the world, such as fruits, food, chemicals, species, etc. closer to commonsense knowledge we

defined earlier.

OpenCyc

OpenCyc (4.0) is another symbolic knowledge base that holds 239,000 concepts and

2,093,00 facts about them [Lenat and Lisp]. OopenCyc is extensive to gather facts from the web,

much like NELL, but mainly focuses on establishing specific and detailed ontology for implicit

and commonsense knowledge.

ConceptNet

Unlike NELL and OpenCyc, ConcepNet holds meanings of words and concepts that

people use in natural language [Speer et al., 2017]. This semantic network is built by a pipeline

of crowd-sourcing and automatic extraction, spanning over multiple languages. It represents

the general world knowledge using a graph representation (i.e. nodes as concepts and edges

as relations) involved in understanding the meanings behind the words people use. Speer et al.

[2017] provides an example of such knowledge: ‘A net is used for catching fish.’ Initial works

[Turney, 2013, Speer et al., 2017] showed that when combined with distributional semantics of

words i.e., word embeddings, the semantic meaning inferred from ConceptNet boosts language

understanding tasks such as solving analogies.

ATOMIC

Going beyond word meaning, ATOMIC tries to capture world events and connect them

via casual relationships [Sap et al., 2019]. Like ConceptNet, ATOMIC is also represented using

natural language. The inferrential knowledge presented in ATOMIC makes it a very powerful

commonsense resource for downstream tasks where reasoning is involved. Specifically, ATOMIC

provides tuples that belong to nine relation types spanning over cause-effect interrelations

between events: oEffect, oReact, oWant, xAttr, xEffect, xIntent, xNeed, xReact, and

xWant—where a prefix ‘x’ indicates an effect or cause on the person and ‘o’ denotes the same

on others. For example: If PersonX pays PersonY a compliment, PersonY will be flattered.
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Beyond these common resources and knowledge bases, we have seen an influx of

new datasets targeted towards commonsense reasoning such as SWAG [Zellers et al., 2018],

HellaSwag [Zellers et al., 2019b], etc. These resources can be additionally used to guide the

machine to acquire commonsense while performing a downstream task such as text generation.

2.2 Language Generation Tasks Requiring Background
Knowledge

Text generation or natural language generation is one of the core tasks that has seen a

sharp increase in interest. A recent breakthrough has enabled machines to generate text based

on existing works (e.g usually written by a human) or from scratch. While fluency has been

the primary focus of text generation algorithms, there was a little focus on achieving factual or

commonsensical consistency in the generated text. Recently, some works explicitly focused on

maintaining commonsense in the generated text [Bosselut et al., 2019, Guan et al., 2020, Zhou

et al., 2018, Mao et al., 2019]. Here we will briefly list a set of language generation tasks that

require commonsense to be preserved in the generation.

Story generation is the task of automatically producing compelling creative writing.

Various structural elements in a story should adhere to some level of commonsense or logic, such

as a story outline must follow a situation logic; a set of subevents must follow a temporal logic

[Guan et al., 2020]. Similarly, other creative language generation tasks such as simile generation,

sarcasm generation [Chakrabarty et al., 2020a] demands commonsense to be even valid.

Semantic understanding for dialog generation is often related to understanding underlying

commonsense knowledge. Especially when off-the-shelf generative models do not perform

reasoning based on the dialog context, it is crucial to explicitly signal the model with such

knowledge. We see a prevalence of commonsense knowledge bases as an external resource to

aid effective dialog generation in open-domain chitchat settings [Wu et al., 2020a, Young et al.,

2018, Wu et al., 2020b].
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In literature, we also find other generation tasks such as caption generation [Fang et al.,

2020] and summarization [Amplayo et al., 2018] that utilize commonsense knowledge bases as

an external resource for the respective generative models.

2.3 Sequence Transduction Models

The task of language generation often relies on the primary task of language modeling.

A language model learns to assign the probability of a sequence of tokens X = x1, . . . ,xT using

the factorization rule of conditional probability:

P(X) =
T

∏
t=1

P(xt |x1:t−1). (2.1)

The model is trained using a cross-entropy loss between ground truth tokens and predicted

probabilities given current tokens for the next time-step. We aim to incorporate commonsense

in the generative system since the language model only focuses on language fluency and often

lacks logical consistency. In the neural era, sequence transduction models are generally used for

language generation tasks, which mimics a language model’s working on the target given the

conditional input.

2.3.1 Pre-training

[Bosselut et al., 2019] is one of the first works that incorporated commonsense knowledge

as part of pre-training. COMET or Commonsense Transformer is a pre-training framework that

adapts to construct commonsense knowledge bases using a language model that takes a seed set

of knowledge tuples as the input. COMET is trained on tuples derived from both ConceptNet

and ATOMIC knowledge bases, we discussed in Section 2.1.2. The pre-training objective is to

generate new nodes and edges for the commonsense knowledge graph leveraging the language

model representation learned.

COMET takes input as a tuple of tokens directly obtained from the knowledge graphs
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where the tuples are in the {s,r,o} format. The COMET aims to generate o, the object, given

the subject (s) and the relation (r). COMET uses OpenAI-GPT [Radford et al., 2018] as the

generative model. To honor the original specification of GPT, COMET concatenates the subject

and the relation and learns to generate follow-up commonsense knowledge in the form of {o}.

To remove noise and superficial input, the authors masked the tokens that are not entities or

relations.

The loss function for COMET is the conditional log-likelihood, with the target being

the object (o) tokens. COMET uses ATOMIC and ConceptNet as the seed knowledge bases.

The experiment shows that when the language model is initialized with pre-trained weights, the

generation quality is higher.

Sequence transduction models are becoming increasingly popular due to the recent

advent of powerful pre-trained language models. Multi-tasking is a reasonable approach to infuse

commonsense into the generator system, but the process is explicit. There are debates that a

weak auxiliary task may not be sufficient to change the decoder parameters pre-learned on a

significantly large dataset. Also, current transformer based sequence-to-sequence models do not

provide flexibility in architectural modifications; hence, more investigations are needed in that

direction.

2.4 Large Language Models

2.5 Conclusion

In this chapter, we survey the recent advances in the intersection of language generation,

commonsense reasoning, and knowledge grounding. We introduced a high-level view of various

commonsense resources and how they can be used in language generation tasks. We then list

various text generation tasks where the consistency of commonsense and world knowledge in

the generated text is incredibly important. We discussed sequence transduction models and the

evolution of the large language models as powerful language generation models.
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Chapter 3

COMPAC: Persona-grounded Dialog with
Commonsense Expansions

In this chapter, we dive deep into grounding dialog models with external knowledge. Here,

we will focus on commonsense knowledge. Dialog models are required to be grounded in user

persona, i.e., preferences and personality of the users. However, existing persona-grounded dialog

models often fail to capture the simple implications of given persona descriptions, something

that humans are able to do seamlessly. For example, state-of-the-art models cannot infer that

interest in hiking might imply a love for nature or a longing for a break. In this chapter, we

propose to expand available persona sentences using existing commonsense knowledge bases

and paraphrasing resources to imbue dialog models with access to an expanded and richer set

of persona descriptions. Additionally, we introduce fine-grained grounding on personas by

encouraging the model to make a discrete choice among persona sentences while synthesizing a

dialog response. Since such a choice is not observed in the data, we model it using a discrete latent

random variable and use variational learning to sample from hundreds of persona expansions.

Our model outperforms competitive baselines on the PERSONA-CHAT dataset in terms of dialog

quality and diversity while achieving persona-consistent and controllable dialog generation.
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Figure 3.1. State-of-the-art models struggle to respond a user’s query, where generating an
engaging response depends on commonsense reasoning.

3.1 Introduction

Persona-grounded dialog generation is a ‘chit-chat’ dialog setup where a dialog agent is

expected to communicate based on a given profile [Zhang et al., 2018b]. Many recent works have

focused on a popular benchmark dataset for this task: PERSONA-CHAT [Zhang et al., 2018b] that

provides personas as a set of sentences along with each dialog (example in Figure 3.1). However,

a careful analysis of state-of-the-art (SOTA) models reveals that they often struggle to respond to

contexts that do not closely match given persona sentences, even when the implications might be

obvious to a human.

For example, in Figure 3.1, the user asks an indirect question to the bot related to one

of its persona sentences: I am an animal activist. SOTA1, which concatenates all persona

sentences with dialog history and finetunes a pre-trained generative model (e.g. GPT2) [Wolf

et al., 2019], fails to infer implied commonsense from the dialog context and conditions on
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Figure 3.2. Expansions of an original persona via (a) human rewrite, (b) paraphrase, and (c)
COMET.

an incorrect persona. SOTA2, which separately selects a persona sentence given the dialog

history [Lian et al., 2019] manages to choose the correct persona but merely copies it as the final

response. Neither approach is in general capable of responding to context that goes beyond what

is explicitly mentioned in the available persona sentences, which limits consistent and interesting

conversation. The goal of our model is to understand that being ‘an animal activist’ may imply

that the person wants ‘to make a difference’ via their activity towards animals and synthesizes a

context-consistent and engaging response.

In this chapter, we focus on making persona-grounded chatbots more consistent with

personas and implicit dialog context. We present a framework to expand available persona

sentences to their commonsense implications by using an existing commonsense knowledge base

or paraphrasing resources (see Section 3.3). We endow our dialog model with these expansions

directly rather than requiring the model to learn them from scratch for being context-consistent.

We find that expansions derived from a commonsense knowledge base are more useful to provide

engaging contextual information compared to other expansion sources.

We further propose a Common Sense and Persona Aligned Chatbot1 (COMPAC) which

models choices over the expanded persona set via a discrete latent random variable (See Sec-

1Code is available at – https://github.com/majumderb/compac.
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tion 3.4) as fine-grained persona grounding. Even though it is tractable to marginalize over all

expansions, that would require a forward pass through the dialog generator for each outcome

which is prohibitively slow during training. Instead, to accommodate hundreds of persona

expansions, we train the model by optimizing a lower bound on the log-likelihood. We use amor-

tized variational inference by approximating the true posterior using an inference network that

eventually provides useful inductive bias. Particularly, we show that our Bayesian formulation

for the fine-grained persona grounding was essential as simply providing expanded knowledge

does not help the model generate better responses.

We also outperform competitive baselines in all dialog quality metrics as well as human

evaluations which find COMPAC to be engaging and coherent. We demonstrate that COM-

PAC learns to be consistent with the dialog context with accurate persona grounding especially

in the presence of commonsense expansions. Finally, we show that our model can reflect a

change in response generation when a grounding persona is modified, indicating the possibility

of controllable generation.

3.2 Persona Grounded Dialog

We use a popular benchmark dataset: PERSONA-CHAT [Zhang et al., 2018b] for our

persona-grounded dialog generation task. It contains 10,907 dialogs between pairs of speakers

where each speaker follows their own persona; 968 dialogs are used for validation and 1,000 for

testing. Each speaker is described by 3-5 persona sentences. (e.g. ‘I love the beach’, ‘My mother

is a medical doctor’). Out of 1,155 total unique personas, 100 are used for validation and 100 for

testing.

The task of persona-grounded dialog generation is: given a dialog history H and ground-

ing persona sentences S, we must predict the next utterance x (Summary of notations in Ta-

ble 3.1). Hence a dialog model should maximize the likelihood p(x|H,S). From the PERSONA-

CHAT dataset, we use 131,438 utterances for training the dialog model, 15,602 for validation,
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and 15,024 for testing.

3.3 Persona Expansion

Persona sentences used in persona-grounded dialogs are instances of world events that

often imply real-world consequences or richer information. For example, ‘I love surfing’ naturally

implies that the person might be ‘adventurous’ or ‘loves the outdoors’. Similarly, it also means

that the person wants ‘to go to the beach’ regularly. Inferring these expansions from the original

fact is non-trivial without additional commonsense knowledge.

Zhang et al. [2018b] found evidence that having human written interpretations of a

persona sentence via rephrasing often helps in providing novel information in persona ground-

ing. While obtaining such expansions by manual rewriting is expensive, here we explore two

automatic ways to generate them at scale and separately evaluate them on the downstream dialog

modeling task.

3.3.1 COMET

COMET [Bosselut et al., 2019] is a framework that generates rich and diverse com-

monsense expansions of a given world event. It is a finetuned version of a pre-trained GPT2

[Radford, 2018] model on a pre-existing commonsense knowledge graph such as ATOMIC

[Sap et al., 2019] that can generate novel nodes (events) and edges (relations), as seen in Fig-

ure 3.2c. Specifically, ATOMIC provides tuples that belong to nine relation types spanning

over cause-effect interrelations between events: oEffect, oReact, oWant, xAttr, xEffect,

xIntent, xNeed, xReact, and xWant—where a prefix ‘x’ indicates an effect or cause on the

person and ‘o’ denotes the same on others. While we tried COMET finetuned on an alternative

commonsense knowledge base (e.g.) ConceptNet, not all of the expansions were appropriate to

describe a persona, mainly because we observe that persona sentences are event-like (‘I love

to go to the beach’) as opposed to concepts such as ‘beach’. For more details on COMET and

ATOMIC we refer the reader to [Bosselut et al., 2019] and [Sap et al., 2019] respectively.
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We use the COMET framework to generate expansions for each persona sentence along

the nine relation types that ATOMIC provides. We obtain different samples while decoding via

beam search from COMET for more diverse and unique expansions, as shown in Figure 3.2c.

We preprocess these expansions to add suitable prefixes to make them similar to the original

persona. For example, expansions relating to xWant and xAttr are prefixed with ‘I want’ and ‘I

am’ respectively. For each persona sentence, we generate 5 expansions per relation, i.e., in total

we will obtain 5×9 = 45 expansions per persona sentence.

3.3.2 Paraphrasing

To explore alternative sources for generating commonsense expansions beyond COMET,

we consider paraphrasing persona sentences. Paraphrases of a sentence convey almost the same

meaning to a listener as the original. Often paraphrases use synonymous phrases or manipulate

word-syntax of the original sentence, which implicitly involves both context comprehension and

world knowledge [Zeng et al., 2019]. We obtain these in two ways:

Paraphrase Network To generate paraphrases at scale, we use an off-the-shelf paraphrasing

system based on back-translation [Xie et al., 2019b, Federmann et al., 2019] with pre-trained

language translation models. We make use of En-Fr and Fr-En pre-trained translation models as

the components for back-translation.2 While we tried other language pairs, the En-Fr pair proved

the most satisfactory based on qualitative analysis on 500 samples. We generate 5 paraphrases

per persona sentence, which readily provides more lexical and syntactic variants as shown in

Figure 3.2b.

Manual Paraphrasing To compare with other expansions, we reuse manually written revised

versions of persona sentences provided with PERSONA-CHAT [Zhang et al., 2018b] though these

are limited to only one paraphrase per sentence. We call them revised for short (see Figure 3.2a).

2https://github.com/google-research/uda
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3.4 Common sense and Persona Aligned Chatbot (COMPAC)

To infuse commonsense context in persona-grounded dialog generation, we imbue our

dialog model with the expanded persona set instead of only original personas S. But these

persona expansions lead to hundreds of new sentences as opposed to only a few given persona

sentences which makes it infeasible to encode using a single transformer, as was done in prior

works [Wolf et al., 2019]. Additionally, encoding all persona sentences as a single text input

leads to a lack of interpretability i.e., it is not clear which persona sentence was used by the

model in generating a particular response.

Instead, we propose COMPAC: Common Sense and Persona Aligned Chatbot that allows

us to make a fine-grained choice of a persona sentence to generate the target response. Let

C denote a list of expended personas, derived from S (including S itself). We further add

a null persona ∅ in C considering that some utterances can purely condition on the dialog

context. We are interested in modeling the conditional p(x|H,C) = p(z|H,C)p(x|z,H,C) where

z ∈ {1,2, . . . , |C|} is a latent discrete random variable, unobserved in the data. Given the dialog

history H, first we sample a particular persona sentence Cz from a prior network pθ (z|H) (see

Figure 6.2). Next, as depicted in Figure 6.2, the dialog response x is sampled from a generator

network pφ (x|H,Cz) by conditioning on the history H and chosen persona sentence Cz.

In the generative model described above, the latent variable z is a discrete random

variable which points to a single persona sentence. This decision (of conditioning on a single

persona sentence) was based on the observation that most dialog responses in the datasets under

consideration are relevant to only one persona sentence. It is possible to allow for multiple

persona sentences by defining z to pick a subset of |C| persona sentences instead of picking a

single sentence. We leave this as a possible future extension.
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Table 3.1. Summary of notation used in this chapter

S Set of original persona sentences

C
Set of expanded persona sentences (includes S
and a null persona ∅)

H Dialog history with alternative turns from each speaker
x Target utterance
z Discrete latent random variable ∈ {1,2, . . . , |C|}
e Mean of RoBERTa subword embeddings as an encoder
tk Expansion type for k-th expansion
fi i-th feature function for prior network; i ∈ {1,2,3}
θ Parameters for prior network pθ (z|H,C)
φ Parameters for generator network pφ (x|H,Cz)
α Parameters for inference network pα(z|x,H,C)

3.4.1 Persona Choice Prior

The dialog history H can hold cues regarding which persona sentence might be applicable

given the context. For example, in Figure 6.2 the historical context suggests that ‘following

fashion trends’ can be a consequence of ‘being fashionable’.

We encode both the dialog history H and persona sentence Ck by averaging RoBERTa

subword embeddings [Liu et al., 2019] as e(H) and e(Ck). We use an implementation from

HuggingFace for RoBERTa3 with roberta-base as the pretrained model. Then we parameterize

the prior pθ (z|H,C) as a log-linear model with the following features:

Dialog history We obtain f1(H,Ck): a scalar feature using a bilinear product ⟨e(H),e(Ck)⟩ to

align the persona sentences with the dialog history.

Expansion types Each k-th persona expansion corresponds to an expansion type tk. In the

case of COMET, these types are the nine commonsense relations provided by ATOMIC (see

Section 3.3.1). For paraphrased expansions, we annotate each as type paraphrase and the

original persona sentences as original. We consider two additional features with expansion

types: (a) f2(tk) that represents a global preference over the relation type embedded via a

type embedding layer; and (b) f3(tk,H) that appends the expansion type embedding with dialog

3https://huggingface.co/transformers/model_doc/roberta.html
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Figure 3.3. COMPAC samples a persona sentence from the prior and generates the response
conditioned on the dialog context and sampled persona. The inference network is used only
during training.

history encoding e(H), followed by a linear layer to obtain a real-valued score for history-specific

preference over the expansion type.

The dimension of the expansion type embedding was set to 5. Finally, the prior model

can be represented concisely as pθ (z = k|H,C) ∝ exp( f (H,Ck, tk)), where f (H,Ck, tk) is the

sum λ1 ∗ f1(H,Ck)+λ2 ∗ f2(tk)+λ3 ∗ f3(tk,H) with λi’s are trainable parameters.

3.4.2 Generator Network

Following prior work [Wolf et al., 2019], we use pre-trained GPT2 [Radford, 2018]

(Transformer with 12 layers, 768 hidden size, 12 heads— gpt2-small4) to generate dialog

responses given the dialog history H, with the selected persona sentence Cz prepended to it. In

the case of Cz being the null persona, an empty string is prepended. We further append the target

response x to the combined context (Cz;H), and feed the sequence to GPT2, after tokenization.
4https://github.com/huggingface/transfer-learning-conv-ai
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To distinguish between persona tokens, history tokens, and target response tokens, we use

segment indicators—{Persona, Speaker1, Speaker2}—for which corresponding embeddings

are learned via a separate segment embedding layer in the model. We add the segment embedding

to the corresponding token embedding in the model input layer. To obtain the conditional

likelihood pφ (x|H,Cz), we only consider the target tokens for cross-entropy loss calculation.

Wolf et al. [2019] also leveraged incorrect responses given a dialog history from

PERSONA-CHAT as negative samples in an auxiliary loss to encourage the correct candidate

to obtain the highest likelihood compared to the incorrect ones. However, we did not find any

improvement using this loss in COMPAC.

3.4.3 Learning and Inference

Our training data D consists of instances of dialog history H and ground truth dialog

responses x. We train our model parameters θ and φ to maximize the likelihood of the target

dialog response x given the dialog history: log p(x|H,C;θ ,φ) totalled over D . Since the discrete

random variable z is unobserved in the training data, we must marginalize over z to compute the

desired likelihood p(x|H;θ ,φ):

log p(x|H;θ ,φ) = logEz∼pθ (z|H)[pφ (x|z,H)];

where we drop C from the conditionals for simplicity.

Inference Network Note that the number of persona expansions is typically in the range

150-250, and thus it is computationally expensive to marginalize over the entire selection space

of z during training. We instead optimize a variational lower bound (ELBO) of log p(x|H;θ ,φ)
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given as

Ez∼qα (z|H)[log pφ (x|z,H)]

−KL(qα(z|x,H)||pθ (z|H)),

where we use the inference network qα(z|x,H) to compute the approximate posterior [Kingma

and Welling, 2014]. In our initial experiments, we observe that using an inference network leads

to better perplexity values than using samples from the prior.

The architecture of the inference network is similar to that of the prior network, a

log-linear model. Along with the features related to dialog history and expansion types, we addi-

tionally include another scalar feature: a bilinear product ⟨x,Ck⟩ between the encoded persona

and ground truth response x encoded with RoBERTa embeddings to align the persona choice

according to the target utterance.

Optimization The parameters of the generator network (φ ) and prior network (θ ) are trained di-

rectly via back-propagation. Since z is a discrete latent variable, we use REINFORCE [Williams,

1992] to train the inference network parameters α . However, the REINFORCE estimator often

suffers from high variance. To reduce the variance, we found it useful to (1) use a moving

average baseline [Zhao et al., 2011]; and (2) regularize the prior network by penalizing the

entropy of the output categorical distribution. To avoid KL mode collapse, we use KL-annealing

[Bowman et al., 2016] where we linearly increase the weight of the KL term beginning from 0 to

1 as training progresses.

Decoding At decoding time, we first sample k from the prior pθ (z|H,C), and then Ck is fed to

the generator network. Following previous work [Wolf et al., 2019], we use nucleus sampling

[Holtzman et al., 2020] (with p = 0.95) to decode the final response from the probabilities

produced by the generator. We also found that high-temperature sampling from the prior often
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Table 3.2. Dialog quality metrics on the PERSONA-CHAT test set. PPL=Perplexity, D-1/2=% of
distinct uni- and bi-grams.

System PPL BLEU-1 BLEU-2 D-1 D-2

Original
Per-CVAE 48.37 0.19 0.11 0.03 0.21
LIC + KS 30.50 0.18 0.07 0.07 0.24
GPT2 21.46 1.42 0.78 0.05 0.11
COMPAC-original 19.56 3.24 1.31 0.15 0.25

Paraphrased
GPT2-revised 21.01 1.54 0.97 0.13 0.25
GPT2-paraphrase 21.57 1.61 0.86 0.16 0.35
COMPAC-revised 18.12 3.52 0.99 0.48 0.65
COMPAC-paraphrase 17.09 3.83 1.87 0.56 0.85

COMET
GPT2-COMET 21.12 1.62 0.81 0.21 0.39
COMPAC 16.21 4.12 1.82 0.87 1.07

leads to more diverse generation.

3.5 Experiments

We conduct our experiments based on the following desiderata: (1) Do persona expan-

sions help to generate high quality and diverse responses? (2) Does COMPAC achieve accurate

persona grounding given a dialog context? (3) Does COMPAC enable persona-consistent and

controllable generation?

3.5.1 Baselines

To demonstrate the efficacy of COMPAC, we compare it with three competitive baselines

on the PERSONA-CHAT dataset:

1. Per-CVAE: A CVAE model that exploits persona sentences for diverse generation with an

external memory [Song et al., 2019b]

2. LIC + KS: The best performing transformer model (Lost in Conversation i.e., LIC) in

terms of human evaluation in the ConvAI2 NeurIPS competition [Dinan et al., 2019a]

29



Table 3.3. Pairwise comparison (in %) between responses generated by COMPAC vs. other
baselines (og: original, par: paraphrase) as well as the Gold response. The highest entries are
bolded.

COMPAC vs. GPT2 LIC + KS GPT2-COMET COMPAC-og COMPAC-par Gold

Metric ↓ win loss win loss win loss win loss win loss win loss

Fluency 81.2* 5.1 83.2* 6.7 90.5* 2.3 68.0 26.0 65.0 19.4 40.1 42.5
Engagement 90.5* 3.3 87.4 5.9 97.6* 0.5 86.5* 10.5 81.5* 10.5 62.1* 30.5
Relevance 78.2* 4.8 78.0* 7.7 93.2* 1.8 65.5* 18.5 62.1 15.6 32.8 54.6*

combined with a knowledge-selection (KS) mechanism Lian et al. [2019] to achieve

state-of-the-art results on PERSONA-CHAT;

3. GPT2: Finetuned GPT2 on PERSONA-CHAT just by concatenating all persona sentences

along with dialog history [Wolf et al., 2019] to obtain the best automatic metric in the

ConvAI2 competition.

A minimal version of COMPAC is also considered, COMPAC-original, which only uses

the original persona, for a direct comparison with other model architectures that only use the

original persona. Furthermore, to justify the choice of fine-grained persona grounding for an

effective utilization of persona expansions, we also consider baseline versions of GPT2 trained

with each of the expansion strategies: GPT2-revised, GPT2-paraphase, and GPT2-COMET.

To show that COMPAC can work with persona expansions derived from various sources, we

compare with versions of COMPAC trained with paraphrase-based expansions: COMPAC-revised

and COMPAC-paraphrase. By default, COMPAC indicates it is trained with COMET expansions.

3.5.2 Comparison of Dialog Quality

We measure perplexity for language modeling performance, and BLEU-1 [Papineni et al.,

2002a] and BLEU-2 [Vedantam et al., 2015] scores between generated and gold utterances to

measure the fidelity of the generated responses. Given our goal of generating engaging responses

with novel information, we deem it important to consider the diversity in the generated responses

which we measure using D-1 and D-2 (percentage of distinct uni- and bi-grams respectively) [Li
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Table 3.4. Sample generations by different models.

