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Abstract

Quantitative susceptibility mapping (QSM) is a promising tool for investigating iron dysregulation 

in neurodegenerative diseases, including Huntington’s disease (HD). A diverse range of methods 

have been proposed to generate accurate and robust QSM images. In this study, we evaluated 

the performance of different dipole inversion algorithms for iron-sensitive susceptibility imaging 

at 7T on healthy subjects of large age range and patients with HD. We compared an iterative least-

squares-based method (iLSQR), iterative methods that use regularization, single-step approaches, 

and deep learning-based techniques. Their performance was evaluated by comparing: (1) 

deviations from a multiple-orientation QSM reference; (2) visual appearance of QSM maps and 

the presence of artifacts; (3) susceptibility in subcortical brain regions with age; (4) regional 

brain susceptibility with published postmortem brain iron quantification; and (5) susceptibility 

in HD-affected basal ganglia regions between HD subjects and healthy controls. We found that 

single-step QSM methods with either total variation or total generalized variation constraints 

(SSTV/SSTGV) and the single-step deep learning method iQSM generally provided the best 

performance in terms of correlation with iron deposition and were better at differentiating between 

healthy controls and premanifest HD individuals, while deep learning QSM methods trained with 

multiple-orientation susceptibility data created QSM maps that were most similar to the multiple 

orientation reference and with the best visual scores.
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1. Introduction

Quantitative susceptibility mapping (QSM) is an MRI technique that non-invasively 

measures susceptibility in vivo. The diamagnetic and paramagnetic materials in the tissue 

induce local magnetic field perturbation, resulting in alternations in phase information 

collected by gradient recalled echo (GRE) acquisitions. Tissue susceptibility is sensitive to 

a variety of physiological and pathological factors, including iron concentration1–3, myelin 

content4,5, deoxyhemoglobin6,7, lesion calcification8,9, and myelin orientation10,11. QSM 

has been increasingly used in the evaluation of iron dysregulation in neurodegenerative 

diseases, especially in deep gray matter, revealing, for example, increases in tissue 

susceptibility indicative of increased iron deposition in the amygdala and caudate nucleus 

(CN) in Alzheimer’s disease12,13, the substantia nigra (SN) and red nucleus (RN) in 

Parkinson’s disease14, and the CN, putamen (PU), and globus pallidus (GP) in Huntington’s 

disease (HD)15–17. The increased susceptibility within the basal ganglia in HD subjects 

has also been shown to significantly correlate with other disease characteristics, including 

regional atrophy15 and the composite scales of age and genetic burden of disease15,17.

Despite the great promise of QSM as a biomarker of iron content in the diagnosis and 

monitoring of progression of neurological diseases, the lack of a standardized processing 

method has limited its routine application in clinical settings. QSM processing typically 

involves coil combination of complex MR signal, phase unwrapping, background field 

removal, and dipole field-to-susceptibility inversion18. The dipole inversion process involves 

a mathematically ill-posed problem of deconvoluting the tissue magnetic field perturbation 

with the point-dipole response function. Due to the zero values of the point-dipole response 

in the frequency domain on two cone surfaces at the magic angle (θ ≈ 54.7°) with respect 

to the main magnetic field, the inversion problem will substantially amplify the noise close 

to the zero-cone surfaces, leading to streaking artifacts in the reconstructed susceptibility 

distribution map18–20.

Numerous methods have been proposed to solve this problem, including acquiring multiple 

measurements with different orientations10,21 and calculating susceptibility through multiple 

orientation sampling (COSMOS) method21, which provides an analytical solution by filling 

in the missing data but is impractical clinically due to the excessive acquisition time 

required and associated discomfort related to rotating the anatomy of interest while inside 

the scanner. A variety of methods have since been offered to reconstruct the susceptibility 

distribution using one single MRI acquisition, the majority of which fall into the category of 

iterative methods incorporating regularization18. For example, the morphological-enabled 

dipole inversion (MEDI)22 method imposes the edge information from the magnitude 

images as the anatomical prior using L1 regularization. QSM methods in this category 

have been developed with different data consistency terms (L1-norm23/L2-norm24, linear24/

nonlinear25 consistency) and regularization terms (Tikhonov26, total variation19, total 

generalized variation25, sparse susceptibility gradient24, etc.). Other methods have proposed 

separating k-space into different subregions to estimate frequency coefficients in only 

ill-conditioned subregions, such as the iLSQR20 method. More recently, new methods 

that integrate the background field removal step and field-to-susceptibility inversion have 

emerged, with the benefit of reducing the error propagation between the two processing 
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steps27,28. With the recent development of machine learning and deep learning techniques 

and their application to image contrast generation, the most recent approaches for the 

dipole inversion step either rely completely on deep learning29–35 or use a hybrid strategy 

with physical models36. These models include networks for dipole inversion (QSMGAN29, 

QSMnet30,35, xQSM31, DeepQSM34), combined background field removal and dipole 

inversion (autoQSM33), and an end-to-end network that takes raw phase images as input 

(iQSM32). In addition to the significantly shorter processing time, deep learning based QSM 

methods do not require parameter tweaking compared to the other QSM reconstruction 

techniques.

