
UCLA
UCLA Electronic Theses and Dissertations

Title
Modeling, Learning and Reasoning with Structured Bayesian Networks

Permalink
https://escholarship.org/uc/item/7ns0f906

Author
Shen, Yujia

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7ns0f906
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Modeling, Learning and Reasoning with Structured Bayesian Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Yujia Shen

2020

© Copyright by

Yujia Shen

2020

ABSTRACT OF THE DISSERTATION

Modeling, Learning and Reasoning with Structured Bayesian Networks

by

Yujia Shen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Adnan Youssef Darwiche, Chair

Probabilistic graphical models, e.g. Bayesian Networks, have been traditionally intro-

duced to model and reason with uncertainty. A graph structure is crafted to capture knowl-

edge of conditional independence relationships among random variables, which can enhance

the computational complexity of reasoning. To generate such a graph, one sometimes has

to provide vast and detailed knowledge about how variables interacts, which may not be

readily available. In some cases, although a graph structure can be obtained from available

knowledge, it can be too dense to be useful computationally. In this dissertation, we propose

a new type of probabilistic graphical models called a Structured Bayesian network (SBN)

that requires less detailed knowledge about conditional independences. The new model can

also leverage other types of knowledge, including logical constraints and conditional indepen-

dencies that are not visible in the graph structure. Using SBNs, different types of knowledge

act in harmony to facilitate reasoning and learning from a stochastic world. We study SBNs

across the dimensions of modeling, inference and learning. We also demonstrate some of

their applications in the domain of traffic modeling.

ii

The dissertation of Yujia Shen is approved.

Qing Zhou

Songwu Lu

Kai-Wei Chang

Adnan Youssef Darwiche, Committee Chair

University of California, Los Angeles

2020

iii

To my family

iv

TABLE OF CONTENTS

1 Introduction . 1

2 Probabilistic Sentential Decision Diagrams 7

2.1 Background . 7

2.2 Syntax and Semantics . 8

2.3 PSDD Queries . 10

2.3.1 Marginal Query . 11

2.3.2 Most Probable Explanation . 12

3 Modeling Combinatorial Objects using PSDDs 14

3.1 Introduction . 14

3.2 N -Choose-K Models . 15

3.3 Recursive N -Choose-K Models . 17

3.3.1 Formal Definition . 19

3.3.2 Tractable Inference . 22

3.4 Learning N -Choose-K Models . 23

3.4.1 Parameter Learning . 23

3.4.2 Structure Learning . 25

3.5 Experiments And Case Studies . 27

3.5.1 Simulated Data . 27

3.5.2 Case Study: Preference Learning . 30

3.5.3 Case Study: Sports Analytics . 31

3.6 Discovering the Recursive N -Choose-K Model 33

3.7 Example PSDD . 34

v

3.8 Conclusion . 36

3.A Proofs . 36

4 Structured Bayesian Networks . 40

4.1 Introduction . 40

4.2 Learning with Background Knowledge . 42

4.3 Modular Background Knowledge . 45

4.4 Conditional PSDDs . 49

4.5 Learning Conditional PSDDs . 53

4.6 Experimental Results . 54

4.7 Structured Näıve Bayes . 56

4.8 Conclusion . 59

4.A Proofs . 60

5 Inference . 62

5.1 Introduction . 62

5.2 Representing Distributions Using Arithmetic Circuits 63

5.3 Operation on PSDDs . 66

5.3.1 Multiplying Two PSDDs . 68

5.3.2 Summing-Out a Variable in a PSDD 69

5.4 Compiling Probabilistic Graphical Models into PSDDs 70

5.5 Inference in SBNs by Compilation to PSDDs 73

5.5.1 Vtrees . 74

5.5.2 Finding a Global Vtree . 75

5.5.3 Finding Local Vtrees . 76

5.6 Experiment . 78

vi

5.7 Conclusion . 80

5.A Proofs . 80

6 Case Study: Modeling Routes using SBN 85

6.1 Introduction . 85

6.2 Distributions over Routes: A Primer . 86

6.3 Representing the Space of Routes . 90

6.4 Hierarchical Routes . 90

6.5 Modeling Hierarchical Routes with SBNs . 92

6.6 Binary Hierarchical Map . 93

6.7 Learning Binary Hierarchical Maps . 94

6.8 Experiments . 95

6.9 Conclusion . 98

6.A Proofs . 98

7 Learning Local Structure from Data . 102

7.1 Introduction . 102

7.2 Representations of CPDs . 103

7.2.1 Functional Representations . 104

7.2.2 Context-Specific CPDs . 105

7.3 Functional Context-Specific CPDs . 106

7.4 Learning . 107

7.4.1 Learning the Parameters . 107

7.4.2 Learning the Contexts . 108

7.5 Reasoning . 110

7.5.1 Marginal Inference via Knowledge Compilation 110

vii

7.5.2 MPE Inference via Mixed-Integer Linear Programming 111

7.6 Experiments . 112

7.7 Case Study: Learning to Decode . 115

7.7.1 Channel Coding: A Brief Introduction 116

7.7.2 Experiments . 117

7.8 Conclusion . 119

8 Conclusion . 120

References . 122

viii

LIST OF FIGURES

1.1 A Bayesian Network that models the simplified COVID-19 diagnosis. 2

1.2 A BN representing the selection of 20 fish. 6

1.3 A DAG that describes the graphical assumptions between the fishmonger’s selec-

tion and the selections of 2 customers, Cindy and David, in the fish market. The

root node contains variables that describe the fishmonger’s selection, and each

leaf node contains variables that describe each customer’s selection. 6

2.1 A probability distribution and its SDD/PSDD representation. The numbers an-

notating or-gates in (b) & (c) correspond to vtree node IDs in (d). Moreover,

while the circuit appears to be a tree, the input variables are shared and hence

the circuit is not a tree. 8

2.2 An SDD fragment. 9

2.3 Figure 2.3a shows the value of each gate when computing Pr(A=0), whose value is

output by the root gate. Figure 2.3b shows the value of each gate when computing

the MPE under observation A=0. The highlighted wires are visited during the

reverse traversal that obtains the MPE configuration. 11

3.1 A tree hierarchy of courses. 18

3.2 A vtree (upper-left), and a corresponding recursive 3-choose-2 distribution (right).

Leaf vtree nodes are labeled with their variables inside parenthesis. 21

3.3 The first few iterations of vtree learning. 26

3.4 Rotating a vtree node x right and left. Nodes a, b, and c may represent leaves or

subtrees. 26

3.5 Learning results for cardinality-16: dataset size (x-axis) vs test log likelihood

(y-axis). The blue solid lines and orange dashed lines correspond to the recursive

and logistic n-choose-k models, respectively. 28

ix

3.6 Learning results on the win95pts dataset: k vs dataset size vs test log likelihood. 29

3.7 10-choose-5 model for the sushi dataset. 31

3.8 13-choose-5 model for the 2009-2010 Lakers. 32

3.9 A PSDD corresponding to the vtree and the recursive n-choose-k model of Fig-

ure 3.2. 35

4.1 Routes on a 4× 4 grid. 44

4.2 A cluster DAG. 47

4.3 A conditional PSDD (vtree on left of Figure 4.5). 49

4.4 A partial evaluation of the conditional PSDD of Figure 4.3, under the input

A=a1, B=b1. Wires are colored red if they are fixed to high, and colored blue if

they are fixed to low. The states of uncolored wires depend on the states (values)

of the inputs X and Y . In this example, the output of the circuit is the same as

the value of α. 50

4.5 Two vtrees for X | P with X = {X, Y } and P = {A,B} (left and center) and a

vtree that is not for X | P (right). The X-nodes of the first two vtrees are starred. 51

4.6 Evaluating the SDD of a conditional PSDD under the circuit input A=a1, B=b1,

X=x1, Y =y0 (which can be viewed as an example in the dataset). Each wire is

colored by its state (red for high and blue for low). The wires in bold are visited

when descending from the root gate down to every gate and circuit input that

evaluates to 1. 54

4.7 Conditional vs. joint PSDDs on random networks. 55

4.8 On the left, it shows a Näıve Bayes that is used for binary classification. On the

right, it shows a structured Näıve Bayes that can be used for both binary and

structured classification. 57

4.9 A conditional PSDD representing the CPT of a structured Näıve Bayesin [CTD16]. 58

4.10 A conditional PSDD that models context specific independence. 59

x

5.1 An AC for a Bayesian network A→ B. 65

5.2 A vtree and two of its projections. 69

5.3 Conditional Vtrees . 74

5.4 A cluster DAG and three conditional vtrees for clusters A = {A1, A2, A3}, B =

{B1, B2}, and C = {C1, C2}. X-nodes are labeled with a star. 77

5.5 The road network of downtown SF. 79

6.1 Routes between the San Francisco Caltrain station at 4th & King Street and the

entrance to Chinatown. 86

6.2 Estimating the probability that a street is used in a route, based on on taxi cab

traces in San Francisco. Color indicates the popularity of a street: blue (< 10

routes), green (10’s of routes), yellow (100’s of routes), orange (1,000’s of routes),

and red (10,000’s of routes). 89

6.3 A hierarchical map of neighborhoods in the Los Angeles Westside, and the cor-

responding cluster DAG. Each neighborhood and the roads within are depicted

using colors, while roads connecting regions are depicted in black. The roads of

Santa Monica, Venice and Culver City are unlabeled in the map, for clarity. . . 91

6.4 Route classification. 97

7.1 (a) a dataset, (b) sorted by MLP output, (c) different thresholds and the resulting

partitions. 109

7.2 Number of contexts vs. CLL, for k ∈ {2, 4, 8} from left to right (synthetic bench-

mark). 113

7.3 Number of contexts vs. CLL, for digits d ∈ {0, 1, 2} from left-to-right (MNIST). 115

7.4 The Bayesian network modeling the encoding process. 116

xi

LIST OF TABLES

4.1 Student enrollment data. Each column (variable) corresponds to a course, and

each row (variable assignment) corresponds to an example. The counts represent

the number of times that the example appeared in the dataset. For example, the

second row represents those students who took Probability (P) and AI (A), but

did not take Logic (L) or KR (K). There were 54 such examples (students) in

this case. 42

5.1 AC compilation size (number of edges) and time (in seconds) 72

5.2 Compilation versus jointree inference by map size. Size is # of edges. Improve-

ment is jointree over evaluation time. 78

6.1 Trace of a taxi trip . 87

xii

ACKNOWLEDGMENTS

Pursuing a doctorate has been an unforgettable journey. I am deeply blessed and honored

to have the opportunity to follow this path. I first want to show my greatest appreciation

to my advisor Adnan Darwiche. Thank you for leading me onto this trip and inspiring me

to look at problems critically. I also want to thank Arthur Choi, who has worked with me

day-to-day since the day when I started. Both Adnan and him have influenced me to be a

better thinker not only about the research problems, but also about the choices of life.

I also want to thank every other member of my doctoral committee, Kai-Wei Chang,

Songwu Lu, Qing Zhou for their efforts while serving on my committee. Their valuable

feedback has brought me new perspectives about the significance of the problems that I

tackled.

My sincere thanks also go to fellow group members, past and present: Eunice Chen,

Khaled Refaat, Umut Oztok, and Doga Kisa. Their sharings of wisdoms on life have made

a smooth journey of mine.

I want to thank all my other co-authors, Haiying Huang, Anchal Goyanka, and Eunice

Chen, whose collaboration have made this work wonderful.

I am grateful to have made many friends from UCLA: Andy Shih, Anji Liu, Antonio

Vergari, Guy Van den Broeck, Honghua Zhang, Jieyu Zhao, Kareem Ahmed, Kuan-Hao

Huang, Laura Isabel Galindez Olascoaga, Liunian Li, Muhao Chen, Pasha Khosravi, Steven

Holtzen, Tal Friedman, Tao Meng, Tong He, Xumeng Han, Yan Lin, Yitao Liang, YooJung

Choi, and Zhe Zeng. It has been a joyful memory that we have crafted together.

Finally, I am lucky to have Chi. You are a great causality teacher, and you have also

been a lively “rubber duck” that not only patiently listens to my practice talks but also

provides valuable feedbacks for me to improve. Further, your dancing, cooking and, most

importantly, company have made this challenging journey warm and comfortable.

xiii

VITA

2011–2014 B.S. (Computer Science Engineering) University of California, Los Angeles

2014–2015 M.S. (Computer Science) University of California, Los Angeles

PUBLICATIONS

Yujia Shen, Arthur Choi and Adnan Darwiche. A New Perspective on Learning Context-

Specific Independence, In International Conference on Probabilistic Graphical Models, 2020.

Yujia Shen, Haiying Huang, Arthur Choi and Adnan Darwiche. Conditional Independence

in Testing Bayesian Networks, In Proceedings of 36th ICML, 2019.

Yujia Shen, Arthur Choi and Adnan Darwiche. Structured Bayesian Networks: From

Inference to Learning with Routes, In Proceedings of the 33rd AAAI, 2019.

Yujia Shen, Arthur Choi and Adnan Darwiche. Conditional PSDDs: Modeling and Learn-

ing with Modular Knowledge, In Proceedings of the 32nd AAAI, 2018.

Yujia Shen, Arthur Choi and Adnan Darwiche. A Tractable Probabilistic Model for Subset

Selection, In Proceedings of the 33rd UAI, 2017.

Arthur Choi, Yujia Shen and Adnan Darwiche. Tractability in Structured Probability

Spaces, In Advances in Neural Information Processing Systems 30 (NIPS), 2017.

xiv

Yujia Shen, Arthur Choi and Adnan Darwiche. Tractable Operations for Arithmetic

Circuits of Probabilistic Models, in Advances in Neural Information Processing Systems 29

(NIPS), 2016.

Eunice Yuh-Jie Chen, Yujia Shen, Arthur Choi and Adnan Darwiche. Learning Bayesian

Networks with Ancestral Constraints, In Advances in Neural Information Processing Systems

29 (NIPS), 2016.

xv

CHAPTER 1

Introduction

Researching a problem usually involves discovering its structure. For example, Newton’s

Laws of Motion are essentially discovering the structure among three factors: force, accel-

eration, and velocity. Using the structure, we can understand why the apple falls to the

ground, and we can also predict the location of our earth in the next decade. There are

different types of structure one can explore. For each of the structure, a model is usually

proposed to especially exploit it for learning and reasoning purpose.

Bayesian networks (BNs) have been proposed to capture problem structure in the form

of conditional independence [Dar09, KF09, Bar12]. In particular, a DAG is used to model

the conditional independence relationships in the problem. Consider a simple pandemic

model containing three variables: C (COVID-19), I (Influenza) and F (fever). The DAG in

Figure 1.1 demonstrates the conditional independence relationships among the three random

variables. Influenza and COVID-19 are two types of viral diseases, which can independently

infect a person. Further, we have also known that COVID-19 and Influenza can cause similar

symptoms, i.e. fever. The dependency between the symptom of fever and the infections of

either virus is also probabilistic, as the manifestation of the fever also depends on many

unobserved factors, including the physical wellness of the individual. From the conditional

independence, the joint probability distribution can be decomposed into three smaller pieces:

Pr(C, I, F) = Pr(C)Pr(I)Pr(F | C, I).

BNs can elegantly model the simple epidemic model by exploiting the conditional inde-

pendence structure, but some other problems may not exhibit any of this structure. If BNs

were still used to model those problems, the DAG would be fully connected, without exploit-

1

COVID-19 influenza

fever

Figure 1.1: A Bayesian Network that models the simplified COVID-19 diagnosis.

ing any problem structure. As a result, the BN needs to specify a parameter for each joint

assignment of the variables, and there are an exponential number of these joint assignments

to the number of variables that are modeled [Dar09, Pea89]. Let’s consider a store in a fish

market. Inside the store, a fishmonger sells fish that it has caught from the ocean. As there

is limited room to stock the fish, the fishmonger has to select a fixed amount of fish for

sale. As the fishmonger catches different types of fish every day, the selected fish also change

from time to time. If the stochasticity of this problem is modeled using a BN, the DAG,

that describes the joint distribution over the selected fish types, must be fully connected. In

particular, each node in the DAG indicates whether a particular fish is selected for sale, and

the selection of any fish depends on the availability of the space, which ultimately depends

on the number of all the other fish that are selected. For example, Figure 1.2 shows a DAG

that models the selection problem with 20 fish. The DAG is so densely connected that no

problem structure is revealed. Further, the BN with this DAG needs 220 ≈ 106 parameters

to model the uncertainties of the selection. This ultimately creates computational challenges

for learning and reasoning.

The fish selection problem does not exhibit any structure of conditional independence,

and BNs are not suited to model these problems. This motivates us to explore a different

type of structure, called context-specific independence [BFG96], which corresponds to local

structure in conditional probabilities. Instead of specifying a distinct conditional probability

for each child variable given each parent configuration, many parent configurations share the

same child probability. For example, in the fishmonger example, the selection of any fish may

only depend on the number of the other fish that are selected. To specify such a conditional

probability, one only needs a linear number of parameters; a single parameter is needed for

each cardinality of the selection among the parent fish. As a pure BN needs an exponential

2

number of parameters, one for each assignment to the parent and child variables, it is a signif-

icant improvement to exploit the local structure in the conditional probability distribution.

Probabilistic Sentential Decision Diagrams (PSDDs) have been introduced to model these

context-specific independences even when the DAG can be fully connected [KVC14]. PS-

DDs are effective in modeling many combinatorial objects, e.g. rankings [CVD15] and game

trajectories [CTD16], where conditional independences cannot be exploited at the structural

level.

Although PSDDs can model complex objects by exploiting context-specific indepen-

dences, they cannot model the topological conditional independences, that BNs can model.

In the fish market example, one might want to model a joint distribution over the selections

of both the fishmonger and its customers. The selection of a customer is corrected with the

selection of the fishmonger. For example, if a popular kind of fish is offered in-store by the

fishmonger, each customer is more likely to select it. Furthermore, we have some topologi-

cal conditional independences among the selections of the customers; each customer usually

makes its selection independently. In this problem, we want to exploit both structures:

context-specific independence to model each of the selections, and topological independence

to model the relationship between the choices of customers and the fishmonger. However,

PSDDs cannot directly exploit both of these structures.

To address this problem formally, we are proposing a new framework called structured

Bayesian networks (SBNs). In a nutshell, it uses a DAG to capture the probabilistic de-

pendency among different complex objects, where each can be represented using multiple

variables. For example, Figure 1.3 shows a DAG that describes the dependency among differ-

ent selections in the fish market example. The root node contains variables that describe the

fish that are selected by the fishmonger, and each leaf node contains variables that describe

the fish that are selected by each customer. The DAG describes the topological indepen-

dence; given fishmonger’s selection, customers’ selections are independent of each other. At

the same time, the DAG keeps silent about dependency among variables in the same node,

which are used to represent a selection. It offers opportunities to model each selection with

context-specific independence. SBNs inherit the benefits from both of its ancestors: BNs

3

and PSDDs. Similar to BNs, SBNs follows a global DAG structure to decompose a joint

probability into small conditional distributions. Further, a PSDD can be used to model each

conditional distribution with knowledge of context-specific independence, which traditional

BNs do not exploit. We will also demonstrate the utility of this marriage between BNs and

PSDDs in the application of tractable route predictions, which cannot be modeled only using

either PSDDs or BNs.

Next, we provide an overview of the remaining chapters of this dissertation.

In Chapter 2, we review Probabilistic Sentential Decision Diagrams (PSDDs). We first

show their syntax and semantics, and we end the chapter with some of the probabilistic

queries that PSDDs can solve efficiently.

In Chapter 3, we consider the problem of using PSDDs to model combinatorial objects.

The combinatorial object is an n-choose-k selection, which admits the selections of a fish-

monger in the fish market as a special case.

In Chapter 4, we formally introduce structured Bayesian networks, which is a new model

that we are proposing. Each node in a structured Bayesian network contains a set of vari-

ables, as in Figure 1.3. These variables can be used to describe a combinatorial object,

e.g. selection. Besides, we introduce a new conditional model, called conditional PSDDs, to

model the dependencies among different combinatorial objects.

In Chapter 5, we study the problem of inference with SBNs. We demonstrate an exact

inference algorithm for SBNs by compiling a given SBN to a PSDD. The PSDD describes

the same joint probability as the SBN, and it can compute multiple probabilistic queries

efficiently. The inference algorithm allows us to ask interesting questions about the joint

distribution that is represented by an SBN. For example, one can compute the most likely

selection of the fishmonger given the selection of a customer.

In Chapter 6, we demonstrate an application of modeling a probability distribution over

routes of a map. Similar to selections, routes are also combinatorial objects. We demonstrate

a decomposition of the route distribution into smaller modules by hierarchically partitioning

the map. We further identify a tractable subclass of this model by using a special partitioning

4

scheme. This tractable subclass allows one to answer queries, including the most likely route

completion given a partial trip, efficiently even with a map that covers the entire road system

of a city.

In Chapter 7, we study the problem of learning the structure of a conditional PSDD

from data. We propose a learning algorithm that extracts the structure of context-specific

independence from data. Subsequently, this structure is represented using a conditional

PSDD.

We finally conclude with a summary of the thesis in Chapter 8.

5

Figure 1.2: A BN representing the selection of 20 fish.

Bbluefin, Bshrimp, · · · , Balbacore

Cbluefin, Cshrimp, · · · , Calbacore Dbluefin, Dshrimp, · · · , Dalbacore

Figure 1.3: A DAG that describes the graphical assumptions between the fishmonger’s se-

lection and the selections of 2 customers, Cindy and David, in the fish market. The root

node contains variables that describe the fishmonger’s selection, and each leaf node contains

variables that describe each customer’s selection.

6

CHAPTER 2

Probabilistic Sentential Decision Diagrams

In this chapter, we are going to review a representation of a probabilistic distribution, called

Probabilistic Sentential Decision Diagrams.

2.1 Background

PSDDs have been motivated by the need to bridge probability and logic [KVC14]. Consider

a joint probability as shown in Figure 2.1a. The joint probability assigns zero probability to

some of the entries, e.g. A=0, B=1, C=0. The zero probability indicates that these config-

urations are impossible to happen. Traditionally, the “impossibility” is represented using a

propositional logic formula. The formula only evaluates true on the possible configurations.

For example, a formula that represents the logical constraint in the joint distribution is as

following:

(A ∨ ¬B ∨ C) ∧ (¬A ∨B ∨ C).

Although a logical formula distinguishes between the “possible” and the “impossible”, it

does not signifies the differences in likelihood among the “possible”.

PSDDs are introduced to add uncertainties among the possible configurations that are

described by a logical formula. We will formally introduce its syntax and semantic in the

next section. Later we will show that PSDDs are a tractable representation, where many

probabilistic queries can be computed in time that scales linearly in the size of the PSDD.

7

A B C Pr

0 0 0 0.2

0 0 1 0.2

0 1 0 0.0

0 1 1 0.1

1 0 0 0.0

1 0 1 0.3

1 1 0 0.1

1 1 1 0.1

(a) Distribution

A B¬A¬B A¬B¬AB

1 14

C¬C

C

3

(b) SDD

A B¬A¬B A¬B¬AB

1

.33 .67

1

.75 .25

4

C¬C
.5 .5

C

3

.6 .4

(c) PSDD

A B

C

3

1

0 2

4

(d) Vtree

Figure 2.1: A probability distribution and its SDD/PSDD representation. The numbers

annotating or-gates in (b) & (c) correspond to vtree node IDs in (d). Moreover, while the

circuit appears to be a tree, the input variables are shared and hence the circuit is not a

tree.

