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DEDICATION

To my friends, to my family, to my loving girlfriend. All of whom I would not want to do this
without.

And to all my ancestors and the ancestors of those who have struggled for freedom and a better
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EPIGRAPH

If there is no struggle, there is no progress

—Frederick Douglass

Our greatest glory is not in never failing,
but in rising up every time we fail.

—Ralph Waldo Emerson

But man is not made for defeat.
A man can be destroyed but not defeated.

—Ernest Hemingway

I continuously remind myself that no one is guaranteed an easy life,
but we can make it easier for others

—Frances Arnold
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PREFACE

May this work enlighten, inspire, and help further understanding of the needs and

capabilities of robotics in household environments.

Nothing that is created was not first desired. Although this is not true for all human

creations, inventions are the representation of a desire and idea of someone or some people.
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Service robots are designed to assist and aid humans in the day to day tasks as well

as specific and minute tasks. In recent years there has been an increase in both demand and

production of service robots. These robots are slowly becoming more prolific both in personal

settings such as the home, and professional settings such as restaurants and hospitals. Despite

this growth, there are still major challenges preventing service robots from being ubiquitous and

operating intelligently in these unstructured domestic environments.

Like many autonomous robots, the technical challenges of service robots revolve around

three main facets: sensing and modeling their environment, understanding and reasoning about

said environment, and acting in a way that is safe and conducive towards a task goal. Unlike

xvii



industry robots, service robots operate in dynamic environments and have tasks that cannot

always be completed repetitively. This presents a rich set of challenges to solve in all three areas.

One exemplary task of this for service robots is tidying objects within the home. This

task is important as it helps assist with activity of daily living (ADL) while meeting consumer

demand. A few concrete illustrations of the challenges of this task are shown when we consider

the robot must sense objects and ground language of these objects before we can determine

where the objects belong. Notions of a correct placement vary as each user has their own personal

preference to organization. Grasping and manipulating the objects as well as navigating within

the environment must also be accomplished in order to successfully complete the task.

In this dissertation we present several contributions that help address these challenges and

the surrounding gaps towards solving these issues. First, we explore the use of a service robot to

put away the groceries in a precise and stable configuration that satisfies the desired semantic

relationship of grocery and pantry objects. Second we explore the ability of our robot to put

away objects throughout a home environment based on a user preference using a recommender

system approach. We share details of our implementation of these systems through real-world

experiments.
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Chapter 1

Introduction

Robotics is a ever growing field in terms of research, units of manufacturing and sales,

as well as the public imagination of what is capable for robots. Although the first and second

are only recently true relative to the history of people, robots have always fascinated people.

Specifically, the type of robots that resemble humans and other living things. Since 350BC,

automata like that created by Archytas - an mechanical bird called ”The Pigeon”; and a bell

striking water clocks, using human figurines - made by Harun al-Rashid, have shown a desire

to create machines that imitate life and can replace humans in working tasks[119, 113]. Part

of this fascination comes from a desire for companionship and an innate curiosity or desire

to understand life and create or mimic life ourselves. This is partially why robots are easily

anthropomorphized, so long as the ”Uncanny Valley” is avoided, and are extraordinarily suited

to become mechanisms for human companionship and care-giving. This is the main essence of

service robotics: to preform useful task that are beneficial to people.

Today’s desire for service robotics are not much different than the pining of previous

groups. Despite common fears of new technological and robotic take overs [102], increased

consumer demand for service robots world wide [4, 115] shows that this desired is still held by

society at large. Unlike humanoid robots, most service robots do not explicitly try to mimic or

resemble human physiology and interaction, but do so to some degree as a bi-product of their

design and interaction with people. So while service robots are still easily anthropomorphized,
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they often do not resemble humans enough to fall into the ”Uncanny Valley”. This helps negate

some of the negative emotions that may come with their integration to society. We are now much

closer than we have ever been before to building life-like mechanises capable of intelligently

preforming multiply general tasks useful to people. Although this is still quite far away, gradually

we find the current capabilities of service robots are allowing them to be directly integrated to

society.

Robots in society are changing our lives and we are witnessing service robots showing

great promise for supporting people. In both domestic and professional settings service robots

are performing tasks like supporting workers and users by cleaning and tidying up [150, 6, 80],

assisting the elderly and handicapped [52, 63, 87], preforming inspections and maintenance

[170, 39], enhancing surgical operations and agricultural needs [134], and exploring dangerous

or unreachable environments [46, 147]. Despite this progress, there are still many challenges to

increase the current capabilities of service robotics. This creates a gap that prevents them form

being more ubiquitously integrated in society. For personal assistive service robots, we still do

not see them integrated into society unless they preform specialised tasks such as vacuuming or

are social companions. This is very different from the envisioned idea of service robots shown in

modern mass media. Albeit robots do not have to adhere to every vision of the masses, such as in

the case of flying cars versus airplanes, it is clear there is a disconnect from the type of support

people envision from robots and what they currently can provide.

My work is situated at the intersection of this problem and focuses on increasing robots

capability to preform assistive tidy up tasks in dynamic real-world environments such as the home.

This work enables robots to preform these tasks by combining expert domain knowledge with

personal user preference data, along with integrating this knowledge with advances techniques

in object detection, navigation, and manipulation.
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1.1 Motivation

The primary motivation for this work is based on direct application use cases and a

general desire to test, evaluate, and improve the capabilities of service robots in the real world.

Specifically, we look at service robots that must assist users in rearranging objects and tidying

up the house.

Due to the many challenges in this field and the expansive nature of this task, previous

works have explored various aspects of this problem. Some work focuses on the system in-

tegration of current robotic skills and increasing reliability to allow service robots to operate

and complete complex cleaning tasks for long periods of time unhindered[174]. Other work

focuses on the high level reasoning, semantic understanding, and decision making needed when

executing such complex tasks[50]. Lastly, some works focus on improving capability of specific

tidy up tasks such as folding laundry, loading and unloading the dishwasher, as well as cleaning

and picking up items [82, 7, 37, 70]. There are numerous other works that focus on improving

general robot capability such as grasping and perception, that also help enable robots to complete

tidy up tasks more efficiently as well.

In this work, we also aim to further close the gap in robotic capabilities and their use in

the real world. However, we take a different approach than some of the previous work mentioned

above. While training in simulation allows researchers to abstract from the technical skills needed

for a real word task and focus on the high level reasoning needed for such skills, this often

presents a problem when transferring to the real world. On the contrary, work that focuses purely

on increasing the skills for such task but not the high level reasoning nor how to personalize that

reasoning to each user, only partially solves the problem.

The aim of this work is to explore both the technical skills needed for a real world task

and how to personalize high level reasoning needed for tidying up to each user. Additionally,

since these robots will be deployed in real homes with real people, we also aim to use deep

learning methods in an explainable way.
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1.2 Thesis Problem

The use of service robots to assist users and complete rearrangement and tidy up tasks

poses significant challenges. Therefore, in this dissertation the following hypothesis is tested:

The use of contextual knowledge allows service robots to both assist users towards,
and efficiently complete, the task of organizing household objects while solving
part of the general problem of robotic household organization.

This hypothesis was tested via the following methods:

1. Using a service robot to put away grocery items in a kitchen pantry:

• Design and construction of contextual knowledge formalized and integrated as part

of high-level reasoning.

2. Using a service robot to put away household objects throughout a home environment.

• Exploration of combining user preference data with generative Large Language

models for tidying up task.

3. Integration of contextual knowledge and the technical skills needed for a service robot

towards tidy up task.

1.3 Scope

Robotics is a large domain involving multiple disciplines:Computer Science, Electrical

Engineering, Mechanical Engineering, Biology, Statistics, etc. This is due to the complexity

of robotics as well as the vast range of what is considered a robot. Because of this there are

many different areas of active research in robotics, ranging from different types of industrial and

service robotics, to medical and soft robotics. This dissertation focuses specifically on personal

or domestic autonomous service robots and how to use context to enable them to complete

rearrangement and tidy up tasks.
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1.3.1 Artificial Intelligent Personal Service Robots

A personal service robot is defined as a robot that performs useful tasks for humans or

equipment in non-commercial applications[115]. These robots therefore primarily operate in

unstructured domestic environments such as the home. The use of context can help robots be

flexible and still robust within the uncertainties of such environments.

The notion of context has been explored across various disciplines such as Cognitive

Science, Psychology, and Artificial Intelligence(AI). Within the realm of robotics however, a

definitive and unified definition of context remains elusive. Typically definitions of context given

in AI have been adapted for use in robotics. This initial definition from AI focused on ” how

knowledge can be represented symbolically and manipulated in an automated way by reasoning

programs”[94]. In application, this definition is heavily reliant on semantic and symbolic

representations of knowledge, grounded as formal logical expressions. Through predicates

that describe concepts about the world and actions the robot can take, which are connected by

expressions, robots engage in reasoning to predict the outcomes of their actions.

Recently, the definition of context and knowledge representation in AI has been expanded

explicitly for robotic systems in [124]. Here, knowledge representation is defined as ”a means of

representing knowledge about a robot’s action and environment, as well as relating the semantics

of these concepts to its own internal components for problem solving through reasoning and

inference.” Knowledge representation can be viewed as high-level or low-level representation.

High-level representation involves structured, semantic descriptions of relationships among

different components, abstracting information into meaningful concepts that facilitate problem-

solving and reasoning; low-level representation would be focused on specific technical data,

such as sensor readings or control parameters. Both provide context to the robot, influencing

how it perceives, understands, and interacts with its environment. There are many examples and

methods of how to include context within a robotic system that are elaborated more in [124].

In general we can think of applications of context in robotics as what information can we
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give to the robot, what information can the robot gather from the environment autonomously,

and what reasoning algorithms can we construct to allow the robot to effectively utilize the

information it is given and gathers from the environment for task related goals. Simply stated,

context as a high-level knowledge representation, gives meaning to the input a robot acquires

and uses in task.

1.3.2 Learning and Large Language Models

Learning is used extensively through service robotics. While learning is closely related

to context, it differs in that learning is not succinct enough alone to be a representation [121].

While this was true in the past, with the advent of Large Language Models(LLMs), capably of

capturing long-rage dependencies, this line is becoming increasingly blurred.

Regardless, machine learning and deep learning methods, such large language models,

help enable robots to preform complex task on par to and sometimes surpassing human ability,

by using data patterns to understand, reason, classify and inform robotic actions and decisions.

These techniques make robots more intelligent, efficient and able to adapt to challenging task

and environments [160]. There are many important examples and seminal work for robotics

with learning used as the for front: object detection and recognition, speech generation and

understanding, motion planning and control, localization, etc. In this work, we use learning

techniques and try to do so in an explainable way.

1.3.3 Robotic Applications

When service robotics was still in its nascent stage, a noticeable distinction from industrial

robots of that era was evident. Service robots were envisioned not only as tools that operated

for humans, but also as possible collaborative machines working alongside them to accomplish

tasks. Early glimpses of service robotics applications can be found in [32], where the potential of

robots to aid patients in medical facilities and other institutions, provide assistance to individuals

with disabilities and the elderly in domestic settings, and even integrate into wheelchairs as
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robotic arms were explored. Since then, significant strides have been undertaken to fully realize

these applications; however, they continue to linger on the horizon, and have not yet fully been

achieved. In parallel, other applications for service robotics have surged forward, experiencing

remarkable growth. While some of these new applications have moved closer to realization,

others still remain tantalizingly yet to be fully realized. In this section, we cover some current

applications for personal service robotics.

When considering what applications for personal service robots users care most about,

[78] explores surveys that have asked people about the tasks that personal service robots should

perform. They list three primary consensuses that users want:

• Personal service robots that are capable of performing complex tasks such as cleaning the

house, washing dishes, doing laundry.

• Personal service robots that can perform a wide variety of tasks: tidying the house,

guarding, and helping children with their school work.

• Personal service robots that can complete a task on their own but also collaborate with

users to accomplish a task. This was especially true for those with disabilities.

Looking at the type of personal service robots currently available [63] categorizes the

abilities and assistance of personal service robots into four categories:

• Physically assistive service robots can aid in physical task such as vacuuming and mowing.

Robotic wheelchairs and manipulators for lifting, personal care and other physical acts of

daily living are other examples.

• Sensory assistive robots such as robotic guides for the blind and telepresence robots can

provide aid to users by supporting increased mobility and expanding sensory ability.

• Socially assistive service can provide aid by acting as companions and toys, often helping

with cognitive or social task.

7



• Mixed assistive service robots can provide aid often using any two or all three of the

aforementioned categories. Physically and socially are the most common as in the case

with robots designed for the elderly.

Significant overlap between the current applications of service robots and the wants of

users indicate that while personal service robotics is working on the correct task, the field as a

whole still lacks the skill and capabilities to fully autonomously complete most assistive task. In

this dissertation, I focus on physically assistive personal service robots that can complete users

wants for performing organizational task.

1.4 Contributions

The contributions of this work are as follows:

• Present a methodology for a service robot to put away the groceries in precise

configurations that satisfies desired semantic relationships [7]. In this study I gather

and use food ontology data, along with common geometric container packaging constraints

and semantic word association, as contextually knowledge to organize new grocery items

in a users pantry. I show how these forms of knowledge can be given a mathematical

representation using hierarchical encoded vectors. Incorporating this representation, I

present a function to compare the similarity between two food items. Finally I show

through real world experimentation a service robot organizing grocery items in different

existing pantry configurations.

• Design and present a methodology for a service robot to put away the house-hold

object throughout a home environment according to users preference [76]. In this

study I explore the use of explicit user object location preferences data using collaborative

filtering as a recommender system based approach. I augment this approach to incorporate

a Large Language Model using the embedding space of the model. Finally, using the
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inferred preferences of our users, we demonstrate a robot system capable of navigating

from room to room while identifying misplaced objects and returning them to their correct

location.

• Real world application of contextual knowledge and the technical skills need for

service robots in tidy up task. Through both of the contributions above I show that it is

possible for a real world robot to accomplish organizational tasks efficiently. I highlight

the specific computer vision, motion planning and task level planning skills needed for

such organization task as well as future improvements that are needed these skills and

for the overall integration of these skills. These improvements look towards the future of

enabling robots to preform organization task as products used by consumers in real homes.

1.5 Dissertation Outline

• Chapter 2 provides a brief overview of the related work in the areas of service robotics,

both their over all skill development and their application towards home organization task.