Persona:
I enjoy listening to classical music.
I’m a Hindu.
My favorite color is red.

User: Hi, recently I have got interests in religion.

GPT2: Hi! How are you?

COMPAC-original: I’m a Hindu.

COMPAC-revised: Hi! I am a Hindu too.

COMPAC-paraphrase: That’s great. I am religious.

COMPAC: That’s great. I regularly go to the temple and learn about Hinduism.

et al., 2016a].

Table 3.2 shows that COMPAC outperforms three competitive baselines when trained on

the original persona in all quality metrics indicating the efficacy of our architecture. Moreover,

when combined with persona expansions, we observe a modest 3-8 point decrease in perplexity

and a large improvement in both BLEU and diversity scores which confirms that COMPAC suc-

cessfully leverages the persona expansions to improve dialog quality. COMPAC trained with

COMET expansions achieves the best performance both in terms of fidelity and diversity which

shows that COMET expansions help the model to respond to implicit context with commonsense

and to explore novel information. But with revised personas, we find that both COMPAC and

GPT2 provide marginal performance gains, mirroring the observation from [Zhang et al., 2018b].

Finally we observe gradual degradation in performance when we trivially finetune GPT2 with

paraphrase and COMET expansions. Note that GPT-2 could have implicitly learned to focus on

a single persona attribute. However, the COMPAC performs better suggesting that fine-grained

persona grounding acts as a useful inductive bias in effectively utilizing larger expansion sets.
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3.5.3 Human Evaluation for Dialog Generation

Automatic evaluation of dialog systems is still notoriously unreliable [Liu et al., 2016,

Novikova et al., 2017] and such systems should be evaluated by human users. Hence, we

perform pairwise comparisons between responses generated our best system, COMPAC trained on

COMET expansions, and responses generated by four strong baselines: GPT2, GPT2-COMET,

COMPAC-original, COMPAC-paraphrase (the best COMPAC model with paraphrase expansions).

We also consider the gold responses for comparison. We conduct a human evaluation with

100 test examples on three aspects critical for practical use: (1) Fluency measures whether

the generated output is fluent (in English); (2) Engagement measures whether the generated

response is engaging or interesting; and (3) Relevance measures whether the generated output is

relevant with respect to the dialog history.

Table 3.3 shows that human annotators found responses generated by COMPAC trained

with COMET expansions more engaging as compared to responses from all the baselines as

well as the gold responses by statistically significant margins. Entries with * denote significance

with p < 0.05 from bootstrap tests on 1000 subsets of size 50. This confirms our hypothesis

that COMET expansions were helpful in adding novel content. Human judges also found that

despite a significant drop in perplexity, COMPAC was not more fluent than COMPAC-original

and COMPAC-paraphrase with statistical significance, indicating similar language modeling

performance. We find the inter-annotator agreement, as measured by Cohen’s kappa [Cohen,

1960], for fluency, engagement, and relevance were 0.62, 0.71, and 0.73 respectively.

3.5.4 Fine-grained Persona Grounding

Next we want to investigate the extent of COMPAC’s ability to ground the response

generation with a fine-grained persona choice as a probing experiment. Specifically, we want to

measure whether our model can choose a coherent persona from the available persona sentences

given the dialog context. Note that in persona-grounded chitchat, not all utterances are tied to a
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Table 3.5. Assessment of persona grounding with and without inference network using the
DNLI entailment set. Human evaluation (eval.) was conducted to measure the relevance when an
expanded persona is chosen–all entries are statistically significant.

System Persona Entailment Human
Prior Inference Network eval.

Original
COMPAC-original 25.5 79.3 –

Paraphrased
COMPAC-revised 20.6 78.9 40.6
COMPAC-paraphrase 27.8 87.3 67.8

COMET
COMPAC 37.9 96.4 87.3

personas and could be purely based on dialog context. We find that 44% of the time the model

selects the null persona (∅) and conditions only on the dialog history. To assess the persona

grounding for the remaining (56%) utterances, we perform (a) a persona entailment experiment,

and (b) human evaluation.

Persona Entailment We adapt the Dialogue Natural Language Inference (DNLI) dataset

[Welleck et al., 2019] and collect persona-utterance pairs that belong to an entailment relation.

This results in a subset of 4,613 utterances with associated ground truth persona sentences in our

test set. Next, we obtain a persona sentence by performing argmax over the prior pθ (z|H,C) as

well as the inference network qα(z|x,H,C) from our COMPAC models and calculate accuracy

with the ground truth persona. For models that use expanded personas, we track the original

persona from the retrieved expansion for accuracy calculation. Table 3.5 shows that COMPAC with

COMET achieves the most accurate persona grounding suggesting that inference networks can

approximate the true posterior better when a commonsense persona is available for grounding.

In the case of the prior, a better entailment accuracy than random chance (1/5) confirms our

choice of the history-conditioned prior network rather than a uniform prior.

Human Evaluation Since DNLI does not entail expanded personas, we conduct a human

evaluation to judge the relevance of a chosen persona expansion sampled from the inference
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Table 3.6. Conditional generation performance on the PERSONA-CHAT test set to show the
similarity between generated responses and grounding persona sentences. We omit GPT2-based
models since they do not select a particular persona sentence for grounding.

System Unigram Overlap BERT
Recall Precision F1 Score

Original
LIC + KS 10.4 34.2 15.3 –
COMPAC-original 14.9 39.1 21.6 57.2

Paraphrased
COMPAC-revised 15.2 40.3 22.1 58.1
COMPAC-paraphrase 17.8 42.2 25.1 72.9

COMET
COMPAC 21.4 48.9 29.8 78.8

network. Specifically, we ask: Is this knowledge relevant to the given dialog history?—with

options as ‘Yes’, ‘No’, and ‘Uncertain’—and with 100 examples for each COMPAC variant

that uses expanded personas. The inter-annotator agreement, as measured by Cohen’s kappa

was 0.76. Again, Table 3.5 shows that models with COMET expansions can choose the most

relevant persona sentence which corroborates our claim in persona entailment experiments.

On average, we noticed that COMPAC with COMET expansions prefers to choose expanded

personas 87% of the time out of all non-null persona choices. This reduces to 62% in the case

COMPAC-paraphrase. In contrast, COMPAC-revised tends to select an original persona over an

expansion more often.

3.5.5 Controllable Generation

Controllable generation of persona-grounded dialog can help to generalize the dialog

agent to newer persona details just by changing the grounding in the conditional generator. While

controllable text generation with a desired attribute has gained interest recently [Dathathri et al.,

2020, Kong et al., 2019], we investigate the possibility of controlling generation with a desired

persona and measure the performance of the conditional generator. For this, we observe a set of

knowledge overlap metrics—the unigram recall/precision/F1 scores–from Dinan et al. [2019b]
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Table 3.7. Controlled generation with edited persona

Performance Example

Presence of changed entity
86%

Changing the key entity
Before: My favorite color is red
After: My favorite color is green

Conversation:
User: What is your favorite color?
Bot: My favorite color is green

BERT score with
unedited persona:
46.2
edited persona:
74.6

Swapping with another expansion
Before: I want to swim in the ocean
After: I want to buy a beach umbrella

Conversation:
User: What do you do at beaches?
Bot: I will buy an umbrella at the beach

and BERT score [Zhang et al., 2020] for semantic similarity between the generated responses and

the persona retrieved. Table 3.6 shows that conditional generation is strongest when COMPAC is

trained with COMET suggesting commonsense expansions are more appropriate to the dialog

context in influencing the response generation.

Next, we create a diagnostic dataset of 100 examples where we manually edit the persona

by changing an entity in a persona sentence or swapping the selected persona expansion with

another relevant one (See examples in Table 3.7) to directly measure controllability in response

generation. We observe that COMPAC can successfully reflect the entity-change in the generated

response based on the change in the persona grounding 86% of the time. For a swapped persona

expansion, we also see a higher BERT score (74.6) between the edited persona and newly

generated response as opposed to a lower score (46.2) with the unedited persona. Together with

the qualitative examples in Table 3.7 this suggests that COMPAC supports controllable generation

with contextually modified personas.
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Table 3.8. Examples showing correct and incorrect persona choices in various dialog contexts
by COMPAC model. COMPAC is capable of choosing a correct persona sentence (original or
expanded) but sometimes the prior network fails to sample an appropriate one (third case).

Verdict Persona Dialog History Persona Choice (z) Response

U
se

s
O

ri
gi

na
l

Pe
rs

on
a 1. I’m the youngest of five.

2. I work at the hospital as a nurse.
3. I’ve pink hair.

What do you do
for work?

I work at the
hospital as a nurse.

I am a nurse.

U
se

s
E

xp
an

de
d

Pe
rs

on
a

1. I just want to have fun with my friends.
2. I don’t drink or do drugs or anything.
3. I am 19 and I cannot wait
to move out of my parents home.

Are you enjoying life?
I just want to have fun
with my friends →
wants to have a party

Not really.
I want to have a
party.

U
se

s
Im

pr
op

er
Pe

rs
on

a 1. I make a million dollars a year.
2. I’m married and have three kids.
3. I’m a baseball player.

I find it hard to support
my family working at
a bar. What about you?

Null persona (∅) I enjoy my life.

3.5.6 Qualitative Analysis

Table 5.3 shows responses from different models for a sample dialog context. Qualita-

tively, we find that COMPAC with COMET expansions responds to the context with commonsense

using novel content from a commonsense expansion (being Hindu → to learn about Hinduism),

where other responses remain generic or incoherent. In Table 3.8, we illustrate responses gener-

ated by the COMPAC model along with the underlying persona choice sampled from the prior

network. Cases show that COMPAC successfully chooses an original or an expanded persona

sentence, as appropriate, but also defaults to the null persona (∅) that leads to a bland response.

3.6 Conclusion

In this work, we showed that expanding persona sentences with commonsense helps

a dialog model to generate high-quality and diverse persona-grounded responses. Moreover,

we found that fine-grained persona grounding is crucial to effectively condition on a large

pool of commonsense persona expansions, which further provided additional controllability in

conditional generation.

While our expansions are limited by the performance of COMET or paraphrase systems,
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we envision future work to train the dialog model end-to-end along with the expansion generation.

As future work, we would like extend the prior network to sample more than one persona

sentences by expanding the sample space of the discrete random variable to generate more

interesting responses.

Chapter 3, in part, is a reprint of the material as it appears in “Like hiking? You probably

enjoy nature: Persona-grounded Dialog with Commonsense Expansions” by Bodhisattwa Prasad

Majumder, Harsh Jhamtani, Taylor Berg-Kirkpatrick, Julian McAuley, which was published

in Empirical Methods in Natural Language Processing, 2020. The dissertation author was the

primary investigator and author of this paper.
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Chapter 4

INTERVIEW: Large-scale Modeling of
Media Dialog with Discourse Patterns and
Knowledge Grounding

In this chapter, we will continue with the task of grounding dialog models with external

knowledge. We perform the first large-scale analysis of discourse in media dialog and its impact

on generative modeling of dialog turns, with a focus on interrogative patterns and use of external

knowledge. Discourse analysis can help us understand modes of persuasion, entertainment,

and information elicitation in such settings, but has been limited to manual review of small

corpora. We introduce INTERVIEW—a large-scale (105K conversations) media dialog dataset

collected from news interview transcripts—which allows us to investigate such patterns at

scale. We present a dialog model that leverages external knowledge as well as dialog acts via

auxiliary losses and demonstrate that our model quantitatively and qualitatively outperforms

strong discourse-agnostic baselines for dialog modeling—generating more specific and topical

responses in interview-style conversations.

4.1 Introduction

Much of the news, information, and punditry the general public listens to and reads

consists of media dialog—a category of open-domain conversations between an interviewer

and interviewee centered on world events and situational context. A system for modeling
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Figure 4.1. Our dialog model incorporates grounding documents alongside dialog history. We
also leverage the dialog patterns and interrogative positioning by the host via auxiliary losses.

media dialog from the perspective of one of these roles can help us better understand how

media persuades and informs the public [Southwell et al., 2018]. Thus, while recent work in

dialog modeling has focused on goal-oriented [Bordes et al., 2017], spontaneous [Shao et al.,

2017], or synthetic open-domain chit-chat [Li et al., 2017, Dinan et al., 2019b, Gopalakrishnan

et al., 2019b], we aim to analyze discourse patterns in media dialog and their impact on dialog

modeling.

Media dialog differs linguistically and in purpose from unstructured, spontaneous con-

versation such as open-domain chitchat, and both the topical content and interlocutor intent are

heavily influenced by the social, cultural, and temporal setting [Weizman, 2008]. The study of

media dialog has traditionally focused on individual and manual review of small-scale (<200K

word) news corpora [Bednarek, 2006, van Dijk, 2011], and we see an opportunity to scale some

forms of discourse analysis to tens of thousands of such documents. In this work, we perform

the first large-scale automatic analysis of structural components (response-type patterns) and

question type categorization on media dialog, specifically for English news interviews. We show

that predicting discourse features can improve generative dialog modeling performance, demon-

strating the degree to which discourse structure impacts an interviewer’s choice of response

type and content. News interviews are also heavily situation-grounded and contextualized by

past events and world knowledge. We explore methods to associate each conversation with
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Figure 4.2. Example conversation from INTERVIEW with annotated discourse analysis. Text
highlighted in blue indicates the question of interest, uttered by the host. The dialog triplet is
marked in red.

a selection of world facts, and show that by modeling interviewers as knowledge-grounded

speakers mediating a conversation we are able to generate relevant and specific utterances fitting

their role.

Our main contributions in this work are:

1. We collect a dataset of 105K media dialogs (23K two-party dialogs)1 encompassing two

decades of National Public Radio (NPR) radio programs, on which we conduct extensive

experiments;

2. We present a probabilistic framework to link a dialog with facts from a large corpus of

grounding documents and show that it improves downstream dialog modeling performance

compared to a strong TF-IDF baseline;

3. We introduce two auxiliary losses to guide utterance generation in a media dialog setting:

look-ahead dialog structure prediction and question-attribute prediction2. We show that

these losses significantly improve generation quality via automatic and human metrics.

1https://www.kaggle.com/shuyangli94/interview-npr-media-dialog-transcripts
2Code: https://github.com/MEDIA-DIALOG/interview-media-analysis
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Table 4.1. Comparative media dialog dataset statistics. *RadioTalk does not contain full
conversations

Dataset Structured # Dialogs # Turns # Words

RadioTalk [Beeferman et al., 2019] ✗ 5.98 M* 116 M 2.9 B
TAL [Mao et al., 2020] ✓ 663 163,808 7.4 M

INTERVIEW 2P ✓ 23,714 454,739 21.7 M
INTERVIEW ✓ 105,848 3,199,856 126.7 M

4.2 INTERVIEW: A Media Dialog Corpus

We collect a new dataset of 105K multi-party interview transcripts for 7 programs on

National Public Radio (NPR)3 over 20 years (1999–2019). These transcripts contain in total 3M

turns comprising 7.5M sentences (127M words) from 184K speakers, of which 287 are inter-

viewers. To investigate host-mediated media dialog, we curate a subset, INTERVIEW 2P, with

two roles: an interviewer and a guest, comprising 23K two-party conversations encompassing

455K turns, with 1.24M sentences and 21.7M words. In these two-party conversations, each

speaker takes an average of nine turns per dialog. Guests tend to speak longer on their turns, with

1.6x as many sentences spoken and 2x as many words per turn. Meanwhile, hosts ask five times

as many questions as guests, with 40% of their dialog turns containing questions. When asking

questions, hosts and guests use interrogative forms [See et al., 2019] at the same rate (65%).

4.2.1 Comparison with Other Datasets

Open-domain dialog datasets have traditionally focused on either spontaneous (e.g. tele-

phone calls) or goal-oriented conversation, and there is a paucity of English-language media

dialog datasets—that is, dialog corpora comprising semi-structured conversations for the purpose

of information elicitation and presentation. The closest such datasets are This American Life

[Mao et al., 2020], a dataset of several hundred long-form expository podcast episodes, and

RadioTalk [Beeferman et al., 2019], which comprises over one million ten-minute snippets of

3https://www.npr.org/
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talk radio transcripts. While these corpora are derived from broadcast media, episodes of the

former contain a broad range of expository speakers who are not professional journalists, while

the latter dataset is constructed via an automated transcription system with a 13%+ word error

rate and does not contain full conversations (segments from radio conversations are transcribed).

We compare INTERVIEW statistics to other English media dialog datasets in Table 4.1.

Traditional media dialogs (e.g. news interviews) comprise a significant body of media

consumed by the general public and we believe there is value in the large-scale study of such

media. Efforts to collect and transcribe broadcast news span the world, from the French EPAC

corpus [Estève et al., 2010] to Arabic and Chinese news manually transcribed via the GALE

program [Cohen, 2007]. To our knowledge, no attempt has yet been made to analyze the

discourse patterns or trends in such data—these datasets have primarily been used to support the

development of automatic speech recognition, transcription, and machine translation systems.

Early efforts to collect English-language broadcast conversation transcripts [Placeway et al.,

1997] similarly aimed to build smaller, high-quality parallel corpora for speech transcription.

The large-scale study of discourse in media dialog is not supported in such corpora, and the

INTERVIEW corpus enables such analysis at scale for English-language media.

4.3 INTERVIEW Discourse Analysis

We tackle three aspects of discourse analysis that can be scaled to INTERVIEW: 1) Dialog

patterns that emerge through new interviews; 2) Large scale annotation of interviewer question

types (dialog acts); and 3) Obtaining grounding documents that provide situational context

for a news interview. We study these discourse features in context of English broadcast news

interviews.

4.3.1 Dialog Patterns

The news interview setting revolves around sets of questions and answers—naively,

one may assume the interviewer to be the sole questioner. However, media dialog has steadily
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deviated from this rigid structure, tending toward the broadly conversational [Fairclough, 1988].

Each participant may be at turns jovial, inquisitive, and critical, and this is reflected in question-

answer patterning. Heritage [1985] frames the analysis of media discourse in terms of the third-

turn receipt, where 1) they ask a question; 2) the interviewee responds; and 3) the interviewer

chooses how to proceed. We are motivated by this, as well as studies of question-response-

confirmation patterns in spontaneous dialog [Van Hekken and Roelofsen, 1982]. We focus on

discourse patterns in response type triplets beginning with an interviewer (host) question.

We define a triplet as {r1,r2,r3} where the response type at utterance i is a question or an

answer: ri ∈ {Q,A}. By imposing a binary label on each utterance, we are able to efficiently mine

all occurrences of each of eight possible host-guest-host patterns across our 23K dialogs. We

find that a structured interrogative Q-A-Q pattern comprises 27% of all cases, while 20% of the

time the host poses a non-interrogative third response (Q-A-A). Guests respond to questions with

questions of their own only 7% of the time, supporting the theory that interviewers serve as the

primary mediators in such conversations [Weizman, 2008]. Manual inspection evinces recurring

action patterns corresponding to interviewer stance-taking and agendas ranging from cooperative

to confrontational. For example, the conversation segment in Figure 8.3 is comprised entirely

of Q-A-Q patterns, with the host prompting [Heritage, 1985] the guest, re-contextualizing and

refocusing the guest’s stance for the benefit of the audience. To leverage the inter-dependence

of action choice (question or answer) and stance-taking (implicitly or explicitly via utterance

content) [Haddington, 2004], we propose to predict the subsequent response type triplet while

modeling an interviewer utterance. We thus explore how utterance phrasing and structure may

depend on projected or desired conversation directions.

4.3.2 Question Types as Dialog Acts

In their role as a mediator, interviewers can shape the narrative by posing different types

of questions to guests. Weizman [2008] posits that this choice of question type is influenced

by dialog context and conversation flow. We examine ways to structurally bias our model
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to take advantage of conversational context in order to ask appropriate interviewer questions.

Based on common interviewing guides4 and linguistic analysis of open-ended questions in

a conversational setting [Karttunen, 1977], we define three interrogative aspects (attributes):

1) Polarity: determining if the question is yes/no (polar) or open-ended; 2) Subjectivity:

determining if it demands a factual answer or invites a subjective opinion; and 3) Combativeness:

whether the question is confrontational or clarifying. Our mode of categorization resembles

that of Gnisci and Bonaiuto [2003], who add additional categories that are more relevant to the

study of equivocation in confrontational interviews. While previous works have primarily used

question polarity and interrogative forms to improve diversity in spontaneous dialog generation

[Zhao et al., 2017], we explore how a news interviewer constructs question contents given desired

interrogative aspects.

We hired two expert annotators to assess a question based on these three aspects. We

provided interviewer questions alongside corresponding dialog histories, and annotators marked

the binary presence/absence of each aspect for each question. The first host question from

Figure 8.3 would be marked as polar, subjective, and combative, as it asks the guest whether

(polar) they endorse (subjective) an intentionally ridiculous statement (combative). We collected

1,000 questions in this manner, each labeled by both annotators. The inter-annotator agreement

(Cohen’s kappa [Cohen, 1960]) for each of the binary labeling tasks—polar vs. open-ended,

subjective vs. objective, combative vs. clarifying—was 0.8 for polarity, 0.72 for subjectivity

and 0.7 for combativeness. We observed questions in this sample to be 60.2% polar, 38.7%

subjective, and 29.5% combative.

Automatic Classification

We label the remainder of INTERVIEW by training a multi-label classifier, fine-tuning

BERT [Devlin et al., 2019] to predict the presence of each attribute in our human-annotated set

of questions. We concatenate dialog history and the interviewer question separated by a [SEP]

4http://prndg.org/host-interviewing-tips
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Table 4.2. F1 Performance of question-type classifier models on the test set.

History Model Polarity Combativeness Subjectivity

No

MLP 55.61 48.91 50.87
CNN 68.20 57.19 53.91
LSTM 66.87 49.70 51.96
BERT 75.31 58.10 66.92

Yes

MLP 68.71 60.81 61.21
CNN 74.71 65.87 67.98
LSTM 70.49 60.54 63.09
BERT 80.20 70.14 76.92

token and prepend a [CLS] token. We calculate binary cross entropy loss over a linear projection

of the final hidden state of the [CLS] token. BERT achieves 80.20, 70.14, and 76.92 F1 scores

for polarity, combativeness and subjectivity respectively on the test set in four epochs.

We consider multiple baselines: 1) an MLP model using Bag-of-Words input features;

2) a CNN [Fukushima, 1988] with 2 convolution layers; and 3) a Bi-LSTM [Graves et al.,

2005] network with max-pooling of final hidden layers. We initialize all embeddings with BERT

embedding vectors. As shown in Table 4.2, BERT achieves the highest F1-score. Including dialog

history improves classification performance, confirming that the type of question asked depends

on conversational context. This suggests that we may also be able to better predict question

content through jointly leveraging the dialog history and question type. Both human annotators

and our model find predicting polarity the easiest, and combativeness the most difficult.

4.3.3 Knowledge Grounding

Media dialog is frequently characterized by references to world knowledge, current

events, and factual information. This can be learned to some extent in large language models

pre-trained on diverse text corpora [Petroni et al., 2019], and such models can act as knowledge

stores [Chen et al., 2019]. However, for tasks involving complex reasoning and induction it

remains beneficial to provide models with externally linked knowledge [Mitra et al., 2019, Fan

et al., 2019]. Specifically for dialog modeling, the Wizard of Wikipedia [Dinan et al., 2019b] and
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Figure 4.3. (a) Bar plot depicts test perplexity for linking algorithms: None (no grounding),
TF-IDF, and PL/PL3 which indicate probabilistic linking with re-assignment at every 1/3 epochs,
respectively. Plotting validation perplexity by epoch shows that PL3 converges faster to the
optimum (b).

Topical Chat [Gopalakrishnan et al., 2019b] corpora consist of grounding documents linked with

open-domain chit-chat. As such, we explore methods to link grounding knowledge documents

for each conversation in INTERVIEW, drawn from NPR news articles from the past two decades.

We aim to link documents that can best inform conversation content and structure as measured

by downstream dialog modeling performance.

TF-IDF Linking

We assess a strong retrieval baseline for grounding document linking, using TF-IDF

[Salton and Buckley, 1988] to find relevant documents for each conversation. To support large-

scale TF-IDF similarity computation, we use the Lucene-based ElasticSearch [Gormley and Tong,

2015] engine5 to calculate TF-IDF similarity between full interview texts and the concatenation

of the document headline and body, returning the 50 most similar grounding documents for each

INTERVIEW conversation. We aim to link documents that would be reasonably relied on by the

speakers at the time of the interview, and as such for each interview exclude articles that were

published after the interview itself.

5https://aws.amazon.com/elasticsearch-service/
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Algorithm 1. Pseudocode for probabilistic linking
Initialize document assignments from TF-IDF priors
while average validation perplexity decreases do

Learning: Update the model with current assignments for N epochs
for each d in Dialogs do

Sample K documents from top 50 TF-IDF priors
for each k in K do

Condition each response in the dialog with k, and calculate perplexity, aggregate at the dialog
level

end for
Choose k that yields the lowest perplexity

end for
Assignment: Gather all k’s for each dialog to update current assignments

end while

Probabilistic Linking

While TF-IDF based document linking provides a co-occurence-based similarity measure

between documents and conversations, there is no guarantee such linking will improve dialog

modeling performance. Thus, we aim to train a linking model such that conditioning on linked

documents has a positive effect on dialog modeling performance. We use a two-phase coordinate

ascent framework as described in Algorithm 1. In the Learning phase, a dialog model is trained

based on the available assignments, and its weights are fixed (frozen). Then, in the Assignment

phase, we compute a re-assignment that maximizes dialog model performance under different

possible assignments. Searching over the complete document set is computationally infeasible,

so we perform an approximate greedy search over possible documents ordered by their TF-IDF

prior score.

