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Brooklyn College, City University of New York
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Abstract

GTSIM, a computer simulation of Lerdahl and Jackendoff's (1983) A Genera-
tive Theory of Tonal Music, is a model of human cognition of musical rhythm.
GTSIM performs left-to-right, single-pass processing on a symbolic representa-
tion of information taken from musical scores. A rule-based component analyzes
the grouping structure, which is the division of a piece of music into units
like phrases and the combination of these phrases into motives, themes, and the
like. The resulting analysis often diverges from the analysis we would produce
using our musical intuition; we explore some of the reasons for this. 1In
particular, GTSIM needs to have an algorithm for determining parallel struc-
tures in music. We consider alphabet encoding (Deutsch and Feroe, 1981) and
discrimination nets (Feigenbaum and Simon, 1984) as algorithms for parallelism.

Introduction

We have been developing a computer simulation of Lerdahl and Jackendoff's
(1983) A Generative Theory of Tonal Music (henceforth GTTM) as a model of human
cognition of musical rhythm. Our computer simulation, called GTSIM (Jones,
Miller & Scarborough, 1988) is a rule-based model with a neural network compo-
nent. The simulation performs left-to-right single-pass processing on a sym-
bolic representation of information taken from musical scores. Three aspects
of music are analyzed: a rule-based component determines metric structure
(Miller, Scarborough & Jones, 1988), a neural network determines the tonality,
or perceived key, at any point in the score (Scarborough, Miller & Jones,

1989), and another rule-based component determines some aspects of the grouping
structure.

We have recently integrated several modules of our model. Now that the
modules have been integrated, we are beginning to construct algorithms for
their interaction. 1In particular, we are trying to use strong beats in the
metric structure to help find the correct grouping analysis. Grouping analysis
is the process by which we divide a piece of music into units like phrases, and
then combine these phrases into motives, themes, and the like. While the
integrated analysis provides an approximation of the lowest level of grouping
boundaries (phrase boundaries) in many cases, the cases for which it fails
raise questions about the theory. Recognition of parallelism in music, not yet
implemented in our model, seems to be an essential component for producing
correct grouping analyses.

Background—GTTM

Lerdahl & Jackendoff's GTTM partitions rhythm into two independent hierar-
chical components: metric structure and grouping structure. Metric analysis
yields a hierarchical representation of metric structure which conforms to
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traditional intuitions about meter and accent. The hierarchy represents the
strength of the beat at evenly spaced times in the music. Stressed notes
(strong beats in the music) correspond to the highest levels of the metric
hierarchy. Grouping analysis yields another hierarchy, reflecting intuitions
about musical phrases, motives, themes, etc. Grouping preference rules (GPRS)
tell us where to find group boundaries, while grouping well-formedness rules
tell us how to construct a legal grouping hierarchy from the first level
groups. Grouping and metric analysis in GTTM are largely independent, and each
can, to a large degree, be carried out without the other. While GTTM's analy-
sis tries to find the best fit between meter and grouping, one cannot be in-
ferred from the other.

Our Model—GTSIM

We have attempted to devise a model of the process by which a human lis-
tens to and understands music. To this end, we have devised a system which
processes music from beginning to end, without backtracking. Backtracking -
going back and making a second pass through the music once one has heard the
entire piece - is not a reasonable model of how humans process music. All our
algorithms are constrained by the limits of human memory.

Application of the GTTM Grouping Rules

The grouping module of GTSIM identifies potential grouping boundaries in
the score, based on proximity of note onsets or offsets and on significant
differences in such attributes as pitch, duration, and articulation (defined in
Lerdahl & Jackendoff's grouping preference rules (GPRs) 2 and 3, and their
subrules). It places a marker between two notes if there is an application of
a rule at that point. The transition point thus marked is a candidate for
being an actual group boundary. Our module has successfully marked the rule
applications which Lerdahl & Jackendoff find in their own examples. However,
we also tend to find spurious candidate boundaries as a result of rigorous
application of the rules.