• Chapter 3 presents new methodology for using contextual knowledge’s to enable a service

robot to organize grocery items in a home pantry.

• Chapter 4 describes the use of personal user data augmented with general large language

models to organize house hold objects in a home setting.

• Chapter 5 summarizes the main contribution of this dissertation, providing a discussion

on open questions and future work as well as closing remarks.
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Chapter 2

Background

This dissertation, focuses on improving the capabilities of personal service robotics. As

mentioned in Chapter 1, at its core, a service robot is a type of robot that performs useful tasks for

the benefit of humans or equipment. The development of service robots has grown prodigiously

over the past fifty plus years. This section provides information about the field of service robotics

and the related works of this field.

2.1 Early beginnings: Classical Service-Robots

A few examples of early service robots can be shown in [22, 148, 114, 107, 161, 183, 77].

These robots were the beginning of both autonomous mobile robots as well as robots with some

of the skills needed for service robotics: manipulation and grasping of novel objects, navigation

and obstacle avoidance, as well as task and motion planning.

Shakey [22], built in 1966, is accredited as being the first general purpose robot. It’s

architecture and algorithms became blueprints for some service robotics. The integration of

camera, optical range finder, bump detectors and other sensory components, along with the

introduction of the STRIPS planner and A* search algorithm, made Shakey extraordinary novel.

After Shakey, robots such as SAGE [114] and RHINO [19] soon followed. Similar to Shakey,

albeit more advanced, these robots were equipped with early sensor capabilities and were able

to perform navigation and obstacle avoidance as a result. Both robots were used as tour guide

10



robots and impressively, SAGE showed signs of reliability in long-term autonomy for service

robots as it was able to go a total of 135 error-free days.

In the late 1990s and early 2000s, we started to see the rise of robots entering the personal

sector. Robots such as the Care-O-bot II [52] and Nursebots [107] were not only designed to

be placed in homes and assisted living facilities as research objectives, but were also deployed

in these environments to explore commercial aims. Nursebot provide aid to elderly users by

autonomously guiding users in the facility. Care-O-bot II, unlike the robots mentioned so far

- and its predecessor Care-O-bot I, was a mobile platform with a manipulator arm. Although

the addition of manipulators on mobile bases had already been researched [15, 31], Care-o-bot

II was one of the first to do so in the hopes of a commercial product rather than a prototype.

Excitingly, this meant Care-o-bot II - in addition to being a walking support robot - was also able

to execute simple fetch and carry tasks and had early speech recognition software. This time

period was also the birth of the titan of personal service robots: the Roomba. The Roomba first

appeared in 2002 and would soon lead the charge for robot vacuums to be the leading type of

personal service robot to date[4].

With robots in a position where commercial personal usage was no longer something

envisioned only within mass media but rather an emerging reality, research on service robots was

gearing up. More robots were developed to be deployed and tested in real world environments.

These robots varied in ability and design but a few notable algorithms and techniques emerged

during this time. First, early mapping, localization, and planning techniques were some of the

hallmarks of these era. These classical works primarily solve the task and motion planning

problem through symbolic planning such as STRIPS, SHOP, and HTN [45, 111, 43]. Famous

algorithms and techniques such as the A* search algorithm, early Rapidly Exploring Random

Tree (RRT) methods[18], Probabilistic Road Map (PRM) [81] and the use of potential fields

[139], were developed or modified to fit robotic planning use. Seminal early Simultaneous

Localization and Mapping (SLAM) algorithms were also just beginning to show teeth [93, 158].

During this time period we also saw early approaches to grounding language and au-
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tonomous grasping. Early work on autonomously grasping objects used pre-stored grasp primi-

tives as well as techniques based on friction cones and form- and force-closer, or other similar

methods, to grasp objects with known 3D models [100, 14, 104]. For objects not known, methods

to determine the 3D model of the objects were applied but had difficultly obtaining full and

accurate 3-d reconstruction due to the state of optical sensors and techniques at the time. Some

early methods also tried grasping unknown objects without relying on 3-d reconstructions, but

instead learning where to grasp based on sensory input of the objects [148]. A slew of early

approaches to grounding language were developed during this time. Work by Roy and colleagues

[69, 144] give a good overview of the many efforts towards this task. Towards the end of this

period, we began to see a rise in using machine leaning as a process to relate language to visual

perceptions and physical actions.

The skills detailed within this section encompass foundational elements of robotics and

can be applied beyond personal service robots to many other robotic applications. This in part

highlights the complexity and challenge of building personal and professional service robotics.

2.2 A Modern take: Skilled Service-Robots

Due to the interdisciplinary nature of robotics, as the fields surrounding robotics improved,

so to did robotics. Modern advancements in computing power, computer vision and perception,

and early deep learning techniques immensely improved the capabilities and skills of classical

robotics.

This significant transformation became particularly evident in the middle to late 2010’s

when we saw a convergence of improved and functionally reliable hardware, with smarter

software, that paved the way for more commercially ready robots. Progress in sensor technology,

including Lidar, 2-D and 3-D cameras, alongside advancements in computer vision, enabled

robots to enhance their visual perception and modeling of the world. Meanwhile, innovations in

mechanical engineering and conscientious robotic design led to enhanced actuators, resulting
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in sleeker, more compact robots that are safer to coexist with humans and easier to integrate

into homes. Simultaneously, advancements in computing power and chip memory facilitated

the deployment of smaller, cost-effective onboard computers, enabling the execution of more

sophisticated, memory-intensive algorithms in real-time. These collective improvements opened

the door to a plethora of new research aimed at continued enhancement of robot capabilities.

Challenges such as the 2013 DARPA Robotics Challenge helped showcase and also

advance the current status of robotic technology and research, particularly in the areas of

mobility, dexterity, manipulation, perception, and operator control. And in 2017 we saw the

explosion of robots entering professional and personal spaces. Robots were now starting to

become prolific in consumer and commercial spaces as the cost for robot components were

decreasing while their capability increased significantly. The Roomba now had over 10 million

robots in homes [1] and more and more commercial robots such as, food delivery robots and

professional cleaning robots, were on the rise. The year 2017 was deemed the year robots went

everywhere [157].

Continued technological progress and the development of specific robotic skills fostered

comprehensive advancements in service robots during this period. Work by Lee [90], underscores

three key technological foundations for comprehensive advancement in both professional and

personal service robots:

• Fetch, Detection, and Navigation: This foundation encompasses improvements in object

retrieval and manipulation, environmental sensing, and navigation capabilities.

• Human-Robot Interaction: This domain emphasizes advancements in how humans and

robots interact, encompassing communication and cooperation.

• Architecture and Platform: Here, the emphasis lies on the development of robust underlying

structures and platforms that enable the effective integration of these technologies into

service robots.
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A few examples of modern service robots form this area, exemplifying these advance-

ments, are shown in [161, 183, 77, 99, 82, 8, 7, 70, 125]. Readers are encouraged to read [185]

and [90] for further reading on past and current service robotics research.

2.3 Larger capabilities: Robots that Reason and Communi-
cate

Looking to the future, it is no exaggeration to believe that Robotics is once again at an

inflection point. Almost fittingly fortuitous, the catalyst for this inflection point arrived in the

same year as the previous turning point: 2017. In that year, the now-famous paper ”Attention

is all you need” was published [171] and introduced Large Language Models(LLM) as well as

the Transformers Architecture. Similar to the previous inflection point, where it took time for

robotics algorithms to align with technological advancements, the effects of this paper took time

to manifest in robotics.

The capability to ground language is not a new skill or field of study, but the contextual

understanding Large Language Models(LLM) have shown for language in long-range depen-

dencies and relationships, make them able to ground language better in complex context. The

transformers architecture has provided is a mechanism to process sequences of data in parallel

rather than sequentially. Unlike previous attempts to capture long-rage dependencies in data

efficiently, such as RNNs [187], the the transformer architecture is able to do so while being

flexible and still scalable.

New research efforts in robotics exploring the capabilities of Large Language Models are

emerging [182, 75, 152, 163]. Their impact on the field of robotics is already evident and will be

more profoundly felt in the upcoming years.
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2.4 Service Robots in the Home: Tidy-up

The sections above gave a overview of some of the major developments of service robot.

In this section, we magnify our understanding of previous research efforts in service robotics

to a single application environment: robots in the home, commonly refereed to as personal or

domestic service robotics. We are are particularly interested in robots that attempt the tidy-up

task [9].

The motivation behind personal service robots that can help clean and tidy a home

is explained in Chapter 1. As cost for service robots continue to decreases, and the general

development of robotics skills increase, we will eventually see personal service robots in homes

with the ability to clean and tidy houses. Research towards this goal has been ongoing for as

long as service robots have existed.

Early work in [122, 28] conduct user surveys where they show the importance of tidy

up task and find that users elicit strong feelings with respect to organization of personal items,

indicating users preference must be considered in such task. Later work focuses on enabling the

capability for service robots to complete organization task, such as understanding organizational

structures through ontologies and user preferences data [150, 6, 80], grasping of objects [99, 70],

grounding of semantic labels to room locations [121], learning from demonstration and end to

end task completion [77, 184], and most recently, the inclusion of LLMs [79, 182, 75]

2.5 Chapter Summary

Robots capable of supporting and replacing humans in various tasks have long been

a desired goal throughout history by many communities. Over the past fifty years, service

robots have experienced remarkable growth, moving closer to fulfilling this desire for more

complex tasks in both professional and personal domains. This chapter delves into the history and

evolution of service robotics, with a particular emphasis on its growth over the last half-century.

A central focus lies in the effort to enhance the capabilities of these robots in domestic chores,
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specifically cleaning and tidying.

At their core, these improvements revolve around enhanced sensing, the development of

better environmental models, and the ability to reason and understand the world in which the

robots operate. Moreover, the capability to interact with humans and objects to execute actions

reliably is fundamental to the essence of service robotics. While a service robot lacking some

degree of mastery in these skills might accomplish certain tasks, it is doubtful that such a robot

can operate autonomously effectively or efficiently in real, unstructured environments alongside

humans performing multiple tasks. Building a service robot that can achieve this demands a

mastery of all these skills, making service robotics a challenging endeavor.
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Chapter 3

Putting away the Groceries

We present a methodology for a service robot to put away the groceries in a precise and

stable configuration that satisfies the desired semantic relationship of grocery and pantry objects.

This task is invaluable to the motor impaired and increases the capability of contextualized

service robots. We show that augmenting traditional geometric assessment with contextual

knowledge of food categorization and a language association model, allows the robot to complete

this task efficiently. We quantitatively validate our approach with a data set of 51 common

grocery items, of which 11 objects are used for real world experiments. According to our

evaluation, our method is able to successfully shelve objects next to semantically related objects

100% of the time when these relationships exist. We achieve this with an average placement

precision of 3.2cm and a standard deviation of 1.1cm. We discuss remaining challenges and

needed improvements for robots with these capabilities to be introduced to home environments.

3.1 Introduction

Online grocery purchases have grown 40% annually the last 5 years [44]. This service

is invaluable to the elderly and mobility impaired who need significant assistance to lift and

carry grocery products. However, grocery delivery services rely on the homeowner to retrieve,

sort, and store their groceries after they are delivered to the front door. The elderly and mobility

impaired may be unable to move their groceries from the delivery point (i.e. the front door) to
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Compare Sugar box 
to other objects in 
Pantry

Sugar box is most 
closely related to baking 
Muffin Mix box

Place Sugar box next 
to Muffin Mix box 

1 2 3

Figure 3.1. Robot asked to put away sugar box object (left) and test environment with all grocery objects
(right).

their pantries. Significant attention is already being paid to how in-home service robots can help

such populations with other activities of daily living[41]. Thus, it would be an important and

(almost) immediately applicable service for in-home assistive robots to be able to sort and shelve

groceries inside the home.

This task is challenging for a number of reasons. Every kitchen is organized slightly

differently. Typically, bakery goods are in one section, beverages (soda, coffee, etc) in another

section and cooking in a third. Within the pantry, the organization is also clustered. Pasta is in

one section, cans in another, flour, sugar, sauces, and condiments in other sections. Leveraging

knowledge of food groupings, it is possible to cluster objects into major grocery categories.
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Recognizing the current layout of objects in a kitchen can facilitate an understanding of the

existing organizing scheme, while also providing strong priors over where a new set of bought

grocery items should be placed. This allows for per-home user customization even though

organization schemes are likely to vary from one home to the next.

For a grocery item being put away, once an area/shelf has been identified, the next task

is to find open space next to related items to allow for placement. Putting an object into a

confined space is challenging but possible. Our work presents an approach to sort through a

set of groceries using a built ”categorical” map of a kitchen pantries, and then perform the

manipulation actions to put away new groceries precisely.

Our contributions are as follows: (i) we develop 4 types of contextual knowledge in

the form of a hierarchical food categorization based on previous experts’ food ontologies. We

formalize and integrate this hierarchical categorization with a data-driven language association

model that can be used to determine food groupings when putting away a grocery item. (ii)

we demonstrate and evaluate our approach on a robotic system in a real world scenario. We

measure success in terms of an object’s placement satisfying a desired semantic relationship and

geometric distance of the object placements to the desired placement.

In section 3.2 we present related work. Section 3.3 - ?? presents the methods to categorize

groceries, identification of objects to map the local pantry and the manipulation strategy to put

away the groceries. Section ?? presents real world experimental results and finally in Section ??

and ?? we discuss conclusions and point to open challenges.

3.2 Related Work

3.2.1 Service Robotics

In 1989, Joseph Engelberger predicted that we would soon have service robots in our

homes [42]. It took a while before we saw real robots in the home. A good early example

is the Care-o-Bot system developed by the Fraunhofer Institute [52]. Other classical works
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in service robotics include [161, 183, 77]. In [77], which demonstrate the ability of a mobile

robot to approach and grasp everyday objects that are important for motor-impaired users. In

[161] they show a robotic system that performs tasks of object retrieval with the addition of

environment manipulation. In these efforts, the robots’ sense-plan-act primitives interact with

each other according to the control architecture paradigm chosen. In both hierarchical and hybrid

paradigms, contextual knowledge is generally considered only during high-level reasoning and

is ignored in low-level planning of manipulation behavior.

