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Abstract4

Although recent advances in synthetic biology allow us to produce biological de-5

signs more efficiently than ever, our ability to predict the end result of these designs6

is still nascent. Predictive models require large amounts of high-quality data to be7

parametrized and tested, which are not generally available. Here, we present the Ex-8

periment Data Depot (EDD), an online tool designed as a repository of experimental9

data and metadata. EDD provides a convenient way to upload a variety of data types,10

visualize these data, and export them in a standardized fashion for use with predictive11

algorithms. In this paper, we describe EDD and showcase its utility for three differ-12

ent use cases: storage of characterized synthetic biology parts, leveraging proteomics13

data to improve biofuel yield, and the use of extracellular metabolite concentrations to14

predict intracellular metabolic fluxes.15

Keywords: Database, -omics data, data standards, data mining, flux analysis, synthetic16

biology17

18

The field of biology has undergone a radical transformation in the 20th and 21st centuries:19

whereas biology had previously been a descriptive science, focused on classifying and explain-20

ing biological behavior, the advent of genetic engineering and synthetic biology provides the21

possibility of changing the instruction set of biological entities and modifying their behav-22

ior.1 The ensuing anticipated industrialization of biology in the 21st century2 is expected to23

significantly impact society in several ways: a biobased economy has the potential to address24

key environmental challenges, transform manufacturing processes, increase the productivity25

and scope of the agricultural sector, reduce the economy’s dependence on oil, improve human26

health, and grow new jobs and industries.327

However, while our capability to create new biological designs is advancing quickly, our28

ability to predict the outcome of engineered biological systems remains nascent. DNA synthe-29

4
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sis productivity improves as fast as Moore’s law,4 and new tools for facile genome engineering30

have revolutionized our capabilities to introduce site-specific modifications in the genomes31

of cells and organisms.5 Nonetheless, while it is increasingly more manageable to make the32

DNA changes we intend, the end result on cell biology is generally unforeseen.633

One of the main obstacles in predicting the behavior of biological systems is a concerning34

lack of repeatability in bioengineering, as compared to other engineering disciplines. While35

it is possible to produce a blueprint and specific instructions to construct (e.g.) a cell phone36

in China that will satisfy the same specifications as the same phone built in the U.S., the37

same is not the case for bioengineered systems.7 Recent studies by Amgen and Bayer were38

able to reproduce only 10-30% of biotech findings published in top-tiered journals,6,8,9 and39

there is a growing concern regarding lack of reproducibility.10 This lack of reproducibility40

not only hampers predictability, but also significantly limits investment in the field: the rule41

of thumb that has been reported to be applied among venture capitalists is that 50% of42

studies in top-journals are irreproducible.843

Greater predictability and reproducibility requires efficient data, metadata, and proto-44

col collection and sharing.7 New computational biology approaches for predicting biological45

behavior are becoming available, ranging from machine learning techniques to mechanistic46

models.11–14 However, the large amounts of standardized high-quality data that are needed47

to rigorously validate or improve these models are lacking. Concurrently, the post-genomic48

revolution has provided experimentalists with large-scale data sets of -omics data that are49

orders of magnitude larger than they are typically trained to analyze. Hence, the collab-50

oration between experimentalists and computational specialists could become much more51

fruitful and frequent through a more robust exchange of data. In the field of synthetic bi-52

ology, for example, it has been shown that careful characterization of synthetic biological53

parts enables accurate prediction of full pathway behavior.15
54

However, description of the experimental details is typically only reported in the materials55

and methods of papers in non-standard, often incomplete, ways.6 New frameworks such as56

5
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the ISA (Investigation/Study/Assay) software16 are appearing which provide a standardized57

description of experiment design and metadata that have become the standard way to report58

results to journals like Nature Scientific Data. This framework and others17,18 have facili-59

tated the appearance of tools for sharing transcriptomics,19,20 proteomics,21–23 metabolomics60

data,24 and even combinations of different -omics data types.25 In parallel, data collection61

and storage systems based on standards developed for medical purposes (DICOM, Digital62

Imaging and COmmunication in Medicine26) are being applied to synthetic biology part63

characterization (DICOM-SB27). However, none of these tools provides a single data repos-64

itory for all -omics data types that is able to extract data straight from instrument output,65

visualize this data, and export the data in formats that are readily applicable to modeling66

tools and libraries.67

Here, we present the Experiment Data Depot (EDD), an online tool designed as a repos-68

itory of experimental data and metadata (Fig. 1). EDD can uptake experimental data,69

provide visualization of these data, and produce downloadable data in several standard out-70

put formats. The input of data to EDD is performed through automated data streams:71

each of these input streams automatically parses the standard outputs of the instruments72

most commonly used for bioengineering. New input streams can be easily added to adapt73

to local data production. The current version of EDD handles transcriptomics, proteomics,74

metabolomics, HPLC, and Biolector R� fermentation data. EDD provides a quick visualiza-75

tion of imported data that allows for a quality check by showing whether the imported data76

are within the expected range or not. Since data are stored internally in a relational database,77

all data output is consistent. Outputs can be provided in terms of different standardized78

files (Systems Biology Markup Language, SBML,28,29 or CSV) or through a representa-79

tional state transfer (RESTful) Application Programming Interface (API, in development).80

Since the most common complaint of data scientists30 is that they spend most of their time81

preparing data for analysis rather than doing the analysis itself, the ability to obtain data in82

standardized formats should be of great utility. SBML and CSV files can be used in conjunc-83

6
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tion with libraries such as COBRApy31 or Scikit-learn32 to generate actionable results for84

metabolic engineering. We showcase this capability by using HPLC data to predict internal85

metabolic fluxes of cells, and by leveraging proteomic data to improve biofuel yield. We also86

demonstrate EDD’s capability to store information on characterized synthetic biology parts.87

EDD is not a LIMS (Laboratory Information Management System): it is not meant to88

store raw data (e.g., mass spectrometry traces). Rather, it only stores processed biologically89

interpretable data (e.g., metabolite concentrations, protein expression levels, oxygen input90

rates, etc.), i.e. data that can be immediately interpreted by a biologist without requiring91

detailed knowledge of the analytical measurement technique.92

Methods93

Experiment description terms (EDD ontology)94

EDD describes experiments in terms of studies, lines, strains, protocols, assays, measure-95

ments, and values (see Fig. 2 for an illustrative example).96

• Study is used to describe a single continuous experiment meant to answer a single97

question. For example, an experiment characterizing the properties of a library of98

promoters in Escherichia coli would be a Study. Another example would be screening99

a panel of mutant enzymes for specificity to a molecule of interest.100

• Line describes a single culture or line of enquiry within a Study. A single flask with101

a E. coli strain culture, or a well of Saccharomyces cerevisiae in a plate, are examples102

of Lines in EDD. Lines are grouped together under a Study in the EDD hierarchy,103

therefore a Study contains a set of Lines.104

• Strain describes the biological entity used in a Line. A Line entry includes information105

about the strain or enzyme being used, making it possible to search for any Line or106

