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Timing Speculative SRAM
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Abstract—Static Random Access Memories (SRAMs) are con-
sidered a major bottleneck in high performance System-on-Chip
(SoC) design and there is a large demand for high performance
SRAMs with minimal energy consumption. Time speculation
techniques such as Razor ease timing guardbands to improve
performance or reduce energy consumption. The state-of-the-art
approach has high area and energy overheads due to the error
detection logic.

This study proposes a timing speculative SRAM that extends
the existing Replica Bitline Column to detect read timing failures.
We also extend the SRAM decode logic to protect from incorrect
write operations. We demonstrate our Replica-based Timing
Speculative SRAM (RTS) is an energy and area efficient design
alternative to prior techniques such as Razor. Our proposed
design is 22% to 58% more energy efficient in reading operations
and it has an error detection mechanism which is 35% to 73%
more area efficient that Razor-enabled SRAM.

I. INTRODUCTION

As fast on-chip memories continue to occupy a great
portion of the area in System-on-Chip (SoC) designs, their
speed and power consumption significantly impacts the system
performance. Up to 60% of the total active chip area is taken
by memories and 20% of that area is taken by SRAMs [11].
In SRAMs read operations are the most time consuming
operations that affect the access time. As technology scales
down, intra-die variations such as random dopant fluctuations
affect Vth and become more pronounced in small circuits such
as SRAM cells causing various read and write failures. Timing
guardbands prevent such failures, while inherently requiring
an over-design to meet the performance goals and an increase
in the overall power consumption. Hence, there is a growing
demand for architectural schemes and sensing circuits which
ease the conventional design methods.

Razor is one of the most common delay-error tolerant flip-
flops used in voltage management techniques. It eliminates the
frequency margins needed due to PVT variations [5]. Follow
up designs to the original Razor proved that error recovery
costly and resorted to detecting the only timing errors [4].
Read errors have been previously detected using a Razor-based
technique [7] in the boundary sense amplifier. The additional
logic for error detection and correction adds significant area
to the sense amplifier and, in turn, increases read energy
consumption. During error recovery, Razor will add a penalty
of one cycle delay to every read operation to restore the correct
data. The error detection scheme is applied on a per bit basis,
therefore, the final error signal is a logical OR of all the
error signals, adding additional delay. These drawbacks limit
the overall efficiency as the size of the SRAM increases [4],
[5]. Razor-based SRAM is assumed to be placed in a Razor-
enabled system, however, in case of a system error, there is
no mechanism to prevent incorrect writes, consequently, there
is a chance of corrupting the SRAM data.

We propose a timing error detecting scheme that utilizes
existing hardware called Replica-based Timing Speculative
SRAM (RTS) which can

• leverage the RBL in timing speculation due to variation,
• prevent erroneous writes,
• provide an area and power efficient error detection.

II. RELATED WORK

Concept of Timing Speculation: Ernst et al. proposed RazorI
which is a delay-error tolerant flip-flop for error detection
in critical paths [5]. Razor eliminates the safety margins
by achieving variable tolerance through in-situ timing error
detection and correction. It uses a flip-flop and shadow latch to
double sample the input. The main flip-flop is triggered at the
positive edge of the clock whereas the shadow latch samples
input data at the negative edge, so that the data is given
1/2 cycle to stabilize before being sampled by the shadow
latch. Since the setup and hold time of the main flip-flop are
allowed to be violated, a metastability detector is required at
the output of the flip-flop. Razor uses a comparator to detect
any discrepancy between the main and the speculative data.
In case of error, the error flag is raised and OR’ed with the
other “error” flags, and then propagated backwards so that the
correct data on the shadow latch will be restored at the next
clock cycle. Due to large number of logical OR’s throughout
the design, the “restore” signal can become a critical path
itself. Costly correction is one of the reasons that RazorII [4]
was proposed, which performs error detection and leaves the
data correction to the architectural replay schemes already
present in processor pipelines [4]. Razor technique has been
taped out in several chips [2], [6].
Timing Speculative SRAMs Karl et al. use the Razor tech-
nique to protect against erroneous reads by implementing a
main and a shadow sense amplifier. We will compare against
their design and refer to their solution as Razor. Similar to the
Razor [5] technique, Razor uses a main and a shadow sense
amplifier which double sample the bitline voltage swings.
During the read operation, first, the main SA is enabled
and shortly after the shadow SA. A comparator checks the
difference between inputs and generates an error signal. The
generated “error” signal will select the shadow SA value at
the output MUX [7]. The Razor will have a penalty associated
with using Razor system which is a 1-cycle latency, but it will
protect against data dependent delays during readings of the
SRAM core.