Most present day service robotic research still follows a hierarchical or hybrid paradigm

and focuses on similar tasks involving grasping and moving objects from one location to another

and the ability to manipulate the environment, such as opening drawers, doors, fridges, and

dishwashers. These approaches use more sophisticated methods that improve reliability, allow

for interaction with unknown objects, and can give users the ability to teach the robot new skills

[82, 8, 177]. Recent research on robotic organization and shelf stacking, are centered around

the autonomous moving of objects and focus on changing a physical environment to a specified

goal state [9]. Both [6] and [97] explore shelf tidy up tasks but in [6], their focus is categorizing

products based on user preference rather than precise placement on a shelf. Furthermore, as

[167] states, it is unrealistic to investigate the preferences of object pairs for each user for every

destination. In [97], they also incorporate user preferences while using a dataset of images

containing grocery items to learn grocery categorization. These images do not provide any

hierarchical categorization and only contain 25 types of grocery items to do inference on.

In contrast to prior efforts our main focus is to leverage prior knowledge such as food

categorization and ontologies to organize the handling of objects. The system is organized

to enable inclusion of user preferences as needed. The objective is to manipulate objects on

shelf-like structures, organizing them to be next to related objects.
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3.2.2 Semantic Placement

Semantic placement is the task of picking and placing an object in a stable configuration

that satisfies a desired semantic relationship [125]. In addition to this, the placement distance to

other semantically related objects is considered as a metric for success. This is in accordance

with metrics used in rearrangement tasks, of which semantic placement is a sub-area [9]. The

use of semantics in robotics has grown rapidly in the past few years[49]. Semantic localization

[130, 188] and semantic grasping [110, 98] being just two fields that have seen more research

of late. In this work, we focus on semantic placement of objects. While some of the concepts

in other semantic work can be incorporated in this field, semantic placement is an area of work

itself.

3.3 Problem Definition

Given a pantry filled with grocery items, let P represent the set of all known shelved

pantry items and K represent the set of all known kitchen grocery items, not yet shelved and

needed to be put away. Each pantry item p ∈ P and kitchen item k ∈ K is represented by

four vectors corresponding to hierarchical categories described in Section ??. Hence for all p

there exist: p̂ f g, p̂cg, p̂sa, p̂pu , where p̂ f g represents the Food Group category, p̂cg the Container

Group, p̂sa the Stability category and p̂pu the Purpose category. Similarly, for all k there exist:

k̂ f g, k̂cg, k̂sa, k̂pu. Each vector has a different length according to the number of categories

belonging to that group, and is composed of an array of binary variables, where 1s denote

matched categories. Our objective is to determine the object similarity score (OS ) for each k

and p pair, in order to find the item most semantically related to k.

OS = W f ∗ cos(k̂ f g, p̂ f g)+ cos(k̂cg, p̂cg)+ cos(k̂sa, p̂sa)+ cos(k̂pu, p̂pu)+Wv ∗W V (k, p)

(3.1)
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In Eq. (3.3), the cosine similarity, defined as cos(A,B) = AB
∥A∥∥B∥ , is computed between

each of the hierarchical category vectors in k and p. This allows two vectors to be compared

based on the closeness of their angle within the embedding space. The function W V is the direct

item pair relationship score given from the cosine similarity of Word2Vec’s word embedding of k

and p [103]. The similarity score from each component is weighed and added to get the total

object similarity score between k and p. The weights W f = .5 and Wv = .5 used for Food Group

and Word2Vec respectively is determined by analyzing the co-linearity within our components.

We describe the analysis we perform to determine these weights in ??.

3.4 Understanding Grocery data

Figure 3.2. Hierarchical food categories used to represent a kitchen and pantry item where each item has
an associated 4 vectors of ones and zeros. See ?? for more details.
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3.4.1 Context

We create our hierarchical categories (Fig.3.2) from four primary sources:

• The Food and Agriculture Organization of the United Nations and World Health Organiza-

tion ”Global Individual Food consumption data Tool” [89].

• The National Health and Nutrition Examination Survey, a branch of Centers for Disease

Control and Prevention, ”What We Eat in America (WWEIA) Food Categories” [133].

• The National Institute of Health’s food groups.

• Private label and consumer packaged goods, food categories from the Canadian Grand

Prix New Products Awards[2].

We chose the top categories most commonly existing in households. For instance, the

categories Fruits and Vegetables were seen in all sources and descriptive categories such as Baby

products and Nutrition supplements had high occurrences. We group similar categories together

and thereby create a hierarchy of categories based on these groupings.

In the first level, Food Groups describe the different categories of food an item can be

classified as. Container group tells the closest geometric shape of the object. For instance, a can

of coke would be classified as both a Can and a Cylinder, hence, the corresponding vector p̂ f g

will be [0,0,1,...1,0]. The category Stability describes if an item has an immediate shelf life of

less than a week and a half, and the category Purpose describes common uses for items. This

categorization gives us a way to represent a food item in a meaningful semantic manner.

In addition to the context we create above, we also want to give context of word relation-

ships. To do this, we use Word2Vec [103], trained on the Genmi ’glove-wiki-gigaword-300’ data

set. This is a language association model that we can easily incorporate as part of our context to

understand the semantic relationship between two items. We show how this is done in Eq. (3.3).
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Figure 3.3. Eigenvectors of our data matrix X

3.4.2 Analysis

To understand if any correlation between the five components used in our object similarity

score exist, we first create a data matrix X ∈R1326×5. The 1326 rows represent all unique pairings

of our 51 objects and the 5 columns correspond to our five components. Each cell is the similarity

score for a set of object pairings given an individual component.

We preprocess X by standardizing according to the columns of the matrix - since the

columns represent our components. We then compute the correlation matrix of X with respect

to our five components. This shows the correlation that exists between our components. Food

Group and Word2Vec are the most correlated components with a correlation of .53.

We further analyze the relationship between our components by plotting each component

along the top three principal components axes in Principal Component Analysis (PCA)[5] (see

Fig 3.3 and Fig. 3.4). We find that Food Group and Word2Vec both contribute similarly along

axes one and three. This is unsurprising given their correlation.
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Figure 3.4. Our five components plotted along the PCA axis 1,2, and 3 of our data matrix. The
contribution to the variance each PC axis has is shown next to each axis label as a percentage.

As a final comparison, we train Word2Vec on the Genmi ’glove-twitter-100’ dataset

as opposed to the ’glove-wiki-gigaword-300’ mentioned before. We believed that training

Word2Vec on a different corpus would yield different correlations results. We find this to be

true as the ’glove-twitter-100’ dataset leads to lower correlations between Word2Vec and Food

Groups.

From these analyses, it is clear that there is some redundancy between the information

provided by both Food Groups and Word2Vec given our dataset. Hence, based on their correlation,

we chose to weigh both components by .5. A different training corpus for Word2Vec would give

reason for different weights and possibly even the complete minimization of either Food Group

or Word2Vec, given a high enough correlation.

25



3.5 Robotic Experiments

3.5.1 Shelf Stocking

Given a kitchen item k to be put away on the shelf, we compute the object similarity

score of k to other items currently present in the pantry using Eq.3.3. The pantry item with the

highest score is determined to be the most semantically related object to k. We lift the robot torso

to the shelf location of the pantry item and try to identify the matching pantry item p using a

trained MaskRCNN [61]. This gives the 2D bounding box over the object as well as an instance

segmentation mask of the object in the image plane. If this item is not detected, we repeat the

process with the next highest scoring pantry item.

Once a matching pantry item is found and detected, we need to determine a placement

next to the object. To do this, we first leverage the open source ROS library rail segmentation[3],

to segment the pointcloud of objects on the shelf and shelf plane. Each segmented object label is

unknown but has an associated 3D centroid point. To determine which segmented object is our

recognized pantry item, we project each centroid to our image plane. The projected centroid point

within our recognized item’s bounding box is considered our matched pantry item’s centroid.

This is shown in Fig. 3.5

To determine the location for placement and check if there is free space next to our

matched pantry item, we translate the centroid of the matched p to the left and right based on k′s

known size and a threshold of 1cm based on our known p′s size. This translated centroid is used

as the placement location if it is in free space. In rail segmentation, a hole in the segmented shelf

exists due to an segmented object at that location. Hence, if there is no hole on the segmented

shelf at the location of the centroid translated and projected onto the shelf plane, that location is

free of obstacles. Once we have identified a location for placement, we use an Inverse Kinematics

solver (IK)[11] and MoveIt![25] to place k at this location.

Given the location for placement, we need to plan an arm motion trajectory to place the

object. Using an IK solver, we first search for a feasible placing arm configuration where the
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Figure 3.5. Object segmentation results from training using MaskRCNN (top). Object pointcloud
segmentation results from rail segmentation (bottom) . The black points are segmented objects and the
centroid of the mustard object is returned after matching.

gripper at the placement location with its orientation constrained to have its z-axis parallel to the

normal vector of the shelf. Once a feasible arm configuration is found, we plan an arm motion

trajectory from the current arm configuration to the placing arm configuration by using the RRT

planner available in MoveIt!. If a motion plan is not found, or the IK solver fails, we consider

this a failure due to the tight constraints for planning.

3.5.2 Experiments

We use the Fetch robot [180] to perform the task of putting away four kitchen items in

a two-level shelf filled with seven pantry items in our known dataset and other unknown food

items. Unknown means the items are not in our dataset and not trained on our object detector.
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We consider two metrics used within the rearrangement and semantic placement literature when

testing our approach. First, a geometric goal where a threshold of less than 5cm from the object

k to the target object p is considered ”near” and therefore a precise placement. In this regard,

any placement greater than 5cm is not considered successful. Second, a semantic goal where

we compare the food grouping of our approach to that of user preference groupings determined

from a collaborative filtering approach.

Our total labeled data set accounts for 51 common grocery items, of which 10 unique

items are used for testing (Pringles, Mustard, Spam, Sugar box, Ketchup, Hot-Sauce, Granola-bar

box, Cookies, Muffin-Mix box, Beans can) including one item twice (Pringles). Of these items,

Pringles, Mustard, Spam, and Sugar box are from the YCB dataset[20] in order to allow for

greater reproducibility and comparison.

For our first metric, we conduct 5 total placement trials. In one trial, we attempt to put

away all four kitchen items in an order chosen at random. This means that the level of difficulty

in the constrained motion planning task increases as the shelves become more cluttered. This is

representative of a real environment where all kitchen items should be put away consecutively

and in a timely manner. The four kitchen items to be put away are Pringles, Mustard, Spam and

Sugar box. For each trial, the initial shelf configuration is random as the remaining seven known

objects and varying unknown food objects are placed upon the shelf.

Using our clustering method desired in Section 3.3, for the seven known objects in the

pantry shelf and four kitchen items, Pringles is determined to be placed next to Pringles, Mustard

next to Ketchup, Sugar box next to the baking Muffin-Mix, and Spam next to Beans. We record

the placement distance for each of these placements in Table 3.1 for trials 1-4. In trial 5, we

remove the pantry item with the determined closest semantic meaning to our kitchen items

and cluster our items again. In this new clustering, Pringles is determined to be placed next

to Cookies, Mustard to Hot-sauce, Spam to Cookies, and Sugar box to Granola-bar box. The

placement distance of these placements are shown in Table 3.1.

Our results show an average placement distance of 3.2cm to the desired semantic object
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with a standard deviation of 1.113. In all trials, the robot was able to successfully detect the

desired semantic object using the MaskRCNN 100% of the time. In this way, the robot always

placed a kitchen item to the pantry item with the highest semantic similarity score. Part of this

success has to do with our small test set which allows for highly accurate recognition.

To test the semantic grouping of our approach, we compare the pairwise grouping of

food items using our method, to users’ preference groupings determined through a collaborative

filtering approach [6]. Compared to our approach, which uses established expert features, as well

as a word association model, for describing and understanding food grouping, this approach relies

on user input to determine prefered groupings. Due to limited information for reconstructing

user preferences and test scenarios, we compare with a small set of items. Given the same

shelf configuration of food items and six food items to be put away, our approach groups the

following items similarly: Rice next to Pasta, Cake Mix next to Flour, Coffee next to Tea, and

Pasta next to Rice. For two shelf configurations, our approach differs when grouping Sugar

and Cake Mix. Our approach groups Sugar with Tea and Cake Mix with Flour, while the

user preference approach groups Sugar with Salt and determines Cake Mix should be stored

separately. Because of limited access to user preferences data, it is unclear if these cases were

an error in determining the user preference or if these groupings are truly based on the users

preference given the shelf configuration. Nonetheless, we find that for four out of the six cases,

our groupings largely match those determined by users’ preferences groupings, even without

input from the user. To allow our work to be easily compared to future work, we have listed

all 10 unique items used in our experiment and plan to release our code for food groupings at

publishing time (https://github.com/cogrob/putting away groceries).

In Section 3.5.3 We discuss some of the failures that occurred during our robot experiment

trials, other potential areas for improvement, as well as, give more insights on the meaning of

trial 5
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Table 3.1. The performance of placements where each entry tells how close the grocery object
was placed to the target pantry item. ”X” indicates a failure. We discuss these failures in section
3.5.2.
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3.5.3 Discussion

Each ”X” in Table 3.1 represents a failure during the trial. These failures fall within two

primary categories: rail segmentation failure and motion planning failure.

While testing our approach, we noticed that despite detecting the correct semantic pantry

item through our MaskRCNN, no centroid from the segmented objects on the shelf were found

within our detected item’s bounding box. Hence, no matching segmented object was found.

Through further testing, we found that the centroid given from rail segmentation was not always

the centroid of all segmented objects as we expected. While open space segmentation worked

well, in high clutter separate objects were sometimes considered one object, changing the location

of the expected centroid. An approach to solving this problem would be to directly perform pose

estimation of our object. In this way, we can ensure the 3D centroid we generate belongs to our

target object.

The second cause for failure we saw while testing resulted from motion planning failures.

Some shelf configurations were too constrained for our motion planner to find a suitable arm

trajectory to the desired placement arm configuration. A possible solution to this in later work

would involve repositioning items to make more space.

In spite of the few failures that occur, we see that our approach is able to find meaningful

semantic relationships when these relationships are present within our kitchen and pantry items.

This is especially highlighted through the placements in trial 5 where the semantic similarity

score for Pringles, Mustard, and Sugar box is high in comparison to Spam.