The QSM community has been increasingly active in the development of new reconstruction 

algorithms, with 98 submissions to the most recent 2019 QSM challenge37 compared 

to 27 submitted in 2016 38. As QSM has become a widely adopted research tool in 

neurodegenerative and neurovascular diseases, determining an optimal processing pipeline 

is necessary for clinical translation. However, the task of finding the best algorithms is 

not trivial. One of the most outstanding hurdles is the lack of ground truth. Contrast 

agent-based phantoms are generally incapable of recapitulating the various biomaterials 

and microstructures that contribute substantially to the distribution of tissue susceptibility in 
vivo. Studies using post-mortem ex vivo tissue have enabled validation with histological 

ground truth, however, the fixation process alters MR properties. Although multiple 

orientation acquisition allows for calculation of an analytical solution of the inversion 

problem, the resulting susceptibility map is nonetheless affected by inaccuracies at earlier 

processing steps and altered susceptibility in regions with susceptibility anisotropy.

The 2016 QSM challenge utilized the susceptibility tensor10 χ33 term as ground truth and 

evaluated 4 imaging metrics of each reconstruction method, including root mean squared 

error, high-frequency error norm, structural similarity index metric, and error in anatomical 

regions of interest. To overcome the lack of a reliable ground truth when using in vivo 
acquisitions, the 2019 QSM challenge adopted a synthesized dataset from in silico head 

phantoms39 and evaluated the submitted algorithms using both visual assessment and 

quantitative metrics measuring the consistency of QSM maps with ground truth. These 

comparison studies, however, are limited to reflect clinical utility and relevance in their 

assessments and only evaluated QSM methods on either one single healthy volunteer or 

synthetic MRI data. More recently, Chen et al. evaluated the effects of background field 

removal and dipole inversion algorithms on cerebral microbleed quantification at both 3T 

and 7T, suggesting that the selection of the most appropriate QSM processing procedure 

may depend on the application of interest and scanner field strength40.

In this study, we evaluate the performance of different QSM reconstruction algorithms in a 

more diverse population that includes healthy volunteers from a wide range of ages and HD 

subjects. To assess their potential for providing iron-sensitive brain images in routine clinical 

practice, especially for detecting abnormal iron deposition within the basal ganglia at 7T, 

we evaluated QSM methods from three different perspectives: (1) their ability to generate 

susceptibility values in subcortical regions with known correlations between iron and age 

in normal subjects confirmed by postmortem studies41,42; (2) their ability to distinguish 

between subjects with HD and healthy controls based on susceptibility values obtained 
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from basal ganglia regions CN, PU, and GP; and (3) their visual appearance and presence 

of artifacts. In a subset of subjects, we also compared QSM algorithms to a reference 

reconstruction using COSMOS21.

2. Methods

2.1. Subjects

Eight healthy volunteers (mean age of 28) were scanned for the generation of QSM maps 

using COSMOS reconstruction. We also prospectively recruited 33 healthy volunteers (mean 

age of 44), 14 individuals with premanifest HD (mean age of 38, mean CAG repeat length 

of 42.1), and 17 patients with early manifest HD (mean age of 46, mean CAG repeat length 

of 42.9). The disease stages of the HD individuals were determined clinically based on 

the total motor score, total functional capacity, and diagnostic confidence level from the 

Unified Huntington Disease Rating Scale (UHDRS). The detailed criteria are included in the 

Supplementary Material. More detailed subject demographics are included in Figure 1. The 

study was conducted in accordance with the Declaration of Helsinki, and approved by the 

Institutional Review Board of University of California, San Francisco (IRB#17–23143, first 

approved February 2018). Informed consent was obtained from all subjects involved in the 

study.

2.2. MRI Acquisition

All subjects were scanned on a 7T MRI scanner (GE Healthcare, Milwaukee, WI, USA) 

with a 2-channel transmit and 32-channel phased-array receive coil (Nova Medical). Phase 

images used for QSM reconstruction were acquired using a 3D multi-echo GRE sequence 

with 4 echoes (TE = 6/9.5/13/16.5 ms), TR = 50 ms, flip angle = 20°, bandwidth = 

50 kHz, voxel size = 0.8×0.8×1.0 mm, FOV = 240×240×148 mm, and Auto-calibrating 

Reconstruction for Cartesian imaging (ARC)43 with reduction factor (R) = 3 and 16 auto-

calibrating lines. For the 8 healthy volunteers, this sequence was acquired at 0.8 mm 

isotropic resolution with otherwise the same parameters, repeated three times with different 

head orientations: (1) normal position, (2) an average of 15° forward/backward head tilt, 

and (3) an average of 7° left/right head rotation. The data from all three acquisitions were 

combined to generate QSM maps using COSMOS reconstruction. The raw multi-echo GRE 

data were acquired using a modified susceptibility weighted angiography (SWAN) sequence 

that included ARC parallel imaging and was reconstructed offline, as described in 2.3. All 

SWAN images were acquired with pure axial slab positioning.

2.3. QSM Processing

The QSM processing pipeline is demonstrated in Figure 1. We reconstructed the magnitude 

and raw phase images for each echo from raw complex-value k-space data using an in-house 

developed program in MATLAB 2015b (MathWorks, Natick, MA), which included the ARC 

reconstruction43 and coil image combination using the MCPC-3D-S method44. Compared 

to conventional adaptive coil combination, MCPC-3D-S utilizes phase information from 

multiple echoes to yield phase images that reflect only ΔB0-related phase and removes any 

coil-related phase contributions45. Brain extraction was performed on magnitude images 

from each echo separately using a deep-learning-based HD-BET algorithm46. The final 
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brain mask was generated by calculating the intersection of all four masks. The mask was 

applied before the background field removal and dipole inversion steps of QSM processing. 

