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ABSTRACT OF THE DISSERTATION

Understanding transcriptional regulatory mechanisms through data science
and modeling

by

Christopher Gilbert Dalldorf

Doctor of Philosophy in Bioengineering

University of California San Diego, 2024

Professor Bernhard Ø. Palsson, Chair

Transcriptional gene regulation is a primary mechanism that Escherichia coli uses to best

adapt to its current environment. RNA-sequencing data in particular provides us with the ability

to more clearly examine the different states of the transcriptome and thus study transcriptional

regulation. The cost to generate RNA-sequencing datasets has dramatically decreased over the

last two decades which, in conjunction with FAIR data principles, has subsequently led to a

large increase in the amount of publicly available RNA-sequencing data. In addition, centralized

public databases of both these large datasets and biological knowledge have become increasingly

xiv



large and accessible. Both developing and deploying new analytical techniques are necessary in

order to best derive actionable insights from this large increase in scale for biological research.

In this thesis, we first apply these principles to studying RNAP mutations and their ability to

shift a transcriptome to favor growth over stress functions. This tradeoff between fear and greed

can be seen in nearly all RNAP mutations and also across numerous bacterial species. Next we

investigate the plasticity of transcriptional regulation by removing selected transcription factors

and evolving strains, finding some knockouts recover growth without significant adaptation while

others require convergent mutations to regulatory elements which restore the expression of highly

growth-important genes. Finally, we build a model for the transcriptional regulatory network

using iModulons as a measure of regulator activity. This model is able to accurately predict

metabolite concentrations as well as infer biological constants about transcription factor bind-

ing. Altogether, these projects help advance our understanding of the mechanisms underlying

transcriptional regulation through the utilization of data science.
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Chapter 1

Transcriptional regulation as part of

the central dogma of molecular

biology

The central dogma of molecular biology, that of the pathway from DNA to RNA to

proteins, is at the core of all life. The conversion of DNA to RNA is called transcription and

involves a large diversity of components. Transcription factors (TFs) and other regulators bind

to DNA to recruit or obstruct RNA polymerase (RNAP) binding, which if correctly bound

transcribes the genes into RNA. Which TFs are active [1], the concentrations of metabolites in

the cell [2], the growth phase of the cell [3], the number of ribosomes available [4], the various

possible conditions of the medium (pH, temperature, carbon source, etc.) [5], and many other

factors can modify the expression state of the cell by acting on these regulators and RNAP

directly. In order to fully understand and model this process, both thorough genetic annotation
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and large amounts of data are necessary.

RNA-sequencing (RNA-seq) measures the concentration of mRNA in a cell and the

amount of RNA-seq data available has dramatically increased over the last decade, largely due

to a substantial reduction in cost. In 2012, Illumina RNA-seq cost $275 per sample [6] which by

2023 dropped to $210 [7]. When adjusted for inflation ($275 becomes $365), this is a reduction

of 42% in cost per sample. The National Center for Biotechnology Information (NCBI) began

the Sequence Read Archive in 2007 which collects both RNA-seq and ChIP-Seq datasets [8]. As

of 2024, there are over 10,000 publicly available E. coli transcriptomes in this dataset, a number

that has more than doubled in the last five years [8].

In addition to this massive increase in public data, the concatenation of biological knowl-

edge to public databases has vastly improved access to the highly expensive and invaluable

information created by countless hours of productive microbiology research. EcoCyc, a bioinfor-

matics database containing genome annotations about E. coli, has grown from 2,537 citations in

2012 to 3,791 in 2022 [9]. RegulonDB, a knowledge base of transcriptional regulation, was first

released in 1998 with 533 regulatory interactions [10] and has since grown to 6,110 in 2023 [11].

Numerous additional highly valuable public databases exist, such as UniProt [12], KEGG [13],

RCSB [14], and STRING [15] among others. Additional pertinent databases to this thesis are

ALEdb [16], a database of mutations derived from evolution experiments, and iModulonDB [5],

a source for data-driven pseudo-regulons named iModulons.

These open sources of biological information enable a dramatic increase in the discovery

potential of computational biology. FAIR data principles (Findable, Accessible, Interoperable,

and Reusable) increase scientific cooperativity and enable the research of hitherto impossible to

study questions [17]. Global studies on the transcriptomics of entire species are now feasible
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with sufficient computing power and bioinformatics knowledge. This large increase in data size

creates a new demand for novel analysis techniques to take advantage of this publicly available

data and create widely interpretable results. Additionally, this background of data provides a

plethora of invaluable comparisons for any future studies if correctly utilized.

1.1 The primary steps in gene regulation

Like most research, the first earnest effort into studying genetic regulation stemmed from

work and interest with a well characterized element. For gene regulation, this was the lac operon,

which contains the genes necessary for lactose uptake and utilization [18]. The lac operon serves

as the guiding example for the organization of regulatory elements of gene operons. Upstream

of the lac operon transcription start site are binding sites for lacI and crp which repress and

promote, respectively, the expression of said operon [19]. LacI and crp then recruit or prevent

the recruitment of RNAP to the operon [20]. If successfully recruited, RNAP then transcribes

the operon’s genes into mRNA which is later passed to a ribosome to be translated into proteins.

The process outlined above, however, is simplistic and avoids some of the additional com-

plexities of transcriptional regulation. Sigma factors also bind to RNAP and have large roles

in changing global gene expression by modifying the binding properties of RNAP to DNA [21].

These sigma factors can modulate the expression of hundreds of genes, often genes specifically

related to a phenotypic response such as stationary phase, stress response, sporulation, and

virulence [21]. Although not largely explored in this thesis, other additional transcriptional reg-

ulatory mechanisms exist such as antitermination complexes which prevent early transcriptional

pausing [22], connections to translation via interactions with tRNAs [23], RNAP availability

and dynamics [24], and various interactions with ncRNA [25] among many others. In addition to

3



these, gene regulation may also occur post-transcriptionally [26] or even post-translationally [27].

Taken together, all of these various steps in gene regulation work towards the primary

goal of best adapting the available proteome of the cell to the growth condition [27–29]. Cells

can make large adjustments to their regulatory networks and growth phenotypes through single

allele changes [30]. A more complete knowledge and model of gene regulation and the adaptability

of the transcriptional regulatory network (TRN) can enable better strain engineering [31] and

improved understanding of infectious strains [32].

1.2 Increase in scale of data, of gene annotations, and of char-

acterized TF binding sites

As mentioned earlier, both transcriptional data and knowledge about the TRN has greatly

expanded over the past two decades, in large part due to central databases such as NCBI and reg-

ulonDB. Only recently has genome- or even multi-genome wide transcriptional research become

feasible thanks to this influx of information.

While it is not obvious what regulatory connections are omitted from such a database,

53% of E. coli’s genes now have at least one annotated regulator with confirmed or strong

confidence in regulonDB [33]. These genes account for 67% of the variance seen in PRECISE1K,

a large compendium of gene expression data [34]. On EcoCyc, 58% of genes are well-characterized.

These genes explain 64% of the variance in PRECISE1K. 80% of genes in EcoCyc are at least

partially characterized which explain 83% of PREICSE1K’s variance. Altogether, the knowledge

surrounding E.coli has grown to a critical mass enabling both larger scale analyses and thorough

verification of detailed studies.
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1.3 Application of machine learning to RNA-seq

This plethora of data and biological knowledge creates a new opportunity and challenge of

scale. Improved data analytical techniques now are in high demand in order to obtain meaningful

and applicable biological results from what is, in the case of large-scale transcriptomics research,

sometimes millions of individual data points [34]. For transcriptomics over the last fifteen years,

the state of the art for analysis has largely been differential gene expression [35]. This process

involves finding statistically differentially expressed genes based on expression fold-changes and

the normal variance of the genes.

While this can be highly informative for experiments with specific and direct hypotheses,

on the majority of genome-scale analyses this approach generates far more potential genes of

interest than can be reasonably analyzed. Differential gene expression also relies upon direct

comparison between two samples, making multi-dimensional comparisons infeasible. In order

to enable higher-dimensional comparisons, numerous data analytical tools have been developed.

Many methods for large-scale transcriptomics comparisons have been tested [36], but indepen-

dent component analysis (ICA) has arisen as a highly informative and non-biased algorithm to

modularize transcriptional data into comprehensible subunits called iModulons [37].

The process of generating iModulons using ICA is well explained at

https://imodulondb.org/about.html, but can be best understood as a blind-source separa-

tion of regulatory signals. ICA is able to separate the gene expression matrix (X) of numerous

samples into an individual signal matrix (M) and an activity matrix (A). M contains sets

of genes called iModulons that are co-regulated and highly correlated across thousands of

experiments while A contains the activity of these various iModulons across said experiments.

These iModulons often have high overlap with known regulons of regulators such as sigma factors
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and transcription factors. This technique is invaluable for computing the regulatory activity of

groups of genes across thousands of samples and also for contextualizing new experiments by

providing a compendium of comparison points.

1.4 Thesis outline

The three primary aims of my thesis all use data analytical techniques to connect together

disparate data sources in order to further expand our knowledge of transcriptional regulation in

E. coli. The first is a study of RNAP mutations that are commonly found in adaptive laboratory

evolutions. Twelve RNAP mutations were reintroduced into E. coli where they created large

adjustments in the transcriptome, generally to favor faster growth by reducing the expression

of stress-related genes and upregulating the expression of ribosomal subunits. The second is a

collection of transcription factor knockout evolutions that were carried out in order to better

understand the adaptive mechanisms available to the TRN. 11 TF’s were knocked out and the

resulting strains were evolved, sequenced, expression profiled, and tested for substrate readiness.

Some TF KO’s recovered using convergent mutations to their own regulatory networks while

many TF KO’s recovered without TF-specific adaptations. The third aim is the development

of a transcriptional model which uses iModulons as a proxy for regulator activity in order to

create a data-informed model of gene regulation. This process can accurately predict metabolite

concentrations and TF binding constants using a constrained mechanical mathematical model.
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Chapter 2

The hallmarks of a tradeoff in

transcriptomes that balances stress

and growth functions

Fast growth phenotypes are achieved through optimal transcriptomic allocation, in which

cells must balance tradeoffs in resource allocation between diverse functions. One such balance be-

tween stress readiness and unbridled growth in E. coli has been termed the fear versus greed (f/g)

tradeoff [37]. Two specific RNA polymerase (RNAP) mutations observed in adaptation to fast

growth have been previously shown to affect the f/g tradeoff [30], suggesting that genetic adapta-

tions may be primed to control f/g resource allocation. Here we conduct a greatly expanded study

of the genetic control of the f/g tradeoff across diverse conditions. We introduced twelve RNA

polymerase (RNAP) mutations commonly acquired during adaptive laboratory evolution (ALE)

and obtained expression profiles of each. We found that these single RNAP mutation strains
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resulted in large shifts in the f/g tradeoff primarily in the RpoS regulon and ribosomal genes,

likely through modifying RNAP-DNA interactions. Two of these mutations additionally caused

condition-specific transcriptional adaptations. While this tradeoff was previously characterized

by the RpoS regulon and ribosomal expression, we find that the GAD regulon plays an important

role in stress readiness and ppGpp in translation activity, expanding the scope of the tradeoff. A

phylogenetic analysis found the greed-related genes of the tradeoff present in numerous bacterial

species. The results suggest that the f/g tradeoff represents a general principle of transcriptome

allocation in bacteria where small genetic changes can result in large phenotypic adaptations to

growth conditions.

2.1 Background

Maintaining optimal fitness in microorganisms requires navigating tradeoffs in resource

allocation [29] due to dependencies between growth and expression [38–40]. High growth rate

expression states have been shown to downregulate stress response genes (“fearful” genes) and

upregulate ribosomal genes (“greedy” genes) [29]. Furthermore, this tradeoff has been well

documented in adaptive laboratory evolution (ALE) experiments [37,41–43].

We have recently shown that transcriptional shifts of the E. coli transcriptome can be

viewed through the use of a novel transcriptomic analysis method which uses independent com-

ponent analysis on large-scale expression databases to define sets of genes that are independently

modulated, forming data-driven regulons termed iModulons [37]. Through this analysis, we have

identified that the fear versus greed (f/g) tradeoff is characterized by the strong negative cor-

relation between the activity levels of the RpoS (fear) and Translation (greed) iModulons. The

f/g tradeoff involves an upregulation of ribosomal genes (greed represented by the Translation
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iModulon) that often are the limiting factor for increasing growth rate [44] and a concurrent

downregulation of stress-related genes (fear represented by the RpoS iModulon). While these

iModulons and genes do not encompass all potential growth- and stress-related iModulons and

genes within E. coli, they are unique in that they follow this tradeoff across a wide variety of

conditions.

In addition to the two primary f/g iModulons, the GadX iModulon is also involved in

the fear response while the ppGpp iModulon adds another dimension to greed. The Translation

iModulon primarily consists of ribosomal subunits, the RpoS iModulon contains the general stress

response sigma factor RpoS’s regulon, the GadX iModulon is related to acid stress, and the ppGpp

iModulon is composed of genes involved in protein translation rates and the stringent response.

The tradeoff between these sets of iModulons involves competition between the housekeeping and

stress sigma factors (RpoD and RpoS), binding of ppGpp and DksA to RNAP which modifies

which genes RNAP transcribes, and other regulatory mechanisms [28, 45, 46]. Many of these

mechanisms directly involve RNA polymerase (RNAP) whose availability, along with sigma factor

competition, has been previously connected to said tradeoff [47].

RNAP mutations have been shown to drive the f/g tradeoff towards faster growth and

RNAP is one of the most common mutation targets during ALEs [16]. In a detailed study of

two RNAP mutations found in the catalytic center, it was hypothesized these RNAP mutations

adjust the tradeoff towards greed by destabilizing the rpoB-rpoC interface, thus affecting the

binding of ppGpp to RNAP [30]. While many ALE mutations cluster in the catalytic center

of RNAP, there are numerous other RNAP mutations found in ALE endpoint strains. These

mutations can be found near regulator binding sites, regions known to be related to antibiotic

resistance, important structural elements such as the flap domain and trigger loop, and in regions
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with no clear annotations [48–56]. Convergent RNAP mutations have been found in specific envi-

ronmental adaptation experiments [57–60] often leading to the assumption that RNAP mutations

reflect media adaptations, missing their underlying role in the f/g tradeoff. Despite being highly

common evolutionary adaptations, the effect of these mutations is largely unknown.

Here, we sought to expand our knowledge of these RNAP mutations and the f/g tradeoff

through a multi-scale study incorporating FAIR (Findable, Accessible, Interoperable, Reusable)

data principles by using previously generated data and creating new easily accessible data [17].

We first gathered the existing data on RNAP mutations and selected twelve mutations to address

the shortcomings of said existing data. We then introduced the twelve RNAP mutations and

used computer simulations to infer how these mutations destabilize RNAP. We then obtained

transcriptomes in various experimental conditions and used iModulon analysis to demonstrate

that, despite structurally distinct locations, these mutations nearly universally downregulate

stress-related genes and upregulate growth-related genes (see A.1) in addition to some condition-

specific adaptations. We explored additional dimensionality of the tradeoff involving the ppGpp

and GadX iModulons. Finally, we compared the transcriptomes of various species to find that

that f/g tradeoff is widely found across phylogeny. Thus, our multi-scale study elucidated key

features of a central transcriptomic tradeoff between fear and greed in which cells that favor

faster growth face the cost of diminished responsiveness to stresses [30] and proposed that it is a

general principle in microbiology.
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Figure 2.1: (A) The structure of RNAP (PDB 6OUL [61]) is visualized using PyRosetta [62],
showing the location of mutations used in this study and highlighting some specific RNAP regions
of interest [48–56]. The grouped mutations on the upper left are some of the most common
mutations found in ALEdb [16] and are further discussed in Figure 2.2. (B) Laboratory evolution
leads to sequence variants which adjust the composition of the transcriptome leading to faster
growth and repressed stress readiness. The f/g tradeoff on the transcriptome is shown (RpoS
represents fear, Translation represents greed) along with the mutations’ impact on growth rate.
All PRECISE 2.0 samples with recorded growth rates are shown. Growth rates are centered
on their respective experiments’ unevolved control conditions. The green plane is fitted to the
data and shows that growth rates increase with lower RpoS and higher Translation iModulon
activities.