We compare the performance of a Transformer [Vaswani et al., 2017a] language model

provided with grounding documents assigned by different algorithms in Figure 4.3a. A model

without grounding scores by far the worst in terms of perplexity, which indicates that knowledge

grounding is important for modeling media dialog. While TF-IDF assignments significantly

improve performance compared to no grounding, probabilistic grounding models achieved the

best performance. The sudden drops in perplexity values at every third epoch in Figure 4.3b

indicates that the model was well-trained based on current assignments before a new assignments
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Figure 4.4. Knowledge grounded generator model with two discourse-specific auxiliary tasks
for media dialog

were obtained.

While our articles and conversations come from the same broadcasting source, the NPR

interview transcripts generally do not contain links or metadata connecting them with specific

grounding documents, and thus there are no ground truth labels available to us. To ascertain

that the grounding is relevant, we enlisted two native English speakers who regularly listened

to broadcast radio to perform a qualitative evaluation of 100 randomly sampled interview and

article pairs. We found that 87% of these pairings are highly relevant, 5% are somewhat relevant

and the rest are irrelevant. The inter-annotator agreement measured by Cohen’s Kappa was 0.79.

The lack of ground truth is something we would argue is not a limitation, rather our probabilistic

linking step avoids the dependency on data that is not likely to be available in practice.

4.4 Modeling Media Dialog

A model’s ability to learn underlying discourse dynamics is reflected in its performance

on downstream tasks. Here, we assess how well our model learns from dialog structure and

question-pattern metadata using utterance generation—a simple predictive task that relies on a

holistic understanding of grounding knowledge and a dialog history. This serves as an initial

measure of understanding of discourse patterns and grounding even if the exact dialog produced
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Table 4.3. Performance on auxiliary tasks: Dialog Pattern prediction and Question Type
prediction

Model Dialog Pattern
Pred. Accuracy

Question Type
Pred. F1

KGG + Prob. Ground. 38.5 68.8

+ Dialog Pattern 86.3 76.2
+ Question types 87.9 90.5

can vary.

We treat knowledge-grounded response generation in the media dialog setting as a

language modeling task: given a dialog history H and a grounding knowledge document K, we

seek to predict the next utterance x by maximizing the likelihood p(x|H,K). The dialog history

is composed of turns spoken by both the interviewer and interviewee where each utterance is

provided with the role annotation. We only model interviewer (host) responses, which aim to

moderate the conversation via questions, follow-ups, and acknowledgements. To understand the

effect of dialog structure and question types in response modeling, we introduce two auxiliary

losses to influence generation—a multi-task setup that has seen success in goal-oriented dialog

generation [Luan et al., 2017].

4.4.1 Knowledge Grounded Generator

We use a common decoder-only model for knowledge-grounded dialog generation

[Gopalakrishnan et al., 2019b]: GPT2 [Radford et al., 2019], a pre-trained Transformer de-

coder. As model input, we concatenate tokenized grounding documents, dialog history, and

the target response. To distinguish each section, we add jointly-learned segment embeddings—

{Grounding, Host, Guest}—to each input token. We demonstrate in Table 5.1 that such segment

embeddings are essential for this kind of dialog modeling. We only consider target tokens for

cross-entropy loss calculation with the conditional likelihood p(x|H,K).
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4.4.2 Predicting Look-ahead Dialog Patterns

Following Section 4.3.1, we use a generative model to explore the role of response type

triplets in structuring media dialog (stemming from an interviewer utterance [Heritage, 1985]).

Following response type triplets defined in Section 4.3.1, we predict the pattern of the dialog

triplet beginning with the generated host question as an auxiliary predictive task alongside host

utterance generation.

We treat this as a sequence transduction task, employing an LSTM [Hochreiter and

Schmidhuber, 1997] decoder with an initial hidden state computed by mean-pooling GPT2 final

layer hidden states. Consider si the i-th hidden state from the GPT2 decoder for a length L

sequence; now for each hidden state li in the LSTM decoder, we also calculate attention over

the GPT2 hidden states, where {si} are the keys and values, and li is the query, resulting in an

attended vector. We concatenate this attended vector with the LSTM hidden state li and then

project it to predict the dialog triplet sequence, maximizing the log-likelihood.

4.4.3 Predicting Question types

We further explore the impact of question types (dialog acts) via another auxiliary task:

multi-label classification for host utterance question types [McLeod et al., 2019]. We surmise

that accurately predicting question types will help infer question framing and wording, improving

generation fidelity. Much like dialog pattern prediction, we use a pooled representation of GPT2

hidden states. We produce a score for each of three question attributes—polarity, combativeness,

and subjectivity—via a linear projection and optimize via binary cross-entropy loss.

4.5 Experiments

In our experiments, we seek to answering the following: 1) Does knowledge grounding

help generate more topical host responses? 2) Do our two auxiliary discourse losses improve

dialog generation performance? 3) Do human raters find responses generated by our model
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Table 4.4. Metrics on generated interviewer responses on test set. NPO/NEO = Noun-
phrase/Named entity overlap with context (C) and gold (G); QR = Question rate. NIDF is
a measure of specificity [See et al., 2019]. QR, NPO, NEO are measured in percentages.

Model PPL BLEU QR NPOG NPOC NEOG NEOC NIDF

No Grounding
Finetuned (FT) GPT2 28.6 15.4 34.2 0.67 0.57 0.92 0.98 0.105
FT GPT2 + Segment 27.5 17.5 49.9 1.70 1.67 1.56 1.55 0.117

Effect of grounding
MemNet + TF-IDF 26.5 17.8 43.8 1.86 1.63 1.51 1.62 0.187
MemNet + Probabilistic Grounding 25.1 17.7 46.9 1.98 2.31 2.89 3.02 0.197
KGG (TF-IDF) 23.5 18.1 48.5 2.73 3.91 3.01 5.58 0.245
KGG (Probabilistic Grounding) 19.6 19.2 53.6 3.24 4.67 3.44 6.78 0.267

Auxiliary Losses
+ Dialog Pattern 17.2 21.0 56.7 3.52 6.92 5.16 7.85 0.302
+ Question Types 15.8 20.3 58.9 3.67 6.79 5.89 7.79 0.359

Table 4.5. Pairwise comparison (in %) between responses generated by our best model (including
both discourse analysis auxiliary tasks) vs. responses generated by other baselines as well as the
Gold response. The highest entries are bolded.

Best Model vs. → No Grounding TFIDF Prob. Grounding + Dialog Pattern Gold

Metric ↓ win loss win loss win loss win loss win loss

Relevance to Dialog History 85.1* 9.2 86.5* 3.3 69.1* 27.6 61.0* 22.4 36.7 47.4*
Relevance to Grounding 94.5* 4.3 91.6* 1.9 82.5* 4.7 84.5 9.5 30.1 55.2*
Fluency 97.2* 0.8 87.1* 7.8 62.1 10.1 58.7 11.2 20.8 24.6*

coherent and fluent?

Metrics

To measure the fidelity of generated responses, we compute BPE perplexity and BLEU

[Papineni et al., 2002a] between generated and gold utterances. To assess topical accuracy,

we calculate the overlap between noun-phrases and named entities in the generated and gold

responses. We are also interested in measuring coherence with respect to the context (i.e., ground-

ing documents and dialog history), calculated via the noun-phrase and named entity overlap

between generated responses and context. Furthermore, as news interviews are intended to in-

form audiences, interviewers must ask questions using specific vocabulary and construction. To

assess this, we adopt the Normalized Inverse Document Frequency [See et al., 2019] to measure
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Table 4.6. Sample generated response on NFL’s new rule. When we add discourse specific
losses, the models generate questions that bears more coherence to the context as well as ask
clarifying questions.

Grounding (PL) How The NFL’s New Rule On Protesting Is Being Perceived By Players

Context HOST: Host: How are the players that you’re talking to reacting to the stand that
the NFL’s taken?
GUEST: Well, I think they’ve taken the position that the NFL has decided to fully
engage with this culture war initiated by the president [. . . ] I think this has really
reignited some really bad blood between the players and the owners.
HOST:

Gold And how is that manifesting itself? I mean, what conversations are the players
having, and what can they actually do?

KGG (TF-IDF) Can you tell me more about NFL’s new rules?

KGG (Probabilis-
tic Linking)

This are some significant changes in NFL’s rules. I think the most effect will be
on the players.

+ Dialog Pattern Okay so let’s talk about NFL players. What is your gameplan?

+ Question Types So how are you responding to this ever-evolving scenario? What are the key steps
are you planning to take to gauge players’ sentiment?

vocabulary specificity via word rarity. Finally since we focus on generating interrogative host

responses, we also calculate the percentage of questions asked in the generated responses as a

measure of model inquisitiveness.

4.5.1 Effect of Knowledge Grounding

To assess the usefulness of explicit grounding documents, we first compare dialog models

that use and do not use such documents in Table 4.4. Using segment embeddings to mark

utterance bounds improves all measures of fidelity, signifying that this is a useful way to leverage

speaker role information in dialog modeling using GPT2. Models that use external grounding

knowledge outperform non-grounded models by 1-8 points on almost all metrics, suggesting

that such grounding is an important component of host response generation models. To assess

the impact of our knowledge grounded generator (KGG) architecture, we compare performance

against a strong Memory Network (MemNet) baseline for knowledge grounded dialog generation
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[Dinan et al., 2019b]. We confirm our choice of a GPT2-based KGG, as it outperforms Memory

Networks in all quality metrics.

Next, we compare the impact of document assignments made via TF-IDF and our proba-

bilistic linking (PL) method. We once again see improved fidelity, mirroring our observations

from Section 4.3.3. Models trained using PL document assignments generate utterances with 19-

20% higher noun-phrase and named entity overlap with the gold utterance and context, indicating

that PL assignments allow the KGG to more strongly condition on the provided context.

4.5.2 Effect of Auxiliary Tasks

In this experiment, we investigate how predicting dialog patterns and question types

impacts the specificity and fidelity of generated host responses. Each auxiliary loss contributes a

significant improvement (1-2 points) in perplexity but affects fidelity and topicality in different

ways.

With dialog pattern prediction, we observe that generated responses are more coherent

with respect to conversational context, seeing 8% and 48% improvements in noun phrase

and named entity overlap with dialog history, respectively. This supports the sociolinguistic

observation that the interviewer’s choice of utterance (i.e., whether to ask a question, and response

content) depends on the discourse structure toward which they aim to guide the conversation

[Heritage, 1985]. Our results suggest that biasing a dialog model to predict future discourse

structure can encourage it to more effectively leverage the past dialog structure (from the

conversation history). We confirm in Table 4.3 that this model can predict look-ahead dialog

patterns with 86.3% test-set accuracy. In light of findings that vanilla dialog models may not

condition well on conversation context [Sankar et al., 2019], our results suggest one possible

direction toward improving contextual language modeling for dialog with inherent structure,

such as media dialog.

When we add question-type-prediction loss, we see a significant drop in perplexity and

improved fidelity. As expected, by inducing our model to predict the question attributes for the
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target utterance, our model achieves the highest inquisitiveness (58% question rate). It can also

accurately predict question types, with 90.5% macro-averaged test set F1 score. Our results

suggest that as the model learns to categorize the interviewer response via specific attributes,

it simultaneously learns to generate responses with more specific wording. Table 4.6 contains

representative generations from our best model as well as other baselines, showing that when

we add additional discourse specific losses, our model appropriately captures the interviewer’s

clarifying intent and conversation direction.

4.5.3 Human Evaluation

Automatic evaluation of dialog generation quality is still unreliable [Liu et al., 2016,

Novikova et al., 2017], and thus we provide evaluation by human users. We perform pairwise

comparisons between responses generated by our best system and those generated by four strong

baselines: the best model with no grounding, KGG with TF-IDF, KGG with PL, and KGG with

dialog pattern prediction. We also compare against the gold response. Our human evaluation

study measures three aspects of response quality on 100 test examples: 1) How relevant the

response is with respect to dialog history; 2) How relevant the response is with respect to

grounding documents; and 3) Whether the generated response is fluent English.

We observe in Table 4.5 that human judges prefer responses generated by our best model

(with both discourse analysis auxiliary tasks) to baselines by statistically significant margins

in almost every case. Entries with * denote significance with p < 0.05 from bootstrap tests

on 1000 subsets of size 50. This indicates that dialog structure and question types are highly

useful for generative modeling in a media dialog setting—specifically news interviews. Human

raters also found that despite a significant drop in perplexity when adding the question-type

prediction loss, the two versions of discourse-conditioned models had similar fluency, indicating

similar language modeling performance. We observe an inter-annotator agreement (Cohen’s

kappa) of 0.79, 0.92, and 0.73 for relevance to dialog history, grounding documents, and fluency,

respectively.
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4.6 Conclusion

In this work, we perform the first large-scale analysis of discourse patterns in media

dialog, using a new dataset of 23K annotated news interview transcripts: INTERVIEW. Our results

mirror findings from linguistic studies of news interviews [Weizman, 2008, Heritage, 1985]. We

demonstrate that adding auxiliary tasks for discourse pattern and interrogative type prediction

helps model such media dialog. We observe that responses depend heavily on external knowledge,

and present a probabilistic framework for linking factual documents with a conversation. While

we focus on discourse pattern analysis, INTERVIEW also supports analysis of temporal patterns

in interviewing, argumentation, and knowledge grounding in long conversations.

Chapter 4, in part, is a reprint of the material as it appears in “Interview: Large-scale

Modeling of Media Dialog with Discourse Patterns and Knowledge Grounding” by Bodhisattwa

Prasad Majumder*, Shuyang Li*, Jianmo Ni, Julian McAuley, which was published in Empirical

Methods in Natural Language Processing, 2020. The dissertation author was one of the primary

investigators and author of this paper.
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Chapter 5

PABST: Unsupervised Enrichment of
Persona-grounded Dialog with Back-
ground Stories

Humans often refer to personal narratives, life experiences, and events to make a con-

versation more engaging and rich. While persona-grounded dialog models are able to generate

responses that follow a given persona, they often miss out on stating detailed experiences or

events related to a persona, often leaving conversations shallow and dull. In this chapter, we equip

dialog models with ‘background stories’ related to a persona by leveraging fictional narratives

from existing story datasets (e.g. ROCStories). Since current dialog datasets do not contain such

narratives as responses, we perform an unsupervised adaptation of a retrieved story to generate a

dialog response using a gradient-based rewriting technique. Our proposed method encourages

the generated response to be fluent (i.e., highly likely) with the dialog history, minimally different

from the retrieved story to preserve event ordering and consistent with the original persona. We

demonstrate that our method can generate responses that are more diverse and are rated more

engaging and human-like by human evaluators compared to outputs from existing dialog models.

5.1 Introduction

Humans often rely on specific incidents and experiences while conversing in social

contexts [Dunbar et al., 1997]. Responses from existing chitchat dialog agents often lack such
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Figure 5.1. We enrich agent personas with ‘background stories’ from an existing corpus. We propose a
gradient-based technique which encourages the generated response to be fluent with the dialog history,
minimally different from the retrieved story, and consistent with the persona.

specific details. To mitigate this, some prior work has looked into assigning personas to dialog

agents [Zhang et al., 2018b, Majumder et al., 2020a]. However, persona descriptions are often

shallow and limited in scope, and while they lead to improvements response specificity, they still

lack the level of detail with which humans share experiences.

In this work, we propose methods to enrich dialog personas with relevant background

events using fictional narratives from existing story datasets such as ROCStories [Mostafazadeh

et al., 2016]. For example, for a persona attribute ‘I have two children and a dog,’ we are able to

identify a relevant narrative from a story corpus (Figure 8.1). However, such stories may not

directly fit fluently in the dialog context. Thus, retrieved stories should be adapted to construct a

response that is fluent and relevant to the context. Since existing datasets (such as PersonaChat

[Zhang et al., 2018b]) do not contain responses with such background stories, such adaptation has

to be done in an unsupervised fashion with decoders trained to generate responses conditioned

only on a dialog history and persona.

To adapt a retrieved narrative incident as a relevant background story, we use a decoding
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procedure which encourages the generated response to (1) be fluent with the dialog history, (2)

be consistent with the original persona, and (3) be minimally different from the retrieved story.

While fluency with dialog context is encouraged directly by the likelihood as per the underlying

language model the remaining two constraints are incorporated via iterative updates to the

decoder output distributions at inference time. Our inference-time decoding method is different

from the only recent effort by Su et al. [2020] that leverages non-dialog data (forum comments,

book snippets) as distant labels to train dialog systems with supervision. Our contributions can

be summarized as follows:

• We propose a novel approach to enrich dialog agent personas with relevant backstories, relying

only on existing story datasets.

• We propose to use an unsupervised back-propagation based decoding procedure1 to adapt the

relevant stories such that the resulting response is fluent with the dialog history and consistent

with the dialog agent persona. Our method works with a model trained just with dialog data

i.e. without access to story corpus at training time.

• Our experiments demonstrate that the proposed approach results in much more engaging

and specific dialog outputs in a persona-grounded dialog setup. This fills a gap in existing

dialog models which often lack the capability to generate responses about specific events and

experiences relevant to persona attributes.

5.2 Unsupervised Persona Enrichment
with Background Stories

Given dialog history h and persona C consisting of several (typically 3-5, example shown

in Figure 8.1) attributes, our goal is to construct a dialog response x. Our underlying model is

based on the discrete persona attribute choice model from Majumder et al. [2020a]. To generate

a dialog utterance x, we first sample a persona attribute c ∼ p(c|h) conditioned on the dialog

1Code can be found at https://github.com/majumderb/pabst
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history h. x is then generated conditioned on the dialog history and the chosen persona attribute.

The underlying dialog model’s decoder is initialized with a pretrained GPT-2 model, and is

fine-tuned on the PersonaChat dataset [Zhang et al., 2018b]. However, in our current setup, we

also have to identify relevant background stories and use them to construct fluent responses at

decoding time. Therefore, we propose a different decoding procedure.

To generate a response, we first sample a persona attribute c ∼ p(c|h). Next we retrieve

stories corresponding to the persona attribute c (Section 5.2.1). However, the underlying dialog

model is trained to generate responses conditioned only on the dialog history and persona. To

incorporate the retrieved story in the response, we perform gradient-based inference (Section

6.3), that only assumes a left-to-right language model trained on dialog context and responses,

and the story is handled at decoding time in an unsupervised fashion. We refer to the proposed

method as REXC (Unsupervised PersonA enrichment with Background STories).

5.2.1 Retrieving Relevant Stories

For a persona attribute c, we aim to identify relevant stories from a story corpus. Toward

this goal, we rank the stories using the F1 component of BERT-score [Zhang et al., 2020] based

retrieval using the persona attribute c as the query and the highest scoring story is chosen. Note

that many of the stories are written in the third person. For use as background stories, we must

first transform them to first–person. Following prior work [Brahman and Chaturvedi, 2020], we

identify the protagonist of such stories as the most frequently occurring character. Thereafter,

we use co-reference resolution [Lee et al., 2017] to identify all words or phrases that refer to

the protagonist. Finally, all words or phrases so identified are replaced with suitable first person

pronouns (e.g. ‘his books’ to ‘my books’).

5.2.2 Gradient-based Inference

Our underlying dialog model is not trained to condition on a retrieved story, and cannot

be directly used to construct a desirable response using s. To tackle this, we consider a decoding
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strategy which, in addition to fluency with history h, encourages response x to follow two soft

constraints: (1) be minimally different from story s, and (2) be consistent with persona c.

First, we generate an initial response based only on the dialog history. Then we perform

an iterative procedure which alternates between performing a forward pass on the language model

to encourage fluency, and a backward pass which updates the response via back-propagation

to respect the two soft constraints. However, x is discrete, and cannot be directly updated

using gradients from back-propagation. Instead, we maintain and update a soft representation

o of x, where oi corresponds to the last hidden state representation for the ith token position,

i.e., p(xi)∼ softmax(Woi/τ), where τ is the temperature parameter, W is the embedding matrix,

and Woi ∈ RV (V is the vocabulary size). Our approach is inspired by recent works that use

gradient-based decoding for text generation with soft constraints [Dathathri et al., 2020, Qin

et al., 2020]. Next we describe the backward and forward passes of the iterative procedure.

Backward Pass with Soft Constraints

We define the following soft constraints on response x:

(1) Divergence from story: We want to encourage x to be minimally different from the story s.

Following prior work [Qin et al., 2020], we compute a cross entropy loss (denoted by cross-entr

henceforth) with story s = {s1, . . . ,sT} tokens as labels and Wo1, . . . ,WoT as the logits.

(2) Consistency to persona: We want x to be consistent with persona attribute c. Consider

a classifier qφ (o,c) which predicts the probability of x (or rather the soft representation o of

x) entailing c. The classifier qφ (o,c) is a bag-of-words classification head on decoder hidden

states o, fine-tuned on the Dialogue-NLI dataset [Welleck et al., 2019] to predict whether pairs of

persona attributes and responses are entailed or not. The objective to maximize can be written as:

L (c,s;o) = λc logqφ (o,c)−λd cross-entr(s,Wo)

where λc and λd are hyper-parameters. We update o through back-propagation by computing the

gradient ∇oL (c,s;o), while keeping the model parameters constant. Let the resulting o after the
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Table 5.1. Diversity metrics on the PersonaChat test set. D-1/2 is the % of distinct uni- and bi-grams.
ENTR is the geometric mean of n-gram entropy. Grad. Inf. is the unsupervised gradient-based decoding
as opposed to Nucleus sampling [Holtzman et al., 2020].

Method Training Decoding D-1 D-2 ENTR

W/o Story Data
TRANSFERO PERSONA-CHAT Nucleus 0.05 0.11 1.21
COMPAC PERSONA-CHAT Nucleus 0.15 0.25 1.25
COMPAC CS-KB Nucleus 0.87 1.07 2.04

With Story Data
COMPAC PSEUDO Nucleus 0.91 2.45 2.89
COMPAC MULTITASK Nucleus 0.99 2.54 2.71
COMPAC PERSONA-CHAT RETRIEVAL 2.56 9.67 3.86
PABST (Ours) PERSONA-CHAT Grad. Inf. 1.56 3.57 3.21

gradient-based updates be denoted by ob.

Forward Pass to Encourage Fluency

Next we perform a forward pass of the underlying dialog model, with the goal of

regularizing the hidden states towards the unmodified language model values. On computing the

forward pass at the jth token, we mix the final hidden states o f
j from the forward pass with ob

j

computed in the backward pass, via weighted addition to get the resulting o j = γ ×o f
j +(1−

γ)×ob
j , where γ ∈ (0,1) is a hyperparameter. The resulting o j is used for computing the logits

at the next time step j+1.

We initialize the output response by performing greedy decoding from the underlying

dialog model, conditioned on the dialog history and persona attribute. Then we iteratively update

o by alternate backward and forward passes. We sample the final response x ∼ softmax(Wo/τ).

In practice, we found that 5 iterations are sufficient to generate good quality outputs.

5.3 Experiments

We evaluate methods in terms of their capability to generate diverse, fluent and engaging

responses.
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Table 5.2. Pairwise comparison (% win/loss cases, ties not reported) between responses from PABST

and from other baselines as well as gold. All differences are significant with p < 0.05. Cohen’s Kappa
[Cohen, 1960] for sensibility and engagement were 0.79 and 0.82 respectively.

PABST vs. TRANSFERO COMPAC RETRIEVAL PSEUDO MULTITASK w/o DNLI Gold

Aspect win loss win loss win loss win loss win loss win loss win loss

Sensible 83.8 5.6 71.4 10.1 72.7 15.7 94.3 3.1 92.8 1.5 81.7 6.8 29.1 33.6
Engaging 96.7 1.8 82.6 6.7 87.2 5.3 94.7 2.1 94.1 2.6 70.9 14.8 70.2 15.6

Table 5.3. Generations from different models.

Dialog History
Agent: How was your last trip?
User: It was great. I went to Utah and saw the Canyonlands.

Retrieved Story:
I went on a trip. I went to Florida. When we got there, there
was no air conditioning. I was irritated. It was too hot.

COMPAC: That’s great. You must be adventurous.

RETRIEVAL: I went on a trip. I went to Florida. When we
got there, there was no air conditioning. I was irritated.
It was too hot.

PSEUDO: I have a house in Florida.

MULTITASK: I like Florida. I went to the beaches.

PABST (λd = 5): I went on a trip. I went to Florida. I have
a house there. We do not have air condition. It was hot.

PABST (λd = 1): That’s great. I frequently go to Florida.
I have a house there but it gets hot in summer.

Dialog History
Agent: I work as stunt double. What about you?
User: I’m an engineer. I just got back from work. How’s yours?

Retrieved Story:
I was a working actor. For my new role I was a stunt double. I
started working on new stunts. When I jumped off a building
yesterday I got hurt. I had to be rushed to the hospital.

COMPAC: That’s great. I am looking for a job.

RETRIEVAL: I was a working actor. For my new role I was a
stunt double. I started working on new stunts. When I jumped
off a building yesterday I got hurt. I had to be rushed to the hospital.

PSEUDO: I got a new job. I am an actor.

MULTITASK: I started a new role. I got hurt.

PABST (λd = 5): I was working as a stunt double. I jumped
off a building. I got hurt. I had to be rushed to the hospital.

PABST (λd = 1): Yesterday while I was working, I jumped off
a building and I got hurt. I had to be taken to the hospital.

Datasets

We experiment with the PersonaChat dialog dataset [Zhang et al., 2018b] consisting of

131,438 utterances for training, 15,602 for validation, and 15,024 for testing. For stories, we use

the training split of the ROCStories dataset [Mostafazadeh et al., 2016], that consists of 78,529

stories, each typically of 4 to 5 sentences.

Baselines

We consider two broad groups of models as baselines: (1) Without access to story corpus:

We use finetuned GPT2 (TRANSFERO) on PersonaChat, and the discrete persona attribute choice

model (COMPAC) from Majumder et al. [2020a]. We also consider a version of COMPAC which

enriches personas with inferences from a commonsense knowledge base (CS-KB). (2) Baselines
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using story corpus: To allow COMPAC models to generate story-like responses, we adapt an

alternative training regime (PSEUDO) from [Su et al., 2020], where we randomly replace some

of the target dialog responses with retrieved stories—treating them as pseudo labels. Finally, we

also consider a MULTITASK training setup from [Su et al., 2020], wherein the decoder is trained

on PersonaChat as well as with a language modeling objective on ROCStories. We additionally

consider a RETRIEVAL baseline that uses the retrieved story verbatim as the dialog response.