2.2 Syntax and Semantics

In this dissertation, we use uppercase letter, e.g. X, to represent a variable and lowercase

letter, e.g. x, to represent a value of the corresponding variable. Bold case letters, i.e. X

and x, represents a set of variables and values respectively. Consider the distribution Pr(X)

in Figure 2.1a for an example. The first step in constructing a PSDD for this distribution

is to construct a special Boolean circuit that captures its zero entries; see Figure 2.1b.

The Boolean circuit captures zero entries in the following sense. For each instantiation x,

the circuit evaluates to 0 at instantiation x iff Pr(x) = 0. The second and final step of

constructing a PSDD amounts to parameterizing this Boolean circuit (e.g., by learning from

data), which amounts to including a local distribution on the inputs of each or-gate; see

Figure 2.1c.

The Boolean circuit underlying a PSDD is known as a Sentential Decision Diagram

(SDD) [Dar11]. Understanding SDD circuits is key to understanding PSDDs so we review

8

p1 s1 p2 s2

· · ·

pn sn

· · ·α1
α2

αn

Figure 2.2: An SDD fragment.

these circuits next.

First, an SDD circuit is constructed from the fragment shown in Figure 2.2, where the

or-gate can have an arbitrary number of inputs, and the and-gates have precisely two inputs

each. Here, each pi is called a prime and each si is called a sub. For example, the SDD

circuit in Figure 2.1b is made up of three of these fragments and terminal SDDs1.

Next, each SDD circuit conforms to a tree of variables (called a vtree), which is just a

binary tree whose leaves are the circuit variables; see Figure 2.1d. The conformity is roughly

as follows. For each SDD fragment with primes pi and subs si, there must exist a vtree node

v where the variables of SDD pi are those of the left child of v and the variables of SDD si

are those of the right child of v. The formal definition of conformity is shown in Definition 1.

Definition 1 (Conformity). An SDD circuit n is said to conform to a vtree v iff

– v is a leaf with variable X, and α is a terminal SDD over variable X.

– v is internal, and n is an SDD fragment (see Figure 2.2), where the primes p1, ..., pn

are SDDs that conform to the left vtree vl, and the subs s1, ..., sn are SDDs that conform

to the right vtree vr.

For the SDD in Figure 2.1b, each or-gate has been labeled with the ID of the vtree node

it conforms to. For example, the top fragment conforms to the vtree root (ID=3), with its

primes having variables {A,B} and its subs having variables {C}. SDDs that conform to

1A terminal SDD is either a variable (X), its negation (¬X), false (⊥), or true (an or-gate with inputs
X and ¬X)

9

a vtree were called normalized in [Dar11], which also defined compressed SDDs. These are

SDDs in which the subs of a fragment are distinct.

The final key property of an SDD circuit is this. When the circuit is evaluated under any

input, precisely one prime pi of each fragment will be 1. Hence, the fragment output will

simply be the value of the corresponding sub si.
2

A PSDD can now be obtained by annotating a distribution α1, . . . , αn on the inputs

of each or-gate, where
∑

i αi = 1; see again Figure 2.2. The distribution specified by a

PSDD is as follows. Let x be an instantiation of the PSDD variables and suppose that we

evaluate the underlying SDD circuit at input x. If the SDD evaluates to 0, then Pr(x) = 0.

Otherwise, Pr(x) is the product of all parameters encountered by starting at the output

or-gate, and then descending down to every gate and circuit input that evaluates to 1. This

PSDD distribution must be normalized as long as the local distributions on or-gates are

normalized [KVC14].

2.3 PSDD Queries

In this section we are demonstrating procedures that compute the results of two different

probabilistic queries, a marginal query and a most probable explanation query, on PSDDs.

For each query, we convert a PSDD to a computation graph. After carefully setting the

values of the leaf nodes, which are the inputs to the computation graph, the root node of

the computation graph, which is also the output node, will compute the query result.

Each query computation runs in time that scales linearly in the size of the corresponding

PSDD. As a result, PSDDs are commonly used as compilation targets of graphical models, as

we will show in Chapter 5. Given a graphical model, we can first obtain a PSDD representing

the same joint distribution. This process is called compilation. After the PSDD is obtained,

probabilistic queries, which are NP-hard to compute for graphical models, can be answered

2This implies that an or-gate will never have more than one 1-input. Also note that an SDD circuit
may produce a 1-output for every possible input. These circuits arise when representing strictly positive
distributions (with no zero entries).

10

A B¬A¬B A¬B¬AB

0 1

0.67

.33 .67

0 1

0.25

.75 .25

1

C¬C
.5 .5

0.67

C

0.25

0.502

.6 .4

(a) Probability Evaluation.

A B¬A¬B A¬B¬AB

0 1

0.67

.33 .67

0 1

0.25

.75 .25

0.5

C¬C
.5 .5

0.335

C

0.25

0.201

.6 .4

(b) MPE Evaluation.

Figure 2.3: Figure 2.3a shows the value of each gate when computing Pr(A=0), whose value

is output by the root gate. Figure 2.3b shows the value of each gate when computing the

MPE under observation A=0. The highlighted wires are visited during the reverse traversal

that obtains the MPE configuration.

efficiently using the compiled PSDD.

2.3.1 Marginal Query

A joint probability distribution assigns a probability to each complete variable configuration,

and a marginal query computes the probability of a partial variable configuration. A partial

configuration is an assignment of a subset of variables. For example both A=0 and A=0,

B=0 are partial configurations, and A=0, B=0, C=0 is an example of a complete config-

uration. The probability of a partial configuration equals to the sum of the probabilities of

complete configurations that are compatible with it. If the joint distribution is over variables

X and Y, the probability of partial configuration x is defined as Pr(x) =
∑

y Pr(x,y).

To evaluate the probability of a partial configuration in a PSDD, we view each and-gate

as a product node. Each or-gate is viewed as a weighted sum node, where the weight is

the parameter annotating each input. For example, the or-gate in Figure 2.2 evaluates to∑
i αi · pi · si. This generates a computation graph from a PSDD circuit, and it computes the

marginal query. Next we will set the value of leaf nodes, which are literals.

11

If a literal is consistent with the partial configuration, we set the literal to 1. Otherwise,

the literal is set to 0. For example, given a partial configuration A=0, every literals except

literal A is consistent with it; hence, each consistent literal is assigned with value 1, and

literal A is assigned with value 0. Another partial configuration A=0, B=0 sets literals ¬A,
¬B, C, ¬C to be 1, and the remaining literals are set to 0.

After invoking the corresponding computation graph under the inputs that are properly

configured, the constructed computation graph evaluates the probability of the partial con-

figuration. For example, Figure 2.3a shows the values that are computed by each gate when

evaluating the marginal query Pr(A=0). The value of the output gate, 0.502, is the result

of the query.

2.3.2 Most Probable Explanation

The Most Probable Explanation (MPE) is a query that computes the most likely complete

configuration that is compatible with an observation, and the observation is represented as

a partial configuration. In this section, we show the computation graph for evaluating the

probability of this most likely complete configuration.

To evaluate the probability of the MPE, we view each and-gate as a product node. Each

or-gate is viewed as a weighted max node, where the weight is the parameter annotating

each input. For example, the or-gate in Figure 2.2 evaluates to maxi αi · pi · si.

According to the observation, which is a partial configuration, the values of leaf literals

are assigned in the same way as we have described in Section 2.3.1. The leaf literals are

set to 1 if they are consistent with the observation and are set to 0 otherwise. At last, the

computation graph will evaluate the probability of the most probable explanation that is

consistent with the observation. Figure 2.3b shows the value of each gate when one evaluates

the MPE query under the observation A=0. The probability of the MPE is 0.201, which is

the value of the output gate.

After having evaluated the probability of the MPE, we can obtain the MPE configura-

tion by reversely traversing the computation graph. For each or-gate, one follows the branch

12

which results in the weighted max. For each and-gate, one follows both branches. The

traversal stops when it hits leaf literals. The concatenation of these literals is the MPE con-

figuration. In Figure 2.3b, the bold wire represents the traversal, and the MPE configuration

is A=0, B=0, C=1.

13

CHAPTER 3

Modeling Combinatorial Objects using PSDDs

In this chapter, we present an example of modeling combinatorial objects using PSDDs.

The combinatorial object that we are interested is an n-choose-k selection. We first explain

the model without using any language of PSDDs and lastly unveil their connection. This

modeling example demonstrates the interpretability of PSDDs and preludes our usage of it in

a more symbolic setting. The results that are discussed in this chapter appeared in [SCD17].

3.1 Introduction

We consider in this chapter the problem of selecting k items from among a set of n alter-

natives. This subset selection problem appears in a number of domains, including resource

allocation (what resources shall I allocate?), preference learning (which items do I prefer?),

human computation (which labelers should I recruit for my task?), and sports (which players

shall play the next game?). In these subset selection tasks, a dataset consists of examples

in which a fixed number (k) of variables is set to true from among a total of n variables

representing choices. Given such a dataset, the goal is to learn a generative probabilistic

model that can accurately represent the underlying processes that govern these selections.

Commonly used representations such as Bayesian and Markov networks are not well-

suited for learning from this type of data. In general, the underlying cardinality constraints

would lead to fully-connected (and hence intractable) structures—hence more specialized

representations are needed to model such subset selection tasks. Recently, a new type of

probabilistic model was proposed, called the n-choose-k model [STA12], that can take into

account datasets whose examples have a known cardinality. The proposal includes a view on

14

the popular logistic regression model as a mixture of n-choose-k models (with a component

for each k from 0 to n). Both inference and learning are tractable in the n-choose-k model.

In this chapter, we propose a more expressive model for subset selection processes, called

the recursive n-choose-k model, which we derived from a more general tractable representa-

tion called the Probabilistic Sentential Decision Diagram (PSDD) [KVC14]. Our proposed

model is tractable as it can accommodate a variety of probabilistic queries in polynomial

time. It is also highly interpretable as its parameters have precise meanings and its un-

derlying structure explicates a generative process for the data. This is in contrast to simi-

lar tractable representations such as Arithmetic Circuits (ACs) [LD08, LR13, BDC15] and

their Sum-Product Networks (SPNs) variant [PD11, GD12, DV15]. We propose a simplified

closed-form parameter estimation algorithm for our recursive n-choose-k model, as well as

a simple but effective structure learning algorithm. Empirically, we show how our recursive

n-choose-k model is more expressive and can provide a better fit for datasets with known

cardinalities than previously proposed models for this task.

This chapter is organized as follows. In Section 3.2, we review the subset selection

problem and a previously proposed model. In Section 3.3, we introduce our recursive n-

choose-k model. In Section 3.4, we present the corresponding parameter and structure

learning algorithms. In Section 3.5, we evaluate our model empirically, and present some

case studies. In Section 3.6, we show how the proposed n-choose-k model corresponds to

a PSDD. Section 3.8 closes with some concluding remarks. Proofs are provided in the

Appendix 3.A.

3.2 N-Choose-K Models

As a running example, consider the subset selection problem that computer science (CS)

students regularly face: selecting k out of n courses to take in a quarter. For simplicity, say

that students select three out of the following six courses:

learning (ML) computability (CP) linear algebra (LA)

logic (LG) complexity (CX) calculus (CL)

15

By column, we have two AI classes, two CS theory classes, and two math classes.

Let us now consider a dataset over students and the courses that they select. We have

six variables (ML, LG, CP, CX, LA, CL) representing the classes that a student can select, where

ML=1 means the student selected machine learning, whereas ML=0 means they did not. Our

dataset consists of examples such as:

ML=0, LG=1, CP=1, CX=1, LA=0, CL=0

ML=1, LG=1, CP=0, CX=0, LA=1, CL=0

ML=1, LG=0, CP=0, CX=1, LA=0, CL=1.

Since students must select three out of six classes, each example in the dataset has exactly

three positive entries, and thus three negative entries as well. We refer to such a dataset as

an n-choose-k dataset: each example has exactly k out of n variables appearing positively,

where k is called the example cardinality. A CS department with student enrollment data of

this type may want to analyze this data and reason about the courses that students choose

to take.

In this chapter, we assume that the cardinality k is known a priori. For example, in

preference learning, we may be provided with data where users have selected their top-10

favorite movies, in which case exactly 10 variables appear positively, and the rest appear

negatively.

[STA12] proposed a probabilistic model, called the n-choose-k model, which assumes a

prior over k. A simpler form is obtained when k is fixed, leading to the following distribution

over a set of n variables X:

Prk(x;θ) =
1

Zk(θ)

∏
X∈X

exp{θX · λX} (3.1)

for instantiations x with cardinality k; Pr(x) = 0 otherwise. First, θ = (. . . , θX , . . .) is a

vector of n parameters, one parameter θX for each variable X ∈ X. Next, we have a vector

(. . . , λX , . . .) of n indicators, one indicator λX for each variable X ∈ X, where λX is 1 if x

sets X positively and 0 otherwise. Finally, Zk(θ) =
∑

x:Card(x)=k

∏
X∈X exp{θX · λX} is the

16

normalizing constant, where Card(x) is the cardinality of x. When we take a mixture of

these models, for k from 0 to n, we obtain the class conditional distribution of the logistic

regression model [STA12]:

Pr(x;θ) =
1

Z(θ)

∏
X∈X

exp{θX · λX}

for all instantiations x (of any cardinality), where Z(θ) =
∏

X∈X(1 + eθX). Hence, we refer

to the model of Equation 3.1 as the logistic n-choose-k model.

Example 1. In our course selection problem, every course X has a parameter θX , where

a larger parameter value corresponds to a higher course popularity. For example, the pa-

rameters (θML, θLG, θCP, θCX, θLA, θCL) = (3, 2, 1,−1,−2,−3) suggest that ML is the most popular

course. The probability of a student selecting machine learning (ML), logic (LG) and com-

putability (CP) is then

Pr(ML=1, LG=1, CP=1, CX=0, LA=0, CL=0)

= 1
Z

exp{θML + θLG + θCP + 0 + 0 + 0} = 1
Z

exp{6}

where Z ≈ 529.06 is a normalization constant. �

Next, we propose a more refined model that views course selection as a recursive process.

3.3 Recursive N-Choose-K Models

Consider the following recursive process of course selection that a student may follow, which

traces the tree structure of Figure 3.1. First, at the root courses, a student decides how many

cs classes to take, compared to the number of math classes to take, out of a total of 3 classes.

Say the student decides to take 2 cs classes and 1 math class. Following the left branch,

the student decides how many classes to take, now between ai and theory. Suppose they

take one ai class, and hence one theory class. The student then recursively decides between

learning (ML) and logic (LG), and independently, between computability (CP) and complexity

17

courses

cs math

ai theory LA CL

ML LG CP CX

Figure 3.1: A tree hierarchy of courses.

(CX). We backtrack and decide (independently of the prior choices) between linear algebra

(LA) and calculus (CL).

Algorithm 1 describes a probabilistic generative process for subset selection, based on a

tree structure similar to the one in Figure 3.1. This structure is called a variable tree, or

vtree, and corresponds to a full, binary tree with each leaf node v labeled with a distinct

variable X ∈ X. For a vtree node v, we will use Xv to denote the set of variables appearing

at or below node v. We will also use v1 and v2 to represent the left and right children,

respectively, of an internal vtree node v.

A call to Sample(v, k) of Algorithm 1 randomly selects k variables from Xv. If v is an

internal node, we first sample a cardinality k1 of variables to select from the left child of v

(which implies that we select k2 = k − k1 variables from the right child of v). If v is a leaf

node, then k is either 0 (we do not select a variable), or 1 (we select the variable X at node

v).

This generative process describes our new probabilistic model of subset selection, which

we call the recursive n-choose-k model. We formalize this model next.

18

Algorithm 1 Sample(v, k)

input: Node v in a vtree and a number k, 0 ≤ k ≤ |Xv|

output: A selection of k variables from Xv

main:

1: if v is a leaf node labeled with variable X then

2: return {X=0} if k=0 else return {X=1}
3: else

4: v1, v2 ← children of node v

5: θv,k ← distribution over (k1, k2) s.t. k1 + k2 = k

6: (k1, k2)← a cardinality pair drawn from θv,k

7: return Sample(v1, k1) ∪ Sample(v2, k2)

3.3.1 Formal Definition

From here on, we assume that n ≥ 1 and 0 ≤ k ≤ n.

To define our recursive n-choose-k model, we first need to define the notion of a choice

distribution, for deciding how many elements to choose. Such a distribution is defined for

three integers n1, n2 and k where n1, n2 ≥ 1 and 0 ≤ k ≤ n1 + n2. The domain of this

distribution is the set of pairs (k1, k2) such that k1 ≤ n1, k2 ≤ n2 and k1 + k2 = k. The

intuition behind a choice distribution is this. We need to select k items from n1 + n2 items.

Each pair (k1, k2) corresponds to a choice of k1 items from the n1 items and a choice of k2

items from the n2 items. The n1 and n2 items will be the variables appearing in the left and

right subtrees of a vtree node v; that is, n1 = |Xv1| and n2 = |Xv2|. Hence, we will denote

the parameters of a choice distribution by θv,k(k1, k2), which represents the probability that

we will select k1 items from the left subtree of v and k2 items from the right subtree of v.

This implies that k ≤ |Xv|.

Example 2. Consider the following choice distributions from our course selection problem

(we are only showing choices with non-zero probability).

19

v k k1, k2 θv,k

courses 3

1, 2 0.1

2, 1 0.3

3, 0 0.6

math 2 1, 1 1.0

math 1
1, 0 0.3

0, 1 0.7

math 0 0, 0 1.0

v k k1, k2 θv,k

cs 2

0, 2 0.3

1, 1 0.6

2, 0 0.1

cs 1
1, 0 0.4

0, 1 0.6

ai 1
1, 0 0.4

0, 1 0.6

For v=courses and k=3, the choice distribution θv,k is used to select 3 courses from cs and

math. For example, we select 1 course from cs and 2 from math with probability θv,k(1, 2) =

0.1. �

We are now ready to define our subset selection model. A recursive n-choose-k model

over n binary variables X has two components: (1) structure: a vtree where each leaf node

is labeled with a distinct variable from X, and (2) parameters: for each internal vtree node

v with m leaves, a choice distribution θv,i for each i = max(0, k − (n −m)), . . . ,min(k,m).

In a recursive n-choose-k model, we will never choose more than k items at any vtree node

v, hence we need choice distributions for at most min(k,m) items at node v. Moreover,

since we can choose at most n − m items from outside node v, we must choose at least

k − (n − m) items at node v. Hence, we do not need choice distributions for fewer items

than max(0, k − (n−m)).

The distribution induced by a recursive n-choose-k model is defined inductively, over

instantiations x whose cardinalities are k. Note that for the inductive cases, we refer to

cardinalities by i rather than by k.

For the base case of a leaf vtree node v labeled with variable X, we have Prv,i(X= true) =

1 if i=1 and 0 if i=0. For the inductive case of an internal leaf node v:

Prv,i(xv) = Prv1,i1(xv1) · Prv2,i2(xv2) · θv,i(i1, i2).

Here, xv1 and xv2 are the subsets of instantiation xv pertaining to variables Xv1 and Xv2 ,

respectively. Moreover, i1 and i2 are the cardinalities of instantiations xv1 and xv2 , respec-

20

v

w c (X3)

a (X1) b (X2)

Prv,2(X1X2X3)

θv,2(1,1) θv,2(2,0)

Prw,1(X1X2)

θw,1(0,1)θw,1(1,0)

Prw,2(X1X2)Prc,1(X3) Prc,0(X3)

Pra,0(X1)Pra,1(X1)Prb,0(X2) Prb,1(X2)

Figure 3.2: A vtree (upper-left), and a corresponding recursive 3-choose-2 distribution

(right). Leaf vtree nodes are labeled with their variables inside parenthesis.

tively (hence, i1 + i2 = i). The underlying independence assumption in the above inductive

case is this: how we select i1 elements from v1 is independent of how we select i2 elements

from v2, after we have chosen how many elements i1 and i2 to select in each.

Figure 3.2 depicts a vtree and a corresponding 3-choose-2 model. Each circled node

represents a recursive n-choose-k model that is associated with an internal vtree node, for

particular values of n and k. Each circled node is also associated with a choice distribution,

whose parameters annotate the edges outgoing the node.

Example 3. Using the recursive n-choose-k model, and the choice distributions of Exam-

ple 2, the probability that a student takes machine learning (ML), logic (LG) and linear algebra

(LA) is

Pr(ML=1, LG=1, CP=0, CX=0, LA=1, CL=0)

= θcourses,3(2, 1) · θcs,2(2, 0) · θmath,1(1, 0)·

θai,2(1, 1) · θtheory,0(0, 0)

= 0.3 · 0.1 · 0.3 · 1 · 1 = 0.009. �

21

Finally, we show that our recursive n-choose-k model subsumes the logistic n-choose-k

model of Equation 3.1.

Proposition 1. For any logistic n-choose-k model, there is a recursive n-choose-k model

that induces the same distribution.

3.3.2 Tractable Inference

Recursive n-choose-k models are tractable probabilistic models: we can perform many prob-

abilistic queries in time linear in the size of the model. For example, we can compute the

most probable explanation (MPE), the probability of evidence, and posterior marginals,

all in linear time. For example, we can use MPE to extend a partial subset selection to

a complete one (e.g., to extend a user’s top-3 list of movies to a top-10 list of movies, to

provide movie suggestions). We can perform cardinality queries efficiently: given a user’s

top-3 list, what is the expected number of comedies that would appear on their top-10 list?

This tractability is inherited from the Probabilistic Sentential Decision Diagram [KVC14],

of which the recursive n-choose-k model is a concrete example. We discuss this connection

further in Section 3.6.

As an example, consider a recursive n-choose-k model and suppose we observed evidence

e on some of its variables E ⊆ X. We can compute the probability of this evidence recursively,

starting from the root vtree node v:

Prv,i(e) =
∑

θv,i(i1,i2)

Prv1,i1(ev1)Prv2,i2(ev2)θv,i(i1, i2),

which follows from the underlying independence assumptions. In the base case, v is a leaf

vtree node with variable X, and i ∈ {0, 1}. If the evidence e is empty, then Prv,i(e) = 1.

Otherwise, Prvi(e) = 1 iff evidence e and the 1-choose-i model sets X to the same value.

Example 4. Say we want to compute the probability that a student takes learning (ML) and

linear algebra (LA) out of 3 total classes, with the choice distributions of Example 2. With

22

evidence e = {ML = 1, LA = 1}, we have:

Prcourses,3(ML=1, LA=1)

= Prcs,2(ML=1) · Prmath,1(LA=1) · θcourses,3(2, 1)

+ Prcs,1(ML=1) · Prmath,2(LA=1) · θcourses,3(1, 2)

= Prcs,2(ML=1) · 0.3 · 0.3 + Prcs,1(ML=1) · 1 · 0.1.