Study that uses a specific strain. Multiple Lines within a Study can use the same Strain,107

7
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either as biological replicates, or under differing conditions. Additional information108

concerning the strain(s) and/or plasmid(s) used in a Line is made available through109

links to the Inventory of Composable Elements (ICE),33 which serves as a repository110

for DNA sequences, the physical location in the laboratory freezer, and other strain111

metadata.112

• Protocol denotes the method used to obtain information from a Line (e.g., pro-113

teomics). A Protocol is not tied to any particular Study; it is any repeatable process114

meant to be used across many Studies. The description of a Protocol can be anything115

from a simple list of written instructions, to a reference to a document or manual, or116

a robot program.117

• Assay is the application of a Protocol on a specific Line (e.g., using proteomics to118

study protein expression of Line C1, an E. coli culture). Assays are grouped under119

Lines in the EDD hierarchy, thus a Line contains a set of Assays (see C1-PROT-1 and120

C1-PROT-2 in Fig. 2).121

• Measurement describes a quantity measured by an Assay (e.g., the count of phos-122

phoglucose isomerase proteins per cell found using the proteomics protocol on line123

C1). Some Protocols will measure only one quantity (e.g., optical density at 600 nm),124

while others could measure multiple quantities (e.g., several proteins for proteomics or125

several extracellular metabolites for HPLC).126

• Values are individual points of data for a Measurement. A Measurement could contain127

only a single value, or several of them.128

8
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Key capabilities129

Data input130

Data input into EDD has been streamlined (Fig. 3 and Screencast 1 in Supporting Infor-131

mation). The data input menu consists of a set of prescribed import modules, plus a more132

general import option (Fig. 4). The assumption in this design is that typically the same types133

of data are imported, and new data types are only rarely added. The prescribed data inputs134

include options for HPLC data, targeted proteomics data, metabolomics concentration data,135

metabolite labeling patterns (such as those used in 13C Metabolic Flux Analysis34,35), tran-136

scriptomics data, and data obtained from the m2p-labs BiolectorR� automated fermentation137

platform.36 A specific input format is expected for each data type depending on the data138

source (e.g. HPLC or Biolector) to standardize and facilitate data input. An example of139

the data format is shown in the input form as a guidance (see Screencast 1). New data type140

inputs can be easily added by including a new import module conforming to the interface141

for import/export modules (see Supporting Information).142

Data lacking a specified format or type can be uploaded through a general import option.143

This option attempts to allow greater flexibility in defining rows and columns of an input144

table. A large variety of spreadsheet layouts may be handled by the general import, but145

this requires the user of EDD to define mappings of spreadsheet rows and columns to EDD146

datatypes.147

Visualization148

EDD provides visualization of experimental data through interactive tables and graphs (see149

Fig. 5 and Screencast 2 in Supporting Information). The guiding principle of visualization150

in EDD is that it is not meant to solve all visualization needs, but rather provide a general151

overview of datasets via visualization of the most common needs, while the rest can be152

tackled through data downloads and more sophisticated visualization tools (e.g., Spotfire37
153

9
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or Plot.ly).154

The EDD study detail view contains several sections to present different facets of data155

contained in the study: an overview part (“Overview”), a table describing lines and metadata156

(“Experiment Description”) and an interactive graph displaying all collected data (“Data”).157

The “Data” section (Fig. 5) allows the user to see different measurements for each line (e.g.,158

acetate concentration for E. coli wild type strain or the number of copies of fumC protein in159

engineered strain p3BB4) via different graph types: line, or bar graphs where data is grouped160

by varying criteria. An interactive menu allows the user to toggle among different data types161

or lines, in order to compare them. In this way, one can, for example, compare glucose162

consumption for several strains, or lactate vs acetate production of a single strain. This163

visualization gives the researcher a quick data quality check by testing whether the gathered164

data matches intuitive expectations. The toggling is enabled through progressive filtering165

of metadata criteria: Line, Strain, Protocol, Assay, Measurement (plus other metadata166

customized for the Study). The filtering draws one column for each metadata type that has167

more than one unique value in the Study, then lists the unique values in the column. When a168

value in the column is checked the overview plot is updated to show only the records related169

to the checked value. Also, the contents of all the columns to the right of the modified column170

are updated to show which values remain in the currently visibly subset of records. In this171

way, the user can progressively drill down into arbitrary groups of their data efficiently (see172

Screencast 2 in Supporting Information for a demonstration).173

The “Experiment Description” section of the Study detail view collects the metadata and174

descriptors of Lines into a searchable, filterable, and sortable table. Lines can be searched175

through a box which filters out all lines not meeting the search criteria, and sorted by clicking176

on headers, as in spreadsheets. The relevant metadata fields can be shown or hidden through177

an options menu.178

10
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Data standardization179

EDD provides a single repository of data and a set of unified workflows for data input which180

facilitate standardized data collection and storage. This standardization facilitates compar-181

ison of experiments accumulated over time and provides a unified input for data analysis.182

Furthermore, detailed protocols and metadata parameters for each type of measurement are183

stored within EDD. Including this additional context in data standards is important, so the184

researcher analyzing the data does not need to be the same individual or team who exe-185

cuted the experiments. This decoupling enables effective division of labor and helps improve186

productivity.7187

EDD uses PubChem Compound Identifiers (cids) as the primary identifier for track-188

ing metabolites.38 Common genome-scale models are supported by a pre-generated map-189

ping that connects BiGG39 identifiers to cids by using ChEBI40 as an intermediate, as190

there are BiGG<->ChEBI and ChEBI<->PubChem cross-references, but no direct BiGG<-191

>PubChem cross-references available. For databases other than BiGG, identifier mappings192

are not automatically resolved to PubChem cids. Novel metabolites not yet included in Pub-193

Chem can be added to the database via the administration interface, which stores chemical194

structures as a SMILES41 string.195

Proteins are tracked using the UniProt unique identifier (UPI,42), and E. coli genes are196

currently tracked using Blattner numbers (b-numbers43). Support for NCBI GenBank44
197

accession numbers, a more standard and universal identifier than b-numbers, will be added198

in the very near future. Novel proteins and genes are also supported by adding them directly199

via the administration interface.200

Data output201

EDD provides access to all the data pertaining to an experiment in the form of standardized202

output files and a RESTful API in order to access data programmatically (in development).203

See Screencasts 3 and 4 in Supporting Information for a demonstration.204

11

Page 11 of 39

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Two output formats are provided at this time: comma separated values (CSV) and SBML.205