5.3.1 Automatic Evaluation

We hypothesize that that the proposed approach to leverage external non-dialog data can

increase the diversity of the generated responses. Following prior work [Li et al., 2016a], we

report the percentage of distinct uni-grams and bi-grams (D-1 and D-2 respectively). Note that

these values do not capture the actual frequency distribution of different word types. Therefore,

we also report the geometric mean of entropy values of empirical frequency distributions of

n-grams of words (n ∈ {1,2,3}) [Jhamtani et al., 2018], denoted by ENTR.

We observe that methods that use story data show much higher diversity compared to

methods that do not (Table 5.1). Among methods using story data, gradient-based decoding

(PABST) performs better than COMPAC trained with PSEUDO or MULTITASK. Note that just

using RETRIEVAL outputs as-is leads to even more diverse outputs than PABST. However, they

are much less sensible with the context, as shown in human evaluations.

5.3.2 Human Evaluation

Since we do not have ground truth story-like responses in the dialog dataset, we perform

human evaluation with 150 test examples to investigate if PABST generates responses that are

1) sensible with the dialog history and 2) engaging. We hired two Anglophone (Lifetime HIT

acceptance % > 85) annotators for every test sample. The order of the systems present in the

interface is randomized. All differences in values from human evaluations are significant with p<

0.05 from bootstrap tests on 1000 subsets of size 50. Cohen’s Kappa [Cohen, 1960] to measure
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inter-annotator agreement for sensibility and engagement were 0.79 and 0.82 respectively.

From the results (shown in Table 5.3), we note that in comparison to responses from

baselines, responses from PABST are more engaging and more sensible with respect to the

dialog history. We further make following observations. Firstly, using the gradient-based

decoding approach with retrieved stories (PABST) works significantly better than using distant

supervision with stories data (PSEUDO and MULTITASK). Secondly, background stories provide

sufficient detail for an engaging conversation compared to COMPAC which expands persona

attributes using commonsense knowledge [Majumder et al., 2020a]. Finally, we also observe

that PABST performs worse when we do not use the consistency constraint (w/o DNLI).

Choice of λd

We also experiment with different values of the weight for the divergence term (λd) in

L : High (λd = 5), Moderate (λd = 1), and Low (λd = 0.05). We consider 100 samples for

this experiment. We attribute a high λd to responses strictly copying the story. We find that

PABST (moderate λd) wins wins 81.2% and 69.1% cases against PABST (high λd) on ‘sensible’

and ‘engaging’ response criteria respectively. Similarly, PABST (moderate λd) wins 93.2% and

84.7% cases against PABST (low λd) in terms of sensibility and engagement respectively.

Qualitative Analysis

Table 5.3 shows responses generated by different baselines. We observe that PABST

is able to follow the retrieved story (same as output from RETRIEVAL) while modifying the

response to be conversation-like and sensible with dialog history. Responses from other baselines

remain verbose or incoherent. Mirroring the human evaluation, we observe that choosing a

higher λd makes the model to almost repeat the retrieved story but a lower value smooths the

output to make it more sensible with the ongoing dialog.
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5.4 Conclusion

We propose a method to enrich persona-grounded dialog with background stories at

inference time only using an existing corpus of non-conversational narratives—opening up new

ways to generate enriched and engaging responses. One of the limitations of PABST is the

assumption of the need of a background story at every turn. As future work, we can include a

decision step to decide if we need to incorporate a background story or not, given the dialog

history. We can further explore ways to use retrieved stories over multiple turns instead of a

single turn.

Chapter 5, in part, is a reprint of the material as it appears in “Unsupervised Enrichment

of Persona-grounded Dialog with Background Stories” by Bodhisattwa Prasad Majumder, Taylor

Berg-Kirkpatrick, Julian McAuley, Harsh Jhamtani, which was published in Association for

Computational Linguistics, Main, 2021. The dissertation author was the primary investigator

and author of this paper.
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Chapter 6

POKI: Achieving Conversational Goals
with Unsupervised Post-hoc Knowledge
Injection

A limitation of current neural dialog models is that they tend to suffer from a lack of

specificity and informativeness in generated responses, primarily due to dependence on training

data that covers a limited variety of scenarios and conveys limited knowledge. One way to

alleviate this issue is to extract relevant knowledge from external sources at decoding time and

incorporate it into the dialog response. In this chapter, we propose a post-hoc knowledge-injection

technique where we first retrieve a diverse set of relevant knowledge snippets conditioned on both

the dialog history and an initial response from an existing dialog model. We construct multiple

candidate responses, individually injecting each retrieved snippet into the initial response using a

gradient-based decoding method, and then select the final response with an unsupervised ranking

step. Our experiments in goal-oriented and knowledge-grounded dialog settings demonstrate

that human annotators judge the outputs from the proposed method to be more engaging and

informative compared to responses from prior dialog systems. We further show that knowledge-

augmentation promotes success in achieving conversational goals in both experimental settings.
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There are plenty of museums to visit around 
Cambridge. If you love hiking, you can enjoy the trails 
alongside the river. Some of my friends like to go the 

centre of the town and catch a movie.

Find me something fun to do around 
Cambridge area in daytime!

You can go for a 
movie. Is there 

anything else that 
your prefer?

Many prefer to visit museums. You 
can do hiking around the river if you 

love nature. Or you can watch a 
movie. Which one do you prefer?

Retrieved Knowledge

Initial Response Final Response

Dialog 
Context

🤖 🤖

Figure 6.1. Augmenting initial response from an existing dialog model with relevant external knowledge
leads to more engaging and informative responses improving the success in achieving the conversational
goal (here, finding a fun activity).

6.1 Introduction

Generic responses which lack specificity have been a major issue in existing dialog

models [Hosseini-Asl et al., 2020, Dinan et al., 2019b]. The issue in part stems from bottlenecks

in dialog models due to a limited scope of scenarios and access to limited knowledge available

during training. On the other hand, encoding all possible world knowledge at training time is

not feasible, and even undesirable in cases where knowledge sources are dynamically varying

[Ghazvininejad et al., 2018, Majumder et al., 2020b, Zhao et al., 2020, Bruyn et al., 2020,

Kim et al., 2020, Prabhumoye et al., 2021]. One possible approach is to incorporate relevant

knowledge at decoding-time. For example, in Figure 8.1, the user is seeking options for a fun

activity around Cambridge. While the initial dialog response suggests watching a movie as an

option, it does not provide any information behind that choice.

We propose and evaluate an approach for unsupervised knowledge injection into a dialog

model’s response at decoding time1—not addressed in any previous work. We first sample

a response from the model (trained on dialog data) conditioned on the dialog context. Next,

we utilize the dialog context and the sampled response to query external knowledge sources.

1Code: https://github.com/majumderb/poki
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Finally, the retrieved knowledge is used to construct a more informative and engaging response

(Figure 8.1). A major advantage of such post-hoc knowledge injection is its flexibility in adding

newer knowledge sources especially where the success of achieving conversational goals relies

upon the availability of relevant knowledge. Post-hoc injection also promotes efficiency in NLP

applications [Schwartz et al., 2020, Strubell et al., 2019]: it mitigates the need to retrain dialog

models to accommodate dynamically evolving knowledge.

We experiment with two types of knowledge sources: language models, which we treat

as parametric knowledge bases [Petroni et al., 2019, ?]; and user review datasets such as Yelp

reviews [Hajas et al., 2014] as non-parametric knowledge sources (section 6.2). Since it is

possible to gather a large amount of related knowledge given a query, we select a relevant and

diverse (estimated via information-theoretic measures) subset of knowledge snippets using an

unsupervised method (subsection 6.3.1). Then, a gradient-based inference approach is used

to construct an updated response that incorporates the selected knowledge (subsection 6.3.2).

Note that our framework does not require retraining the existing dialog model—it only relies

upon updating the model’s output hidden states at decoding time for unsupervised knowledge

injection.

We experiment with two scenarios: goal-oriented and knowledge-grounded dialog where

the training data covers only a fraction of the needed knowledge. Automatic evaluation reveals

that our method is capable of generating highly diverse responses in both settings. In some

cases, the generated response shows high overlap with the original target response showing

that our unsupervised method bridges the knowledge gap between available knowledge and

human-written responses present in the existing dialog corpus. An extensive human evaluation

confirms that generated responses are indeed engaging, interesting, and human-like without any

loss in fluency.

To pinpoint the usefulness of knowledge injection in the above settings, we design a

real-time study (subsection 6.5.3) where users interact with our system to reach a conversational

goal (e.g. planning a holiday or knowing more about the solar system). We find that external
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Dialog 

Model ℳ

Dialog History 

ℋ

Post-hoc Knowledge

Initial Response
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Knowledge Sources 𝒦

 knowledge snippetsN
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Fidelity for ki

Dialog History ℋ
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Figure 6.2. Pipeline of POKI: It first retrieves post-hoc knowledge, then the most relevant and diverse
knowledge snippets are selected from the retrieved set. Each selected snippet is individually injected
through a constrained decoding to generate a candidate response. The final response is selected via a
ranking step.

knowledge enables users to achieve their goals more efficiently. Additionally, we observe that

the our approach of sub-selecting relevant but diverse knowledge leads to responses that promote

success in achieving conversational goals.

6.2 Post-hoc Knowledge for Dialog

Our goal is to construct a dialog response by injecting knowledge (from external textual

sources) at decoding time, without having to retrain the models. Consider a dialog model M

from which we can sample a dialog response xd given a dialog history H . We shall refer to the

response xd sampled from such a model without any decoding time knowledge injection as the

initial response.

However, as motivated earlier, samples from such a dialog model often lack detail.

To improve such responses, we retrieve and incorporate relevant external knowledge k into

the initial response. To achieve our goal, we construct a query using both dialog history H

and the initial response xd , and gather a relevant knowledge candidate k from a knowledge

source K . The retrieved snippet can provide useful information to the end-user to achieve the

conversational goal (see subsection 6.5.3). We explore both parametric (e.g querying a language

model) and non-parametric (e.g. deterministic retrieval using word-overlap) ways to obtain

post-hoc knowledge.
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6.2.1 Parametric knowledge sources

Pretrained language models (PTLM) are typically trained with a vast amount of text that

spans a diverse range of domains. Petroni et al. [2019], ? showed that such PTLMs can be used as

a source of knowledge when queried with suitable textual prompts (e.g. Seattle is famous for ).

To use PTLMs in our use-case, we construct useful prompts from dialog history and the initial

response. We assemble simple prompts inspired from various knowledge-seeking situations in

dialog [Shwartz et al., 2020] such as [KP] is famous for , Here is what I know about [KP]:

, where [KP] is a key-phrase2 extracted from dialog context. We use gpt2-large as the

PTLM. For example, a query “Here is what I know about fun things around Cambridge:" results

in “There are plenty of museums to visit around Cambridge. If you love hiking, you can enjoy the

trails alongside the river..." as shown in Figure 8.1. We finally rank each knowledge snippet k

using the likelihood obtained from the PTLM for a concatenated input of k and dialog history

and choose the most likely.

6.2.2 Non-parametric knowledge sources

External knowledge in the form of a text corpus can be used as a non-parametric knowl-

edge source available at decoding time. Compared to parametric knowledge sources, such

sources do not generate text as knowledge snippets, but offer the advantage of high quality and

reliability of human written text. We consider the dialog history and the initial response as a

query to retrieve relevant knowledge instances from the corpus. Next, we identify the top relevant

instances in the given corpus with respect to the constructed query using cosine similarity on

TF-IDF based representations [Robertson et al., 1995].

2It possible that a lack of key-phrases results in no knowledge.
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6.3 Unsupervised Knowledge Injection in Generated Dialog

Effectively utilizing the retrieved knowledge snippets to construct an enriched dialog

response encompasses two major challenges. Firstly, it is not practical to use potentially hundreds

of knowledge snippets obtained from the retrieval step for a single response generation. Thus,

we need to find a relevant but diverse subset of the snippets. Secondly, the dialog model M

is trained to condition only on the dialog context, and not on the external knowledge. Hence,

to leverage the knowledge snippets, we need a decoding strategy to rewrite the initial response

xd such that the resulting final response x f should closely follow the knowledge snippet to be

injected without a loss in the fluency and consistency. Thus, our method requires no additional

training and only assumes a language model trained on dialog context (i.e. M ). We refer to our

proposed framework (Figure 6.2) as POKI (Post-hoc Knowledge Injection in Generated Dialog).

6.3.1 Relevance-Redundancy Tradeoff for Knowledge Selection

At each turn, we obtain N knowledge snippets from both the parametric and non-

parametric sources. We wish to select a subset of B (out of N) relevant but diverse knowledge

snippets.

We define relevance score of a snippet ki with respect to the dialog history H using

pointwise mutual information (PMI) as follows:

RELi = PMI(ki,H ) = log
(

p(H |ki)

p(H )

)
,

Thus, a high PMI score would imply a larger semantic similarity between the snippet ki and H.

To account for redundancy between the snippet pair ki, k j we again use the PMI score as follows:

REDi j, j>i = PMI(ki,k j) = log
(

p(k j|ki)

p(k j)

)
.

The redundancy score is symmetric i.e. REDi j = RED ji as PMI is a symmetric measure.
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We estimate probabilities (both conditional and marginal) p(.) in the above equations

using GPT2 language model, following past work [Padmakumar and He, 2021]. The PMI

measure is often considered better than other n-gram-based overlap metrics to measure the

degree of association between two sentences [Kedzie et al., 2018, Padmakumar and He, 2021].

Semantically similar phrases occur in both sentences that can easily be ignored by overlap based

metrics.

Selection via Determinantal Point Processes.

To select B knowledge snippets out of N with a relevance-redundancy trade-off, we use a

subset selection process named Determinantal Point Process (DPP) [Kulesza and Taskar, 2011].

DPP employs a non-uniform selection that assigns low probability to subsets (here, of knowledge

snippets) that are less diverse by modeling the repulsive correlation between independently

occurring datapoints (see Figure 6.2).

We build an N ×N kernel matrix D , which is real, symmetric and positive semi-definite.

The diagonal entries Dii are populated by the squared relevance score of the i-th knowledge

RELi and the off-diagonal entries Di j are β × squared redundancy scores REDi j. We adjust β in

such a way that D always remains positive semi-definite (more details in [Wilhelm et al., 2018]).

To select a subset of B, a DPP assigns a probability of sampling such a subset proportional to

the determinant of the submatrix DB of D , constructed using the indices of the subsetted items.

The DPP probability is geometrically related to the volume of the parallelepiped spanned by the

selected knowledge snippets. Diverse knowledge snippets tend to be orthogonal in their space

hence span larger volume [Kulesza and Taskar, 2012].

Choosing B-size submatrix from N-size D is a combinatorial problem and can become

prohibitively costly when N is very high. Hence, we use a greedy method [Wilhelm et al., 2018]

where we initialize the selection with the most relevant ki and subsequently select the next k j

that maximizes the determinant of the resultant submatrix.
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6.3.2 Gradient-based Constrained Decoding for Knowledge Injection

Upon selecting B knowledge snippets, we want to individually inject each knowledge

snippet into xd to construct a candidate final response x f at inference time.

Previous works have addressed the problem of unsupervised modification of already-

generated text using gradient-based decoding [Dathathri et al., 2020, Qin et al., 2020] that

employs an iterative procedure consisting of a forward and a backward pass. The forward pass

on the generative model (here, M ) encourages fluency of the generated text while the backward

pass performs gradient ascent on certain desired constraints. Note that due to the discrete nature

of xd , it is not possible to directly update it via back-propagation. Therefore, we maintain the

sequence of hidden representations of each output token as z from the dialog model. Each output

token xd
(t) is realized via p(xd

(t))∼ softmax(Wz(t)/τ), where τ is the temperature hyperparameter,

W is the output embedding matrix (shared with the input), and Wz(t) ∈ RV (V is the size of the

vocabulary).

Constraints. Following Majumder et al. [2021a], we define a knowledge fidelity objective

that encourages x f to be minimally different from the knowledge snippet k. We achieve this by

minimizing the cross entropy loss (CE) between knowledge tokens k(1), . . . ,k(T ) as labels and

Wz(1), . . . ,Wz(T ) as the logits.

We further notice that injected knowledge can influence the generation in such a way

that it contradicts with responses uttered during previous turns. Hence, we also want x f to be

entailed with the dialog history H . We build an entailment classifier θ(z,H ) that predicts

the probability of x f (ideally, the hidden representation z of x f ) entailing H . The classifier

θ(z,H ) is a bag-of-words classification layer with hidden states z from M and fine-tuned using

the DNLI dataset [Welleck et al., 2019] to predict whether the current response is entailed with

previous responses or not.

Decoding. In the subsequent forward and backward passes, the hidden representation z is

gradually perturbed via gradient ascent on the respective objectives. During backward pass, the
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objective with constraints is

L (H ,k;z) = α logθ(z,H )−λ CE(k,Wz)

with hyperparameters α and λ . We use back-propagation to update z with the gradient

∇zL (H ,k;z) while the parameters of M remain fixed. The updated latent representations of z

after the backward pass are denoted as zbw.

A forward pass with M is required to regularize the hidden states z toward the original

dialog model objective to obtain zfw. Corresponding to the t th token, the hidden states for the

t +1th time step are computed via a weighted addition of backward and forward hidden states,

i.e., z(t+1) = γ × zbw
(t) +(1− γ)× zfw

(t) where γ ∈ (0,1) is a hyperparameter.

During generation, we start by sampling the initial response xd with greedy decoding

from M . The hidden states z (of xd) are iteratively updated by alternate backward and forward

passes. The final response is sampled as x f ∼ softmax(Wz/τ). The number of iterations (= 5)

and the γ (= 0.45) were chosen by maximizing the Z-normalized sum of dialog model perplexity

and linguistic diversity (% of distinct bigrams) in a greedy hyperparameter search.

6.3.3 Unsupervised Ranking of Candidate Final Responses

Several previous works often over-generate and use an additional ranking step in order to

select the final candidate in unsupervised text generation [Qin et al., 2020, Shwartz et al., 2020,

Paranjape and Manning, 2021]. Similarly, here we want to rank the generated candidate final

responses according to the diversity of the generated text as well as the conditional likelihood of

generation given the dialog history. For diversity, we measure the percentage of distinct bigrams

present in the response. For conditional likelihood, we use the pre-trained GPT2 model to obtain

the log probability when the dialog history, followed by the generated response, passed as a

concatenated input. Since these two scores can have varied scale, we perform Z-normalization

on the individual scores and add them to obtain a single score for ranking. The highest ranked
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candidate response is finally rendered to the user.

6.4 Experimental Setup

6.4.1 Scenarios and Datasets

We experiment with two dialog scenarios: goal-oriented and knowledge grounded. Both

setups are knowledge intensive but the training data in such setups often contains only a fraction

of the needed knowledge. For the goal-oriented setting, we use the Multi-domain Wizard-of-Oz

[Budzianowski et al., 2018] dataset. For knowledge grounded dialog, we use the Wizard-of-

Wikipedia [Dinan et al., 2019c] dataset.

Multi-domain Wizard-of-Oz (MultiWOZ) is a multi-domain dialog dataset (we use v2.0

[Hosseini-Asl et al., 2020]) consisting of goal-oriented human-human conversations. The dataset

spans seven domains (restaurant, train, attraction, hotel, taxi, hospital, police) and contains

10,438 dialogs with 13.68 average turns. Since, we do not need any training data, we only use an

evaluation set (of 7K utterances).

Wizard-of-Wikipedia (WoW) is a knowledge grounded dialog dataset which involves retriev-

ing relevant knowledge from Wikipedia, reading and conditioning on it, and finally generating

dialog responses [Dinan et al., 2019c]. The dataset contains 201K utterances from 22K dialogues

spanning 1300 diverse topics, from which we use only the test set. The associated Wikipedia

knowledge base has 5.4M articles and 93M sentences.

6.4.2 Baselines and Ablations

Baselines for MultiWOZ. For MultiWOZ, we consider several baselines following [Sun et al.,

2021] for knowledge injection. First, we use the current state-of-the-art model, SimpleTOD,

for goal-oriented dialog [Hosseini-Asl et al., 2020]. Sun et al. [2021] extends SimpleTOD by

adding chitchat candidates to dialog histories during training. They also have other variants that

either concatenate output from SimpleTOD and candidate chitchats (Arranger) or rewrite by
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Table 6.1. Automatic metrics on the test set of MultiWoZ. Difference between bold and non-bold
numbers is statistically significant (p < 0.001).

System Acc BLEU BRTSc D-2 ENTR

KCopy 70.1 4.1 62.3 3.16 2.41
SimpleTOD 70.1 15.0 79.2 0.56 0.90
SimpleTOD+ 69.8 12.1 68.1 0.81 1.11
Arranger 70.2 12.3 68.5 0.93 1.15
Rewriter 70.2 12.1 69.4 1.03 1.45
POKI 71.1 13.7 74.5 3.78 2.67

w/o Entailment 69.9 10.9 67.8 3.67 2.56
w/o Kw Fidelity 70.0 12.3 71.2 0.95 1.19

Gold 100 100 100 0.78 0.86

Table 6.2. Automatic metrics on the test set of Wizard-of-Wikipedia. Difference between bold
and non-bold numbers is statistically significant (p < 0.001).

System BLEU BRTSc D-2 ENTR

KCopy 13.4 74.3 3.64 3.12
KGuide 16.7 71.5 2.54 2.12
KGround 18.3 72.5 2.87 2.35
BART 19.8 73.4 2.97 2.55
RAG 19.9 73.1 1.03 1.45
POKI 19.4 76.8 3.65 3.44

w/o Entailment 18.1 74.2 3.17 3.39
w/o Kw Fidelity 18.8 73.3 2.75 2.54

Gold 100 100 2.98 2.59

combining both output and chitchat snippets (Rewriter). We also have a trivial baseline (KCopy)

which appends the retrieved knowledge snippet k from POKI with the initial response xd .

Baselines for WoW. For WoW, we use two current-best knowledge-grounded models, KGround

[Wolf et al., 2019] and BART [Lewis et al., 2020a] that concatenate the associated knowledge

snippets (present in WoW) and the dialog history as inputs to generate the response with

supervision. KGuide [Zhao et al., 2017] and RAG [Lewis et al., 2020b] have an additional

knowledge selection step modeled by a latent variable before response generation similar to

knowledge grounded models. We also use the KCopy baseline, as described for MultiWOZ.

Variants of POKI. To investigate the impact of various decoding constraints in POKI, we
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Table 6.3. Pairwise comparison (% win/loss cases, tie not reported) between responses from POKI

and from other baselines as well as ground truth. Difference between bold and non-bold numbers is
statistically significant (p < 0.001). κ denotes Cohen’s Kappa [Cohen, 1960] between a pair of annotators.

POKI vs SimpleTOD Rewriter w/o Entailment w/o Kw Fidelity Gold

Criteria win loss κ win loss κ win loss κ win loss κ win loss κ

M
ul

tiW
O

Z Coherent 93.2 4.4 0.76 85.6 10.2 0.75 98.7 0.8 0.72 77.8 17.8 0.78 26.2 34.4 0.69
Engaging 94.3 4.5 0.78 89.7 7.9 0.79 98.7 0.6 0.80 71.5 20.5 0.80 42.4 37.4 0.78
Interesting 92.7 5.4 0.72 91.2 8.3 0.73 88.6 8.9 0.68 98.7 0.8 0.75 49.7 45.6 0.67
Humanlike 85.4 10.7 0.68 87.4 7.3 0.65 61.9 30.5 0.71 81.7 14.0 0.74 29.7 37.8 0.66

RAG BART w/o Entailment w/o Kw Fidelity Gold

W
oW

Coherent 95.4 4.5 0.78 88.5 9.6 0.72 94.3 3.4 0.68 83.6 10.7 0.65 23.8 25.3 0.73
Engaging 89.3 7.7 0.72 87.8 8.3 0.71 97.7 0.8 0.70 71.5 25.4 0.69 25.4 26.7 0.73
Interesting 96.3 3.5 0.74 83.3 9.9 0.75 79.8 17.2 0.70 93.5 4.5 0.71 35.9 37.8 0.76
Humanlike 91.4 7.1 0.68 92.4 6.5 0.66 84.5 10.5 0.67 81.8 13.5 0.71 42.3 41.9 0.68

consider the following two variants of POKI—w/o Entailment and w/o Knowledge (Kw) Fidelity

(subsection 6.3.2). In POKI, we use SimpleTOD as the base dialog model in goal-oriented

scenarios and use BART (which is a state-of-the-art model for WoW) as the base dialog model

in the knowledge-grounded scenario. For all variants of POKI, we use gradient-based inference

for decoding the final response.

6.5 Results and Discussion

6.5.1 Automatic Evaluation

Our primary goal is to generate responses enriched with relevant external knowledge.

Arguably, a system which can effectively leverage additional knowledge at decoding time should

generate more diverse responses. We measure percentage of distinct bigrams as Distinct-(D-2)

[Li et al., 2016a] and geometric mean of entropy values of empirical frequency distributions of

n-grams (n = 1,2,3) as Entropy (ENTR) [Jhamtani et al., 2018] for diversity. Additionally, we

report overlap between generated responses and corresponding ground truth as per BLEU and

BERTScore (BRTSc). For MultiWOZ, we also report the final goal accuracy (Acc) following

[Hosseini-Asl et al., 2020].

MultiWOZ. Table 6.1 shows POKI outperforms all the baselines in terms of diversity of
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👧 : Center of the town in Cambridge. 

👧 : Do you have any restaurants that serve English food?
🤖:  I do not have an inexpensive restaurant that serves 
English food in the centre area. Indian food i very 
popular in the centre area. Many people who like English 
food also enjoy Indian food.