2.2 Results

2.2.1 Creation of a new dataset of common RNAP mutations

RNAP mutations are frequently fixed in ALEs, with 36% of evolved isolates in ALEdb,

a database of mutations acquired during ALE [16], containing at least one RNAP mutation: 6%
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have a rpoA mutation, 20% have a rpoB mutation, and 13% have a rpoC mutation. For this

study, twelve RNAP mutations were selected and generated for experimental evaluation using

three primary criteria: (1) the frequency of occurrence of the mutation in E. coli ALE endpoints,

(2) their structural location in relation to a known RNAP region of interest, such as effector

binding sites, and (3) evidence of phenotypic impact of the mutation. Figure 2.1A shows the

location of these twelve mutations on RNAP along with some particular structural regions of

interest. Sigma factor binding sites are shown in Supplemental Figure A.2. These mutations

were introduced into the genome of the model K-12 MG1655 strain of E. coli (see Methods:

Creation of RNAP Mutations) to generate single mutation knock-in strains.

RNA-sequencing data was collected under aerobic growth on glucose M9 minimal media

for each of these individual mutants (see Methods: RNA-Sequencing). Some of the RNAP

mutant strains were additionally tested under specific stress conditions that were similar to the

ALE experiment in which they were originally found. All but one of the 12 mutants exhibited

a shift toward greed in the f/g tradeoff in the transcriptome (Figure 2.1B). The exception, rpoB

I966S, arose during an evolution to high temperature growth [63] and may therefore have had

a stronger impact on temperature stability than regulation of expression. All but rpoB I966S

and rpoC N309Y, the latter of which arose during butanediol tolerance evolutions, increased

the growth rate (Figure 2.2A). RpoC N309Y does not increase the growth rate but does shift

its transcriptome towards greed in a pattern consistent with the other mutations (Supplemental

Figure A.3). It should be noted that rpoC N309Y was generated using a different procedure

from the other mutations (see Methods: Creation of RNAP Mutations) which could be skewing

its results.
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2.2.2 Genomic features are patterned unevenly

Figure 2.2: (A)The growth rates of the mutated strains relative to the wild-type control. (B)
A subsection of RNAP (PDB 6OUL [61]) showing the location of common mutations with respect
to the rpoB-rpoC interface and the ppGpp binding site, visualized using PyRosetta [62]. (C)
Correlations between the activity levels of all iModulons between RNAP mutants under the
same growth condition. The plot shows that all the twelve mutations have a similar impact on
transcriptome composition. Mutations in the catalytic core have a near-identical impact on the
transcriptome. (D) Number of laboratory evolution experiments that RNAP mutations are fixed
in (number given is from a total of 743 ALE experiments found in ALEdb [16]). The gray bars in
this panel and Panel C are the mutations grouped as “most common RNAP ALEdb mutations”
in Figure 2.1 and are visualized on the RNAP structure in Panel B of this figure. [62]
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RNAP mutations have been shown to affect RNAP structurally in a variety of ways. Some

of the most commonly found and widespread RNAP mutations are rpoB E672K, rpoB P1100Q,

rpoB G1189C, and rpoC N720H (2.2). The physical mechanism for how these four mutations

cause the tradeoff is not fully established, but some key properties are known. Structurally, they

are all located near the rpoB-rpoC interface (rpoB E672K = 5.46 Å, rpoB P1100Q = 5.24 Å,

rpoB G1189C = 8.97 Å, rpoC N720H = 10.09 Å) as visualized in 2.2B. PyRosetta [62] was

used to calculate the mean impact of these mutations on the holoenzyme structures and found

that all were predicted to destabilize the rpoB-rpoC interface (rpoB E672K = -28.40 REU, rpoB

P1100Q = -23.98 REU, rpoB G1189C = -5.26 REU, rpoC 1055V = -13.91 REU, mean of all

RNAP mutations on ALEdb = -16.83 REU, see Supplemental Figure A.4). This region is nearby

to a ppGpp binding site which the mutations are also mostly predicted to destabilize and thus

likely modify its regulatory role [51] which is tightly connected to RpoS’s own activity [64]. The

effect these mutations have on RNAP though are unlikely only limited to the destabilization of

said interfaces.

These mutations each may have effects specific to their structural location. RpoB E672K

for example is located at the base of the bridge helix where it possibly affects DNA-RNAP

interactions. RpoB P1100Q is near a helix in the beta prime subunit that interacts with ppGpp

binding site 1. While some of these mutations are near to ppGpp binding site 1, it should be noted

that ppGpp binding site 2 has been reported to have a greater effect on gene expression [51].

DksA, which comprises much of the interface with ppGpp in site 2, has not been mutated in

samples found in ALEdb.

Unfortunately a computational structural analysis of how these mutations affect sigma

factor binding is not feasible. Sigma factors bind over large portions of RNAP (see Supplemental
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Figure A.2) and the specific structural file used has a dominant effect on the resulting desta-

bilization scores. What we can observe though is that the RNAP mutations modify RNAP’s

interactions with sigma factors nonuniformly. Genes regulated by RpoS [33], the general stress

response sigma factor, showed on average a -0.33 change in log2 transcripts per million (tpm)

expression when compared to the wild-type. The relatively small change (-0.059 change in log2

tpm) in genes regulated by RpoD, the housekeeping sigma factor, shows that these mutations

differentially affect sigma factor functions. This infers that these mutations are preferentially

affecting certain sigma factors likely through their binding interfaces.

2.2.3 RNAP mutations lead to upregulation of growth-related genes and

downregulation of stress-related genes

The analysis of global changes in the transcriptome is difficult due to the high number of

differentially expressed genes in many comparisons. Furthermore, comparing many conditions is

challenging if pairwise differential expression of genes (DEG) plots are used [34] (see Supplemental

Figure A.5). To overcome these challenges, we used the iModulon workflow [37, 65] to identify

independently modulated gene sets (iModulons) and interpret their differential activity between

all conditions used. This workflow uses independent component analysis (ICA) of a compendium

(X) of RNA-sequencing data, which includes our samples of interest along with a variety of

other experiments which help to separate source signals associated with transcriptional regulators

[37, 65]. The algorithm generates two output matrices: M (whose columns highlight the genes

in each iModulon) and A (whose rows show the iModulon’s activity in every sample). Detailed

information on each iModulon is available at iModulonDB.org [5] and this study focuses primarily

on the “E. coli PRECISE 2.0” dataset [65]; an E. coli database of RNA-sequencing data obtained
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under 422 growth conditions. All iModulon activities are measured relative to an unstressed M9

glucose condition and should be interpreted thusly.

Principal component analysis (PCA) of the iModulon activity matrix (A) shows that much

of its variance and thus expression variation in general is explained by the RpoS and Translation

iModulons’ activities. The RpoS iModulon is the largest and the Translation iModulon is the

fifth largest contributing factor to the highest variance explaining principal component (PC).

GadX and ppGpp iModulons are also highly contributing factors to large variance explaining

PC’s, adding additional dimensionality to f/g that is further explored in Figure 2.3. The f/g

tradeoff is thus a major contributor to variation in the composition of the transcriptome.

The new RNA-sequencing data from the twelve new RNAP mutant strains was analyzed

using ICA [37]. The iModulon activity levels in the new samples were compared to those in

PRECISE 2.0. This database was used to compute the iModulons structure of the E. coli

transcriptome [37].

All of the twelve mutations introduced, except for rpoB I966S, have a large impact on the

activity level of the RpoS iModulon similar to the two previously studied RNAP mutations [30].

The mutations in the catalytic center (those visualized in Figure 2.2B) have the largest impact

on RpoS iModulon activity levels (44.1% higher on average than the other RNAP mutants

generated for this study as can be seen in Supplemental Figure A.3), but mutations distant from

this location can also strongly impact the activity of this iModulon which has not been previously

shown. This suggests there is more complexity to the physical mechanism of this transcriptomic

effect. Both the frequency of occurrence and the effect of these RNAP mutations found in the

catalytic center imply they are commonly fixed during growth rate selection (i.e., maximization

of ‘greed’).
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2.2.4 Genome-scale models of proteome allocation quantitatively estimates

the growth benefit of maximizing greed functions

While iModulons are an informative approach to reveal the hallmarks of changes in the

expression state, they are not directly representative of the composition of the proteome. Creating

iModulons from expression data requires the input RNA-sequencing data to be both centered to

a control and normalized. This means the activity levels of iModulons for samples are entirely

relative to each other and their magnitude range is constrained by the variance of the PRECISE

dataset. We thus deployed a genome-scale model to reproduce the f/g tradeoff which allowed

us to infer absolute measures of the proteome of cells undergoing said tradeoff. A genome-scale

metabolism and expression (ME) model [66] was run to maximize growth while constraining

RpoS iModulon-associated reactions to a specified lower bound.

The resulting RpoS and Translation iModulons’ proteomic computed mass fractions were

highly anticorrelated (-0.9994) (see Supplemental Figure A.6). A unit activity increase in the

Translation iModulon has a 650% stronger effect on said iModulons’ genes’ proteome mass frac-

tion than it does in the RpoS iModulon (see Methods). This implies that the small activity

increases of the Translation iModulon seen in the f/g tradeoff and in the RNAP mutations may

be having a larger effect than appears on the cell’s phenotype. This computational model also

indicates that forced expression of the stress readiness genes reduce the expression of the growth

promoting genes as experimentally observed.
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Figure 2.3: (A-F) These plots show the relationship in activity levels between the greed (Trans-
lation and ppGpp) and fear (RpoS and GadX) iModulons. The p-value is calculated using a
t-distribution test of all iModuon-to-iModulon pairwise activity level comparisons. (G) The ac-
tivity levels of various growth- and stress-related iModulons for the RNAP mutants, along with
some other iModulons highly affected by said mutations. The gray dots are the activity levels of
the other iModulons for all of the mutants. Red labeled iModulons are plotted in panels A-F.
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2.2.5 The fear vs. greed tradeoff additionally involves GAD and ppGpp iMod-

ulons

The f/g tradeoff was first visualized using the activity levels of the Translation and RpoS

iModulons [37]. Since this study was published, the number of transcriptomes for E. coli has

quadrupled [67]. The analysis of the larger data sets reveals additional dimensionalities to the f/g

tradeoff. Several additional iModulon activity levels are correlated with growth rates, including

the GadX and ppGpp iModulons. The RNAP mutations are likely affecting these iModulons

as ppGpp binds to RNAP while the GAD regulon’s expression has been closely tied to RpoS

and ppGpp [45, 68]. GadX is highly correlated with RpoS (0.71) and negatively correlated with

growth rates (-0.24) while ppGpp is strongly correlated with Translation (0.74) and has a weak

positive correlation with growth rates (0.14). Correlation plots for each of these iModulon activity

pairings are given in Figure 2.3A-F. All pairings except for GadX and ppGpp iModulons show a

clear correlation.

2.2.6 RNAP mutations can be condition-specific adaptations

While the core group of common RNAP mutations downregulate stress-related iModu-

lons and upregulate growth-related iModulons (Figure 2.3G), other RNAP mutations have more

specific effects that are adaptations to the environments from which they were found. Supple-

mental Figure A.7 shows two of these such mutations (rpoB R200P and rpoA G315V) from our

set of twelve mutations.

The rpoB R200P mutation reflects a specific selection condition. It is found commonly

in replicate methionine tolerance evolutions [59] and it has two effects on the transcriptome:

(1) during growth on methionine it activates the Translation iModulon and downregulates the
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RpoS iModulon to increase the growth rate compared to wild-type; and (2) during growth on

M9 glucose it activates anaerobic response genes found in the Fnr-1, Fnr-2, and Anaero-related

iModulons. These responses are likely used because methionine contains sulfur and is thus a

common target of reactive oxygen species (ROS) in E. coli [69].

The rpoA G315V mutation affects the activities of Crp-1 and Crp-2 iModulons with

the strongest impact on the maltose operons. This mutation was found in a pgi synthetic gene

replacement ALE [58] in nearly all strains that failed to integrate the exogenous pgi replacements.

Presumably the loss of pgi required large changes to sugar import systems, thus necessitating

this rpoA mutation to help downregulate maltose importers [70]. The mutation’s effect on the

Crp-1 iModulon is similar to one reported in a study that deactivated regions of crp [71] (see

Supplemental Figure A.7E). Thus it is likely the mechanism of action for this rpoA mutation is

to modify the rpoA-crp binding interface.

Thus, there are RNAP mutations outside the core of the enzyme that confer condition-

specific effects on the transcriptome (see A for more cases). This observation leads to a wider

examination of the effects of RNAP mutations that are selected for under specific conditions.

2.2.7 The genetic basis for the fear vs. greed tradeoff during ALE is condition-

dependent

The primary fear and greed iModulons are correlated for both unevolved samples (-0.57

correlation) and evolved samples (-0.39 correlation, see Figure 2.4A), although evolved samples

strongly favor greed. These correlations hold true across samples with and without RNAP

mutations, but RNAP mutations nearly universally favor a movement towards greed. Different

stressors lead to specific transcriptional adjustments along the f/g tradeoff to best favor growth
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Figure 2.4: (A) The fear vs. greed iModulon activities of the evolved samples of PRECISE 2.0
centered on their respective unevolved wild-type strains’ iModulon activities. (B) The iModulons
of PRECISE 2.0 correlated with the available growth data along with how much of the total
transcriptome’s variance they explain. (C) The most common mutations found in ALEdb and
the natural variants of RNAP (PDB 6OUL [61]) visualized using PyRosetta [62]. (D) The
correlation values between growth rates and iModulons for all evolution experiments with growth
rates reported.
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as is annotated in Figure 2.4A.

In most laboratory evolutions with high stress conditions, evolution downregulates the

RpoS iModulon over time. The cells initially use the RpoS iModulon to respond to nearly any

stress, but eventually tune the stress response to the specific environment. In a reaction oxygen

species experiment (labeled ROS TALE) [72], initially the RpoS iModulon was highly active but

as the cells evolved on paraquat most of the iModulon was downregulated while the expression

of oxidative response genes in the iModulon were left largely unmodified (see Supplemental

Figure A.8). This transcriptional regulatory network adjustment, which was driven by convergent

mutations to icd, aceE, sucA, oppA, and emrE among other genes, enabled the cells to grow faster

in a ROS stress environment.

2.2.8 Growth rates are well correlated with the fear vs. greed tradeoff

Standardizing growth rates across experiments is a difficult task, as unintentional differ-

ences in laboratory procedures, data processing, or simple measurement bias can drastically skew

the results while intentional differences in experimental conditions make a direct comparison dif-

ficult. Growth rate data is also often not reported, as just 43% of PRECISE 2.0 samples have

associated growth rates. The growth data present, however, supports the fear vs. greed trade-

off. Translation is the second most positively correlated iModulon with growth while the RpoS

iModulon is the tenth most negatively correlated with growth (Figure 2.4B). It is important to

note that the iModulons with stronger correlations to growth than Translation and RpoS explain

little of the transcriptome’s variance. Figure 2.4D shows that these correlations hold true across

a variety of evolution experiments.