Recursively, we compute Prcs,2(ML=1) = 0.34 and Prcs,1(ML=1) = 0.16, which yields:

Prcourses,3(e) = 0.34 · 0.09 + 0.16 · 0.1 = 0.0466. �

3.4 Learning N-Choose-K Models

We show in this section how to estimate the parameters of a recursive n-choose-k model in

closed form. We also propose a simple structure learning algorithm for these models, which

amounts to learning their underlying vtrees (i.e., the recursive partitioning of variables).

We first consider the number of parameters in a recursive n-choose-k model, which is

relevant to our structure learning algorithm. Each leaf vtree node corresponds to a 1-

choose-1 or a 1-choose-0 model, which has no parameters. There are O(n) internal nodes

in the vtree, and each one has O(k) choice distributions associated with it. Each of these

distributions has O(k) parameters, leading to a total of O(nk2) parameters. Hence, the total

number of parameters in a recursive n-choose-k model is bounded by a polynomial in n and

k.

To contrast, there are n parameters in a logistic n-choose-k model, which can be learned

by iterative methods such as gradient descent [STA12]. Moreover, unlike our recursive model,

there is no structure to be learned in a logistic n-choose-k model.

3.4.1 Parameter Learning

Suppose we are given a set of n binary variables X. Let D be a dataset containing N

examples, where each example is an instantiation x of variables X with exactly k variables

23

set to true (that is, D is an n-choose-k dataset).

For a set of variables Y ⊆ X, we will say that an example x has Y-cardinality equal to

m iff exactly m variables in Y are set to true in the example. We will also use D#(Y :m) to

denote the number of examples in dataset D with Y-cardinality equal to m. This allows us

to define the following empirical probability, which is the probability of having Y-cardinality

equal to m:

PrD(Y :m) = 1
N
D#(Y :m).

Example 5. Consider the example

ML=0, LG=1, CP=1, CX=0, CL=0, LA=1

which has an ai-cardinality of 1 and a cs-cardinality of 2. We can compute the empirical

probability that a student takes one ai course and two cs courses by counting examples in

the dataset:

PrD(ai :1, cs :2) = 1
N
D#(ai :1, cs :2).

We can also find the conditional probability that a student takes one ai course given that

they take two cs courses:

PrD(ai :1 | cs :2) =
D#(ai :1, cs :2)

D#(cs :2)
. �

The following theorem provides a closed form for the maximum likelihood estimates of a

recursive n-choose-k model given a corresponding dataset D.

Theorem 1. Consider a recursive n-choose-k model and dataset D, both over variables X.

Let v be an internal vtree node of this model. The maximum-likelihood parameter estimates

for node v are unique and given by

θv,i(i1, i2) = PrD(Xv1 : i1 | Xv : i)

= PrD(Xv2 : i2 | Xv : i).

According to this theorem, and given the underlying vtree of a recursive n-choose-k

model, we can estimate its maximum likelihood parameters by performing a single pass on

the given dataset.

24

3.4.2 Structure Learning

We now turn to learning the structure of a recursive n-choose-k model, which amounts to

learning its underlying vtree. Our approach will be based on maximizing the log-likelihood

of the model, without penalizing for structure complexity since the number of parameters of

any recursive n-choose-k model is bounded by a polynomial (i.e., regardless of its underlying

vtree).

Our approach relies on the following result, which shows that the log-likelihood of a

recursive n-choose-k model M , denoted LL(M | D), decomposes over vtree nodes.

Theorem 2. Consider a recursive n-choose-k model M over variables X and a corresponding

dataset D. Let v be an internal vtree node of this model. We then have

LL(M | D) = −N ·
∑
v

H(Xv1 | Xv)

= −N ·
∑
v

H(Xv2 | Xv)

where H(Xv1 |Xv) is the (empirical) conditional entropy of the cardinality of Xv1 given the

cardinality of Xv:

−
∑

θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) · log PrD(Xv1 : i1 | Xv : i).

Theorem 2 suggests a greedy heuristic for selecting a vtree. We start with n vtrees, each

over a single variable X ∈ X. We greedily pair two vtrees va and vb (i.e., make them children

of a new vtree node v) if they have the lowest conditional entropy H(Xva | Xv) = H(Xvb |
Xv) over all pairs va and vb. We iterate until we have a single vtree over all variables X.

Example 6. Figure 3.3 highlights the first few iterations of our vtree learning algorithm,

using our course selection example. Initially, at iteration i = 0, we have six vtrees, one for

each of the six courses. Over all pairs of vtrees, say we obtain the lowest conditional entropy

with H({LG}|{LG, ML}). At iteration i = 1, we pair the vtrees of ML and LG to form a new

vtree over both. Over all pairs of vtrees, say we now obtain the lowest conditional entropy

with H({CX}|{CX, CP}). At iteration i = 2, we again pair the corresponding vtrees to form a

new one. We repeat, until we obtain a single vtree. �

25

i = 0 LG ML CX CP CL LA

i = 1 LG

CX

ML

CP CL LA●

i = 2 LG CXML CP

CL LA● ●

Figure 3.3: The first few iterations of vtree learning.

x w

a b

c xw a

b cleft-rotate(x)

right-rotate(x)

Figure 3.4: Rotating a vtree node x right and left. Nodes a, b, and c may represent leaves

or subtrees.

Our structure learning algorithm improves the quality of this vtree using local search

(simulated annealing in particular). To navigate the full space of vtrees, it suffices to have

(left and right) tree rotation operators, and an operator to swap the labels of two vtree

leaves.1 Figure 3.4 highlights the rotation operator for vtrees. In our experiments, we used

simulated annealing with the above operators to navigate the search space of vtrees, using

the greedily found vtree we just described as the initial vtree.

Our local search algorithm defines two vtrees as neighbors if one can be obtained from

the other by performing a left/right rotation of an internal vtree node, or by swapping the

variables of two leaf vtree nodes. We used an exponential cooling schedule for simulated

annealing. That is, during each iteration of the algorithm, we first select a neighbor at

1[CD13] used rotation operators and an operation that swapped the children of an internal vtree node in
order to navigate the space of vtrees. In our recursive n-choose-k model, the log likelihood is invariant to
the swapping operator, hence we chose to swap the labels of leaf nodes.

26

random. If it has a better log-likelihood score, we move to that neighbor. Otherwise, we

move to that neighbor with probability exp{ 1
Ti

∆LL(M | D)}, where ∆LL(M | D) is the

difference in log-likelihood, and Ti is the temperature at the current iteration. We stop when

the temperature drops to a preset threshold.2 We do not use restarts (empirically, our greedy

heuristic appears to obtain a reasonably good initial vtree).

Finally, we remark on the simplicity of our structure learning algorithm, compared to

other tractable representations such as the arithmetic circuit (AC) and their sum-product

network (SPN) variant [CD17]. In Section 3.6, we discuss how our recursive n-choose-k

model corresponds to a certain type of AC. However, rather than search for ACs [LD08,

GD13, DV15], we only need to search for vtrees (a much simpler space). This is possible

due to a property called canonicity, which fixes the structure of the AC once the vtree is

fixed [KVC14].

3.5 Experiments And Case Studies

We next compare our recursive n-choose-k model with the logistic n-choose-k model of [STA12],

using simulated n-choose-k datasets. We later evaluate these models using real-world datasets

from the domains of preference learning and sports analytics.

3.5.1 Simulated Data

Based on Proposition 1, for a given logistic n-choose-k model, there exists a parameterization

of a recursive n-choose-k model that induces the same distribution. However, the logistic

n-choose-k model has fewer parameters, as discussed before. Thus, for less data we generally

expect the logistic version to be more robust to overfitting, and for greater amounts of data

we generally expect our recursive version to ultimately provide a better fit.

The first goal in our experiments is to verify this behavior. We simulated n-choose-

2In our experiments, we have an initial temperature of 5.0, a cooling rate of 0.98, and a temperature
threshold of 0.001.

27

10
2

10
3

10
4

−32

−31

−30

−29

cpcs54 (k=16)

10
2

10
3

10
4

−30

−28

−26

−24

emdec6g (k=16)

10
2

10
3

10
4

−7

−6

−5

−4

−3

grids10x10 f10 (k=16)

10
2

10
3

10
4

−40

−35

−30

andes (k=16)

10
2

10
3

10
4

−20

−10

0
or chain 111 (k=16)

10
2

10
3

10
4

−48

−46

−44

−42

smokers 10 (k=16)

10
2

10
3

10
4

−28

−26

−24

tcc4e (k=16)

10
2

10
3

10
4

−22.5

−20.0

−17.5

−15.0

win95pts (k=16)

Figure 3.5: Learning results for cardinality-16: dataset size (x-axis) vs test log likelihood

(y-axis). The blue solid lines and orange dashed lines correspond to the recursive and logistic

n-choose-k models, respectively.

k datasets, that are independent of both the logistic and recursive n-choose-k models (so

that neither model would be able to fit the data perfectly). In particular, we simulated

datasets from Bayesian and Markov networks, but subjected the networks to cardinality-k

constraints.3

We selected a variety of networks from the literature, over binary variables (the corre-

sponding variable count is given in parentheses): cpcs54 (54), and win95pts (76) are classi-

cal diagnostic BNs from the literature; emdec6g(168) and tcc4e (98) are noisy-or diagnostic

BNs from HRL Laboratories; andes (223) is a Bayesian network for educational assessment;

grid10x10 f10 (100), or chain 111 (200), smokers 10 (120) are networks taken from pre-

viously held UAI competitions. We first considered cardinality-16 datasets. For each, we

simulated a testing set of size 2, 500 and independently sampled 20 training sets each of size

2s for s from 6 (64 examples) to 14 (16,384 examples). We trained n-choose-k models from

each training set, and evaluated them using the testing set, in Figure 3.5. Each point in a

plot is an average over 20 training sets.

3We remark that it is non-trivial to simulate a Bayesian network, when we condition on logical constraints.
To do so, efficiently, we first compiled a Bayesian network to a PSDD, and then multiplied it with a (uniform)
PSDD representing a cardinality-k constraint, which is discussed in Chapter 5. The result is a PSDD, which
we can now efficiently sample from.

28

k

10
20

30
40

50
60

70
N

(tr
aining

siz
e)

200

400

600

800

1000

T
es

t
L

L
G

ai
n

0

2

4

6

8

10

Figure 3.6: Learning results on the win95pts dataset: k vs dataset size vs test log likelihood.

Our recursive n-choose-k model is depicted with a solid blue line, and the logistic n-

choose-k model is depicted with a dashed orange line. There are a few general trends. First,

the logistic n-choose-k model more often provides a better fit with smaller amounts of data,

but in all but two cases (smokers 10 and andes), our recursive alternative will eventually

learn a better model given enough data. Finally, we note that the variance (plotted using

error-bars) of the logistic n-choose-k is smaller (since it has fewer parameters).

Figure 3.6 highlights the impact of varying k, using data simulated from the win95pts

network. Here, observe the gain obtained from using the recursive model versus the logistic

model, in terms of the test log likelihood, i.e., LLrecursive(D) − LLlogistic(D). Hence, if the

gain is negative, the logistic model obtained a better likelihood, and if the gain is positive,

then our recursive model obtained a better likelihood. Again, as we increase the size of the

dataset, our recursive n-choose-k model obtains better likelihoods. As we vary the cardinality

of the examples in the data, we see that the performance can vary. Generally, as we increase

k from 0 to n, the difference between the models become greater up to a point and then

it decreases again. This is expected to an extent since there is an underlying symmetry: a

constraint that k values be positive is equivalent to a constraint that n−k values are negative.

Hence, for a given n-choose-k model, there is an equivalent n-choose-(n − k) model where

29

the signs have been switched. However, there is not a perfect symmetry in the distribution,

since the original distribution generating the data (win95pts in this case) does not have this

symmetry across cardinalities.

Finally, we remark on the running time of structure learning. On the win95pts network,

with a 76-choose-32 dataset of size 213, our structure learning algorithm runs for only 65.02s

(on average over 20 runs). On the andes network, with a 223-choose-32 dataset of size 213, it

runs for only 367.8s (on average over 20 runs). This is in contrast to other structure learning

algorithms for tractable models, such as those based on ACs and their SPNs variant, where

learning requires hours for comparably sized learning problems, and even days and weeks

for larger scale problems; see, e.g., [RKG14] for a discussion. While our recursive n-choose-k

model corresponds to a special class of ACs (as we shall discuss in Section 3.6), it suffices to

learn a vtree and not the AC itself.

3.5.2 Case Study: Preference Learning

We consider a case study in preference learning. The sushi dataset consists of 5, 000 total

rankings of 10 different types of sushi [Kam03]. From this dataset over total rankings, we

can obtain a dataset over top-5 preferred sushi, where we have 10 variables (one for each

type of sushi) and a variable is true iff they are in the top-5 of their total ranking; we thus

ignore the specific rankings. Note that the resulting dataset is complete, with respect to

top-5 rankings. We learned a 10-choose-5 model from this data, using simulated annealing

seeded with our conditional entropy heuristic.4

Figure 3.7 highlights the learned vtree structure, which we can view as providing a

recursive partitioning to guide a selection of the top-5 preferred sushi, as in Section 3.3.

Going roughly left-to-right, we start with 3 popular non-fish types of sushi: squid, shrimp and

sea eel. Next, egg and cucumber roll are relatively not preferred; next, fatty tuna is heavily

preferred. Finally, we observe salmon roe and sea urchin (which are both considered acquired

4The sushi data was split into a training set of size 3, 500 and a testing set of size 1, 500 as in [LB11].
Our model was learning using just the training set.

30

●

● ●

 ika (squid) ebi (shrimp) anago (sea eel) ●

● ●

 tamago (egg) kappa-maki (cucumber roll) ●
 toro (fatty tuna)

● ●

 sake (salmon roe) uni (sea urchin) tekka-maki (tuna roll) maguro (tuna)

Figure 3.7: 10-choose-5 model for the sushi dataset.

tastes) and then tuna roll and tuna. These observations are consistent with previously made

observations about the sushi dataset; see, e.g., [LB11, CVD15]. In contrast, [LB11] learned

a mixture-of-Mallows model with 6 components, providing 6 different reference rankings (and

a dispersion parameter).5 [CVD15] learned a PSDD, but without learning a vtree; a fixed

vtree was used based on rankings, which does not reflect any relationships between different

types of sushi.

3.5.3 Case Study: Sports Analytics

Team sports, such as basketball and soccer, have an inherent n-choose-k problem, where a

coach has to select k out of n players to fulfill different roles on a team. For example, in

modern basketball, a team consists of five players who play different roles: there are two

guards, who are passers and long-distance shooters; there are two forwards, who generally

play closer to the basket; and there is the center, who is normally the tallest player and is

the one mostly responsible for gathering rebounds and for contesting shots.

5The Mallows model [Mal57] is a probabilistic model for ranking, which assumes a reference ranking σ,
with other rankings σ′ becoming less likely as their distance from σ increases.

31

●

● ●

●
 Fisher (PG) ●

 Odom (PF)

● ● ●
 Walton (SF)

●
 Mbenga (C) Peace (SF) Bryant (SG) ● ●

 Bynum (C) Gasol (C) Farmar (PG) ●
 Powell (PF) Morrison (SF)

 Brown (SG) Vujacic (SG)

Figure 3.8: 13-choose-5 model for the 2009-2010 Lakers.

http://stats.nba.com provides, for a given season and team, a record of all lineups of

five players that played together at the same time, and for how many minutes they played.

There are 48 minutes played in a basketball game, and 82 games played during the regular

season, for a total 3, 936 minutes. For the 2009-2010 Los Angeles Lakers, that season’s NBA

champions, we obtained a 13-choose-5 dataset with 39, 360 examples, taking lineups in 1
10

-th

minute increments, plus some additional examples due to overtime.

Figure 3.8 highlights the (vtree) structure that we learned from the full dataset. Again,

we can view this structure as providing a recursive partitioning to guide our selection of a

five-player NBA lineup, as in Section 3.3. Starting from the left, and rotating around the

root: Andrew Bynum, Pao Gasol and Didier Ilunga-Mbenga are the centers; Metta World

Peace, Kobe Bryant, Derek Fisher, and Lamar Odom are the starting non-centers; Luke

Walton, Josh Powell and Adam Morrison are the reserve forwards; and Jordan Farmar,

Shannon Brown, and Sasha Vujacic are the reserve guards.

32

3.6 Discovering the Recursive N-Choose-K Model

We now highlight how the recursive n-choose-k model was discovered using the Probabilistic

Sentential Decision Diagram (PSDD) [KVC14].

A PSDD allows one to define a probability distribution over a structured probability space,

which is a subset of the Cartesian product of a set of variables—with each element of this

subset corresponding to some object of interest. For example, a structured probability space

may correspond to the space of permutations, partial rankings or routes on a map [CVD15,

CTD16]. PSDDs over structured spaces are interpretable in a precise sense. For certain

spaces, including those for subset selection, this interpretability may lead to models whose

semantics are so clear that they can be described independently, without the need to invoke

the notion of a PSDD in the first place. In such cases, we say that the PSDD has enabled

model discovery.

Underlying the PSDD is the Sentential Decision Diagram (SDD), which is a class of

tractable Boolean circuits [Dar11]. In this framework, the SDD circuit is used to define the

structured probability space (a variable instantiation belongs to the structured space iff the

SDD circuit outputs one under that instantiation). Once the structured space is defined by

an SDD, a PSDD is used to induce a distribution over that space (the PSDD is basically a

parameterized SDD).

Consider the recursive 3-choose-2 model of Figure 3.2. This model corresponds to an

SDD circuit when we replace (1) internal circled nodes with or-gates, (2) paired boxes with

and-gates, (3) 1-choose-1 leaf nodes with a positive literal X and 1-choose-0 leaf nodes

with a negative literal ¬X. The result is an SDD circuit whose satisfying instantiations

have exactly two positive literals; that is, the structured probability space for 3-choose-2.

Section 3.7 provides an example of this SDD circuit, and its annotation as a PSDD.

More generally, the following theorem describes SDD circuits whose satisfying instanti-

ations are those with exactly k variables set to true (SDDs are also constructed based on

vtrees; see [Dar11] for details).

Proposition 2. Let fv,k be an SDD circuit, for a vtree v with n variables X, whose satisfying

33

instantiations x set exactly k variables to true. This circuit is equivalent to:∨
k1+k2=k fv1,k1 ∧ fv2,k2

where 0 ≤ k1 ≤ |Xv1 | and 0 ≤ k2 ≤ |Xv2|.

Hence, each or-gate of an SDD corresponds to a Boolean formula representing an n-

choose-k constraint.

To emphasize the clear semantics of this SDD, consider the number of satisfying instanti-

ations (i.e., model count) that an n-choose-k constraint has:
(
n
k

)
. To obtain the model count

of an SDD (i.e., the number of satisfying instantiations), we replace each or-gate with a +

and each and-gate with a ∗, and all literals with a 1. We then evaluate the circuit bottom-up

to evaluate the model count. The model count of the SDD in Figure 3.2 represents the

following computation of
(

3
2

)
:(

3
2

)
=
(

2
1

)(
1
1

)
+
(

2
2

)(
1
0

)
= 2 · 1 + 1 · 1 = 3.

For a more general example, suppose we are given a vtree over a set of n variables X, where

the left child of each internal node is a leaf (this is called a right-linear vtree). Computing

the model count of an SDD for this vtree, as shown above, yields the well-known recurrence

for binomial coefficients:(
n
k

)
=
(

1
0

)(
n−1
k

)
+
(

1
1

)(
n−1
k−1

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

To obtain a PSDD from an SDD, one assigns a local distribution on the inputs of each

or-gate [KVC14]. For the SDDs of Proposition 2, these local distributions correspond to

the choice distributions of our recursive n-choose-k model; see Section 3.7 for an example.

This observation allowed us to describe this model in a manner independent of the PSDD

framework, and hence enabled model discovery.

3.7 Example PSDD

Figure 3.9 highlights the SDD/PSDD corresponding to the recursive 3-choose-2 model of

Figure 3.2 using the same vtree.

34

θv,2(1,1) θv,2(2,0)

X1 X2

θw,2(1,1)

¬X3

X1 ¬X2 ¬X1 X2

θw,1(1,0) θw,1(0,1)

X3

Figure 3.9: A PSDD corresponding to the vtree and the recursive n-choose-k model of

Figure 3.2.

As we highlighted in Section 3.6, the Boolean circuit of Figure 3.9 (ignoring the annotated

parameters θv,k) outputs 1 if the circuit input sets exactly 2 out of 3 variables positively,

and outputs 0 otherwise. Note that for simplicity, we have omitted inconsistent branches

of or-gates that would normally appear in a SDD/PSDD (these branches correspond to

instantiations that do not have the required cardinality, and hence, always outputs a 0).

We can obtain an AC of this PSDD by performing two steps: convert each and-gate into

a ∗-node, and convert each or-node with children c1, . . . , cn and parameters θ1, . . . , θn into a

+-node with children α1 ∗ c1, . . . , αn ∗ cn. Given an instantiation x, the output of the AC is

found by setting the inputs to 1/0 according to x and then evaluating the circuit bottom-up.

This output yields the probability Pr(x) of the corresponding recursive 3-choose-2 model.

The properties of SDDs and PSDDs allow certain queries or operations to be performed

efficiently, which are otherwise hard on general Boolean and arithmetic circuits. For exam-

ple, model counting can be performed using SDDs in time that is linear in the size of the

SDD [Dar11]. In PSDDs, queries such as MPE and marginals are similarly tractable (as

35

discussed in Section 3.3.2). The maximum likelihood parameters of a PSDD can be learned

in closed-from from a complete dataset (as in Section 3.4). Further, one can multiply two

PSDDs in polynomial time, which enables incremental learning and inference that is shown

in Chapter 5.

3.8 Conclusion

We proposed in this chapter the recursive n-choose-k model for subset selection problems. We

also derived a closed-form parameter estimation algorithm for these models, and a simple

structure learning algorithm based on greedy and local search. Empirically, we showed

how our recursive n-choose-k models can obtain better fits of the data, compared to a

previously proposed model. Moreover, we showed how structure search can lead to an

intuitive generative model of the subset selection process (based on vtrees). We finally

showed how the proposed model was discovered using the PSDD representation for inducing

distributions over structured spaces, with the structured space being the set of variable

instantiations having a fixed cardinality.

3.A Proofs

To prove Proposition 1, we reduce the logistic n-choose-k model to a weighted model counting

(WMC) problem.

Given a propositional sentence ∆ and a set of weights W (`) on each literal `, its weighted

model count is

WMC(∆) =
∑
x|=∆

W (x) =
∑
x|=∆

∏
x|=`

W (`)

where the weight of a model W (x) is the product of the weights of its literals W (`). For

more on weighted model counting see, e.g., [CD08, KVD17].

A WMC problem induces a distribution over its models:

Pr(x) =
W (x)

WMC(∆)
.

36

If a sentence ∆ can be compiled into an SDD, then the SDD can be used to compute its

weighted model count. Subsequently, a PSDD can represent the corresponding distribution,

as follows.

Lemma 1. Consider a WMC problem over a propositional sentence ∆ with weights W (`)

on each literal `. Let m be an SDD representing sentence ∆. There is a PSDD with m as

its base that induces the same distribution induced by the given WMC problem.