Example 1 shows our initial grouping analysis of the melody at the begin-
ning of Mozart's 40th Symphony, Lerdahl & Jackendoff's Example 3.19. The
rule applications which we find and that they do not are circled. 1In all
examples, rule applications are shown below the score, and the groups deter-
mined by algorithm INTEG2, described below, are marked above the score.
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Bxample 1: GTTM Example 3.19 (Mozart's 40th)

The three extra boundaries come about through rigorous interpretation of
the slur-rest rule, the articulation rule, and the duration rule. We interpret
the 8-9 and 10-11 transitions as being boundaries between notes of different
articulation, since the notes are not slurred together, and since notes 9 and
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11 must be articulated at their onset just like any other non-slurred note,
The duration rule applies at 10-11 as well, since notes 9 and 10 are the same
length, as are notes 11 and 12, while notes 10 and 11 are of different lengths.

Choosing First Level Boundaries

Marking all the rule applications is only the first step in creating the
grouping hierarchy. Once the candidate boundaries have been identified by the
rule applications, we must decide which of the candidate boundaries are the
actual boundaries between groups (phrases). These boundaries divide the piece
into the groups that constitute the first level of the grouping hierarchy.
Next, we must begin to combine these groups into ever larger units--groups of
groups--limited in principle only by the length of the piece of music itself.

Not all of the transitions marked as candidate boundaries can be actual
group boundaries. 1In Example 1, selecting the boundaries at transitions 8-9,
9-10, and 10-11 would violate the GTTM rule that no group should consist of one
note. Furthermore, a grouping structure of this sort would violate our musical
intuition of how this piece is grouped. 1In other pieces, there are candidate
boundaries between 7 (or more) notes in a row. "Greensleeves," for example,
has candidate boundaries at almost every transition (see discussion below). It
is not possible for each of these transitions to mark a new phrase in the
music.

Our initial attempt to select first level group boundaries used a simple
counting algorithm, The algorithm counts the candidate boundaries at each
point; the candidate boundaries with more rule applications are selected as
actual boundaries; those with the most rule applications are considered larger-
level boundaries. The algorithm works well for some pieces; for "Row, Row, Row
Your Boat," it nicely divides the piece into four lines with a major break
after line 2; for other pieces, it produces no groups at all (some pieces have
no transitions with more than one rule application).

Two more recent algorithms, INTEGl1 and INTEG2, are based on the integrated
metric and grouping analysis. One of GTTM's metric preference rules says to
prefer a metric analysis in which the first note in a group falls on a strong
beat. INTEGl looks at candidate boundaries with more than one GTTM rule appli-
cation and checks to see whether the note that would begin the group so deline-
ated falls on a strong beat in the metric hierarchy. INTEGl also produces
uneven results; first, many pieces have no transitions with more than one rule
application; and second, sometimes a single application of GPR 2 (which identi-
fies rests, among other things) outweighs many applications of GPR 3.

INTEG2 provides better results. All notes which seem to begin groups,
based on the fact that they follow one or more rule applications, are checked
to see whether they are at a higher metric level than the two adjacent notes.
If they are, they are considered to be first level group boundaries. Example 2
illustrates a successful analysis.
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Example 2: Kookaburra
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INTEG2 ensures that we will capture only groups which begin on primary or
secondary strong beats in a bar; phrases that begin on upbeats, such as those
in "Farmer in the Dell" and "Auld Lang Syne" (Example 3, transitions 28-29, 36~
37, 42-43, and 50-51) will be ignored,

gl 7 WP ok Ll Lo P o s s e
4 k—f1.- . _
ErJ‘ . 1 = +l— .

28 29 o 3 %1 3% W g b n&& I :v 4y v H&‘lw v ‘5‘!7"‘11"-!'!1'051‘3: 3o
s Fov wld~ .\ana— At dor auld - - N, donk 3 cup of lundnies Tyna
TR *?:1::’“1'»1 h’ﬁusc% B a o Y "’5‘1

¥

3a

Example 3: Auld Lang Syne (chorus)

The groups which are established by INTEG2 are not always those which we
would pick by looking at the score or by listening to the music. Often the
groups are of irregular size throughout a piece; one section will be completely
undivided, while another section will be overly divided into many small groups.
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Example 4: America

Partly this reflects the fact that we have not yet implemented all the grouping
preference rules; one of the significant markers of phrasing in music is paral-
lelism, yet we have not yet attempted to implement GTTM's parallelism rule (see
discussion below).