OxyR ALE, for example, is the most correlated positively iModulon with growth rates
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yet explains only 0.1% of the transcritome’s variance and its activity is nearly entirely limited to

the ALE study for which it is named. Anaero-related, in addition to Translation and ppGpp, has

a positive correlation with growth and a large explained variance of PRECISE’s expression data.

While it also is upregulated by the RNAP mutations, compared to the other greed iModulons it

contains many genes of unknown function and has no clear regulator. The f/g tradeoff is defined

not by all growth and stress related genes but rather key well-defined stress and growth iModulons

whose activities anti-correlate with each other over a large range of conditions. However, future

versions of PRECISE will likely enable the inclusion of the Anaero-related iModulon among

others into the f/g tradeoff.

This ceaseless pull towards greed and away from stress readiness, however, is largely

limited to laboratory conditions. The lack of overlap between the natural variants [73] and

the ALEdb mutations seen in Figure 2.4C implies that there are highly divergent evolutionary

pressures on wild-type strains and their ALE counterparts.

2.2.9 The fear vs. greed tradeoff is found across the phylogenetic tree

Finally, we searched the phylogenetic tree for other organisms exhibiting the f/g tradeoff

(the phylogenetic tree highlighting said species can be seen in Supplemental Figure A.9). First

we analyzed data from a multi-strain E. coli ALE study [75]. This analysis shows that the

tradeoff was found in all the E. coli strains of the study (Figure 2.5A). Second, we examined

iModulonDB [5] for the presence of the f/g in other species (Figure 2.5D-K). The tradeoff was

clearly found in seven out of the 12 bacterial strains surveyed (see Methods: Cross-species iMod-

ulon Comparisons). Although the gene composition of the fear iModulons varies between species

(likely a consequence of differing stresses in their natural environments), all of the primary greed
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Figure 2.5: (A) The f/g tradeoff appears in ALEs across multiple E. coli strains [74]. (B) Per-
centage of genes found in common among translation and stress iModulons in different species.
(C) The COG category of the genes of the greed and fear iModulons. (D-K) The f/g trade-
off among a variety of species found in iModulonDB [5]. The p-value is calculated using a
t-distribution test of all iModuon-to-iModulon pairwise activity level comparisons. The names of
the iModulons are pulled from their respective data sets. Mycobacterium tuberculosis’ “Positive
regulation of growth” iModulon mostly consists of stress-related antitoxin genes.
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iModulons consist of a highly similar set of ribosomal subunits and translational associated func-

tions (Figure 2.5B-C). The five species in which the tradeoff was not found all contain a greed

iModulon that consists primarily of ribosomal subunits, but said species contain no one clear

stress iModulon that correlates with it. The presence of the greed-related genes of the f/g trade-

off across such a wide range of species implies that they may be a global property of bacterial

transcriptomes.

2.3 Discussion

We detail a general tradeoff in the bacterial transcriptome between growth rate and

stress readiness. A major genetic component of this tradeoff lies in RNAP mutations, which

affect the structure of RNAP and consequently the composition of the transcriptome. In RNAP

mutants that arise from ALE studies, the modified transcriptome composition favors transcrip-

tion of growth-related functions over stress-related functions. The tradeoff between fear and

greed related functions was found across a wide range of wild-type bacterial strains. Similar

transcriptional tradeoffs have been seen before in persistence [76], nutritional competence [77],

and protein cost in metabolic pathways [78]. Interestingly, the fear vs. greed tradeoff has been

described in many areas of science; such as economics [79], game theory [80], and psychology [81].

It has been elucidated here for microbiology through a multi-scale analysis.

A previous study compared two RNAP mutations [30], rpoB E672K and rpoB E546V,

and found that they destabilize the rpoB-rpoC interface [82]. Another study using in vitro assays

linked an rpoC deletion from 3,611 to 3,619 bp (near to the rpoB-rpoC interface) to destabilizing

the open complex of RNAP which led to decreased transcriptional pausing on the promoter,

reduced RNAP’s open complex half-life, and increased elongation rates [24]. For our centrally
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located mutations, our evidence best supports this model of a destabilized rpoB-rpoC interface

leading to a destabilized open complex thus causing transcriptional changes. However, we have

no clear mechanistic explanation as to why mutations distant from this central region, such as

rpoC G1055V, have similar impacts to the transcriptome. The impact of RNAP mutations have

also been shown to be similar to strains with reduced number of ribosomal operons, suggesting

that these mutations are possibly modifying ribosomal availability and/or distribution [4]. Other

RNAP mutations were found to eliminate the destabilizing effect of ppGpp binding to RNAP,

thus reducing the inhibition of transcription by ppGpp [83].

A recent study analyzing 45,000 ALE mutations and comparing them to wild-type variant

alleles suggests that under laboratory evolution the wild-type alleles are under negative selection

pressure, while ALE mutations are under positive selection pressure [73]. This suggests that ALE

mutations represent extreme mutations extenuating a preferred trait, thus amplifying the basis

for the f/g tradeoff as opposed to nature in which a sole focus towards faster growth would leave

cells unable to adapt to highly variable conditions.

The current study expanded upon current knowledge [24,30] by analyzing the impact of

twelve RNAP mutations to detail RNAP’s role as a global master regulator of the f/g tradeoff.

All twelve of these mutations, however, are from evolution experiments and their common adjust-

ments towards greed are reflective of that. The detailed molecular/structural mechanisms that

underlie the tradeoff are not fully understood, but appear to involve the rpoB-rpoC interface [30]

and other important structural regions of RNAP, altered kinetic and regulatory properties [24],

and changes in the sigma factor use of RNAP.

The effects that RNAP mutations have on the transcriptome composition, however, are

clear. The transcriptomic re-allocation involves a consistent set of iModulons with known func-
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tions. As additional versions of PRECISE are created using more data, it is likely additional

iModulons could be included in this tradeoff. The relationship between the proteome and tran-

scriptome functions enable genome-scale computational biology assessment of the phenotypic

consequences of the reallocation [84]. Thus, a detailed understanding of the effects of the f/g

tradeoff at the systems level has emerged. As the tradeoff involves resource allocations for im-

proved fitness, it is important to contextualize particular RNAP mutations fixed in laboratory

evolution studies and seek to identify adaptive mutations that are condition specific.

Finally, the phylogenetic distribution of the greed-related genes of the f/g tradeoff is

broad, suggesting that this tradeoff may emerge as a universal feature of the bacterial transcrip-

tome that can be captured by iModulons. It is not known, however, if RNAP mutations would

have a similar impact to the tradeoff in these species. The tradeoff has been also found in a

minimal synthetic organism, further supporting its potential ancient origin [85]. RNAP and the

f/g tradeoff have been shown to play a highly important role in balancing growth and stress

adaptations.

2.4 Methods

Strain Information

E. coli K-12 MG1655 was used as the wild-type and as the source strain for all mutations

created for this study.

Creation of RNAP Mutations

RpoC N309Y was created using pORTMAGE [86], the protocol for which is included

in Supplemental File 1 of the publication. Initially pORTMAGE was intended to be used to
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generate all strains, but only rpoC N309Y could successfully be generated and thus the rest

were created using the CRISPR-based protocol outlined in Zhao et al. [87]. Mutations were

verified using reverse PCR. Primer sequences used in the generation of mutants are included in

Supplemental File 2 of the publication.

Growth Rate Calculations and Comparisons

Reproductive growth rates were calculated under the same conditions for all RNAP mu-

tated strains. A 24-well magnetic heat lock set to 37° C was used for continual cultures. 16mL

culture with OD600 = 0.05 using M9 minimal media supplemented with 4 g/L glucose was

prepared in a plastic tube; and time points taken in replicate for growth rate calculation approx-

imately every 30 minutes. For comparing growth rates across experiments, all growth rates were

analyzed as differential values relative to their respective experiment’s control condition. After

being centered on their respective control conditions, the differential growth rates were normal-

ized for each experiment. The growth rate values for the PRECISE 2.0 samples are available at

iModulonDB (https://imodulondb.org/organisms/e coli/precise2/data files/sample table.csv).

RNA-sequencing

All samples were prepared and collected in biological duplicates. 3 ml of culture isolated

at an OD600 of 0.5 was added to 6 ml of Qiagen RNA-protect Bacteria Reagent after sample

collection. This solution was then vortexed for 5 seconds, incubated at room temperature for

5 minutes, and then centrifuged. The supernatant was then removed and the cell pellet was

stored at -80° C. The Zymo Research Quick-RNA MicroPrep Kit was used to extract RNA

from the cell pellets per vendor protocol. On-columns DNase treatment was performed for 30

28



minutes at room temperature. Anti-rRNA DNA Oligo mix and Hybridase Thermostable RNase

H [88] was used to remove ribosomal RNA. Sequencing libraries were created using a Kapa

Biosystems RNA HyperPrep per vendor protocol. RNA-sequencing reads were processed using

https://github.com/avsastry/modulome-workflow. Data is available at NCBI GEO GSE227624.

iModulon Computation

RNA-sequencing data was used to create iModulon activity levels of the mutated strains

using PyModulon [37] which is available at https://github.com/SBRG/pymodulon. Activities

of iModulons were compared to samples from PRECISE 2.0 [65] which is easily accessible using

iModulonDB [5].

Mutation Analysis

ALEdb [16] was used for selecting the mutations for this study. Any E. coli strains on

ALEdb were considered as potential sources for mutations. Mutations from the same sample

but where one is from an isolate and one is from the population were considered to be just one

instance of said mutation.

Structural Analysis

Structural analysis was performed using PyRosetta [62] using its default score function.

The pdb files were downloaded from RCSB [89]. REU stands for Rosetta Energy Unit, which is

PyRosetta’s unit for energy. The files used were selected primarily based on a review of bacterial

RNAP [90].

The structural calculations for the rpoB-rpoC binding interface were performed by cal-

culating the binding energy between the chains coded by rpoB and rpoC using the holoenzyme
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pdb structures. For each mutation, said mutation was introduced, the protein was repacked, and

the binding energy between the two chains was recalculated and compared to the baseline. The

structural calculations for ppGpp binding analyses were carried out similar to the rpoB-rpoC

binding simulations, but by instead calculating the binding energy between ppGpp and the rest

of the protein.

Structural analysis was carried out for each of the twelve mutations created specifically

in this study (see Supplemental Fig. A.4). Calculations were also carried out for an alanine scan

of RNAP and all ALEdb RNAP mutations to serve as various controls (see Supplemental Fig.

A.10).

Data Processing

iModulons are calculated using expression data centered on a control. For this study the

control was a wild-type M9 glucose growth sample on which all other samples were centered.

All biological replicates of expression data had over 99% correlation to each other and were

averaged together. In addition to PyRosetta [62] and PyModulon [37], numpy [91], pandas [92],

and scipy [93] were used to generate figures and perform analysis.

Metabolic Model and Proteomic Calculations

The FoldME [66] model was used for the metabolic modeling calculations. Supplemental

Figure A.6 was generated by iteratively increasing the lower bounds for the genes of the RpoS

iModulon and recording the proteomic mass fraction of the Translation and RpoS iModulons’

genes until the model no longer ran. Proteome mass fraction to iModulon genes is the sum of

the measured proteomic mass fractions of each enriched gene in an iModulon. This value is
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calculated for every sample and plotted against its corresponding PRECISE iModulon Activity.

The proteomic calculations performed for this paper are well described in Patel et al [84].

Cross-species iModulon Comparisons

To compare iModulons across different species, first genes from the various strains were

matched to each other using Orthofinder on its default settings [94]. The FASTA files for each

organism were pulled from their respective NCBI genome pages and fed into the algorithm. The

many-to-many Orthofinder results were used to generate the gene mapping for later steps. In

the case that an organism had multiple genes mapped to one orthogroup, the multiple genes’

weightings were averaged when mapped to the orthogroup. The many-to-many results were used

based on the rarity of one-to-one orthologs and at the suggestion of Orthofinder’s GitHub page.

Species’ iModulons were mapped to both E. coli ’s Translation and RpoS iModulons based

on Fisher’s exact test p-values generated on orthogroup presence/absence in iModulons. Said

presence/absence calls were generated using k-means clustering of the orthogroup activity levels

within iModulons with the number of clusters set to 2 and taking the smaller cluster as the

orthogroups present in an iModulon. The iModulon from each species with the lowest p-values

were selected as the best matching iModulon. In the case where no iModulon matched the E.

coli RpoS iModulon (namely for Mycobacterium tuberculosis and Acinetobacter baumannii),

the iModulon most negatively correlated with their Translation iModulon was chosen. iModulon

names were pulled from the individual species’ iModulons.
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Chapter 3

Diversity of transcription regulatory

adaptation in E. coli

The Transcriptional Regulatory Network (TRN) in bacteria is thought to rapidly evolve in

response to selection pressures, modulating transcription factor (TF) activities and interactions.

In order to probe the limits and mechanisms surrounding the short-term adaptability of the TRN,

we generated, evolved, and characterized knockout (KO) strains in E. coli for 11 TFs selected

based on measured growth impact on glucose minimal media. All but one knockout strain (∆lrp)

were able to recover growth and did so requiring few convergent mutations. We found that the

TF knockout adaptations could be divided into four categories: 1) Strains (∆argR, ∆basR,

∆lon, ∆zntR, ∆zur) that recovered growth without any TF-specific adaptations, likely due to

minimal activity of the TF on the growth condition, 2) Strains (∆cytR, ∆mlrA, ∆ybaO) that

recovered growth without TF-specific mutations but with differential expression of regulators

with overlapping regulons to the KO’ed TF, 3) Strains (∆crp, ∆fur) that recovered growth
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using convergent mutations within their regulatory networks, including regulated promoters and

connected regulators, and 4) Strains (∆lrp) that were unable to fully recover growth, seemingly

due to the broad connectivity of the TF within the TRN. Analyzing growth capabilities in

evolved and unevolved strains indicated that growth adaptation can restore fitness to diverse

substrates often despite a lack of TF-specific mutations. This work reveals the breadth of TRN

adaptive mechanisms and suggests these mechanisms can be anticipated based on the network

and functional context of the perturbed TFs.

3.1 Background

The bacterial Transcriptional Regulatory Network (TRN) adapts to environmental

changes [95] primarily through the action of transcription factors (TFs) [96]. Research into

TFs has revealed insights into their regulatory targets [97], mechanisms of action [98], and roles

in environmental responses [95]. Genetic mutation enables flexibility of TF activities and interac-

tions both on long [95] and short (¡1000 generations) timescales [99]. TF-related mutations have

been observed in laboratory evolution experiments [42, 100, 101], indicating that microbes can

meet short-term environmental challenges through genetic modulation of the TRN. An investiga-

tion of how the TRN adapts in the short term to recover growth following strong perturbations

would provide insights into both the mechanistic basis and limits of the plasticity of the TRN.