3.6 Conclusions

In this work, we present a detailed and empirically validated method to have a robotic

system sort and shelf grocery items into a pantry - satisfying desired semantic relationships. We

introduce and formulate our approach to determine the semantic relationships of grocery item

pairs. Our method shows consistent statistically valid placements according to the geometric
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placement metrics used within the rearrangement community. This task is pertinent for elderly

and mobility impaired, for whom lifting and carrying grocery products can be infeasible and

aligns well with modern grocery delivery services.
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Chapter 4

Global Home organization of Objects

We consider the problem of building an assistant robot that can help humans in daily

household cleanup tasks. The creation of such an autonomous system in real-world environments

is inherently a challenging multi-objective task, comprising – (i) Detection of objects out-

of-place and prediction of potentially correct placements, (ii) Fine-grained manipulation for

stable object grasping, and (iii) Room-to-room navigation for transferring objects in unseen

environments. This work systematically tackles each component and integrates them into a

complete object rearrangement pipeline. To validate our proposed system, we conduct multiple

experiments on a real robotic platform involving both long-horizon and complex pick-and-place

tasks. Additional details regarding the code and video demonstrations will be available at

https://sites.google.com/eng.ucsd.edu/home-robot.

4.1 Introduction

Creating autonomous agents that can aid human beings in everyday household chores

has long been considered the holy grail of service robotics research. In this work, we take a

step towards that goal by proposing a complete system for identifying misplaced objects in the

environment and transferring them to their desired locations. There are several aspects to this

inherently long-horizon task that make it particularly challenging in a real-world environment.

Firstly, recognizing objects out of place in a noisy environment is a non-trivial problem. While
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Detected object: Mustard Bottle

Initial room: Office

Initial receptacle: Table

Is object in-place? NO

Transported object: Mustard Bottle

Final room: Kitchen

Final receptacle: Counter-top

Is object in-place? YES

Final state

Initial stateNavigation waypoints

Figure 4.1. The overview of a home-robot object rearrangement task. At the initial state, the
robot identifies the mustard bottle object, and determines that it is out-of-place in the office.
Subsequently, it picks up the object using stable manipulation technique, and transports it to
its correct location in the kitchen on top of the counter-top. The semantic map used for the
navigation task is shown on the left with the robot’s trajectory overlaid on it.

state-of-the-art open-vocabulary object detectors [186, 56, 106, 189] are quite adept at localizing

objects in a zero-shot manner, determining whether they belong in a particular environment

is more complicated, as it also involves understanding scene-context and learning about user

preference of object placements on target surfaces (hereafter called receptacles). Secondly, stable

grasping and manipulation of objects in cluttered environment is still an open research problem

due to the difficulty of affordance estimation and motion planning. Finally, transferring the held

object to a different room that has previously not been annotated completely, is difficult because

the accurate locations of objects in the target room, including the target receptacle surface where

object needs to be placed, are considered unknown.

In this paper, we systematically tackle each individual component and integrate them

into a complete pipeline for rearranging house-hold objects in a real-world environment, using

a physical mobile manipulation system. Figure 4.1 shows an example of a home-robot rear-

rangement task that we consider in this work. At the initial state, the robot detects an object

mustard bottle, and determines that it is out-of-place in the office environment atop a table.
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Using a reasoning module, it further predicts a probable correct room and receptacle surface loca-

tion for it. In this case, the predicted room is kitchen, and the receptacle is counter-top. Then,

the robot picks up the misplaced object by stable grasping, and plans a path to the target room

using a constructed semantic map of the environment. Upon reaching the kitchen, the robot

scans the surroundings for a possible counter-top. Once it has succeeded in correctly localizing

it, the robot plans a path to reach the counter-top, and places the held mustard bottle safely

on the receptacle.

The rest of the paper is organized as follows. Section 4.2 discusses existing approaches

for object rearrangement in home-robot environments. Section 4.3 has the details of each of

the components we use to perform the overall task, with a summary of the integrated system

in Section 4.4. We explain the details of experiments conducted in Section 4.5, and provide a

summary of our work with some future goals in Section 4.6.

4.2 Related Work

Recently, indoor object rearrangement tasks using mobile robots have gained much

popularity. Due to the increasing number of Embodied AI platforms available [128, 154, 155, 166,

13, 96], several methods have been proposed for solving the complete mobile manipulation task

end-to-end. However, these approaches [71, 105, 128, 9, 166] are mostly trained in simulation,

and rarely generalize to real-world environments. Other works have adopted the task planning

approach but are either restricted to specific tasks such as folding clothes [162] and rearranging

kitchens [181], or follow a pre-defined template [30]. Some approaches [149, 53, 132, 84] focus

on the human-robot interaction aspect but not on autonomy. Two efforts closest to ours are

that of Wu et al.[182] and Castro et al.[21]. Wu et al.[182] use large-language models (LLMs)

to infer generalized user preferences and use it to tidy a room. However, they do not handle

fine-grained manipulation, need rigorous prompt engineering to understand user preferences,

and are limited to within-room navigation. While Castro et al.[21] do consider room-to-room
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navigation, they rely on manually annotated prior semantic maps for querying the exact locations

of rooms and objects. In contrast, we only build a simple 2D geometric map with rough room

locations and proceed with identifying target locations of target receptacles in the environment

for object placement.

4.3 Components

In this section, we will go over the individual components that together make up our

ensemble system for rearranging objects in a home environment.

4.3.1 Semantic mapping and visual recognition

The first step of our pipeline involved construction of a map of the environment. We

use the Cartographer system [64] for generating a LiDAR-based occupancy-grid map of our

environment. This gives us a 2D representation of our world in terms of obstacle, and free space.

Subsequently, using this geometric map, and RGB images obtained from the first-person view

camera of the robot, we manually annotated the locations in a scene with a semantic label of the

room category.

To recognize entities in the surrounding, we use a recently proposed DETIC [189] model,

which has been trained to detect twenty-thousand object classes using image-level annotations.

We use the detector in two-stages – (i) To detect target objects that we can manipulate, we extract

2D bounding-boxes from the images for precise localization, and (ii) For detecting receptacle

surfaces which are often irregularly shaped, we extract segmentation masks which roughly

identifies the region corresponding to the receptacles.

4.3.2 Object rearrangement

In this work, our motivation for rearranging homes is to do so based on both common-

sense reasoning (for target rooms), and human preference (for target receptacles). We leverage a

recently proposed large dataset of human-labeled preferences for object placement location in
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Figure 4. All components of the proposed system
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a home [79] environment as our object vocabulary. Using this, we create a knowledge base of

most likely room locations for a particular object based on a majority vote. This corresponds to

common-sense reasoning of which rooms are likely candidates for hosting a particular object.

For predicting target receptacle locations, we utilize user preference to learn diversity in human

choices. However, as the dataset does not contain a particular user’s preference for all the objects,

we adopted a recommender system approach for matrix completion. We build on existing

work that tries to use user prefaces through collaborative filtering to put away groceries and

toys [6].Collaborative filtering is a recommender system where, given scores for users ranked

preferences, we can construct a sparse user matrix and perform matrix factorization [86]. This

allows us to predict user ratings ru,i for user u and item i. In our case, an item i refers to the

objects placement in a room and on a receptacle. We can predict a user’s rating using the equation

f (u, i) = γu · γi. Here, γu ∈ Rd and γi ∈ Rd are latent vectors representing the row of a user in

matrix γU and the column of an item in matrix γI; where d is the lower dimensional space.

To chose our parameters γ = {γu,γi} to most closely fit the data, we minimize a loss

function using Mean Squared Error plus an L2 regularization term.

argmin
γ

1
|τ| ∑

ru,i∈τ

wu,i(ru,i − f (u, i))2 +λΩ(γ) (4.1)

where τ is our corpus of ratings and Ω(γ) is ℓ2 norm ||γ||22. Our completed approach

allows us to estimate the full preference of users’ desired correct object placement locations.

The overall task of object rearrangement involves primarily two steps: (i) Out-of-place

object identification – For this, we enumerate a list of top-k (k = 10 in this work) likely locations

(room and receptacle) based on our completed user matrix. If the current room and receptacle

location for a particular object does not fall in this list, we classify it as out-of-place. (ii)

Preference-based object placement prediction – For every out-of-place object, we first use

common-sense reasoning to determine its target room location. Subsequently, the various

preference-based target receptacle locations corresponding to that room can be obtained based
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Figure 4.3. Example scaled similarity score calculated from the LLM word embedding of
text-davinci-003, a variant of GPT-3

on a sampled user identity.

4.3.3 Large Language models in Collaborative Filtering

In Equation 4.1, we define and show our loss function for matrix factorization as part of

our collaborative filtering method. One thought we explore in this project, is the idea of using the

general semantic relational knowledge and understanding of LLMs to help guide our function

toward reasonable scores an average set of users might give.

To do this, we augment Equation 4.1 as following:

argmin
γ

1
|τ| ∑

ru,i∈τ

wu,i(ru,i − f (u, i))2 +λ1Ω(γ)+λ2(UPu,i −OPu,i)
2 (4.2)

In this equation, OP represents our incorporated LLM, text-davinci-003 - a variant

of GPT-3 [17], by using the models word embedding space. Given two semantic labels, the

similarity between the two labels are calculated from the word embedding using the cosine

distance. This score is then scaled to match the range of our user data. An exemplary graph of

this is shown in Fig 4.3. In this example the scores for the semantic relations between Action

figure and Child’s room, Closet, Pantry room and Playroom are shown. Although not

always as expected, there is semantic meaning in these relations that meaning aligns with our
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intuition.

Because, the semantic relational scores from our LLM is not specific to individual users,

but rather general knowledge about object-room-locations, When incorporating the scores of our

LLM, we compare to the average scores of our users object placements to the scores of our LLM.

Here UP = 1
|τ| ∑

u
0 ru,i, representing the average score of all our users across all items i.

Our goal with this modified loss function is to encourage the average placement scores

of our user matrix approximation to match our LLM’s score.

4.3.4 Manipulation of objects

The manipulation module in this project comprises three essential components. Firstly,

planning involves understanding the environment and constructing a comprehensive planning

scene. Secondly, it requires to carefully analyzing potential methods of interaction with the target

object. Lastly, it needs to meticulously plan the motion required to effectively interact with the

object, all while keeping the task goal in mind.

Before constructing the planning scene, the robot in this project possesses some prior

knowledge of the environment. For instance, it understands that most objects should be positioned

on the table. Therefore, the table serves as a common obstacle during our manipulation tasks,

making it beneficial to prioritize its search once the object is detected. As a large connected

object, the table is added as a single entity to the planning scene, optimizing resource usage

for collision detection. Conversely, for the remaining non-target objects, a voxel set efficiently

represents them [26].

Even though the robot knows the planning scene, interacting with the target object is

crucial. In this work, grasping is the prevailing contact approach. Hence, a DL-based grasping

predictor [165] is utilized to estimate a set of possible grasping poses. However, pick-and-place

is not the only manipulation action available. The robot must also account for potential object

motions based on the task requirements. For instance, it might need to open a cabinet before

placing an object. Consequently, the robot must compute the required motion to open it after
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identifying a set of arm configurations to grasp the cabinet handle. The robot may explore

alternative approaches if the motion is found before the timeout.

When planning the actual motion, the robot must consider various constraints that may

arise during the execution, such as delivering a cup of water or opening a cabinet. Hence, the

project employs CBIRRT (Constrained Bi-directional Rapidly-exploring Random Trees) [12] to

address these constraints effectively.

4.3.5 Navigation

The overall movement of the robot in our home environment is considered in two stages –

(i) room-to-room navigation, for planning the path from a source room to the target room, and

(ii) receptacle navigation, for navigating to the correct receptacle in the target room for object

placement. For room-to-room navigation, the 2D coordinate of the center of the target room

is first computed from the annotated semantic map. Using this destination point, a heuristic

point-goal navigation algorithm is adopted to plan a trajectory by avoiding obstacles along the

way with the Navfn planner. Once the room is reached, the receptacle navigation module is fired.

First, the entire room is scanned for possible receptacles for the held object, and the position

of each candidate receptacle is updated in the map by reprojecting the detected object from

the depth map of the fetch camera. Then, the most likely target receptacle is chosen using the

out-of-place module 4.3.2. Finally, a second heuristic planner is called to make the robot move

as close to the goal receptacle position as is feasible in collision-free space, which is achieved

through the Carrot Planner.

4.4 Systems Integration

4.4.1 Task Setup and Flow

Figure 4.4 depicts a block diagram of overall architecture of the proposed system. At

the start of an experimental trial, objects and their initial misplacements are picked based on the
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Figure 4.4. The overall architecture of the proposed system
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experiment. The robot’s initial geometric location within the environment’s 2D occupancy-grid

map is provided and later used to identify our semantic room location. The goal is to have all the

objects in the environment in their “correct” locations. Given the initial room, the robot identifies

objects and receptacles within its field of view. Once an object is found on an incorrect receptacle,

it is added to a list of misplaced objects. The robot then prioritizes picking up the object and

placing it in the correct location, given the users’ preferences. The Object Rearrangement module

provides the placement candidates arranged room-wise. The robot begins navigating to the target

room and scans the room for receptacles. Once a suitable receptacle is found, it navigates to

the goal receptacles and places the object. If a suitable receptacle is not found, then the next

candidate room is tried until the object is placed. The process continues until the robot either

makes an unrecoverable mistake or all items are correctly placed.

4.4.2 Use of Behavior Trees for Integration

A key component of the complex home-robot system is the composition of the different

capabilities of the robot to execute the task robustly and continuously. This calls for a control

architecture that is modular and capable of switching between tasks such that the different tasks

can be called anywhere during the workflow. Consequently, Behavior Trees (BTs) are used to

monitor and orchestrate the flow of the entire system. BTs is a modular control architecture

developed for controlling autonomous agents that supports reactive behavior. [27] A BT consists

of control nodes and leaf nodes, where the leaf nodes are atomic operations that include actuation

and sensing. In contrast, the control nodes are behavior nodes that chain together multiple nodes.

The main control nodes are sequence, selector (or fallback) and decorator nodes. Each node

(with its children) is a behavior that the robot can exhibit. A behavior can be composed of

multiple behaviors. For instance, picking up a misplaced object is a behavior that is composed of

two behaviors: identifying a misplaced object and picking up a target object.