The CSV format is a general spreadsheet format providing selected information for a given206

experiment. Options on the CSV export can customize the output to include a subset of the207

data of interest. There are three basic options for spreadsheet layout (illustrated in Fig. S1208

in Supporting Information):209

• Rows of samples, columns of metadata and points; "short and wide". Suited for210

researchers reading data across lots of samples.211

• Rows of data points, columns of metadata; "tall and skinny". Suited for loading into212

analysis packages like Spotfire or R.213

• Rows of metadata and points, columns of samples; a transpose view of "short and214

wide". Suited for researchers reading lots of points across a few samples.215

The SBML format is tailored to enable and facilitate flux analysis through COBRA216

methods45 or 13C MFA.35 The SBML output contains exchange fluxes and growth rates217

calculated from the data stored in EDD as explained in the Supporting Information. In218

order to make the SBML output useful for 13C MFA,46 it was necessary to supplement the219

SBML standard with ways to include 13C labeling patterns for different metabolites (see220

Supporting Information). New standards for different outputs can be added as explained in221

detail in the Supporting Information.222

The RESTful API is structured along the hierarchies illustrated in Figs. 2 and 7 (see223

https://github.com/JBEI/edd/tree/master/docs/Interface.md). Accessing a Study will list224

all the Lines in the study, accessing a Line will list all the Assays on the line, and so on, until225

a script or program can access individual data points. When completed, the RESTful API226

will allow access to the data in EDD with more complex query criteria than a straightforward227

export can accommodate.228
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Read/edit permissions229

EDD includes a permissions model for Studies. A Study will be created by default with only230

permissions for the creator to view or edit. Without adding alternate permissions, a Study231

will be private, visible only to the individual creating the Study. Additional permissions may232

be granted to individual users, to groups of users, or to all users with accounts on the EDD233

server. There are two types of permissions available: the Read permission allows for viewing,234

searching, and exporting data from a Study; and the Write permission allows for adding,235

modifying, importing, or deleting data from a Study, as well as modifying permissions on236

the Study.237

Implementation238

The EDD code is open source under a Berkeley Software Distribution (BSD) license. The239

front-end of EDD is written in TypeScript, JavaScript, and HTML/CSS. EDD runs in any240

modern web browser, but Chrome is recommended (https://www.google.com/chrome/). The241

back-end is coded in Python and built on the Django platform (see Fig. 6). The code and242

documentation are available on Github (https://github.com/JBEI/EDD) and is divided into243

the following modules:244

Templates and Views245

The Django template framework is used to handle the layout and structure of EDD pages.246

Templates enforce a separation between how data in EDD are processed and how the same247

data are presented. By separating processing and presentation, the code for both is easier to248

generalize and re-use. A base template defines the overall look-and-feel of application pages249

and consistent navigation across the application. Additional templates referencing the base250

template define the structure for the major pages within EDD (e.g., show study details; or,251

import instrument data).252

Individual requests to EDD are handled with view functions. EDD directs requests to253
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view functions based on the contents of the request URL. Then, the view function processes254

the data in the request, loads and updates data from the database, and builds a response255

using the view’s template.256

Front-end and visualization257

The lines, bars, axes, and labels in the overview plot are rendered in SVG via the D3258

JavaScript library (d3js.org). Hovering over any line or bar triggers a CSS-based visual259

effect to make it stand out from the others, and provides more details on the data behind260

the visualization.261

The progressive filtering of metadata criteria is accomplished by creating a Typescript262

class for a filtering column that accepts and then emits a set of records, and then subclassing263

it for each of the base five kinds of metadata (Line, Strain, Protocol, Assay, Measurement),264

plus a sixth subclass for all the customized metadata types that can appear in a Study. The265

Measurement subclass is itself further subclassed for Metabolites, Proteins, and Transcripts.266

When a Study page loads, each of these classes is instantiated once, and the resulting filtering267

object is placed in an ordered list. Then, when a Study begins receiving data records from268

the server, additional instantiations of the customized metadata subclass are made, one for269

each new custom type detected. These objects are added to the beginning of the list.270

Each object is responsible for a column in the filtering section, and for accumulating and271

then managing its list of unique values. To achieve progressive filtering, a set of all the data272

records in the Study is fed into the first object in the list, which then emits another set,273

possibly shortened by removing all the records that do not match any checked values in the274

column. That set is passed to the next object, and further reduced, and so on, until the final275

set is fed into the overview plot for display.276
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Database277

Access to the EDD database is provided through the Django Object Relational Manager278

(ORM, Fig. 7). The ORM offers an interface to interact with entities in the database279

directly with Python code. This abstraction layer allows for EDD code to generally work280

with higher-level concepts of Studies, Assays, or Measurements instead of the underlying data281

models (i.e., no need for SQL queries). Code execution can be triggered upon specified events282

through signal handlers in the ORM system. For example, a signal handler is responsible283

for updating Study information in the search index whenever a Study changes.284

The data model for EDD centers on a few abstract concepts, tied together into the285

nested hierarchy of Study, Line, Assay, Measurement (Figs. 2 and 7). EDDObject defines286

the base for these parts of EDD. Each EDDObject has a unique machine-readable identifier,287

a human-readable name and description, update history, comments, files, and arbitrary288

metadata. Metadata, in turn, is defined by a MetadataType object. Each metadata value289

on an EDDObject references a MetadataType, containing the information needed for other290

code to interpret the value.291

As an example, a Line is an EDDObject that has metadata describing the conditions of292

a biological sample. The specific metadata types used are customizable for each Line. The293

metadata that needs to be captured will differ between an experiment concerning cultures294

grown in flasks, compared to an experiment concerning corn growing in a field. Some meta-295

data values, like Strain, are in turn EDDObjects, containing additional metadata. Lines296

concerning strains link to corresponding strain entries in a strain repository, such as ICE.297

The definitions of metadata are fully configurable, and can leverage existing specifications298

of metadata, such as those included in the DICOM-SB standard27 or ISA-Tab.16
299

Importers and Exporters300

EDD defines an interface for generalized import and export of data in various formats. There301

are two types of inputs: a protocol-specific input from a particular instrument (e.g., HPLC302
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or transcriptomics data), and a general import for data types not otherwise covered. Import303

modules transform the data into structures of the EDD database (Fig. 4). Export modules304

do the reverse process transforming selected data from the EDD database into other useful305

output formats. These modules are the primary way to move data into and out of EDD.306

Structuring the code as modules interfacing to and from the EDD database allows for the307

input of complex workflows through the flexible combination of these modules. Hence, an308

experiment that produced HPLC, transcriptomics, and proteomics data can have its data309

introduced in EDD through a successive application of the respective modules (Fig. 3).310

Services311

EDD makes use of several open-source systems to provide services to the main application.312

Each service is run using Docker containers (www.docker.com), allowing for standard instal-313

lation and deployment across servers. Installing and running a service only requires having a314