Knockout adaptive laboratory evolution (KO-ALE) has previously been used to study

evolutionary adjustments to genetic perturbations in E. coli. Metabolic gene KO-ALEs revealed

multiple optimal phenotypes exist to alleviate bottlenecks created by the KO, all of which sub-

stantially recover growth [102, 103]. Certain TF KO-ALE experiments have been previously

carried out, including a crp KO-ALE that found convergent mutations to ptsG, an important
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gene in the glucose phosphotransferase system [100], and a pdhR KO-ALE that resulted in tar-

geted mutations to the Shine-Dalgarno sequences of genes in pdhR’s regulon [101]. Mutations to

regulators themselves have also been found when the TRN is perturbed in other ways, such as an

enrichment of crp mutations following the KO of adenylate cyclase that produces the crp effector

cAMP [104] and convergent mutations to oxyR following evolution with oxidative stress [42]. In

addition to these specific KO-ALE studies, another grew the Keio collection on M9 minimal me-

dia supplemented with glucose and found growth defects in KOs of TFs with no known function

under this condition [105].

To obtain a more comprehensive understanding of short-term TRN plasticity, we per-

formed the largest to-date study of the adaptive response to the removal of transcription factors

in E. coli. We carried out KO-ALEs for 11 TFs, each with six independent lineages. The re-

sulting midpoint and endpoint strains were sequenced, expression profiled, and characterized

for substrate readiness using phenotyping plates. Independent component analysis (ICA) was

used to analyze the gene expression response of the resulting strains, empowering the analysis

through comparison to a broad range of experimental conditions in the PRECISE 1K E. coli gene

expression database [37, 106] (Figure 1A). The results of these experiments suggest a mutation

landscape and network structure that is capable of rapidly responding to large perturbations and

reveal the breadth of mechanisms underlying the adaptability of the E. coli TRN.
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3.2 Results

3.2.1 Selection of Transcription Factors for KO and Laboratory Evolution

In selecting TFs for KO-ALE, we sought deletions that would have a functional impact

and therefore elicit targeted adaptations. We also prioritized TFs that have well characterized

regulons to enable the estimation of condition-specific TF activity. To estimate TF activity,

we utilized data-derived transcription modules called iModulons, which are machine learning-

computed transcription regulatory modules that have been extensively analyzed on thousands of

experimental conditions [106]. TFs were therefore selected for KO-ALE based on three primary

criteria (visualized in Figure 3.1A): the regulon size based on binding sites annotated in regu-

lonDB [107], the growth rate impact of the KO on glucose M9 minimal media [105], and how well

the TF-associated iModulon explains the variance in expression of genes in the TF regulon [108].

These criteria resulted in 13 targets, 11 of which showed at least a 20% initial growth defect and

were subsequently selected to move forward with ALE. Each of these 11 KO strains were evolved

in 6 separate lineages with midpoint and endpoint evolution isolates taken from each lineage. All

isolates were sequenced to identify genetic mutations, the results of which informed the selection

of a subset of the isolates to be expression profiled.

3.2.2 Regulator activity on the evolved growth condition is a primary deter-

minant of ALE dynamics

To anticipate the degree of impact of each TF KO, we classified TFs based on activity

on glucose minimal media (Figure 3.1B). We applied a mathematical transformation to adjust

all iM activities to have 0 as their minimum value (see Methods: Basal iModulon Transforma-

tion). Based on the transformed activity levels of our wildtype control samples and the genetic
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Figure 3.1: (A) Eleven TFs were selected for KO-ALE. With the exception of nac, only TFs
with a negative impact to growth when removed are shown [105]. The coloring for the leftmost
figure is set for each TF based on the combined impact to growth rate of all genes repressed by the
TF subtracted by the combined impact of all genes promoted by the TF. (B) The activity level
of the iModulons regulated by the TF KO’s. The gene and an iModulon it regulates are named in
each subplot (gene, iModulon). These iModulon activities are corrected for basal activity, where
zero represents no iModulon activity and all activity values are positive. (C) Growth profiles for
each of the KO’s. (D) A mutation table showing the genes mutated across the strains in this
study. The right histogram shows how many instances of each mutation can be found in ALEdb
(including this study).
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adaptations seen in the evolved strains, we classify the TF KO strains into four primary cate-

gories that can be seen in Figure 3.1BCD: 1 - TF is inactive on M9 and growth recovers through

non-TF specific mutations (argR, basR, lon, zntR, and zur), 2 - TF is active on M9 and growth

recovers through non-TF specific mutations (cytR, mlrA, and ybaO), 3 - TF is active on M9 and

growth recovers through TF specific mutations (crp and fur), and 4 - TF is active on M9 and

there is poor growth recovery with non-TF specific mutations (lrp). We discuss each of these

categories below. Unless otherwise specified, all other figures and analyses outside of this classi-

fication step use the standard PRECISE1K (P1K) [106] version of iModulons publicly available

at iModulonDB.org.

3.2.3 Almost all TF knockout strains can recover growth with only few mu-

tations

The growth rates seen in Figure 3.1C show that all of the KOs, except for lrp, nearly

fully recover their growth rates. The ybaO KO strains were considered to have recovered growth

as their growth data overlaps with the wildtype growth measurements which lrp’s growth data

does not (see Supplemental Figure B.1). All of the TF KO-ALE strains except for crp and

fur did not exhibit any TF-specific causal mutations throughout their evolution (Figure 3.1D).

For these strains, mutations were largely limited to non-convergent RNA polymerase (RNAP)

mutations and expression differences primarily consisted of the downregulation of stress-related

genes contained in the RpoS iModulon and the upregulation of ribosomal subunits contained

in the Translation iModulon (Supplemental Figure B.2). These adaptations are common across

laboratory evolution experiments [109].
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3.2.4 Adaptation to removal of active TFs with small regulons occurs through

compensatory mechanisms

For the majority of TF KOs, the expression changes in their evolved strains were not genes

regulated by the KO and the TF’s regulon was not enriched for mutations (see Supplemental

Figure B.3). BasR, for example, is the primary regulator of its eponymous iModulon which is

largely unchanged during both the knockout and subsequent evolution (Figure 3.2A). The BasR

iModulon contains few other regulators (Figure 3.2B), but as basR is not normally active on

M9 the basR KO has little effect on the iModulon’s activity. Of minor interest is that basS,

the sensor kinase for basR, is extremely highly expressed in the basR KO samples although we

have no clear explanation as for what effect this would have on the transcriptome. The lack of

clear KO-specific expression differences or convergent mutations in these inactive TF KO-ALE

samples infers they are using non-genetic mechanisms to recover from their initial growth defect.

The Curli-1 iModulon, which is regulated by mlrA, is active on M9 but the mlrA KO and

subsequent evolution has little effect on its expression (Figure 3.2C). This is possibly due to the

fact that Curli-1 contains many other regulators, some of whom are differentially expressed in

the mlrA KO samples (Figure 3.2D). It appears that other nearby regulators can help adapt to

the loss of a TF in order to maintain normal iModulon activity levels.

The iModulon pipeline [110] was run using the P1K dataset with samples from this study

added, which resulted in new iModulons (Figure 3.2E). There is a KO-specific iModulon for all

but one of the TF KO-ALEs with expression profiles (185 for the basR KO iModulon, 93 - crp,

220 - fur, and 114 - lrp) which is common in KO studies. The genes in KO-specific iModulons

often have fewer regulators than genes in most iModulons (Figure 3.2F), showing that the lack of

other nearby regulators leaves these genes largely unregulated which ICA captures as KO-specific
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Figure 3.2: (A) Relative iModulon changes for all measured basR KO samples. (B) The number
of genes regulated by each regulator of the BasR iModulon. (C) Relative iModulon changes for
all measured mlrA KO samples. (D) Differential expression of the regulators of Curli-1. (E) The
iModulon pipeline was rerun with P1K and samples from this study. (F) All iModulons with
regulators are shown alongside the KO-specific iModulons of both PRECISE1K and this study.
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iModulons.

3.2.5 ALE restores growth-important gene expression when deleted TFs are

active with large regulons

Crp (cyclic AMP receptor protein) regulates a wide variety of genes mostly encoding

enzymes involved in carbon metabolism and transport [111] and has long been the subject of

intense interest in microbiology. Crp has the largest number of directly regulated genes [107],

but through evolution its KO can be adjusted for. This is possibly due to the fact that crp

has relatively few targets of which it is the only regulator and therefore other regulators with

overlapping targets are able to maintain normal expression of most growth-important genes.

Figure 3.3A shows the iModulon changes for both the crp KO and its evolutions. There

are two crp iModulons (ignoring KO-specific iModulons) in P1K whose activities are closely

connected (Figure 3.3B): Crp-1, which contains a large number of genes primarily involved in

carbon metabolism and Crp-2, which is dominated by the gatYZABCD operon (a transporter of

galactitol [112]). Crp-2 is substantially downregulated in both the unevolved and the evolved crp

KO strains while Crp-1, which is inactive on M9 (see Supplemental Figure 4), is only minorly

affected by the KO or evolution. This may be due to or enabled by the fact that Crp-1 and Crp-2

largely correspond to class I and class II crp binding respectively [106], thus showing that crp

class II binding appears to be more active on minimal glucose media than crp class I binding.

The evolution does not restore normal expression of crp’s regulon on the whole (as mea-

sured by the Crp iModulons), but rather restores the expression of the most growth important

genes such as ptsG. Figure 3.3C shows the most differentially expressed genes regulated by crp

in the crp KO samples, which show evolution’s ability to rebalance the most growth-important
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Figure 3.3: (A) Relative iModulon changes for all measured samples. iModulons that are differ-
entially expressed are labeled. The relatively small amount of change to the crp iModulons over
evolution shows that evolution does not restore the whole TRN but rather the genes with strong
growth impacts. (B) Comparison of Crp-1 and Crp-2 iModulon activities across PRECISE1K.
Outliers are annotated. (C) Only genes with differential expression in either the unevolved or
evolved samples are shown. The most notable change is the restoration of ptsG to normal ex-
pression. All expression values are relative to the unevolved wildtype samples. The bottom row
shows the impact to growth rate for the removal of each gene. The expression profile of the
midpoint sample for A1 is contaminated and is thus removed. (D) All mutations that are found
in at least two evolved strains are shown. There is a clear evolutionary selection pressure for ptsG
promoter mutations. The percentages are the growth rate increase relative to the unevolved crp
KO strain (i.e., crp A1 grows at a 2.36-fold higher rate). (E) The promoter and repressor sites
for ptsG and the location of the mutations for each of the sequenced endpoint strains.
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target of crp after its KO, ptsG. The crp evolution from our study shows similar results to a

different crp KO-ALE study [100], both of which contain convergent mutations to ptsG repressor

sites. The mutations found in the evolutions can be seen in Figure 3.3D with convergent muta-

tions upstream of ptsG, a vital gene for glucose import. These mutations, visualized in Figure

3.3E, target repressor binding sites of other regulators.

Crp normally promotes ptsG and the KO thus severely downregulates the expression of

ptsG, but the evolved samples are able to restore normal ptsG expression by reducing repressor

activity. A2 is the only evolution without a ptsG mutation on a repressor site and instead has a

mutation shortly downstream of the ptsG start codon. A2 is the slowest grower but this mutation

does restore normal expression of ptsG, possibly through inhibiting sgrS, an sRNA which inhibits

ptsG expression and binds near the start codon [113]. These mutations are the first to arise in the

strains, even before common M9 evolution adaptations such as RNAP mutations. This further

implies there is a very strong selection pressure to restore normal ptsG expression within these

evolutions.

Fur primarily acts as a regulator of iron transport/utilization and has a large regulon

of 132 genes [107], but the majority of the genes it regulates are also regulated by other TFs.

There are two fur iModulons in P1K whose activities are highly coordinated with each other

(Figure 3.4A): Fur-1 which is dominated by the entCEBAH operon which helps synthesize en-

terobactin to provide iron for metabolic pathways [116] and Fur-2 which consists of ABC iron

transport proteins. Similar to the crp evolutions, the fur KO and evolution drastically changes

the activity of Fur-1 while leaving Fur-2, which is less active on M9 (see Supplemental Figure

B.4), relatively unchanged. Instead of restoring normal expression of the fur iModulons (Figure

3.4B), the evolved strains restore normal expression of high growth-impact genes, most notably
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Figure 3.4: (A) Comparison of Fur-1 and Fur-2 iModulon activities across PRECISE1K. Out-
liers are annotated. (B) The differentially expressed iModulons for the evolved samples show
that the majority of the evolution focuses on common growth-promoting adaptations rather than
restoring the TRN to the normal state. (C) Mutations found in at least two independent lineages
are visualized and the percentages are the growth rate increases relative to the unevolved fur KO
strain. (D) Only genes with differential expression in either the unevolved or evolved samples
are shown. All expression values are relative to the unevolved wildtype samples. The bottom
row shows the impact to growth rate for the removal of each gene. (E) The specific sequence
changes for the strains with an ryhB mutation are shown. (F) The structural location of the
ryhB mutations on the sRNA form of ryhB [114], with red letters representing each mutated
position. These mutations have been shown to reduce ryhB ’s ability to regulate its targets [115].
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sodB through mutations to ryhB.

RyhB is a sRNA which regulates many of the same targets that fur does and is normally

repressed by fur [117]. In the unevolved fur KO, ryhB is unrepressed and thus highly expressed

which in turn severely represses sodB, a superoxide dismutase (Figure 3.4D). The evolution has

convergent mutations to some common ALE targets, such as RNAP and topA (Figure 3.4C),

but also mutates a specific region of ryhB (Figure 3.4E). This region of ryhB is known to play

an important role in sodB regulation and changes to it have been shown to reduce its ability

to repress sodB [115]. A13 is the only lineage with such a mutation in its midpoint evolution,

which is shown to be the only midpoint evolution with normal expression of sodB. Interestingly

A14 recovered growth with only a 5.3% representation of this mutation in its endpoint evolution

population sample, showing there are possibly multiple potential adaptation strategies to these

KOs.

While these ryhB mutations are convergent among the independent lineages, unlike the

ptsG mutations found in the crp KO samples, they are not commonly found in the midpoint

samples and instead RNAP mutations are more often the first to become dominant. This further

shows the high potential growth impact of RNAP mutations, which has been well documented

[118].

3.2.6 Lrp KO-ALE does not recover growth and is associated with a large

interconnected regulatory network

Lrp (leucine-responsive regulatory protein) is a global TF which coordinates cellular

metabolism functions with the nutritional state of the cell [119]. Lrp notably regulates amino acid

anabolism and catabolism [120], stationary phase adaptations [121], and nutrient transport [122]

45



among many other metabolic processes.

Figure 3.5A shows a variety of measures about the TRN which make it clear that lrp

is an outlier in many ways. It has the second largest set of genes for which it is the only

known regulator, its network is highly complex (inferred by the high skewness of its subnetwork),

and its high betweenness centrality shows how a majority of the pathways between regulators

pass through it. Figure 3.5B shows a directed network of regulatorily interconnected TFs which

includes 74.4% of all regulators. In this network, 28.9% of all TF-TF pairs are connected through

regulation. If lrp is removed from this network, this percentage drops by 54%. For reference, if

nac is removed this drops by 41.2%, crp drops by 22.5%, and fur drops to 12.1%. Lrp is in a

unique position in the TRN as one of if not the only regulator that if removed severely disrupts

the network structure of TF-TF regulation.

The lrp KO-ALE strains stand alone among our KOs as being unable to recover growth.

There are no TF-specific convergent mutations among its evolved lineages and what mutations

do exist are limited to well studied growth-promoting ones such as RNAP mutations [109] (see

Supplemental Figure B.5). Transcriptional changes are largely limited to a downregulation of

stress-related genes and slight upregulation of ribosomal subunits, which are common across

ALEs [109]. The growth rate does improve through evolution, although this evolution contains

no adaptations specific to the KO itself.

Lrp regulates numerous operons, many of whose expression is largely changed through

lrp’s KO but unchanged by the subsequent evolution. Some of these operons are highly growth

important, such as gltBDF and livKHMGF which the KO severely downregulated (Figure 5C).