Proof. Given a normalized SDD for ∆, we show how to parameterize it as a PSDD. For an

SDD/PSDD node m, let Pm be the distribution induced by the WMC problem on m, and let

Qm be the distribution induced by the PSDD. If m is a terminal node, set Qm(`) = η ·W (`)

if ` is compatible with the base of m and 0 otherwise, where η is a normalizing constant so

that Qm sums to one. If m is a decision node with elements (pi, si, θi), set

θi =
WMC(pi) ·WMC(si)

WMC(m)
.

We show Pm(x) = Qm(x) for all x, by induction. The base case, where m is a terminal node,

is immediate. Suppose m is a decision node with elements (pi, si, θi) with prime variables X

and sub variables Y, and where Ppi(x) = Qpi(x) and Psi(y) = Qsi(y). Given an assignment

xy, let the i-th element (pi, si, θi) be the one where x |= pi. We have:

Qm(xy) = Qpi(x) ·Qsi(y) · θi

= Ppi(x) · Psi(y) · θi by induction

=
W (x)

WMC(pi)
· W (y)

WMC(si)
· WMC(pi) ·WMC(si)

WMC(m)

=
W (x) ·W (y)

WMC(m)
=

W (xy)

WMC(m)
= Pm(xy). �

Proof of Proposition 1. We can represent the logistic n-choose-k model of Equation 3.1 as a

weighted model counting problem problem. First, let ∆ be a logical n-choose-k constraint

as in Proposition 2. If we use the weights W (X) = exp{θX} and W (¬X) = 1, then the

weighted model count gives us the partition function of the logistic n-choose-k model of

Equation 3.1.

37

Using Proposition 2, we can obtain an SDD for ∆ of polynomial size. Using the construc-

tion of Lemma 1, we obtain a PSDD that corresponds to a recursive n-choose-k model. This

distribution is equivalent to the one induced by the WMC problem, and the one induced by

the given logistic n-choose-k model.

Proof of Theorem 1. Under the recursive n-select-k distribution, the probability Prw,k(x) is

a product of n− 1 choice parameters. Hence, the log likelihood decomposes as follows:

LL(M | D) =
N∑
a=1

log Prw,k(x)

=
∑
v,i

∑
θv,i(i1,i2)

D#(Xv1 : i1,Xv : i) log θv,i(i1, i2)

= N ·
∑
v,i

∑
θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) log θv,i(i1, i2)

Note that for each v and i, all of the local choice distributions θv,i are independent. Hence

it suffices to locally maximize each component:∑
θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) log θv,i(i1, i2)

which is basically a cross entropy that is maximized at:

θv,i(i1, i2) = PrD(Xv1 : i1 | Xv : i)

= PrD(Xv2 : i2 | Xv : i). �

Proof of Theorem 2. If we substitute the maximum likelihood estimates of Theorem 1 into

the log likelihood of an n-choose-k model we obtain our result.

First, consider the component contributed by a single vtree node v and their choice

distribution θv,i:

N
∑

θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) log θv,i(i1, i2)

= N
∑

θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) log PrD(Xv1 : i1|Xv : i)

= −N ·H(Xv1 : i1|Xv : i)

38

which is the conditional entropy distribution. Hence:

LL(M | D) = −N
∑
v

H(Xv1 : i1|Xv : i) �

Proof of Proposition 2. Consider an n-choose-k constraint fv,k associated with a vtree node

v, with children v1 and v2 over variables Xv1 and Xv2 .

An Xv1-Xv2 decomposition is found by compressing the decomposition:

fv,k =
∨
xv1

xv1 ∧ fv,k|xv1

which is found by disjoining all xv1 terms that have equivalent terms fv,k|xv1 . For all xv1

with the same cardinality k1, the resulting function fv,k|xv1 is the same. When we disjoin

all such xv1 we obtain the function fv1,k1 . Further, fv,k|xv1 = fv2,k2 for k2 = k − k1. Hence,

the compressed decomposition is:

fv,k =
∨

k1+k2=k

fv1,k1 ∧ fv2,k2 .

See also [MT98, Weg00] (such as the cardinality-k constraint) for more on symmetric func-

tions on OBDDs.

39

CHAPTER 4

Structured Bayesian Networks

In this chapter, we first propose a variant on PSDDs, called conditional PSDDs, for repre-

senting a family of distributions that are conditioned on the same set of variables. Later,

we use conditional PSDDs to define a new graphical model, called structured Bayesian net-

works, in which nodes can have an exponential number of states, hence expanding the scope

of domains where Bayesian networks can be applied. The results discussed in this chapter

appeared in [SCD18].

4.1 Introduction

The Probabilistic Sentential Decision Diagram (PSDD) is a recently proposed tractable repre-

sentation for probability distributions [KVC14]. PSDDs were motivated by the need to learn

distributions in the presence of abundant background knowledge, expressed using Boolean

constraints. For example, PSDDs have previously been leveraged to learn distributions in

domains that can give rise to massive Boolean constraints, such as user preference rank-

ings [CVD15] as well as modeling games [CTD16]. The typical approach for constructing a

PSDD is to first compile Boolean constraints into a tractable logical representation called

the Sentential Decision Diagram (SDD). A PSDD is then learned from the compiled SDD

and a given dataset.

While PSDDs can be quite effective in the presence of massive Boolean constraints, they

do not allow users to explicitly represent background knowledge in the form of conditional

independence constraints. In contrast, probabilistic graphical models use graphs to represent

such knowledge [Dar09, KF09, Mur12, Bar12]. Moreover, Bayesian networks represent such

40

knowledge while remaining modular in a sense that we shall explain next and exploit later.

A Bayesian network has two components. The first is a directed acyclic graph (DAG)

with its nodes representing variables of interest, and its topology encoding conditional in-

dependence constraints. The second component consists of a set of conditional probability

tables (CPTs), one for each variable in the network. The CPT for a variable defines a set of

distributions for that variable, conditioned on the states of its parents in the network. A key

property of Bayesian networks is their modularity, which allows the parameter estimation

problem under complete data to be decomposed into local CPT estimation problems, with

closed-form solutions. However, in the presence of Boolean constraints, Bayesian networks

may have very connected topologies, in addition to variables with many states and parents,

potentially making them unusable practically.

Bayesian networks and PSDDs can then be viewed as two extremes on a spectrum. On the

one hand, Bayesian networks can exploit background knowledge in the form of conditional

independencies, but they cannot handle Boolean constraints as effectively as PSDDs. On

the other hand, PSDDs can effectively incorporate background knowledge in the form of

Boolean constraints, but cannot directly exploit known conditional independencies as do

Bayesian networks.

In this chapter, we propose a representation that inherits advantages from both repre-

sentations. First, we propose the conditional PSDD, which is a tractable representation of

probability distributions that are conditioned on the same set of variables. We then use

these PSDDs to represent the conditional probability tables (CPTs) of a Bayesian network.

This allows us to inherit the modularity of Bayesian networks and their ability to explicitly

encode independence, while also inheriting from PSDDs their ability to effectively incorpo-

rate Boolean domain constraints. We refer to the resulting representation as a structured

Bayesian network, as it also allows nodes with (exponentially) many states. This increases

the reach of both PSDDs and Bayesian networks, on the modeling, learning and computa-

tional fronts.

This chapter is organized as follows. We first review background knowledge as exploited

41

L K P A Students

0 0 1 0 6

0 0 1 1 54

0 1 1 1 10

1 0 0 0 5

1 0 1 0 1

1 0 1 1 0

1 1 0 0 13

1 1 1 0 8

1 1 1 1 3

Table 4.1: Student enrollment data. Each column (variable) corresponds to a course, and

each row (variable assignment) corresponds to an example. The counts represent the number

of times that the example appeared in the dataset. For example, the second row represents

those students who took Probability (P) and AI (A), but did not take Logic (L) or KR (K).

There were 54 such examples (students) in this case.

by PSDDs. We next consider modular forms of background knowledge, which are required

and exploited by conditional PSDDs. We subsequently introduce the syntax and semantics

of conditional PSDDs, while proposing a simple and efficient algorithm for learning their

parameters from complete data. We then provide some empirical results to highlight the

statistical advantages of conditional PSDDs and structured Bayesian networks, followed by

an example structured Bayesian network that can be used for different prediction tasks. We

finally close with some concluding remarks.

4.2 Learning with Background Knowledge

A common form of background knowledge is Boolean constraints, which we illustrate next

with several examples. The first example we discuss is due to [KVC14], and concerns a com-

puter science department that organizes four courses: Logic (L), Knowledge Representation

42

(K), Probability (P), and Artificial Intelligence (A). The department has data on student

enrollments, as in Table 4.1, and wishes to learn a probabilistic model of student preferences.

For example, the department may use the model to infer whether students who take KR are

more likely to take Logic than AI. This is a classical machine learning problem, except that

we also have background knowledge in the form of program requirements and prerequisites:

– A student must take at least one of Probability or Logic.

– Probability is a prerequisite for AI.

– The prerequisite for KR is either AI or Logic.

Our goal is then to learn a model using both the data in Table 4.1 and the above knowledge.

Effectively, what this knowledge tells us is that some examples will never appear in the

dataset because they violate domain constraints — in contrast, for example, to being unlikely

or missing for some idiosyncratic reason. This is valuable information and ignoring it can

lead to learning a suboptimal model at best, as discussed in [KVC14]. More precisely, the

domain constraints of this example can be expressed as follows:

P ∨ L
A⇒ P

K ⇒ A ∨ L

Even though there are 16 combinations of courses, this knowledge tells us that only 9 of

them are valid choices. Hence, an approach that observes this information must learn a

probability distribution that assigns a zero probability to every combination that violates

these constraints; otherwise, it will be suboptimal.

Consider now another example, where the goal is to learn a distribution over routes on a

map. Figure 4.1 depicts two example routes on a map that has the form of a grid [CTD16]

— more generally, a map is modeled using an undirected graph. We can represent each edge

i in the map by a Boolean variable Ei, and each route as a variable assignment that sets only

its corresponding edge variables to true. In this case, each example in the dataset will be a

truth assignment to edge variables Ei. Again, some examples will never appear in the dataset

43

s

t

s

t

Figure 4.1: Routes on a 4× 4 grid.

as they do not correspond to valid routes. For example, a route that contains disconnected

edges is invalid, but other types of invalid routes may also be mandated by the domain. That

is, we may already know that only simple routes are possible (i.e., no cycles), or that routes

which include edge i will never include some other edge j, and so on. Again, the goal here is

to be able to learn from both the dataset and the domain constraints; see [CTD16, NYM17]

for how connected-routes and simple-routes can be encoded using Boolean constraints.

We now consider our last illustrative example in which we want to learn a distribution to

reason about user preferences. We have n items in this case and a corresponding number of

ranks: 1, . . . , n. Users are asked to specify the rank j of each item i, which can be represented

by a Boolean variable Aij. That is, this variable is true if and only if item i has rank j. Each

example in this case is also a variable assignment, which declares the ranks of some items.

As is, an example could leave some item i unassigned to a rank, i.e., when variables Aij are

false for all ranks j. Moreover, an example could assign the same rank to multiple items,

i.e., when both Aij and Akj are true for items i 6= k and rank j.

All kinds of constraints may arise in this domain of preference learning [LB11, HKG12].

For example, one may know up front that all examples must correspond to total rankings,

in which each item is assigned precisely one rank, and each rank is assumed by exactly one

item. These constraints were considered in [CVD15], which showed how to encode them

44

using Boolean constraints. For example, when n = 3, the constraints are as follows:

– Each item i is assigned exactly one rank, leading to three constraints for i ∈ {1, 2, 3}:
(Ai1 ∧ ¬Ai2 ∧ ¬Ai3) ∨ (¬Ai1 ∧ Ai2 ∧ ¬Ai3) ∨ (¬Ai1 ∧ ¬Ai2 ∧ Ai3).

– Each rank j is assumed by exactly one item, leading to three constraints for j ∈
{1, 2, 3}: (A1j ∧ ¬A2j ∧ ¬A3j) ∨ (¬A1j ∧ A2j ∧ ¬A3j) ∨ (¬A1j ∧ ¬A2j ∧ A3j).

More generally, one needs a total of 2n constraints when considering n items and ranks.

As discussed in [KVC14], learning from both data and domain constraints is challenging

for classical learning approaches. For example, when using a probabilistic graphical model,

the resulting graph will almost be fully connected which makes both learning and inference

very difficult. Hence, PSDDs were introduced to address this challenge.

4.3 Modular Background Knowledge

The PSDD framework can work with background knowledge in the form of arbitrary Boolean

constraints since SDD circuits can be compiled from such constraints [Dar11]. In some

cases, however, Boolean constraints may be modular in a sense that we shall define precisely

in this section. Modular Boolean constraints are important because they can be easily

integrated with background knowledge in the form of independence constraints. Moreover,

they can facilitate the compilation process into SDDs and the learning process itself, leading

to improved scalability and to more accurate models. We define modular Boolean constraints

next, starting with a motivation from Bayesian networks.

As mentioned earlier, the first component of a Bayesian network is a directed acyclic graph

(DAG) over variables X1, . . . , Xn, which encodes conditional independence statements. In

particular, for each variable Xi with parents Pi and non-descendants Ni, the DAG asserts

that Xi is independent of Ni given Pi. The second component of a Bayesian network contains

conditional probability distributions for each variableXi, Pr(Xi | Pi), also known as the CPT

for variable Xi. The independencies encoded by the DAG, together with these conditional

distributions, define a unique distribution Pr(X1, . . . , Xn) [Dar09, KF09, Mur12, Bar12].

45

Consider now the following key observation. Any set of Boolean constraints ∆ implied

by the network distribution Pr(X1, . . . , Xn) must be modular in the following sense. The

constraints ∆ can be decomposed into sets ∆1, . . . ,∆n such that:1

• ∆i mentions only variable Xi and its parents Pi.

• ∆i does not constrain the states of parents Pi.

A set of constraints that satisfies the above properties will be called constraints for Xi | Pi,

or simply conditional constraints when Xi and Pi are clear from the context.

Here is now the key implication of the above observation.

If the domain under consideration admits a DAG that captures probabilistic in-

dependence, then one can encode any underlying Boolean constraints modularly,

i.e., using only conditional constraints.

The catch however is that exploiting this implication fully requires a new class of DAGs

for representing independence constraints, compared to what is used in Bayesian networks.

We will come back to this point later, after dwelling more on conditional constraints. In

particular, we will state two properties of these constraints and provide a concrete example.

The first property of conditional constraints is this: for every parent instantiation pi,

there is at least one state xi that is compatible with pi given ∆i. That is, while ∆i may

eliminate some states of variable Xi under instantiation pi, it will never eliminate them all.

We will use this property later.

The second property is that conditional constraints can always be expressed as follows.

Let α1, . . . , αm be a partition of the states for parents Pi, and let βj be a non-empty set of

states for Xi, j = 1, . . . ,m. Any conditional constraints for Xi | Pi can be expressed in the

form “if the state of parents Pi is in αj, then the state of Xi is in βj.” The converse is also

true: any set of constraints of the previous form must be conditional (i.e., cannot eliminate

any parent state, or eliminate all states of Xi under a given parent instantiation).

1If such a decomposition is not possible, we can establish a contradiction with some of the probabilistic
independence constraints encoded by the DAG of the Bayesian network.

46

A B

U,VX,Y

R,S,T

Figure 4.2: A cluster DAG.

We will now consider a concrete example of modular constraints, which are extracted

from the zero parameters of a Bayesian network over three variables A,B and C. Here,

variable C is a child of A and B and has the following CPT:

A B C Pr(C | A,B) A B C Pr(C | A,B)

a0 b0 c0 0.3 a1 b0 c0 0.0

a0 b0 c1 0.1 a1 b0 c1 0.7

a0 b0 c2 0.6 a1 b0 c2 0.1

a0 b0 c3 0.0 a1 b0 c3 0.2

a0 b1 c0 0.0 a1 b1 c0 0.0

a0 b1 c1 0.7 a1 b1 c1 0.7

a0 b1 c2 0.1 a1 b1 c2 0.1

a0 b1 c3 0.2 a1 b1 c3 0.2

Variables A and B are binary in this case, with variable C having four states. Moreover,

this CPT encodes the following conditional constraints on variable C given A and B:

– if the parents satisfy a1 ∨ b1, then C satisfies c1 ∨ c2 ∨ c3.

– if the parents satisfy a0 ∧ b0, then C satisfies c0 ∨ c1 ∨ c2.

We will next discuss why the integration of conditional Boolean constraints with indepen-

dence constraints will generally requires a new class of DAGs for representing independence

constraints.

47

As discussed earlier, a Bayesian network over variables X1, . . . , Xn requires one to con-

struct a DAG in which nodes correspond to variables X1, . . . , Xn. When the Boolean con-

straints are massive, the resulting DAG may end up being almost fully connected, making

the Bayesian network unusable practically. To address this issue, we will work with DAGs in

which nodes correspond to clusters of variables; see Figure 4.2. The independence semantics

are similar to classical Bayesian networks, except that cluster DAGs can be less committing

than classical DAGs. For example, the cluster DAG in Figure 4.2 says that variables {X, Y }
are independent of {R, S, T} (and {U, V }) given {A,B}. Cluster DAGs, however, are silent

on the independence relationships between variables in the same cluster. As we shall see in

the following section, the relationships among variables in the same cluster, and between a

cluster and its parent clusters, will be handled by the newly introduced conditional PSDDs.

We close this section by pointing out that in this chapter, variables in a cluster DAG are

assumed to be binary. Consider again the CPT above in which variable C has four states.

By replacing this variable with two binary variables, X and Y , we get the following CPT:

A B X Y Pr(X, Y | A,B)

a0 b0 x0 y0 0.3

a0 b0 x0 y1 0.1

a0 b0 x1 y0 0.6

a0 b0 x1 y1 0.0
...

...
...

...

Here, state c0 is encoded by state x0, y0, state c1 is encoded by x0, y1 and so on, leading to

the conditional constraints:

– if a1 ∨ b1, then x1 ∨ y1.

– if a0 ∧ b0, then x0 ∨ y0.

We will refer to this example in the following section.

48

a1

b1

x1

θ1 1-θ1

θ2 1-θ2 θ4 1-θ4

θ3 1-θ3

𝛽𝛼

a0

b0

b1 b0

x0 y1

y0y1

x1 y0 x0

y0y1

Figure 4.3: A conditional PSDD (vtree on left of Figure 4.5).

4.4 Conditional PSDDs

We will now introduce the conditional PSDD for representing a family of distributions that

are conditioned on the same set of variables. That is, a conditional PSDD will play the

role of a CPT in a Bayesian network. More precisely, a conditional PSDD will quantify the

relationship between a cluster and its parents in a cluster DAG, leading to what we shall

call a structured Bayesian network. Not only will this allow us to integrate Boolean and

independence constraints into the learning process, but it will sometimes allow us to scale to

networks whose nodes have exponentially many states (we will show how conditional PSDDs

can be learned efficiently from complete data in the following section).

The first step in obtaining a conditional PSDD is to compile conditional constraints into

an SDD. Compiling the constraints from the previous section leads to the SDD in Figure 4.3.

We will next discuss two key properties of this SDD.

The first property concerns the SDDs labeled α and β. SDD α represents the Boolean

49

a1

b1

x1

θ1 1-θ1

θ2 1-θ2 θ4 1-θ4

θ3 1-θ3

𝛽𝛼

a0

b0

b1 b0

x0 y1

y0y1

x1 y0 x0

y0y1

Figure 4.4: A partial evaluation of the conditional PSDD of Figure 4.3, under the input

A=a1, B=b1. Wires are colored red if they are fixed to high, and colored blue if they are

fixed to low. The states of uncolored wires depend on the states (values) of the inputs X

and Y . In this example, the output of the circuit is the same as the value of α.

expression x1 ∨ y1, which captures the states of X, Y under a1 ∨ b1. SDD β represents the

Boolean expression x0 ∨ y0, which captures the states of X, Y under a0 ∧ b0. Each of these

SDDs can be parameterized into a PSDD to yield a distribution over the corresponding

states of variables X, Y ; see Figure 4.3.

The second property of the SDD in Figure 4.3 is that the output of the circuit under any

input that satisfies a1 ∨ b1 will be the state of α; see Figure 4.4. Similarly, the output of the

circuit under any input that satisfies a0∧ b0 will be the state of β. That is, depending on the

values of parents A and B, the circuit selects either PSDD α or PSDD β. This is why the

circuit in Figure 4.3 is called a conditional PSDD: it represents a set of PSDDs for variables

X, Y , each conditioned on some state of parents A and B. According to this conditional

PSDD, the distribution over variables X, Y is independent of the specific state of parents A

50

.

A .

B *

X Y

.

. *

A B X Y

.

. .

A X B Y

Figure 4.5: Two vtrees for X | P with X = {X, Y } and P = {A,B} (left and center) and a

vtree that is not for X | P (right). The X-nodes of the first two vtrees are starred.

and B, once we know that these parents satisfy a1 ∨ b1. This corresponds to context-specific

independence [BFG96], as it says that X, Y is independent of A given b1, and independent

of B given a1. That is, the independence is conditioned on a variable taking a specific value

(X, Y are neither independent of A given B nor independent of B given A). Decision trees

have also been used in a similar context by [FG98], but these trees are representationally less

compact than conditional PSDDs. The latter are based on SDDs, which are decision graphs

(not trees) that branch on sentences instead of variables, leading to exponentially smaller

representations [MT98, XCD12, Bov16].

The above properties are due to choosing a specific vtree when constructing an SDD and

because the SDD was compiled from modular constraints. We formalize these next.

Definition 2 (Conditional Vtrees). Let v be a vtree for variables X ∪ P which has a node

u that contains precisely the variables X. If node u can be reached from node v by only

following right children, then v is said to be a vtree for X | P and u is said to be its X-node.

Conditional vtrees were introduced in [OCD16] for a different purpose, under the name of

P-constrained vtrees. Figure 4.5 depicts some examples of conditional vtrees for X = {X, Y }
and P = {A,B}. The figure also marks the X-nodes of these vtrees.

51

We are now ready to formally define conditional PSDDs and their underlying SDDs.

Definition 3 (Conditional and Modular SDDs). An SDD circuit for X | P is one that

conforms to a vtree for X | P. The circuit is also modular for X | P if it evaluates to 1

under each instantiation p and some instantiation x.

Modularity can be described in two equivalent ways: (1) the SDD does not constrain the

states of parents P, or (2) variables X have at least one possible state given any instantiation

of parents P. If modularity is violated by some parent instantiation p, then we cannot

represent the conditional distribution Pr(X | p) for that instantiation.

Definition 4 (Conditional PSDDs). An or-gate that feeds only from variables in X will be

called an X-gate. A PSDD for X | P is a modular SDD for X | P in which every X-gate is

parameterized.

With X = {X, Y } and P = {A,B}, we have four X-gates in Figure 4.3. The following

theorem shows that a conditional PSDD is guaranteed to contain a PSDD for each conditional

distribution Pr(X | p).

Theorem 3. Consider a modular SDD γ for X | P and let u be the X-node of its vtree. For

each parent instantiation p, there is a unique X-gate g that (1) conforms to u and (2) has

the same value as SDD γ under every circuit input p,x.

