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The evolution of costly signalling traits has largely focused on male
ornaments. However, our understanding of ornament evolution is necessarily
incomplete without investigating the causes and consequences of variation in
female ornamentation. Here, we study the Anolis lizard dewlap, a trait exten-
sively studied as a male secondary sexual characteristic but present in females
of several species. We characterized female dewlaps for 339 species to test
hypotheses about their evolution. Our results did not support the hypothesis
that female dewlaps are selected against throughout the anole phylogeny.
Rather, we found that female dewlaps were evolutionary labile. We also did
not find support for the adaptive hypothesis that interspecific competition
drove the evolution of female dewlaps. However, we did find support for
the pleiotropy hypothesis as species with larger females and reduced sexual
size dimorphism were more likely to possess female dewlaps. Lastly, we
found that female dewlap presence influenced diversification rates in anoles,
but only secondarily to a hidden state. Our results demonstrate that female
ornamentation is widespread in anoles and the traditional hypothesis of
divergent selection between the sexes does not fully explain their evolution.
Instead, female ornamentation is likely to be subject to complex adaptive
and non-adaptive evolutionary forces.
1. Introduction
The evolution of ornaments, conspicuous traits that function primarily as
intraspecific signals, has garnered substantial interest. A substantive body of
theoretical and empirical literature has focused on understanding how sexual
selection can drive the evolution of male-biased ornaments in particular
[1–5]. Yet, the focus on the evolution of traits exhibiting male-biased dimorph-
ism obscures the fact that female ornaments are common in nature [6,7]. Many
traits that are classically defined as male secondary sexual characteristics based
on dimorphism are monomorphic or polymorphic in closely related species—
for example, male-like plumage in female hummingbirds [8], spines and
crests in female agamid lizards [9], and horns in female Onthophagus beetles
[10]. Thus, sexual selection for male ornaments coupled with ecological selec-
tion against female ornaments may not be the dominant mechanism by
which ornaments evolve [6–8,11]. Investigating the causes and consequences
of variation in female ornamentation will build our understanding of the
evolution of ornamental traits more broadly [6,7,11,12].
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Table 1. Three hypotheses for the drivers of female dewlap evolution tested in this study, their associated predictions (P) for comparative and phylogenetic
analyses, and whether predictions were met for the full tree (i.e. all Anolis), Greater Antillean (GA), Dactyloa clade and Draconura clade anoles.

full tree GA Dactyloa Draconura

genetic correlation hypothesis

P1: the ancestral dewlap state is sexually monomorphic no no no no

P2: transition rates are biased towards dewlap loss in females no no no no

P3: female dewlaps are negatively associated with temperature marginal yes no no

pleiotropy hypothesis

P1: female dewlap state is associated with larger body size yes yes marginal yes

P2: female dewlap state is negatively correlated with SSD yes no no yes

ecological selection hypothesis

P1: female dewlaps are more common in more complex communities no no no no

P2: female dewlaps are positively associated with temperature (competition) no no no no
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Anole dewlaps are extendable skin flap ornaments on the
neck used in signalling displays. The literature has largely
viewed dewlaps as only a male secondary sexual character-
istic [13–15] (but see [16]). This view is predicated on the
observation that in many species female dewlaps are lost or
rudimentary, which conforms to the expectations of selection
against female ornaments [3]. Additionally, larger dewlaps
are probably costly as they increase predation rates and para-
site load [17,18]. Yet females of several species retain a fully
developed dewlap [16]. Females also exhibit dewlap display
behaviour even in species where their dewlaps are highly
reduced [19–22]. Beyond sexual signalling [23,24], dewlaps
are used in intraspecific aggression in males [19,25] as well as
females of at least one species [22]. These observations present
the possibility that dewlaps did not solely evolve as a second-
ary sexual character favoured in males and disfavoured in
females. Here, we describe phylogenetic patterns of sexual
dewlap dimorphism across 339 species of Anolis, allowing us
to leverage the variation in female dewlap ornaments to test
two non-adaptive hypotheses (genetic correlation and pleio-
tropy) and one adaptive hypothesis (ecological selection)
regarding their evolution. Reduced female dewlaps are
particularly common among the adaptive radiations of
Greater Antillean anoles [16] which have received the bulk of
research attention [14]. Thus, we also investigate potential
differences between Greater Antillean and other anoles by
assessing our hypotheses separately for each radiation. Finally,
we examined the potential downstream role of female
ornament variation in driving the diversification of anoles
through signal partitioning, the divergence of traits to reduce
competition between signals.