When using Razor, the read operation failures are detected
and corrected, however, when there is a write operation, the
lack of write failure detection leads to an erroneous write
and corrupts SRAM data unless the error is fixed before the
wordline is enabled. For many SRAMs, the allotted time is
less than half a cycle. A simple alternative is having a “failure”
aware write scheme presented in section III.



Another example of the timing speculative SRAM is the
Domino Register File design by Kulkarni et al. [9], which
double samples read output and its delayed version to detect
timing errors within a clock window. And it double samples
the read output and its delayed version to detect timing errors
within a clock window. Similar to Razor and Memory Timing
Error Correction designs, it has an area overhead and the error
detection mechanism can be defective due to metastability.
Khayatzadeh et al. propose another Razor like SRAM that
has been fabricated implementing Razor at the sense amplifier
boundary to detect read errors. This is a novel idea, but the
issue remains where razor is applied on a per bit basis [8] and
Razor’ed sense amplifier and the final logical “OR”s will add
an area overhead.

Our proposed timing speculative SRAM uses the prevalent
Replica Bitline (RBL) technique implemented in many SRAM
designs and avoids an area overhead. Amrutur was the first to
propose the RBL technique to optimize the SAE timing signal
and ensure protection against erroneous reads [1]. It is a tech-
nique best suited for SAE timing generation because of bitline
delay tracking in presence of variation. RBL technique has
been utilized for tunable or configurable testing approaches to
minimize margins needed for generating SAE and/or WL [10],
[13].

III. TIME SPECULATIVE SRAM
Figure 1 shows a high-level block diagram of our proposed

Timing Speculative SRAM which we refer to as RTS. The
logic blocks in green color are the enhancements to the
read and write paths: read failure detection and write failure
prevention.

bl

pclk

blb

Write Drivers

b
l<

0
>

b
lb

<
0

>

bl blbsae

q qbar

b
l<

3
1

>

b
lb

<
3

1
>

Replica Bitline ColumnWD

Error
EN

R
e
a
d

 A
d

d
re

ss
 D

e
co

rd
e
rs

Pre

Error Detection Logic

W
o
rd

lin
e
 B

u
ff

e
rs

WREN
wl

A0

Clk
A1

A2

A3

nofailure

A5

A4

W
ri

te
 A

d
d

re
ss

 D
e
co

d
e
rs

W
o
rd

lin
e
 B

u
ff

e
rs

R
e
a
d

 A
d

d
re

ss
 D

e
co

d
e
rs

Sense Amps Sense Amps

Precharge Precharge

Write Drivers

Fig. 1: Timing Speculative SRAM- 2 read and 1 write port - 1Kb

A. Protecting from Read Time Failures
To detect read time failures, RTS leverages the concept of

RBL. The Replica Bitline Column in Figure 1 consists of a
column of 6T bitcells that are identical to the bitcells used
in the SRAM core, however it is controlled differently than
a conventional RBL. The RBL bitcells are connected to the
SRAM read and write wordlines, which activate them instead
of connecting to dummy drivers and wordlines. However, we
use dummy write drivers to produce a ’0’ bit that is written
in all the RBL bitcells. Replica Bitline Column uses the
same type of precharge circuit as the SRAM core. During the
precharge period, when clock is ’0’, the RBL bitlines will
be precharged to ’1’. When the clock signal transitions to
’1’, the wordline is raised, the reading begins and one of the

RBL bitcells will be discharged mimicking the SRAM bitcell
discharging behavior. The time it takes to discharge the ‘1’ in
Replica cells is used to predict the SAE signal as it generates
sufficient delay for enabling the sense amplifier. The output of
the Replica Bitline Column is connected to one large inverting
buffer, shown in Figure 1, for 2 reasons. First, the RBL output
signal needs to be inverted and able to drive all the 32 sense
amplifiers and second, we need to compensate for the wordline
enabling delay.

The error detection logic is shown in Figure 1. It includes
another input signal besides RBL named EN. EN indicates the
error monitoring window for RTS. If during the period that EN
is on, the RBL signal does not discharge, an error flag will be
raised. The RBL signal already predicts the worst read delay
for enabling the SAE. By using the RBL to generate SAE, we
allow a window for detecting errors. During the read operation,
when the clock is ‘1’, SAE becomes active with some delay.
If at the second half of the negative edge of the clock, SAE
signal is not yet lowered, the chance to read the data properly
is missed and an error signal will be generated before the rising
edge of the clock. The timing diagram in Figure 2 show when
the error signal is generated.