The or-gate g will then be the root of an SDD that captures the possible states of variables

X under parent instantiation p. Moreover, the parameterization of this SDD leads to a

PSDD for the conditional distribution Pr(X | p). It is critical to observe here that multiple

parent instantiations p may map to the same or-gate g. That is, the number of PSDDs in a

conditional PSDD is not necessarily exponential in the number of parents P. More generally,

the size of a conditional PSDD is neither necessarily exponential in the number of variables X

nor their parents P. This is the reason why structured Bayesian networks—which are cluster

DAGs that are quantified by conditional PSDDs—can be viewed as Bayesian networks in

which nodes can have an exponential number of states. We will later discuss a real-world

application of structured Bayesian networks at length.

52

4.5 Learning Conditional PSDDs

Learning a conditional PSDD is akin to learning the CPT of a Bayesian network in that

we are learning a set of distributions for variables X given their parents P. As we shall see

next, this turns out to be easy under complete data as it amounts to a process of counting

examples in the dataset, which can be described using closed-form equations.

The one difference with learning CPTs is that we are now learning from constraints as

well, which requires compiling the given constraints into an SDD circuit that conforms to a

vtree for X | P. There are usually many such vtrees for a given X and P so the learning

process tries to choose one that minimizes the SDD size (there is a unique compressed SDD

once the vtree is fixed). A method that searches for conditional vtrees has already been

proposed in [OCD16], which we adapted. 2

Once the vtree and the SDD are fixed, the parameters of the PSDDs (embedded in our

conditional PSDD) can be learned in closed form when the data is complete. This can be

done using a method similar to the one proposed in [KVC14] for learning the parameters of

a classical PSDD. In particular, each parameter is simply estimated by counting the number

of examples in the dataset that “touches” that parameter in the PSDD. We can visualize

this process using the conditional PSDD of Figure 4.6, for which the underlying SDD was

evaluated under the example A=a1, B=b1, X=x1, Y =y0. The parameters touched by this

example are the ones encountered by starting at the output or-gate, and then descending

down to every gate and circuit input that evaluates to 1. According to this definition,

parameters θ1 and 1− θ2 are touched in Figure 4.6.

Suppose now that D#(θi) and D#(1− θi) denote the number of examples in dataset D
that touch each corresponding parameter. The (maximum-likelihood) parameters are then

2In a normalized and compressed SDD, two nodes cannot represent the same Boolean function if they
conform to the same vtree node [Dar11]. Hence, each PSDD node conforming to the X-node of the vtree
will have a unique space over the variables X, and hence a unique distribution for that space. This can be
relaxed by either using auxiliary variables to distinguish distributions over the same space or use an SDD
that is uncompressed as the underlying structure.

53

a1

b1

x1

θ1 1-θ1

θ2 1-θ2 θ4 1-θ4

θ3 1-θ3

𝛽𝛼

a0

b0

b1 b0

x0 y1

y0y1

x1 y0 x0

y0y1

Figure 4.6: Evaluating the SDD of a conditional PSDD under the circuit input A=a1, B=b1,

X=x1, Y =y0 (which can be viewed as an example in the dataset). Each wire is colored by

its state (red for high and blue for low). The wires in bold are visited when descending from

the root gate down to every gate and circuit input that evaluates to 1.

given by3

θml
i =

D#(θi)

D#(θi) +D#(1− θi)
.

Again, this parameter estimation algorithm is analogous to the one given by [KVC14] for

classical PSDDs, except that we do not estimate parameters for gates that are not X-gates.

Moreover, the above parameter estimates are the maximum likelihood estimates for the

structured Bayesian network that is quantified using conditional PSDDs.

4.6 Experimental Results

We now empirically evaluate our proposed approach using conditional PSDDs by contrasting

it to the classical way in which PSDDs are used. In particular, given data and a cluster DAG

3This equation is based on or-gates with two inputs. However, it can be generalized easily to or-gates
with an arbitrary number of inputs, since all underlying concepts still apply to the general case.

54

6 8 10 12 14

data set size (2x)

−210

−205

−200

−195

−190

te
st

lo
g

lik
el

ih
oo

d

random

cpt (min)

joint (min)

Figure 4.7: Conditional vs. joint PSDDs on random networks.

with corresponding modular constraints, we learn a model in two ways. First, we compile

the constraints into an SDD that we then parameterize using the data. This is the classical

method which we shall refer to as “joint PSDD.” Second, we compile each set of conditional

constraints into a conditional PSDD and learn its parameters from the data. This is the

proposed method which we refer to as “conditional PSDD.” We finally compare the quality

of the two models learned. In each case, we also try to minimize the size of compiled SDD

as is classically done.

The used data and constraints are obtained by randomly generating Bayesian network

structures over 100 variables X1, . . . , X100. In particular, the structure of the network is

obtained by randomly selecting k parents for each variable Xi from the last s variables that

precede Xi, i.e., from Xi−s, . . . , Xi−1 (if they are available). For our experiments, we assumed

k = s = 4. Each variable Xi was assumed to have 24 = 16 states (hence, we used 4 SDD

variables to represent that space, leading to clusters of size 4). The modular constraints were

generated as follows. For each variable Xi, we divide the space of parent instantiations by

asserting a random parity constraint of length k
2

where k is the number of SDD variables used

to represent the parents. We then divide the space recursively, until we have a partition of

55

size 8. For each member of the partition, we constrain variable Xi using a parity constraint

of length k
2

where k is now the number of SDD variables used to represent the child (i.e.,

k = 4). Note that a parity constraints eliminates half the values of variable Xi.

We simulate datasets from this Bayesian network using forward sampling. That is, we

traverse the network in topological order and draw a sample from each node given the sample

of the parents. Each dataset is used to learn the conditional PSDDs of the cluster DAG, as

well as the corresponding joint PSDD.

Figure 4.7 highlights the results. On the x-axis, we increase the size of the training set

used. On the y-axis, we evaluate the test-set log likelihood (larger is better). We simulated

10 random networks, and for each network we simulated 7 different train/test pairs; hence,

each point represents an average over 70 learning problems. For each learning problem, we

increased the size of training sets from 26 to 214, and used an independent test set of size

212. We observe, in Figure 4.7, that the conditional PSDD obtains much better likelihoods

than the joint PSDD, especially with smaller datasets. On average, the joint PSDDs had

45,618 free parameters, while the conditional PSDDs had on average 648 free parameters in

total. Hence, with smaller datasets, we expect the conditional PSDDs to be more robust to

overfitting.

4.7 Structured Näıve Bayes

We now discuss an application of SBNs. In particular, SBNs can be used on prediction tasks

that involve combinatorial objects. We show that SBNs subsume previous methods that

has tackled this task [CTD16]. In addition, SBNs provide additional capabilities to handle

challenges that cannot be addressed by the previous method.

Let’s first review a traditional Näıve Bayes, which is a popular Bayesian network structure

that is used for the classification task. Its graphical structure is shown in Figure 4.8a. It

has a single root node representing the label that we are predicting. Each leaf variable

Xi corresponds to a feature, and it has the label variable as its only parent. To predict a

label, one can compare between two probabilities, Pr(x, y) and Pr(x, ȳ), and select the label

56

configuration that results in a higher probability. A Näıve Bayes can be used to predict a

simple object using a set of simple features, where each is represented as a variable in the

DAG.

Its structured version, a structured Näıve Bayes, replaces each variable in a Näıve Bayes

with a cluster of variables, as shown in Figure 4.8b. Each cluster models a combinatorial

object tractability using a (conditional) PSDD. As a result, a structured Näıve Bayes can be

used for classification tasks that cannot be modeled using a traditional Näıve Bayes; each of

the features and the label can be combinatorial objects.

Y

· · ·X1 Xn

(a) A Näıve Bayes.

Y1 · · ·Yn

· · ·A1 · · ·Al B1 · · ·Bm

(b) A structured Näıve Bayes.

Figure 4.8: On the left, it shows a Näıve Bayes that is used for binary classification. On the

right, it shows a structured Näıve Bayes that can be used for both binary and structured

classification.

When the label is binary and the feature is complex, the structured Näıve Bayes corre-

sponds to a model that has been proposed in [CTD16]. For example, the author predicts the

player based on the tic-tac-toe game traces it has played. In this case, the game traces is a

complex feature. [CTD16] uses a graphical assumption as shown in Figure 4.8b. The root

contains a single binary variable representing the type of the player, and each leaf contains

a set of variables where together represent a game trajectory that the player has played. It

first uses two numbers, Pr(Player = Beginner) and Pr(Player = Advanced), to parameterize

a prior probability over the variable in the root cluster, Player. In addition, it proposes

a specialized method to model the conditional probability Pr(GameTrace | Player), which

has an equivalent conditional PSDD representation. The conditional probability is modeled

using two PSDDs, n+ and n−. The node n+ represents the joint distribution of the game

trajectory played by the beginner player, and n− represents the joint distribution of the

57

advanced player. The representation of a conditional probability, Pr(GameTrace | Player) is

a special case of conditional PSDD that is formed by a template shown in Figure 4.9.4

y PSDD n+ ȳ PSDD n−

Figure 4.9: A conditional PSDD representing the CPT of a structured Näıve

Bayesin [CTD16].

In addition to accommodate combinatorial features, structured Näıve Bayes can be used

to predict a combinatorial object from binary features. Consider a case where we want to

predict the 3 courses that are selected by a student from the 100 courses offering. In addition,

we also have obtained some binary features about each student, e.g. its seniority (high/low),

its GPA (below/above 2.0), etc

The problem can be modeled using a structured Näıve Bayes. The root cluster contains

100 course variables, and each variable indicates whether the student selects the correspond-

ing course. Each leaf cluster contains a binary feature that describes the student, e.g.

seniority or GPA. Next, we are going to discuss about the modeling parameters of each

cluster.

To model a joint probability over a 3-choose-100 selection, methods in Chapter 3 can be

used. The joint probability over the course selection can be represented as a PSDD. For each

leaf cluster, a conditional PSDD is to be specified to describe the conditional probability of

each binary feature given the course selection. The structure of the conditional PSDD can

come from the knowledge of the context-specific independence in the problem. For example,

students taking the same number of honor classes, which is a few selected challenging courses,

have the same conditional probability of obtaining a high GPA. Based on this assumption,

4The underling SDD is not compressed so that we can model two distinct joint probability distributions
having the same structured space, i.e. all possible game trajectories in a tic-tac-toe game.

58

a conditional PSDD can be crafted as in Figure 4.10 to model Pr(X | P), where X is a

binary variable that represents the GPA level of a student, and P represents the 3 selected

courses by the student. Each node, ni, in Figure 4.10 represents an SDD, and it models a

logical formula that the student takes i honor classes. Whenever a student takes i honor

classes, the SDD node ni will be activated, and the corresponding terminal PSDD node, that

is parameterized by θi, is selected to model the probability that the student has a high GPA

given it takes i honor classes. In this example, the conditional PSDD is crafted from our

domain knowledge. In Chapter 7, we will show that conditional PSDDs can also be learned

directly from data.

n0 n1 n2 n3 n≥4

X ¬X X ¬X X ¬X X ¬X X ¬X
θ0 1− θ0 θ1 1− θ1 θ2 1− θ2 θ3 1− θ3 θ4 1− θ4

Figure 4.10: A conditional PSDD that models context specific independence.

4.8 Conclusion

We proposed conditional PSDDs and cluster DAGs, showing how they lead to a new prob-

abilistic graphical model: The structured Bayesian network. The new model was motivated

by two needs. The first is to learn probability distributions from both data and back-

ground knowledge in the form of Boolean constraints. The second is to model and exploit

background knowledge that takes the form of independence constraints. The first need has

been addressed previously by PSDDs, while the second has been addressed classically using

probabilistic graphical models, including Bayesian networks. Structured Bayesian networks

59

inherits the advantages of both of these representations, including closed-form parameter esti-

mates under complete data. We presented empirical results to show the promise of structured

Bayesian networks in learning better models than PSDDs, when independence information

is available. We also presented a case study that tackles different prediction tasks using a

sub-class of SBNs, structured Näıve Bayes. We demonstrated that a structured Näıve Bayes

could model various prediction problems where combinatorial objects were involved.

4.A Proofs

To proof Theorem 3, it requires a few formal definitions. Let f be a Boolean function and x

be an instantiation of some of its variables. Then f |x denotes the subfunction obtained from

f by fixing the values of variables X to x. In the following proofs, we use Boolean functions

and SDDs exchangeably.

A terminal SDD is either a variable (X), its negation (¬X), false (⊥), or true (an or-gate

with inputs X and ¬X).

The proof of Theorem 3 follows directly from two lemmas that we state and prove next.

Lemma 2. Consider a modular SDD γ for X | P that conforms to vtree v, and let u be the

X-node of vtree v. For each parent instantiation p, there is an X-gate g that represents the

subfunction γ|p.

Proof The proof is by induction on the level of node u in the vtree.

• Base Case: u = v. Then P = ∅ and there is a unique (empty) instantiation p, where

γ|p = γ.

• Inductive Step u 6= v: Then SDD γ is a fragment; see Figure 2.2. Since SDD γ

conforms to v, each prime pi conforms to vl and each sub si conforms to vr. Since u is

the X-node, it can be reached from the root v by iteratively following right children.

Hence, X ⊆ vars(vr) and vars(vl) ⊆ P. Let Pl = vars(vl) (parent variables to the

left of v) and Pr = P \ vars(vl) (parent variables on the right of v). Further, let pl

60

and pr denote the corresponding sub-instantiations of p. In an SDD, the primes pi are

mutually-exclusive and exhaustive, hence γ|pl = si for some unique i. Moreover, since

γ is modular for X | P, then γ|pl must be modular for X | Pr. Since γ|pl = si further

conforms to vr, then by induction there is an X-gate g representing si|pr . Gate g is

also the one representing γ|p since: γ|p = (γ|pl)|pr = si|pr = g. �

Lemma 3. Consider a modular SDD γ for X | P that conforms to vtree v, and let u be the

X-node of vtree v. For each parent instantiation p, if there is an X-gate g that represents

γ|p, then gate g (1) conforms to u, (2) evaluates to 1 on x iff γ evaluates to 1 on p,x, and

(3) is unique.

The proof uses a property of normalized and compressed SDDs that underlie conditional

PSDDs. That is, in such SDDs, we cannot have two distinct or-gates that conform to the

same vtree node yet represent the same Boolean function [Dar11].

Proof We prove each part in turn.

1. By Lemma 2, there is an X-gate g representing γ|p. From the proof of Lemma 2,

this X-gate g is obtained by following a path in the circuit γ through the subs. By

conformity, each of these subs comform to the corresponding right child of a vtree

node. Hence, g must conform to u.

2. For a given instantiation p, we have γ(p,x) = γ|p(x), which is equivalent to g(x) from

the proof of Lemma 2.

3. Suppose that there exists a gate h that conforms to u and which evaluates to 1 on x

iff γ evaluates to 1 on p,x. It follows that h(x) = g(x) for all x. Since the SDD is

normalized and compressed, we must have h = g. �

61

CHAPTER 5

Inference

In this chapter, we illustrate an exact inference algorithm for SBNs. The algorithm is

based on compiling the SBN to a PSDD, where both models represent the identical joint

probability distribution. After the PSDD is obtained, many tractable probabilistic queries

can be computed in time that is linear in the size of the PSDD, see Chapter 2. The results

discussed in this chapter appeared in [SCD16] and [SGD19].

5.1 Introduction

Most inference tasks on graphical models are computationally challenging, which is also

the case for SBNs. For example, to calculate the marginal probability of a variable in a

regular BN is known to be PP-Complete [Coo90, Rot96]. As any regular BN is a sub-class of

SBNs, computing the marginal query on an SBN is at least as hard. Due to this complexity,

many works have suggested to compile the joint distribution of a graphical model to a more

tractable representation [CKD13, CD07]. The compilation algorithms can have the same

time complexity as the traditional junction tree algorithm in the worst case [Dar09]. After

the tractable representation is obtained, most probabilistic queries can be answered in time

that is linear to the size of the representation. As local structures are exploited during the

compilation but not in the vanilla version of a join tree algorithm, inferencing on a tractable

representation can be exponentially faster. Due to these advantages, we are interested in

compiling the SBNs into a more tractable representation, i.e. PSDDs.

The chapter is organized as follows. In Section 5.2, we review different representations

of probability distributions. We study two properties of the representation, which enable

62

it to support multiple tractable probabilistic queries. In Section 5.3, we study different

tractable operations that PSDD supports. In Section 5.4, we use one of the introduced

tractable operation, multiple, to compile a traditional graphical model into a single PSDD.

Furthermore, we show that a similar procedure can also be used to compile an SBN into

a single PSDD in Section 5.5. Finally, we provide an empirical analysis in Section 5.6 and

conclude in Section 5.7.

5.2 Representing Distributions Using Arithmetic Circuits

We start with the definition of factors, which include distributions as a special case.

Definition 5 (Factor). A factor f(X) over variables X maps each instantiation x of vari-

ables X into a non-negative number f(x). If
∑

x f(x) = 1, the factor represents a distribu-

tion.

We define the value of a factor at a partial instantiation y, where Y ⊆ X, as f(y) =∑
z f(yz), where Z = X \ Y. When the factor is a distribution, f(y) corresponds to the

probability of evidence y. We also define the MAP instantiation of a factor as argmaxx f(x),

which corresponds to the most likely instantiation when the factor is a distribution.

The classical, tabular representation of a factor f(X) is exponential in the number of

variables X. However, one can represent such factors more compactly using arithmetic

circuits.

Definition 6 (Arithmetic Circuit). An arithmetic circuit AC(X) over variables X is a rooted

DAG whose internal nodes are labeled with + or ∗ and whose leaf nodes are labeled with either

indicator variables λx or non-negative parameters θ. The value of the circuit at instantiation

x, denoted AC(x), is obtained by assigning indicator λx the value 1 if x is compatible with

instantiation x and 0 otherwise, then evaluating the circuit in the standard way. The circuit

AC(X) represents factor f(X) iff AC(x) = f(x) for each instantiation x.

A tractable arithmetic circuit allows one to efficiently answer certain queries about the

63

factor it represents. We next discuss two properties that lead to tractable arithmetic circuits.

The first is decomposability [Dar01a], which was used for probabilistic reasoning [Dar03].

Definition 7 (Decomposability). Let n be a node in an arithmetic circuit AC(X). The

variables of n, denoted vars(n), are the variables X ∈ X with some indicator λx appearing

at or under node n. An arithmetic circuit is decomposable iff every pair of children c1 and

c2 of a ∗-node satisfies vars(c1) ∩ vars(c2) = ∅.

The second property is determinism [Dar01b], which was also employed for probabilistic

reasoning in [Dar03].

Definition 8 (Determinism). An arithmetic circuit AC(X) is deterministic iff each +-node

has at most one non-zero input when the circuit is evaluated under any instantiation x of

the variables X.

A third property called smoothness is also desirable as it simplifies the statement of

certain AC algorithms, but is less important for tractability as it can be enforced in poly-

time [Dar01b].

Definition 9 (Smoothness). An arithmetic circuit AC(X) is smooth iff it contains at least

one indicator for each variable in X, and for each child c of +-node n, we have vars(n) =

vars(c).

Decomposability and determinism lead to tractability in the following sense. Let Pr(X)

be a distribution represented by a decomposable, deterministic and smooth arithmetic circuit

AC(X). Then one can compute the following queries in time that is linear in the size of circuit

AC(X): the probability of any partial instantiation, Pr(y), where Y ⊆ X [Dar03] and the

most likely instantiation, argmaxx Pr(x) [CD06]. The decision problems of these queries are

known to be PP-complete and NP-complete for Bayesian networks [Rot96, Shi94].

A number of methods have been proposed for compiling a Bayesian network into a decom-

posable, deterministic and smooth AC that represents its distribution [Dar03]. Figure 5.1

depicts such a circuit that represents the distribution of Bayesian network A → B. One

64

**

* *

+

+ +

* * * *

a

a b b
a a

ab|

ab |

ab|
ab |

Figure 5.1: An AC for a Bayesian network A→ B.

method ensures that the size of the AC is proportional to the size of a jointree for the

network. Another method yields circuits that can sometimes be exponentially smaller, and

is implemented in the publicly available ace system [CD08]; see also [DDC08]. Additional

methods are discussed in [Dar09, chapter 12].

This work is motivated by the following limitation of these tractable circuits, which may

narrow their applicability in probabilistic reasoning and learning.

Definition 10 (Multiplication). The product of two arithmetic circuits AC1(X) and AC2(X)

is an arithmetic circuit AC(X) such that AC(x) = AC1(x)AC2(x) for every instantiation x.

Theorem 4. Computing the product of two decomposable ACs is NP-hard if the product is

also decomposable. Computing the product of two decomposable and deterministic ACs is

NP-hard if the product is also decomposable and deterministic.

We now investigate a class of tractable ACs, called the Probabilistic Sentential Deci-

sion Diagram (PSDD) [KVC14]. In particular, we show that this class of circuits admits

a tractable product operation and then explore an application of this operation to exact

inference in probabilistic graphical models.

Definition 11 (ACs of PSDDs). The arithmetic circuit of a PSDD is obtained as follows.

Leaf nodes x and ⊥ are converted into λx and 0, respectively. Each and-gate is converted into

a ∗-node. Each or-node with children c1, . . . , cn and corresponding parameters α1, . . . , αn is

converted into a +-node with children α1 ∗ c1, . . . , αn ∗ cn.

65

Theorem 5. The arithmetic circuit of a PSDD represents the distribution induced by the

PSDD. Moreover, the arithmetic circuit is decomposable and deterministic 1.

5.3 Operation on PSDDs

Factors and their operations are fundamental to probabilistic inference, whether exact or

approximate [Dar09, KF09]. Consider two of the most basic operations on factors: (1)

computing the product of two factors and (2) summing out a variable from a factor. With

these operations, one can directly implement various inference algorithms, including variable

elimination, the jointree algorithm, and message-passing algorithms such as loopy belief

propagation. Typically, tabular representations (and their sparse variations) are used to

represent factors and implement the above algorithms; see [LD03, SM05, CD07] for some

alternatives.

More generally, factor multiplication is useful for online or incremental reasoning with

probabilistic models. In some applications, we may not have access to all factors of a model

beforehand, to compile as a jointree or an arithmetic circuit. For example, when learning

the structure of a Markov network from data [BDC15], we may want to introduce and re-

move candidate factors from a model, while evaluating the changes to the log likelihood.

Certain realizations of generalized belief propagation also require the multiplication of fac-

tors [YFW05, CD11]. In these realizations, one can use factor multiplication to enforce

dependencies between factors that have been relaxed to make inference more tractable, al-

beit less accurate.

In this section, we discuss two operations of PSDDs. We first discuss multiplying two

PSDDs. Then, we discuss the problem of summing out a variable from a PSDD.