Because sexes largely share a common genome, female
ornaments are commonly hypothesized to be byproducts of
sexual selection on males—the genetic correlation hypothesis
[3]. Under the genetic correlation model, initial selection for
showy males must be strong enough to compensate for the fit-
ness cost not only to males, but also to females that retain the
trait. Subsequently, differential selection between sexes should
select for reduced ornaments in females when phenotypes
become decoupled either through sex-specific genetic architec-
ture or differential regulation of shared genetic architecture [3].
Yet, evidence for the genetic correlation hypothesis is surpris-
ingly ambiguous across animal taxa [7]. Previous work on
anoles demonstrated that male and female dewlap size is not
correlated across species [16], as would be predicted prior to
the trait being decoupled between sexes [3]. However, selection
against female dewlaps has not been tested. Female dewlaps
may be selected against due to predation because dewlaps
increase conspicuousness [18] or due to parasitism because
dewlaps are a favoured attachment site and thereby increase
ectoparasite load [17]. Thus, differences in predation or parasit-
ism may drive patterns of female dewlap evolution. Several
sources have put forth the idea that biotic interactions are stron-
ger at lower latitudes and elevations [26,27] but this remains
controversial [28–33]. Yet, evidence suggests that climate,
specifically temperature, may better predict global variation
in predation intensity [34,35] and parasite load [33] than lati-
tude or elevation. Therefore, we predict that if selection
against female dewlaps due to predation or parasitism varies
across species, temperature will be inversely related to female
dewlap state (table 1). Additionally, the genetic correlation
model predicts that once female ornamentation is lost, reversals
to mutual ornamentation should not occur. Thus, the ancestral
state of sexual ornaments should be monomorphic, existing
until a compensatory mechanism in females arises allowing
for divergent selection between the sexes (table 1).

Alternatively, the pleiotropy hypothesis states that female
ornamentation evolves as a byproduct of selection on ‘male-
like’ traits other than the ornament itself because of genetic or
developmental integration [7,10]. In this scenario, female dew-
laps may arise from selection on a linked trait, such as body
size, despite being neutral or costly in isolation. Inmanyspecies,
sex-specific body size is regulated by hormones such as testos-
terone [36] that also trigger the development of exaggerated
secondary sexual characters [12,37–40]. To test this, we use
sexual size dimorphism (SSD) as a measure of overall morpho-
logical similarity between males and females. Because SSD is
usuallymale-biased in anoles and testosterone is known to gen-
erate larger body size [36,40,41], we also use female body size as
a proxy andromorphic trait assuming larger females are more
‘male-like’. Under the pleiotropy hypothesis, we predict that
larger bodied females should bemore likely to possess dewlaps
and the species with lower SSD should be more likely to have
female dewlaps (table 1).

We also examined an adaptive hypothesis that ecological
selection from interspecific interactions drives the gain of
female dewlaps.Male anoles sometimesperformdisplays at pre-
dators [42] and as aggression during interspecific competition
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[43,44]. If dewlaps serve similar function in females, strongerand
more frequent biotic interactions may select for their presence.
Female ornaments may also be driven by selection favouring
conspecific mate recognition in more diverse communities—
the species recognition sub-hypothesis [45]. Thus, we predict
that female dewlaps should be more common in communities
withmore congeners due to increased interspecific competition.
Assuming temperature is aproxy for the intensityof interspecific
interactions beyond predation, we also predict that warmer
temperatures will be positively associated with female dewlap
presence (table 1).