A 3D Laplacian phase unwrapping method47 was applied to the phase images, followed by 

background field removal using the Sophisticated Harmonic Artifact Reduction for Phase 

data with varying spherical kernels (VSHARP) algorithm47. The resulting local field maps 

were averaged across all echoes for subsequent processing.

2.4. Dipole Inversion Algorithms

QSM maps were generated using ten different algorithms (parameters listed in Table 

1), including iLSQR20, iterative optimization methods with regularization (STARQSM19, 

FANSI25, HD-QSM48, MEDI22), single-step methods (QSIP27, SSTV/SSTGV28), and deep 

learning methods (QSMGAN29, QSMnet+30,35, xQSM31, iQSM32). Single-step methods 

were performed after the phase-unwrapping step. iQSM was applied directly on the raw 

MRI phase data. All other methods were performed on the local field maps. We additionally 

performed COSMOS reconstruction21 of QSM maps for the 8 subjects who received scans 

at 3 different head orientations. All phase unwrapping, background field removal, and 

dipole inversion algorithms, except for the deep learning algorithms and COSMOS, were 

performed using the MATLAB-based, QSM pipeline platform SEPIA.49 In the following 

sections and in Table 1, the dipole inversion algorithms compared in this study are described 

in more detail.

2.4.1. COSMOS Reconstruction—For the 8 subjects who received 3 scans at different 

head orientations, the 3 magnitude images were co-registered with FSL50 (FMRIB Software 

Library) flirt. The resulting transformation matrices were applied to the 3 brain masks, with 

the intersection of the masks taken as the final brain mask used in COSMOS and other 

dipole inversion algorithm calculations. The transformation matrices were also applied to 

the tissue phase images from each orientation after phase unwrapping and background field 

removal with VSHARP. The COSMOS QSM map was calculated from the tissue phase 

images using a weighted linear least squares method21.

2.4.2. iLSQR—iLSQR20 uses a sparse linear equation and least-squares (LSQR)-

algorithm-based method, combined with estimations of the susceptibility boundaries and 

the susceptibility artifact from ill-conditioned k-space regions. The iLSQR algorithm was 

performed in SEPIA with the integrated STISuite Toolbox using the default error tolerance 

of 0.01.

2.4.3. Iterative Optimization Methods with Regularization

STARQSM19:  Streaking Artifact Reduction for QSM algorithm performs a two-level 

QSM reconstruction algorithm by using different regularization parameters to reconstruct 

both large and small susceptibility values. We performed STARQSM in SEPIA with the 

integrated STISuite Toolbox using the default regularization parameters of 0.1 and 10−5.

FANSI25:  Fast Nonlinear Susceptibility Inversion method solves an optimization problem 

for nonlinear dipole inversion with a novel variable-splitting scheme. FANSI was performed 
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in SEPIA with the integrated FANSI Toolbox using the optimized parameter λ = 1 × 10−4

and the default assumptions of μ1 = 100 λ and μ2 = 1.

HDQSM48:  Hybrid Data fidelity term approach for QSM consists of two stages, including 

an L1-norm optimization, the result of which is used as the initialization of a second 

L2-norm optimization. We integrated the HDQSM code into the SEPIA platform using the 

optimized parameter λ2 = 6.3 × 10−5 and the default assumptions of λ1 = λ2, μ1 = μ2, and 

μ2 = 100λ2.

MEDI22:  Morphology-Enabled Dipole Inversion algorithm promotes sparsity of the edges 

in the susceptibility distribution that do not have a corresponding edge in the magnitude 

image. MEDI was performed in SEPIA with the integrated MEDI Toolbox using the 

optimized regularization parameter λ = 1780.

2.4.4. Single-Step Methods

QSIP27:  Quantitative Susceptibility Mapping by Inversion of a Perturbation Field Model 

utilizes a dipole kernel in the spatial domain, and simultaneously estimates the susceptibility 

sources inside and outside the brain, using a tissue/air susceptibility atlas as an initial 

condition. We integrated the QSIP algorithm into the SEPIA platform, using the default 

parameters of λ1 = 1 × 10−8, λ2 = 1 × 10−6, and λ3 = 1 × 10−10.

SSTV/SSTGV28:  Single-Step Total Variation (TV) or Total Generalized Variation (TGV) 

employs multiple spherical mean value (SMV) kernels of varying radii together with TV 

and TGV penalties to jointly perform the background removal and dipole inversion in a 

single step. We integrated the SSTV/SSTGV algorithm into the SEPIA platform using the 

optimized parameters λ = 0.004 for SSTV, and λ0 = 0.0079 and λ1 = 0.004 for SSTGV.

2.4.5. Deep Learning Methods

QSMGAN29:  QSMGAN uses a 3D Generative Adversarial Network (GAN) architecture 

with an increased receptive field. The model was used to infer QSMGAN QSM maps 

on a Linux workstation with 4 Nvidia V100 32G GPUs. Tissue phase volumes were first 

resampled to 0.8 mm isotropic resolution to match the input of the deep learning model.

QSMnet+35:  QSNnet+ is a deep neural network with a 3D U-net architecture trained 

with data augmentation to improve the generalizability to a wider range of susceptibility. 