CLK 

WL 

EN  

RBL 

ERROR  

Fig. 2: RTS error signal generation
RBL is a common technique in modern SRAM designs.

Leveraging this existing technology reduces the overhead of
area consuming and complex error detection mechanisms.
RTS error detection overhead is insignificant regardless of
the SRAM size. If the SRAM is large, the area overhead
of large error detection mechanisms such as Razor might
be acceptable, but in small SRAMs, the area overhead is
significant in comparison with other components.

B. Protecting from Incorrect Writes
Previous state-of-the-art RAM [7], [8] do not protect against

incorrect inputs without requiring faster SRAMs. As a result,
studies that use Razor-like solutions have assumptions similar
to the Bubble Razor design [6], which states "Writes are
clocked on the negative edge of the clock when data is
guaranteed to be error free". Although writes tend to be faster
than reads, requiring them to complete in half a SRAM cycle
adds additional overhead. We propose a minor modification to
the write decoder to make it failure-aware.

We define an external failure, corrupt data that causes the
“error” or “failure” flag to be raised in the system. When
SRAM is placed within a system that has an error detection
mechanism, there exists an “error” or “failure” flag. To prevent
an incorrect write, error has to be detected and the wordline
disabled in less than half a cycle. However, when the system
is equipped with error detecting latches/flops, the failure flag
can be used to disable the wordline immediately. In order to
protect an upcoming write in case of an external failure, RTS
uses a decoder that has an active low failure input. When



the write operation starts, at the rising edge of the clock, the
address decoding takes place and wordline is selected. If the
error flag along the input data is raised, the wordline will
not be selected. Figure 1 shows the modification needed for
the write address decoder used in RTS design. By adding a
single NMOS transistor to the decoder with an active low
failure signal input, the wordline is selected only if there is no
failure present in the system. In RTS this external active low
signal is called “nofail”. The address bit NMOS transistors are
connected in series with the “nofail” signal. When there is a
failure, the WL will be deselected and the write operation will
be discontinued.

IV. EXPERIMENT SETUP

Table II lists 4 types of SRAM designs where each one
is designed in 3 different sizes (Table I). Size small models a
typical 1Kb register file for an in-order processor. Size medium
represents a 2Kb register file fit for a 3-way superscalar out-
of-order processor, and size large models a large 8Kb single
cache bank. Area of a size large SRAM is 15% more than a
size medium.

TABLE I: SRAM sizes to model 3 typical processor SRAMs.

Size Ports Words Word Width
Small 2r1w 32 32
Medium 6r3w 64 32
Large 1r1w 128 64

The SRAM netlists and layouts are generated by FabMem,
a subset of FabScalar toolset and uses FreePDK 45nm tech-
nology [3]. Table II describes components for each SRAM
type which is a combination of what FabScalar offers for
netlist and layouts and what we have custom built and drawn
using HSpice and Cadence Virtuoso IDE. We have estimated
the sense amplifier layout area for Razor based on the used
delay chains and control logic shown in Razor-enabled sense
amplifier [7]. Its netlist excludes the extra logic for generating
the enable signals, en1 and en2, and are input signals to the
HSpice simulations.

TABLE II: SRAM types

Type Description
Trad FabScalar default design.
RBL FabScalar + RBL support + latch-type SA.
RTS FabScalar + wr decoder + RBL + latch-type SA.
Razor FabScalar RAM + Razor-ed SA.

V. EVALUATION

To evaluate RTS, we run HSpice for SRAM types in table II
and compare read and write energy consumption, maximum
frequency, and SRAM area against Razor.

A. Energy Efficiency
To compare the read and write energy, we run size small

with a frequency of 1GHz and sizes medium and large with a
frequency of 700MHz. We run HSpice for a period of standby,
followed by 10 consecutive writes and 10 consecutive reads.
For multiported structures, all the read ports are active during
read period and all the write ports are active during write
period. Figures 3, 4, and 5 show the average energy breakdown
for each size.

RTS and RBL have the RBL in common and, therefore,
they consume similar energy levels during read or write
operations. Considering Razor is reading and using the large

sense amplifiers, it consumes the largest amount of power. In
order to have Razor operate faster, either the precharge devices
have to be largely sized to elongate the precharge period or
the buffer sizes that drive the bitlines to the comparator in the
sense amplifier [7].