Docker host and the name of a service image. Docker handles downloading all the packages315

and code needed to run the service in an image. No separate installation is required, and316

most service images will have a reasonable default configuration included.317

Code for EDD is itself collected into an image that will run in a Docker container. A318

Dockerfile included in the source code describes all the required setup and install for the core319

EDD service, and can be built into an image that is run just like any other service. Building320

this image once will allow the same image to be copied to any Docker host and launch a new321

instance.322

A simple overview of the services driving EDD is included in (Fig. 8). All services are323

contained within the Docker Host. EDD connects to the Internet and outside world at two324

points: with the Nginx web server (www.nginx.com) to handle web requests, and with the325

Exim mail server (http://www.exim.org/) to send email notifications. Incoming requests to326

Nginx get routed to the core EDD image running a Django website in the Gunicorn WSGI327

application server, or to a backend file storage service. The core EDD service connects328
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to several other services to implement specific features. Text search and faceting uses a329

Solr document index service (lucene.apache.org/solr/). A Redis cache (redis.io) stores login330

session information and copies of the latest versions of static web resources like images331

and scripts. The core data model of EDD is implemented with a SQL schema running in332

a PostgreSQL service (www.postgresql.org). Any tasks that would take longer than the333

duration of a typical web request are handled by a Celery service (www.celeryproject.org)334

running a copy of the EDD Docker image. Communication between the EDD application335

service and the EDD worker service is mediated by a RabbitMQ message queue service336

(www.rabbitmq.com). Management of the message queue is handled by an optional Flower337

service, which can also be connected to the Nginx service to enable management of the task338

queue from outside of the Docker host.339

This microservice architecture of the EDD application ecosystem is intended to simplify340

the process of expanding an installation of EDD. All of the services represented by rectangular341

boxes in Fig. 8 are stateless services, meaning capacity can be added by replacing the service342

box with a simple load balancer dividing the workload among multiple container copies.343

The three stateful services: Solr, Redis, and Postgres; represented by upright cylinders, all344

offer their own clustering solutions to scale beyond a single node. The file storage service,345

represented by an overturned cylinder, can use any standard data storage strategy; from346

local disks, to large RAID arrays, to large cloud storage providers like Amazon AWS S3347

buckets.348

Results and discussion349

In this section, we present two example workflows that use experimental data contained350

within EDD to produce actionable items for metabolic engineering. Another possible use351

of EDD is to store synthetic biology parts characterization data, as is demonstrated by the352

public version of EDD (https://public-edd.jbei.org). This instance of EDD holds the data353
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for all the synthetic biology parts characterized in a recent publication concerning a Cas9-354

based toolkit for instituting genetic changes in S. cerevisiae to optimize heterologous gene355

expression.47
356

The first workflow will show how to upload time-resolved HPLC data into EDD. We will357

demonstrate the visualization capabilities and then download the data as a SBML file. We358

will then show how to use this SBML file in conjunction with the COBRApy31 library to359

predict intracellular metabolic fluxes (which provide a comprehensive description of cellular360

metabolism) through FBA (Flux Balance Analysis). FBA has important applications in361

bioengineering,48,49 microbial ecology50 and biomedicine.51
362

The second workflow will show how to upload targeted proteomics data into EDD, how363

to view these data and how to download them for further analysis. We provide an example of364

this further analysis by using the proteomics data obtained from a bioengineered E. coli strain365

to increase production of limonene, repeating an analysis done in a previous publication.52
366

Both of these workflows (and their input files) are demonstrated through Screencasts 4367

and 5 in the Supporting Information, or at https://public-edd.jbei.org/pages/tutorials/.368

Using metabolite concentration data to derive internal metabolic369

fluxes through Flux Balance Analysis (FBA)370

This workflow demonstrates how to upload time-resolved HPLC data into EDD, visualize371

them and download them in the SBML format so internal metabolic fluxes can be calculated372

through FBA.53 The full workflow is showcased in Screencast 4. We will first introduce the373

data in EDD in two steps (Fig. 3).374

We start at the main page and click on "Add New Study" on the upper right. The initial375

step involves providing basic metadata information such as the study name, a brief descrip-376

tion of the study and a contact person. This action prompts for an experiment description,377

which can be introduced by dragging and dropping the file "FBA_Experiment_Description.xlsx"378

(available as Supporting information and https://public-edd.jbei.org/pages/tutorials/). This379
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excel file contains a description of the experimental design on the basis of lines, as well as380

the protocols applied and the corresponding assays (Fig. 2). Line information includes links381

to detailed strain and plasmids information in ICE, as well as carbon source and media. In382

this case, this minimal example describes two shaking flask cultures (line BW1 and ArcA)383

of E. coli for which HPLC measurements of glucose and acetate are available at times 0,384

7.5, 9.5, 11, 13, 15, and 17 hours. This template can be modified as desired to describe385

different experiments. As soon as the experiment description is uploaded, the user can view386

the corresponding lines and other experimental details.387

The next step is to upload data by clicking on "Import Data" on the upper right corner.388

This action takes us to a data import page where the desired input format (the general389

import in this case) and corresponding protocol ("HPLC" in this case) are chosen. The390

HPLC data can be found in the "FBA_HPLC.xlsx" file. Dragging and dropping this file in391

the import page will make EDD parse the data and show an initial visualization, where the392

user can discard undesired time points (e.g. having resulted from experimental mistakes).393

EDD automatically matches the metabolite names to the database of standard metabolite394

names included, and the user can correct this assignment if needed. Once "Submit Import"395

is pressed, the data are now available on the main page of EDD for visualization. OD data396

is uploaded in an analagous manner.397

The filtering section below the data graph provides the means to only look at certain parts398

of the data set. For example, clicking on ‘arcA’ below ‘Strain’ only shows the HPLC data399

corresponding to the arcA strain. Clicking on ‘D-Glucose’ below ‘Metabolite’ only shows the400

HPLC data corresponding to the glucose measurement. Clicking on both, only shows the401

acetate curves for the arcA strain (see Screencast 2 in the Supporting Information).402

Data can be downloaded in a standardized format for later analysis. In this case we will403

download them in the SBML format. Exchange fluxes are automatically calculated from404

the extracellular metabolite concentrations described in the HPLC data (see Supporting405

Information). This file can be obtained by clicking on ‘BW1’ line, then selecting "Export406
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Data" and then selecting "to SBML" and "Take Action". This procedure will take the407

user to an export page that will determine the export parameters. The first one is which408

genome-scale model to use as a base (i.e., which genome-scale model to apply the previously409

calculated exchange fluxes to). We will choose the E. coli iJO1366 model in this case, for410

the sake of example. The second step will involve selecting which OD measurement values411

will be used to constrain the biomass (biomass is assumed to be proportional to OD through412

a constant value that is explicitly provided in this section and can be changed as needed).413