Finally, we tested whether the evolution of a female orna-
ment has downstream consequences for diversification rates.
Ornamental traits are hypothesized to drive diversification by
promoting the evolution of prezygotic reproductive barriers
[46,47]. However, previous studies found mixed support for
this hypothesis across traits and taxa potentially because traits
are subject to both sexual and ecological selection [48–52]. Alter-
natively, the lack of signal may be due to studies often using
sexual dimorphism as a proxy for the strength of sexual
selection with mixed results [50,52,53]. If selection favours
the same trait in both males and females, mutually ornamen-
ted species may appear less dimorphic than predicted by
sexual selection on males alone. The presence of female orna-
mentation, particularly if aspects of signalling are decoupled
between sexes, theoretically allows species to access novel
signalling space. Opportunities for prezygotic barriers may
therefore be higher in these clades as they can theoretically
arise in either direction. Yet, studies have largely ignored the
potential relationship between female ornamentation and
diversification rates. By reassessing a ‘classic’ secondary
sexual characteristic, we highlight the potentially complex
and overlooked selective forces shaping trait evolution.
2. Methods
(a) Data collection
We compiled phenotypic data on male and female anole dewlaps
for 339 species (approx. 89% of all Anolis species; [54]). For
each species, we classified both the male and female dewlap as
absent, rudimentary or fully developed (electronic supplemen-
tary material, table S1; see electronic supplementary material,
methods). We compiled maximum snout-vent length (SVL) for
sexes of each species from the literature (electronic supple-
mentary material, table S1). We then calculated SSD as (male
SVL/female SVL) − 1, so that negative values indicate female-
biased SSD and positive values male-biased SSD. Finally, we
downloaded the most recent comprehensive dated, molecular
tree of anoles [54] and pruned it to include only our focal taxa
(figure 1a). We performed downstream comparative analyses
on the subset of 293 species (approx. 77% of Anolis species) for
which we had both phenotypic and phylogenetic data.
(b) Determining community composition and
environment

To compute community richness and range overlap between anole
species, we used the Global Assessment of Reptile Distributions
(GARD) dataset [55] (electronic supplementary material, figure
S1; see electronic supplementarymaterial, methods).We calculated
range overlap for each species against every other as a proportion of
the focal species’ total range size using the ‘intersect’ function in the
raster R package [56]. We then calculated how many other species
co-occur with each species based on a threshold of 20% range over-
lap [57,58]. As a secondary approach, we also calculated species
co-occurrence for each species as the cumulative proportion of
range overlap with all other species.

To quantify how temperature (as a proxy for interspecific
interactions) may influence female dewlaps, we downloaded bio-
climatic data at a resolution of 2.5 arc minutes from the
WorldClim database [59]. For each species, we extracted values
for annual mean temperature (AMT; BIO1) across their GARD
polygon range. From range-wide values, we computed mean,
minimum, and maximum values for hypothesis testing.

(c) Comparative analyses
To asses phylogenetic signal, we calculated Bloomberg’s K, the ratio
of observed to expected phenotypic variance under Brownian
motion [60], for all variables. We then fit phylogenetic generalized
least-squares (PGLS) models to test the associations of body size
and SSD with female dewlap state. We also used PGLS to test the
relationship between female dewlap state and, separately, the
number of sympatric congeners per species and cumulative range
overlap. We then fit PGLS models for range-wide mean and mini-
mum AMT with female dewlap state. Maximum range-wide
AMT was excluded because of collinearity with mean range-wide
AMT. We repeated analyses for male dewlaps and tested if female
and male dewlaps were correlated by fitting hidden Markov
models in corHMM [61]. We performed other comparative analyses
using the packages phytools [62] and nlme [63] in R.