66

Algorithm 2 Multiply(n1, n2, v)

input: PSDDs n1, n2 normalized for vtree v

output: PSDD n and constant κ

main:

1: n, k ← cachem(n1, n2), cachec(n1, n2) . check if previously computed

2: if n 6= null then return (n, k) . return previously cached result

3: else if v is a leaf then (n, κ)← BaseCase(n1, n2) . n1, n2 are literals, ⊥ or simple or-gates

4: else . n1 and n2 have the structure in Figure 2.2

5: γ, κ← {}, 0 . initialization

6: for all elements (p, s, α) of n1 do . see Figure 2.2

7: for all elements (q, r, β) of n2 do . see Figure 2.2

8: (m1, k1)← Multiply(p, q, vl) . recursively multiply primes p and q

9: if k1 6= 0 then . if (m1, k1) is not a trivial factor

10: (m2, k2)← Multiply(s, r, vr) . recursively multiply subs s and r

11: η ← k1 · k2 · α · β . compute weight of element (m1,m2)

12: κ← κ+ η . aggregate weights of elements

13: add (m1,m2, η) to γ

14: γ ← {(m1,m2, η/κ) | (m1,m2, η) ∈ γ} . normalize parameters of γ

15: n← unique PSDD node with elements γ . cache lookup for unique nodes

16: cachem(n1, n2)← n

17: cachec(n1, n2)← κ . store results in cache

18: return (n, κ)

67

5.3.1 Multiplying Two PSDDs

Our first observation is that the product of two distributions is generally not a distribution,

but a factor. Moreover, a factor f(X) can always be represented by a distribution Pr(X)

and a constant κ such that f(x) = κ · Pr(x). Hence, our proposed multiplication method

will output a PSDD together with a constant, as given in Algorithm 2. This algorithm uses

three caches, one for storing constants (cachec), another for storing circuits (cachem), and

a third used to implement Line 15 2. This line ensures that the PSDD has no duplicate

structures of the form given in Figure 2.2. The details of function BaseCase() on Line 3 are

omitted for space limitations.

The following theorem establishes the soundness and complexity of the given algorithm.

Theorem 6. Algorithm 2 outputs a PSDD n normalized for vtree v. Moreover, if Pr1(X)

and Pr2(X) are the distributions of input PSDDs n1 and n2, and Pr(X) is the distribution of

output PSDD n, then Pr1(x)Pr2(x) = κ·Pr(x) for every instantiation x. Finally, Algorithm 2

takes time O(s1s2), where s1 and s2 are the sizes of input PSDDs.

We will later discuss an application of PSDD multiplication to probabilistic inference, in

which we cascade these multiplication operations. In particular, we end up multiplying two

factors f1 and f2, represented by PSDDs n1 and n2 and the corresponding constants κ1 and

κ2. We use Algorithm 2 for this purpose, multiplying PSDDs n1 and n2 (distributions), to

yield a PSDD n (distribution) and a constant κ. The factor f1f2 will then correspond to

PSDD n and constant κ · κ1 · κ2.

Another observation is that Algorithm 2 assumes that the input PSDDs are over the

same vtree and, hence, same set of variables. A more detailed version of this algorithm can

multiply two PSDDs over different sets of variables as long as the PSDDs have compatible

vtrees. We omit this version here to simplify the presentation, but mention that it has the

same complexity as Algorithm 2.

1The arithmetic circuit also satisfies a minor weakening of smoothness with the same effect as smoothness.

2The cache key of a PSDD node in Figure 2.2 is based on the (unique) ID’s of nodes pi/si and parameters
αi.

68

A

G F K

E C

B J H

I D

A

G K H D

A

G

B

H D

Figure 5.2: A vtree and two of its projections.

Two vtrees over variables X and Y are compatible iff they can be obtained by projecting

some vtree on variables X and Y, respectively.

Definition 12 (Vtree Projection). Let v be a vtree over variables Z. The projection of v on

variables X ⊆ Z is obtained as follows. Successively remove every maximal subtree v′ whose

variables are outside X, while replacing the parent of v′ with its sibling.

Figure 5.2 depicts a vtree and two of its projections. When compiling a probabilistic

graphical model into a PSDD, we first construct a vtree v over all variables in the model.

We then compile each factor f(X) into a PSDD, using the projection of v on variables X.

We finally multiply the PSDDs of these factors.

5.3.2 Summing-Out a Variable in a PSDD

We now discuss the summing out of variables from distributions represented by arithmetic

circuits.

Definition 13 (Sum Out). Summing-out a variable X ∈ X from factor f(X) results in

another factor over variables Y = X \ {X}, denoted by
∑

X f and defined as:(∑
X

f

)
(y)

def
=
∑
x

f(x,y).

When the factor is a distribution (i.e., normalized), the sum out operation corresponds

to marginalization. Together with multiplication, summing out provides a direct implemen-

tation of algorithms such as variable elimination and those based on message passing.

69

Just like multiplication, summing out is also intractable for a common class of arithmetic

circuits.

Theorem 7. The sum-out operation on decomposable and deterministic ACs is NP-hard,

assuming the output is also decomposable and deterministic.

This theorem does not preclude the possibility that the resulting AC is of polynomial size

with respect to the size of the input AC—it just says that the computation is intractable.

Summing out is also intractable on PSDDs, but the result is stronger here as the size of the

output can be exponential.

Theorem 8. There exists a class of factors f(X) and variable X ∈ X, such that n = |X|
can be arbitrarily large, f(X) has a PSDD whose size is linear in n, while the PSDD of∑

X f has size exponential in n for every vtree.

Only the multiplication operation is needed to compile probabilistic graphical models

into arithmetic circuits. Even for inference algorithms that require summing out variables,

such as variable elimination, summing out can still be useful, even if intractable, since the

size of resulting arithmetic circuit will not be larger than a tabular representation.

5.4 Compiling Probabilistic Graphical Models into PSDDs

Even though PSDDs form a strict subclass of decomposable and deterministic ACs (and

satisfy stronger properties), one can still provide the following classical guarantee on PSDD

size.

Theorem 9. The connectivity graph of factors f1(X1), . . . , fn(Xn) has nodes corresponding

to variables X1 ∪ . . . ∪ Xn and an edge between two variables iff they appear in the same

factor. There is a PSDD for the product f1 . . . fn whose size is O(m · exp(w)), where m is

the number of variables and w is its treewidth.

This theorem provides an upper bound on the size of PSDD compilations for both

Bayesian and Markov networks. An analogous guarantee is available for SDD circuits of

70

propositional models, using a special type of vtree known as a decision vtree [OD14]. We

next discuss our experiments, which focused on the compilation of Markov networks using

decision vtrees.

To compile a Markov network, we first construct a decision vtree using a known tech-

nique.3 For each factor of the network, we project the vtree on the factor variables, and then

compile the factor into a PSDD. This can be done in time linear in the factor size, but we

omit the details here. We finally multiply the obtained PSDDs. The order of multiplication

is important to the overall efficiency of the compilation approach. The order we used is

as follows. We assign each PSDD to the lowest vtree node containing the PSDD variables,

and then multiply PSDDs in the order that we encounter them as we traverse the vtree

bottom-up (this is analogous to compiling CNFs in [CKD13]).

Table 5.1 summarizes our results. We compiled Markov networks into three types of

arithmetic circuits. The first compilation (AC1) is to decomposable and deterministic ACs

using ace [CD08].4 The second compilation (AC2) is also to decomposable and deterministic

ACs, but using the approach proposed in [CKD13]. The third compilation is to PSDDs as

discussed above. The first two approaches are based on reducing the inference problem into

a weighted model counting problem. In particular, these approaches encode the network

using Boolean expressions, which are compiled to logical representations (d-DNNF or SDD),

from which an arithmetic circuit is induced. The systems underlying these approaches are

quite complex and are the result of many years of engineering. In contrast, the proposed

compilation to PSDDs does not rely on an intermediate representation or additional boxes,

such as d-DNNF or SDD compilers.

The benchmarks in Table 5.1 are from the UAI-14 Inference Competition.5 We selected

all networks over binary variables in the MAR track, and report a network only if at least

one approach successfully compiled it (given time and space limits of 30 minutes and 16GB).

3We used the minic2d package which is available at reasoning.cs.ucla.edu/minic2d/.

4The ace system is publicly available at http://reasoning.cs.ucla.edu/ace/.

5http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html

71

Table 5.1: AC compilation size (number of edges) and time (in seconds)

compilation size compilation time

network AC1 AC2 psdd AC1 AC2 psdd

Alchemy 11 12,705,213 - 13,715,906 130.83 - 300.80

Grids 11 81,074,816 - - 271.97 - -

Grids 12 232,496 457,529 201,250 0.93 1.12 1.68

Grids 13 81,090,432 - - 273.88 - -

Grids 14 83,186,560 - - 279.12 - -

Segmentation 11 20,895,884 41,603,129 30,951,708 72.39 204.54 223.60

Segmentation 12 15,840,404 41,005,721 34,368,060 51.27 209.03 283.79

Segmentation 13 33,746,511 78,028,443 33,726,812 117.46 388.97 255.29

Segmentation 14 16,965,928 48,333,027 46,363,820 62.31 279.19 639.07

Segmentation 15 29,888,972 - 33,866,332 107.87 - 273.67

Segmentation 16 18,799,112 54,557,867 19,935,308 65.64 265.07 163.38

relational 3 - 183,064 41,070 - 1.21 10.43

relational 5 - - 217,696 - - 594.68

Promedus 11 67,036 174,592 30,542 6.80 1.88 2.28

Promedus 12 45,119 349,916 48,814 0.91 5.81 2.46

Promedus 13 42,065 83,701 26,100 0.80 0.23 3.94

Promedus 14 2,354,180 3,667,740 749,528 21.64 33.27 24.90

Promedus 15 14,363 31,176 9,520 0.95 0.10 1.52

Promedus 16 45,935 154,467 29,150 1.35 0.40 2.06

Promedus 17 3,336,316 9,849,598 1,549,170 68.08 48.47 50.22

compilation size compilation time

network AC1 AC2 psdd AC1 AC2 psdd

Promedus 18 3,006,654 762,247 539,478 20.46 18.38 21.20

Promedus 19 796,928 1,171,288 977,510 6.80 25.01 68.62

Promedus 20 70,422 188,322 70,492 0.96 3.24 3.46

Promedus 21 17,528 31,911 10,944 0.62 0.18 1.78

Promedus 22 26,010 39,016 33,064 0.63 0.10 1.58

Promedus 23 329,669 1,473,628 317,514 3.29 17.77 10.88

Promedus 24 4,774 9,085 1,960 0.45 0.05 0.80

Promedus 25 556,179 3,614,581 407,974 7.66 32.90 6.78

Promedus 26 57,190 24,578 5,146 0.71 198.74 2.72

Promedus 27 33,611 52,698 19,434 0.73 0.55 1.16

Promedus 28 24,049 46,364 17,084 1.04 0.30 1.59

Promedus 29 10,403 20,600 4,828 0.54 0.08 1.88

Promedus 30 9,884 21,230 6,734 0.50 0.07 1.23

Promedus 31 17,977 31,754 10,842 0.57 0.12 1.96

Promedus 32 15,215 33,064 8,682 0.59 0.11 1.77

Promedus 33 10,734 18,535 4,006 0.59 0.07 1.57

Promedus 34 38,113 54,214 21,398 0.87 0.78 1.78

Promedus 35 18,765 31,792 11,120 0.68 0.13 1.79

Promedus 36 19,175 31,792 11,004 1.22 0.12 1.91

Promedus 37 77,088 144,664 79,210 1.49 3.50 6.15

Promedus 38 177,560 593,675 123,552 1.67 17.19 8.09

We report the size (the number of edges) and time spent for each compilation. First, we

note that for all benchmarks that compiled to both PSDD and AC2 (based on SDDs), the

PSDD size is always smaller. This can be attributed in part to the fact that reductions

to weighted model counting represent parameters explicitly as variables, which are retained

throughout the compilation process. In contrast, PSDD parameters are annotated on its

edges. More interestingly, when we multiply two PSDD factors, the parameters of the inputs

may not persist in the output PSDD. That is, the PSDD only maintains enough parameters

to represent the resulting distribution, which further explains the size differences.

In the Promedus benchmarks, we also see that in all but 5 cases, the compiled PSDD is

smaller than AC1. However, several Grids benchmarks were compilable to AC1, but failed

to compile to AC2 or PSDD, given the time and space limits. On the other hand, we were

able to compile some of the relational benchmarks to PSDD, which did not compile to

AC1 and compiled partially to AC2.

72

5.5 Inference in SBNs by Compilation to PSDDs

In this section, we propose the first exact inference algorithm for structured Bayesian net-

works (SBNs). Our approach is based on the method for compiling graphical models into

PSDDs, which we summarize below:

1. pick a decision vtree v for the given Bayesian network N , using min-fill for example;

2. compile each CPT of network N into a PSDD using the vtree v projected onto the

CPT’s variables;

3. using the PSDD multiply operator, multiply all CPTs.

The result is a single PSDD representing the joint distribution of the given BN; we shall

refer to this PSDD as the joint PSDD. Once we obtain the joint PSDD, we can perform

exact inference efficiently: we can compute marginals or MPEs, for example, in time linear

in the size of the PSDD [KVC14]. Moreover, one can bound the size of the joint PSDD of a

BN by its treewidth, by using an appropriate vtree.

To perform exact inference in SBNs, we also perform three similar steps, with Step (3)

being the same for SBNs as it is for BNs: each conditional PSDD can be treated as a PSDD,

which we can multiply together. Step (1) is also similar for SBNs, but we will need another

method for picking a special type of vtrees for SBNs, which we discuss later. Step (2) is

the main difference. In order to multiply two PSDDs together using the PSDD multiply

operator, the vtrees of the two PSDDs must be compatible, i.e., they are the projections of

the same vtree. This is easy to ensure in a BN, as we simply convert each CPT to a PSDD

using the vtree from Step (1). This is not easy to ensure in an SBN, since their conditional

distributions must be specified as a conditional PSDD already, whose conditional vtrees may

not be compatible.6 Hence, for SBNs, in Step (1), we need to make sure we pick the right

6In a classical BN, a tabular CPT is learned from data, which is then easy to convert into a PSDD for the
purposes of inference. In an SBN, conditional PSDDs represent complex conditional distributions that would
otherwise have intractable representations as tables; hence, a conditional PSDD must typically be learned
from data directly. In addition, when learning conditional PSDDs, we will want to learn their conditional
vtrees independently (to provide the best fit to the data).

73

.

A .

B *

X Y

.

. *

A B X Y

Figure 5.3: Conditional Vtrees

vtree that will allow us to, in Step (2), enforce compatibility. We discuss how to do this

next.

5.5.1 Vtrees

In the compilation algorithm that we propose next, the conditional vtree and the decision

vtree will be central. First, for an internal vtree node v, we refer to vl and vr as the left and

right children of v. We call an internal vtree node v a Shannon node iff its left child is a leaf

node. Consider the following definition of a decision vtree, originally proposed by [OCD16].

Definition 14 (Decision Vtree). A family X | P is compatible with an internal vtree node

v iff the family has some variables mentioned in vl and some variables mentioned in vr. A

vtree for an SBN N is said to be a decision vtree for N iff every family in N is compatible

with only Shannon nodes.

Next, we consider conditional vtrees. Any conditional PSDD must conform to a condi-

tional vtree.

Definition 15 (Conditional Vtrees). Let v be a vtree for variables X ∪P which has a node

u that contains precisely the variables X. If node u can be reached from node v by only

following right children, then v is said to be a conditional vtree for X | P and u is said to be

its X-node.

Figure 5.3 depicts two examples of conditional vtrees for X = {X, Y } and P = {A,B}.
74

Algorithm 3 ConstructDecisionCtree(cluster DAG B, topological ordering π)

1: if B is a single cluster X then return a leaf ctree for cluster X

2: else if B is disconnected then

3: B1,B2 ← a disconnected partition of B
4: π1, π2 ← sub-orders over clusters in B1,B2 of the total ordering π

5: else

6: X← first cluster of ordering π

7: B1,B2 ← root cluster X, and cluster DAG B with root cluster X removed

8: π1, π2 ← ordering 〈X〉, and ordering π with the first element X removed

9: vl ← ConstructDecisionCtree(B1, π1).

10: vr ← ConstructDecisionCtree(B2, π2).

11: return a ctree v with with left and right children vl and vr

The X-nodes are starred. The vtree under the X-node determines the circuit structure of

the probabilistic (PSDD) component of a conditional PSDD. In turn, the vtree outside of

the X-node determines the circuit structure of the logical (SDD) component.

Finally, we say that two vtrees, one over variables X and the other over variables Y, are

compatible iff they can be obtained by projecting some other common vtree on variables X

and Y, respectively.

Definition 16 (Vtree Projection). Let v be a vtree over variables Z. The projection of v on

variables X ⊆ Z is obtained as follows. Successively remove every maximal subtree v0 whose

variables are outside X, while replacing the parent of v0 with its sibling.

5.5.2 Finding a Global Vtree

In this section, we consider analogues of vtrees (and their variations) for SBNs, where leaves

are labeled by clusters of the SBN, rather than by variables; we refer to these cluster trees

as ctrees. A ctree can be viewed as a restricted type of vtree: a ctree is a vtree where the

variables X of a cluster appear in the same sub-vtree, but where we represent this sub-vtree

with a single leaf ctree node. Note, however, that we shall leave the sub-vtree over variables

75

X implicit for now, and first show how to pick a ctree.

Our goal is to identify a ctree for a given SBN that will accommodate inference by PSDD

multiplication. The first requirement is that the ctrees of all conditional PSDDs must be

compatible with some common joint ctree. The second requirement is that these ctrees must

also be conditional ctrees. The first requirement can be enforced by insisting that our ctree

be a decision ctree with respect to our SBN. The second requirement can be enforced, in

addition to using a decision ctree, by restricting the decision ctree to respect a topological

ordering. In this case, the child cluster is guaranteed to appear as the right-most leaf in the

ctree (which guarantees a conditional ctree). Algorithm 3 provides an algorithm for finding

such a ctree, given a cluster DAG and a topological ordering of its clusters. The following

proposition summarizes the result.

Proposition 3. The ctree v returned by Algorithm 3 is a decision ctree with respect to the

input cluster DAG. Moreover, for each family X | P in the cluster DAG, the projection of v

onto family X | P is a conditional ctree for the family.

This ctree and its implied conditional ctrees can be used to perform exact inference in

an SBN via compilation. However, we must first show how to choose the sub-vtrees over the

variables X of a cluster, which we do next.

5.5.3 Finding Local Vtrees

Typically, when learning PSDDs from data, one must also learn its vtree [LBB17]. In an

SBN, it suffices to learn the conditional PSDDs of its conditional distributions. To provide

the best fit, we should learn the corresponding conditional vtrees independently. However, to

perform inference, these conditional vtrees must be compatible, as projections of a common

global vtree. We show how to achieve this next.

Consider the cluster DAG of Figure 5.4, and its three conditional vtrees. Here, the vtree

for cluster A is not compatible with the vtree for cluster C, as their projections onto variables

A are different vtrees. More generally, consider a family X | P and its conditional vtree v.

Let u denote the X-node of v. Sub-vtree u dictates the probabilistic (PSDD) component of

76

A1A2A3

C1C2

B1B2

(a) Cluster DAG

A1

A2 A3

★

•

(b) Vtree for cluster

A

B1 B2

★

(c) Vtree for cluster

B

A1 A2

A3

•

• B1 B2

•

•

•

★

C1 C2

(d) Vtree for cluster

C

Figure 5.4: A cluster DAG and three conditional vtrees for clusters A = {A1, A2, A3},
B = {B1, B2}, and C = {C1, C2}. X-nodes are labeled with a star.

a conditional PSDD, whereas the sub-vtree outside of u, over P, dictates the logical (SDD)

component. That is, the distribution induced by a conditional PSDD depends only on the

sub-vtree u over X. The sub-vtree over P impacts the size of the conditional PSDD but not

its distribution. We thus propose to manipulate the conditional vtrees of an SBN so that

they become compatible, but for each family X | P with conditional vtree v and X-node u,

we leave the sub-vtree u fixed in v. In this case, the probabilistic (PSDD) components of

each conditional PSDD will also be fixed, leaving the conditional distributions invariant.

We propose the following two-step algorithm, that takes as input an SBN whose con-

ditional PSDDs have been learned independently from data, and outputs an SBN with an

equivalent joint distribution, that further accommodates exact inference via compilation.

Our first step is to obtain a target decision ctree v, where each conditional vtree will be

made compatible with v. We first run Algorithm 3 to obtain a decision ctree c for our SBN.

For each family X | P, we then replace the leaf cluster X in ctree c with the X-node of the

family’s conditional vtree, yielding our target vtree v.

Our second step is to adjust all conditional vtrees so that it is compatible with v. More

specifically, for each family X | P, we adjust the logical (SDD) component of its conditional

vtree/PSDD, through a process called re-normalization.7 Tree rotation and swap operators

7For a family X|P, let w be its conditional PSDD, and let v′ be the projection of decision vtree v onto
X|P. First, we extract the SDD circuit of a conditional PSDD. For both vtrees w and v′, we replace the
leaf cluster X with a dummy leaf vtree; we also replace the corresponding PSDD nodes of the conditional
PSDD with dummy terminals. We then re-normalize the resulting (algebraic) SDD so that it conforms to

77

Table 5.2: Compilation versus jointree inference by map size. Size is # of edges. Improve-

ment is jointree over evaluation time.

map size depth compilation time (s) evaluation time (s) jointree time (s) improvement

910 6.2 47.422 ± 8.708 2.223 ± 0.572 7.374 ± 1.595 3.317 ×
2,103 7.4 290.919 ± 70.580 9.156 ± 3.298 27.044 ± 2.809 2.953 ×
3,241 8.6 785.877 ± 171.873 13.458 ± 3.905 55.011 ± 2.447 4.087 ×
5,202 9.6 2,003.242 ± 424.589 21.492 ± 2.783 135.941 ± 41.475 6.325 ×
7,621 10.6 3,938.633 ± 558.427 26.315 ± 5.111 249.658 ± 41.422 9.487 ×
9,290 10.8 8,508.526 ± 2,778.961 51.645 ± 17.204 519.567 ± 201.134 10.060 ×

10,500 11.2 12,333.635 ± 3,086.726 60.136 ± 14.517 607.294 ± 173.474 10.098 ×

were previously used to re-normalize an SDD to a new vtree [CD13], where an operation on

the vtree implied a corresponding re-factorization of the logical circuit of the SDD.8 After

re-normalization, the resulting conditional PSDDs are now all compatible with each other.

5.6 Experiment

We compare the efficiency of our exact inference algorithm for SBNs, with jointree message-

passing using sparse tables [LD03].9 We evaluate these inference algorithms on an SBN

induced from a hmap, as done in Chapter 6. We obtained public map data of San Francisco

(SF) from openstreetmap.org, and selected 7 increasingly larger regions of SF. We induced

a random hmap from each map. For each map size, we generated 5× 5× 5 = 125 problem

instances: (1) 5 random hmaps, (2) 5 random parameterizations of the SBN, and (3) 5 MPE

queries (what is the most likely route between randomly chosen source/destination pairs). In

Table 5.2, we report averages and standard deviations for the times to (1) compile the joint

v′ instead of w, and replace the dummy terminals with the original PSDD nodes.

8To re-normalize an SDD, it also suffices to re-construct the SDD bottom-up for the new vtree, using the
SDD’s apply operator [Dar11], which we did in our experiments.

9We first reduce our SBN to a flat factor graph, and induce sparse factors from each conditional PSDD.
We pick a jointree structure that reflects the hmap that was used; this allows it to exploit the significant
determinism in the CPTs. Otherwise, jointree inference would be intractable for such models.