These values are already preselected, so we only need to check that they are not obviously414

wrong (e.g. set to zero). Step three involves pairing the calculated exchange fluxes with the415

corresponding reactions in the genome-scale model. Finally, we can download the SBML file416

for the desired time point by clicking on “Download SBML”.417

The final step involves using the COBRApy library31 and the SBML file downloaded418

to predict internal metabolic flux profiles through Flux Balance Analysis.53 We can predict419

fluxes in five lines of code:420

import cobra421

model=cobra . i o . read_sbml_model ( ’ EciJR904at20hrs . xml ’ )422

s o l u t i o n=model . opt imize ( )423

s o l u t i o n . ob jec t ive_va lue424

s o l u t i o n . f l u x e s [ [ ’PGI ’ , ’GND’ ] ]425

which shows a value of predicted flux of 2.61 mmol/gdw/hr for PGI (glucose-6-phosphate426

isomerase) and 0.91 mmol/gdw/hr for GND (hosphogluconate dehydrogenase). This code427

along with the expected results are shown in Jupyter notebook A in the Supporting Infor-428

mation.429
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Using targeted proteomics data to improve biofuel production through430

Principal Component Analysis (PCAP)431

This workflow shows how to use EDD and the Scikit-learn library to leverage targeted pro-432

teomics data to improve biofuel production (limonene) by bioengineered E. coli, as demon-433

strated in Alonso-Gutierrez et al .52 This workflow is showcased in Screencast 5 in the Sup-434

porting Information.435

This example provides a demonstration of how to add several types of data using the two436

step process in Fig. 3. The initial steps of how to create a study are the same as for the pre-437

vious example, in terms of providing the basic metadata. The description of the experiment438

can be found in ’PCAP_Experiment_Description.xls’: in this case there are thirty shake439

flask cultures (lines 2X-Mh to 2X-Hm) of E. coli for which targeted proteomics data samples440

are taken at 24 hrs. Dragging and dropping the file into the page obtained by clicking on441

"Add New Study" creates a new study reflecting all these details. The proteomics data can442

be found in the "PCAP_Proteomics.csv" file. We can add these data to the study by clicking443

on "Import data" and following the instructions in the input page as shown in the previous444

example. This example has two additional data types associated besides the targeted pro-445

teomics data: limonene production measured through GC-MS ("PCAP_GCMS.csv" file)446

and optical density measured through spectroscopy ("PCAP_OD.xlsx" file). Adding the447

limonene measurements is as straightforward as pressing again "Import data" and follow-448

ing the instructions in the input page. Adding the optical density data follows the same449

procedure.450

EDD offers several ways to visualize the data we previously loaded. In this example,451

the line graphs displaying the dependence with time are of limited use, since all data are452

collected at a single time. By clicking on "Bar Graphs" at the top of the "Data" tab, we453

can see this data in bar form grouped by measurement, line or time, as indicated by the454

different buttons. Hovering over each bar or data point gives further information. As before,455

we can filter certain types of data by clicking on "Filtering" and using the ensuing menu.456

21

Page 21 of 39

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



By clicking on a line, protocol, or protein, we only see the data corresponding to that line,457

protocol, or protein. The assays applied to each line and the sampling times are available458

by clicking on the "Table" tab.459

We will now download the data from EDD for further analysis using Principal Component460

Analysis of Proteomics (PCAP52). First, we select the lines we would like to download and461

we click on "Export Data" and select "as CSV/etc" from the download menu options. This462

provides a CSV file with a defined format that can be used as input for Jupyter notebook B463

(see Supporting Information).464

The next steps involve taking the proteomics and production data and use Principal465

Component Analysis to find which proteins need to have their expression changed in order466

to improve biofuel production. This procedure is carried out using the Scikit-learn library,32
467

and is demonstrated in Jupyter notebook B. The input is the CSV file obtained from EDD,468

and the output is Fig. 4 from Alonso-Gutierrez et al ,52 which predicts which part of the469

proteomics phase space is associated to improved limonene production (see publication for470

further details).471

Conclusion472

We have presented in this manuscript EDD, an interactive online open-source tool that473

serves as a repository of experimental data. Linked with ICE, EDD provides a standardized474

description of experiments: from the strains and plasmids involved, to the protocols used,475

the experimental design for sampling, and the data extracted. While the initial use cases and476

the examples provided here are geared towards microorganism cultivation and phenotyping,477

the data schema and different functionalities can be adapted to other uses (e.g., enzyme478

characterization or plant bioengineering).479

Data input can be done either manually through a web interface or through automated480

workflows for typical data types. The latter includes input for: HPLC data, transcriptomics,481
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proteomics data, metabolomics data, and Biolector data. These workflows provide a drag-482

and-drop interface that parses data into the database automatically. These workflows are483

modular, and new modules can be written for additional data types (e.g., chip-Seq, etc).484

Once the API in development is finished, it will provide the possibility of automating data485

input, and hence ease the integration of data from other databases and publications.486

Data visualization is provided for each study through an interactive window where dif-487

ferent data types can be seen simultaneously (Fig. 5). Different data types and strains can488

be interactively filtered in or out to facilitate comparisons. Data for each protocol can be489

found at the bottom of each study, along with sampling details.490

Data standardization is enabled by forcing all data into an ontology and using stan-491

dardized ontologies for data (for example, all metabolomics data uses the same metabolite492

names). Furthermore, the user is forced to include a minimum of metadata as a description493

of metadata. A flexible use of metadata means that, beyond that minimum obligatory core,494

extra metadata can be included, if desired, by the experimentalist.495

Data output can be done using a variety of formats, including CSV or SBML files. These496

output streams are modular and new modules can be added for different output formats. By497

virtue of the internal organization of EDD, all data output is consistent and can be used to498

feed a variety of modeling or data mining approaches.499

EDD improves on single -omics type databases such as PRIDE,54 MOPED55 and PAXdb56
500

(for e.g. proteomics) because it is able to integrate multiple types of -omics data (e.g. tran-501

scriptomics, proteomics and metabolomics). Furthermore, the metadata typically stored in502

these systems (e.g. PRIDE) focuses on data acquisition and sample preparation metadata503

(i.e. trypsin amount, digestion length..), whereas experiment metadata (e.g shaking speed,504

culture volume, growth temperature) is typically lacking in these databases but is captured505

on EDD. However, while some of these databases provide data analysis capabilities (e.g.506

MOPED or PaxDb), EDD was not meant to perform complex data analysis. There are507

many available tools available for data analysis (e.g. through Kbase or Jupyter notebooks)508
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and we believe EDD’s mission is not to choose those tools for the user but, rather, feed those509

tools the standardized data they need, in order to streamline their use (see for example the510

multi-omics data viewer Arrowland, https://public-arrowland.jbei.org/).511

In this manuscript, we have described two use cases for EDD in metabolic engineering (all512

data available in the Supporting Information and https://public-edd.jbei.org/pages/tutorials/):513