Figure 3 shows the BT of the home-robot tidy module. The entire system runs continu-

ously, where the misplaced object identification (OOP) module 4.3.2 is called. Then for every
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Figure 3. The complete behavior tree of the home-robot tidy module

object, potential placement candidates (PlacementCandidates) are computed 4.3.2. The Pickup

Behavior 4.3.4 is called on the misplaced object. RoomNavigator, followed by ReceptacleNavi-

gator modules are executed, given by the placement candidates computed. The PlaceBehavior is

finally called to place the object. If the place action fails, then the robot tries other candidate

receptacles until one succeeds, highlighting the BT’s advantages. This is implemented through

multiple Decorator Nodes that can facilitate retry behaviors. The different messages from each

behavior are passed around through blackboard mechanisms.

For this work, the py trees1 library is used, due to its pythonic nature, and ROS support.

4.4.3 The ROS integration

The entire system is written within the ROS framework. Each module is written as an

independent ROS node, and exposed either as a ROS service or a ROS action node. As per the

1https://github.com/splintered-reality/py trees
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Behavior Tree, sensing and computation nodes are ROS Services while actuation nodes (such

as navigate and manipulate) are ROS Actions. The perception node (for objects and receptacle

detection) executes continuously in the background and publishes detections at a constant rate,

that the different nodes subscribe to.

4.5 Experiments

We conduct three fundamental experiments to elucidate the effectiveness of our com-

prehensive system. The first is a tidy-up task with two trials of the same experimental setup

of misplaced items but using two different user preferences for each trial. The second is what

we consider a long-horizon tidy-up task, where the robot must visit and identify at least two

misplaced items in two different rooms. Lastly, we perform a complex interaction experiment

where the robot must return a misplaced item to a closed environment receptacle such as a cabinet

or fridge. This requires the robot to identify the environmental receptacle, then open and close

the receptacle before and after placement. All experiments are performed in the real world using

a mock apartment environment, created from an actual communal office space within our Lab.

This space consists of a living room, kitchen, and office space and has a total of 14 receptacles.

4.5.1 User Preferences

Determining users placements

In section 4.3.2 we propose two loss fuctions for our collobarative filtering methods.

Equation 4.1 uses the traditonal MSE loss with an L2 regularization term and Equation 4.2

augments this loss to incorporate knowledge from an LLM. We evaluate these two loss functions

along with the base MSE loss function with no L2 regularize.

For our experiments we run 10 cross validation for each loss function by splitting our

train and test set randomly 10 times and then taking the average score. Fig 4.6 shows the moving

average for our three loss functions. Our results show that, using only 2% of our users data, we

are able to estimate their preferences about 20 to 30% of the time. Surprisingly, our LLM term,
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Figure 4.6. Moving average R2 scores from our three loss functions.

did not help us as much as we expected. We believe this mostly due to discrepancies between

our LLM and individual user preferences. This highlights the complexity of this problem as even

when using large data sets and general knowledge, it is hard to come to a consensus of where

objects should be placed in the individual users homes.

User placements

An example of different user preferences is shown in Table 4.1. For all six of our real-

world objects, we show the resulting placements receptacles for two different users based on

our module. In this experimental setup up we conduct two trials, selecting users with different

object placement preferences for each trial. We use the mug as an example object in our trails.

User A prefers the mug to be placed on the kitchen counter-top or kitchen sink, while User B

prefers the mug to be placed on the living room table or office table. According to our model,

both users consider their placements as correct placement locations and rank them higher or

equal to other possible correct placements. At the start of each experiment trial, the mugs are
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Table 4.1. Example table with user placement preferences

Objects
User A User B

Preferred Preferred Preferred Preferred
rooms receptacles rooms receptacles

rubik’s
cube

office [shelf, table] livingroom [cabinet, table]
kitchen [counter, table] office [table, cabinet]
livingroom [cabinet, table] kitchen [cabinet, table]

mustard
bottle

kitchen [cabinet, counter] kitchen [shelf, counter]
livingroom [table, sofa] livingroom [table, cabinet]
office [table, cabinet] office [cabinet, table]

marker
livingroom [cabinet, shelf] office [table, cabinet]
office [table, cabinet] kitchen [table, cabinet]
kitchen [cabinet, table] livingroom [table, shelf]

cracker
box

kitchen [cabinet, table] office [shelf, cabinet]
livingroom [cabinet, table] kitchen [cabinet, table]
office [cabinet, shelf] livingroom [cabinet, sofa]

bleach
cleanser

livingroom [cabinet, table] office [shelf, table]
office [shelf, table] kitchen [cabinet, table]
kitchen [shelf, cabinet] livingroom [table, cabinet]

gelatin
box

office [table, shelf] livingroom [table, cabinet]
kitchen [cabinet, counter] office [table, shelf]
livingroom [cabinet, table] kitchen [cabinet, counter]

potted
meat can

kitchen [counter, shelf] office [cabinet, table]
livingroom [cabinet, table] kitchen [counter, shelf]
office [cabinet, table] livingroom [cabinet, table]

mug
kitchen [counter, sink] livingroom [table, shelf]
livingroom [shelf, sofa] office [cabinet, table]
office [cabinet, table] kitchen [sink, cabinet]

soup can
livingroom [table, cabinet] office [cabinet, shelf]
kitchen [cabinet, counter] kitchen [cabinet, shelf]
office [cabinet, table] livingroom [sofa, cabinet]

placed at an incorrect location for both users. The robot must now tidy the environment and

place the mug and other objects in the correct location given User A’s or User B’s preferences.

4.5.2 Long Horizon

The setup for our long horizon experiment is akin to our user preference study, except we

select only one user’s preference, and all objects are then placed either correctly or incorrectly at

random. We use 3 to 5 objects for this experiment and have at least two placed incorrectly. Once

the trial begins, the robot must identify objects and their receptacles to determine if the object is

misplaced. All misplaced objects must be moved to their correct location based on the user’s

preference. We leave the robot to explore and move objects until at least two misplaced items in

two different rooms are discovered and correctly rearranged.
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Figure 4.7. Long Horizon rearrangement
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Figure 4.8. Complex Manipulation Interactions of Placing inside Drawer

4.5.3 Complex interactions

During a rearrangement task, simply picking and placing objects should not be the

only manipulation the robot requires. Specifically, there may be instances where the desired

manipulation is not feasible due to the state of the environment, making it crucial for the robot to

have the ability to interact with its surroundings for subsequent manipulations. In our project,

we illustrate this concept by using the example of placing an object, such as a Rubik’s Cube,

into a cabinet. The process may be more complex if the cabinet is closed, requiring the robot to

perform multiple sub-tasks, as shown in the behavior tree 4.8. First, the robot must estimate a

temporary location for the Rubik’s Cube and the appropriate grasp poses to open the cabinet.

Next, it needs to select an optimal position that facilitates placing the cube and opening the

cabinet. Finally, the robot will place the cube on a surface, open the cabinet, and then pick up

and place the cube into the cabinet. This example highlights the importance of flexibility and

adaptability in robotic manipulation, ensuring the robot can interact successfully with a dynamic

environment.
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Pick-up rubik's cube Navigate to office Navigate to drawer Place cube on top to open drawer

Open drawerPick-up cubePlace cube inside drawerClose drawer

Figure 4.9. Complex Interaction task

4.6 Conclusion

In this work, we explore the intricate development of an autonomous household tidy-up

service robot, tackling multiple challenges. Our objective is to create a versatile robot capable of

object detection, fine manipulation, and effective navigation in complex real-world environments.

We begin by dissecting the fundamental components of our robot needs for tidy-up task,

including semantic mapping, object recognition, and manipulation planning. We emphasize the

significance of leveraging both common-sense reasoning and human preference, underpinned by

a dataset of human-labeled preferences for object placement. Collaborative filtering methods

are introduced, and we integrate Large Language Models to augment our matrix completion

approach.

The work further delves into manipulation techniques, highlighting the planning, interac-

tion, and motion aspects. We also touch on navigation capabilities, emphasizing room-to-room

and receptacle navigation. The integration of Behavior Trees (BTs) serves as our control

architecture, facilitating seamless transitions between tasks. Lastly, we discuss our real-world ex-

periments, including user preferences, long-horizon tasks, and complex interactions, showcasing

the robot’s adaptability and performance.

This work offers a holistic view of our robot’s design, encompassing core components,
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integration with LLMs, manipulation and navigation strategies, control architecture, and practical

experimentation.
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Chapter 5

Conclusion & Future Challenges

This dissertation represents the culmination of several years of dedicated study and

research in the field of service robotics, with a particular focus on their applications in organiza-

tional tasks. This work draws inspiration from two primary objectives:

Firstly, it addresses the pressing need for robots to assist a diverse user base, including

the elderly, those with motor impairments, and the average consumer, in activities of daily living.

Enabling greater ease and autonomy in users’ lives has far-reaching benefits for society as a

whole.

Secondly, for the successful integration of robots into society, it is imperative to system-

atically test and comprehend the limitations of robotics in real-world scenarios. Conducting

research in robotics enables us to pinpoint areas that require exploration, ultimately paving the

way for service robotics to evolve into viable products that seamlessly integrate into society.

5.1 Summary of Contributions

5.1.1 Organizing Grocery Items

In the first study presented in this dissertation, we focus on the specific task of organizing

groceries in a pantry shelf. This is a routine necessity typically carried out weekly or monthly.

With the rise of online grocery delivery, it is a task that could soon be accomplished fully

autonomously with service robots.
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Our investigation centers on the phase of this task where groceries have been brought

indoors and arranged on the kitchen counter, ready to be put away in the pantry. To accomplish

this, we employ a methodology that utilizes food ontology data, incorporates common geometric

container packaging constraints, and leverages semantic word association as contextual knowl-

edge. This contextual knowledge serves as the foundation for organizing new grocery items

within a user’s pantry.

Our objective is to maintain the user’s existing pantry organization scheme by matching

new grocery items with the closest related existing pantry items. We demonstrate the feasibility of

this approach by giving our contextual knowledge a mathematical representation and introducing

a function that assesses the similarity between two food items. Finally we show through real

world experimentation a service robot organizing grocery items in different existing pantry

configurations.

5.1.2 Organizing daily objects across a Home

The second study presented in this dissertation focuses on how a service robot can

leverage user object location preferences and large language models to identify misplaced objects

within a home and reorganize them to their proper locations.

To accomplish this, we adopt a recommender system method known as collaborative

filtering and enhance it by incorporating the word embedding space of a large language model

(LLM). This approach aims to harnesses the semantic understanding of LLMs to assist our

collaborative filtering algorithm in determining users’ preferred object placement locations. We

showcase a robot system that is capable of navigating from room to room, identifying displaced

objects, and returning them to their correct locations.

5.1.3 Joint Organization task for Robots and Humans

In the appendix of this dissertation, we delve into tangential work on service robotics

in organizational tasks. Here, we investigate the dynamics of human-robot interaction within
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tasks that demand dual cooperation. Our primary focus is on the perceived notions of trust

and reliability, evaluating how these concepts evolve over time during joint action task and

particularly after an initial priming [176].

This supplementary section of the dissertation aims to provide valuable context for both

robots and robot designers, not only in the context of joint organizational tasks but also in general

collaborative efforts between robots and humans. Our findings have the potential to enhance

robot behavior and communication in such tasks, ultimately leading to greater success in overall

task completion.

5.1.4 Robots in the Real world

Throughout this dissertation, real-world experimentation stands as a crucial component.

Across all the contributions made within this work, I demonstrate the feasibility of real-world

robots efficiently executing organizational tasks. I highlight specific capabilities within computer

vision, motion planning, and task-level planning that are essential for these tasks. Furthermore, I

outline the necessary enhancements required for these skills and their seamless integration. These

enhancements encompass enabling robots to reason more flexibly and adapt to goals beyond

their predefined plans, bolster their capability to manipulate objects and engage in collaborative

tasks and communication with humans, and finally, fostering their ability to understand and

interact with novel objects.

These improvements collectively point toward a future where robots can perform organi-

zational tasks, and other functions, in real homes as products for consumers.

5.2 Closing Remarks and Open Questions

This dissertation adopts a bottom-up approach to the challenge of enabling a service

robotic system to organize household objects. While our demonstrations effectively showcase

how contextual knowledge can significantly improve a robot’s efficiency in completing this

task, there remain several open areas of research. Specifically, three key areas of interest are
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centered around robot manipulation, reasoning beyond predefined plans, and interaction with

novel objects.

Firstly, it’s widely acknowledged within the robotics community that manipulation

remains an unsolved problem. While recent developments have seen robots improve their object

grasping capabilities, including handling novel objects more successfully than before, we are

still distant from achieving human-level dexterity in interacting with objects. This limitation

constrains the complexity of organization tasks that robots can perform within homes, including

seemingly straightforward tasks like pick and place. Challenges such as the base placement

problem for mobile manipulation and non rigid objects, further contribute to this ongoing

challenge.

Reasoning beyond predefined plans has been a long sort after goal in robotics and artificial

intelligence. Although the work in this dissertation partially abstracts from this problem, in

both orginizaial projects, the robot does not have a set goal on where objects should go. It must

instead use the knowlege provide to make decisions while running. One limitation in this work

however is that once this knowledge is provide, it is not malleable must be updated at before an

task begins. Althought the structer of the knowledge proviced allows this to be possible, it was

not a focus of this work and therfore was not extended to allow so. This however is an improtant

step for robots in the home. Second, while the robot is preforing an action, there is littel room

for dynamic changes in the envrioment or goal. Similar to the first limitaiton, while this was

not a goal of this work, it is important for robots in the home to be felxible and able to adapt to

changes in thier goal or plan in real time.

Achieving reasoning beyond predefined plans has long been an aspiration in robotics

and artificial intelligence. While the work in this dissertation does address this challenge to

some extent in both organizational studies, there are limitations to our approach. For both

projects, the robot does not have a predetermined goal regarding object placement and instead

relies on provided knowledge to make decisions in real time. Once knowledge is provided

however, it becomes static and cannot be modified during task execution; any updates must occur
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before the task begins.Although the structure of the provided knowledge theoretically allows for

flexibility, this aspect was not the primary focus of this work and was therefore not extended to

accommodate such adaptability. Nonetheless, this capability is crucial for robots in domestic

settings.