Higher Level Boundaries

Eventually, all the first level groups must be combined into a single
well-formed hierarchy of groups. This will be carried out by imposing the
higher level rules on the evidence accumulated by the lower level rules. We
have attempted to do this only with the first simple counting algorithm,

Discussion
Our attempt to develop a computational model of this formal theory has
brought us to a clearer understanding of the limitations of the theory. We
also have more awareness of the difficulties in modelling the theory. There

are problems at each of the levels of analysis.

Rule Application Level

One problem at this first level is that strict interpretation of the rules
causes GTSIM to find excessive numbers of rule applications. Automated appli-
cation of the rules finds duration differences, as in Example 1, transition 10-
11, which Lerdahl & Jackendoff ignore, seemingly because it crosses a rest, an
issue unaddressed by GTTM. In other pieces, like "Auld Lang Syne" (Example 3),
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"We Three Kings," and "America" (Example 4), there are sections where almost
every note has one or more rule applications. Music which alternates long and
short notes, particularly music with dotted rhythms, tends to produce many
extra attack-point rule applications (GPR 2b). Music that has melodic pitch
skips will produce extra pitch rule applications (GPR3a), and music that alter-
nates between slur and standard articulation will have extra articulation (GPR
3c) and slur-rest (GPR 2a) rule applications. Most of these rule applications
ought to be ignored but, once produced, must be processed.

A second problem is that other clearly heard boundaries are excluded by
the GTTM rules. For example, in "London Bridge," transition 20-21 is not an
application of the pitch rule, although a listener feels that it ought to be,
because the change in pitch from notes 20 to 21 is the same as the change in
pitch from notes 21 to 22, 1If note 22 were even a half-step lower, 20-21 would
be marked as a pitch boundary. The rule correctly rejects the 21-22 transition
for the same reason (it is the same pitch difference as 20-21), but this still
does not seem satisfactory.
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Example 5: London Bridge

A third problem is that some of the folksongs we have used as sample
scores do not have clear grouping boundaries to the eye or ear. We intuitively
assume that the music divides at commas, or at the ends of lines, but there is
often no evidence other than linguistic for finding group boundaries at these
points.

On closer inspection, the music sometimes does provide evidence of group-
ing at such points. Often the music contains parallel sequences which corre-
spond to the linguistic divisions. Two sequences can be said to be parallel if
they instantiate the same pattern. A melodic figure and its verbatim repeat
are certainly parallel sequences, but parallelism is not necessarily limited to
identity. Two musical sequehces can be considered parallel if they are similar
in rhythm, pitch contour, or internal grouping, or if one embellishes or sim-
plifies the other without changing its essential melodic or rhythmic character-
istics. GTTM has a parallelism rule, which says that parallel segments should
be combined into parallel parts of higher level groups. However, it does not
specify how to pick out the parallel groups and mark them in such a way that
they can later be combined into larger groups.

Application of a parallelism rule would find other candidate boundaries,
and often these would coincide with the linguistic boundaries. Examples of
this can be seen in the first four bars of "America” (Example 4), where there
are only two candidate boundaries, neither of which reflects our perception of
the actual grouping. However, the first six notes are clearly melodically and
metrically parallel to the second six notes; a parallelism rule would find
boundaries at transitions 6-7 and 12-13. An algorithm which discovered this
parallelism would greatly enhance the analysis. Similarly, the first eight
notes of "Freres Jacques" (Example 6) form two parallel groups that are not
delineated in any way by the existing rules.
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Selecting Group Boundaries Level

Selecting the appropriate first level boundaries is not as simple in a
computational model as in a formal theory. The formal model explains the con-
cept, but doesn't need to worry about reasonable implementation of that con-
cept. Thus Lerdahl & Jackendoff's discussion of the selection process involves
backtracking, weighting of rules, and determination of parallelism, all of
which are computational problems.