Inference of the model was performed on the same Linux workstation as QSMGAN. Tissue 

phase volumes were resampled to 1.0 mm isotropic resolution before inference.

xQSM31:  xQSM was designed based on a U-net backbone, with additional noise 

regularization and modified octave convolutional layers. It was trained with synthetic and 

in vivo datasets. In this study, we adopted the xQSM network trained with in vivo datasets 

because it achieved the best results in the original study. Similarly, the tissue phase volumes 

were resampled to 1.0 mm isotropic resolution as input to the model.
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iQSM32:  This method utilized a Laplacian-of-Trigonometric-functions (LoT) enhanced 

deep neural network for quantitative field and susceptibility mapping, directly from raw 

MRI phase data. The iQSM architecture is composed of a tailored LoT layer and a 3D 

residual U-net. Again, raw MRI phase data were resampled to 1.0 mm isotropic resolution 

and used as input to the iQSM model.

2.5. Parameter Optimization

For open-source QSM algorithms that include regularization terms, we performed parameter 

tuning using a frequency equalization method51. The method is based on the assumption that 

optimized regularization can be achieved when high-frequency coefficients of QSM maps 

have similar local mean values close to and away from the magic angle. Figure 2(A) depicts 

example QSM maps calculated using HDQSM with different regularization parameters and 

their frequency-domain representations. Under-regularized reconstruction results showed 

streaking artifact in the image domain and amplification of the coefficients close to the 

magic angle in the frequency domain, whereas over-regularized maps showed attenuation of 

the coefficients in the ill-conditioned frequency space. The frequency normalization method 

defines ROIs with different proximities to the magic angle, M2 and M3 (Figure 2) to select 

the optimal regularization weight that minimizes the normalized squared difference in mask 

amplitudes between M2 and M3, using the equation: ξ23 = A2 − A3
A2 + A3

2
, where Ai is the average 

of the coefficients within the mask Mi. For each method, we reconstructed the QSM maps 

using a range of different regularization parameters and selected the optimal regularization 

weight based on the frequency equalization plot (Figure 2(B)).

2.6. Image Post-Processing and Analysis

All reconstructed QSM maps were normalized to the median susceptibility within a lateral 

ventricle ROI before subsequent analysis52. The lateral ventricle was chosen as the reference 

region because cerebrospinal fluid QSM does not vary with age or disease and has small 

inter-subject variability52. We performed linear and nonlinear registration of the iLSQR 

QSM map from each subject to a QSM atlas53 using FSL50 and inversely warped a 

predefined brain region segmentation to the subject space (Figure 1, Supplementary Figure 

1), followed by the extraction of the median susceptibility value within each brain ROI. 

In the 8 subjects with COSMOS QSM, normalized root mean square error (NRMSE) and 

susceptibility-optimized similarity index metric (XSIM)37 were calculated between each 

QSM map and the COSMOS QSM reference.

2.7. Visual Evaluation

Visual assessment of QSM map quality was performed by two neuroradiologists with 6 and 

2 years of experience. Rating criteria were adopted from the QSM reconstruction challenge 

2.037, which assessed the level of 3 types of artifacts present on QSM maps (streaking, 

unnaturalness, and noise) using scores from 0 (no artifact) to 3 (worst artifact). The detailed 

rating criteria is provided in the Supplementary Material (Supplementary Table 1). Ratings 

of visual quality were performed on 120 3D QSM volumes visualized in all 3 planes 

from 10 randomly selected healthy volunteers, with ages ranging from 29 to 61 years old. 

For each subject, QSM maps derived from the 12 different reconstruction methods were 
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included. The 120 QSM maps were randomized in order, and the raters were blinded to the 

reconstruction method associated with each map. For each QSM map, we took the average 

of the visual scores from the two raters as the final score.

2.8. Statistical Analysis

To overcome our lack of ground truth for the quantification of iron content in vivo, we 

selected three metrics to indirectly evaluate the relationship between QSM methods and iron 

content: (1) Pearson’s correlation was performed to correlate susceptibility in basal ganglia 

regions and age in healthy volunteers, based on the widely accepted assumption that a linear 

correlation exists between iron content in the basal ganglia and age within the age range 

evaluated3,54,55; (2) Pearson’s correlation was performed between mean susceptibility across 

healthy volunteers and previously published unfixed postmortem iron quantification42 for 7 

different brain regions: GP, RN, SN, PU, CN, dentate nucleus (DN), and thalamus (TH), 

based on the assumption that the dominant contribution of susceptibility differences across 

gray matter regions is due to iron; and (3) Kruskal-Wallis and Dunn’s post hoc tests were 

performed to compare the susceptibility values in basal ganglia regions CN, PU, and GP 

between HD subjects and healthy controls, based on the well-validated observation that 

premanifest and early HD subjects exhibit increased iron deposition in the basal ganglia 

compared to age-matched healthy controls15–17,56.

For the comparison between HD subjects and healthy controls, we computed age-corrected 

susceptibility values of basal ganglia regions CN, PU, and GP using the slope of the 

susceptibility-age linear fitting results from healthy volunteers only, based on the assumption 

that the effects of HD and age on brain region susceptibility are independent. The age-

corrected susceptibility values were subsequently compared between HD subjects and 

healthy controls using Kruskal-Wallis and Dunn’s post hoc tests. The effect sizes for the 

comparison between healthy controls and HD cohorts were estimated using the Hedges’ g 
calculation57. All brain region susceptibility values were calculated as the mean of the two 

ROIs from both hemispheres. We adopted a Bonferroni correction to correct for multiple 

comparisons across the 12 QSM methods evaluated. The corrected significance level (αcorrected) 

was 0.0042. P-values were considered significant if < 0.0042 unless otherwise specified.