The evolution was unable to rebalance these operons to return the transcriptome to a healthy

state (Figure 3.5D), thus limiting its growth capabilities.
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Figure 3.5: (A) Skewness indicates the skew of the distribution of the number of degrees
for each TF’s regulon network, higher skew meaning more complexity. Betweenness centrality
is a measure of how many other shortest paths between the regulators pass through a certain
regulator. Lrp along with nac are outliers in all of these measures. (B) The TRN network
of E. coli according to RegulonDB [107]. Only genes that act as regulators are shown and
regulatory networks unconnected to this central one are summarized in the bottom right (25.6%
of regulators). While many genes are highly connected in the network visualized, lrp is a central
element. All shortest paths between any two regulators that pass through lrp are colored red
(60.4% of total shortest paths). (C) A DEO (differentially expressed operons) plot comparing
the unevolved lrp KO to the wildtype, showing the large effect of the KO. (D) A DEO plot
comparing the fastest endpoint strain (A23) of the lrp KO-ALE to the unevolved lrp KO strain.
The evolution is not able to modify the expression of the large majority of lrp’s regulon.
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3.2.7 Certain TF KOs and subsequent evolutions affect readiness of TF-

associated substrates

Figure 3.6: (A) The substrate readiness results for all of the KO-ALEs, showing that evolution
overall reduces the ability of a strain to grow on new substrates as it focuses on increasing growth
for the substrate it evolved on. See Methods: Biolog Plates and Analysis for more information.
(B) A principal components analysis carried out on the binary growth / no-growth calls of the
phenotyping plates results. The top two highest variance-explaining principal components are
shown. (C) A selection of the growth profiles from the substrate readiness plates, showing the
growth capability differences between the argR and basR KO strains on nitrogen-limited amino
acid plates.

Despite the lack of convergent mutations or KO-specific transcriptional changes among

many of the KO-ALE strains, the substrate readiness plates show distinct phenotypic changes

between the wildtype, unevolved KO, and evolved KO strains. The plates showed that most of

the evolved strains grew on less substrates than their unevolved ancestors as they specialized

48



towards growth on minimal media supplemented with glucose (Figure 3.6A). The strains that

largely gain growth capabilities (argR, cytR, and lrp KOs) do not have TF-specific mutations.

Many strains show a reduction in ability to grow in nitrogen-limited conditions over the course

of their evolution (the lon KO evolved strain loses the ability to grow on 74.63% of nitrogen-

limited conditions, basR 69.84%, mlrA 63.93%, zur 8.06%, zntR 7.46%, ybaO 4.92%, WT 3.45%),

presumably a consequence of their evolution on nitrogen rich M9 media. It should be noted,

however, that these growth losses seen largely in the basR, lon, and mlrA KO strains may also

be experimental artifacts.

A principal component analysis of the binarized phenotype data indicates that the highest

variance amongst the strains is explained by differences in nitrogen substrate utilization (Figure

3.6B). The second highest variance explanatory component represents variance in carbon, nitro-

gen, and sulfur utilization. The argR, crp, and lrp KO-ALE strains exhibit the largest shifts in

substrate utilization. While the changes for crp and lrp KO-ALEs were previously discussed, this

large shift in substrate utilization is unexpected as the argR KO strains showed no convergent

mutations and quickly recovered growth.

The unevolved and evolved KO strains for argR, a dual-regulator of arginine import and

biosynthesis [2], modify its growth capability on numerous amino acids. The unevolved argR KO

strain loses the ability to grow on five amino acids under nitrogen-limited conditions that the

wildtype can grow on (arginine, asparagine, cysteine, glutamic acid, and lysine). The evolved

argR KO strain restores growth on four of these including arginine and increases growth rates on

many of the other amino acids (see Supplemental Figure B.6). [123]. Contrasting with the argR

case, the fastest basR KO-ALE endpoint strain does not gain the ability to grow on any new

substrates and instead loses the ability to grow on nearly any amino acid (Supplemental Figure
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B.7). A few of these nitrogen-limited amino acid cases can be seen in Figure 3.6C.

Some strains such as the cytR KO show few differences between the unevolved and evolved

strains. The cytR KO strains show no change compared to the wildtype samples on any of the six

cytidine conditions, which modulates cytR activity [124]. YbaO (decR), which is thought to play

a role in cysteine detoxification [125], showed distinct differences on nitrogen-limited cysteine

conditions but relatively little difference caused by the evolution. Similar to what we found for

some of the TFs that are active on minimal glucose media, it appears that activity alone is not

enough to determine if a KO will lead to a detrimental effect on growth.

3.3 Discussion

TF KO-ALEs reveal a wide variety of transcriptional, sequence, and phenotypic adapta-

tions which are highly dependent on the activity of the TF on the growth medium and the size of

the TF’s regulon. Most of the TF KO strains were able to recover growth rates through non TF-

specific evolutionary strategies. Some of these general recovery strains, despite an initial growth

defect, are not active on minimal glucose media and the cell was able to restore growth without

large changes to its TRN. Others, such as the mlrA KO-ALE strains, recovered growth through

the utilization of regulators with overlapping targets to the removed TF without the requirement

of TF-related mutations. The crp and fur KO evolved strains recovered growth both through

common minimal media adaptations and by restoring the expression of highly growth-important

genes through convergent mutations to elements of their own TRNs, while leaving the majority

of their regulons highly differentially expressed. The lrp KO strains stand alone as being unable

to recover growth, which is likely a consequence of lrp’s unique central position within the TRN

and large number of genes for which it is the only regulator. The differentially expressed genes of
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TF KOs have been shown to vary between 0 and 63% related to the removed TF [126], showing

the wide range of potential impacts of TF KOs.

E. coli can restore growth through evolution without KO-specific mutations for most of

the TFs included in this study. Often this is because the TF is not normally active on M9, but

the highly connected nature of the TRN means that even for many active TF KOs, their regulons

are still regulated by other TFs and the strains quickly recover the growth loss caused by the KO.

The changes in expression or sequence through the evolution of these TF KOs are not related to

the removed TF’s regulon and instead represent evolutionary adjustments to M9 supplemented

with glucose seen across a wide variety of ALEs [109]. An evolved 24% reduced genome derivative

of MG1655 grew only 13% slower than evolved wildtype whereas the unevolved reduced genome

strain grew 69% slower [127], inferring that the unexplained initial growth defect seen in many

of our study’s strains may be more general KO-response rather than a TF KO-specific response.

Some TF KO-ALEs, such as crp and fur, are able to recover growth through convergent

mutations. Crp KO-ALE strains restore normal expression of ptsG through targeted mutations

to repressor binding sites upstream of ptsG (in agreement with another study [100]) and fur KO-

ALE strains mutate a specific region of ryhB which helps rebalance sodB expression to standard

levels [115]. Both the crp and fur KO-ALE strains, however, do not return their respective

regulons to normal levels but rather restore the expression of the few most growth-important

genes. A pdhR KO-ALE on glucose minimal media resulted in convergent mutations to elements

of its TRN [101] similar to the crp and fur KO-ALEs from this study. PdhR has a relatively

small regulon of 53 genes but contained in these are highly growth-important genes such as the

pyruvate dehydrogenase complex [101]. PdhR has no clear iModulon in order to infer its activity

on said media but presumably is active and could thus be categorized alongside the crp and fur
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KOs.

Lrp KO-ALE is not able to restore normal growth. This may be due to a handful of

unique attributes of lrp, but most notably its large regulon of approximately one third of the

genome [128], the large number of genes of which it is the only regulator, and its central location

within the TRN. No other gene in E. coli plays a more central role in connecting different TFs

to each other through regulation. Evolution is able to improve the growth rate of the lrp KO,

but primarily through generic M9 growth-promoting mutations and expression changes that are

seen across many samples from this study and numerous other ALE studies [109]. In a whole cell

network study connecting together the TRN and metabolic networks, the Lrp-leucine complex

was one of the central connections between the two networks, thus showing its central importance

to not just regulating TFs but also its influence over metabolism [129]. The regulon of lrp remains

largely unrestored through evolution, including growth important operons such as gltBDF and

livKHMGF.

Our characterization of substrate readiness showed a decreased ability of the evolved

strains to grow on other substrates, so there are likely other conditions where these KOs may

necessitate KO-specific adaptations. A study about novel ppGpp function found unexpected

substrate readiness differences following gene knockouts [130], giving some evidence that our

observed growth differences seemingly unrelated to the removed TF may actually be the result of

said TF’s removal and not an experimental artifact. A large-scale study of E. coli phenotyping

plates found the most no-growth calls on carbon sources and large disagreement of growth/no-

growth calls on nitrogen sources [131]. That said, despite a lack of clear evolutionary adjustments,

the evolution of TF KOs did largely modify which conditions the strains could grow on, sometimes

changing growth behavior on substrates related to the removed TF.
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TF KO-ALEs teach us a similar lesson to the metabolic KO-ALEs in that both create

bottlenecks, in the TRN and in the metabolic map respectively, that are overcome using nearby

existing connections and genetic mutations within these networks. A nac KO-ALE serves as a

potential follow-up study to this one, as it, like lrp, regulates a large number of genes many of

which have only it as a regulator and connects many TFs to each other in the TRN. Similar

to how some of our removed TRN connections enabled new growth capabilities, another study

showed how creating new regulatory links can also confer a growth benefit [132]. Additionally,

the modification as opposed to removal of central regulators has also been shown to modify

phenotype [133]. Despite large initial growth impacts, it appears that the majority of TFs can

be removed from E. coli on M9 minimal media and growth will quickly recover as the high

connectivity of the TRN leaves it with few vulnerabilities. These results reinforce the long-

standing view of the TRN as a highly adaptable network and begin to systematically uncover

mechanisms by which this adaptability is achieved.

3.4 Methods

Strain Information

All strains were selected from the Keio collection [134]. Round 1 strains (argR, crp, cytR,

fur, and lrp) were evolved at the Center for Biosustainability at Denmark Technical University

while round 2 strains (wt, basR, lon, mlrA, ybaO, zntR, and zur) were evolved at University of

California San Diego.
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ALE and Growth Characterization

ALE was performed using 6 independent replicates of each TF KO. All ALE experiments

were conducted at 37°C with a stirring speed of 1100 rpm for proper aeration. Each individual

experiment was passed to a new culturing flask around an OD600 nm = 0.6. Cultures were

always maintained in excess nutrient conditions assessed by non-tapering exponential growth.

The evolution was performed for a sufficient time interval to allow the cells to reach their fitness

plateau. The growth medium for all samples was M9 minimal medium with 4 g/L glucose,

supplemented with Wolfe’s vitamin solution and trace elements.

Samples are named in the following convention: TF KO’d, A(LE) number, F(lask) num-

ber, I(solate) number, R(eplicate) number. For example - argR A1 F14 I1 R1 is the A1 inde-

pendent lineage of the argR knockout strain and is the first replicate from the first isolate taken

from the 14th flask. Later flask numbers indicate longer evolution times. All knockouts also have

an A0 strain, which is the unevolved sample. Throughout the paper, endpoint flask refers to the

higher flask number from a lineage while the midpoint flask refers to the other non-zero flask

number from the lineage.

DNA-sequencing

A clone from the midpoint and endpoints of the evolved strains was picked for DNA

sequencing. The strains were grown in an M9 minimal medium supplemented with 4 g/L glucose.

Total DNA was sampled from an overnight grown culture at an OD600 nm = 0.6. Nucleic acid

isolation, library preparation, and subsequent analysis were performed as previously described

[135]. Briefly, genomic DNA was isolated using a Nucleospin Tissue kit including treatment

with RNase A. Resequencing libraries were prepared following the manufacturer’s protocol using
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Nextera XT kit. Sequencing was performed on an Illumina HiSeq. Sequence data is available at

https://aledb.org/ale/project/138/.

RNA-sequencing

All samples from both rounds were prepared and collected in biological duplicates at

UCSD. 3 ml of culture sampled from an overnight grown culture at an OD600 nm = 0.5 was

added to 6 ml of Qiagen RNA-protect Bacteria Reagent after sample collection. This solution was

then vortexed for 5 seconds, incubated at room temperature for 5 minutes, and then centrifuged.

The supernatant was then removed and the cell pellet was stored at -80° C. The Zymo Research

Quick-RNA MicroPrep Kit was used to extract RNA from the cell pellets per vendor protocol.

On-columns DNase treatment was performed for 30 minutes at room temperature. Anti-rRNA

DNA Oligo mix and Hybridase Thermostable RNase H [88] was used to remove ribosomal RNA.

Sequencing libraries were created using a Kapa Biosystems RNA HyperPrep per vendor protocol.

RNA-sequencing reads were processed using https://github.com/avsastry/modulome-workflow.

Data is available at NCBI GEO GSE266148.

iModulon Computation

RNA-sequencing data was used to create iModulon activity levels of our strains using Py-

Modulon [37] which is available at https://github.com/SBRG/pymodulon. Activities of iModu-

lons were compared to samples from PRECISE1K which is easily accessible using iModulonDB [5].

The calculations of new iModulons for our dataset in addition to PRECISE1K was performed

using modulome-workflow [110] which is available at https://github.com/avsastry/modulome-

workflow. See https://imodulondb.org/ [5] for a more complete description of iModulons and
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their calculation.

Basal iModulon Transformation

In the final generation of the M and A matrices within our workflow, the sign of specific

components in M was inverted to ensure a predominantly positive distribution of gene weights.

This adjustment involved reversing the sign of the corresponding columns in the M matrix and

the associated rows in the A matrix. To improve the interpretability of A matrix, adjustments

were made such that higher values correspond to an increased regulatory activity (basal activity).

Each iModulon was assigned a direction based on the function of its canonical regulator and,

when available, the activity observed in knockout (KO) samples. To align the A matrix values

with a baseline, the values were shifted such that the minimum approximates zero. This was

achieved by subtracting the 95th quantile for iModulons with a positive direction, and the 5th

quantile for those with a negative direction, ensuring minimal influence from outliers. If the

direction was positive, the signs of both matrices A and M were subsequently flipped to maintain

consistency.

Biolog Plates and Analysis

The OmniLog system was used to generate the media screens. First overnight cultures

were grown in 4 mL of M9 4g/L glucose medium at 37° C with shaking. Pellets were collected by

centrifuge and pellets for PM01 plates were washed twice by M9 no carbon medium while pellets

for PM03B and PM04A plates were washed twice using IF0a medium (supplied by OmniLog).

42%T and 85%T sample solutions were prepared in M9 no carbon medium with 1X DyeA (sup-

plied by OmniLog) for PM01 plates. 42%T and 85% sample solutions were prepared in IF0a
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medium with 1X Carbon (Na-succinate and FE-Citrate) and 1X DyeA. 100 µ L of 85% T sample

solution was placed in each well. The plates were run on the OmniLog machine at 37° C for 48

hours. Opacity readings were generated of the plates over these 48 hours.