(d) Ancestral state reconstruction
We performed maximum-likelihood ancestral state reconstruc-
tion and transition rates (q) estimation for male and female
dewlap states separately using the ‘ace’ function in the R package
ape [64]. We conducted ancestral state reconstructions using the
equal rates, symmetrical and all rates different model, then com-
pared models using AICs and pairwise-likelihood tests. Because
maximum-likelihood methods do not provide estimates of the
number of transitions between states, we also performed stochas-
tic character mapping using SIMMAP [65]. We performed 999
simulations and averaged the number of transitions across all
simulations. To compare with our maximum-likelihood ancestral
state reconstruction, we also calculated the posterior probability
of each ancestral state by summarizing across simulations.

(e) Hidden state speciation and extinction
To test for state-dependent shifts in diversification rates associ-
ated with female dewlaps, we fit hidden state speciation and
extinction (HiSSE) models to our data [66]. Because HiSSE can
only handle binary trait data, we performed two analyses.
First, we binned absent and rudimentary female dewlaps and,
second, we binned rudimentary and developed female dewlaps.
We constructed four models. First, our null model set all rates
equal for speciation (λ), extinction (µ) and transitions (q) and
did not include hidden states. Second, our ‘hidden state’ model
included two hidden states and allowed λ and µ to vary as func-
tions of the unobserved states only. Third, our ‘dewlap’ model
allowed all three parameters to vary with female dewlap state.
Fourth, our ‘dewlap + hidden’ model allowed all three par-
ameters to vary with female dewlap state as well as a two
hidden states. All models were fit using the hisse package [66]
in R. We did not perform HiSSE analyses on males because the
method is not robust to high skew of tip states [67].

( f ) Greater Antillean versus other anoles
To examine whether and how the evolution of female dewlaps
varies across anole faunas, we also conducted comparative
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Figure 1. (a) Phylogeny of Anolis with tip labels for female dewlap character states. Subset radiations of anoles (Greater Antillean, Dactyloa and Draconura) examined in
this study are also labelled. Maximum-likelihood ancestral character estimations for female dewlap state are shown. (b) Pie chart of the scaled likelihoods for the ancestral
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analyses and transition rate estimation separately for Greater
Antillean anoles and two non-Greater Antillean clades in
females: Dactyloa and Draconura (figure 1). Dactyloa is sister to
all other anoles and Draconura represents a back-colonization of
the mainland Americas nested within the Greater Antillean radi-
ation [54]. Due to the large number of PGLS analyses for female
dewlaps, we adjusted these p-values using the Benjamini–Hoch-
berg procedure. We did not divide male analyses by clade as
they were often fixed for a character state. We also tested for
differences in female dewlap presence between Greater Antillean
and non-Greater Antillean anoles (Dactyloa and Draconura clades)
by fitting hidden Markov models in corHMM [61].

3. Results
(a) Comparative analyses
In total, female anoles in 34.2% of species studied (116 of 339
species) had well-developed dewlaps compared to 30.4% (103
species) with rudimentary and 35.4% (120 species) with
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absent dewlaps. We detected significant phylogenetic signal
for female dewlap state, body size and SSD (all p < 0.001;
see electronic supplementary material, results). We recovered
a significant association between female dewlap state and
SSD (F2,283 = 4.36, p = 0.047) where species with well-devel-
oped female dewlaps had significantly lower SSD than
species with rudimentary or no female dewlap (figure 2).
Female body size was also significantly associated with
dewlap state (F2,283 = 24.14, p < 0.001). Our body size results
were consistent among anole faunas for SVL but not SSD
(table 1; electronic supplementary material, figure S2 and
results).

We found a marginally negative relationships between
female dewlaps states and average range-wide AMT (F2,277 =
3.93, p = 0.053; electronic supplementary material, figure S3).
Species with female dewlaps experienced marginally lower
temperatures than those with absent or rudimentary dewlaps.
Female dewlap states did not predict range-wide minimum
AMT (F2,277 = 1.00, p = 0.492). Within anole faunas, we found
female dewlaps only significantly predicted average range-
wide AMT in Greater Antillean anoles (F2,101 = 5.51,
p = 0.020). In Greater Antillean anoles, average range-wide
AMT was lower in species with both rudimentary and
developed female dewlaps relative to those without female
dewlaps. We did not recover any relationship between AMT
and female dewlaps in mainland anoles (all p > 0.05; electronic
supplementary material, figure S4). The number of co-occur-
ring congeners did not predict female dewlap state (all p >
0.05; electronic supplementary material, figure S1). Because
cumulative range overlap and number of congeners produced
consistent results, we report results only for number of conge-
ners. All tests using male dewlaps were not significant (all
p > 0.05; see electronic supplementary material, results)