Backtracking--applying rules in retrospect, after hearing the entire
piece--is not a reasonable model of how humans process music. In their expla-
nation of Example 1, Lerdahl & Jackendoff reject the boundary at transition
9-10 by noting that the boundary at transition 10-11 divides the example in
half, and is therefore correct; since there cannot be a group consisting of one
note, the 9-10 boundary is incorrect. As a listening model, this assumes that
one can listen ahead to the end of the section, determine where the section
ends, and then backtrack and decide that the 10-11 boundary marks its division
into two large groups. This much backtracking, which requires storing 20 notes
in memory, seems unlikely as a model of human performance.

Another problem is selection of first level group boundaries when there is
a conflict. Even one rule application, of the right kind, can indicate a true
boundary; the conjunction of many rule applications is also strong evidence.
However, without some weighting, this decision process cannot be automated.
Lerdahl & Jackendoff suggest using a system of weights applied to the rules,
where GPR 2 outweighs GPR 3, except when GPR 3 measures a change in dynamics.
They do not specify the weighting further. Thus they apply the rules in a
rather ad hoc fashion: in Example 1, two rule applications at transition 8-9
are ignored in favor of two at transition 10-11. In other of our own examples,
a transition with one rule application clearly (to the listener) outweighs a
transition with two or more rule applications. In "Freres Jacques" (Example
6), the boundary that divides the piece in half (transition 14-15) has only one
rule application (GPR 2b), while the less important transition 11-12 has two
rule applications. At other times, that same single rule application must be
ignored, as in "America" (Example 4),
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Example 6: Freres Jacques

GTTM's Intensification rule (GPR 4), says that a larger-level boundary may
be placed where the effects picked out by GPRs 2 and 3 are relatively more pro-~
nounced. This also suggests the need for weighting the effects discovered at
the rule applications. Although we have rejected unchanging weights, we plan
to incorporate dynamically determined weighting into our next algorithm, noting
Deliege's (1987) experiments with weighting GTTM's grouping rules,

A final problem is parallelism., Parallelism is represented in GTTM as a
higher level rule, that is, a rule by which to form larger groups from smaller
groups (GPR 6). Even if there are other rule applications at the ends of
groups, it is the perception that one set of notes is parallel to another set
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of notes that enables us to select the correct grouping boundaries. Without
parallelism, grouping analyses are improperly segmented. By finding out what
we can do without parallelism, we have discovered just how potent a psychologi-
cal argqument parallelism is in determining grouping structure.

Recognition of parallelism, however, is a difficult pattern recognition
problem, There are several possible approaches, One algorithm will use a
modified discrimination net, modeled after EPAM-III, a model of recognition and
learning devised by Simon and Feigenbaum (Feigenbaum & Simon, 1984), EPAM-III
was developed to learn to recognize strings of symbols such as a sequence of
phonetic features, or a letter sequence.

Another model which we expect to use as a guide to recognizing parallel
structure is alphabet encoding. Any sequence can be described in terms of an
alphabet that contains all the elements that occur in that sequence and a set
of operators that describe transitions between elements and groups of elements.
We can encode the same sequence differently by using a different alphabet or
set of operators. Alphabet-based coding allows us to represent the hierarchi-
cal structure of a sequence; in this way, sequences are reduced to coded chunks
that are easier to remember and match with other chunks.

Deutsch and Feroe (1981) assume that pitch sequences are stored internally
as hierarchical networks, and use alphabet encoding to represent a hierarchy of
nested patterns and subpatterns. The idea that music is represented by such
structures accounts nicely for the fact that recognition of melodies is not
affected by transposition or, within limits, by tempo changes. At a more
detailed level, the complexity of a formula can predict how accurately the
corresponding musical sequence is perceived (Jones, Maser & Kidd, 1978). While
their model is a strong intuitive representation of the concept, it is not
obvious how to implement it within the constraints of our model.

Conclusion
Our computer model of Lerdahl & Jackendoff's GTTM calculates preliminary
grouping structure. However, without weighting the grouping rules, and without
adding a component which recognizes parallelism, an important psychological

factor in determining grouping, we will not get accurate results. Since GTTM
does not address these issues, we must develop our own algorithms.
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