For small size SRAMs, Razor read energy consumption is
11.96x and 11.89x RBL and RTS respectively. For medium
size SRAMs, Razor consumes 8x energy than both RBL and
RTS. For size large, the read energy consumption for Razor
is 3.37x and 3.30x RBL and RTS. As we increase the size
of the SRAM the energy overhead becomes smaller, however,
for typical/small sizes, the overhead is a considerable part of
the design budget.
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Fig. 3: Energy breakdown in small SRAMs.
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Fig. 4: Energy breakdown in medium SRAMs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Trad
R
azor

R
BL

R
TS

Trad
R
azor

R
BL

R
TS

Trad
R
azor

R
BL

R
TS

E
n

e
rg

y
 (

p
J
)

 

decode
precharge
write driver
sense amp

StandbyWriteRead

Fig. 5: Energy breakdown in large SRAMs.B. Area
Table III lists the area of the components used, added, or

modified in all the SRAMs. In RBL the area overhead is
mainly due to the Replica Bitline Column and its dummy write
driver and precharge circuits. Comparing RBL and Razor,
for the small SRAM, RBL overhead is 111.7µm2 and Razor
overhead is 332.3µm2. Razor has 3 times more area overhead
than RBL. The area difference between RBL and RTS is
the error detection (AND gates) and the slightly larger write



address decoders 3.37 vs. 3.18µm2. The precharge circuit used
for the RBL is identical to the SRAM core precharge circuit
and to the rest of the SRAMs. The dummy write drivers are
also the same as write drivers in all the other SRAMs.

Overall, Razor has the highest area overhead among all
the SRAM types and among the error detecting SRAMs,
RTS will have a small overhead. If the SRAM has the
RBL implemented, the overhead of RTS would be negligible
compared to the overall size of the SRAM.
TABLE III: RTS overhead is due to Replica Bitline Column. The
Razor sense amplifier is 5.5x RBL bitcell area and 7.4x the
traditional sense amplifier. Units are in µm2.

Type SA RBL Wr Dec Xtra Buff Xtra PreCharge Xtra Wr Dri Err logic
Trad 0.98 - 3.18 - - - -
RBL 1.36 1.82 3.18 3.03 0.87 1.51 -
RTS 1.36 1.82 3.37 3.03 0.87 1.51 0.98
Razor 10 - 3.18 - - - -

Table IV compares the percentage difference in total area
overhead of RTS and Razor with RBL for 3 different sizes. As
the size increases, the overhead of RTS becomes negligible.
TABLE IV: The percentage area overhead difference of RTS and
Razor with RBL.

Type RTS Razor
Small 0.43 5.46
Medium 0.16 2.45
Large 0.02 2.33

C. Process Variation Effects
We performed Monte Carlo simulations to analyze the

frequency of the RBL and estimate the maximum clock period
for performing reads. VARIUS [12] tool generates variation
maps with both systematic and random variation given the
SRAM floorplan. We generate a floorplan for RBL and run
it with 50 variation maps. For each map, 10 different data
points are read and the maximum output delay or the read
speed is measured. Out of the 10 data points, the point with
the maximum delay is chosen for that particular map.
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Fig. 6: RBL and Razor achieve similar results, both allow protection
from infrequent failures

Figure 6 shows the max clock period density function for
the Small RBL which corresponds to a typical Register File
in simple in-order cores. To have a high yield, the RBL
should operate around 330ps. Since both RTS and Razor can
protect against infrequent errors, it is possible to have a higher
operating frequency. In the figure, it shows around 322ps. Both
Razor and the proposed RTS can protect against errors.

Razor has a slow dynamic OR gate to detect failures. The
figure uses a small SRAM, and the dynamic OR logic is not in
the critical path, but SRAMs with larger number of read bits
will affect the overall maximum frequency. This would not
happen in RTS, because it uses the Replica Bitline to detect

the errors. For simplicity, the Razor additional overhead is not
included in Figure 6. Overall, RTS achieves the same operating
frequency as Razor with area and energy efficiency.

VI. CONCLUSION

We propose a new way to efficiently implement time
speculation in SRAMs. RTS detects read and write failures
by offering a simple, yet efficient solution that avoids costly
shadow latches in Razor SRAMs. RTS leverages RBL to
detect timing failures, and modifies the decoder logic to avoid
requiring half cycle writes. This simple yet effective design
shows to be 22% to 58% more energy efficient in reading
operations and has an error detection mechanism which is 35%
to 73% more area efficient than Razor-enabled SRAM.
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