78

Figure 5.5: The road network of downtown SF.

PSDD (offline step), (2) evaluate the PSDD (online query step), and (3) run the jointree

algorithm. For each region, the graph size reported is the number of edges (road segments)

in the map, and depth is the average depth of the binary hmap.

The largest map considered had 10, 500 edges; its graph is highlighted in Figure 5.5. On

average, the corresponding SBN had 1.7M parameters and the joint PSDD was of size 8.9M

(edges), which highlights the scalability of our approach. Next, observe that as we increase

the size of the map, evaluation time of the joint PSDD is increasingly more efficient than the

jointree algorithm, and over one order-of-magnitude more efficient in the largest graph eval-

uated. This is in part due to the ability of PSDDs to exploit context-specific independence

as well as determinism, whereas sparse tables only take advantage of determinism. While

binary hmaps are tractable, we expect the gap between compilation and jointree inference

to grow for general SBNs. Finally, we note that compilation time is non-trivial, although

this is a one-time cost that is spent offline. When many queries are performed online, the

time savings obtained by using joint PSDDs will be a considerable advantage.

79

5.7 Conclusion

In this chapter, we proposed a polytime multiplication operator for PSDDs. Using this

operator, we provided a relatively simple but effective algorithm for compiling probabilistic

graphical models into PSDDs. Furthermore, we showed that the same procedure can also

be utilized to compile structured Bayesian networks (SBNs) to PSDDs. We highlighted the

importance of vtrees for the purposes of inference and separately for learning. Empirically,

we showed that inference based on compilation can be an order-of-magnitude more efficient

compared to a jointree inference algorithm.

5.A Proofs

Proof of Theorem 4. We first observe that for DNNF circuits f1 and f2, checking whether f1∧
f2 is consistent is NP-hard [DM02]. We will now reduce this consistency test to multiplying

two decomposable ACs. We first convert each DNNF circuit fi into an arithmetic circuit ACi
by replacing or-gates with +-nodes, and-gates with *-nodes, inputs x with λx, and true/false

with 1/0. The resulting AC is decomposable and satisfies ACi(x) = 0 iff fi outputs 0 on

input x (i.e., ACi(x) > 0 iff fi outputs 1 on input x). Hence, f1 ∧ f2 outputs 0 on input

x iff AC1(x) · AC2(x) = 0. Therefore, f1 ∧ f2 is consistent iff there exists an input x with

(AC1 · AC2)(x) > 0, which holds iff the partition function of AC1 · AC2 is greater than

0. The latter condition can be checked in polytime on decomposable ACs. An analogous

argument can be used for the multiplication of decomposable and deterministic ACs, using

a consistency test on the conjunction of two d-DNNFs [DM02].

Proof of Theorem 5. That the AC is decomposable and deterministic follows directly from

the definition of a PSDD and its underlying SDD. That the AC represents the distribution

induced by the PSDD can be shown using an inductive argument on the structure of the

PSDD. For the base case, we have a PSDD literal x and AC indicator λx, or a PSDD terminal

⊥ and AC constant 0, or a PSDD simple or-node and AC αλx + (1 − α)λ¬x. The theorem

holds for all cases.

80

For the inductive case, consider an or-node n of the PSDD with elements (pi, si, αi),

and the corresponding +-node ACn of the AC which has the form
∑

i αi · ACpi · ACsi . By

induction, we assume the PSDD/AC pairs pi/ACpi and si/ACsi induce the same distribution,

i.e., the value of the PSDD is the same as the value of the AC given the same input. Given

input x, at most one element (pi, si, αi) of the PSDD will have its corresponding SDD wire

evaluate to 1. The value of the PSDD given input x is the product of αi and the values of

pi and si. Similarly, the AC has the same non-zero child αi · ACpi · ACsi (the others must

have value zero by induction). Hence, the distributions of PSDD n and circuit ACn are the

same.

Proof of Theorem 6. Let input PSDDs n1 and n2 have elements (pi, si, αi) and (qj, rj, βj),

respectively. If vtree v is over variables X, then denote the variables of the left and right

children vl and vr by Xl and Xr, respectively. Let Prn denote the distribution of a PSDD n.

First, for an instantiation xl there is a unique pi and a unique qj where xl |= pi and xl |= qj.

Subsequently:

Prn1(x) · Prn2(x) =
(

Prpi(x
l) · Prsi(x

r) · αi
)
·
(

Prqj(x
l) · Prrj(x

r) · βj
)

= (Prpi(x
l) · Prqj(x

l)) · (Prsi(x
r) · Prrj(x

r)) · (αi · βj)

=
(1

κpiqj
· Prpi(x

l) · Prqj(x
l)
)
·
(1

κsirj
· Prsi(x

r) · Prrj(x
r)
)
·
(
κpiqj · κsirj · αi · βj

)

where κpiqj and κsirj are the normalizing constants of pi · qj and si · rj, respectively. Let

κ =
∑

ij κpiqj · κsirj · αi · βj denote the normalizing constant of Prn1 · Prn2 . The above

expression corresponds to a PSDD for the desired distribution 1
κ
· Prn1 · Prn2 , which has

elements: (1

κpiqj
· pi · qj,

1

κsirj
· si · rj,

1

κ
· κpiqj · κsirj · αi · βj

)
Algorithm 2 recursively constructs this PSDD. The base case used in Line 2.2 is as follows:

81

n1\n2 ⊥ X ¬X X : β

⊥ (⊥, 0) (⊥, 0) (⊥, 0) (⊥, 0)

X (⊥, 0) (X,1) (⊥, 0) (X,β)

¬X (⊥, 0) (⊥,0) (¬X,1) (¬X,1− β)

X : α (⊥, 0) (X,α) (¬X,1− α) (X : α·β
κ

,κ)

where κ = α · β + (1 − α) · (1 − β), and X : θ represents a simple or-gate over variable X

such that the literal X has weight θ and the literal ¬X has weight 1− θ.

Let iv denote a node in input PSDD n1 normalized for vtree node v and let jv denote a

node in input PSDD n2 normalized for vtree v. Let size(iv) be the number of elements for

PSDD node iv (and similarly for jv). The size of input PSDD n1 is then s1 =
∑

v,iv
size(iv)

(and similarly for s2). Due to caching, we invoke the algorithm at most once for each pair

of PSDD nodes (iv, jv). Moreover, given the Cartesian product on the elements of iv and jv,

the overall complexity of the algorithm is

O(
∑
v

∑
ivjv

size(iv) · size(jv)) = O

([∑
v,iv

size(iv)

][∑
v,jv

size(jv)

])
= O(s1s2).

Proof of Theorem 7. We first observe that for a d-DNNF circuit f , checking the validity of

∃Xf is NP-hard [DM02]. We will now reduce this test to summing out a variable from

a deterministic and decomposable AC. We first convert the d-DNNF circuit f into a de-

composable and deterministic arithmetic circuit AC as given in the proof of Theorem 4.

Recall that the resulting AC is such that AC(x) = 0 iff f outputs 0 on input x. Let

Y = X \X. Then ∃Xf outputs 0 on input y iff (
∑

X AC)(y) = 0. Therefore, ∃Xf is valid

iff miny(
∑

X AC)(y) > 0, which can be decided in polytime if
∑

X AC is decomposable and

deterministic.

Proof of Theorem 8. The proof is constructive. First, we identify a distribution that has no

compact PSDD representation for any vtree. We then show that this distribution results

from summing out a variable from another distribution that can be represented compactly

as a PSDD.

82

Let PSDDs n1 and n2 represent two fully-factorized distributions Pr1 and Pr2 over vari-

ables Z. Let PSDD a represent the weighted addition Pra = θ1Pr1 + θ2Pr2 where θ1 and θ2

are positive weights that sum to one. Let X and Y be a partition of variables Z and consider

the conditional distribution Pra(Y | x) for some instantiation x. We now have

Pra(Y,x) = θ1Pr1(Y,x) + θ2Pr2(Y,x) = θ1Pr1(x)Pr1(Y) + θ2Pr2(x)Pr2(Y)

Pra(x) =
∑
y

Pra(xy) =
∑
y

[
θ1Pr1(xy) + θ2Pr2(xy)

]
= θ1Pr(x) + θ2Pr(x).

Hence,

Pra(Y | x) =
Pra(Y,x)

Pra(x)
=
θ1Pr1(x)Pr1(Y) + θ2Pr2(x)Pr2(Y)

θ1Pr1(x) + θ2Pr2(x)

= τxPr1(Y) + (1− τx)Pr2(Y)

where

τx =
θ1Pr1(x)

θ1Pr1(x) + θ2Pr2(x)
=

1

1 + θ2Pr2(x)
θ1Pr1(x)

.

The conditional distribution Pra(Y | x) is then a weighted sum of the fully factorized

distributions Pr1(Y) and Pr2(Y), where the weight τx is a function of the instantiation x.

Assume that Pr1(Y) and Pr2(Y) are distinct. First, note that any distinct weight τx yields a

distinct conditional distribution Pra(Y | x). Second, with the appropriate parameterization

of Pr1,Pr2, we can guarantee that the weight τx is distinct for all distinct instantiations x.10

Since we have 2|X| distinct instantiations x, we have 2|X| distinct conditional distributions

Pra(Y | x).

A vtree node vi on the right most path will partition variables Z into X and Y, where Y

are the variables inside vtree vi. Any distinct conditional distribution Pra(Y | x) must have

a distinct PSDD node normalized for vtree vi, leading to 2|X| such nodes in the above con-

struction. Hence, the PSDD for Pra is exponentially large. This is analogous to the [SW93]

construction and bound for OBDDs.

Consider now the distribution Prc(U,X,Y) such that Prc(u,x,y) = θ1Pr1(X,Y) and

Prc(u,x,y) = θ2Pr2(X,Y), where Pr1,Pr2 and θ1, θ2 are as given above. Distribution Prc

10Note Pr2(x)
Pr1(x)

=
∏

i∈Ix
qi
pi

∏
j /∈Ix

1−qj
1−pj

where Ix is the set of indices i where Xi is set to true by x. Each Ix

is unique for each distinct x, so each τx is unique if we set 1−pi

1−qi = 1
2 and pi

qi
to a unique prime for all i.

83

can be represented as a PSDD whose size is linear in n = |Z|. Summing-out variable U from

Prc results in the distribution Pra(X,Y), which has an exponentially large PSDD for any

vtree (as shown above).

Proof of Theorem 9. The proof (sketch) is constructive. First, assume we have a jointree

for the factors with width w (such a jointree must exist by the definitions of jointree and

treewidth). We will now construct a vtree recursively from the given jointree, assuming that

we have selected some arbitrary cluster C as the jointree root. The base case is for a jointree

with only one cluster C, leading to a right-linear vtree over the variables of C (that is, a

vtree in which the left child of each internal node is a leaf). For the inductive case, remove

root C from the jointree, leading to a number of disconnected trees ti and select the neighbor

of C in each ti as the root for ti. Construct a vtree vi recursively from each ti and its root.

Connect these vtrees arbitrarily into a vtree vC. The final vtree will be constructed in a

right-linear fashion, first with each of the variables C and then with the node vC last. This

construction leads to a decision vtree as defined in [OD14], where factors play the role of

CNF clauses.

Suppose now that we construct a PSDD for the given factors using the above vtree. One

can show that if vtree node v was added when processing cluster C, then the PSDD will

have at most 2|C| nodes normalized for v. Moreover, one can show that each PSDD node

will have two elements. Hence, the size of resulting PSDD will be O(m · exp(w)).

84

CHAPTER 6

Case Study: Modeling Routes using SBN

In this chapter, we illustrate the promise of SBNs by providing a case study in model-

ing a distribution over routes on a map. The results discussed in this chapter appeared

in [CSD17], [SCD18] and [SGD19].

6.1 Introduction

Route distributions are of great practical importance as they can be used to estimate traffic

jams, predict routes, and even predict the impact of interventions, such as closing certain

streets on a road network. In this chapter, we consider a probabilistic route model that

is based on a hierarchical decomposition of the map. Given a hierarchical map, we can in

turn induce a structured Bayesian network (SBN), a recently proposed class of probabilistic

graphical models. By enforcing a special partitioning scheme, the SBN, that represents the

route model, is shown to be tractable, and route queries can be exactly computed using the

inference method that is described in Chapter 5..

This chapter is organized as follows. In Section 6.2, we review the problem of learning

distributions over routes, and review representing routes using propositional variables in

Section 6.3. We first introduce a hierarchical partition of a map in Section 6.4. From this

hierarchical partition, we present a probabilistic model of routes in Section 6.5 using the SBN

framework. Further, we exploit the tractable subclass of the model by using a particular

map partition scheme that is described in Section 6.6. It follows in Section 6.7 that this

special partition scheme can be learned from data. In Section 6.8, we empirically study our

route model using the learning algorithm and demonstrates different interesting queries on

85

Figure 6.1: Routes between the San Francisco Caltrain station at 4th & King Street and the

entrance to Chinatown.

the route distribution. We conclude in Section 6.9.

6.2 Distributions over Routes: A Primer

Given the ubiquity of GPS navigators, there is a tremendous amount of data available about

drivers and the routes that they take. In this chapter, we seek to learn distributions over

these routes, which can be used to estimate traffic jams, predict routes, and even predict the

impact of interventions (e.g., a city planner may want to know the impact of closing certain

streets for a parade).

Take for example [PSG09], which considers a dataset consisting of more than 380,000

taxi trips in San Francisco. Each route consists of a sequence of latitude/longitude pairs,

along with a timestamp. For example, the trace depicted in Table 6.1 corresponds to a

single taxi trip. The time stamp is given in UNIX time. The above trip lasted at least 770

seconds. Consider Figure 6.1, which depicts two different trips in San Francisco, between

the San Francisco (Caltrain) station and the entrance to Chinatown (Dragon’s gate). One

route is relatively direct, while the other is more “scenic.”. Our goal again is to, given such

86

Table 6.1: Trace of a taxi trip

latitude longitude time stamp

37.79326 -122.40061 1213071358

37.79274 -122.40270 1213071426

37.79219 -122.40901 1213071478

37.79641 -122.41009 1213071539

37.79894 -122.41064 1213071598

37.80082 -122.41073 1213071664

37.80274 -122.41130 1213071692

37.80487 -122.41324 1213071752

37.80526 -122.41667 1213071823

37.80364 -122.42846 1213071933

37.80111 -122.42785 1213071971

37.80107 -122.42795 1213072031

37.79975 -122.43016 1213072092

37.79988 -122.43109 1213072128

a dataset, learn a corresponding distribution over routes.

One approach to learning a distribution over routes is to treat a given map as a graph:

each street on a map corresponds to an edge on the graph, with each intersection corre-

sponding to a node. A distribution over routes on a map then corresponds to a distribution

over paths on a graph. In this chapter, we focus on simple paths on a graph, i.e., paths that

do not visit the same node twice.

One naive way to learn a distribution over routes is to enumerate all routes σ and then

estimate a probability Pr(σ) for each, by counting how many times each route σ appears in

a dataset, and normalizing the counts so that
∑

σ Pr(σ) = 1. Consider the following graph

(i.e., map):

87

a

b

c

e

d

f

g

There are four routes connecting nodes a and g. The following table depicts a distribution

over these routes:

route σ Pr(σ)

(a, b, d, e, g) 0.1

(a, b, d, f, g) 0.2

(a, c, d, e, g) 0.3

(a, c, d, f, g) 0.4

Here, it is simple to perform a query; e.g., the most likely route from a to g that first visits b

is the route (a, b, d, f, g) with probability 0.2. However, such a tabular representation quickly

becomes infeasible as the graph becomes larger. Consider n× n grids (with n2 nodes). The

following table counts all paths from the upper-left to the bottom-right corner (which is just

a subset of all possible routes).

size of grid # of routes

2× 2 2

3× 3 12

4× 4 184

5× 5 8,512

6× 6 1,262,816

7× 7 575,780,564

8× 8 789,360,053,252

9× 9 3,266,598,486,981,642

10× 10 41,044,208,702,632,496,804

88

Figure 6.2: Estimating the probability that a street is used in a route, based on on taxi

cab traces in San Francisco. Color indicates the popularity of a street: blue (< 10 routes),

green (10’s of routes), yellow (100’s of routes), orange (1,000’s of routes), and red (10,000’s

of routes).

As is evident in the above table, we would quickly run out of memory to store such a tabular

representation. Moreover, we would need a correspondingly infeasible amount of data to

learn such a distribution.

Figure 6.2 depicts another (naive) alternative. Here, we have counted how many times

each street was used by a route in the dataset. This corresponds to a fully-factorized proba-

bilistic model, where each random variable represents an edge of the graph, which is true if

the edge was used in a route, and false otherwise. Such a model provides some useful infor-

mation (such as the popularity of a street), but is useless for any query that involves more

than one street (e.g., predicting a route). Among probabilistic models, (hidden) Markov

models are popular for modeling routes; see, e.g. [SBZ06, Kru08].

89

6.3 Representing the Space of Routes

Consider the following graph G.

e1

e2

e3 e5

e4 e6

e7

e8

Here, we have labeled each edge of G by a label ei. For each edge ei, we assume

a Boolean variable Xi that represents whether edge ei is used on a path or not (i.e.,

it is true or false). Let X = {X1, . . . , X8} denote the set of edge variables, and let x

denote a corresponding instantiation. An instantiation x then corresponds to a selec-

tion of edges ei when the corresponding variables Xi have been set to true. Some in-

stantiations correspond to a route and other do not. For example, an instantiation x =

(true, false, true, false, true, false, true, false) corresponds to the route (e1, e3, e5, e7), whereas in-

stantiation x = (true, true, false, false, false, false, true, true) selects the edges e1, e2, e7, e8 which

is not a route. A probability distribution Pr(X) is called a route distribution iff it assigns a

zero probability to every instantiation x that does not correspond to a route.

6.4 Hierarchical Routes

Consider Figure 6.3a which depicts a simplified graph representing the Los Angeles (LA)

Westside. Here, the nodes (intersections) of the LA Westside have been partitioned into

regions. The LA Westside is first partitioned into four sub-regions: Santa Monica, Westwood,

Venice and Culver City. Westwood is further partitioned into two smaller sub-regions: UCLA

and Westwood Village. This partitioning is an example of a hierarchical map.

A hierarchical map allows us to abstract the notion of a route. That is, we can think of

an abstract route as a route between regions (those of the partition). We then refine this

90

Venice

WestwoodSanta	Monica

Culver	City

e1

e2

e3 e4

e5
e6

UCLA

w1

v1
v2
v3

v4

u7

u1

u2 u3

u4

u5

u6

Westwood
Village

(a) Map

Venice

n1,...,n6

Santa
Monica

s1,...,s8

Culver
City

c1,...,c6

UCLA

u1,...,u7

Westside

e1,...,e6

Westwood
Village

v1,...,v4

Westwood

w1

(b) cluster DAG

Figure 6.3: A hierarchical map of neighborhoods in the Los Angeles Westside, and the

corresponding cluster DAG. Each neighborhood and the roads within are depicted using

colors, while roads connecting regions are depicted in black. The roads of Santa Monica,

Venice and Culver City are unlabeled in the map, for clarity.

route by recursively planning the routes in each region, under the constraint that they are

consistent with the abstract route we found between regions. For example, in Figure 6.3a,

if we want to go from Venice to Westwood, we may first decide to use edge e4 to go from

Venice to Santa Monica, and then use edge e1 to go from Santa Monica to Westwood. Next,

we find a route in Venice to edge e4, then a route through Santa Monica from edge e4 to

e1, and finally a route in Westwood from e1 to the destination (we can then recursively find

routes between UCLA and Westwood Village).

We assume simple routes (no cycles) at each level of the hierarchy by excluding routes

that enter or leave the same region more than once. Route that satisfies this property is called

hierarchical simple route. A simple route on the original map may not be hierarchical simple.

For example, although a route with edges e1, u6, u5, w1, v1, e2 corresponds to a simple path

on the map, it is not hierarchical simple route, because it re-enters the region Santa Monica.

91

The route enters the region using edge e6 after it has left earlier using edge e1. Whether

requiring a route to be hierarchical simple constitutes a good approximation depends on the

hierarchical decomposition used and corresponding queries. We will elaborate on learning a

good hierarchical decomposition in Section 6.7.

6.5 Modeling Hierarchical Routes with SBNs

A hierarchical decomposition of a map can be modeled using a cluster DAG as follows; see

Figure 6.3. Each internal cluster represents a region, with its variables being the set of

edges that cross between its sub-regions. In Figure 6.3b, the root cluster represents the Los

Angeles Westside region and its variables represent edges e1, . . . , e6 that are used to cross

between its four sub-regions. Each leaf cluster represents the set of edges that are strictly

contained in that sub-region. The parent-child relationship in the cluster DAG is based on

whether an edge in the parent region can be used to enter the sub-region represented by the

child cluster. For example, the UCLA region has Westside as a parent since edge e1 can be

used to enter the UCLA region directly from Santa Monica. The main point here is that a

cluster DAG can be automatically generated from a hierarchical map.

The use of hierarchical maps implies key independence assumptions that are made explicit

by the corresponding cluster DAG. In particular, a hierarchical map implies the following.

Once we know how we are entering a sub-region R, the route we take inside that sub-region

is independent of the route we may take in any other sub-region that is not a descendant of

R. For example, the route we take inside the UCLA region (edges u1, . . . , u7) is independent

of the route used in any other region, once we know how we plan to enter or exit the UCLA

region (edges w1 and e1, . . . , e6).1 Such independencies can be easily read off the cluster

DAG using the Markovian assumption of Bayesian networks.

We now get to the final part of using structured Bayesian networks for representing and

1In this particular case, only w1 and e1 are relevant to how we enter or exit the UCLA region. However,
this independence is only visible in the conditional PSDD for the UCLA region as it is implied by the
conditional constraints not the cluster DAG.

92

learning route distributions. To induce a distribution over routes in a hierarchical map, one

needs to quantify the corresponding cluster DAG using conditional PSDDs. That is, for

each cluster with variables X, and whose parent clusters have variables P, one needs to

provide a conditional PSDD for X | P. As discussed earlier, this conditional PSDD will be

based on conditional constraints for X | P which define the underlying conditional SDD.

The conditional PSDD is then obtained from this SDD by learning parameters from data.

The conditional constraints of a cluster can also be generated automatically from a hi-

erarchical map and are of two types. The first type of conditional constraints rules out

disconnected routes in cluster X (does not depend on the state of parent cluster). The sec-

ond type rules out routes in region X which are no longer possible given how we enter or

exit that region (depends on the state of parent cluster). Clearly, the root cluster only has

constraints of the first type.

6.6 Binary Hierarchical Map

We identify a tractable sub-class of SBNs, which can be compiled into joint PSDDs with only

polynomial size—namely those that correspond to binary hierarchical maps. This class of

SBNs are of practical interest, as they are inspired from an application of SBNs for modeling

distributions over routes on a map, or equivalently, simple paths on a graph [Zhe15].