We found that although developed female dewlaps were
more common in non-Greater Antillean species than Greater
Antillean species (figure 2; chi-squared: χ2 = 20.31, p < 0.001),
female dewlap states were not correlated with anole faunas
across the phylogeny (AICindependent = 558.5, AICcorrelated =
571.8, ΔAIC =−13.3). In total, 19% (27 species) of Greater
Antillean anoles had well-developed female dewlaps com-
pared with 46% (89 species) of non-Greater Antillean
species. Comparing male and female dewlaps, our best-
fit model was no association (AICindependent = 611.8,
AICcorrelated = 666.9, ΔAIC =−55.9).
(b) Ancestral state reconstruction
For female dewlaps, our best-fit model was the all rates
different model for our whole dataset (figure 1; electronic
supplementary material, table S2). We recovered no evidence
of biased transition rates towards loss of dewlaps in females
(figure 1c). Stochastic character mapping recovered 29.54 ±
0.15 absent to rudimentary, 22.27 ± 0.11 absent to developed,
23.50 ± 0.12 rudimentary to developed, 19.41 ± 0.14 rudimen-
tary to absent, 2.29 ± 0.04 developed to absent and 12.20 ±
0.09 developed to rudimentary dewlap transitions in female
anoles (figure 1c). Our estimated ancestral state for crown
group anoles was females without dewlaps (scaled likeli-
hood = 0.93; posterior probability = 0.91; figure 1). For our
subsetted data, our best-fit model was symmetrical for the
Greater Antilles and all rates different for Dactyloa and
Draconura (electronic supplementary material, table S2). Our
estimated ancestral state was no female dewlap for both
Greater Antillean (scaled likelihood = 0.95; posterior prob-
ability = 0.91) and Dactyloa anoles (scaled likelihood = 0.93;
posterior probability = 0.90), but rudimentary for Draconura
anoles (scaled likelihood = 0.85; posterior probability = 0.80).
The best-fit model for male dewlaps was equal rates and
the estimated ancestral state was a fully developed male
dewlap (scaled likelihood = 1.00; posterior probability = 1.00;
electronic supplementary material, table S3; see electronic
supplementary material, results). Thus, the ancestral anole
lineage had a sexually dimorphic dewlap.
(c) Hidden state speciation and extinction
The best-fit model for our HiSSE analyses binning rudimen-
tary and developed dewlaps (i.e. absent versus present)
was the ‘dewlap + hidden’ model (table 2). Thus, our data
suggest that female dewlap presence is associated with
greater speciation rates, but that the effect is secondary to
an unmeasured hidden state. Our parameter estimates sup-
port heterogeneous transition rates consistent with our
other analyses (electronic supplementary material, table S4).
We found the best-fit model when binning rudimentary
and absent dewlaps (i.e. ‘reduced’ versus developed) was



Table 2. HiSSE model selection comparing absent and present (rudimentary and developed) dewlaps and parameter estimate results, including log-likelihoods,
AIC, difference in AIC with minimum value (ΔAIC) and parameter estimates for speciation rate dewlap absent (λ0), dewlap present (λ1) and with hidden states
(λA and λB). Other parameter estimates are not shown as they were not relevant to the goals of this study.