1) using extracellular metabolite concentrations to predict internal metabolic fluxes for an514

E. coli strain using FBA, and 2) using proteomics data to increase biofuel production in a515

bioengineered strain. These use cases are presented as tutorials and showcase the utility of516

EDD for metabolic engineering and synthetic biology applications. EDD is, however, a tool517

in continuous development. We present here a tool that addresses some of our current needs,518

but the code is available to be modified and adapted to fit other future needs that require519

collection and storage of large amounts of experimental data.520

EDD also provides a platform to disseminate the data produced at one institution to other521

institutions, hence becoming a repository of data of use for testing and parametrizing models.522

For example, JBEI’s57 public instance of EDD (https://public-edd.jbei.org) holds the infor-523

mation for all the synthetic biology parts characterized in a recent JBEI publication which524

provides the largest, most comprehensive Cas9-based toolkit to quickly institute genetic525

changes in S. cerevisiae to optimize heterologous gene expression.47 We expect to continue526

to seed JBEI’s public instance of EDD with data related to future publications from LBNL527

(e.g. associated to JBEI or the Agile BioFoundry: http://agilebio.lbl.gov/), and very soon528

open the possibility to other external researchers of uploading their own data. An alternative529

is for external researchers to set their own instances of EDD (as explained in detail in the530

github repository, https://github.com/JBEI/edd/blob/master/docs/Developer_Setup.md).531

We also welcome contributions and joint development (see https://github.com/JBEI/edd/blob/master/Contributing.md)532

to fit other user’s needs. Our final goal is to create a web of EDDs for different institutions533

able to efficiently exchange data, as is the case for the web of registries (https://www.jbei.org/jbeis-534

inventory-of-composable-elements-ice-tutorial-now-available/).535
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In the current world, where there is an increasingly strong trend to disclose algorithms536

as open source code,58 but training data is viewed as extremely valuable,59 EDD will pro-537

vide significant value as more experiments are available. We hope EDD will help enabling538

reproducibility and predictability in the fields of metabolic engineering and synthetic biology.539
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Supporting Information Available568

The following supporting information is available:569

• Supporting text including (SupportingText.pdf):570

– A detailed explanation of how exchange fluxes are calculcated for export from571

EDD using SBML.572

– An explanation of the extensions of SBML that were required in order to store573

13C labeling data, transcriptomics, proteomics, metabolomics and fluxomics data.574

– Instructions on how to add new output standards for EDD.575

– A supplementary figure explaning the different layouts of exported spreadsheets.576

• Five screencasts as tutorials that show five fundamental functionalities in EDD:577

– Screencast 1: Data upload (1-Data Input.mp4).578

– Screencast 2: Data visualization (2-Data Visualization.mp4).579

– Screencast 3: Data download (3-Data Download.mp4).580
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– Screencast 4: Using metabolite data for flux analysis (4-FBA.mp4).581

– Screencast 5: Using proteomics data to increase biofuel production (5-PCAP.mp4).582

• A zip file (Examples.zip) containing Jupyter notebooks and input files to recreate:583

– Using metabolite data for flux analysis (Screencast 4):584

⇤ Jupyter Notebook A.ipynb (+ corresponding html version)585

⇤ FBA_Experiment_Description.xlsx586

⇤ FBA_HPLC.xlsx587

⇤ FBA_OD.xlsx.588

– Using proteomics data to increase biofuel production (Screencast 5):589

⇤ Jupyter Notebook B.ipynb (+ corresponding html version)590

⇤ PCAP_Experiment_Description.xlsx591

⇤ PCAP_GCMS.csv592

⇤ PCAP_OD. xlsx593

⇤ PCAP_Proteomics.csv594

References595

(1) Russo, E. (2003) Special Report: The birth of biotechnology. Nature 421, 456–457.596

(2) Industrialization of Biology ; The National Academies Press, 2015.597

(3) House, T. W. (2012) National Bioeconomy Blueprint April 2012. Industrial Biotechnol-598

ogy 8, 97–102.599

(4) Tang, N., Ma, S., and Tian, J. Synthetic Biology ; Elsevier BV, 2013; pp 3–21.600

(5) Doudna, J. A., and Charpentier, E. (2014) The new frontier of genome engineering with601

CRISPR-Cas9. Science 346, 1258096.602

27

Page 27 of 39

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(6) Gardner, T. S. (2013) Synthetic biology: from hype to impact. Trends Biotechnol. 31,603

123–125.604

(7) Chubukov, V., Mukhopadhyay, A., Petzold, C. J., Keasling, J. D., and Martín, H. G.605

(2016) Synthetic and systems biology for microbial production of commodity chemicals.606

NPJ Syst. Biol. Appl. 2, 16009.607

(8) Prinz, F., Schlange, T., and Asadullah, K. (2011) Believe it or not: how much can608

we rely on published data on potential drug targets? Nat. Rev. Drug Discovery 10,609

712–712.610

(9) Begley, C. G., and Ellis, L. M. (2012) Drug development: Raise standards for preclinical611

cancer research. Nature 483, 531–533.612

(10) Baker, M. (2016) 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454.613

(11) Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B.,614

Assad-Garcia, N., Glass, J. I., and Covert, M. W. (2012) A Whole-Cell Computational615

Model Predicts Phenotype from Genotype. Cell 150, 389–401.616

(12) Hyduke, D. R., Lewis, N. E., and Palsson, B. Ø. (2013) Analysis of omics data with617

genome-scale models of metabolism. Mol. BioSyst. 9, 167–174.618

(13) Nelli, F. Python Data Analytics; Springer Science Business Media, 2015; pp 237–264.619

(14) Gill, R. T., Halweg-Edwards, A. L., Clauset, A., and Way, S. F. (2015) Synthesis aided620

design: The biological design-build-test engineering paradigm? Biotechnol. Bioeng.621

113, 7–10.622

(15) Davidsohn, N., Beal, J., Kiani, S., Adler, A., Yaman, F., Li, Y., Xie, Z., and Weiss, R.623

(2015) Accurate Predictions of Genetic Circuit Behavior from Part Characterization624

and Modular Composition. ACS Synth. Biol. 4, 673–681.625

28

Page 28 of 39

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(16) Rocca-Serra, P., Brandizi, M., Maguire, E., Sklyar, N., Taylor, C., Begley, K., Field, D.,626

Harris, S., Hide, W., Hofmann, O., Neumann, S., Sterk, P., Tong, W., and Sansone, S.-627

A. (2010) ISA software suite: supporting standards-compliant experimental annotation628

and enabling curation at the community level. Bioinformatics 26, 2354–2356.629

(17) Brazma, A. et al. (2001) Minimum information about a microarray experiment630