👧 : Awesome. I can go with Indian food.
🤖:  Great. I can book a reservation for you at Kohinoor. 
The table will be reserved for 15 minutes. They have a 
vibrant environment and they are known for their starters.

🤖:  Do you have a location preference? I have several 
options for inexpensive restaurants.

Indian food is very popular in the centre area, 
Cambridge. I know many friends who like 

English food also enjoy Indian food. Indian food 
is great value for money. 

Kohinoor has a vibrant environment in the 
evening. They are best known for their starters. 

Do check them out. Also Indian sweets are 
great as desserts.

I do not have an inexpensive 
restaurant that serves 

English food in the centre 
area.

I can book a reservation for 
you at Kohinoor. The table 

will be reserved for 15 
minutes.

Do you have a location 
preference? I have several 

options for you.

Asian cuisines such as Chinese or Indian 
cuisines are inexpensive. They are value for 
money since they are known for their great 

taste.

I can book a Chinese or 
Indian restaurant near 

centre for you.

👧 : I need a place to eat that is cheap.
None

🤖:  I think you can go with Asian cuisines such as 
Chinese or Indian cuisines. They are value for money 
since they are known for their great taste. 

Figure 6.3. POKI converses with a user who is looking for some restaurant options (left column). In
each turn, a knowledge snippet (right column) is injected into an initial response (middle column).

generated responses. More importantly, we see POKI promotes accuracy of reaching the final

dialog state i.e. the goal. For ablated versions of POKI, we find the entailment constraint has

little effect on diversity while dropping the knowledge adherence constraint negatively influences

accuracy and diversity. All variants of SimpleTOD and all versions of POKI show departure

from the results obtained by SimpleTOD on BLEU and BERTScore since all of these versions

add external knowledge that were not explicitly present in the data. However, we observe that

the departure is not significant and POKI achieves a much closer BERTScore to SimpleTOD

compared to baselines.

WoW. Despite all systems for WoW use knowledge explicitly in the knowledge-grounded

dialog generation task, Table 6.2 shows POKI generates the most diverse responses. Similar to

MultiWOZ, the knowledge adherence constraint still remains a significant factor for increasing

diversity, one of the main goals of knowledge injection. For WoW, we instead see POKI out-

perform even BART (previous SOTA) in terms of BERTScore when injected with external

knowledge indicating the need of the external knowledge for modeling WoW dialogs.
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6.5.2 Human Evaluation

We conduct a comparative human evaluation with 300 samples to evaluate the quality

of generated dialog responses following ACUTE-Eval [Li et al., 2019b]. We show a generated

response from POKI to an annotator with its associated dialog history to annotate if knowledge

injection makes the final response more engaging, interesting and humanlike compared to a

baseline response. As sanity check, we also investigate if the response remain coherent after

knowledge injection. Each sample is evaluated by two annotators.

MultiWOZ. Table 6.3 records the pairwise comparison showing POKI consistently outperforms

baselines on all criteria. Responses from POKI are more engaging and interesting compared to

SimpleTOD and Rewriter, demonstrating that gradient-based decoding is effective for knowledge

injection. In POKI, entailment constraint mostly influences coherence whereas knowledge fidelity

constraint is important for engagingness and interestingness.

WoW. Table 6.3 shows POKI outperforms baselines that use grounding knowledge during train-

ing in all criteria showing that external knowledge can be useful even in the knowledge-grounded

setting to make the conversation engaging and interesting. It also indicates the limitation of the

training signal or lack of access to sufficient knowledge and room for improvement in terms

of how knowledge is utilized. A large gap in win percentages in favor of POKI for evaluating

how ‘humanlike’ is a response when compared to state-of-the-art methods suggests knowledge

injection leads to more natural conversation. Here too, both decoding constraints show similar

trends to MultiWOZ.

Qualitative Analysis. Figure 8.3 shows a conversation by POKI with a user who seeks to

find restaurant options around Cambridge. We observe that in most of the turns the injected

knowledge appeared as an additional justification over the initial responses making the dialog

engaging and effective to reach the user’s goal (also noted by human judges in subsection 6.5.3).

For example, in turn 3, we observe that adding the extra information about Indian cuisine helped

user to reach a conclusion when their original choice of English cuisine was absent.
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Effect of Response Length. Qualitatively, as seen in Figure 8.3, responses generated by

POKI are longer than those from the initial response due to the post-hoc knowledge injection. In

the human evaluation sample, we found that 37% of responses from POKI are similar or smaller

in length compared to responses from the best baseline. We investigate if response length acted

as a confounding factor during human evaluation. Among all the cases where POKI was lost

over a baseline, 45% (± 2% when bootstrapped with 1000 subsets of size 50) of responses from

POKI were longer than those from the comparing baseline. Among win cases for POKI, we

observe 49% (± 3% when bootstrapped with 1000 subsets of size 50) POKI responses were

longer than those from the comparing method. This indicates that human users did not only

choose longer responses as better.

6.5.3 User Study for Effectiveness of Knowledge Injection

Relevant knowledge injection has the benefit of adding more justification to terse dia-

log outputs and hence influencing the task outcome positively. Mirroring observations from

[Ghandeharioun et al., 2019], a real-time full conversation evaluation is needed to investigate if

POKI could achieve the conversational goal any better than baselines.

We recruited 60 users for this study . One half of the users interacted with POKI, while

the other half interacted with the best baseline model that does not augment dialog responses

with external knowledge. We construct a speculative goal for each user to accomplish via the

conversation. We allow users to end the conversation any time they would like and ask them

whether the system helped them to reach their conversation goal along with additional comments

to justify their annotation. Users who interacted with a knowledge-augmented system also asked

if the system provided any knowledge that user has not explicitly asked for but indeed the extra

information helped them to reach the conversational goal [Majumder et al., 2021b]. Finally, we

also ask if they would like to engage with the system they interacted with in future.

For goal-oriented dialog, we construct speculative goals (e.g. looking for entertainment

options) manually from the ground truth for 300 dialog samples. Since we are not using
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Table 6.4. Real-time user study with average # of turns for successful goal completion, % of
time the goal was achieved, % of success cases users were helped by an additional knowledge
(Know) that was not explicitly asked to reach their goal, and if users would like to use the system
in future.

MultiWOZ # turns ↓ Goal Know Would use

Rewriter 8 ± 2 69% 35% 56%
POKI 4 ± 3 86% 84% 76%

WoW # turns ↑ Goal Know Would use

BART 10 ± 2 56% 70% 48%
POKI 16 ± 3 76% 89% 71%

the underlying databases, we made sure speculative goals do not require specific information

(e.g. booking availability, flight information, etc.). For knowledge-grounded dialog, we provide

the intended topic of discussion (e.g. science fiction) present in the data; the speculative goal

here is to know more about, or to have an engaging conversation about the topic.

Results. First of all, we find that POKI is unanimously preferred by users compared to

the baseline during the user study. More importantly, we see that when the user successfully

accomplished their goal, 84% of those times they found the additional knowledge helpful in

the goal-oriented setting (MultiWOZ) as compared to a baseline (Rewriter) that did not use

any external knowledge. Most importantly, POKI takes significantly fewer turns for users to

accomplish the goal as compared to Rewriter implicitly indicating injected knowledge (we

observe high correlation, 0.67) contributes toward more efficient conversations.

For the knowledge-grounded setting (WoW), both BART and POKI have access to

external knowledge sources. However, 89% (compared to 70%) of success scenarios were

directly influenced by the additional post-hoc knowledge. For knowledge-grounded dialog, a

longer conversation is indicative of engagingness on a particular topic [Gopalakrishnan et al.,

2019a], hence users preferred to converse with POKI for more turns as compared to a BART

baseline. We quote a comment from a user who found a conversation about the Korean culture

with POKI was particularly engaging—“Before this conversation, I had less knowledge about
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Table 6.5. Evaluation for the quality of the knowledge snippets for random and DPP-based
selection.

Relevant Factual BRTSc for WoW

Source Random DPP Random DPP Random DPP

Parametric 82% 89% 65% 83% 74.2 81.3
Non-parametric 81% 83% 97% 98% 65.2 76.8

Table 6.6. Mean and std. error of clock-time taken per token

System MultiWOZ WoW

Supervised 17.6 ± 5.2 ms 23.6 ± 4.6 ms
PPCM 30.9 ± 7.5 ms 32.6 ± 4.2 ms
POKI 34.2 ± 8.4 ms 35.7 ± 5.7 ms
POKI, only decoding 31.6 ± 2.7 ms 32.3 ± 3.4 ms

Korean movies and art-forms. This gave me a new perspective and a handful of popular opinions

to look at it.”.

6.5.4 Discussion

Performance of Knowledge Selection. The knowledge selection step in POKI acts an

information bottleneck where the quality of the generated response directly depends on the

quality of the selected knowledge We perform a human evaluation on 200 snippets to measure the

relevance and the factual correctness in two scenarios: when we randomly select a retrieved snip-

pet or select via DPP. In Table 6.5, we see that the parametric knowledge source (gpt2-large)

generates more relevant knowledge snippets than a non-parametric one. We attribute this to 1) a

large and diverse dataset (webtext) used during pretraining of gpt2 as compared to yelp reviews

(restricted domains) we used for retrieval, and 2) the limited recall of relevant knowledge when

using word-overlap based retrieval. However, large language models are still prone to generate

non-factual knowledge. We observe that DPP-based selection in POKI is able to sub-select more

factual knowledge which then positively influences the final response quality. For WoW, we also

compare the selected snippets with the gold knowledge available in the dataset that in turn show
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high fidelity in terms of BERTScore.

Time Complexity. Madotto et al. [2020] shows that iterative gradient-based decoding could

be slower than generating response using single forward pass from an existing model. When

we benchmark POKI in an Nvidia 2080Ti GPU, in Table 6.6, we see that knowledge generation

(or retrieval) could be a computational bottleneck for POKI. However the greedy selection and

the constrained decoding step do not add significant computational load. Furthermore, POKI’s

performance is comparable with PPCM [Madotto et al., 2020]—a more efficient version of

gradient-based decoding. The efficiency of the knowledge retrieval step can be improved with

better indexing [Johnson et al., 2021] which we leave as a future work.

6.6 Conclusion

We propose a framework for unsupervised knowledge injection into dialog responses.

We show that knowledge can be obtained post-hoc from any knowledge sources that can improve

users’ ability to reach their conversational goal more effectively. In future, our idea can be gener-

alized to setups where external knowledge can justify model’s predictions such as conversational

recommendation.

Chapter 6, in part, is a reprint of the material as it appears in “Achieving Conversational

Goals with Unsupervised Post-hoc Knowledge Injection” by Bodhisattwa Prasad Majumder,

Harsh Jhamtani, Taylor Berg-Kirkpatrick, Julian McAuley, which was published in Association

for Computational Linguistics, 2022. The dissertation author was the primary investigator and

author of this paper.
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Chapter 7

Improving Clarification Question Genera-
tion using Global Knowledge

In a conversational user-centric setup it is important to The ability to generate clarification

questions i.e., questions that identify useful missing information in a given context, is important

in reducing ambiguity. Humans use previous experience with similar contexts to form a global

view and compare it to the given context to ascertain what is missing and what is useful in the

context. Inspired by this, we propose a model for clarification question generation where we first

identify what is missing by taking a difference between the global and the local view and then

train a model to identify what is useful and generate a question about it. Our model outperforms

several baselines as judged by both automatic metrics and humans.

7.1 Introduction

An important but under-explored aspect of text understanding is the identification of

missing information in a given context i.e., information that is essential to accomplish an

underlying goal but is currently missing from the text. Identifying such missing information can

help to reduce ambiguity in a given context which can aid machine learning models in prediction

and generation [De Boni and Manandhar, 2003, Stoyanchev et al., 2014]. Rao and Daumé III

[2018, 2019] recently proposed the task of clarification question generation as a way to identify

such missing information in context. They propose a model for this task which while successful
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2-compartment 
(Trolley strap, attaches, obj) 
(cooling pad, carry, obj) 
(macbook pro, fit, obj) 
(leather) 
(corner padding) 
(comfortable) 
(mixed leather) 
…

2-compartment 
(Trolley strap, attaches, obj) 
(gaming laptop, hold, obj) 
(corner padding) 
…

Title

Description

Previous Questions

Local Schema

Category Laptop Accessories

Global Schema

 (of class “Laptop Accessories”)

(cooling pad, carry, obj) 
(macbook pro, fit, obj) 
(leather) 
(comfortable) 
(mixed leather) 
…

Missing Schema

BART-encoder

(fine-tuned)

1

2

3 4

5

Is there room to also

carry a cooling pad?Is it true leather?

Attribute Model

(Usefulness classifier)

backward pass 
gradient (usefulness)

Will this bag hold a gaming laptop and an iPad?

How is the bottom corner padding?

• 2-compartment design provides ample room for your gear

• Expandable file section neatly stores your documents

• Trolley strap attaches to rolling luggage for convenience

• Soft touch carry handle for comfortable carry

• Limited warranty

Targus CityLite Laptop Briefcase

Shoulder Messenger Bag for 15.6-
Inch Laptop, Black (TBT053US)

BART-decoder

(fine-tuned)

Figure 7.1. Test-time behaviour of our model in a Community-QA setup. 1. We obtain a local
schema, 2. the global schema, and 3. estimate the missing schema for the clarification question.
4. A BART model generates a question and 5. a PPLM model further tunes it to be more useful.

at generating fluent and relevant questions, still falls short in terms of usefulness and identifying

missing information. With the advent of large-scale pretrained generative models [Radford et al.,

2019, Lewis et al., 2019a, Raffel et al., 2019], generating fluent and coherent text is within reach.

However, generating clarification questions requires going beyond fluency and relevance. Doing

so requires understanding what is missing, which if included could be useful to the consumer of

the information.

Humans are naturally good at identifying missing information in a given context. They

possibly make use of global knowledge i.e., recollecting previous similar contexts and comparing

them to the current one to ascertain what information is missing and if added would be the

most useful. Inspired by this, we propose a two-stage framework for the task of clarification

question generation. Our model hinges on the concept of a “schema” which we define as the key

pieces of information in a text. In the first stage, we find what’s missing by taking a difference

between the global knowledge’s schema and schema of the local context (subsection 7.3.1). In

the second stage we feed this missing schema to a fine-tuned BART [Lewis et al., 2019a] model

to generate a question which is further made more useful using PPLM [Dathathri et al., 2019]
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Table 7.1. Product description from amazon.com paired with a clarification question generated
by our model.

TITLE: Sony 18x Optical Zoom 330x Digital Zoom Hi8 Camcorder

DESC: Sony Hi-8mm Handycam Vision camcorder 330X digital zoom, Night-
shot(TM) Infrared 0 lux system, Special Effects, 2.5" SwivelScreen color
LCD and 16:9 recording mode, Laserlink connection. Image Stabiliza-
tion, remote, built in video light.

QUESTION: Can I manually control the video quality?

(subsection 7.3.2).1

We test our proposed model on two scenarios (section 7.2): community-QA, where the

context is a product description from amazon.com [McAuley and Yang, 2016] (see e.g. Table 7.1);

and dialog where the context is a dialog history from the Ubuntu Chat forum [Lowe et al., 2015].

We compare our model to several baselines (subsection 7.4.2) and evaluate outputs using both

automatic metrics and human evaluation to show that our model significantly outperforms

baselines in generating useful questions that identify missing information in a given context

(subsection 7.4.4). Furthermore, our analysis reveals reasoning behind generated questions as

well as robustness of our model to available contextual information. (section 7.5).

7.2 Problem Setup and Scenarios

Rao and Daumé III [2018] define the task of clarification question generation as: given a

context, generate a question that identifies missing information in the context. We consider two

scenarios:

Community-QA

Community-driven question-answering has become a common venue for crowdsourcing

answers. These forums often have some initial context on which people ask clarification questions.

We consider the Amazon question-answer dataset [McAuley and Yang, 2016] where context is a

1The code is available at https://github.com/microsoft/clarification-qgen-globalinfo

86

https://github.com/microsoft/clarification-qgen-globalinfo


product description and the task is to generate a clarification question that helps a potential buyer

better understand the product.

Goal Oriented Dialog

With the advent of high quality speech recognition and text generation systems, we are

increasingly using dialog as a mode to interact with devices [Clark et al., 2019]. However, these

dialog systems still struggle when faced with ambiguity and could greatly benefit from having

the ability to ask clarification questions. We explore such a goal-oriented dialog scenario using

the Ubuntu Dialog Corpus [Lowe et al., 2015] consisting of dialogs between a person facing

a technical issue and another person helping them resolve the issue. Given a context i.e. a

dialog history, the task is to generate a clarification question that would aid the resolution of the

technical issue.

7.3 Approach

Figure 7.1 depicts our approach at a high level. We propose a two-stage approach for the

task of clarification question generation. In the first stage, we identify the missing information

in a given context. For this, we first group together all similar contexts in our data2 to form the

global schema for each high-level class. Next, we extract the schema of the given context to form

the local schema. Finally, we take a difference between the local schema and the global schema

(of the class to which the context belongs) to identify the missing schema for the given context.

In the second stage, we train a model to generate a question about the most useful information

in the missing schema. For this, we fine-tune a BART model [Lewis et al., 2019a] on (missing

schema, question) pairs and at test time, we use PPLM [Dathathri et al., 2019] with a usefulness

classifier as the attribute model to generate a useful question about missing information.

2See subsection 7.4.1 for details to combine data splits
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7.3.1 Identifying Missing Information

Schema Definition Motivated by [Khashabi et al., 2017] who use essential terms from a

question to improve performance of a Question-Answering system, we see the need of identifying

important elements in a context to ask a better question. We define schema of sentence s as set

consisting of one or more triples of the form (key-phrase, verb, relation) and/or one or more

key-phrases.

schemas = { element }; where

element ∈ {(key-phrase,verb,relation),

key-phrase}

Schema Extraction Our goal is to extract a schema from a given context. We consider

(key-phrase, action verb, relation) as the basic element of our schema. Such triples have been

found to be representative of key information in previous work [Vedula et al., 2019]. Given

a sentence from the context, we first extract bigram and unigram key-phrases using YAKE

(Yet-Another-Keyword-Extractor) [Campos et al., 2020] and retain only those that contain at

least a noun. We then obtain the dependency parse tree [Qi et al., 2020b] of the sentence and map

the key-phrases to tree nodes.3 Now, to obtain the required triple, we need to associate a verb

and a relation to each key-phrase. This procedure is described in 2. At a high-level, we use the

path between the key-phrase and the closest verb in the dependency tree to establish a relation

between the key-phrase and the verb. In cases where there is no path, we use only the key-phrase

as our schema element. Figure 7.2 shows an example dependency tree for a sentence.

Creating local schema Given a context, we extract a schema for each sentence in the context.

The local schema of a context c is a union of schemata of each sentence s in the context.

local_schemac = ∪s∈c schemas

3In the case of bigram phrases, we merge the tree nodes.
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Figure 7.2. Dependency tree and paths showing how we obtain schema triples for a sentence:
“Will this bag hold a gaming laptop and an iPad?” (from Figure 7.1).

Algorithm 2. Pseudocode for extracting (key-phrase, verb, relation) triple.
Initialize with empty path (path length ∞) for all possible pairs of verbs (∈ {VB, VBG, VBZ}) and
key-phrases in the sentence
for Each verb and key-phrase pair do

Search for the key-phrase among the children of the verb in the dependency tree
if A key-phrase is found and path is shorter than the stored path then

Update the path between the key-phrase and the verb pair
end if

end for
for Each verb and key-phrase pair do

if The key-phrase is the immediate child of the verb then
Create the triple (key-phrase, verb, relation) using the relation in the path

else
Traverse backward from the key-phrase, stop at the first verb, use the relation with its immediate
child in the path to create (key-phrase, verb, relation)

end if
end for

Creating global schema We define global schema at the class level where a ‘class’ is a group

of similar contexts. For Amazon, classes consist of groups of similar products and for Ubuntu,

classes consist of groups of similar dialogs (see subsection 7.4.1 for details). The global schema

of a class K is a union of local schemata of all contexts c belonging to K.

global_schemaK = ∪c∈K local_schemac

A naive union of all local schemata can result in a global schema that has a long tail of
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low-frequency schema elements. Moreover, it may have redundancy where schema elements

with similar meaning are expressed differently (e.g. OS and operating system). We therefore use

word embedding based similarity to group together similar key-phrases and retain only the most

frequent elements.

Creating a missing schema Given a context c, we first determine the class K to which the

context belongs. We then compute its missing schema by taking the set difference between the

global schema of class K and the local schema of the context c:

missing_schemac = globalK \ localc

More specifically, we start with the elements in the global schema and remove elements

that have a semantic match with any element in the local schema to obtain the missing schema.

7.3.2 Generating Useful Questions

Our goal is to generate a useful question about missing information. In subsection 7.3.1,

we explained how we compute the missing schema for a given context; here we describe how we

train a model to generate a useful question given the missing schema.

BART-based generation model

Our generation model is based on the BART [Lewis et al., 2019a] encoder-decoder model,

which is also a state-of-the-art model in various generation tasks including dialog generation

and summarization. We start with the pretrained base BART model consisting of a six layer

encoder and six layer decoder. We fine-tune this model on our data where the inputs are the

missing schema and the output is the question. The elements of the missing schema in the input

are separated by a special [SEP] token. Since the elements in our input do not have any order,

we use the same positional encoding for all input positions. We use a token type embedding

layer with three types of tokens: key-phrases, verbs, and relations.
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PPLM-based decoder

We observed during our human evaluation4 that a BART model fine-tuned in this manner,

in spite of generating questions that ask about missing information, does not always generate

useful questions. We therefore propose to integrate the usefulness criteria into our generation

model. We use the Plug-and-Play-Language-Model (PPLM) [Dathathri et al., 2019] during

decoding (at test time). The attribute model of the PPLM in our case is a usefulness classifier

trained on bags-of-words of questions. In order to train such a classifier, we need usefulness

annotations on a set of questions. For the Amazon dataset, we collect usefulness scores (0 or 1)

on 5000 questions using human annotation whereas for the Ubuntu dataset we assume positive

labels for (true context, question) pairs and negative labels for (random context, question) pairs

and use 5000 such pairs to train the usefulness classifier.

7.4 Experiments

We aim to answer the following research questions (RQ):

1. Is the model that uses missing schema better at identifying missing information compared

to models that use the context directly to generate questions?

2. Do large-scale pretrained models help generate better questions?

3. Does the PPLM-based decoder help increase the usefulness of the generated questions?

7.4.1 Datasets

Amazon The Amazon review dataset [McAuley et al., 2015] consists of descriptions of

products on amazon.com and the Amazon question-answering dataset [McAuley and Yang,

2016] consists of questions (and answers) asked about products. Given a product description

and N questions asked about the product, we create N instances of (context, question) pairs

where context consists of the description and previously asked questions (if any). We use the

“Electronics” category consisting of 23,686 products. We split this into train, validation and

4See results of BART+missinfo in Table 7.5
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Table 7.2. Number of data instances in the train, validation and test splits of Amazon and Ubuntu
datasets (Both datasets are in English.)

Dataset Train Validation Test

Amazon 123,567 4,525 2,361
Ubuntu 102,678 7,864 200

test sets (Table 7.2). The references for each context are all the questions (average=6) asked

about the product. A class is defined as a group of products within a subcategory (e.g. DSLR

Camera) as defined in the dataset. We restrict a class to have at most 400 products, and a bigger

subcategory is broken into lower-level subcategories (based on the product hierarchy) resulting

in 203 classes. While creating global schema, we exclude target questions from validation and

test examples. The product descriptions and associated metadata come as inputs during test time.

Hence, including them from all splits while creating the global schema does not expose the test

and validation targets to the model during training.

Ubuntu The Ubuntu dialog corpus [Lowe et al., 2015] consists of utterances of dialog between

two users on the Ubuntu chat forum. Given a dialog, we identify utterances that end with a

question mark. We then create data instances of (context, question) where the question is the

utterance ending with a question mark and the context consists of all utterances before the

question. We consider only those contexts that have at least five utterances and at most ten

utterances. Table 7.2 shows the number of data instances in the train, validation and test splits.

Unlike the Amazon dataset, each context has only one reference question. A class is defined as a

group of dialogs that address similar topics. Since such class information is not present in the

dataset, we use k-means to cluster dialogs into subsequent classes. Each dialog was represented

using a TF-IDF vector. After tuning the number of clusters based on sum of squared distances of

dialogs to their closest cluster center, we obtain 26 classes. We follow a similar scheme as with

Amazon for not including target questions from validation and test sets while building the global

schema.
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7.4.2 Baselines and Ablations

Retrieval We retrieve the question from the train set whose schema overlaps most with the

missing schema of the given context.

GAN-Utility The state-of-the-art model for the task of clarification question generation [Rao

and Daumé III, 2019] trained on (context, question, answer) triples.

Transformer A transformer [Vaswani et al., 2017b]5 model trained on (context, question)

pairs.

BART We finetune a BART model [Lewis et al., 2019a] on (context, question) pairs.

BART + missinfo We compare to a BART model fine-tuned on (missing schema, question)

pairs.

BART + missinfo + WD This is similar to the “BART + missinfo” baseline with the modifi-

cation that, at test time only, we use a weighted-decoding (WD) strategy [Ghazvininejad et al.,

2017] by redefining the probability of words in the vocabulary using usefulness criteria .

BART + missinfo + PPLM This is our proposed model as described in section 7.3 where we

fine-tune the BART model on (missing schema, question) pairs and use a usefulness classifier

based PPLM model for decoding at test time.

7.4.3 Evaluation Metrics

Automatic Metrics

BLEU-4 [Papineni et al., 2002b] evaluates 4-gram precision between model generation

and references. at the corpus level; METEOR [Banerjee and Lavie, 2005b] additionally uses

stem and synonym matches for similarity; and Distinct-2 [Li et al., 2016b] measures diversity

by calculating the number of distinct bigrams in model generations scaled by the total number of

generated tokens.

5We use original hyperparameters & tokenization scheme.
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Table 7.3. Automatic metric results on the full test set of Amazon. The difference between bold
and non-bold numbers is statistically significant with p < 0.001.