3. Results

3.1. Comparison to COSMOS Reference

COSMOS QSM and iLSQR QSM maps from a healthy volunteer are shown in Figure 

3(A). The two maps were qualitatively similar, with higher susceptibility values observed 

in basal ganglia regions and lower values in white matter tracts. The COSMOS QSM 

map exhibited relatively less noise due to the three imaging acquisitions. The means 

and standard deviations of NRMSE and XSIM between QSM maps using different 

reconstruction methods and COSMOS QSM reference are plotted in Figure 3(B). Deep 

learning methods QSMGAN and QSMnet+, along with STARQSM, achieved the lowest 

NRMSE (QSMGAN: 0.51±0.03; QSMnet+: 0.64±0.03; STARQSM: 0.61±0.05) and highest 

XSIM (QSMGAN: 0.63±0.04; QSMnet+: 0.52±0.04; STARQSM: 0.57±0.06), whereas the 
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single-step deep learning iQSM method had higher NRMSE (1.08±0.07) and lower XSIM 

values (0.32±0.03).

3.2. Visual Evaluation

Figure 4 demonstrates the consistent contrast observed across all 12 QSM methods of one 

single subject and all subjects averaged (bottom row). SSTV and SSTGV methods showed 

slight signal variations near the cortex of the left occipital lobe and the right temporal lobe. 

Visual assessment of the level of streaking, unnaturalness, and noise is plotted in Figure 

5(A–C). The deep learning method QSMnet+ demonstrated the least amount of streaking 

(0.10±0.21), followed by SSTV (0.45±0.37) and STARQSM (0.65±0.47), whereas xQSM 

(1.85±0.63) and FANSI (1.70±0.71) had a relatively higher average level of streaking. The 

levels of unnaturalness and noise showed the opposite trend for some of the methods, 

with iLSQR showing lower-than-average levels of unnaturalness and higher-than-average 

levels of noise. On the other hand, SSTGV, SSTV, and MEDI demonstrated lower-than-

average levels of noise and higher-than-average levels of unnaturalness. STARQSM and 

the two deep learning methods trained with COSMOS (QSMGAN and QSMnet+), showed 

lower-than-average levels of artifact in all three categories, whereas FANSI demonstrated 

higher-than-average levels of artifact. The mean scores across all 10 healthy volunteers are 

plotted in Figure 5(D). When averaged across all three types of artifacts, QSMnet+ had the 

lowest overall artifact score (0.43), followed by QSMGAN (0.73) and STARQSM (0.63). 

When considering the highest score of artifacts, the same three methods performed the best 

(QSMnet+ 0.80, STARQSM 0.80, QSMGAN 0.80). Two pairs of QSM maps with scores of 

0 and 3 on streaking and level of unnaturalness, respectively, from rater 1 are illustrated in 

Figure 5(E).

3.3. Correlation between Susceptibility and Age

Figure 6(A) shows correlation plots between putamen susceptibility and age using different 

QSM reconstruction methods. A significant and moderate positive correlation was observed 

for all 10 methods, with correlation coefficients ranging from 0.54 to 0.67. The strongest 

correlations between regional brain susceptibility and age were observed in basal ganglia 

ROIs (Figure 6(B)) for all QSM methods. When combining the subcortical nuclei (CN, 

PU, DN, SN, and RN) with known iron-age correlation, all methods showed similar 

Pearson’s correlation coefficients, ranging from 0.58 to 0.69, with the highest coefficients 

observed using QSMnet+ (r=0.69, p<0.001) and iLSQR (r=0.67, p<0.001) (Figure 6(C)). 

Correlation plots in brain regions CN and SN are included in the Supplementary Material 

(Supplementary Figures 2, 3).

3.4. Correlation between Susceptibility and Iron Quantification

When evaluating the correlation between the average susceptibility in healthy volunteers and 

postmortem iron quantification in different brain regions, all methods showed significant 

and strong correlation with coefficients higher than 0.9, ranging from 0.93 to 0.97. Among 

the categories, the single-step methods (QSIP, SSTGV, SSTV) generally had the strongest 

correlations (Figure 7(A–C)), with r > 0.96. Out of the other methods, iLSQR and 

STARQSM provided a stronger correlation between susceptibility and iron. Within the deep 
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learning reconstruction methods, the single-step iQSM model had the highest correlation 

coefficient.

3.5. Comparison between HD Subjects and Healthy Volunteers

Kruskal-Wallis tests revealed significant differences in CN susceptibility among healthy 

controls, premanifest HD, and early manifest HD, using all QSM reconstruction methods 

(Figure 8(A)). Similar results were observed in PU and GP (Supplementary Figure 4, 5). 

When taking the mean susceptibility of the three HD-related brain regions (CN, PU, and 

GP), single-step methods SSTV and SSTGV, along with single-step deep learning method 

iQSM, showed the highest test statistics when comparing between healthy controls and 

premanifest HD (SSTGV: z=3.59; SSTV: z=3.41; iQSM: z=3.80), whereas all methods 

provided significant test statistics and large effect size when comparing between healthy 

subjects and early manifest HD (Figure 8(B)).

4. Discussion

This study compared different QSM dipole inversion algorithms for their similarity to 

a COSMOS reference, visual quality, correlation with age and iron quantification in 

healthy subjects, and ability to detect abnormal brain iron deposition in individuals with 

premanifest/early manifest HD. A summary of the six metrics compared across the various 

QSM method types is displayed in Table 2 and Supplementary Table 2.