In order to convert the opacity respiration readings to growth curves, the signal from

every well is processed through a Savitzky-Golay filter to smoothen the data. A window length

of 50 and polynomial degree of 3 is used for said filter. The maximum signal value is recorded

and a control group is formed of the negative control wells. A 1 sided z-test is performed to

calculate p-values associated with each well and are corrected for multiple hypothesis tests using

the Bonferroni correction. If the adjusted p-value is below 0.05 the well is considered to have a

significant growth signal and is assigned to have grown, else no growth is assumed.
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Chapter 4

Data-driven modeling of bacterial

transcriptional regulation

The growth of bacterial gene expression datasets has offered unprecedented coverage of

achievable transcriptomes, reflecting diverse activity states of the transcription regulatory net-

work. Machine learning methods like Independent Component Analysis (ICA) can decompose

gene expression datasets into regulatory modules and condition-specific regulator activities. Here,

we present a workflow to utilize inferred regulator activities to construct quantitative models of

promoter regulation in E. coli. Resulting models are validated by predicting condition-specific

TF effector concentrations and binding site motif strength based on differential gene expression

data alone. We show how reconstructed promoter models can capture multi-scale regulation and

disentangle regulator interactions, including resolving the apparent paradox where argR expres-

sion is positively correlated with its regulon despite being a repressor. We applied the workflow

for all regulator-linked components extracted by ICA, demonstrating the scalability of the work-
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flow to capture the E. coli TRN. This work suggests a path toward systematic, quantitative

reconstruction of transcription regulatory networks driven by the large-scale databases that are

now available for many organisms.

4.1 Background

The transcription regulatory network of bacteria is a critical determinant of cell state

and responsiveness [136], and largely involves trans-acting regulatory proteins which bind to

promoter regions to promote or deter recruitment of RNAP. Binding sites and activities of key

regulators such as transcription and sigma factors have been painstakingly determined over the

years through experiments such as ChIP and gSelex [137]. Meanwhile, observations of transcrip-

tion regulator states, in the form of gene expression datasets, have become increasingly available

for diverse conditions. In E. coli, the scale of both TF binding identification and RNA-seq have

been rapidly increasing, with only 121 of the estimated 300 TFs having any known gene tar-

gets in 2003 [138] compared to 232 TFs with gene targets with strong or confirmed confidence

today [137]. The development of sequence analysis tools has enabled binding site identification

purely through computational means [137], including some tools which can additionally predict

binding strength [139]. As of 2024, NCBI GEO contains 23,890 individual samples of RNA-seq

for E. coli, while at the end of 2010 there were only 4,127 samples [140]. This abundance of

data suggests that there exists the potential for an integrative understanding of transcription

regulatory network function in E. coli.

TRN network inference from gene expression datasets is a classic problem in systems bi-

ology [141]. Approaches to infer transcriptional regulation from large datasets generally focus on

identifying regulatory interactions and strengths rather than explicitly modeling the biochemical
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nature of the resulting regulation. These methods for TRN estimation contrast with another

paradigm for network assembly, network reconstruction, which focuses on the bottom-up struc-

tured assembly of biological knowledge through manual curation [142]. Although transformative

in modeling metabolism, the reconstruction workflow when applied to transcription regulatory

networks to date has relied on experimental mappings of transcription units [143] and compu-

tationally determined motifs [144] and resulted in largely qualitative (Boolean) [145] models.

However, a key distinction of reconstructions compared to other knowledge bases such as ency-

clopedias [146] is that they are structured to enable the generation of quantitative models whose

predictive performance can be evaluated. Thus, there is the potential for data-driven and re-

construction based approaches to be unified within a quantitative framework to more accurately

capture transcription regulation.

Independent component analysis (ICA) has been a successful approach for de novo infer-

ence of transcriptional modules from gene expression databases [37]. The resulting activities of

these components offer an estimate of the regulator activity on a given condition. Presumably,

with a knowledge of transcription factor regulons and sufficient measurements of the outcomes of

regulation, one can create a model to directly connect expression to biophysical measurements of

TFs such as concentration andKd values. This approach seeks to learn the function of TRNs from

observing their behavior across conditions using methods like ICA which capture real regulon

structure and activities, thereby mapping phenomenological parameters to mechanistic ones.

In this study, we develop a workflow to quantitatively reconstruct the TRN of E. coli

by building mechanistic promoter models and parameterizing them utilizing large-scale gene

expression data. We first define condition-specific regulon activities using ICA. We utilize known

and inferred regulons to generate mechanistic models for all regulated promoters characterized
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to date. We then parameterize these models in a stepwise process, going from phenomenological

ICA activities to fundamental biochemical parameters. We validate our approach by predicting

effector metabolite concentrations and TF dissociation constants. The resulting models are used

to disentangle complex regulation scenarios and interpret mutations. We extend this workflow to

all regulons for E. coli with activities that can be inferred from ICA, representing a substantial

fraction of all known regulation. This work lays the groundwork for a quantitative understanding

of transcriptional regulatory networks in bacteria at a new scale.

4.2 Results

4.2.1 Constructing promoter models with data-inferred regulator activities

First, we describe the inference of condition-specific regulator activities from expression

datasets. Various machine learning methods have been used to separate gene expression data into

groups of genes forming co-regulated modules and regulator activities. Independent component

analysis (ICA) has been demonstrated as one of the most effective methods based on the ability

to capture experimentally-determined regulons. Independent components from gene expression

analysis have been termed iModulons, or independently modulated groups of genes. The process

of generating iModulons using ICA can be best understood as a blind-source separation of reg-

ulatory signals. ICA separates gene expression data (X) into groups of genes called iModulons

(M) and the activity of these iModulons across the input samples (A) (Figure 4.1A). The latest

version of iModulons produced for E. coli is the PRECISE1K dataset [106] which includes over

1000 individual expression profiles and generates 201 iModulons that altogether account for 86%

of known regulatory interaction.
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The premise of the modeling workflow is to use these iModulons as indicators of condition-

specific regulatory activity, then subsequently infer a biophysical promoter model that matches

both these regulator activities and resulting gene expression. The generation of this model in-

volves inferring biological variables effector concentration, regulator concentration, and transcrip-

tionKd values, providing a basis for independent validation of the generated models. RegulonDB,

a compendium of regulatory binding sites, provides a knowledge base of what genes are regulated

by what transcription factors [137]. This information, combined with inferred regulator activity

of said transcription factors from ICA enables us to create a biophysical model of transcriptional

regulation. To do this, we created a thermodynamic model of regulated transcription with dif-

ferent promoter states represented along with binding and rate constants (Figure 4.1B). We also

model effector concentrations along with their binding constants to transcription factors which

require effectors.

The mathematical equations connecting these promoter states to each other and to the

expression values are outlined in Methods: Mathematical Model Equations. In summary, they are

able to calculate expression values for a specific gene based on cActivator and cInhibitor which,

respectively, refer to the regulatory activity of a promoter and a repressor. The equations also

require several biological constants to be set, such as Kd,RNAP , Keq,opening, and Kd,Act−RNAP .

These are set by calculating various possible solution sets that satisfy the underlying mathemat-

ical equations and picking the set that creates the best range of cActivator and cInhibitor values

(see Methods: Selection of Biological Constants). Other values are hard set by the data itself,

such as RNAP concentration, Kd,Act−Eff and Kd,Inh−Eff (see Methods: Selection of Biological

Constants). Additional parameterization steps are further described in the methods.

Figure 4.1C gives a summary of the resulting workflow. With the mathematical model
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set and biological constants ready, we now need to generate the input cActivator and cInhibitor

values. If a gene has only an inhibitor or activator, these can be directly solved as the number of

equations and unknowns is equal. The ICA reconstructed expression value, M × A of the gene

and the activating or inhibiting iModulon, is used as the expression value in the equation. If

there is an inhibitor and activator for a gene, these are created using a genetic algorithm which

creates a set of valid solutions to the expression equations and selects the solutions which best

correlate with the activating and inhibiting iModulons. An additional greedy algorithm further

optimizes these solution sets for input into the modeling software, GAMS (see Methods: Genetic

and Greedy Algorithm Optimization). GAMS also requires the different activation types of the

transcription factors involved, which can be a TF that is active without an effector, a TF that

is active with a single effector molecule, or a TF that requires two copies of the same effector

molecule to be active.

The process above is repeated for each gene contained in a specific activator-inhibitor pair

we call a regulatory case. For example, all genes that are repressed by the Arginine iModulon and

have no activating iModulon are grouped together as a regulatory case, which GAMS runs on in-

dependent of all other genes. The GAMS model optimizes for two criteria: 1) matching the input

and output cActivator and cInhibitor values; and 2) matching the actual and predicted mRNA

values. Additional details about the GAMS model are available in Methods: GAMS Model. The

GAMS model outputs predicted mRNA values, GAMS optimized cActivator/cInhibitor values,

and predicted biological constants for the regulators and promoter sites. Depending on the acti-

vation type of the associated transcription factors, these regulator-associated biological constants

can include metabolite concentration, Kd,Act, Kd,Inh, and TF concentrations.
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Figure 4.1: (A) Application of independent component analysis to expression data in order to
approximate regulatory activity. (B)Mechanistic promoter model along with biological constants
set by the data, fit to the data, and simulated by the model. The different promoter states this
study’s model incorporates are shown. Some relevant factors to gene expression are not modeled,
such as sigma factors, non-coding RNA, direct RNAP binding effectors, and the concentration
of genes. (C) Overall simplified workflow diagram for our model.
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4.2.2 Multi-scale model resolves counter-intuitive regulation of arginine

biosynthesis genes

We first examined the ability of the established transcriptional regulatory modeling frame-

work to capture the regulation of the ArgR regulon, which regulates the arginine iModulon

consisting of arginine biosynthesis genes. We observed that expression of argA, along with the

other genes repressed by ArgR, is positively correlated with argR expression in the PRECISE1k

database (Figure 4.2AB). This is counter-intuitive, as higher repressor expression logically should

infer higher repressor activity and thus less expression. We also noticed that the Arginine iMod-

ulon has a much higher correlation to argA than argR. Thus, we hypothesized that the Arginine

iModulon activity is a better approximate for effective ArgR activity than argR expression, and

may actually have an inverse relationship with effective ArgR activity due to the effect of the

ArgR activator arginine, which was an unknown in the model. Figure 4.2C shows a summarized

view of argR and argA expression, highlighting the important role that arginine concentration

itself plays in said regulatory network.

Accounting for both ArgR and arginine levels, our model is able to use this inferred reg-

ulatory activity from the iModulon to accurately recreate gene expression values (Figure 4.2D).

This workflow is able to untangle this complex and non-intuitive regulatory network by incor-

porating arginine concentration. The predicted arginine concentrations highly correlates with

experimentally measured arginine values [147] for a subset of conditions where these measure-

ments were available (Figure 24.2E). This offers external validation of our workflow and highlights

its ability to predict the metabolome using expression data.

In addition to validation by experimental data, we can also compare sequence-based pre-

dictions of argR binding strength for the modeled genes to their predicted Kd values. Higher
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binding strength would mean less of the active transcription factor would be necessary for ex-

pression, thus meaning binding strength and Kd values should be anti-correlated. We calculated

the binding motif strength between argR and the promoter sites of the modeled genes (Figure

4.2F). This resulted in an expected highly negative correlation between predicted Kd values and

sequence-based predictions of binding strength (Figure 4.2G).

4.2.3 Validation of models through prediction of effector concentrations

We next examined the PurR regulon, which regulates the Purine iModulon and has

two different metabolite effectors, guanine and hypoxanthine [148]. We generated a model that

accounts for both effectors interchangeably, due to unknown binding constants, and utilizes total

purine as a variable (Figure 4.3A). For data from a joint expression and metabolite experiment

[147], the resulting model is able to accurately predict this summed concentration at early time-

points post glucose starvation. However, the model fails to predict purine concentrations during

late starvation (Figure 4.3B). This failure could be due to a handful of factors, including the

fact that the model does not yet account for sigma factors or direct RNAP effectors, as this

data is primarily from stationary phase samples where rpoS and ppGpp play large roles in gene

regulation [149].

Figure 4.3CD showcases how this model can accurately predict gene expression and recre-

ates the input cInhibitor values for the majority of the genes. Similar to the Arginine case, the

model’s predicted Kd values also reliably anti-correlate with the sequence-based predictions of

motif binding strength (Figure 4.3E).
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Figure 4.2: (A) ArgA expression is positively correlated with its repressor, argR. Samples
are from PRECISE1K. (B) ArgA expression is highly positively correlated with the Arginine
iModulon activity levels, showing it is a better indicator for regulatory activity than argR’s
expression alone. (C) The regulatory network surrounding argA and argR, which is dependent
on arginine concentration and also regulates various arginine processes including its import. (D)
Inputs and outputs of GAMS model. GAMS is able to accurately predict gene expression. (E)
Predicted and actual metabolite concentrations are highly correlated, which provides an external
validation of the model. (F) ArgR binding motif alongside the most likely binding sites for the
modeled operons. (G) Predicted GAMS Kd values for argR binding are highly correlated with
the sequence-based binding calculations.
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Figure 4.3: (A) Regulatory network surrounding purD and purR involves two separate effector
molecules which the products of purD and other genes produce. The underlying model treats both
effectors as one pooled metabolite concentration. (B) Plotted actual and predicted values for
metabolite concentrations and gene expression. The model initially accurately predicts both gene
expression and metabolite concentration, but fails to accurately model metabolite concentration
in the later stationary phase samples. (C) GAMS matches the measured and predicted inhibitor
activity for the genes in the Purine iModulon. (D) The expression of the individual genes
modeled in this iModulon can be accurately recreated. (E) The sequence-based predictions and
model predictions for binding strength of purR to the genes it represses are negatively correlated.
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4.2.4 Crp ALE mutation prediction and validation

We next examined whether the modeling framework could accurately capture transcrip-

tional regulation in cases of promoters affected by multiple transcription factors. We selected

genes that appeared in both the Crp-2 iModulon and the Mlc iModulon. ManXYZ is activated

by Crp-2 and repressed by DhaR, an iModulon with multiple primary regulators, one of which

is mlc. PtsG is in the DhaR iModulon and is narrowly below the threshold for inclusion in the

Crp-2 iModulon, so is included in Crp-2 for this study.

The model for this regulation and effectors involved is outlined in which both regulatory

signals are required for accurate prediction of expression, as can be seen in Figure 4.4A. The

expansion from one to two regulators requires the additional step of calculating sets of cActivator

and cInhibitor that both satisfy the mathematical model and serve as good approximates of

regulator activity. As described above, the extension of the workflow to multiple regulators is

handled by a first step genetic algorithm which selects a set of valid solutions, which a greedy

algorithm can further optimize in order to increase the correlation or anticorrelation between the

cActivator or cInhibitor and the iModulon’s activity. Figure 4.4B and Figure 4.4C show these

steps and how they generate input regulatory activities that satisfy the mathematical model that

can be used in the GAMS solver. Figure 4.4DE shows how the GAMS model optimizes to both

match the input cActivator and cInhibitor values as well as the expression values.

A crp knockout evolution experiment led to convergent mutations upstream of ptsG on

repressor binding sites (NCBI GEO GSE266148). We tested our model’s ability to predict the

impacts of these genetic alterations, by taking the control wildtype sample from said crp knockout

evolution study and setting cActivator to zero to simulate the crp KO. Following this, cInhibitor

was additionally set to zero to simulate the loss of the repressor. The predicted crp KO sample
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has lower expression than the predicted combined crp KO and repressor mutation sample. Crp

KO strains from this study follow a similar pattern (see Supplemental Figure 4.1).

Figure 4.4: (A) The surrounding regulatory network of manX regulation which is repressed
by mlc and promoted by crp, which also play roles in regulating themselves. The iModulons
associated with these regulators determine manX expression. The Mlc iModulon is named DhaR
in PRECISE1K as both mlc and dhaR are primary regulators of the same iModulon. (B) Because
there is a promoter and inhibitor, there is one more unknown than equations and cActivator and
cInhibitor must be calculated using a coupled genetic algorithm (GA). The resulting values are
shown. (C) The results of the GA algorithm are then fed into a greedy algorithm which further
optimizes the cActivator and cInhibitor values to be fed into GAMS. (D) The GAMS model
matches the input cActivator and cInhibitor values from the greedy algorithm. (E) The GAMS
model recreates the expression profiles of the modeled genes.