model log-likelihood AIC ΔAIC λ0A λ1A λ0B λ1B

null −1266.97 2539.94 30.28 0.058 0.058 — —

hidden state −1259.41 2528.82 19.16 0.005 0.005 0.066 0.066

dewlap −1266.26 2544.53 34.87 0.051 0.060 — —

dewlap + hidden −1238.83 2509.66 0 0.003 0.036 0.065 0.097

royalsocietypublishing.org/journal/rspb
Proc

6

hidden state only model (electronic supplementary material,
table S5; see electronic supplementary material, results).
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4. Discussion
(a) The genetic correlation hypothesis
Our results suggest that the evolution of anole dewlaps is not
dominated by sex-biased selection against female ornamenta-
tion. We found no evidence for biased transitions towards
female dewlap loss as predicted under the genetic correlation
hypothesis (table 1). Rather, female dewlaps are widespread
throughout the anole phylogeny, are evolutionarily labile
and exhibit a transition bias towards the gain of dewlaps
(figure 1; electronic supplementary material, figure S2 and
table S2). Our results are consistent with work on a smaller
dataset that found biased transitions from dewlap size
dimorphism to monomorphism [16]. Our results also indicate
that the ancestral anole did not possess a developed female
dewlap (figure 1b) clarifying the previously ambiguous
ancestral state [16]. Because the ancestral male was inferred
to possess a fully developed dewlap, the trait was probably
already decoupled between sexes in the ancestral anole
rather than genetically correlated. Still, our results do not
mean that runaway selection does not operate locally in
specific clades or species. Certainly, there is ample evidence
that male dewlaps are involved in sexual signalling [23–25]
and male dewlap loss is rare. Nevertheless, our data demon-
strate that microevolutionary processes that shape trait
evolution for any given species are not necessarily generaliz-
able as explanations for macroevolutionary patterns.

We found some marginal support for predation and para-
sitism potentially driving the lack of female dewlaps, but not
for interspecific competition driving the gain of female dew-
laps (table 1). Female dewlaps were more common in cooler
compared towarmer environments at least inGreaterAntillean
anoles. This effect is also marginally significant across all
anoles and the trend is in the predicted direction (electronic
supplementary material, figure S3). This is theoretically con-
sistent with the role of biological interactions. Still, we urge
caution when interpreting these results. Because we did not
directlymeasure predation or parasitism,we also cannot differ-
entiate between these mechanisms with our data, nor are
these processes mutually exclusive. Both processes appear to
constrain dewlap size in at least some species [17,18]. Neverthe-
less, we posit that selective pressures against dewlapsmight be
sufficiently weaker in cooler environments to allow female
dewlaps to be regained. Variation in the relative fitness of
female dewlaps across environments is consistent with our
inability to recover a bias towards female dewlap loss across
anole diversity. Although weaker predation and parasite
pressure may facilitate the evolution of female dewlaps, prob-
ably by lowering their relative fitness costs, it remains unclear
when selection would favour female dewlaps.
(b) The ecological selection hypothesis
Our results do not support interspecific competition selecting
for female dewlaps (table 1). Whether competition is actually
stronger in the tropics is controversial [30]. Regardless, we
also did not find support for this hypothesis in our analyses
of sympatric congeners consistent with previous work
suggesting female dewlap were not more common in solitary
species [16] and that male anoles do not partition dewlap
colour in more complex communities [13]. Thus, interspecific
competition driving the evolution of female dewlaps is
not supported.
(c) The pleiotropy hypothesis
We observed an apparent threshold effect where females
above 120 mm SVL uniformly possess well-developed dew-
laps. Overall, females possessing dewlaps were on average
larger and had less male-biased SSD than species with rudi-
mentary or absent female dewlaps (figure 2). Thus, our
results support the pleiotropy hypothesis that female body
size or related traits are integrated with female dewlaps.
Although a similar pattern could be generated via correlative
selection [68], experimental work has demonstrated shared
regulatory pathways for body size and ornaments in both
anoles and other taxa [10]. For example, supplemental testos-
terone led to increases in body and dewlap size in female
A. sagrei [40,41]. Similarly, changes in body size and blue
ventral patches can be induced in female fence lizards,
Sceloporus undulatus, through supplemental testosterone
[69]. Sufficiently strong selection on non-dewlap traits such
as body size may outweigh the potential cost of female dew-
laps in some species. However, causality may also be
reversed with selection on female dewlaps generating larger
bodied females. Either way, this mechanism does not account
for the repeated evolution of female dewlaps in smaller
bodied and highly size dimorphic species. Thus, multiple
forces likely contribute to shaping macroevolutionary
patterns for female dewlap ornaments. Nevertheless, our
results suggest a role of pleiotropy in shaping the macroevo-
lutionary patterns of female dewlaps. Given evidence that
pleiotropy influences female ornament evolution in several
taxa [10,69], we highlight the need for developmental and
ecological data in a broader range of species to better under-
stand the evolution of ornaments.
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(d) The untested social selection hypothesis
An alternative hypothesis for the evolution of female orna-
ments is social selection, under which female ornaments are
adaptive as intraspecific signalling traits [11,70]. Because
social selection incorporates varying selective pressures,
detecting its operation requires testing specific hypotheses
relating to social interactions known to a given taxon. For
example, female ornaments may arise due to direct sexual
selection on females through male choice [71,72] or due to
selection for signals of social status or competitive advantage
that indirectly influence fecundity [11,70,73]. There is some evi-
dence that female dewlaps, even when rudimentary, may play
a role in courtship in A. sagrei [74] and female–female aggres-
sion in A. carolinensis [22]. Thus, social selection hypotheses
should provide fruitful avenues for future research.