The 2016 and 2019 QSM challenges provided a comprehensive quantitative comparison of a 

wide range of QSM reconstruction methods by comparing against either a reference image 

obtained from a multiple orientation acquisition of one healthy (30-year-old) volunteer 

(2016) or an in silico head phantom (2019). Although the simulated dataset overcomes the 

lack of a ground truth when using an in vivo dataset, it is a less realistic scenario where 

the background field and the influence of the acquisition parameters and imperfections may 

not be fully captured. Age-related physiological variations and pathological effects on QSM 

contrast were also not reflected in these current challenges. This study builds upon these 

contributions by providing a complementary assessment of QSM methods that focuses on 

their performance in detecting susceptibility changes related to iron content in normal aging 

and in HD subjects, which could be more closely associated with their clinical utility as 

imaging biomarkers for many neurological diseases.

The results demonstrated that single-step methods SSTV/SSTGV, and deep learning 

based iQSM, performed among the best in terms of correlating with previously reported 

postmortem iron concentration of different brain regions in normal subjects, and 

differentiating between healthy control and premanifest HD individuals. These relatively 

independent metrics were evaluated to overcome our lack of ground truth of iron content in 
vivo. The first metric was selected based on the assumptions that the dominant contribution 

of susceptibility differences across brain regions is from iron. The latter relies on the 

increase of basal ganglia iron in premanifest and early HD subjects observed in multiple 

existing imaging studies56,58. Single-step methods also provided a moderate positive 

correlation between susceptibility in the basal ganglia and age, consistent with previous 

literature3,54,55. We believe that by performing these three relatively independent analyses, 
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we were able to confirm the advantage of SSTV/SSTGV and iQSM over other methods in 

detecting physiological and pathological alterations in basal ganglia iron content at 7T. The 

observation that all three methods involve the integration of multiple QSM processing steps 

may potentially indicate the superiority of single-step QSM reconstruction methods over 

multi-step pipelines.

Our measurements of regional brain susceptibility is in good agreement with previously 

reported QSM measurements performed at the same field strength, with GP, RN, and SN 

showing the highest susceptibility values, followed by PU and CN, with WM and TH having 

the lowest susceptibility40,59,60. In accordance with previous studies, we found significant 

correlations between basal ganglia susceptibility values and age. The correlation coefficients 

obtained in our study (0.4–0.7) are comparable with findings from Liu et al61, showing the 

highest age correlation in PU (0.7, current study r = 0.5–0.7), followed by RN (0.6, current 

study r = 0.5–0.6) and CN (0.6, current study 0.5–0.6). Controversial findings have been 

reported in the GP region. Whereas our study found a weak positive correlation with age 

(0.3–0.5), some studies showed no correlation with age55,61, while others demonstrated a 

positive correlation using both QSM and R2* imaging metrics62,63. This could be in part 

explained by the substantial inter-subject variability of GP non-heme iron concentration 

compared to age-related variability, as found in post-mortem histochemistry studies42. 

Compared to similar studies that used the postmortem iron concentrations from Hallgren 

et al.42, the correlation between susceptibility and iron in different brain regions found in our 

study (0.93–0.98) was consistent with previously reported values (0.91–1.00)27,61. Lastly, 

we found significantly higher susceptibility values in CN, PU, and GP in premanifest and 

early manifest HD subjects, which has been consistently reported by other studies15–17,58.

As a single-step method, SSTV/SSTGV has the advantage of reducing the reconstruction 

error compared to multi-step methods that adopt the same background filtering and 

dipole inversion algorithm28. Similarly, the deep learning method iQSM benefits from the 

integration of both phase unwrapping and background field removal steps32. Despite their 

better performance in characterizing iron, these single-step methods were among the least 

similar to the COSMOS reference, likely due to the integration of the preprocessing steps 

involved in the COSMOS reconstruction pipeline. We observed that in our particular dataset, 

SSTV/SSTGV sometimes failed to completely remove the background field variation at the 

edge of the brain, as observed in Figure 5(E), which may limit its application in assessing 

iron content in cortical gray matter without fine-tuning the SMV kernel parameters. 

Although QSIP, the other single-step method evaluated, provided susceptibility values that 

were strongly correlated with postmortem iron quantification in healthy subjects, it was 

less optimal in terms of differentiating between premanifest HD and healthy subjects. One 

possible reason for this may be because we were not able to optimize QSIP parameters for 

the current acquisition scheme due to the high number of regularization weights required. 

The reliance of QSIP on a predefined tissue-air susceptibility atlas may also affect its 

performance to more generalized applications.

Deep learning approaches QSMGAN and QSMnet+ outperformed the other methods when 

compared to a COSMOS reference, likely because both networks were trained using 

COSMOS QSM images as ground truth. However, this similarity to COSMOS did not 
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translate to better performance in other metrics except for visual assessment, which may 

be due to the limited age range of the healthy subjects used in training these models. A 

more diverse training dataset including both healthy subjects of a wider age range and 

pathological conditions could potentially further improve the performance of deep learning 

QSM reconstruction methods. Additionally, the hybrid methods combining deep learning 

and physics-based data consistency may also provide a more generalizable reconstruction.