4.2.5 Extending the workflow as a quantitative reconstruction of the E. coli

TRN

The high overlap between genes in iModulons and regulons enables the established work-

flow to use ICA-inferred component activities as a proxy for transcription factor regulatory
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Figure 4.5: (A) The amount of overlap between iModulons and the regulons of the regulators
of iModulons. High overlap exists for many iModulon-regulator pairs. (B) Correlation between
genes and their iModulons and regulators. Genes have much higher correlation to their iModulons
than regulators. (C) The various genes that are unable to be modeled are removed, the reasons
for which are outlined. (D) The model’s accuracy across all samples is about equal for the
different regulatory types. (E) The GAMS predicted Kd values for the various inhibitors and
the sequence-based predictions of motif binding strength are negatively correlated across all
samples. Both values are standardized per regulator in order to scale them for comparison. (F)
The GAMS predicted Kd values for the various activators and the sequence-based predictions
of motif binding strength are slightly negatively correlated across all samples. Both values are
standardized per regulator in order to scale them for comparison.
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activity (Figure 4.5A). Indeed, we observed that iModulons generally have higher correlations to

gene expression than does expression of the regulator of the regulons to which a gene belongs

(Figure 4.5B). Utilizing this high overlap, we have expanded our workflow to model twelve total

regulatory cases. Five are inhibitor only (ArcA, Arginine, Cysteine-1, Fur-1, and Purine iModu-

lons), six are promoter only (CpxR, Phosphate-1, Fur-2, Fnr-1, Cra, Crp-2, and SoxS), and one

is dual promoter and inhibitor (Crp-2 and DhaR). In total, these cases account for 226 genes.

Some genes are unable to be modeled for a variety of reasons, most often due to either

not belonging to any iModulons or lack of annotated regulator of iModulons to which the gene

belongs (Figure 4.5C). For the modeled genes, we are able to accurately recreate gene expression

with a median correlation between predicted and actual of 0.82 (Figure 4.5D). The expected

negative correlations between sequence-predicted motif scores and GAMS predicted Kd values

are found across the modeled regulons, although this component of the model’s accuracy is better

for repressors than promoters (Figure 4.5EF). Thus, although the scope of the workflow remains

somewhat limited compared to the entire E. coli TRN, the models that were able to be developed

consistently perform well at capturing both gene expression and binding site strength.

4.3 Discussion

Here, we developed a workflow to utilize ICA component (iModulon) activities extracted

from gene expression databases as a proxy for regulator activities to parameterize transcriptional

regulatory models in E. coli. Transcription regulation was modeled with standard thermodynamic

binding equations based on well-established promoter complexes incorporating known transcrip-

tion factor effectors. This workflow generates a data-backed physical model for gene regulation

and enables the prediction of metabolites and transcription factor binding constants using ex-
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pression data. These predictions can be verified using external data sources, thus showing the

robustness of this workflow.

The Arginine iModulon, regulated by argR, serves as the primary repressor for several

genes that control arginine import and biosynthesis. Expression of these genes is positively

correlated with expression of their repressor argR, a counter-intuitive relationship that the model

successfully captures by accounting for the role of the argR activator arginine, which governs the

effective argR activity level. In another case study, purR, which regulates the Purine iModulon,

is activated by either guanine or hypoxanthine, [148] and the model aggregates the effect of both

effectors explicitly in its formulation. When compared to actual metabolite concentrations, the

model is able to predict the sum concentration of both metabolites for the first few hours of

a glucose starved dataset [147]. Thus, initial case studies suggest that the modeling formalism

developed here can capture complex regulation scenarios. The lack of accuracy for the later

hours is possibly due to our model not accounting for sigma factors which have a large effect on

stationary phase expression [149]. Much effort has gone into modeling binding strength of sigma

factors [150] and proper utilization of this knowledge may enable its inclusion in a mechanistic

model such as ours.

Many promoters are regulated by multiple transcription factors and other DNA-binding

proteins. We developed a case study to examine the ability of the developed modeling formalism

to capture regulator interactions at promoters. A small set of genes are promoted by the Crp-2

iModulon and inhibited by the DhaR iModulon, which are promoted by crp and mlc respectively.

This regulatory case provides an example of our model predicting expression for genes with both

an activator and repressor. The model is able to accurately model expression by providing well

correlated cActivator and cInhibitor values through the use of genetic and greedy algorithms.
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Multi-regulator genes are common, as 1,413 genes have two or more annotated regulator binding

sites [137]. To encompass these genes in future versions of this workflow, we will need to expand

the number of different promoter states our model accounts for.

This workflow has currently been expanded to 12 regulatory cases which includes 226

genes. 54% of the genes in PRECISE1K account for only 20% of total expression variance [106]

and an additional 37% of the remaining genes have no annotated regulator [137]. This in total

leaves 1,265 genes that explain significant variance and have known regulators, of which 138

are included in our model. To further expand this model, we will need to include genes not

currently in iModulons or include the genes of iModulons that are not directly regulated by

known iModulon regulators. Larger-scale models can account for more genes [151], but lack

the mechanical details that a workflow such as ours allows. Combining these approaches could

potentially yield a detailed mechanistic model for all of transcription.

The mechanistic promoter models presented here connect together detailed biological

research about promoter-regulator interaction with the global regulatory trends revealed through

large-scale data analytics. This enables the inferrance of biological constants and metabolite

measurements which can be directly mapped to gene expression. Whole-cell models exist which

are able to connect metabolism to the cell’s environment through the utilization of differential

equations and numerous parameters [145, 152]. The promoter regulation models developed here

could presumably be integrated within multi-scale and whole cell frameworks to better represent

transcriptional regulation during life cycle simulations. Taken together, this study suggests a

path toward generating a large-scale mechanistic model of gene regulation in E. coli.
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4.4 Methods

iModulon Computation

RNA-sequencing data was used to create iModulon activity levels of our strains using Py-

Modulon [37] which is available at https://github.com/SBRG/pymodulon. Activities of iModu-

lons were compared to samples from PRECISE1K which is easily accessible using iModulonDB [5].

The calculations of new iModulons for our dataset in addition to PRECISE1K was performed

using modulome-workflow [110] which is available at https://github.com/avsastry/modulome-

workflow. See https://imodulondb.org/ [5] for a more complete description of iModulons and

their calculation.

Workflow Overview

The process described here is outlined in Supplemental Figure C.1. Before any data is

processed, genes are selected for modeling (see Methods: Initial Selection of Genes to Model) and

outliers samples are removed (see Methods: Removal of Outlier Samples). The initial inputs are

gene expression files in log TPM format, the M and A matrices output from ICA, and a proteomic

dataset [153]. These three datasets are used to create mRNA expression ratios, recreated gene

expression values from M × A, and creating constraints for the model parameters. Independent

of this, ideal biological constants, namely Kd,RNAP , kescape, and Keq,opening are selected from

a calculated set of possible solutions to the mathematical equations (see Methods: Selection of

Biological Constants). The M × A values for each gene and these ideal biological constants

are used to generate cActivator and cInhibitor values (see Methods: Creating cActivator and

cInhibitor Values). If there is both an activating and inhibiting iModulon, a genetic algorithm

and following greedy algorithm are used to further improve the cActivator and cInhibitor values
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(see Methods: GA and Greedy Algorithm Optimization).

These cActivator and/or cInhibitor values are then input into the GAMS optimization

software which recreates new cActivator and cInhibitor values calculated from the correct reg-

ulator type equation (see Methods: Physical Model Equations). GAMS optimizes two primary

criteria, matching to the input cActivator and/or cInhibitor values and matching gene expression

values to the actual gene expression values. The GAMS model then outputs the underlying con-

stants for the new cActivator and cInhibitor values as well as the predicted gene expression values

(see Methods: GAMS Model). The GAMS model can be rerun multiple times with changing

constraints and weightings in order to achieve higher agreement between output and input values

(see Methods: GAMS Parameter Optimization).

Initial Selection of Genes to Model

In order for a gene to be included in our transcriptional model, it must satisfy a handful

of criteria. First, the gene must be in one or two iModulons that have a well characterized

regulator that also regulates the gene. This regulation is determined by the existence of a strong

or confirmed regulatory relationship according to RegulonDB [137]. If a gene is in two iModulons,

it must be repressed by one and promoted by the other.

At this point, initial biological constants can be generated for the gene and produce cAc-

tivator and cInhibitor values. For some genes, there is no valid set of biological constants which

result in usable cActivator or cInhibitor values. This is most often due to either extremely high or

low expression values for the gene without either violating the underlying mathematical equations

or creating negative cActivator or cInhibitor values. The transcription factors themselves, often

members of their own iModulons, are also removed. All remaining genes are grouped by their
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respective iModulons, into their regulatory cases: activator only cases, inhibitor only cases, or

dual activator and inhibitor cases After these steps, regulatory cases are removed if they contain

only one sample.

Mathematical Model Equations

The basis for the equations are primarily Michaelis-Menten dynamics along with a few

transcriptionally related formulas. When solved together this results in:

mRNAratio =
( cActivator Kd,RNAP+Kd,Act−RNAP )(Kd,RNAP+[RNAP ]+Keq, opening Kd,RNAP )

(1+ cActivator + cInhibitor )Kd,RNAPKd,Ac−RNAP+ cActivator Kd,RNAP (1+Keq, opening )[RNAP ]+Kd,Aet−RNAP (1+Kdq, opening )[RNAP ]
(4.1)

To incorporate different effector binding types, the formula for cActivator and cInhibitor

have a few various forms. The following equation is used for calculating cActivator or cInhibitor

in terms of metabolite concentrations and Kd,Act in the case that the transcription factor has

multiple (3) effector binding sites:

cActivator =
1

18Kd,TF
2
(3[ effector ]Kd,TF +Kd,effKd,TF + 3Kd,TF [TF ]+√

−36[ effector ]Kd,TF [TF ] + (3[ effector ]Kd,TF +Kd,effKd,TF + 3Kd,TF [TF ])2
) (4.2)

The following equation is used for calculating cActivator in terms of metabolite concen-

trations and Kd,Act in the case that the transcription factor has 2 co-effectors:

cActivator =
1

4Kd,TF
(Kd, eff + [ effector ] + [TF ]+

√
Kd,eff

2 + ([ effector ]− [TF ])2 + 2Kd, eff ([ effector ] + [TF ]))

(4.3)

For the regulatory types involving effectors, TF concentration is set for each individual

sample by scaling the overall expression values of the TF to be between the minimum and

maximum of a proteomics dataset19.
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Removal of Outlier Samples

As the GAMS model uses squared difference regression objectives, outliers can have large

effects on the outcome by setting either extremely high or extremely low cActivator or cInhibitor

values. To avoid this, a few outlier samples are typically removed for every regulatory case. For

each regulatory case, a correlation matrix is created between the samples across the regulatory

case’s genes. Any sample that does not have greater than or equal to 0.5 correlation value to at

least 5% of the other samples is removed. For all regulatory cases, this is always under 4% of

total samples.

Selecting Basal Conditions and Conversion to mRNA Ratios

In order to eliminate variables from the equations, mRNA ratios are used as opposed

to log TPM expression values. In order to calculate these values, a basal condition must be

selected. This condition must be uniform across each regulatory case. For each regulatory case,

the expression profiles for the genes of said case are collected and standardized, the resulting

distributions are then used to select the basal condition. If the regulatory case is only an inhibitor,

the sample with the highest average standardized expression is chosen. If the regulatory case

is only an activator, the sample with the lowest average standardized expression is chosen. In

a dual promoter and inhibitor case, the sample with the closest to zero average standardized

expression is chosen.

All expression values are then un-logged and divided by the un-logged value for their

respective basal condition. This generates an mRNA ratio value. The same un-logging and

dividing by the basal condition is performed on the ICA reconstructed expression values (M

× A) in order to scale them properly so that they can be used to calculate the cInhibitor or
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cActivator values in the non dual-regulator cases.

Selection of Biological Constants

Some relevant equations need to be defined for this section:

[mRNA] =
Keq, opening kescape [ Promoter ](

Kd, RNAP

[RNAP ] +Keq, opening + 1
)
(u+ kdeg)

(4.4)

[mRNA] = mRNATPM
mRNAtotal

106
1

V olumecell

1

NA
(4.5)

The following constants in the above equations are defined as follows: mRNAtotal =

1800 molecules [154], V olumecell = 10−15 L [155], [Promoter] = 10−9 M [156], Growth rate u =

1/3600 [156], kdeg=ln(2)/300 [156].

A grid of possible solutions for Kd,RNAP , kescape, and Keq, opening is created which is

later tested to determine a best set of values for the model for each gene. First a range of possible

values are assumed for Kd,RNAP = 10[−7,−5] and kescape = 10[−3,1]. We calculate the minimum

viable value for kescape assuming the max Keq,opening = 100 and update the range of possible

values for Kd,RNAP and kescape. We generate nine new pairwise combinations of Kd,RNAP and

kescape which satisfies the equation. The value of Keq,opening is calculated in order to solve the

equation when [mRNA] is known. This process altogether creates 9 valid sets of constants which

correctly calculate [mRNA].

Kd,Act−RNAP is set through a two step optimization process for any regulator case with

an activating iModulon. In the first step, Kd,Act−RNAP is set to Kd,RNAP which creates negative

cActivator values. Kd,Act−RNAP is then incrementally reduced until there are no longer any

negative cActivator values. This sets the maximum value for Kd,Act−RNAP . The second step

improves the distribution of cActivator values to both be between 0 and 1,000 and more evenly
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spread by maximizing the 80th percentile value of the cActivator values. This is to prevent the

creation of extreme outlier cActivator values which GAMS will then overfit on if not corrected.

The selection ofKd,Act−RNAP described above is carried out for each of these 9 sets of valid

constants and the set with the lowest Kd,RNAP which also is able to create a valid Kd,Act−RNAP

is selected for the gene. For some genes, there is not a valid Kd,Act−RNAP value which satisfies

the equation without creating negative cActivator values, in which case the gene is removed from

the model.

Creating cActivator and cInhibitor Values

If there is only a cActivator or cInhibitor, the same number of unknown variables and

equations exist so the value can be set. Instead of directly inputting the mRNA ratio value, we

input ICA reconstructed expression values (M × A) in order to better model regulatory activity

as opposed to expression. These cActivator or cInhibitor values are then calculated for each

sample in the gene and each gene in the regulatory case.

If there is a cActivator and cInhibitor, these values need to be calculated simultaneously.

First a set of valid solutions is found with various values of cInhibitor and cActivator, initially

ranging between 0 and 1,000. These valid solutions are then passed to the genetic algorithm to

select sets that correlate with the inhibiting and activating iModulons.

Genetic and Greedy Algorithm Optimization

If there is both a cActivator and cInhibitor in a regulatory case, the underlying mathemat-

ical equations must be solved simultaneously for both cActivator and cInhibitor. To pick valid

values of cActivator and cInhibitor that also correlate with their respective iModulon activities
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and thus regulatory activity, two algorithms are used.