Model BLEU-4 METEOR Distinct-2

Retrieval 8.76 9.23 0.92
GAN-Utility 14.23 16.82 0.79
Transformer 12.89 14.56 0.60
BART 15.98 16.78 0.78

+ missinfo 16.87 17.11 0.82
+ missinfo + WD 16.23 17.98 0.84
+ missinfo + PPLM 18.55 18.01 0.86

Reference – – 0.95

Table 7.4. Automatic metric results the full test set of Ubuntu. The difference between bold and
non-bold numbers is statistically significant with p < 0.001.

Model BLEU-4 METEOR Distinct-2

Retrieval 4.89 5.12 0.82
Transformer 6.89 7.45 0.67
BART 8.23 9.67 0.72

+ missinfo 9.54 10.78 0.75
+ missinfo + PPLM 10.02 11.65 0.79

Reference – – 0.87

Human Judgment

Similar to Rao and Daumé III [2019], we conduct a human evaluation on Amazon

Mechanical Turk to evaluate model generation on the four criteria below. Each generated output

is shown with the context and is evaluated by three annotators.

Relevance We ask “Is the question relevant to the context?” and let annotators choose between

Yes (1) and No (0).

Fluency We ask “Is the question grammatically well-formed i.e. a fluent English sentence?”

and let annotators choose between Yes (1) and No (0).

Missing Information We ask “Does the question ask for new information currently not

included in the context?” and let annotators choose between Yes (1) and No (0).

Usefulness We perform a comparative study where we show annotators two model-generated
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questions (in a random order) along with the context. For Amazon, we ask “Choose which of the

two questions is more useful to a potential buyer of the product”. For Ubuntu, we ask “Choose

which of the two questions is more useful to the other person in the dialog”.

7.4.4 Experimental Results

Automatic Metric Results

Amazon Table 7.3 shows automatic metric results on Amazon. Under BLEU-4 and METEOR,

the retrieval model performs the worst suggesting that picking a random question that matches

the most with the missing schema does not always yield a good question. This strengthens the

need of the second stage of our proposed model i.e. BART + PPLM based learning. GAN-Utility,

which is state-of-the-art on Amazon, outperforms the Transformer baseline suggesting that

training a larger model (in terms of the number of parameters) does not always yield better

questions. BART, on the other hand, outperforms GAN-Utility suggesting the benefit of large-

scale pretraining (RQ2). BART+missinfo further outperforms BART showing the value in

training on missing schemata instead of training directly on the context (RQ1). A variation of

this model that uses weighted decoding performs marginally better on METEOR but slightly

worse of BLEU-4. Our final proposed model i.e., BART+missinfo+PPLM performs the best

among all baselines across both BLEU-4 and METEOR.

Under diversity (Distinct-2), the retrieval model produces the most diverse questions

(as also observed by Rao and Daumé III [2019]) since it selects among human written ques-

tions which tend to be more diverse compared to model generated ones. Among other base-

lines, transformer interestingly has the lowest diversity whereas GAN-Utility and BART come

very close to each other. Model ablations that use missing schema produce more diverse

questions further strengthening the importance of training on missing schema. Our model

i.e., BART+missinfo+PPLM, in spite of outperforming all baselines (except retrieval), is still far

from reference questions in terms of diversity, suggesting room for improvement.
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Table 7.5. Human judgment results (0-1) on 300 randomly sampled descriptions from the
Amazon test set

Model Relevancy Fluency MissInfo

GAN-Utility 0.9 0.86 0.81
BART 0.94 0.92 0.77

+ missinfo 0.97 0.92 0.87
+ missinfo + PPLM 0.99 0.93 0.89

Reference 0.96 0.83 0.89

Ubuntu

Table 7.4 shows the results of automatic metrics on Ubuntu.6 The overall BLEU-4 and

METEOR scores are much lower compared to Amazon since Ubuntu has only one reference

per context. Under BLEU-4 and METEOR scores, similar to Amazon, we find that the retrieval

baseline has the lowest scores. Transformer baseline outperforms the retrieval baseline but lags

behind BART, again showing the importance of large-scale pretraining. The difference between

the BLEU-4 scores of BART+missinfo and our final proposed model is not significant but their

METEOR score difference is significant suggesting that our model produces questions that may

be lexically different from references but have more semantic overlap with the reference set.

Under Distinct-2 scores, we find the same trend as in Amazon, with the retrieval model being the

most diverse and our final model outperforming all other baselines.

Human Judgement Results

Amazon

Table 7.5 shows the human judgment results on model generations for 300 randomly

sampled product descriptions from the Amazon test set. Under relevancy and fluency, all

models score reasonably with our proposed model producing the most relevant and fluent

questions. Under missing information, the BART model, fine-tuned on context instead of missing

schema, has the lowest score. GAN-Utility outperforms BART but significantly lags behind

6We do not experiment with the GAN-Utility model (since it requires “answers”) and the BART+missinfo+WD
model (since usefulness labels are not obtained from humans).
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Table 7.6. Human judgment results (0-1) on 150 randomly sampled dialog contexts from Ubuntu
test set

Model Relevancy Fluency MissInfo

Transformer 0.74 0.99 0.99
BART 0.69 0.99 0.96

+ missinfo 0.81 0.95 0.98
+ missinfo + PPLM 0.91 0.83 0.99

Reference 0.85 0.83 0.96

(a)

(b)

Figure 7.3. Results of a pairwise comparison (on usefulness criteria) between our model and
baseline generated question on (a) 300 randomly sampled product descriptions from the Amazon
test set, (b) 150 randomly sampled dialogs from the Ubuntu test set as judged by humans.

BART+missinfo and BART+missinfo+PPLM reaffirming our finding from the automatic metric

results that our idea of feeding missing schema to a learning model helps.

We additionally observe that the human-written questions score lower than model-

generated questions under ‘fluency’ and ‘missing information’ criteria, mirroring similar observa-
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tions from [Rao and Daumé III, 2018, 2019]. We believe the reason for this is that human-written

questions often have typos or are written by non-native speakers (leading to lower fluency).

Moreover, humans may miss out on reading full product descriptions causing them to ask about

details that are already included in the description (leading to lower missing information scores).

Figure 7.3a shows the results of pairwise comparison on the usefulness criteria. We

find that our model wins over GAN-Utility by a significant margin with humans preferring

our model-generated questions 77% of the time. Our model also beats BART-baseline 66% of

the time further affirming the importance of using missing schema. Finally, our model beats

BART+missinfo model 61% of the time suggesting that the PPLM-based decoder that uses

usefulness classifier is able to produce much more useful questions (RQ3).

Ubuntu

Table 7.6 shows the results of human judgments on the model generations of 150

randomly sampled dialog contexts from the Ubuntu test set. In terms of relevance, we find

that the transformer and BART baselines produce less relevant questions. With the addition of

missing schema (i.e., BART+missinfo), the questions become more relevant and our proposed

model obtains the highest relevance score. The reference obtains slightly a lower relevance score

which can possibly be explained by the fact that humans sometimes digress from the topic. Under

fluency, interestingly, the transformer and BART baselines obtain high scores. With the addition

of missing schema, fluency decreases and the score reduce further with the PPLM model. We

suspect that the usefulness classifier trained with a negative sampling strategy (as opposed to

human labelled data, as in Amazon) contributes to fluency issues. Under missing information,

all models perform well which can be explained by the fact that in Ubuntu, the scope of missing

information is much larger (since dialog is much more open-ended) than in Amazon.

Figure 7.3b shows the results of pairwise comparison on usefulness criteria. We find that

humans choose our model-generated questions 85% of time when compared to either transformer

or BART generated questions. When compared to BART+missinfo, our model is selected 71%
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Table 7.7. Model generations for an example product from Amazon and an example dialog
context from Ubuntu.

Amazon
Category Binoculars & Scopes
Title Nikon 7239 Action 7x50 EX Extreme All-Terain Binocular
Description The Monarch ATB 42mm with dielectric high-reflective Multilayer Prism coating binocular

features brighter, sharper colors, crisp and drastically improved low-light performance.
A new body style provides unparalleled strength and ruggedness in a package ...

Missing Schema {mounting, center focused, (Nikon, works, obj), (Canon, works, obj), digital camera, . . . }

GAN-Utility price?
BART How is the focus quality?
BART+missinfo Is it center focused?
BART+missinfo+PPLM Is it center focused, or do you have to focus each eye individually?

Ubuntu

Dialog history User A: I’m having trouble installing nvidia drivers for my geforce 6200,
could anyone perhaps assist?
User B: i use the drivers from the website, much better
User A: which drivers? from the website?
User B: I used add/remove software from the menu to install nvidia proprietary drivers

Missing schema {(driver, update, nsubj), (new version, install, nsubj), (machine, reboot, nsubj), ...}

Transformer Did you try booting your machine?
BART where did you download them from?
BART+missinfo Can you tell the output after you install them?
BART+missinfo+PPLM Can you try rebooting from the start and removing the software after installation?

of the time, further affirming the importance of using the PPLM-based decoder.

Table 7.8. Missing information overlap (in %) between missing schema and output generations

Model Amazon Ubuntu

Retrieval 10.5 6.78
GAN-Utility 73.4 –
Transformer 57.2 45.7
BART 60.3 56.9

+ missinfo 97.3 89.2
+ missinfo + PPLM 98.3 90.1

Reference 99.7 93.7
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7.5 Analysis

Robustness to input information

We analyze how a model is robust toward the amount of information present. To measure

the amount of information, we look for context length (description length for Amazon, dialog

context length for Ubuntu) and the size of global schema since these two directly control how

much knowledge regarding potential missing information is available to the model. We measure

the difference in BLEU score between two groups of data samples where context length/size of

global schema is either high or low. Figure 7.4 shows that our model is the least variant toward

the information available hence more robust for the Amazon dataset.7

Owing to our modular approach for estimating missing information, we seek to analyze

whether a question is really asking about missing information in an automatic fashion. This also

allows us to explain the reasoning behind a particular generation as we are able to trace back to

the particular missing information that is used to generate the question. We run a YAKE extractor

on the generated questions to obtain key-phrases. We calculate the ratio between the number

of key-phrases in the output that belong to the original missing schema and the total number of

key-phrases present in the output. Table 7.8 shows that when we use our framework of estimating

missing information coupled with BART, both models achieve very high missing information

overlap, thus suggesting that we can obtain the reasoning behind a generated question reliably by

tracing the missing information overlap, as shown in Table 7.7.

Question length

We also observe in Table 7.7 that baseline models tend to generate short and generic

questions as compared to our model that often chooses longer schema key-phrases (e.g. bigrams)

to generate a more specific question. We further looked into annotated (for usefulness) questions

from the Amazon dataset and we observed that 70% of questions that were annotated as useful

are longer than not-useful questions. The average length of gold useful questions is 10.76

7Ubuntu follows similar trends.
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Figure 7.4. Average BLEU score difference between classes having longer (> 200 (median)
words) and shorter descriptions; larger (> 200 (median) key-phrases) and shorter global schema
for the Amazon dataset. Lower differences indicate more invariance toward the available
information.

words and 8.21 for not-useful questions. The average length of generated questions for BART,

BART+MissInfo and BART+MissInfo+PPLM (ours) are 5.6, 6.2, 12.3 respectively. We also find

a similar trend in the Ubuntu dataset as well.

Dynamic expansion of global schema

We anticipate that even if we build the global schema from the available offline dataset, it

is possible that new entries may appear in a real application. We investigate how our framework

responds to the dynamic expansion of global schema. We simulate a scenario where we extend

the “Laptop Accessories” category in the Amazon dataset, with 100 new products (those that

appeared on Amazon.com after the latest entry in the dataset). We obtain key-phrases from their

product descriptions and include them in the global schema for the category which amounts to a

21% change in the existing global schema. For 50 random products in the test set from the same

category, we found that in 28 out of 50 cases (56%), the model picked a new schema element that

is added later. This indicates that our framework is capable of supporting dynamic changes in

the global schema and reflecting them in subsequent generations without retraining from scratch.
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7.6 Conclusion

We propose a model for generating useful clarification questions based on the idea that

missing information in a context can be identified by taking a difference between the global

and the local view. We show how we can fine-tune a large-scale pretrained model such as

BART on such differences to generate questions about missing information. Further, we show

how we can tune these generations to make them more useful using PPLM with a usefulness

classifier as its attribute model. Thorough analyses reveal that our framework works across

domains, shows robustness towards information availability, and responds to the dynamic change

in global knowledge. Although we experiment only with Amazon and Ubuntu datasets, our

idea is generalizable to scenarios where it is valuable to identify missing information such as

conversational recommendation, or eliciting user preferences in a chit-chat, among others.

Chapter 7, in part, is a reprint of the material as it appears in “Ask what’s missing

and what’s useful: Improving Clarification Question Generation using Global Knowledge”

by Bodhisattwa Prasad Majumder, Sudha Rao, Michel Galley, Julian McAuley, which was

published in North American Chapter of the Association for Computational Linguistics, 2021.

The dissertation author was the primary investigator and author of this paper.
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Chapter 8

REXC: Knowledge Grounded
Self-rationalization via Extractive and
Natural Language Explanations

8.1 Introduction

Two approaches that currently predominate for building self-explainable neural models

are (i) selecting a subset of input features responsible for a prediction, known as an extractive

rationale (ER) [Zaidan and Eisner, 2008, Bastings et al., 2019a, Sha et al., 2021], and (ii)

generating a natural language explanation (NLE) for a prediction [Park et al., 2018, Hendricks

et al., 2016, Camburu et al., 2018, Kayser et al., 2021]. For an explanation (ER or NLE), one is

interested in two characteristics: quality (or plausibility) and faithfulness. Quality measures the

degree of matching between the model’s explanations and some ground truth; models with low-

quality explanations would be undeployable. Faithfulness measures how well the explanations

reflect the decision-making processes behind the predictions; unfaithful explanations would be

misleading.

ERs are concise and provide quick explanations, which may sometimes be enough for

users to assess the trustworthiness of the model. However, ERs may not have the means to

provide important details of the reasoning of a model (e.g., relations between features) [Wiegreffe

et al., 2021b]. In such cases, NLEs can be complementary, as they allow for detailed justification
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(a)

(b)

Two men are competing in a 
bicycle race 

premise
- bicycle race requires bikes


-  race requires riding bikes 

- bicycle race needs helmets

-  men are people People are riding bikes

Two men are competing in a 
bicycle race 

People are riding bikes
hypothesis

Competing in a 
bicycle race requires 

men riding bikes

Question: What is [person2] doing?

Answer: 
[person2] is 

guarding 
[person3]

- he has a weapon to protect 

- he guards the place

- he is vigilant

- he makes the place safe

He has a weapon in 
his hand to protect 

his master

Natural 
Language 
Inference 
(e-SNLI)

Visual 
Common 
sense 
Reasoning 
(VCR)

label: 
entailment

input (i) extractive rationales (ii, iii) background knowledge (v) Task Prediction(iv) NLE

input (i) extractive rationales (ii, iii) background knowledge (v) Task Prediction(iv) NLE

Figure 8.1. Illustrative examples for REXC on (a) natural language and (b) vision-language
tasks.

in a form that is most accessible to humans (natural language). However, machine-generated

NLEs, like other generated text, are prone to lacking background knowledge (e.g., commonsense)

[Camburu et al., 2020, Mao et al., 2019]. This could be because the NLEs are unfaithful or

the model did not use the necessary knowledge in its decision-making process. Despite the

complementary nature of ERs and NLEs, self-rationalizing models usually provide only one

of them, with a few exceptions [Park et al., 2018, Wu and Mooney, 2019]. Moreover, while

knowledge grounding has been done for black-box models [Bauer et al., 2018, Chandu et al., 2021,

Chen et al., 2020a], we are not aware of any work on knowledge grounding for self-rationalizing

models. Furthermore, existing self-rationalizing models are often outperformed by black-box

models at solving the task at hand, leading to an undesirable performance-explainability trade-off.

To ground both decision-making and rationalization in background knowledge, as well

as to reap the benefits of both ERs and NLEs, we combine these three ingredients in a unified

self-rationalization framework. Our framework, which we call REXC (Extractive Rationales,

Natural Language Explanations, and (here) Commonsense)1, performs five steps: (i) selects

a subset of the input features as an ER, (ii) inputs the ER to a knowledge resource to obtain

a set of knowledge snippets about the ER, (iii) selects a subset of the snippets as the most

relevant ones for solving the instance, (iv) passes the selected snippets to an NLE generator,

(v) passes the generated NLE to a predictor that outputs the final answer (see Figs. 8.1 and

1Code is available at https://github.com/majumderb/rexc
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8.2). All steps are learned jointly. REXC does not require direct supervision on the ER and

snippet selections, which are modeled by two series of latent variables and variational learning

(Section 8.2). Supervision comes from the final answers and NLEs.

REXC is illustrated in Fig. 8.1. In Fig. 8.1b, a subset of super-pixels of an input image

form the selected ER for the question-answering instance. To answer that “Person2 is guarding

person3” and explain the answer, the model needs to identify that person2 holds a weapon and

have the knowledge that weapons are used to protect.

In our experiments spanning natural language (NL) and vision-language (VL) domains,

we find that REXC significantly improves the quality of both ERs and NLEs, while bridging the

gap between task performance and explainability. We also show, via perturbation analysis, that

the explanations from REXC exhibit necessary conditions of faithfulness. Finally, REXC allows

the selection of relevant knowledge snippets even without supervision from the NLEs. As these

snippets can act as NLEs, we provide a zero-shot model with NLEs (REXC-ZS), which proves

to be competitive with its supervised version.

The contributions of this work are summarized as follows:

• We propose a novel self-rationalizing framework that incorporates background knowledge

and provides two complementary types of explanations: ERs and NLEs.

• REXC consistently outperforms previous best models that produce at least one type of

explanation and performs on par with the SOTA models that do not provide any explanation,

thus bridging the gap between explainability and task performance.

• REXC largely outperforms the previous SOTA in NLE and ER quality.

• REXC passes necessary faithfulness tests.

• REXC allows for a zero-shot setting in terms of NLEs (REXC-ZS), which sometimes

outperforms models trained with a full training set of NLEs.
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8.2 REXC

We aim to build a model that solves a task and explains its predictions via both ERs and

NLEs. Furthermore, we aim for our model to benefit from resources of background knowledge,

which could be general commonsense or domain-specific. To this end, REXC combines these

three ingredients in the following way: it extracts rationales from the input, uses them to query an

incorporated knowledge module to obtain knowledge snippets, selects the most relevant snippets,

generates an NLE, and gives the prediction. We use Fig. 8.1a as a running example and Fig. 8.2

for an overview of the architecture.

8.2.1 Extractive Rationales via Binary Latent Variables

We define a neural module R that selects an ER from the input. An ER is a minimal

sufficient subset of input parts (e.g., tokens for text or super-pixels for images) most responsible

for the model’s prediction [Lei et al., 2016b]. In Fig. 8.1a, we see an example from the

natural language inference task [Bowman et al., 2015] (details in Section 8.3), where the ER is

{“men”, “people”, “bicycle race”, “riding bikes”}, the most responsible units for the prediction

(entailment).

We model the selection of ERs using a series of latent variables ranging from [0,1]

(zr
i ∈ Z r) over the N input units. A unit becomes a part of the ER iff its associated variable

takes value 1. Following [Bastings et al., 2019a], we use the Hard Kumaraswamy distribution

(referred to as HardKuma) as the reparameterization strategy to learn these latent selectors using

backpropagation. The parameters of the neural module R are denoted by θ r, which estimate the

HardKuma variables for the input units. We also encourage the ERs to be terse, and we control

the sparsity using an L1 relaxation defined by the tractable Kumaraswamy CDF.

8.2.2 Knowledge about an Extractive Rationale

We hypothesize that inferred knowledge about the ERs are the most important bits of

information for the predictions and, implicitly, for the NLEs. For example, in Fig. 8.1a, we
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Figure 8.2. Architecture of REXC. The knowledge module is frozen, while the rest of the
modules are trained jointly with the signals from the NLEs and outputs. Deliverables from
REXC are in blue.

obtain relevant knowledge snippets (bicycle race requires bikes and men are people) for the ER

(“bicycle race”, “men”, “people”), which influence both the prediction and the NLE.

We use a knowledge module K , which supports input from an appropriate modality (e.g.,

text or image) for querying. We query K with each contiguous element of the ER (e.g., “bicycle

race”) to obtain a large pool of associated knowledge snippets S . We take advantage of recent

developments in generative models capable of providing background knowledge about a given

entity for the ease of end-to-end training, such as COMET [Bosselut et al., 2019] for NL inputs and

VisualCOMET [Park et al., 2020] for image inputs. The generative knowledge module does not

suffer from the no-hit issue that is typically encountered in retrieval settings. However, REXC is

flexible to accommodate a retrieval-based knowledge source when equipped with a differential

search (see Section 8.4.4). To facilitate end-to-end training, we use soft representations of the

elements of the ER—which are encoded using the embedding layer of K and subsequently

selected by zr
i (when 1) for queries to K . Finally, we denote the parameters of K as θ k.

8.2.3 Knowledge Selection

While the knowledge module generates several knowledge snippets (S ), not all of them

are relevant for the prediction. Hence, we introduce a knowledge selection step. Furthermore,

the selected knowledge snippets can appear as supporting evidence in addition to the generated

NLE—an advantage of REXC over models that only generate NLEs.
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We model the selection step via another set of latent selectors zk
i ∈Z k, which take a value

from the interval [0,1] and are realized by a HardKuma distribution (similarly to Section 8.2.1).

More than one knowledge snippet may be relevant, however, we want the knowledge selection

to be sparse. Hence, we use L1 regularization to control the sparsity of the selected knowledge.

The parameters predicting the latent selectors zk
i are denoted as θ ks.

To facilitate end-to-end training, we do not decode knowledge snippets into natural

language. Instead, we retain the final hidden representations of each snippet from the knowledge

module as si ∈ S. Using zk
i as an indicator of selection, we obtain the vectors of selected

knowledge snippets and concatenate them as input to the NLE generator. We also concatenate the

representation of the input for the selector to be able to select the most relevant snippets given the

input. At inference time, we decode the selected knowledge snippets into language, which could

be used as additional supporting evidence along with the NLE. We call this variant REXC+.

Human evaluation shows that this additional evidence leads to higher quality explanations

(Section 8.4.1).

8.2.4 NLE Generation and Task Prediction

We use a natural language decoder G , which concatenates the soft representations of the

knowledge snippets and of the instance input at the input layer and generates an NLE. After

G , we add a predictor module P , a linear layer with softmax, which takes the final hidden

representation of the NLE and the representation of the instance input, and projects them to the

output space for the task prediction. The prediction is thus directly conditioned on the NLE and

the input, and, implicitly, on the ER and selected snippets. We denote the parameters of G and

P as θ g and θ p, respectively. We use direct supervision from the ground-truth NLEs and task

outputs.
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8.2.5 Training

The parameters for R, G , P , and the knowledge selector can be jointly trained end-

to-end with backpropagation by summing up the negative log-likelihoods for the predictions

and NLEs. We found that updating parameters for the knowledge resource K led to a minimal

improvement; hence, K is fixed for computational ease.

However, due to the presence of zr
i s in R, we instead have to optimize a lower bound E

of the original log-likelihood. We follow Bastings et al. [2019a] and optimize minθ r,θ g,θ ks,θ p L1

with

L1 =−E (θ r,θ k,θ ks,θ g,θ p)+λ
r
0 ∑

N
i=1 zr

i +λ
r
1 ∑

N−1
i=1

∣∣zr
i − zr

i+1
∣∣ ,

where the second term is the L1 penalty, the third term is a fused Lasso to control the total number

of transitions for compactness [Lei et al., 2016b], and λ r
0 and λ r

1 are hyperparameters. Similarly,

we have another lower bound for the zk
i variables in the knowledge selection step, for which we

optimize minθ ks,θ g,θ pL2 with

L2 =−E (θ ks,θ g,θ p)+λ
k
0 ∑

M
i=1 zk

i ,

where the second term denotes L1 regularization for sparse knowledge selection. Finally, we

combine the lower bounds as α ×L1 +(1−α)×L2, where α ∈ [0,1] is a hyperparameter.

We estimate the gradient of E via Monte-Carlo sampling from the reparameterized HardKuma

variables [Kingma and Welling, 2014]. All hyperparameters are chosen based on a greedy search

over the task prediction accuracy.
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Table 8.1. Our tasks: three Natural Language and two Vision-Language.

Task Dataset Summary

Commonsense
Validation

ComVE
[Wang et al., 2019]

Choosing input sentence
that defies commonsense

Natural Language
Inference

e-SNLI
[Camburu et al., 2018]

Textual entailment between
premise and hypothesis

Commonsense
Question Answering

COSe
[Rajani et al., 2019]

Answering multi-choice
commonsense questions

Visual
Entailment

e-SNLI-VE
[Kayser et al., 2021]

Entailment between image
premise and text hypothesis

Visual Commonsense
Reasoning

VCR
[Zellers et al., 2019a]

Commonsense reasoning in
visual question-answering

8.3 Experiments

Tasks.

We experiment with three tasks of natural language and two tasks of vision-language

understanding as described in Table 8.1.

Implementation Details.

The components of REXC for the NL tasks are: Rationale extraction: We use the

denoising encoder-decoder bart-large [Lewis et al., 2020a] with a linear layer and softmax

at the end to generate the distribution for latent selectors. Knowledge source: We pre-train a

bart-large model as a proxy for COMET (matched with original perplexity, 11.47 vs. 11.14 as

from [Bosselut et al., 2019]) that matches the tokenization scheme used in R. NLE and task

output: We use another bart-large model to generate the NLEs, decoded with top-p sampling

(p = 0.95) [Holtzman et al., 2020]. A linear layer followed by a softmax is used as the task

predictor P .