Furthermore, during task execution, the robot’s ability to adapt to dynamic changes in

the environment or goals is limited. Similar to the first limitation, while this wasn’t the primary

goal of this work, it is essential for household robots to be flexible and capable of real-time

adjustments to their goals or plans in response to changing circumstances.

Lastly, an intriguing open problem in the context of this dissertation pertains to interaction

with novel objects. All objects interacted with in this work are assumed to be known and have

rigid properties, which is not always the case in real-world home environments. The ability

to infer an object’s identity from semantic labels, geometric shape information, and general

intelligence is a valuable skill for robots as they engage with the world while performing

organizational tasks and other task in real homes.
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Appendix A

Organizing Objects with Humans in the
Loop

Advancements within human-robot interaction generate increasing opportunities for

proximate, goal-directed joint action (GDJA). However, robot errors are common and researchers

must determine how to mitigate them. In this paper, we examine how expectations for robot

functionality affect people’s perceptions of robot reliability and trust for a robot that makes

errors. Here 35 participants (n = 35) performed a collaborative banner-hanging task with an

autonomous mobile manipulator (Toyota HSR). Each participant received either a low or high

functionality framing for the robot. We then measured how participants perceived the robot’s

reliability and trust prior to, during, and after interaction. Functionality framing changed how

robot errors affected participant experiences of robot behavior. People with low expectations

experienced positive changes in reliability and trust after interacting with the robot, while those

with high expectations experienced a negative change in reliability and no change in trust.

The low expectation group also showed greater trust recovery following the robot’s first error

compared to the high group. Our findings inform human-robot teaming through: 1) identifying

robot presentation factors that can be employed to facilitate trust calibration, and 2) establishing

the effects of framing, functionality, and the interactions between them to improve dynamic

models of human-robot teaming.
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A.1 Introduction

The rapid development of robotics technology is supporting increasing opportunities

for humans to work closely with robots across a range of sectors, ranging from housework, to

supporting people with disabilities, to aiding people in the workplace, and helping with clinical

procedures. [10, 88, 137, 178, 51]. Across these application domains, people are starting to see

robots as teammates instead of tools [151, 175, 126].

Human-robot teams are most successful when there is an appropriate level of trust

between the human and the robot [116]. In other words, the level of trust a human places in a

robot teammate should be calibrated to the robot’s abilities. Without such trust calibration, people

may over-rely on a robot (e.g., neglecting to effectively monitor its behavior), or under-rely on it

(e.g., not use it, or intentionally disable it). Either of these states can degrade the effectiveness

of a team during human-robot interaction (HRI) [58]. HRI researchers agree that supporting

trust calibration is central to the future of HRI. However, our field currently has a limited

understanding of how trust calibration is established and maintained within a human-robot team

[58, 34, 54].

As Hancock et al. [58] note, our ability to achieve better trust calibration is dependent

on our understanding of the factors that influence the evolution of trust during interaction. In

their meta-analysis of existing work on trust in HRI they found that robot reliability is one

of the primary factors influencing the development of human trust. It is important to note

that human-robot trust-calibration is not only influenced by robot-related factors, but also by a

person’s expectations. These expectations play a large role in a person’s initial experience of a

robot [55, 120, 164], critically impacting trust-calibration and future collaboration.

Previous work indicates that informing individuals that a robot has limited capabilities

can be advantageous to HRI [120]. However, the interaction in this study was open and not

goal-directed and did not explore how a person’s expectations might affect their perception of

robot capabilities when they are required to engage in collaborative, goal-directed HRI. It seems
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Figure A.1. The three phases of the task. (Left) The robot and participant start at the marked
area and then proceed towards the wall. (Middle) The robot looks at the participant to signal it is
ready to hang. (Right) The robot then hangs the banner with the participant.
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likely that when an individual’s expectations for robot behavior are not met the individual will

see the robot as unreliable and untrustworthy. Ultimately this may interfere with trust calibration

and lead to under-reliance on the robot during human robot teaming.

To our knowledge, there are no studies that examine the influence of functionality framing

in the context of proximate, goal-directed HRI. This lack of research is striking given that a

wide variety of rapidly expanding HRI domains, including manufacturing, healthcare, home use,

and education, require that human-robot teams engage in proximate, goal-directed joint action

(GDJA). Not only is proximate GDJA quickly becoming one of the most common modes of HRI,

it is also one of the most challenging from a robotics perspective.

At present, robots are prone to many types of errors [68]. The majority of these errors

are due the fact that robots have to operate within dynamic environments using noisy sensors

[34]. Proximate GDJA contexts present an especially large number of opportunities for robot

errors, as humans themselves contribute to the variability of a teaming environment [136, 65, 35,

112, 72, 73, 74].

In this work, we examined the effects of functionality framing on participants’ perceptions

of robot reliability and trust during proximate GDJA with a robot exhibiting errors. We split

participants into two groups and gave them information about the robot with a low functionality

framing (“the robot is malfunctioning”) or a high functionality framing (“the robot is fully

functional”). All participants experienced a robot making errors during a collaborative task

(co-hanging a banner, see Fig. A.1), regardless of the functionality framing condition they were

in. We formulated four central research questions accordingly:

Does functionality framing affect changes in perceived robot reliability before and

after interaction with a faulty robot? Given the previously mentioned association between

robot reliability and trust, we examined the effects of functionality framing on perceived reliability

following robot errors. We expected that before interacting with the robot, individuals in the

low functionality framing group would provide lower reliability ratings than those in the high

functionality framing group. We further predicted that the low functionality group would display
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positive changes in perceived reliability following interaction and the high functionality group

would exhibit negative changes.

Does functionality framing affect changes in trust before and after interaction with

a faulty robot? We investigated the effects of functionality framing on trust following robot

errors in order to improve the current understanding of trust-calibration development in GDJA.

We expected that the effects of low vs. high functionality framing on trust ratings for a robot

would be similar to those on perceived reliability (i.e., lower pre-interaction ratings for the low

vs. functionality group, but also a positive change in ratings for the low group and a negative

change for the high group).

How does perceived reliability evolve over the course of interaction with a robot

making intermittent errors? We aimed to illustrate how robot errors shape perceptions of robot

reliability changed over time to better support the design of robot presentation and behavior

for supporting trust calibration. To do this, we assessed the evolution of perceived reliability

over the course of interaction for individuals with low vs. high functionality expectations. We

predicted that an individual’s reports of robot reliability would decrease immediately following

robot errors, but that the pattern of recovery following each error might vary depending on the

functionality framing they had received.

How does trust evolve over the course of interaction with a robot making intermit-

tent errors? We evaluated the evolution of a person’s trust over the course of interaction with

the robot in our GDJA task. As for perceived reliability, we expected that robot errors would be

followed by decreases in trust, but that the pattern of recovery following each error might be

influenced by an individual’s functionality framing condition.

Our four research questions were designed to generate an understanding of the relation-

ships between functionality framing, robot errors, perceived reliability, and trust that would allow

us to make recommendations for the use of functionality framing to support trust calibration

during human-robot teaming. We expected that our functionality framing would have similar

effects on both perceived reliability and trust. However, we also predicted that there would be
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some differences between participants’ reports of perceived reliability and trust. To evaluate the

convergence and divergence of perceived reliability and trust during our GDJA task we compared

the findings generated by the first and second pairs of questions (i.e, Question 1 and Question

2; Question 3 and Question 4). The results of the first pair of questions allowed us to asses

the similarity between changes in trust and perceived reliability for pre- vs. post-interaction

questionnaire responses while the outcomes of the second pair of questions provided information

about similarities and differences in the evolution of perceived reliability and trust during ongoing

interaction.

Our results indicate that functionality framing about robot performance does significantly

impact both perceived reliability and trust for a robot co-actor. Individuals with low expectations

for robot functionality exhibited a positive change in both reliability and trust questionnaire

responses following interaction.

The contributions of this work are as follows. First, we show that functionality framing

impacts how people’s expectations in robot behavior align with their experience during interaction

through effects on both perceived reliability and trust. Second, we illustrate how functionality

framing shapes the actual evolution of human-robot teaming through effects on perceived

reliability and trust. This work therefore presents opportunities for transformative advances for

proximate HRI by: 1) identifying robot presentation factors that can ultimately be employed

to facilitate trust calibration, and 2) establishing the effects of framing, functionality, and the

interactions between them in order to improve dynamic models of human-robot teaming.

A.2 Background

A.2.1 Robot Expectations

Humans bring many attitudes, beliefs and previous experiences with technology to

their interactions with unfamiliar robots. Together, these factors act to shape the expectations

an individual has for a robot prior to interaction. Expectancy Confirmation Theory suggests
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that expectations consist of the characteristics a person anticipates that a product, service

or technology artifact will have [117, 118]. Expectations are said to directly influence both

perceptions of performance and disconfirmation of beliefs for an entity.

As a result, a person’s satisfaction with a product, service, or technology artifact following

interaction is directly influenced by their perception of its performance and disconfirmation of

their prior beliefs. In summary, there is an relationship between pre-adoption expectations and

satisfaction that is mediated by the disconfirmation of beliefs.

Robot design also influences people’s expectations and consequently affects how they

evaluate the robot after interacting with it [36, 47, 127]. This is especially true with respect to

the humanness of a robot’s appearance.

When the social expectations elicited by humanoid robots are met, people experience

interactions with them as enjoyable and empowering [131]. Conversely, users are sometimes

disappointed and dissatisfied when their expectations for human capabilities are not met [38, 108].

This kind of miscalibration between human expectations and robot capabilities based on robot

appearance has recently been referred to as the Form Function Attribution Bias (FFAB) [59].

A.2.2 Framing

User experiences are also shaped by any information they receive prior to HRI about the

kind of behaviors a robot is intended to perform [55, 164]. The presentation of such information is

either referred to as framing (e.g. [55, 129]), or expectation setting (e.g. [120, 164]). Researchers

in psychology suggest that framing or expectation setting helps people to process new information

through the activation of contextually relevant knowledge [169, 168]. For example, prior work

suggests that giving drones a prevention frame as opposed to a promotion frame leads to increased

public support [129]. In that study, people were more supportive of drones if they are presented

as “capable of protecting people from harm” vs. “actively seeking out illegal activities to support

increased prosecution and punishment”.

Groom et al. [55] suggest that framing in proximate HRI is often as simple as sharing
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a few facts about a robot prior to interaction. In their work, they found that this process led

to greater compliance and confidence in robotic agents during a simulated search and rescue

scenario. The authors interpreted this increase in ratings as signifying an increase in trust for

framed robots.

Generally positive portrayals of robot abilities have been shown to result in user expe-

riences of dissatisfaction and disappointment for task-oriented robots [120]. In this context,

researchers used functionality framing to present a robot as either limited or skilled in a set

of abilities. Individuals who expected the robot to be limited exhibited an increase in their

perception of robot capabilities following interaction. In contrast, individuals who expected the

robot to be skilled displayed a decrease in their perception of robot capabilities after interaction.

This outcome of dissatisfaction is predicted by Expectancy Confirmation Theory across contexts

where a person’s initial expectations are too high compared to their actual experience [117, 118].

Prior work shows that the expectation for automated aids to perform at nearly perfect rates

leads operators to pay too much attention to errors and ultimately underestimate the reliability of

the system [40]. This can lead to unwarranted distrust and disuse. Instead, underrepresenting a

robot’s capabilities either through its morphology or the information included in its presentation

may provide the greatest potential for successful human-robot teams. In the current study,

we evaluate the effect of using framing to transparently or falsely communicate the current

functionality of a robot.

A.2.3 Reliability and Trust

Through a meta-analysis of factors affecting trust in HRI, Hancock et al. [58] demon-

strated that performance-based robot characteristics have the largest influence on robot trust.

As noted in this meta-analysis, trends in the literature suggest that higher levels of trust are

associated with greater robot reliability. Previous work suggests that human trust during HRI is

dynamic [142, 123]. This has been especially apparent in the context of interaction with a robot

that makes errors [146, 173, 140].
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Figure A.2. In our study, a robot and person engaged in proximate, GDJA to collaboratively
hang a banner. Intermittently, the robot intentionally dropped the banner 7 cm short of the hook.
The robot would still proceed to the “target” location as if it were still trying to hang the banner.

A.2.4 Robot Errors

Robot errors are common when robots operate in unstructured environments, which

include objects and individuals that may change frequently change location or behave in other

ways that are hard to predict [57, 140, 173, 68]. While it is important to continue making robots

more reliable, the complexity of human behavior makes eliminating errors during proximate

HRI virtually impossible. The more we know about how robot reliability affects human-robot

teaming, the better we will be at achieving effective proximate HRI even when a robot makes

errors.

Rovira et al. [143] showed that human-robot team performance on a navigation de-

cision task was already superior to human performance alone even when the robot operated

at 80% reliability. This is consistent with previous work showing that the performance of a

human-automation team will be more efficient than a human completing the same task without

automation as long as the reliability of the automation is greater than 70% [179]. In cases where

100% reliability cannot always be guaranteed, it is important to explore the effect that robot
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errors have on user perceptions.

Previous work showed that robot errors significantly impact a human teammate’s attri-

butions of robot trust and processes of human-robot trust calibration across HRI [159]. Thus,

robot reliability plays a substantial role in shaping people’s trust during HRI [58]. Existing work

suggests that continuous robot errors can lead to decreases in human trust. However, if robot

reliability is high for a period of time at the beginning of an interaction then a robot error may

have a less severe effect on trust [48, 91].

Through the use of a real-time trust measure, Desai et al. [33] similarly observed that

periods of low robot reliability early on in an interaction had more of an impact on trust than

periods of low reliability occurring closer to the middle or end of an interaction. The measurement

of trust evolution over the course of an instance of HRI therefore provides valuable information

about the impact of robot performance on human experience. Understanding this evolution also

allows us to predict future events such as the transfer of trust between HRI tasks [159].

The magnitude of trust decrease following an error, as well as the duration of subsequent

trust-recovery, are impacted by the severity of the error along with the frequency of past errors

[29]. An individual’s perception of error severity is, in turn, likely determined by the task and

context. For example, in a goal-oriented task robot errors are especially undesirable and cause

users to perceive the robot as less reliable and trustworthy [146]. In time-critical situations, like

emergency evacuations, most users completely distrust a robot after a single error [141].