(MIAME)-toward standards for microarray data. Nat Genet 29, 365–71.631

(18) Taylor, C. F. (2006) Minimum Reporting Requirements for Proteomics: A MIAPE632

Primer. PROTEOMICS 6, 39–44.633

(19) Clough, E., and Barrett, T. Methods in Molecular Biology ; Springer Science Business634

Media, 2016; pp 93–110.635

(20) Brazma, A. (2003) ArrayExpress–a public repository for microarray gene expression636

data at the EBI. Nucleic Acids Res. 31, 68–71.637

(21) Jones, P. (2006) PRIDE: a public repository of protein and peptide identifications for638

the proteomics community. Nucleic Acids Res. 34, D659–D663.639

(22) Vizcaíno, J. A. et al. (2014) ProteomeXchange provides globally coordinated proteomics640

data submission and dissemination. Nat Biotechnol 32, 223–226.641

(23) Desiere, F. (2006) The PeptideAtlas project. Nucleic Acids Res. 34, D655–D658.642

(24) Haug, K., Salek, R. M., Conesa, P., Hastings, J., de Matos, P., Rijnbeek, M., Ma-643

hendraker, T., Williams, M., Neumann, S., Rocca-Serra, P., Maguire, E., Gonzalez-644

Beltran, A., Sansone, S.-A., Griffin, J. L., and Steinbeck, C. (2012) MetaboLights–an645

open-access general-purpose repository for metabolomics studies and associated meta-646

data. Nucleic Acids Res. 41, D781–D786.647

(25) Gonzalez-Beltran, A., Maguire, E., Georgiou, P., Sansone, S.-A., and Rocca-Serra, P.648

29

Page 29 of 39

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(2013) Bio-GraphIIn: a graph-based integrative and semantically-enabled repository649

for life science experimental data. EMBnet.journal 19, 46.650

(26) Pianykh, O. S. Digital Imaging and Communications in Medicine (DICOM); Springer651

Nature, 2011; pp 3–5.652

(27) de Murieta, I. S., Bultelle, M., and Kitney, R. I. (2016) Toward the First Data Acqui-653

sition Standard in Synthetic Biology. ACS Synth. Biol.654

(28) Finney, A., and Hucka, M. (2003) Systems biology markup language: Level 2 and655

beyond. Biochm. Soc. Trans. 31, 1472–1473.656

(29) Hucka, M. Encyclopedia of Systems Biology; Springer Science Business Media, 2013; pp657

2057–2063.658

(30) 2015 Data Science Report. 2015; https://visit.crowdflower.com/659

2015-data-scientist-report.660

(31) Ebrahim, A., Lerman, J. A., Palsson, B. O., and Hyduke, D. R. (2013) COBRApy:661

COnstraints-Based Reconstruction and Analysis for Python. BMC Syst. Biol. 7, 74.662

(32) others„ et al. (2011) Scikit-learn: Machine learning in Python. J. Mach. Learn. Res.663

12, 2825–2830.664

(33) Ham, T. S., Dmytriv, Z., Plahar, H., Chen, J., Hillson, N. J., and Keasling, J. D.665

(2012) Design implementation and practice of JBEI-ICE: an open source biological666

part registry platform and tools. Nucleic Acids Res. 40, e141–e141.667

(34) Wiechert, W. (2001) 13C Metabolic Flux Analysis. Metab. Eng. 3, 195–206.668

(35) Martín, H. G., Kumar, V. S., Weaver, D., Ghosh, A., Chubukov, V., Mukhopadhyay, A.,669

Arkin, A., and Keasling, J. D. (2015) A Method to Constrain Genome-Scale Models670

with 13C Labeling Data. PLoS Comput. Biol. 11, e1004363.671

30

Page 30 of 39

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://visit.crowdflower.com/2015-data-scientist-report
https://visit.crowdflower.com/2015-data-scientist-report
https://visit.crowdflower.com/2015-data-scientist-report


(36) Funke, M., Buchenauer, A., Schnakenberg, U., Mokwa, W., Diederichs, S., Mertens, A.,672

Müller, C., Kensy, F., and Büchs, J. (2010) Microfluidic biolector-microfluidic biopro-673

cess control in microtiter plates. Biotechnol. Bioeng. 107, 497–505.674

(37) Wilkins, C. L. (2000) Books and Software: Data mining with Spotfire Pro 4.0. Anal.675

Chem. 72, 550 A–550 A.676

(38) Bolton, E. E., Wang, Y., Thiessen, P. A., and Bryant, S. H. (2008) PubChem: integrated677

platform of small molecules and biological activities. Annu. Rep. Comput. Chem. 4,678

217–241.679

(39) Schellenberger, J., Park, J. O., Conrad, T. M., and Palsson, B. Ø. (2010) BiGG: a Bio-680

chemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions.681

BMC bioinf. 11, 213.682

(40) Degtyarenko, K., De Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A.,683

Alcántara, R., Darsow, M., Guedj, M., and Ashburner, M. (2007) ChEBI: a database684

and ontology for chemical entities of biological interest. Nucleic Acids Res. 36, D344–685

D350.686

(41) Weininger, D., Weininger, A., and Weininger, J. L. (1989) SMILES. 2. Algorithm for687

generation of unique SMILES notation. J. Chem. Inf. Model. 29, 97–101.688

(42) Consortium, U. (2015) UniProt: a hub for protein information. Nucleic Acids Res. 43,689

D204–12.690

(43) Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M.,691

Collado-Vides, J., Glasner, J. D., Rode, C. K., and Mayhew, G. F. (1997) The complete692

genome sequence of Escherichia coli K-12. Science 277, 1453–1462.693

(44) Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J.,694

and Sayers, E. W. (2012) GenBank. Nucleic Acids Res. 41, D36–D42.695

31

Page 31 of 39

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(45) Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M.,696

Zielinski, D. C., Bordbar, A., Lewis, N. E., Rahmanian, S., Kang, J., Hyduke, D. R., and697

Palsson, B. Ø. (2011) Quantitative prediction of cellular metabolism with constraint-698

based models: the COBRA Toolbox v2.0. Nat Protoc 6, 1290–1307.699

(46) Martín, H., Kumar, V., Weaver, D., Ghosh, A., Chubukov, V., Mukhopadhyay, A.,700

Arkin, A., and Keasling, J. (2015) A Method to Constrain Genome-Scale Models with701

13C Labeling Data. PLoS Comput Biol 11, e1004363.702

(47) Apel, A. R., d Espaux, L., Wehrs, M., Sachs, D., Li, R. A., Tong, G. J., Garber, M.,703

Nnadi, O., Zhuang, W., Hillson, N. J., Keasling, J. D., and Mukhopadhyay, A. (2016)704

A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic705

Acids Res. 45, 496–508.706

(48) Yim, H. et al. (2011) Metabolic engineering of Escherichia coli for direct production of707