Previous work suggested that a negative correlation
between female dewlap size and SSD supported the social
selection hypothesis [16]. Although our results are consistent
with this pattern, we believe that they support the pleiotropy
hypothesis better than social selection. Still, we cannot
definitively rule out either hypothesis. Greater male–male
competition is associated with greater SSD in lizards [75,76],
but the effects of female–female competition have not been
tested to our knowledge. By contrast, developmental inte-
gration between body and dewlap size has been shown in
anoles [40,41]. Thus, for now, we interpret lower SSD to more
likely reflect less male–male competition and call on future
studies to examine the relationship between female–female
competition and SSD.

(e) Diversification and female ornamentation
Although signalling traits are often thought to provide
opportunities for the evolution of prezygotic barriers, the
hypothesis that stronger sexual selection on males increases
diversification rates has mixed support [48–52]. Mutual orna-
mentation should allow species to access novel signalling
interactions not available to single-sex ornamented species.
Indeed, we recovered evidence that female dewlaps did influ-
ence speciation rates (table 2). This was only true when
rudimentary dewlaps were binned with developed dewlaps
suggesting that the presence of a female ornament, not
whether it is reduced relative to the male, is associated with
increased speciation rates. This is in line with the observation
that female dewlaps are used as signals even when rudimen-
tary [20,22,74]. Still, the influence of female ornamentation
was secondary with most variation in speciation rates
explained by a hidden state. Nevertheless, our results are con-
sistent with previous evidence that dimorphism itself is not
associated with diversification rates and may be a poor
proxy for processes which are [52,53]. Furthermore, although
we cannot rule out sexual selection on females as the driver of
dewlap evolution, our results open up the possibility that
ornaments drive diversification through mechanisms other
than sexual selection. This possibility warrants further inves-
tigation particularly as mounting evidence suggests that
the strength of sexual selection does not itself influence
diversification rates [49,52,53].
5. Conclusion
Our results support a growing body of literature demonstrat-
ing that the male-biased sexual selection framework, in which
ornaments are selected against in females, is often not suffi-
cient to explain the evolution of ornamental traits [7,11,12].
Across the anole phylogeny there is a bias towards regaining
well-developed dewlaps in females. This pattern is poten-
tially driven by multiple evolutionary forces including
variable costliness, pleiotropy and lineage-specific selection.
We also find that female ornaments can increase speciation
rates, though secondarily in this case, to an unmeasured
state. Thus, ornaments themselves, rather than dimorphism
or strength of sexual selection, appear to play a role in diver-
sification rates [53,77]. Our results highlight the potential
of anoles for studying complex sexual and ecological drivers
of ornament evolution, and call for revisiting commonly held
assumptions about the evolution of ornamentation.
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