First, a Genetic Algorithm (GA) gives us an initial solution [157] using a modified version

of eaMuPlusLambda. The GA used for this study is multi-objective as it attempts to both max-

imize the Spearman correlation between the cActivator and the activating iModulon’s activity

and minimize the Spearman correlation between cInhibitor and the inhibiting iModulon’s activity

(as we want a highly negative correlation for cInhibitor and the inhibitor iModulon). Each indi-

vidual in the GA consists of a randomly-sampled valid solution for cActivator and cInhibitor for

every condition. A population of these individuals is created by random individual creation 100

times. Each individual’s fitness is evaluated using the two objectives and ranked based on their

performance. The best individuals from each generation are selected to propagate to the next

generation using the SPEA2 algorithm [158]. 5% of the selected individuals undergo mutation in

which a random cActivator-cInhibitor pair is selected for a random amount of conditions in the

individual. An additional 5% of the selected individuals undergo crossover in which a random

condition’s cActivator-cInhibitor pair is swapped between two individuals.

The values generated by this algorithm do drastically improve the positive and negative

correlations for cActivator and cInhibitor, but an additional greedy algorithm further optimizes

the solution. This algorithm searches the local cActivator-cInhibitor pairs to find better ones

using local gradient information. The order of the conditions are randomly shuffled for the best

individual in the current generation. Each other condition is iterated over to see if there is a

better scored cActivator-cInhibitor pair within 10 steps. This process is then carried out for each

condition. The entire greedy algorithm is repeated 50 times. This results in highly correlated

and negatively correlated cActivator and cInhibitor values that are also valid solutions to the

underlying mathematical equations.
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Selection of Constraints on the GAMS Model

The variables that GAMS uses to calculate cActivator and cInhibitor (and thus gene

expression) are initially constrained by experimentally derived data. For Kd,Act and Kd,Inh this

constraint is initially based experimentally derived constants for crp [159]. The initial constraints

are the minimum observed Kd value for crp divided by 1,000 and the maximum observed Kd

value for crp multiplied by 1,000 times. The metabolite concentrations are constrained by the

minimum observed concentration divided by 1,000 and the maximum observed concentration

multiplied by 1,000 [147]. If no such measurement of the metabolite exists in Link et al. 2015,

the minimum of any metabolite in said study divided by 1,000 is used as the minimum and the

maximum of any metabolite in said study multiplied by 1,000 is used as the maximum.

GAMS Model

The GAMS part of the workflow is a multi-parameter optimization model that optimizes

two objectives: 1) matching actual and predicted mRNA ratios, and 2) matching actual and

predicted regulator activities. The first step is reading in of constants and constraints for modeled

parameters, which are previously generated as well as a weighting factor to balance between

the two objectives. The input cActivator and cInhibitor values are also input, along with a

mapping of what type of regulator each iModulon is modeled as. The model variables are

created, constrained, and populated with initial values.

The dnlp solver is used for our model. The optimization is then run to minimize the

squared error of both objective functions. Once complete, the following modeled variables are

output: predicted mRNA ratio, cActivator, cInhibitor, and the various variables that cActivator

and cInhibitor are calculated based on. Depending on the regulator type, these variables are
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some combination of effector concentrations, regulator concentrations, Kd,Act, and Kd,Inh.

GAMS Parameter Optimization

A few important constrained variables and the weighting between the two criteria have

a large impact on model performance. These constrained variables, depending on the regula-

tor type, are effector concentrations, regulator concentrations, Kd,Act, and Kd,Inh. In order to

pick constraints that lead to more accurate models while still maintaining biologically-relevant

constraints, we have developed a parameter optimization pipeline.

This pipeline creates a set of values for each of these important inputs to GAMS. This

set contains one value that is equal to the default value, another that is X% higher, and a third

that is X% lower with X starting at 200. GAMS is then run on each combination of these sets (so

N3 runs where N is how many parameters are tested). The resulting run with the least squared

error for the objective functions is chosen. If there is a tie, usually due to loose constraints, the

run with the tightest constraints is chosen. The process above is repeated with the values from

the chosen run now being the default values and X being scaled down by 20% of its previous

value. This process is repeated until no more large reductions in the error are found.

Motif Analysis

The motif analysis was performed using https://github.com/SBRG/bitome [139]. The

motif search function was used for each using regulonDB as a source for finding the ideal binding

motif to scan with. For each transcription factor, each of its regulated genes were scanned from

100 bp upstream to 50 bp downstream for a matching binding motif.
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Chapter 5

Conclusions

Large scale data analysis techniques are now vital to exploiting the increased scale of

publicly available data and knowledge. RNA-sequencing data can inform us of how cells adapt

their gene expression to their environments which can both inform better strain engineering

design principles as well as drastically improve our understanding of infectious diseases. An

improved understanding of how genes regulate their genes can be achieved through the use of

non-biased data analysis techniques and validated through the comparison to verified biological

knowledge.

The introduction describes the increase in the volume, availability, and centralization

of publicly available biological data and knowledge, specifically RNA-sequencing data. This

is largely due to a reduction in cost per sample of generating said data. The development

and application of novel data analysis techniques to utilize these new large central sources are

paramount for pushing systems biology forward.

In Chapter 2, we discuss a study investigating the common RNAP mutations found across

laboratory evolutions and their impact on the transcriptome. Independent component analysis is
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able to find that these mutations nearly universally downregulate stress-response genes regulated

by RpoS while upregulating ribosomal subunits. Some mutations had location-specific effects

that were adaptations to the specific environments from which they were originally found. This

tradeoff appears to be conserved across numerous bacterial strains.

Chapter 3 explores a transcription factor knockout and evolution study carried out on

glucose minimal media. The unevolved and evolved samples were sequenced, expression profiled,

and phenotyped for substrate readiness. This study found multiple adaptation strategies exist

for adjusting to the loss of a regulator, largely dependent on the activity of the transcription

factor on glucose minimal media and the size of its regulon. For most transcription factors,

growth was recovered without mutations specific to the removed regulator. For the crp and

fur knockout strains, growth recovery involved convergent mutations to elements of their own

regulatory networks that restore the expression of highly growth important genes while leaving

the majority of the removed regulator’s regulon abnormally expressed. This shows the robustness

of the transcriptional regulatory network of E. coli and its ability to quickly adapt to most large

perturbations.

Chapter 4 provides a framework and large forward step in the development of biophysical

models for gene regulation. The model created through this work is able to accurately predict

biological constants such as binding strengths and metabolite concentrations by utilizing data-

driven sources of regulatory activity. This work provides quantitative insights into TRN function

and is able resolve apparent paradoxes within regulatory networks.

Overall, these projects have helped advance our understanding of transcriptional regula-

tion in bacteria by exploring different adaptation mechanisms of said network and additionally

tests this knowledge by modeling its behavior. Future steps are likely to involve expansion of the
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regulatory model and a more clear understanding of how independent component analysis suc-

cessfully decomposes regulatory signals. These additional steps would help further connect the

gap between actionable biological understanding and the findings of large-scale data analytics.

This thesis aims to connect together different knowledge sources using data analytics to bring

the scientific community a step closer to a complete understanding of bacterial gene regulation.
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Appendix A

The hallmarks of a tradeoff in

transcriptomes that balances stress

and growth functions -

Supplementary Information

A.1 Other RNAP mutations of special interest from our study

Some mutations predicted to have a specific stress response show no clear existence of one

in our study. RpoC H419P was commonly found in octanoic acid tolerance studies and thus RNA-

sequencing data was gathered for it both on M9 and on octanoic acid. Initially the rpoC H419P

mutants had trouble growing on octanoic acid until the concentration was lowered, so perhaps

an octanoic acid-specific adjustment would have been seen if a higher acid concentration was
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used. RpoC H419P has been previously introduced into E. coli and shown to be an adaptation

to octanoic acid\cite{Chen2020-rg}, so this issue is likely limited to our study.

RpoB I966S was commonly selected for in heat tolerance studies\cite{Gonzalez-

Gonzalez2017-uz,Rodriguez-Verdugo2016-fd,Tenaillon2012-wv} and thus we chose to grow it in

our study on high temperature conditions. These heat tolerance studies, however, were all carried

out using E. coli B-strains and there was little effect of this mutation on the RNA-sequencing

data so it appears this is a strain specific adaptation.

A.2 Laboratory evolution creates condition-specific convergent

mutations

The evolutionary pull towards growth, and thus greed, in ALEs necessitates condition-

specific convergent mutations (Supplemental Table A.9). These mutations are not strictly

limited to RNAP. For example, oxyR is a common mutation target for evolution in oxidative

stress\cite{Anand2020-wy} and a topA mutation was a convergent target in a heat tolerance

evolution\cite{Tenaillon2012-wv}. This trend is widespread among ALEs, as 89% of all evolution

experiments in ALEdb contain at least one gene that is mutated in 50% or more of their endpoint

strains (calculated by looking at the mutations in all evolved E. coli experiments in ALEdb).

If excluding RNAP genes, this drops to 80%. While RNAP mutations have the ability to favor

growth across a wide variety of conditions, different genes are often better mutational targets for

specific conditions.
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A.3 The fear vs. greed tradeoff is found in WT and across

growth conditions

Fear vs. greed changes are not limited to mutations acquired during evolution, as Sup-

plemental Figure A.11 shows how the transcriptome composition falls on the tradeoff line

in nutrient limited growth changes. Furthermore, when limiting nutrients drive the culture into

the stationary phase, a time series of points shows how the transcriptome composition moves

down the f/g tradeoff line. This movement shows how lower growth rates on entry into the

stationary phase comes with both a drastic change in transcriptome composition and an increase

in stress readiness as has been shown before\cite{Houser2015-ds}. However, stationary phase

cells often have a disconnect between their transcriptomic and proteomic compositions, so the

small iModulon movements between the stationary phase samples should be viewed with some

skepticism\cite{Houser2015-ds}. The f/g tradeoff is thus reflected in the various growth states

of the WT strain as well as a transition in physiological states.

A.4 Supplemental Figures
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Figure A.1: The average expression values of all replicates from this study are shown for “fear”
and “greed” genes. Gene expression is in log TPM and centered on the “wt M9 glucose” condition.
“Fear” genes are those that are included in the RpoS and GadX iModulons while “greed” genes
are those in the Translation and ppGpp iModulons.
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Figure A.2: The structure of RNAP (PDB 6OUL\cite{Chen2019-mm}) is visualized using
PyRosetta\cite{Chaudhury2010-uo}, showing the location of mutations used in this study and
highlighting some specific RNAP regions of interest. Binding sites are inferred based on the
highlighted RNAP residues being within 5 angstrom of said sigma factors in the structural files
for RNAP binding with fecI (6JBQ), rpoD (6PST, 6PSR, 6PSQ, 6XLl, 6XL5, 6XL9), rpoE
(6JBQ), and rpoS (5IPL, 6KJ6, 6OMF).
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Figure A.3: The most differentially activated iModulons for the mutations and reference con-
ditions are shown here. While RpoS is the strongest effect, some other iModulons are modified.
The 30 highest variance iModulons for the listed samples are shown along with Crp-1 and Crp-2.
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Figure A.4: Nearly all mutations destabilize all of the complexes, with some mutations prefer-
entially destabilizing certain forms. Outliers from boxplot are shown with the box representing
the middle two quartiles and the whiskers stretching to 1.5 times the interquartile range.
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Figure A.5: The median expression value from the mutated strains was used for the mutated
strain values. The pairwise single mutant strain compared to the wild-type strain versions of this
plot look similar. Interpreting these individual plots is highly difficult and doing so for all these
plots together is nearly impossible, thus necessitating the use of iModulon analysis.
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Figure A.6: Reactions associated with the Translation iModulon’s genes were tightly controlled
in a ME model simulation, resulting in a corresponding change in the proteomic mass fraction in
both the Translation iModulon and the RpoS iModulon. Growth rates increased nominally (¡1%)
as RpoS decreased. Note that given the large proteomic fraction allocated to the Translation
iModulon compared to that of the RpoS iModulon, its fold-changes are numerically much smaller,
but represent a notable proteome reallocation.
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Figure A.7: (A) iModulon activities of rpoB R200P, wt methionine, and rpoB R200P me-
thionine. (B) RpoB R200P’s effect on Fnr and Anaero-related iModulons. (C) The location
of the two mutations in the protein (PDB 6OUL [61]). (D) Location of the rpoA mutation in
relationship to crp (PDB 3N4M [160]). (E) RpoA G315V’s effect on iModulons, compared to
crp modified strains [71]. (F) RpoA G315V compared to the expression of the central mutants.
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Figure A.8: As the cells evolve on 250 µM paraquat, many genes are downregulated from the
RpoS iModulon to enable higher growth, but those related to oxidative stress are not (those
highlighted red). Genes listed here are the top 40 most variant within the RpoS iModulon for
these strains.
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Figure A.9: All species named here were investigated for the existence of said fear vs. greed
tradeoff. Red species names are gram positive, black are gram negative. The larger and bolded
species names are those that are shown in Fig. 2.5. Species not shown in said figure typically
did not have one clear stress iModulon, making a two dimensional visualization of the fear vs.
greed comparison difficult.
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Figure A.10: PDB structures used for each form of RNAP. Outliers from boxplot are shown
with the box representing the middle two quartiles and the whiskers stretching to 1.5 times the
interquartile range.
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Figure A.11: This transition comes with down regulation of the Translation iModulon and up-
regulation of stress iModulons. This behavior shows clearly how growth-related genes are down-
regulated and stress readiness increases in transition to stationary phase, the opposite change
to what happens during laboratory evolution to high growth rates. Data is from NCBI GEO
GSE226643.
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Appendix B

Diversity of transcription regulatory

adaptation in E. coli -

Supplementary Information

B.1 Supplemental Figures
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Figure B.1: The independent lineages of each of the 11 TF KO-ALE’s and the wildtype samples
are shown. Some experiments, such as argR, were stopped early due to growth rates approaching
wildtype and a lack of growth change.
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Figure B.2: The top nine iModulons with the highest variance activity among the samples from
this study are shown, alongside the Translation iModulon.

104



Figure B.3: (A) The vertical axis shows the expression change in genes when compared to the
unevolved wildtype sample, with the red and green violin plots representing the unevolved and
evolved basR KO-ALE respectively. Moving from left to right, the first column are all the directly
regulated genes of basR, the second column are all regulatory targets of the first column’s genes,
and so on until no more genes can be reached leaving 388 genes that are not connected to basR.
(B) The middle ring shows where in the chromosome mutations and basR’s regulon are while
the red and green activities represent transcriptional changes for the basR KO-ALE. (C) Same
as panel A, but constructed for mlrA. (D) Same as panel B, but constructed for mlrA.
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Figure B.4: Density plot of the Crp-1 and Fur-1 basal-adjusted iModulon’s activity level across
PRECISE1K samples.
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Figure B.5: Mutations found in lrp KO-ALEs across all samples. Only mutations found in at
least two samples are shown.
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Figure B.6: Respiration signals is an opacity reading that is the measurement for growth for
OmniLog plates. Each plot here represents a different nitrogen-limited plate supplemented with
an amino acid.
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Figure B.7: Respiration signals is an opacity reading that is the measurement for growth for
OmniLog plates. Each plot here represents a different nitrogen-limited plate supplemented with
an amino acid.
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Appendix C

Data-driven modeling of bacterial

transcriptional regulation -

Supplementary Information

C.1 Supplemental Figures
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Figure C.1: A crp KO evolution study led to convergent mutations of repressor sites upstream
of ptsG. Our model predicts higher expression with an upstream ptsG mutation. A similar trend
can be seen in the experiment’s data.
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Figure C.2: The cylinders represent data while the squares represent code. Green represents
input data, purple are internal data types used within the workflow, and red represents output
data. Blue code boxes are run for every gene while GAMS is run for all genes of a regulatory
case.
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