Our results also confirmed the limitation of using COSMOS as ground truth for algorithm 

comparison, as discussed in previous studies37,39. Discrepancy exists between COSMOS 

reconstructed susceptibility maps and single-orientation susceptibility, especially in regions 

with anisotropic contributions of tissue susceptibility, making it a less accurate “ground 

truth” when evaluating single-orientation QSM methods. Like other dipole inversion 

algorithms, COSMOS reconstruction is also affected by the error generated from the phase 

unwrapping and background field removal steps, which causes additional differences when 

comparing between multi-step and single-step QSM methods. Using a digital phantom in 

the form of a recently developed simulated brain phantom39 may be a more appropriate 

reference when comparing these two categories of reconstruction methods and provide 

complimentary information to this study. It could also serve as the ground truth to 

investigate potential over- or under-estimation of susceptibility using the different methods.

With the emergence of new single-step QSM reconstruction methods comes another 

rising question of how to interpret differences between dipole inversion algorithms in 

single-step algorithms compared to multi-step pipeline where the potential error induced 

by preprocessing steps may mask the true performance of dipole inversion techniques 

evaluated. Laplacian unwrapping and VSHARP background field removal were performed 

prior to various dipole inversion algorithms in this study for simplicity since they are the 

most widely used methods. Laplacian unwrapping has been shown to be more robust than 

other unwrapping methods45, while VSHARP outperformed other background field removal 

methods in terms of vein contrast and white matter homogeneity40. Although we did not 

observe a significant presence of remnant field on the local field maps in any subjects 

(Supplementary Figure 6), future studies that evaluate different combinations of phase 

unwrapping, background field removal, and dipole inversion algorithms are still warranted to 

thoroughly decouple the effect of preprocessing steps and dipole inversion algorithms.

There are a few other limitations of this study. Although we performed parameter tuning 

of most dipole inversion methods used in this study according to Milovic et al.45, the 

lack of availability to tune regularization parameters for STARQSM in the STISuite 

Toolbox prohibited the optimization of the regularization weights for this method. As we 

also utilized a relatively objective metric of frequency equalization on only one healthy 

volunteer, it is possible that including more subjects and other parameter tuning methods 

like L-curve51 and comparing resulting imaging metrics to ground truth QSM37 could 

potentially reduce bias and further improve a method’s performance. Although we did 

not have a “ground truth” measure of iron distribution throughout the brain, or assess 

potential non-iron contributions to tissue susceptibility values, we did evaluate the sensitivity 

to iron using three relatively independent metrics. Nevertheless, further validation with 

histological information from either preclinical or postmortem human tissues would be 
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beneficial in confirming our results. Although it was not feasible to compare every QSM 

method presented in the literature, we selected the most widely utilized, readily available 

methods that were representative of the 4 main methodological groupings: iterative least-

squares-based, iterative methods that use regularization, single-step approaches, and deep 

learning-based techniques. Our dataset and framework for evaluating clinical QSM data can 

easily incorporate evaluations of new QSM reconstruction methods, especially new single-

step approaches, hybrid methods, and end-to-end deep learning models which incorporate 

multiple steps of the QSM processing pipeline, when they become available.

5. Conclusion

In conclusion, this study evaluated the performance of different dipole inversion algorithms 

for iron-sensitive susceptibility imaging in the brain at 7T, including iLSQR, iterative 

methods with regularization (STARQSM, FANSI, HDQSM, MEDI), single-step approaches 

(QSIP, SSTV, SSTGV), and deep learning methodologies (QSMGAN, QSMnet+, xQSM, 

iQSM). We found that the single-step iterative methods SSTV/SSTGV and single-step 

deep learning method iQSM provided overall good performance in terms of correlating 

with postmortem iron in normal subjects and differentiating between healthy control and 

premanifest Huntington’s disease individuals, despite being less similar to the typical gold 

standard method, COSMOS.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

MRI magnetic resonance imaging

QSM quantitative susceptibility mapping

HD Huntington’s disease

GRE gradient recalled echo

CN caudate nucleus

SN substantia nigra

RN red nucleus

PU putamen

GP globus pallidus

DN dentate nucleus
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WM white matter

TH thalamus

MEDI morphological-enabled dipole inversion

UHDRS Unified Huntington Disease Rating Scale

COSMOS calculation of susceptibility through multiple orientation sampling

VSHARP Sophisticated Harmonic Artifact Reduction for Phase data with 

varying spherical kernel

NRMSE normalized root mean square error

iLSQR a sparse linear equation and least-squares (LSQR)-algorithm-based 

method

STARQSM streaking artifact reduction for QSM

FANSI fast nonlinear susceptibility inversion

HDQSM hybrid data fidelity QSM

QSIP quantitative susceptibility mapping by inversion of a perturbation 

field model

SSTV single-step total variation

SSTGV single-step total generalized variation

SMV spherical mean value

GAN generative adversarial network

ARC Auto-calibrating Reconstruction for Cartesian imaging

SWAN susceptibility weighted angiography

LoT Laplacian-of-Trigonometric

XSIM susceptibility-optimized similarity index metric
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Highlight

• Single-step QSM susceptibility values were the most correlated with iron.

• Single-step QSM better distinguished premanifest HD subjects from healthy 

controls.