The components of REXC for the VL tasks are: Rationale extraction: We use a transformer-

based VL model, UNITER [Chen et al., 2020b], which uses self-attention to learn contextualized

representations for image-text input pairs. We add two MLPs on top of UNITER, which are used

to generate the distributions for the latent ER selection from the image and text input; Knowledge
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Table 8.2. Task performance (Acc.) and NLE quality for the (a) NL and (b) VL tasks. NLE
Automatic metrics: METEOR, BERTScore, BLEURT, and NLE human evaluation metrics: e-ViL score,
Yes/No %s. Bold are the best numbers (p < 0.001). Underline indicates best task performance for models
with any explanations.

ComVE e-SNLI COSe

Model Acc. MET. BRTSc. BLRT. e-ViL Yes No Acc. MET. BRTSc. BLRT. e-ViL Yes No Acc. MET. BRTSc. BLRT. e-ViL Yes No

Gold – – – – 91.6 79.3 1.1 – – – – 98.1 94.1 2.7 – – – – 84.8 74.5 1.8
Task SOTA 97.0 – – – – – – 93.1 – – – – – – 83.7 – – – – – –

NILE – – – – – – – 91.9 11.3 75.3 41.2 84.3 80.1 9.4 – – – – – – –
CAGE – – – – – – – – – – – – – – 72.1 1.3 43.1 16.9 59.5 35.4 16.7
WT5 96.1 3.4 86.4 27.0 67.7 46.2 11.0 92.1 12.3 75.3 42.3 85.3 82.7 12.8 81.0 2.2 52.0 22.4 73.0 53.9 10.5

REXC-ZS 96.7 7.7 72.4 24.2 65.8 56.5 16.3 92.4 11.9 63.2 40.7 88.3 85.8 5.5 83.1 2.6 38.1 17.1 83.4 73.2 5.6

REXC 97.2 14.1 91.9 33.7 87.3 72.6 2.8 92.9 19.6 86.8 51.3 94.9 93.9 3.6 83.6 7.2 60.3 30.5 87.4 74.3 2.1
REXC+ 97.2 – – – 88.4 72.6 1.2 92.9 – – – 95.6 94.3 2.7 83.5 – – – 87.9 74.7 1.8
REXC-RB 96.4 3.1 89.5 26.1 62.2 43.3 15.1 92.7 13.2 77.4 45.3 87.6 81.2 13.5 82.2 3.7 55.5 23.8 79.3 63.2 9.6
w/o KN-Sel 97.1 11.3 90.2 33.6 84.4 65.3 5.1 92.8 17.9 83.4 51.2 92.8 91.7 5.8 83.2 6.4 58.4 27.9 85.0 70.2 2.5
w/o ER 96.5 5.2 86.1 28.1 67.2 43.4 7.6 92.3 13.1 77.7 43.5 83.4 83.2 15.1 81.4 2.9 52.8 23.8 66.7 45.2 14.9
w/o KN & ER 96.0 4.3 85.2 26.3 66.6 41.3 7.6 92.2 12.4 76.4 41.9 82.9 81.2 15.7 80.8 2.5 51.6 22.4 65.9 44.1 15.9

(a)

e-SNLI-VE VCR

Model Acc. MET. BRTSc. BLRT. e-ViL Yes No Acc. MET. BRTSc. BLRT. e-ViL Yes No

Gold – – – – 90.6 79.3 1.1 – – – – 95.8 94.1 2.7
Task SOTA 79.5 – – – – – – 81.6 – – – – – –

PJ-X 69.2 14.7 79.1 35.6 70.1 55.2 14.5 39.0 16.4 78.4 43.5 73.9 58.2 10.5
FME 73.7 15.6 79.7 34.5 71.9 56.7 13.2 48.9 17.3 79.4 47.8 73.0 56.2 11.1
RVT 72.0 18.8 81.1 35.3 72.2 55.4 12.8 59.0 11.2 78.9 44.2 73.2 57.4 11.5
e-UG 79.5 19.6 81.7 37.8 75.6 57.9 9.9 69.8 11.8 79.0 45.6 75.1 59.3 10.4

REXC-ZS 78.8 12.3 78.6 35.9 79.8 60.7 10.4 79.2 15.8 78.9 41.5 78.9 65.3 10.4

REXC 80.8 22.9 87.7 39.6 81.8 64.2 6.5 79.5 20.9 86.6 53.1 80.9 67.7 7.3
REXC+ 80.8 – – – 82.1 65.4 6.3 79.5 – – – 81.8 67.2 6.2
REXC-RB 78.9 20.7 83.5 38.4 78.3 59.3 10.3 78.9 14.7 81.3 47.2 78.4 62.2 11.4
w/o KN-Sel 79.5 22.4 86.8 39.7 79.9 62.3 7.9 78.6 19.7 85.5 51.4 79.9 67.6 8.2
w/o ER 79.7 20.1 81.9 38.4 76.5 58.6 9.1 74.5 12.4 79.6 46.4 76.3 60.1 10.2
w/o KN & ER 79.4 19.5 81.7 37.7 75.5 57.9 9.8 69.8 11.9 79.0 45.8 75.1 59.4 10.5

(b)

source: We use VisualCOMET [Park et al., 2020] as an image-based commonsense module,

which is fine-tuned on ATOMIC [Sap et al., 2019]. For text ERs, we follow the same setup as in

the NL setup; NLE and task output: We use GPT-2 [Radford et al., 2019], a language decoder,

for NLE generation. We adapt GPT-2 to condition on the representations learned by UNITER for

VL inputs and use nucleus sampling (p = 0.95) for decoding the NLEs. A linear layer followed

by a softmax is used for task prediction.

Baselines. We consider existing self-explainable models with the SOTA explanations (NLEs

or ERs) as baselines. We also compare REXC with models that are SOTA for task performance

(all until now are black-box models for our tasks).
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NL Baselines.2 The current SOTA for NLEs in all three NL tasks was obtained by WT5

[Narang et al., 2020], a general-purpose NLE generation model. We also compare with works

that model NLEs specifically for a dataset: WT5 for ComVE, NILE [Kumar and Talukdar, 2020]

for e-SNLI, and CAGE [Rajani et al., 2019] for COSe.

VL Baselines. We compare REXC with: PJ-X [Park et al., 2018] and FME [Wu and Mooney,

2019], two self-rationalizing models that provide both NLEs and ERs, and RVT [Marasovic

et al., 2020], a post-hoc explainer that uses external knowledge as REXC. We also compare with

e-UG [Kayser et al., 2021], the current SOTA in terms of NLE generation on VL tasks.

Ablations of REXC. We ablate REXC to investigate the effects of each component: ER

selector (w/o ER), knowledge selector (w/o KN-Sel), and both (w/o KN & ER). We also ablate

with the NLE generator (REXC-ZS), while training just using the final answers as supervision and

using the selected knowledge snippets as NLEs. This yields a zero-shot model for NLEs. REXC+

adds the selected knowledge to the NLEs, hence is only used in the human evaluation. Finally,

we also investigate the advantage of the generative knowledge module by replacing it with a

retrieval-based knowledge source: ConceptNet [Speer et al., 2017] and Visual Commonsense

Graphs [Zellers et al., 2019a]. To make the replacement, we use Maximum Inner Product Search

as in [Lewis et al., 2020b]. We call this version REXC-RB.

8.4 Results

8.4.1 Evaluating the Quality of the Explanations

We evaluate the quality of the ERs and NLEs for REXC in comparison with the baselines.

Automatic Evaluation of NLEs. Following Kayser et al. [2021], we measure the quality of

the NLEs by comparing them with the ground truth when the predicted label is correct. Here, we

report METEOR [Banerjee and Lavie, 2005a], BERTScore [Zhang et al., 2020], and BLEURT

[Sellam et al., 2020], which showed the highest correlation with human evaluation [Kayser et al.,

2 We used the implementations from the original works.
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Input PredictionSOTA NLENLEKnowledge SnippetsER
Q: People do many things to alleviate 
boredom.  If you can't get out of the house 
you might decide to do what?
A: a) play cards, b) skateboard, c) meet 
interesting people, d) listen to music

listen to 
music

People listen 
to music

Music can alleviate 
boredom when you 
are alone at home

1. Music alleviates boredom

2. Music is listened at homeC

O
Se

boredom, 
house, 
music

They are in 
a hospital 

room

There are hospital 
beds and nurses 
in the room

They are 
patients in 
the room

1. Hospital room has  
hospital beds


2. Hospital has nurses

VC
R

[person2], [person3] Q: Where are [person3] and 
[person2] right now?

Figure 8.3. Examples of NLEs and ERs generated from REXC along with selected knowledge
snippets vs. those from the previous SOTA for the correct predictions for COSe and VCR.

Table 8.3. ER quality. Comparison of previous SOTA models [DeYoung et al., 2020a] for rationale
extraction vs. REXC for ER quality. Best numbers are in bold.

e-SNLI COSe

System Acc. IOU Tok. Acc. IOU Tok.

SOTA 73.4 70.5 70.2 34.6 38.9 51.9
REXC 78.4 72.9 73.5 39.6 41.7 56.1
w/o KN-Sel. 77.8 72.5 73.1 38.7 40.6 55.7

2021].

For NL tasks, REXC achieves the best values on all three automatic metrics (see Ta-

ble 8.2a). We see sharp jumps (e.g., ranging from 4.8 to 11 points in METEOR) between

REXC and models that do not use knowledge grounding, such as REXC w/o KN & ER and

WT5. This confirms that background knowledge is a useful component for better NLEs. The

gains for REXC over REXC w/o KN-Sel. show that knowledge selection provides a regularizing

effect.

Similarly, REXC outperforms the previous SOTA models for VL tasks (see Table 8.2b).

In particular, REXC outperforms RVT, a competitive model providing post-hoc NLEs also

using the same commonsense resource as REXC, which possibly indicates that joint training for

predictions and NLEs is superior over a post-hoc explainability approach.

Automatic Evaluation of ERs. To evaluate the quality of ERs, we directly compare them

with gold ERs using ERASER [DeYoung et al., 2020a]. ERASER uses accuracy (Acc.) and
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overlap-based metrics such as F1 at Intersection-Over-Union spans (IOU) and token (Tok.)

overlap. In Table 8.3, we show results for e-SNLI and COSe, the only ones from our list that

have gold ERs available. We observe that REXC leads to significantly superior-quality ERs

compared to models that do not use NLEs or background knowledge to influence rationale

extraction (e.g., 56. vs. 51.9 F1). Thus, REXC achieves a new SOTA in ERs for both datasets.

Possible explanations for this are: (1) additionally optimizing for NLEs constrains REXC to

generate more informative ERs, and (2) to obtain better-suited knowledge snippets, REXC must

extract high-quality ERs.

Human Evaluation of NLEs. Following Kayser et al. [2021], we asked human annotators to

measure the quality of the generated NLEs. For each NLE, we asked: Given the input, does the

explanation justify the answer? and provide four options: Yes, Weak-Yes, Weak-No, and No.

We report the e-ViL score from [Kayser et al., 2021] combining results for each option with a

weight of 1, 2
2 , 1

3 , and 0 respectively. We only evaluate NLEs for correct predictions and collect

250 random such examples for each model and each dataset.

For NL tasks, Table 8.2a shows that humans also rated the NLEs from REXC far better

than those from the previous SOTA models. Again, REXC without knowledge selection shows

large drops, which indicates that the knowledge selection step has positive effects on the quality

of the NLEs.

For VL tasks, NLEs from previous SOTA models were rated far lower than ground

truths, indicating an even bigger need for improvement. We observe substantial gains for REXC,

even when compared to competitive models that already use external knowledge, such as RVT

[Marasovic et al., 2020].

Often NLEs generated by REXC are longer than those from the baselines, since they are

rich in background knowledge. In the human evaluation sample for e-SNLI, we found that 73%

of NLEs from REXC are longer (at least by a token) compared to NLEs from WT5. However, we

find that for REXC, length is loosely correlated with the e-ViL score with a Pearson’s correlation

score of 0.21. This correlation is similar (0.17) for NLEs from WT5. We also find similarly low
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correlations (0.13, 0.24, 0.14, and 0.20) between length and e-ViL score for ComVE, COSe,

e-SNLI-VE, and VCR, respectively, which indicates that NLE length did not act as a confounding

factor during human evaluation.

Qualitative Analysis. Fig. 8.3 shows sample outputs from REXC for COSe and VCR . We

observe that NLEs from REXC are more grounded in knowledge than those from previous

SOTA models. Moreover, previous SOTA NLEs fall short of being comprehensive NLEs

(e.g., “People listen to music” for COSe), which could be because they do not condition on ERs

(e.g., “boredom”).

8.4.2 Task Performance

Until now, the SOTA models in terms of task performance for all five tasks were models

that do not offer any explainability [Wang et al., 2020, 2021, Lan et al., 2020, Xie et al., 2019a,

Yu et al., 2020]. Models that attempt to offer explanations (NLEs or ERs) faced a drop in

accuracy (see Tables 8.2a and 8.2b). REXC bridges this important gap by matching SOTA

task performance for 4 out of 5 tasks and even achieving a new SOTA for e-SNLI-VE, while

providing two types of explanations, both of which are of higher quality than the previous models

with SOTA explanations.

8.4.3 Zero-shot NLEs

Often, there exists a high overlap between the generated NLEs and the selected knowledge

snippets. This is expected, since the NLEs and predictions are conditioned on the selected

knowledge. This raises the question of whether the selected snippets alone could form sufficient

NLEs. We argue that, in general, this is not the case, because the information in a background

resource may not provide the whole reasoning behind a prediction. This information is only

meant to add value but not replace the NLEs. However, in particular cases where the ground-truth

NLEs consist mainly of pieces of background knowledge, selected snippets may be sufficient

explanations. To investigate this for our datasets, we look at REXC-ZS, where relevant knowledge
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was selected only using the task prediction loss and concatenated to be used as NLEs. Tables 8.2a

and 8.2b show that REXC-ZS performs poorly in automatic metrics, which is mostly due to

being out of distribution w.r.t. the ground-truth explanations. However, in human evaluation,

we see that even if the NLEs from REXC-ZS were not better than the generated NLEs from

REXC, they were largely better than the NLEs from the previous SOTA models (which were

trained with full training sets of NLEs) for 4 out of the 5 tasks. These results indicate that: (1) the

NLE module in REXC acts as an important conditional generation step that makes NLEs fluent

and more comprehensible; and (2) despite being less fluent, concatenated knowledge snippets

can act as NLEs in cases where ground-truth NLEs are not present. This shows the potential of

REXC for zero-shot natural language rationalization.

8.4.4 Generative vs. Retrieval-based Knowledge Module

One of the reasons for choosing a generative knowledge module (e.g., COMET) is to

avoid the no-hit issue of indexed knowledge bases. For example, when we replaced COMET with

ConceptNet [Speer et al., 2017], for e-SNLI, we found that 23% of instances do not retrieve

any knowledge snippet. As expected, REXC-RB performed worse than REXC (see Tables 8.2a

and 8.2b).

8.5 Evaluating Faithfulness

Evaluating the faithfulness of explanations is a challenging open question for both

ERs [Jacovi and Goldberg, 2021] and NLEs [Wiegreffe et al., 2021b]. We analyze REXC for

faithfulness based on existing works.

8.5.1 Faithfulness of the NLEs

Evaluating the faithfulness of NLEs is still in its infancy. To our knowledge, Wiegreffe

et al. [2021b] is the only work that provides (two) necessary conditions for NLEs’ faithfulness:

feature importance agreement and robustness equivalence. Both conditions perturb the input and
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Figure 8.4. Feature importance agreement. Left: Accuracy when important features (solid) vs
when random features (dotted) are occluded. Right: Simulatabilities important features (solid)
vs when random features (dotted) are occluded.

measure the change in model behavior in order to establish the extent of label-NLE association.

As they mentioned, there are currently no sufficient conditions for faithful NLEs, since there

can be different realizations of NLEs that significantly (but differently) contribute to the model’s

prediction process.

Changes in Model Behavior. Change in model behavior can be captured by changes in task

accuracy and changes in the predictive ability of NLEs. The predictive ability of NLEs over

inputs (formally termed as simulatability [Doshi-Velez and Kim, 2017, Hase et al., 2020]) is

defined by the change in task accuracy when the generated NLEs are appended to the input.

To ensure NLEs’ faithfulness, changes in accuracy and in NLEs (via simulatability) should be

similarly affected by changes in the input.

Feature Importance Agreement. This condition uses a gradient-based attribution technique

to find the most important features with respect to an output (prediction or NLE). For a predicted

class, a gradient attribution is the gradient of the predicted class’s logit with respect to an input

feature. The attribution score is calculated by performing an operation (here, L1 norm) to turn

the gradient into a scalar quantity. For REXC, we identify salient input features (tokens or

super-pixels) with attribution scores (top-{10,20,30}%) with respect to the task prediction. We

measure the change in simulatability of NLEs when we remove these features from the input.
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Figure 8.5. Robustness equivalence analysis when noise is added to the (a) input and (b) selected
knowledge snippets. In each pair, the left chart shows % of stable (unflipped) labels (solid), and
accuracy (dashed). The right chart in a pair depicts the simulatability of NLEs.

Similarly, we measure the change in task accuracy when we remove the features most important

for the NLE generation. To ensure faithfulness, both these changes should be significantly

higher than the changes that would appear if we were to remove random input features. Fig. 8.4

shows that the removal of salient input features similarly affects both task accuracy and NLEs

simulatability when compared to random removal—ensuring that this faithfulness condition is

met by REXC on e-SNLI and VCR. Similar trends are also observed in the other datasets.

Robustness Equivalence. The second necessary condition involves perturbing the input by

adding zero-mean Gaussian noise N (0,σ2) to the internal representations of its features and

observing the corresponding changes in task accuracy and NLE simulatability for a range of

noise values. We are interested in noise regions where labels and NLEs remain stable (small

changes) and noise regions where labels and NLE become unstable (large changes). To indicate

faithfulness of the NLEs, predicted labels and NLEs should remain stable (or unstable) at the

same noise region. For better label-NLE association, the sharpest drop in simulatability and

accuracy should align with the sharpest drop in % of stable labels. In Fig. 8.5, we see this

condition holds true for REXC. For example, for e-SNLI (in Fig. 8.5(a)), we see that the point

of minimum contribution of NLEs to the prediction coincides with the sharpest drop in task

accuracy, at σ2 = 25. Lower noise than σ2 = 25 keeps both labels and NLEs stable, whereas

higher noise will make both unstable. Similar trends are observed in other datasets as well.
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8.5.2 Faithfulness of the ERs and Knowledge Snippets

For ERs, faithfulness metrics are more studied than NLEs in the literature [DeYoung

et al., 2020a, Jacovi and Goldberg, 2021], and both necessary and sufficient conditions for

faithfulness exist. DeYoung et al. [2020a] introduced two metrics for measuring faithfulness in

ERs: comprehensiveness (necessary condition) and sufficiency. Comprehensiveness is measured

by the change in task accuracy between the case when the full input is used for the prediction by

the original model and the case when the ERs (from the original model) are dropped (masked

for images) and the model is retrained on these new instances (with dropped ERs). A higher

difference (maximum 1) would indicate a higher extent of faithfulness. Sufficiency can be

calculated as the difference in accuracy between the case when the full input is used for the

prediction and the case when only the ERs (from original model) are used to retrain the model.

A closer to zero value indicates a higher degree of faithfulness. For REXC, we extend this to the

selected knowledge snippets to also analyze their comprehensiveness and sufficiency for the task

prediction. Table 8.4 confirms solid comprehensiveness (high values) and sufficiency (close to

zero) for both ERs and selected snippets.

A baseline for checking faithfulness of ERs and knowledge selection is to check their

sufficiency and comprehensiveness with respect to a random selection of input tokens as ER

and a random selection of knowledge snippets. Table 8.4 shows that REXC achieves better

comprehensive and sufficiency as compared to a random baseline. REXC also outperforms all

models reported in DeYoung et al. [2020a] in both metrics.

8.6 Summary and Outlook

In this work, we proposed REXC, a self-rationalizing framework that incorporates

background knowledge resources and provides two complementary types of explanations: ERs

and NLEs. Using five tasks, from natural language and vision-language domains, we show that

REXC obtains a new SOTA performance for both NLEs and ERs. We also close the important
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Table 8.4. Comprehensiveness (Comp.) and Sufficiency (Suff.) metrics for ERs and selected
knowledge snippets generated by REXC vs. random ERs and knowledge snippets

ComVE e-SNLI COSe e-SNLI-VE VCR

ERs
Random Comp. 0.12 0.11 0.10 0.13 0.14
REXC Comp. 0.32 0.45 0.24 0.28 0.33
Random Suff. 0.44 0.31 0.54 0.51 0.39
REXC Suff. 0.14 0.08 0.05 0.10 0.13

Knowledge Snippets
Random Comp. 0.12 0.14 0.14 0.10 0.09
REXC Comp. 0.56 0.49 0.36 0.27 0.35
Random Suff. 0.41 0.51 0.43 0.51 0.37
REXC Suff. 0.15 0.09 0.08 0.07 0.08

gap between task performance and explainability for the five tasks that we experimented with,

and obtained a new SOTA for e-SNLI-VE. While we used commonsense resources, future work

could look into adding other types of knowledge resources, including more specialized ones,

such as legal and medical. Additionally, while we showed that REXC opens up a promising

direction for zero-shot NLE generation, further investigation could reap more benefits from the

principals behind REXC for zero-shot and few-shot setups.

Chapter 8, in part, is a reprint of the material as it appears in “Knowledge-grounded

Self-rationalization via Extractive and Natural Language Explanations” by Bodhisattwa Prasad

Majumder, Oana-Maria Camburu, Thomas Lukasiewicz, Julian McAuley, which was published

in International Conference on Machine Learning, 2022. The dissertation author was the primary

investigator and author of this paper.
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Chapter 9

INTERFAIR: Debiasing with Natural Lan-
guage Feedback for Fair Interpretable
Predictions

9.1 Introduction and Background

Debiasing human written text is an important scientific, and social problem that has

been investigated by several recent works [Zhang et al., 2018a, Jentzsch et al., 2019, Badjatiya

et al., 2019, Heindorf et al., 2019, Ravfogel et al., 2020, Gonen and Goldberg, 2019, He et al.,

2021]. These methods primarily try to eliminate the biased information from the model’s internal

representations or from the input itself, disregarding the task performance during the process.

Ideally and fairly, a model should use the necessary amount of information, irrespective of

bias, to achieve an acceptable task performance. This trade-off between task performance and

bias mitigation is subjective or varies between users [Yaghini et al., 2021] and is often hard to

achieve via learning from data [Zhang et al., 2018a]. Our goal is to perform a predictive task

(here, predicting a profession based on a biography) – however, we want to regulate the sensitive

information that the model uses while maintaining the model’s predictive performance.

Figure 9.1 shows the limit of an algorithmic approach where ignoring all gendered

information can lead to a wrong result. However, a user can further tune the model’s belief on the

bias, leading to a correct prediction while minimally using biased information. While interactive
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NLP models recently focused on model debugging [Tandon et al., 2021, 2022], improving

explainability in QA [Li et al., 2022b], machine teaching [Dalvi et al., 2022], critiquing for

personalization [Li et al., 2022a], and dialog as a more expressive form of explanations [Lakkaraju

et al., 2022, Slack et al., 2022], we leverage on the untapped opportunity of adding interaction

capabilities for debiasing a model’s prediction using natural language feedback. Furthermore,

allowing the user to interact with underlying prediction rationales addresses the subjective aspect

of fairness and improves transparency.

Here, we propose INTERFAIR, a modular interactive framework that (1) enables users

to provide natural language feedback at test time to balance between task performance and

bias reduction, (2) provides explanations of how a particular input token contributes to the task

performance and exposing bias, and finally (3) achieves better performance than a trained model

on full-text input when augmented with feedback obtained via interactions.

9.2 Controlling Bias Exposure via Rationales

An interpretable debiasing algorithm should use a ‘fair’ amount of sensitive information

as part of the input responsible for the prediction (a.k.a rationale). Let the input tokens that

are predictive for the task output be called task rationales and tokens that reveal sensitive

information be called bias rationales. We further use energy functions to probabilistically

measure the importance of a token for an objective (either task performance or revealing bias).

We argue that we can regulate the task energy of input tokes by overlaying bias energy values

and blocking high-bias tokens that do not significantly degrade task performance.

9.2.1 Rationales and Energies

We first identify input tokens that carry sensitive information. For an input text x =

{x1, · · · ,xn} (e.g., biography of a person), we predict an associated bias label (e.g. gender) using

a function fb(x). Now to extract bias rationale, we assume a sequence of latent binary variables

zb = {zb
1, · · · ,zb

n}, zb
i ∈ {0,1} for each input token index i [Lei et al., 2016a], and feed them to fb
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to maximize the prediction probability of the correct bias label by regulating the contribution of

each token:

zb ∼ gb(x); fb(x⊙ zb)

where gb is a bias rationale extractor that predicts the probability of how much each token

contributes to predicting the bias label. We construct bias rationale as x⊙ zb where zb is

sampled from gb (modeled as a HardKuma distribution [Bastings et al., 2019b] to maintain

differentiability).

Now to measure the significance of each token for bias prediction, we define bias energy

as the negative log-likelihood of the non-selection probability of each token [LeCun et al., 2006]

for the bias prediction. Higher energy indicates more significance 1. Hence, the bias energy for

the i-th token would be:

et
i =− log-likelihood(p(zb

i = 0)) =− log-likelihood(1−gt(xi|φt)),

where gb(xi) is the probability of selection of xi for the bias prediction.

Similar to bias rationales, we have a task rationale extractor gt that produces zt =

[zt
1, · · · ,zt

n] and a predictor function ft that predicts the task label using task rationales x⊙zt with

energies as

zt ∼ gt(x); ft(x⊙ zt); et
i =− log-likelihood(1−gt(xi)).