A number of previous studies also indicate that people find robot errors less egregious if

the robot acknowledges the error in a way that it is consistent with a typical human response, or

is human-like in its appearance or speech [23, 140, 146, 92, 60]. However, because robots do not

always know when they have made an error, such acknowledgment is not always possible. There

are also situations in which the robot is aware of an error but still cannot explain why the error

occurred. Whenever it is possible that a robot will not be able to acknowledge its own errors it is

especially critical to provide appropriate framing regarding robot functionality prior to HRI.
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A.2.5 Current Study

In the current study, we compared the effects of pre-interaction framing for low vs. high

robot functionality. To do this we evaluated participants’ perceived reliability and trust using

measures which take into account multiple timescales of experience. As a result, we are able

to establish the effect of robot errors on constructs central to human-robot teaming within the

context of a GDJA task.

A.3 Methodology

In this study, we provided participants with information indicating that the robot’s arm

was either fully functional or malfunctioning. Then we asked them to hang a banner with the

robot (see Fig. A.1). We programmed the robot to make the same errors each time the experiment

was performed, regardless of the participant’s framing condition. This experimental design

allowed us to establish the effects of an individual’s expectations about robot functionality on

trust and perceived reliability in the context of robot errors.

A.3.1 Study Design

For our experiment we employed a Toyota Human Support Robot (HSR). This robot has

a mobile base and an arm with five degrees-of-freedom. It stands 1.35 meters tall and has 12

different sensors, including a stereo camera, two wide-angle cameras, a RGB-D sensor, joint

angle encoders, a potentiometer, two force sensors, an IMU, a magnetic sensor, and a LIDAR.

The HSR was fully autonomous throughout the current study.

Each participant performed 10 experimental trial trials. In a single trial the participant and

robot moved toward the wall and hung a 7-foot long banner together. The robot was programmed

to hang the banner using predetermined locations and joint configurations. We produced a map

of the environment using Hector Mapping [85]. At the beginning of an experimental session, we

set the robot’s initial starting location via RViz.
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Before the start of each trial, a member of the research team placed the banner in the

robot’s gripper. Once the trial began, the robot moved forward until it reached a preset distance

from the wall (Target Location 1). It then lifted its torso, rotated its head toward the participant,

and raised its arm. After a brief pause, the base continued to move to a second preset location

(Target Location 2). When it reached this location the robot opened its gripper to release the

banner onto the hook.

In trials three and seven, the robot made a pre-programmed error: it dropped the banner

on the floor (see Fig. A.2). To perform the error, the robot exhibited the same behavior as in

successful trials until making a premature stop 7 cm short of Target Location 2. It dropped the

banner at this position, and then proceeded to Target Location 2 to give the impression of an

unintentional error.

We included two error trials, out of the 10 total experimental trials per participant.

Thus, the robot’s reliability reflected the 80% reliability found to support effective collaborative

performance in previous human-automation teams [143]. We introduced the first error in trial

three in order to allow participants to build an initial baseline level of trust before the robot made

any errors [33]. We placed the second error in trial seven so that we had an equal number of

recovery trials following each error (i.e., three) in which to assess the evolution of perceived

reliability and trust.

The robot was able to talk through text-to-speech synthesis. It said “starting now” to

signify the start of each trial, and “hanging complete” to signify that it had released the banner

for hanging. The robot’s speech was consistent across all experimental trials. On successful trials

the robot made the “hanging complete” announcement after it had hung its end of the banner the

wall. In the error trials the robot made the announcement after it had dropped the banner on the

floor.

The robot did not exhibit any error acknowledgment. As noted earlier, prior work suggests

that robot acknowledgment can mitigates the effect of errors [68, 92]; however, in our study,

any error mitigation resulting from robot acknowledgment might have influenced participants’
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perceptions of robot errors. This would have interfered with our ability to evaluate the effect of

functionality framing on the perception of errors. In excluding the possibility of error mitigation

in the current study, we are able to provide an initial baseline understanding of the effects of

functionality framing on people’s experience of robot errors in goal-directed HRI.

A.3.2 Variables

Prior to the experiment, participants received information about the robot including

details intended to bias their expectations about robot functionality. Participants in the “low”

functionality framing condition received a sheet stating that “The robot’s arm is malfunctioning

today,” accompanied by a warning symbol. Participants in the “high” functionality framing

condition received a sheet stating “The robot’s arm is fully functional today,” accompanied by a

check symbol. We also posted signs on the target wall for the banner hanging task reiterating

the framing information corresponding to each participant’s condition, consistent with prior

HRI work on framing outside of GDJA contexts [120, 164]. We randomly assigned participants’

functionality framing condition within groups of 10 participants such that each group included

five individuals in the low condition and five in the high condition.

Prior to running the current study, we conducted a pilot study on Amazon Mechanical

Turk to assess the effects of functionality framing information on perceived reliability and trust.

We asked participants to make evaluations based on the hypothetical context of completing a col-

laborative banner-hanging task with the HSR (see Section A.3.3 for details on the questionnaire

instruments employed). We used this pilot to establish the effectiveness of the framing language

and presentation used in the current study.

A.3.3 Measurements

We used validated questionnaires to assess perceived robot reliability [83, 156] and trust

in the robot [109] before and after interaction with the HSR. We also obtained real-time measures

of reliability and trust following each experimental trial.
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Each validated questionnaire consisted of four items (see Table A.1). We asked partici-

pants to respond to these questionnaires before they interacted with the robot (i.e., directly after

the manipulation check) and again after they completed all of the interactive experimental trials.

Before interaction with the robot, we prefaced each questionnaire with the statement “Imagine

you’re going to hang a banner with this robot. Based on the information you just learned, please

respond to the following questions.” After participants completed the banner-hanging trials, we

introduced each questionnaire with the language “Now that you have finished performing the

task with the robot, please update your ratings.”.

We used a reliability questionnaire consisting of four items [83, 156]. We provided

response options to these items as discrete visual-analogue scales (DVASs) with six options.

The scales ranged from “Strongly Disagree” to “Strongly Agree”, with only the endpoints

labelled. We also used a trust questionnaire made up of four items [109]. We also provided

DVASs for these items with response options ranging from “Not at all” to “Completely” with

only the endpoints labeled. We evaluated each questionnaire by averaging the numeric values

corresponding to an individual’s response selections for each of the four items. High scores

indicated greater reliability and trust on the respective questionnaire instruments.

Using the real-time measures of reliability and trust administered following each ex-

perimental trial, we generated an event contingent series for the evolution of each construct

over the course of interaction. These series are similar to those obtained through Ecological

Momentary Assessment (EMA) paradigms [153]. For these real time measurements we had

participants indicate whether their reliability and trust in the robot were increasing (↑), decreasing

(↓), or remaining the same (↔) after each iteration of the banner-hanging task. We adapted this

response measure from one designed by Desai et al. [33]. We administered it here via paper with

reliability presented on the top half of a single sheet of paper, and trust presented on the bottom

half. There was also a place for participants to write comments associated with each rating.

It is important to note that we were interested in generating information about people’s

perceived reliability and trust for the robot based on their own internal conceptions of each
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construct. In order to do this we did not define “reliability” and “trust” for participants at any

point during the study.

After participants completed the post-interaction reliability and trust questionnaires, we

asked them to complete a questionnaire on their willingness to collaborate with the robot on a

number of additional tasks (see Conclusion). We created this questionnaire based on tasks Beer et

al. [10] had previously identified as tasks for which older adults would prefer robot assistance to

human assistance. This consisted of 14 home tasks, 10 of which are primarily physical (cleaning

a kitchen, cleaning a bathroom, cleaning a window, pest control, loading dishes in a dishwasher,

making the bed, cleaning the floor, taking out the trash, doing laundry) and four of which are

solely cognitive (reminders to take medication, staying informed on weather/news, learning how

to use technology, getting information about your hobbies). For each task, participants indicated

their willingness to collaborate with the robot using a six-option DVAS, ranging from “Not at all”

to “Completely”, with only the endpoints labeled. While we recognize that this measure has not

undergone a reliability analysis, we thought that it could still provide valuable information in the

context of the current study.

A.3.4 Procedure

When a participant arrived the experimenter first brought them to a conference room

close to the lab. The experimenter then provided the participant with information about the

study and the robot. First, the participant received a single page entitled “Human Support Robot

(HSR)”, which had a picture of the robot and the information that it was an autonomous robot

designed to support human activities. On this page we provided three bullet points outlining

the robot’s ability to : 1) “Sense objects and people around it”, 2) “Grab/pick up objects using

its gripper arm”, and 3) “Move around a room”. We confirmed that the participant did not

have any questions about this information and then presented a second page, which included

the functionality framing information about the robot consistent with the individual’s randomly

assigned condition. As we describe in Section A.3.2, we told participants in the low functionality
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Figure A.3. Average change in reliability (A) and trust (B) for post vs. pre-interaction in the low
and high functionality framing groups. Error bars show standard error. **p < .01.

condition that the robot’s arm was malfunctioning, and those in the high functionality condition

that the robot’s arm was fully functional.

After the participant completed a manipulation check (see Section A.4.1 for details), the

experimenter gave them copies of the reliability [83, 156] and trust [109] questionnaires used in

the current study. To avoid any influence of the experimenter’s presence on participant responses,

the experimenter asked the participant to complete the questionnaires alone and meet them in the

lab when they were finished.

When the participant entered the lab, the experimenter explained the collaborative GDJA

task in view of the robot and experimental test-bed. The banner-hanging task required that the

participant and robot each hold one end of the banner, move together across the room to the

designated target wall, and hang their respective ends of the banner on existing hooks. The

experimenter told the participant that before each trial began, another member of the research

team would hold one end of the banner close to the robot’s gripper to initiate robot grasping.

The researcher controlled this initial grasping action with a two-key key press via a Bluetooth

keyboard. The researcher then handed the other end of the banner to the participant. After
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leaving the test-bed and confirming that the area around the robot was clear of obstacles, the

researcher allowed the robot to begin the trial via another two-key press. (After which the robot

was fully autonomous). The participant had an opportunity to do one preliminary practice trial

and ask the experimenter any questions they had about the task.

The experimenter then requested that the participant answer the real-time response items

addressing perceived reliability and trust after each of the remaining experimental trials. Once

the experimenter confirmed that the participant did not have any remaining questions about the

task, they explained that the other member of the research team would oversee the preparation

of the robot for each trial. The original experimenter then left the room for the duration of

the experimental trials. We made this experimental design choice in an effort to 1) reduce the

participants’ experience of being observed and evaluated during the task and 2) minimize any

influence of human-human interaction outcomes on participants’ perceptions of robot behavior.

Once the researcher initiated a trial the robot would say “starting now” before starting to

move autonomously toward the target wall. Participants started each trial facing the wall then

walked towards it with the robot to hang the banner. Upon reaching the wall, the robot would

lift its torso and arm then look toward the participant. We asked the participant to wait until the

robot looked toward them to hang their end of the banner. Once the robot completed its hanging

movement sequence for the trial it would say “hanging complete” before turning around and

returning to the starting position.

While the robot returned to the starting position the participant made their real-time re-

ports about whether their perceived reliability and trust for the robot were increasing, decreasing,

or remaining the same. Participants made these reports via a sheet of paper on the edge of the

test-bed. The robot made the “hanging complete“ statement in all trials, including trials three

and seven in which it made a pre-programmed dropping error (see Section A.3.1 for details).

When the robot made the first dropping error, the researcher asked the participants to leave the

banner on the floor for them to retrieve.

Once a participant had completed the 10 experimental task trials, the researcher gave them
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copies of the four-item reliability and trust questionnaires for the second time. The researcher

then asked the participant to complete the Willingness to Collaborate questionnaire. Lastly, the

researcher collected demographic information and the researcher and experimenter debriefed

participants about the true nature of the study. A single study session took around 30 to 40

minutes to complete.

In total, 35 individuals participated in the current study. All were fluent English speakers.

Seventeen individuals experienced the low functionality framing condition and 18 experienced

the high functionality framing condition. These sample sizes were chosen as consistent with the

majority of existing work in HRI. Participants ranged from 18 to 29 years of age (M = 26.66,

SD = 3.00). Twenty-four participants identified as women and 11 identified as men. Twenty-six

participants reported being at least “somewhat familiar” with robotics. All participants provided

informed consent. All of the procedures and data collection tools used in the current study were

approved by our institutional IRB.

A.4 Results

A.4.1 Manipulation check

Each participant in the current study was asked to complete a manipulation check

regarding their functionality framing condition before they entered the lab. After we presented

the introductory information about the robot we asked each participant to respond to the questions

“Is the robot fully functional today?” and “If no, what’s wrong with it?”. All participants correctly

answered the manipulation check questions based on their framing condition.

A.4.2 Pre- vs. post-interaction reliability and trust

We used [156]’s four-item reliability questionnaire and [109]’s four-item trust scale

to assess participants’ perceived reliability and trust both before and after completing all 10

experimental banner-hanging trials with the robot. Based on a participant’s response to each of
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Table A.1. Trust and Reliability Questionnaires

Trust Questionnaire
1. I can depend on the robot to work correctly every time.
2. The robot seems reliable.
3. If I did the same task with the robot again it would do it the same way.
4. I could trust the robot to work whenever I might need it.
Reliability Questionnaire
1. To what extent can the robot’s behavior be predicted from moment to moment?
2. To what extent can you count on the robot to do its job?
3. What degree of faith do you have that the robot will be able to cope
with similar situations in the future?
4. Overall how much do you trust the robot?

these measures we calculated their average pre- and post-interaction reliability and trust scores.

We then used these pre- and post-interaction scores to calculate the change in an individual’s

reliability and trust following interaction by subtracting their pre-interaction scores from their

post-interaction scores. We averaged these change scores by functionality framing group so that

we could compare the effect of functionality framing on changes in perceived reliability and trust

following interaction.

A paired t-test revealed a significant effect of functionality framing on reliability change

scores, t(33) = 3.58, p = .001, Cohen′sd = 1.25. Here, participants in the low functionality

condition reported an increase in the reliability of the robot following interaction while those in

the high functionality condition reported a decrease (see Fig. A.3A).

A paired t-test on trust change scores also revealed a significant effect of functionality

framing, t(33) = 3.32, p= .002, Cohen′sd = 1.15. Participants in the low functionality condition

reported an increase in trust following interaction while participants in the high functionality

condition reported no change in trust (see Fig. A.3B).