• COSMOS-trained QSM values were most similar to COSMOS but less 

correlated with iron
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Figure 1. 
QSM processing pipeline and experimental design. (A) QSM processing pipeline for 

all subjects. Brain region ROIs were generated for subjects in experiments 2 and 3 by 

registration of a QSM atlas with predefined whole brain segmentation. (B) Demographics 

of healthy volunteers and Huntington’s disease subjects who participated in the three 

experiments. HC: healthy control; HD: Huntington’s disease; SD: standard deviation.
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Figure 2. 
Optimization of QSM reconstruction methods with regularization weights determined 

by frequency equalization. (A) QSM maps reconstructed using HDQSM with different 

regularization weights and the frequency representation of the QSM maps. In the frequency 

domain, the region near the magic angle is labeled with the white arrow. The amplification 

and attenuation of frequency coefficients in this region can be observed in cases of under-

regularization and over-regularization, respectively. (B) Frequency equalization plot and 

the equation of the equalization metric. The solid dot represents the regularization weight 

corresponding to the lowest equalization metric, indicating the optimal regularization. In this 

case, the optimal regularization parameter is 10−4.2.
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Figure 3. 
Example QSM images and comparison with COSMOS reference. (A) Example COSMOS 

and iLSQR QSM images. (B) NRMSE and XSIM plots across all QSM methods. COSMOS: 

calculation of susceptibility through multiple orientation sampling; NRMSE: normalized 

root mean squared error; XSIM: Susceptibility-Optimized Similarity Index Metric.
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Figure 4. 
Example QSM images and the zoomed-in depiction of the basal ganglia from one healthy 

volunteer. The bottom rows demonstrate the averaged QSM images across all healthy 

volunteers after registration to the QSM atlas.
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Figure 5. 
Visual assessment of QSM images. (A-C) Scores of streaking, unnaturalness, and noise 

assessed in 10 randomly selected healthy volunteer QSM maps, with 0 representing the 

lowest level of artifact and 3 representing the highest level. The dashed lines represent the 

mean level of artifact in all 120 evaluations. (D) Mean visual assessment scores across the 

10 healthy volunteer QSM images. (E) Example pairs of QSM images with score 3 and 0 

(from rater 1) for streaking (left) and unnaturalness (right).
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Figure 6. 
Correlation between QSM values with age. (A) Correlation plots between putamen (PU) 

susceptibility and age. (B) Correlation coefficients in all brain ROIs. (C) Correlation 

coefficients in subcortical nuclei with known iron-age correlation. GM: gray matter; WM: 

white matter; BG: basal ganglia; TH: thalamus.
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Figure 7. 
Correlation between QSM values and postmortem iron quantification. (A) Regional brain 

susceptibility versus iron concentration. (B) Brain ROI labels on iLSQR plot. (C) Summary 

of the coefficients in cohort-averaged susceptibility-iron correlation. TH: thalamus; GP: 

globus pallidus; RN: red nucleus; SN: substantia nigra; PU: putamen; DN: dentate nucleus; 

CN: caudate nucleus.
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Figure 8. 
Comparison of QSM values across healthy volunteers, premanifest HD subjects, and early 

manifest HD patients. (A) Kruskal-Wallis comparisons of CN susceptibility using different 

QSM methods across the three groups. The Kruskal-Wallis comparison p-values were shown 

in each subfigure. (B) Test statistics and estimated effect sizes between HC and PM, and 

between HC and EM. The dashed lines represent the critical value after Dunn’s correction 

of multiple comparisons on z-value plots and effect size ranges on the effect size plots. HD: 

Huntington’s disease; CN: caudate nucleus; HC: healthy control; PM: premanifest HD; EM: 

early manifest HD; GP: globus pallidus; PU: putamen; *: p < 0.05; **: p < 0.01; ***: p < 

0.001.
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Table 2.

Summary of the performance of different QSM methods. Six characteristics were included: Overall visual 

quality, XSIM compared to COSMOS QSM, correlation of basal ganglia susceptibility with age, correlation of 

susceptibility and iron quantification in different brain regions, and the test statistics of susceptibility 

comparison between HC and PM/EM. QSM methods were grouped according to their categories. HC: healthy 

control; PM: premanifest HD; EM: early manifest HD; XSIM: susceptibility-optimized similarity index 

metric.

Visual 
Qualitya

Similarity to 
COSMOSb

Correlation 
with Agec

Correlation 
with Irond

Differentiate 
PM/HCe

Differentiate 
EM/HCe

iLSQR + + + ++ + ++

Single-step 
methods

QSIP + + + ++ + ++

SSTGV + + + ++ ++ ++

SSTV + + + ++ ++ ++

Iterative 
optimization using 
regularization

STARQSM ++ ++ + ++ + ++

FANSI − + + + + ++

HDQSM + + + + + ++

MEDI + + + ++ + ++

Deep learning 
methods

QSMGAN ++ ++ + + + ++

QSMnet+ ++ ++ + + + ++

xQSM − + + + + ++

iQSM 
(single-step 
DL)

− + + ++ ++ ++

a
Mean rating of visual quality: – > 1.2; + 0.8–1.2; ++ < 0.8.

b
XSIM with COSMOS: – < 0.3; + 0.3–0.5; ++ > 0.5.

c
Correlation coefficient with age: – < 0.5; + 0.5–0.7; ++ > 0.7.

d
Correlation coefficient with iron: – < 0.9; + 0.9–0.95; ++ > 0.95.

e
Test statistics of differentiation of HD subjects from HC: – < 1.96; + 1.96–3.29; ++ > 3.29. Note: 1.96 and 3.29 correspond to the z-score 

two-tailed cutoff at 0.05 and 0.001, respectively.
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