9.2.2 Training with Energy-based Constraint

Upon obtaining the task and bias energy for the i-th token, we penalize its importance for

predicting the task if it has high bias energy. In contrast, tokens with low bias energy can retain

1Direct probabilities i.e. p(zb
i = 0) led to unstable performance.
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Figure 9.1. Interactive setup for INTERFAIR where user provides feedback to update bias rationales
that in turn updates task rationales and subsequent task prediction.

their task energy as is. Hence, we jointly train bias and task prediction modules with a debiasing

constraint:

DC(i) = et
i +(eb

i − τ) if eb
i > τ; DC(i) = 0 otherwise

where τ is a hyperparameter indicating the bias tolerance threshold. Ideally, this constraint will

promote the use of low-bias energy replacements of the high-bias and high-task important tokens

in order to maintain task performance. During training, we first obtain the bias prediction model,

keep it fixed, and then update the task prediction model which is optimized with the debiasing

constraint.

9.3 Natural Language (NL) Feedback with INTERFAIR

During inference, given an input, the model can produce a debiased output since it is

trained to weigh less on the high-bias and high-task energy tokens and replace them with low-bias

replacement. However, the bias module we use during training is neither perfect nor does it

reflect a user’s subjective view of sensitive information. The current (and default) model is
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regulated b1y the bias tolerance threshold τ , which is a hyperparameter and may or may not

reflect the true bias tolerance threshold of the user.

To allow online modification of the output colored by the user’s understanding of sensitive

information, we need to be able to modify the model output accordingly. We hypothesize a

system, INTERFAIR, that allows the user to provide new bias energy values for each input token

which will override the current output and modify the model’s prediction (and task rationales)

accordingly. Users can access the task and bias rationales and adjust energy values accordingly.

However, providing numerical energy values is often not practical and may limit users’ interaction

with such a system. Thus, we allow users to provide natural language feedback about input

tokens and automatically convert them to relevant energy values for subsequent updates in model

prediction.

9.3.1 Parsing NL feedback

The simplest form of feedback would be to provide a critique/correction on the bias

energy of a certain input token by indicating whether would they be high, or low. To convert an

NL feedback to actionable feedback for all input tokens, we treat it as a sequence labeling task.

Specifically, we use a parser fp that encodes the NL feedback, the bias variable (e.g. gender) and

the original task input and produces a sequence of High / Low / NA labels for the complete input

token sequence. An example feedback and its parse are shown in Table 9.1. Such an approach

allows us to encode complex feedback where the user wants to provide feedback on multiple

input tokens (see Figure 9.1).

Since we do not have large annotated data for the parsing task, we instead adopt a

few-shot framework, following [Slack et al., 2022]. We use a large language model (LLM)

(e.g. GPT-J2) as they have strong priors for language understanding (here, parsing) tasks from

their pre-training phase. We use few demonstrative parsing examples for in-context learning of

fp. See complete task prompt in Table 9.1.

2https://huggingface.co/docs/transformers/model_doc/gptj
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9.3.2 Modifying Task Rationales

Upon converting the user feedback to an actionable feedback for each input token, we first

calculate the updated bias energies which, in effect, change the task energies and task rationales.

We explore two heuristic strategies for to update the bias energies from user feedback: 1) Coarse

where for the i-th token, we assign the Bernoulli probability puser(zb
i = 1) as 1 if the feedback is

High or 0 if the feedback is Low; and 2) Fine where we use the probability of feedback labels

obtained from the NL parser as a soft score for puser(zb
i = 1). Finally, for smoothing, we obtain

the new bias energies as:

pnew(zb
i = 1) = αgb(xi)+(1−α)puser(zb

i = 1); eb
i,new =− log-likelihood(1− pnew(zb

i = 1))

Now, to mimic the training-time behavior of how task and bias energies are related via a

debiasing constraint, we use the same constraint DC(i) for i-th token to update the task rationale

based on updated bias energies during inference. We keep τ = 0 to emphasize the effect of the

user feedback.

9.4 Experiments and Results

We break our experiments into two parts: 1) developing the NL parser and 2) interactive

debiasing with INTERFAIR. We use BiosBias [De-Arteaga et al., 2019], a dataset made from a

large-scale user study of gender in various occupations. It contains short biographies labeled

with gender and profession information, and a possible confluence exists between gender and

annotated profession labels.

Using INTERFAIR, we would like to predict the profession from biographies without the

influence of gender. Following [Ravfogel et al., 2020], we use 393,423 biographies with binary

gender labels (male/female) and 28 professions labels (e.g. professor, model, etc.). We initially

used 255,710 examples for training and 39,369 for validation. We use 500 examples (a random
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Table 9.1. NL feedback parser. Parse examples for IID and compositional (Comp) splits; parsing
accuracy on IID, compositional splits and overall test set. GPT-Neo has 2.7B parameters, GPT-J has 6B
parameters.

Examples Models IID Comp Overall

Assign High/Low/NA for each input token given bias and feedback.
[Input] Angela Lindvall is a model and she represented (...)
[Bias] Gender

[Feedback] Angela Lindvall is a woman’s name
[Parse] High, High, NA, NA, NA, NA, NA, NA (...) IID

[Feedback] Don’t use model, no gendered names or pronouns
[Parse] High, High, NA, NA, High, NA, High, NA, (...) Comp

GPT-Neo
5 shot 40.6 10.2 30.6
10 shot 54.2 15.1 34.4
20 shot 62.1 17.2 35.9

GPT-J
5 shot 46.7 14.2 33.1
10 shot 62.6 25.8 40.2
20 shot 73.8 30.1 57.1

sample from the rest 25%) as a test set for interactive debiasing. We perform a user study with

two annotators who optionally provide feedback to INTERFAIR to improve task performance or

minimize bias in task rationales.

Following [Slack et al., 2022], we use 5, 10, or 20 examples annotated by two independent

annotators for the NL parser. We additionally obtain a set of 50 more annotations for testing the

parser. While testing the performance of the parser, we use the accuracy metric, i.e. if the parsed

feedback matches with the gold parse. We also consider two splits for testing: an IID split where

the gold parse contains non-NA labels for one or two contiguous input token sequences and a

compositional split (to check LLM’s generalization performance [Oren et al., 2020]) where the

gold parse has three or more contiguous token sequences.

Table 9.1 shows the parsing accuracy for IID and compositional splits as well for the

overall test set. The compositional split is much harder than the IID since it contains more

complex feedback for more than three contiguous token sequences (or phrases). Comparatively,

GPT-J performs better than GPT-Neo model. Also, more demonstration examples work better

for in-context learning. The few-shot parsing using LLMs is faster and easier to adapt with

newer user feedback (GPT-J shows reasonable generalization performance) instead of finetuning

a supervised model [Slack et al., 2022].

To understand the efficacy of rationale energy-based debiasing, we consider two other
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Table 9.2. Evaluation for task accuracy (Acc. ↑), bias (F1 ↓), and faithfulness for task rationales:
Comprehensiveness (Compre. ↑) and Sufficiency (Suff. ↓)

Models Acc. Bias F1 Compre. Suff.

Full Text 0.81 0.98 – –
Reranking 0.70 0.45 0.23 0.32
Adv 0.36 0.35 – –

INTERFAIR

No feedback 0.80 0.38 0.52 0.01
Coarse 0.84 0.33 0.51 0.01
Fine 0.85 0.31 0.48 0.00

variants: Rerank, an inference-time debiasing variant where the task rationale is considered based

on ascending order of bias energy; (2) Adv, a model trained with an adversarial objective [Zhang

et al., 2018a] to debias the model’s latent space, but incapable of producing any rationales.

Table 9.2 shows that when we use Full Text as task input, the bias in task rationales is very

high. Reranking decreases the bias but also incurs a drop in task performance. The adversarial

method does not produce any explanation and cannot use any additional feedback, leading to

low task performance. INTERFAIR without feedback balances the task performance and bias

very well. Even though 81% (Full Text performance) is the upper bound of accuracy for purely

training-based frameworks, INTERFAIR allows for further modifications of the rationales to

improve task performance while decreasing bias. Indeed, we see both Coarse and Fine feedback

enhance task performance beyond what Full Text can achieve standalone while keeping the

bias minimal. It indicates that 1) full text based training suffers from spurious correlation or

noise that hampers task performance, and 2) interactive debiasing is superior to no feedback

since it produces better quality human feedback to refine task performance while eliminating

bias. Since test-time interactions modify task rationales, we check their faithfulness using

comprehensiveness and sufficiency (check definitions in [DeYoung et al., 2020b]), which shows

these still exhibit a high degree of faithfulness.

In summary, INTERFAIR shows the possibility of achieving even more accurate outcomes
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than simply training a model with full input. Moreover, it shows that prediction rationales are

editable without losing faithfulness, thus providing controllability. So far INTERFAIR does not

memorize previous feedback at a loss of generalization—this can be addressed via memory-based

interactions [Tandon et al., 2022], or model editing [Mitchell et al., 2021] as a future work.

Chapter 9, in part, is a reprint of the material as it appears in “InterFair: Debiasing

with Natural Language Feedback for Fair Interpretable Predictions” by Bodhisattwa Prasad Ma-

jumder*, Zexue He*, Julian McAuley, which is being prepared for submission. The dissertation

author was one of the primary investigators and authors of this paper.
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Chapter 10

Related Work

10.1 Related Work for COMPAC

Building personalized dialog agents has been a popular task recently, thanks to Zhang et al.

[2018b] who extensively studied the task with a new dataset PERSONA-CHAT, later as a form of a

challenge [Dinan et al., 2019a], where the dialog agent is seeded with a predefined persona in the

form of multiple sentences of textual description, mirroring a casual human conversation which

many times draws snippets from individual personal experiences and facts. Recent works focus

on improving persona-grounded dialog generation performance [Wolf et al., 2019, Mazaré et al.,

2018, Bao et al., 2019] as well as persona consistency in generated dialog [Welleck et al., 2019,

Li et al., 2019a, Song et al., 2019a]. Bao et al. [2019] proposed a reinforcement-learning-based

framework that promoting informativeness and persona-consistency via personal knowledge

exchange. Xu et al. [2020b] focused on using plausible topical keywords related to the available

persona facts using a neural topic model to explore beyond the given knowledge, possibly closest

to our work. We rather focus on obtaining commonsense implications of the given persona in the

form of text snippets that are more expressive than topical keywords.

Persona-grounded dialog generation is a special case of knowledge-grounded dialog

generation. Knowledge grounding in dialog has many real-world applications that are well-

studied in recent literature [Zhou et al., 2018, Ghazvininejad et al., 2018, Dinan et al., 2019b,

Lewis et al., 2019b]. In this work we use fine-grained grounding/selection on persona which
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performed better than encoding the entire persona for each response. Such fine-grained selection

has been found useful in prior works on text generation such as dialog [Lian et al., 2019] and

image captioning [Jhamtani and Berg-Kirkpatrick, 2018]. For dialog generation, a contextual

knowledge selection has been successfully applied in prior works [Parthasarathi and Pineau,

2018]. Specifically, Zhao et al. [2017] and later Song et al. [2019b] proposed a conditional-VAE

framework to learn latent context given the dialog history to guide knowledge selection.

Finally, few recent works focused on augmenting grounding with commonsense knowl-

edge with successful applications in open-domain topical dialog generation [Ghazvininejad

et al., 2018, Moon et al., 2019], story generation [Mao et al., 2019] and sarcasm generation

[Chakrabarty et al., 2020b]. In this work, we extend this effort into persona-grounded dialog

generation via augmenting grounding persona with commonsense knowledge.

10.2 Related work for INTERVIEW

Media dialog—specifically, the news interview—has seen study primarily in the field

of speech transcription, diarization, and speaker role modeling [Chen et al., Laurent et al.,

2014]. These works have typically focused on techniques to annotate broadcast audio transcripts

[Hutchinson et al., 2010] in order to cluster different news stories from a continuous broadcast

stream [Huang et al., 1999]. While Barzilay et al. [2000] and Liu [2006] note that transition

points between speaker roles (e.g. anchor and guest) can determine the high-level topical flow of

a news conversation, we investigate the impact of discourse patterns on the semantics of specific

utterances.

Such research is currently limited by a lack of accessible corpora for the study of media

dialog at scale. The Defense Advanced Research Projects Agency has undertaken efforts to

collect and transcribe broadcast conversations [Strassel, 2004, Cohen, 2007]. However, it proves

difficult to adopt these datasets as widely available benchmarks on dialog modeling tasks, as

they come with a substantial cost ($100-$1000 per annum per dataset). More recent efforts to
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amass such data have either focused on collecting large volumes of conversation fragments with

noisy transcripts [Beeferman et al., 2019] or human transcripts for a smaller set of long-form

open-domain radio programs [Mao et al., 2020]. We contribute an open-access large-scale corpus

of broadcast media dialog annotated with response types, demonstrating that these are useful for

modeling interviewer utterances.

We explore the application of discourse analysis [Fairclough and Wodak, 1997] on this

large media dialog corpus in order to discover, confirm, and leverage discourse patterns regarding

interrogative forms, speaker agency, and references to external knowledge. As noted by Weizman

[2008] in their deep study of Israeli news television, structure in media dialog (in contrast to

spontaneous natural conversation) is uniquely determined by its speaker role dynamics. Wang

et al. [2011] investigate the detection of one such dynamic: agreement/disagreement between

speakers. Ma et al. [2019] classify discourse relations (e.g. comparative, temporal) between two

turns of dialog, but do not study discourse structure. In this work we extend our analysis to other

properties of interviewer utterances (e.g. subjectivity, polarity, dialog act patterns) [Heritage,

1985] in the context of generative dialog modeling. Structured approaches for dialog modeling

employ a simple concatenation of dialog history in a transformer-based architecture [Zhang

et al., 2019]. We draw inspiration from Luan et al. [2017] who demonstrate the usefulness of

a multi-task framework for speaker-conditioned dialog modeling. Guu et al. [2020a] propose

a framework for jointly learning document retrieval and language modeling, and we propose a

similar model to learn task-specific annotation of grounding documents.

10.3 Related Work for PABST

A desired impact of the proposed approach is increase in diversity of the generated

responses. To tackle the issue of diversity in dialog model outputs, prior work has focused

on decoding strategies such as diversity-promoting sampling [Holtzman et al., 2020]; training

strategies such as discouraging undesirable responses via unlikelihood training [Li et al., 2020];
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model changes such as using stochastic variables [Serban et al., 2017]; and using external data

such as forum data [Su et al., 2020] or external knowledge bases [Majumder et al., 2020a]. In

contrast to these, our proposed method generates responses with background stories using a

gradient-based decoding approach.

One of the steps in our proposed approach is to retrieve relevant stories from an external

corpus. Prior work has explored using retrieval of similar dialog instances as an initial step

in improving response diversity and other human-like desiderata in dialog [Roller et al., 2021,

Weston et al., 2018]. Distant supervision by using retrieved text snippets as pseudo responses has

been explored in prior work [Su et al., 2020, Roller et al., 2021]. We use an external data source

to improve dialog responses, a theme shared with some efforts in other tasks such as machine

translation [Khandelwal et al.]. The use of narrative text in dialog has been explored in prior

work, mostly as a ‘script’ or template for conversation [Xu et al., 2020a, Zhu et al., 2020]. We

adapted a BERT-based retrieval method [Zhang et al., 2020] in our case to retrieve relevant story

given dialog context and use retrieved story in the decoding phase.

Gradient-based for text generation with soft constraints has been explored in prior work

[Dathathri et al., 2020, Qin et al., 2020]. Song et al. [2020] focused on generating response

which are consistent to given persona. Differently, we use a gradient-based decoding to generate

a dialog response while honoring constraints such as consistency to persona and similarity to

retrieved story.

10.4 Related Work for POKI

Knowledge grounded dialog datasets such as Wizard-of-Wikipedia [Dinan et al., 2019b]

and Topical chat [Gopalakrishnan et al., 2019a] typically consist of dialog responses paired with

relevant knowledge available as collected annotations. Hence, models trained on such datasets

are restricted to the knowledge sources they were exposed to at training time. Past work [Sun

et al., 2021, Majumder et al., 2020a, Su et al., 2020, Komeili et al., 2021, Adolphs et al., 2021,
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Ghazvininejad et al., 2018, Tuan et al., 2020, Lewis et al., 2020c, Guu et al., 2020b] has looked

into injecting extra knowledge sources at training time in a bid to add knowledge not available

originally as paired to dialog responses. However, such approaches require re-training the model

if some new knowledge source were to be used. Moreover, while previous work focuses on just

improving specificity of dialog response using external knowledge, we also study the effect of

additional knowledge in achieving conversational goals.

Improving the diversity of dialog responses by using diversity-promoting sampling has

been explored in past work [Fan et al., 2018, Holtzman et al., 2020]. We use a gradient-based

decoding method, building on past work in this direction [Dathathri et al., 2020, Qin et al., 2020,

Madotto et al., 2020, Majumder et al., 2021a]. However, we propose new objectives to inject

post-hoc knowledge obtained based on already generated dialog—an unsupervised knowledge

injection method that has not been explored so far.

10.5 Related Work for Clarification Question Generation

Most previous work on question generation focused on generating reading comprehension

style questions i.e., questions that ask about information present in a given text [Duan et al.,

2017, Zhang and Bansal, 2019]. Later, Rao and Daumé III [2018, 2019] introduced the task of

clarification question generation in order to ask questions about missing information in a given

context. ClarQ [Kumar and Black, 2020] entails clarification questions in a question answering

setup. However, unlike our work, these works still suffer from estimating the most useful missing

information.

Recent works on conversational question answering also focused on the aspect of question

generation or retrieval [Choi et al., 2018, Aliannejadi et al., 2019]. Qi et al. [2020a] especially

focused on generating information-seeking questions while Majumder et al. [2020b] proposed a

question generation task in free-form interview-style conversations. In this work, in addition

to improving clarification question generation in a community-QA dataset, we are the first to
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explore a goal-oriented dialog scenario as well.

Representing context and associated global information in a structure format has been

shown to improve performance in generation task [Das et al., 2019, Subramanian et al., 2018,

Khashabi et al., 2017] in general and summarization [Fan et al., 2019] and story-generation [Yao

et al., 2019] in particular. We also derive inspiration from recent works on information extraction

from free-form text [Vedula et al., 2019, Stanovsky et al., 2016] and develop a novel framework

to estimate missing information from available natural text contexts.

Finally, for question generation, we use BART [Lewis et al., 2019a], that is state-of-the-art

for many generation tasks such as summarization, dialog generation etc. Furthermore, inspired

from recent works that use controlled language generation during decoding [Ghazvininejad

et al., 2017, Holtzman et al., 2018], we use Plug-and-Play-Language-Model [Dathathri et al.,

2019] to tune generations during decoding. While similar approaches for controllable generation

[Keskar et al., 2019, See et al., 2019] have been proposed, we extend such efforts to enhance the

usefulness of the generated clarification questions.

10.6 Related Work for REXC

Providing explanations for a model’s predictions can be done either post-hoc (via methods

that aim to explain already trained and fixed black-box models) or by building self-explainable

models (by jointly producing predictions and explanations). Post-hoc explanations [Lundberg and

Lee, 2017, Ribeiro et al., 2016] can be useful when one only has access to a high-performance1

but black-box model. However, post-hoc explanatory methods have been shown to have certain

downsides [Adebayo et al., 2018, Slack et al., 2020, Laugel et al., 2019, Camburu et al., 2021,

Wiegreffe et al., 2021b, Camburu et al., 2019]. Moreover, self-explanatory models may benefit

from the rich information in the explanations provided at training time [Schramowski et al., 2020,

Stacey et al., 2022, Lazaridou et al., 2022]. In this work, we focus on self-explainable models to

1High performance on held-out sets does not guarantee that the models do the right thing for the right reasons
[McCoy et al., 2019].
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produce two predominant types of explanations: NLEs and ERs.

NLEs. A growing number of works in NL and VL focus on designing neural models that

produce NLEs for their predictions to make these models accessible to their users [Hendricks

et al., 2016, Camburu et al., 2018, Park et al., 2018, Kayser et al., 2021, Kim et al., 2018, Ling

et al., 2017, Marasovic et al., 2020, Wang et al., 2019, Rajani et al., 2019, Zellers et al., 2019a].

Recently, Narang et al. [2020] achieved SOTA on NLEs for NL tasks by using a pre-trained

language model (of 11B parameters, which can be prohibitively large). However, NLEs are

sometimes produced separately from predictions [Marasovic et al., 2020, Brahman et al., 2021,

Atanasova et al., 2020], which raises questions about their faithfulness. In some cases, they

were even produced as a task in isolation (without predictions) [Ji et al., 2020]. Moreover, the

majority of the existing models only produce NLEs, with few exceptions that produce both

NLEs and ERs [Park et al., 2018, Wu and Mooney, 2019], as our model does. Furthermore,

an analysis on the faithfulness of NLEs is usually missing from the large majority of these

works. To our knowledge, only one work recently introduced general necessary conditions for

faithfulness in NLEs [Wiegreffe et al., 2021b], while few other works attempted architecture-

specific faithfulness measures [Kumar and Talukdar, 2020, Wu and Mooney, 2019].

ERs. An early work [Zaidan and Eisner, 2008] investigated rationale extraction from inputs

and later was successfully followed by works for both NL [DeYoung et al., 2020a, Lei et al.,

2016b, Bastings et al., 2019a, Sha et al., 2021] and VL [Strout et al., 2019] tasks. We model

both ERs and NLEs jointly in a novel framework that improves the quality of both types of

explanations.

Knowledge Grounding. Free-text generation tasks heavily rely on background knowledge

(e.g., commonsense). Several tasks such as dialog generation [Majumder et al., 2020a], creative

text generation [Chakrabarty et al., 2020a, Mao et al., 2019], and counterfactual generation

[Bhagavatula et al., 2020] used commonsense for grounding. Recently, Marasovic et al. [2020],

Brahman et al. [2021] showed that external knowledge can be useful in separately justifying

predictions using NLEs. In this work, we establish that knowledge grounding can be useful in a
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self-rationalizing framework benefiting both predictions and explanations.
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Chapter 11

Conclusion and Future Outlook

In this dissertation, we show the AI systems with underlying language models can be

redesigned to start with individual needs. We developed training-time and post-hoc knowledge

injection techniques that promoted user efficiency and success in achieving task-specific goals.

We developed inquisitive user-centric systems that can clarify for any ambiguous or incomplete

context. We showed that knowledge-grounding not only improves model relevance to the user

but also improves faithfulness in model explanations. Finally, our human-in-the-loop system

system establishes that user can progressively improve model performance by intervening model

explanations.

11.1 Future Work for Knowledge Grounding

My work so far significantly reduces the knowledge gap in existing language models by

opening up the opportunity to make this process more pro-user.

Building user-specific knowledge representations: I am interested in developing novel

ways to capture dynamic user knowledge and their possible world knowledge inferences. These

methods will enhance personalized query refinement for more accurate knowledge retrieval,

better knowledge attribution, and privacy-preserving actions in user-centric agents (e.g., Alexa).

For example, I plan to update POKI’s knowledge retrieval with user information using a memory-

based architecture [Tandon et al., 2022].
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Long-tail knowledge augmentation: I also want to improve current knowledge aug-

mentation techniques with a special focus on long-tail documents. I am interested in developing

augmentation methods (using meta-knowledge from LLMs) that are equally sensitive toward

sparse (domain-specific, user-specific, task-specific) knowledge. Such latent knowledge selection

can further be made user-aware by infusing it with user metadata.

11.2 Future Work for Generating Explanations

My work on knowledge grounding in model explanations proves to be an efficient

regularizer to steer away from spurious correlations learned from the data. My future goal is to

make this effect more pro-user by focusing on improving soundness in reasoning.

Reasoning in generated explanations: Most knowledge-grounded explainable models,

including REXC, lack explicit reasoning structures in generated explanations (such as a hier-

archy of justifications, assumptions, and exceptions). I want to focus on categorizing model

reasoning errors and potentially building a meta-learner to uncover high-level reasoning ontolo-

gies. The variety of reasoning structures will be critical at explaining a prediction differently

(a.k.a. personally) to different users.

Personalized explanations: Explanations are subjective. For example, one would

explain a science topic differently to a child than an adult. Similarly, explaining ethical situations

varies according to the user’s stance (utilitarian, hedonistic, etc.). I am currently building

demography-centric NLE datasets and developing novel methods with psychological, social, and

cultural evidence.

11.3 Future Work for Interactive Systems

My work on interactive systems dealing with explanations is the first-step towards next-

generation intelligent systems that incorporate users as an important aspect of the learning

process. My future goal is to make this pro-user process more effective.
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Teachable AI models: Updating the model’s belief during test time for improved

predictions can be extended to any model capable of producing explanations for its predictions.

This model debugging process can also be viewed as teaching AI models. My ongoing work

on machine teaching Dalvi et al. [2022] to improve the model’s capability of better domain

understanding (e.g., science) has promise for building never-ending learning systems to improve

continually over time.

Achieving generalization with user feedback: To address the debate about the possibil-

ity of persisting user feedback for better generalization on unseen data points, I plan to explore

two predominant approaches: memory-based architectures [Tandon et al., 2022, Dalvi et al.,

2022] and model editing approaches [Mitchell et al., 2022a,b]. For example, INTERFAIR-like

applications can benefit from user feedback by learning and memorizing how humans perceive

biases.

Critiquable AI models: It is also non-trivial to extend the critiquing process to any AI

model (e.g., SVM, decision trees). I want to develop a generalized framework for critiquing

explanations that unify various explanation formats (e.g., feature-based, natural language) and

feedback synthesis methods (e.g., post-hoc, persistent). Expanding INTERFAIR-like critiquing

techniques to traditional AI models (decision trees) will directly apply to domains such as

healthcare, where end users (patients or providers) can verify, locate, and update model biases to

ensure fair outcomes.

In summary, our research takes a user-centric approach to achieve subjectivity and

personalization in AI models—a long-standing goal of artificial general intelligence. It is

possible transformative technical and societal impacts by redesigning AI development as a

closed loop: knowledge → explanations → interactions; where users remain an integral part.

Subsequently, this will make more positive impacts in society using intelligent systems to address

learning differences among users, build skills, and reduce ambiguity in communication, among

many others.
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