1,4-butanediol. Nat. Chem. Biol. 7, 445–452.708

(49) Park, J. H., Lee, K. H., Kim, T. Y., and Lee, S. Y. (2007) Metabolic engineering of709

Escherichia coli for the production of L-valine based on transcriptome analysis and in710

silico gene knockout simulation. Proc. Natl. Acad. Sci. U. S. A. 104, 7797–7802.711

(50) Stolyar, S., Dien, S. V., Hillesland, K. L., Pinel, N., Lie, T. J., Leigh, J. A., and712

Stahl, D. A. (2007) Metabolic modeling of a mutualistic microbial community. Mol.713

Syst. Biol. 3 .714

(51) Frezza, C. et al. (2011) Haem oxygenase is synthetically lethal with the tumour sup-715

pressor fumarate hydratase. Nature 477, 225–228.716

(52) Alonso-Gutierrez, J., Kim, E.-M., Batth, T. S., Cho, N., Hu, Q., Chan, L. J. G.,717

Petzold, C. J., Hillson, N. J., Adams, P. D., Keasling, J. D., Martin, H. G., and Lee, T. S.718

(2015) Principal component analysis of proteomics (PCAP) as a tool to direct metabolic719

engineering. Metabol. Eng. 28, 123–133.720

32

Page 32 of 39

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(53) Lewis, N. E., Nagarajan, H., and Palsson, B. O. (2012) Constraining the metabolic721

genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev.722

Microbiol.723

(54) Vizcaíno, J. A., Csordas, A., Del-Toro, N., Dianes, J. A., Griss, J., Lavidas, I.,724

Mayer, G., Perez-Riverol, Y., Reisinger, F., and Ternent, T. (2015) 2016 update of725

the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456.726

(55) Kolker, E., Higdon, R., Haynes, W., Welch, D., Broomall, W., Lancet, D., Stanberry, L.,727

and Kolker, N. (2011) MOPED: model organism protein expression database. Nucleic728

Acids Res. 40, D1093–D1099.729

(56) Wang, M., Weiss, M., Simonovic, M., Haertinger, G., Schrimpf, S. P., Hengart-730

ner, M. O., and von Mering, C. (2012) PaxDb, a database of protein abundance averages731

across all three domains of life. Mol. Cell. Proteomics 11, 492–500.732

(57) Scheller, H. V., Singh, S., Blanch, H., and Keasling, J. D. (2010) The Joint BioEn-733

ergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance.734

BioEnergy Res. 3, 105–107.735

(58) Metz, C. Google Just Open Sourced TensorFlow, Its Artifi-736

cial Intelligence Engine. 2015; https://www.wired.com/2015/11/737

google-open-sources-its-artificial-intelligence-engine/.738

(59) Vanian, J. IBM bought The Weather Company because weather af-739

fects nearly everything. 2015; http://fortune.com/2015/10/28/740

ibm-weather-company-acquisition-data/.741

33

Page 33 of 39

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/
https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/
https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/
http://fortune.com/2015/10/28/ibm-weather-company-acquisition-data/
http://fortune.com/2015/10/28/ibm-weather-company-acquisition-data/
http://fortune.com/2015/10/28/ibm-weather-company-acquisition-data/


Figures742

Figure 1: Overview and key capabilites of EDD. EDD collects data from differ-
ent instruments, stores and visualizes them in an interactive way, and enables download-
ing them in a standardized format for use with a variety of modeling and analysis tech-
niques. Screencasts 4 and 5, available in the Supporting Information (or https://public-
edd.jbei.org/pages/tutorials/), provide step by step example tutorials to calculate internal
metabolic fluxes, or to use proteomics data to improve biofuel production through data
mining.
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Figure 2: Experiment description on EDD. Example of how a common experiment
would be described in EDD. This study involves culturing three strains (A, B and C) from
a strain repository in several shaking flasks. Strain A is cultured in two flasks giving rise
to two lines (A1 and A2). Strain B is cultured in a single flask (line B1) and strain C is
cultured in three different flasks (lines C1, C2, and C3). The HPLC (High Pressure Liquid
Chromatography measuring extracellular metabolite concentrations) protocol is applied to
line A2 at t=10 hr giving rise to assay A2-HPLC-1. For assay A2-HPLC-1 the measurement
data for acetate and lactate were 3 and 2 mg/L, respectively, at t=10 hr. Line C1 is subject
to two different protocols: HPLC (t= 20 hr) and proteomics (quantitative measurement of
expressed proteins, t=10 hr). Proteomics assay C1-PROT-1 on line C1 yields a measurement
of 200 copies of pgi (phosphoglucose isomerase) per cell, and 70 copies of mdh (malate
dehydrogenase) per cell at t=10 hr. A technical replicate of this measurement, coming from
a different line (flask), constitutes a different assay C1-PROT-2.

35

Page 35 of 39

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 3: Data input into EDD has been streamlined. Users can input data in two
steps. The first step involves adding description of the experiment describing lines and
metadata for the study, as exemplified in Fig. 2. The second step involves uploading the
data: (e.g., HPLC data with metabolite concentrations). The input is modular, so ad-
ditional data (e.g., proteomics, transcriptomics, etc.) can be added later using the same
import protocols. See Screencast 1 in the Supporting Information, or at https://public-
edd.jbei.org/pages/tutorials/, for a demonstration.
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Figure 4: Export and import modules. Inputs are divided into two groups: protocol
specific import that comes from a specific machine with a predetermined format, and a gen-
eral import. Inputs are written so as to produce a Django object that is then stored in the
database. The same modules are used for data export in SBML and CSV format. See Screen-
cast 3 in the Supporting Information, or at https://public-edd.jbei.org/pages/tutorials/, for
a demonstration of data export.
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Figure 5: Interactive data visualization. The "Data" tab provides an interactive visual-
ization of all data contained in a single study. The "Filter options" menu contains a classifi-
cation of data and metadata. By clicking on each of the buttons in the menu one can choose
to view e.g., only the acetate, D-glucose, and O2 consumption data for the ‘WT BN’ line.
The user can also compare lines by checking them (e.g., ‘WT BN’ vs ‘WT 1A’). See Screen-
cast 2 in the Supporting Information, or at https://public-edd.jbei.org/pages/tutorials/, for
a demonstration.
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Figure 6: High-level diagram of EDD code structure. The front-end and visualization
run on the client (internet browser) and are coded in TypeScript. The backend involves the
database, importer, exporters and the templates and is coded in python using the Django
framework.

Figure 7: Database schema for EDD data. The database is accessed through the Django
Object Relational Manager (ORM) and encodes the experiment descriptors shown in Fig. 2.
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Figure 8: Service diagram for EDD. Multiple services combine together to create EDD.
This microservice architecture simplifies the process of expanding an installation of EDD.

TABLE OF CONTENTS (ToC) graphic.
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