A.4.3 Real-time reliability and trust

We also asked participants to provided real-time, event contingent reports of reliability

and trust during interaction with the robot. Participants completed these assessments after each
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Figure A.4. Evolution of reliability (A) and trust (C) during interaction for the low and high
expectation groups. Dashed lines show trials in which the robot made a banner-dropping error
(Trials 3 and 7). Average reliability (B) and trust (D) evolution following each of the two robot
errors for participants in the low and high funcEtionality framing conditions. Error bars show
standard error.

experimental trial, indicating whether the reliability of the robot and their trust in the robot were

increasing, decreasing, or remaining the same [33]. We initially assigned directional values to

each response category, using +1 for “increasing”, -1 for “decreasing”, and 0 for “remaining

the same”. We then used these directional values to estimate separate construct evolution series

for reliability and trust as they changed over the course of an individual’s interaction with the

robot. The first value of each construct evolution series was the directional value corresponding

to a participant’s response for that construct (i.e., perceived reliability or trust) after the first

experimental trial. We then calculated all subsequent values in the series by finding the sum of

the directional value for the current trial and the construct evolution value for the previous trial

(e.g., if the participant’s trust was “remaining the same” after the first trial and “increasing” after

the second trial, then the first two values of the construct evolution series for trust would be 0,

and 1).

The evolution of real-time perceived reliability and trust can be seen in Figs. A.4A,C
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(respectively). We statistically evaluated the effect of framing condition on each of perceived

reliability and trust evolution by treating each error trial as an anchoring event [153] and

evaluating changes in the three trials following that error. To do this we calculated the normalized

area under the curve (AUTC) [33] for each construct over each time period of interest (i.e., trials

4-6 for Error 1 and trials 8-10 for Error 2) using the trapezoidal rule (see [62]. We then used an

Analysis of Variance (ANOVA) to compare the AUTC for each framing group at each of the

timepoints, as is common practice within the analysis of EMA data [16].

A 2 (functionality framing: low, high) × 2 (robot error: 1, 2) mixed model ANOVA

on the AUTC for perceived reliability evaluation revealed no significant interaction between

the two variables or main effects (see Fig. A.4B). However, a 2 (functionality framing: low,

high) × 2 (robot error: 1, 2) mixed model ANOVA on the AUTC for trust evolution did reveal a

significant interaction between framing and robot error, F(1,33) = 5.70, p = .02, η p2 = .15 (see

Fig. A.4D). Pairwise comparisons confirmed that following Error 1 trust increased significantly

more in the low vs. high functionality group (p = .045). Pairwise comparisons also showed that

within the low functionality group there was a significantly greater increase in trust following the

Error 1 compared to Error 2 (p = .01). These results demonstrate that the interaction between

functionality framing and robot error number was driven by the fact that participants in the low

functionality group showed a greater increase in trust compared to the high functionality group

after Error 1, but not after Error 2.

This interaction was driven by the fact that reliability increased more for participants

in the low expectation setting group than the high expectation setting group following the first

robot error, but not the second robot error.

A.4.4 Collaboration transfer

After participants completed all ten trials of the banner-hanging task and the post-

interaction reliability and trust questionnaires,they responded to our 14-item Willingness to

Collaborate questionnaire (see Section A.3.3 for details). For each participant, we generated a
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summed measure for each of the two task domains represented in the questionnaire (i.e., physical

vs. cognitive), with a maximum possible sum of 60 for physical tasks and 24 for cognitive tasks.

We then divided each participant’s sum in each task domain by these possible maxima to obtain

their percent willingness to interact in the future. We averaged this percent willingness across

participants in each framing condition. This allowed us to conduct paired t-tests comparing the

framing conditions within each domain.

There was no significant effect of framing group on willingness to collaborate on either

physical (t(33) = .22, p= .83) or cognitive tasks (t(33) = 1.5, p= .14). The average willingness

to collaborate on additional physical tasks was 73.04% for the low functionality group (SD =

3.91%), and 74.19% for the high functionality group (SD = 3.58%). The average willingness

to collaborate on additional cognitive tasks was 70.97% for the low functionality group (SD =

5.96%), and 82.18% for the high functionality group (SD = 4.51%).

A.5 Discussion

HRI researchers, industry professionals, and consumers are all eager to have robots that

can engage in proximate HRI within human environments. Unfortunately, human behavior is

largely unpredictable, and these environments change frequently and rapidly. These conditions

are challenging for robots, leading to problems ranging from sensor occlusion to unsuccessful

behavioral planning [68]. As a result, robot errors are common in proximate human-robot

joint action. While it is important to continue improving robot resiliency to the challenges of

proximate HRI, it is also critical that we learn how to support effective human-robot teaming in

the context of robot errors.

In our study, we experimentally manipulated individuals’ expectations for the functional-

ity of a robot. We then addressed four specific research questions about the effects of a person’s

expectations on their perceptions of a robot’s reliability and trustworthiness after the robot made

errors. Our first research question was whether functionality framing would affect changes in
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perceived reliability following collaborative interaction with the robot. Our findings revealed

that individuals with low expectations thought the robot was more reliable after they interacted

with it than they did before they interacted. In contrast, those with high expectations thought the

robot was less reliable after they interacted with it.

Our second research question was whether functionality framing would affect changes in

trust following collaboration with a robot making errors. Here we also found that the change

in participants’ post- vs. pre-interaction questionnaire responses was affected by functionality

framing. Individuals in the low functionality framing group showed an increase in trust ratings

following interaction with the robot, while individuals in the high functionality framing group

showed no change in trust.

The collective findings from our first two research questions showed that individuals in

the low functionality group displayed positive changes in both perceived reliability and trust

following interaction while individuals in the high functionality group showed a negative change

in reliability and no change in trust. These results are consistent with previous empirical work

showing that human-robot trust is strongly associated with robot reliability [58]. However, our

findings also support the idea that trust is robust to some amount of change in robot reliability

over time [33]. We expect that the relationship between robot reliability and trust during HRI is

largely shaped by the nature of the task. For example, the participants in our study reported that

the robot’s reliability rate was acceptable for the banner-hanging task, but would not have been

acceptable for a more delicate task. They communicated this with statements like the following,

which came from three unique participants:

“The robot is overall reliable, since it only failed twice. However, I wouldn’t trust it with

delicate objects, such as glass, unless it makes zero errors.”

“The robot could be used for simple/non-delicate tasks just fine with reliability as it is.”

“It would be harder to trust the robot if there was a delicate object involved.”
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In response to research questions one and two, we predicted that individuals with low

expectations for robot functionality would experience more positive changes in their perceptions

of the robot following interaction compared to individuals with high functionality expectations.

This prediction was confirmed by individuals’ pre vs. post-interaction questionnaire responses

for perceived reliability and trust. We suggest that anyone in the position of presenting a robot

for proximate, goal-directed HRI to new users should be careful not to overstate the robot’s

capabilities, as this can lead to negative changes in perceived reliability and trust during teaming.

Relatedly, since robot humanness appears to induce high expectations for functionality [38, 108]

we recommend that designers and roboticists consider robot morphology very carefully. This

recommendation supports our prior work suggesting that that the use of humanoid portrayals

shapes human expectations in a way that could constitute manipulation, and that the associated

ethical implications should be taken seriously [135, 138].

In our third and fourth research questions we asked whether functionality framing would

influence the evolution of perceived reliability and trust during interaction. To address these

questions, we asked participants to make real-time reports about their perception of the robot’s

reliability and their trust in the robot after each iteration of the banner-hanging task. These

reports revealed that participants’ perceived reliability and trust for the robot increased across

trials in which the robot performed the task successfully, and decreased immediately following

each of the two pre-programmed errors in robot behavior. This trajectory was similar across

framing groups.

When we evaluated our third research question, we saw no effect of framing group

on the evolution of individuals’ perceived robot reliability. This suggests that functionality

framing may not affect an individual’s perception of robot reliability on a trial-by-trial basis.

However, when we evaluated our fourth research question we observed an interaction between

functionality framing and trust. Individuals in the low functionality framing group reported a

greater increase in trust following the first robot error as compared to the second robot error. In

contrast, individuals in the high functionality framing group reported greater trust increases after
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the second error compared to the first error.

Notably, these findings indicate that individuals with low expectations exhibit greater

trust recovery following an initial robot error compared to those with high expectations. Previous

work in robot tele-operation has revealed that a user’s trust typically increases faster during an

initial stable period of high robot reliability than it does after a drop in robot reliability [33]. Our

own results suggest that low expectations may mitigate the negative effect that a single robot error

has on trust building. Despite our observation that functionality framing has significant effects on

perceived reliability and trust before, during and immediately following interaction, functionality

framing did not appear to have an effect on the willingness of individuals to collaborate with the

same robot on future tasks.

Interestingly, several participants across both functionality framing conditions reported

that after the robot made an error they began to closely analyze its behavior. Participants wanted

to understand why an error had occurred. They also sometimes thought they could predict

when errors were going to occur. While some participants were accurate in identifying factors

associated with robot error, many were not. Specifically, some individuals noticed that if the

robot raised its arm and then moved forward and stopped short of the normal location where it

released the banner (i.e., Target Location 2) it was likely to immediately drop the banner on the

floor. Ultimately, the change in robot behavior associated with the error could not be detected

until just a few seconds before the robot dropped the banner.

Still, some individuals attributed robot errors to their own behavior early on in a trial

(e.g., walking too fast with the banner before reach the robot’s first stopping location). This

feeling of responsibility for robot errors may be due to the fact that the human and robot had very

similar roles in the banner-hanging task. Past work suggests that people feel more responsible

for a task when working with a peer or subordinate robot than when working with a supervisor

robot [66]. As a result, people may be more likely to assume they have an effect on robot errors

in tasks where human and robot roles are very similar compared to those in which the robot has

a more subordinate role. Ultimately, the participant feedback we received in the current study
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emphasized that providing information about the cause of robot errors during HRI may reduce

the attentional resources a human co-actor uses in response to robot errors.

A.5.1 Limitations and future directions

Our participants did not experience any acute risk during interaction with the robot. This

may limit our ability to contribute to a common discussion around risk and trust in HRI. Many

models of trust within HRI include risk as an important component in trust development. These

models are often based on a definition of trust offered by Mayer and colleagues [101]. In this

definition, trust is based on a person’s willingness to be vulnerable to the actions of another party

irrespective of the ability to control that party’s actions.

The current study requires that individuals engage in human-robot teaming in order to

complete a GDJA HRI task. Human-robot teaming itself requires a human to depend on a robot

to complete a portion of the collective task. More specifically, the human cannot control the

robot’s actions and the team’s success is vulnerable to the robot’s behavior [95]. As a result,

our participants experienced a low level of vulnerability during interaction, but no explicit risk.

Future studies of human-robot trust during GDJA will benefit from the thoughtful introduction

of additional risk to participants.

In order to identify how functionality framing information might impact human-robot

team performance in the future we assessed participants’ willingness to collaborate with the

robot on additional tasks following the completion of the banner-hanging experiment. It is

possible that our ability to capture the effect of functionality framing on future collaboration was

limited by our use of a self-report measure. Previous work suggests that self-report statements

do not always fully represent how an individual would actually act in a given situation [24].

Alternatively, implicit, behavioral metrics can allow researchers to measure constructs, such as

trust, frequently and unobtrusively during ongoing interaction (e.g., see Hayes et al. [60]). In

future work, researchers may be able identify a relationship between functionality framing and

willingness to collaborate using an implicit measure of willingness to collaborate.
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It is also possible that we observed similar responses between framing groups on our

willingness to collaborate questionnaire because interaction experience is more important than

functionality framing in determining a person’s willingness to collaborate on future tasks. In

other words, participants may have made decisions about collaborating with the robot in the

future based on what they learned about the robot’s capabilities during interaction instead of the

framing information they received about the robot at the beginning of the experiment.

Interestingly, our participants spent considerable time thinking about potential causes

for the robot’s errors. We chose not to include error acknowledgment in this study as this might

have mitigated the effect of robot errors on participants’ perceptions of reliability and trust. This

allowed us to provide a baseline illustration of the relationship between functionality framing

and error during proximate HRI. However, previous work suggests that robot transparency

surrounding errors is beneficial to human experience and team performance during HRI [33, 145,

172, 67] and feedback from our own participants indicates that this would be valuable within

proximate, GDJA as well. Thus, future work on human-robot teaming fluency in proximate,

GDJA should aim to establish how robot responses can reduce the attentional resources humans

give to robot errors when they do occur.

A.5.2 Conclusion

Our results suggest that in HRI contexts where robot errors are likely, such as proximate

GDJA, human co-actors are likely to be disappointed by robot capabilities unless they are told

ahead of time that the robot may make errors. We also showed that when people expect robot

errors they exhibit greater trust recovery after a single robot error. Our measures revealed a

strong relationship between trust and reliability, while also indicating that there is independence

between the two constructs.

Participants in the current study tended to generate explanations about why the robot

made errors and to predict when the next error would occur. This observation supports the

idea that future research should continue to examine how robots can acknowledge errors during

83



interaction in order to minimize human attention to them. As we have noted, future work should

also systematically explore the effect of risk on reliability and trust in proximate GDJA. In

conjunction with our current work on robot presentation, these avenues will greatly expand our

ability to support trust-calibration across a range of proximate HRI contexts in which robot errors

are known to be frequent and impactful events. At present, our findings can be utilized for the

continued improvement of 1) framing factors for robots to be used in proximate HRI, and 2)

modeling of human-robot trust for the support of effective human-robot teaming.

Willingness to Collaborate Questionnaire

Physical Tasks
1. Do you trust the robot to help you change a light bulb?
2. Do you trust the robot to help you clean a kitchen?
3. Do you trust the robot to help you clean a bathroom?
4. Do you trust the robot to help you clean a window?
5. Do you trust the robot to help you with pest control?
6. Do you trust the robot to help you load dishes in a dishwasher?
7. Do you trust the robot to help you make a bed?
8. Do you trust the robot to help you clean the floor?
9. Do you trust the robot to help you take out the trash?
10. Do you trust the robot to help you do laundry?
Cognitive Tasks
11. Do you trust the robot to remind you to take medication?
12. Do you trust the robot to help you stay informed about the weather/news?
13. Do you trust the robot to help you learn how to use new technology?
14. Do you trust the robot to help you get information about your hobbies?
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