In a binary hmap, regions are recursively split into two sub-regions. Such maps have three

key properties, that lead to its tractability: (1) the simple-path constraints for interior nodes

are trivial to compile,2 (2) the number of parent instantiations that we need to consider in

a conditional PSDD is quadratic in the number of edges crossing into the region,3 and (3) if

the simple-path constraints of a leaf region are too hard to compile, we can make the map

deeper until they are compilable. With a binary hmap, we obtain the following polynomial

2A path consists of crossing from one region to another using a single edge, or not at all, because of the
simple path assumption (in a simple path, we cannot visit the same region twice).

3Due to the simple-path constraint, a path cannot re-enter a region once it has exited it. Hence there are
only a quadratic number of way to enter and exit a region to consider (at most two incident edges can be
used).

93

bound on the size of its joint PSDD.

Theorem 10. Consider a binary hmap with t nodes, where k is the maximum number of

edges assigned to a cluster and n is the maximum number of edges that cross into a region.

Let m denote the size of the largest PSDD of any leaf region. The size of the joint PSDD is

O(t · n2 · (m+ k)).

6.7 Learning Binary Hierarchical Maps

In this section, we consider how to learn a binary hmap, and hence, the structure of an SBN.

Random Binary Hmaps. Consider the following simple algorithm for inducing a

random binary hmap, based on recursively decomposing a map into two regions. First, pick

two seed nodes a and b of a map, where a will belong to one region and b will belong to

the other. Each region alternates between absorbing a neighboring node into their region (if

possible), until all nodes are absorbed. A deeper hmap can then be produced by recursing on

the sub-regions. We typically recurse until each leaf region is small enough to be compilable

to an SDD.

Learning Hmaps from Data. We next propose a heuristic for learning a binary

hierarchical map from a dataset consisting of routes. Consider a popular road on a map

which is used by many routes in the data. A random partitioning of the map may put one

intersection (node) of the road in one region, the next intersection in another region, and the

third intersection in the same region as the first. Hence, a route on this road would exit the

first region, enter the second, and then re-enter the first. Such a route is not simple relative

to an hmap as it visits the same region twice. This assumption was introduced by , and is

important for guaranteeing tractability as we discussed in the previous section.

Hence, we propose a heuristic that tries to avoid situations like the above, for learning a

binary hmap from data. Our approach is bottom-up.4 Intuitively, we want to cluster nodes

together if they are commonly used by the same route. First, we assign each node to its

4Essentially, learning a binary hmap is a type of hierarchical clustering. See, e.g., [Mur12] which discusses
both bottom-up (agglomerative) and top-down (divisive) clustering.

94

own region. Next, we have an edge between regions if there is a street connecting them,

and we give that edge a weight based on the number of routes in the data that crosses from

one region to the other. We then find a maximum weight matching5 and merge each of the

paired regions. We update the scores between regions and repeat, until we obtain a single

cluster. Next, from the clustering, we want to extract an hmap whose leaf regions are as

large as possible, given an upper limit. Hence, to obtain our final hmap, we navigate the

clustering in depth-first fashion until we find the first node under our limit which we take as

an hmap leaf. We then backtrack and continue until we have picked all of our leaves.

6.8 Experiments

Learning Hierarchical Maps. We now evaluate the algorithm proposed in Section 6.7 for

learning binary hmaps, using a route prediction task that we describe next. We first took the

region of SF covering 910 edges from Table 5.2. We took the cabspotting dataset of GPS

traces collected from taxicab routes in SF [PSG09]. Using the map-matching API of the

graphhopper package, we projected GPS traces onto the map. We used 8,196 routes from

this dataset to learn the structure and parameters of our SBNs (using Laplace smoothing).6

We learned a binary hmap for an SBN using our proposed heuristic and also using a random

binary hmap, both described in Section 6.7. We used another 128 routes as test routes to

perform route prediction: given a source, destination and a partial trip so far (half the trip),

what is the most likely completion? This is an MPE query on a PSDD, which we computed

using the inference algorithm based on the PSDD multiply operator, proposed in Chapter 5.

For each route in the test set, we measure its similarity with the route predicted from

the PSDD, using three metrics: (1) dissimilarity in segment number (DSN), which counts

the proportion of non-common road segments between the true and predicted route, (2)

5We used the networkx python module.

6A route dataset may have paths that are not simple, or paths that do not respect the binary hmap
assumption (i.e., visits the same region twice). We can still utilize such routes for training, which helped
in our experiments. First, we project each route in the training set onto each family of the SBN—multiple
paths through the same region becomes a set of independent paths. A projected route may still not be
simple; in this case, we segment it further into sub-paths that are simple.

95

Hausdorff distance [GNG14], which matches all points in one path with the closest point

in the other path, and reports the largest such match (normalized by the true trip length),

and (3) the difference between trip lengths (normalized by the true trip length). Note that

each metric has its own advantages and disadvantages. Further, we expect better hmaps to

provide more accurate route predictions.7

We evaluate the quality of routes predicted by each of the two SBNs in the following

table:

hmap DSN Haus. trip length # bad routes

random 0.300 0.120 0.147 3,833 / 59

heuristic 0.250 0.089 0.076 2,791 / 41

Each entry is an average over 10 runs with randomly sampled training and testing sets (of

size 8,196 and 128) from the 31,175 cabspotting routes inside the region. We see that for all

three metrics, our heuristic learns a binary hmap with much higher predictive accuracy. For

example, the predictions from the heuristic hmap had half the error compared to a random

hmap, in terms of trip length. In the last column, we consider how many simple routes

become invalid in the binary hmap, as discussed in Section 6.7. Invalid routes visit the same

region twice in the hmap—such routes have probability zero in the SBN. We separately

report the number of invalid routes in the training and testing sets. The random binary

hmap has 137% more invalid routes, indicating that our heuristic is effective at lowering the

number of invalid routes that result in a hierarchical decomposition.

Route Classification. We report results on route classification in Figure 6.4. We con-

sider two classes of routes from two datasets: (1) the cabspotting dataset (Taxi), and (2) a

simulated dataset collected by querying Google Maps Directions API with source/destination

pairs (Google).8 We took 215 = 32, 768 and 212 = 4, 096 routes from each dataset for train-

7Note that standard metrics based on test-set likelihood are difficult to apply. Our model assumes paths
are simple across regions, so routes violating this assumption have zero probability. Prior empirical compar-
isons with SBNs considered, instead of likelihood, domain-specific tasks such as next-turn prediction [Kru08].

8In particular, we initially took the map of size 5,202 from Table 5.2, and from the cabspotting dataset,
we took all 172,265 routes strictly contained in the map. For each route, we took the source, destination,
day-of-week and time-of-day, which we used to request a corresponding route from Google Maps.

96

100 101

batch size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

binary hierarchical map
logistic regression
naive bayes

Figure 6.4: Route classification.

ing/testing. We took a map of size 5,374 edges and learned a binary hmap, as in Section 6.7;

the SBN had 737, 928 parameters. We trained two sets of SBN parameters (using Laplace

smoothing), one for each dataset, yielding a (structured) naive Bayes classifier [CTD16].9

The Taxi dataset was collected in 2008, which predates the proliferation of GPS navigators.

Hence, we view our Google vs. Taxi classifier as discriminating between drivers with/without

GPS navigation, or alternatively, Uber drivers (with) vs Taxi drivers (without). Figure 6.4

summarizes our results, where we compare against (1) an (unstructured) naive Bayes clas-

sifier (2) and a logistic regression classifier. Both uses each edge as a binary feature (each

edge is either present or absent). On the x-axis, we provide each classifier with a batch of

routes of increasing size, from 1 to 60. Each batch of size x is a set of x routes of the same

9If a train/test route is invalid (visits the same region twice), then it has probability zero in the SBN. In
this case, we segment the route into multiple valid routes, as in Footnote 6.8, for training. For testing, we
observe each route segment as a feature in the structured naive Bayes classifier.

97

type—the idea is that the one can better distinguish a driver as an Uber or a taxi driver,

as more routes from the same driver are provided. As we give each classifier more routes

from the same type of driver, we achieve higher accuracy (as expected), converging to 100%

accuracy. Clearly, our SBN (using a binary hmap) is superior to logistic regression, which

in turn is superior to naive Bayes.

6.9 Conclusion

Given a map, we showed how to construct a hierarchical decomposition, which can be used to

learn a structured Bayesian network (SBN) from GPS data. We studied binary hierarchical

maps, which we used to identify a tractable sub-class of SBNs, where exact inference can be

performed efficiently. We also studied the problem of learning the structure of the tractable

sub-class. Empirically, our approach scales to a large map, and can provide accurate predic-

tions on different tasks, including the route completion and route classification.

6.A Proofs

To prove Theorem 10, we provide a construction of the joint PSDD in this section.

For a given region, we refer to its external edges as those edges that have one endpoint

inside the region and the other endpoint outside the region. External edges are the edges

that are used to enter and exit a region. Further, a path is simple if it does not visit the

same node twice. We say that a path is hierarchically simple if it does not visit the same

region twice, in the hmap. In an SBN of a binary hmap, all paths must be hierarchically

simple; otherwise, they have probability zero.

Consider a leaf node c in a binary hmap. We want the PSDDs representing routes inside

this region. Under the hierarchical simple-path assumption, at most two external edges will

be used—we cannot visit the same region twice. At the most, we can enter and exit a region.

When exactly two external edges e1 and e2 are used, we want a PSDD over all simple paths

that connect to both e1 and e2 in the region c. We refer to this PSDD as non-terminalc(e1, e2),

98

because all paths must pass through the region c. When exactly one external edge e is

used, we want a PSDD over all simple paths that start at edge e and then end inside

region c. We refer to this PSDD as terminalc(e), because all paths terminate in region c.

Finally, if no external edge is used, we want a PSDD over all simple paths strictly contained

inside the region. We refer to this PSDD as internalc. In PSDDs terminalc(e) and PSDDs

non-terminalc(e1, e2) that connect to the same endpoint inside the region, we allow for an

empty path inside the region. Further, we assume that all PSDDs non-terminalc(e1, e2),

terminalc(e), and internalc have a bounded size. This can be ensured by using a binary

hmap that is deep enough to have small enough regions. In our experiments, we used the

graphillion package10 to compile regions into ZDDs, which are then converted to SDDs.

Consider an internal node c in a binary hmap, which has a left child region l and a right

child region r. Each internal node c is itself a binary hmap, rooted at c. It represents a

map consisting of all nodes and edges inside the corresponding binary hmap. As we did

previously, we will construct PSDDs non-terminalc(e1, e2), terminalc(e) and internalc over the

different types of routes implied by the selected external edges. These PSDDs can be specified

using the PSDDs of its left and right child sub-regions.

Suppose we have external edges e1, . . . , en, and the edges m1, . . . ,mk that cross between

the left and right sub-regions. Let emptyc denote the PSDD for c containing no routes (all

edges must be set to false). Consider the PSDD internalc. An internal route is either (1)

strictly contained in the left region, (2) strictly contained in the right region, or (3) it crosses

the two regions using exactly one edge mi. Thus, the corresponding SDD has the elements:

internall, emptyr

emptyl, internalr

terminall(m1), terminalr(m1)

...

terminall(mk), terminalr(mk)

10https://github.com/takemaru/graphillion

99

By the hierarchical simple-path assumption, the path between the left and right regions must

consist of a single edge.

Consider the PSDDs terminalc(e). Suppose that e connects to a node in the left child

region (the case for the right child is symmetric). There are two cases: (1) the path stays in

the left, or (2) the path crosses into the right using one edge mi. This PSDD has an SDD

with the elements:

terminall(e), emptyr

non-terminall(e,m1), terminalr(m1)

...

non-terminall(e,mk), terminalr(mk)

Consider the PSDDs non-terminalc(e1, e2). Suppose that e1 connects to the left child region

and that e2 connects to the right child region (the reverse case is symmetric). Here, the path

must cross from the left to the right using one edge mi. This PSDD has an SDD with the

elements:

non-terminall(e1,m1), non-terminalr(m1, e2)

...

non-terminall(e1,mk), non-terminalr(mk, e2)

If e1 and e2 both connect to the same region, say the left one, then the path must stay inside

the left region. We have an SDD with a single element:

non-terminall(e1, e2), emptyr.

To count the total size of the joint PSDD, we count the number of PSDD nodes that we

constructed, and also count the size of each node (number of elements). Moreover, we do

not count elements with a false sub in our PSDD, which are not needed to represent the

distribution. First, for a leaf node in the binary hmap, if n is the number of its external

edges, then we have O(n2) distinct PSDDs, each having a bounded size m. If there are t

nodes in the binary hmap, then there are O(t) leaf nodes. Hence, the total size of the leaf

100

PSDDs is O(t ·n2 ·m). Second, for an internal node in the binary hmap, if n is the number of

its external edges, then we have O(n2) PSDD nodes. If k is the number of edges that cross

between the left and right sub-regions, then the PSDD node has O(k) elements. Thus, the

number of PSDD nodes for internal nodes in the binary hmap is O(t ·n2) and their aggregate

size is O(t · n2 · k). Thus the total size of the joint PSDD is O(t · n2 ·m+ t · n2 · k).

101

CHAPTER 7

Learning Local Structure from Data

Local structure such as context-specific independence (CSI) has received much attention in

the probabilistic graphical model (PGM) literature, as it facilitates the modeling of large

complex systems, as well as for reasoning with them. Previously, we have shown that con-

ditional PSDDs can extract CSI from the logical constraints. In this chapter, we provide a

new perspective on how to learn CSIs solely from data. The results in this chapter appeared

in [SCD20].

7.1 Introduction

Context-specific independence (CSI) is a type of local structure that facilitates the modeling

of large and complex systems, by allowing one to represent in a succinct way conditional

distributions that would otherwise be infeasible to represent [BFG96]. Further, local struc-

ture such as context-specific independence can be exploited by modern classes of inference

algorithms to perform reasoning in Bayesian networks whose treewidths are too large for

more traditional inference algorithms [Dar03, CD08, SCD16, PZ03].

Traditional representations of context-specific independence (CSI) use data structures

such as decision trees, decision graphs, rules, default tables, etc. [FG98, CHM13, LD03,

KF09, PNK15]. Algorithms for learning these representations are typically search-based,

where we iteratively search for variables that split the data into partitions, until the resulting

distribution becomes (sufficiently) independent of the remaining variables. In contrast to

these heuristic methods, exact learning algorithms have also been proposed [KS05, HPK18].

Their running times are usually exponential in the number of parent variables, and it is

102

difficult to apply these exact learning algorithms to a large system.

In this chapter, we propose a new perspective on learning CSIs, resulting in a new

context-specific representation for conditional probability distribution (CPDs) that we call

Functional Context-Specific CPDs, or just FoCS CPDs. FoCS CPDs generalize rule CPDs,

where a context is typically defined as a partial instantiation of the variables. More recently,

the Conditional Probabilistic Sentential Decision Diagram (or Conditional PSDD) was pro-

posed, and further generalizes term-based rules to arbitrary propositional sentences [SCD18].

FoCS CPDs generalize this further so that an arbitrary function can be used to define the

scope of a context, say one defined by a neural network.

The first significance of this new representation is that it allows us to immediately lever-

age powerful machine learning systems that have been developed in recent years, for the

purposes of learning CSIs. The second significance is that efficient probabilistic reasoning

can be enabled, by exploiting recently developed analytic tools from the domain of eXplain-

able Artificial Intelligence (XAI),1 which allows us to extract a decision graph representa-

tion of a context-specific CPD, but one that facilitates exact inference, i.e., a conditional

PSDD [SCD18, SGD19, SCD16].

This chapter is organized as follows. In Section 7.2, we review functional and context-

specific representations of CPDs. In Section 7.3 we propose the FoCS CPD. In Section 7.4

we propose an algorithm to learn FoCS CPDs from data, and in Section 7.5 we show how

to reason with them. We empirically compare FoCS CPDs with functional and context-

specific representations in Section 7.6, and we provide a case study on “learning to decode”

in Section 7.7. Finally, we conclude in Section 7.8.

7.2 Representations of CPDs

A Bayesian network (BN) has two main components: (1) a directed acyclic graph (DAG) and

(2) a set of conditional probability tables (CPDs) [Pea89, Dar09, KF09, Mur12]. Typically,

1https://www.darpa.mil/program/explainable-artificial-intelligence.

103

CPDs are represented using tabular data structures, although this becomes impractical when

a variable has many parents. In this section, we review two alternative representations

of interest: functional representations (such as noisy-or models and neural networks) and

context-specific representations, such as tree CPDs and rule CPDs.

In what follows, we use upper case letters (X) to denote variables and lower case letters

(x) to denote their values. Variable sets are denoted by bold-face upper case letters (X)

and their instantiations by bold-face lower case letters (x). Generally, we use X to denote

a variable in a Bayesian network and U to denote its parents. We further refer to XU as

a family. We thus denote a network parameter using the form θx|u, which represents the

conditional probability Pr(X=x|U=u).

7.2.1 Functional Representations

To specify a CPD using a table, one must specify a parameter θx|u for all family instantia-

tions xu, the number of which is exponential in the number of variables in the family XU.

In a functional representation of a CPD, one has a parameterized function f(XU; θ) that

computes the probability Pr(x|u) from a parameter vector θ that can be much smaller than

the size of an explicit table. For example, the well-known noisy-or model implicitly specifies

a conditional distribution using a number of parameters that is only linear in the number of

parents [Pea89, Dar09].

Other functional representations include logistic functions [Fre98, Vom06] as well as neu-

ral networks [BB00, KW14]. Consider the following conditional distribution for a variable X

with parents U1U2, where each variable is binary (0/1): Pr(x=1 | u1u2) = σ(θ0+θ1u1+θ2u2),

where σ(a) = [1 + exp{−a}]−1 is the sigmoid function and where θ0, θ1, θ2 are parameters.

This functional CPD has the following tabular representation:

u1, u2 1, 1 1, 0 0, 1 0, 0

Pr(X=1 | u1u2) σ(θ0 + θ1 + θ2) σ(θ0 + θ1) σ(θ0 + θ2) σ(θ0)

Pr(X=0 | u1u2) 1− σ(θ0 + θ1 + θ2) 1− σ(θ0 + θ1) 1− σ(θ0 + θ2) 1− σ(θ0)

In general, if we have n binary parents U , then the tabular representation will have 2n free

104

parameters, whereas the functional logistic representation will have only n+ 1 parameters.

While functional representations allow us to compactly specify a CPD, they become

unwieldly once we need to perform any reasoning. For example, the following result shows

that computing the Most Probable Explanation (MPE) is intractable when using a logistic

representation of a CPD, even when the parents are independent.

The proof follows by reduction from the knapsack problem. Each item corresponds to a

parent variable, and |U| equals the number of items. The value of each item is translated to

the marginal probability of each parent variable, and the weight of each item is translated

to the coefficient of the parent variable in the logistic function. The optimal selection of the

items can be obtained from the MPE solution over the parent variables given that the child

equals 0; an item is selected if the corresponding parent variable is assigned to 1 in the MPE

solution.

Theorem 11. Consider a prior probability Pr(U) over n variables and a conditional prob-

ability Pr(X | U). If the prior probability is fully factorized and Pr(X | U) is represented by

a logistic function using n+ 1 parameters, it is NP-complete to compute argmaxu Pr(u | x).

7.2.2 Context-Specific CPDs

A decision-tree CPD, or just tree CPD, represents a conditional distrubtion of a variable X

given its parents U in a Bayesian network [FG98, dRG05]. It is composed of a decision tree

over variables U, and at each leaf of the decision tree is a CPD column, which we denote

by ΘX|.. A CPD column ΘX|. is a distribution over variable X for some given context. A

decision-graph CPD is a representation like a decision tree, but where equivalent leaves with

equivalent CPD columns ΘX|. are merged together in a single node [CHM13]. This decision

graph can be further simplified by iteratively merging decision nodes whose children are

equivalent. A rule CPD is another representation of a conditional distribution that uses

rules to define the CPD. A rule is composed of two parts: a context, which is typically a

partial instantiation v of the parent variables U, and a CPD column ΘX|.. For example,

a labeled DAG (LDAG) was introduced to specify these partial instantiation contexts on

105

each edge of a DAG [PNK15, HPK18]. A set of rules specify a rule CPD if the contexts v

represent a mutually-exclusive and exhaustive partitioning of the instantiations of U.

A decision-tree CPD specifies a set of rules, where each leaf represents a rule with the

same CPD column ΘX|. assigned to the leaf, where the context v is found by taking the value

of each variable that was branched on, on the path from the root to the leaf. A decision-

graph CPD also specifies a set of rules in a similar way, except that we relax the requirement

that the context be specified by a partial instantiation, but now as a disjunction of partial

instantiations, one for each path that can reach the leaf from the root. The rule CPD can

be generalized further by allowing the context to be specified as an arbitrary propositional

sentence. Such a rule CPD can be realized using the recently proposed Conditional Proba-

bilistic Sentential Decision Diagram (Conditional PSDD) [SCD18].2 While they enable more

succinct representations of conditional distributions, Conditional PSDDs also facilitate the

ability to reason with them [SCD16, SGD19].

7.3 Functional Context-Specific CPDs

Next, we propose a generalized rule CPD where the scope of a rule is defined, not just by a

partial instantiation of its parents, or just by a propositional sentence, but more generally

by some function.

Definition 17. A Functional Context-Specific (FoCS) CPD represents a conditional distri-

bution of a variable X given its parents U, and is defined by a tuple (f, I1···k,ΘX|I1···k). The

function f maps each parent configuration to a real number. Intervals Ii form a mutually-

exclusive and exhaustive partition of R. Each interval, Ii, has a corresponding child probability

that is specified by ΘX|Ii .

A FoCS CPD, which we denote by ΦX|U, induces a conditional distribution Pr(X|U)

2In a Conditional PSDD, the contexts are represented using a shared SDD [Dar11], and the CPD columns
are represented using a shared PSDD [KVC14].

106

where:

Pr(X | u) =

ΘX|I1 if f(u) ∈ I1

... ...

ΘX|Ik if f(u) ∈ Ik

. (7.1)

Each interval Ii defines a context ∆i. The models of the context are the parent configurations

whose function values fall inside Ii. Since the intervals are mutually exclusive and exhaustive,

the contexts form a partition of parent instantiations, and the conditional distribution is

well-defined.

Further, the k intervals of a FoCS CPD using k − 1 monotonically increasing thresh-

olds, T1, · · · , Tk−1. These thresholds create intervals, (−∞, T1), [T1, T2), · · · , [Tk−1,+∞). As

a result, we will interchangeably use the notation I1···k and T1···k−1 to describes the intervals.

7.4 Learning

In this section, we show how to (1) learn the parameters of a FoCS CPD when the contexts

are known, and (2) how to learn the contexts of a FoCS CPD, using parameter learning as

a sub-routine.

7.4.1 Learning the Parameters

Given a dataset D, the log likelihood of a set of Bayesian network parameters Θ is

LL(D | Θ) =
∑

XUCLL(DXU | ΘX|U)

which is the sum of the conditional log likelihoods of the CPDs ΘX|U given the datasets

DXU projected onto the families XU. The local conditional log likelihoods is given by

CLL(DXU | ΘX|U) =
∑N

i=1 log θxi|ui

which we can optimize independently. Let D#(y) denote the number of instances in the

dataset D compatible with the partial instantiation y. The parameters θ?x|u that optimize

107

the conditional log likelihood is given by θ?x|u = D#(xu)
D#(u)

which further represent the maximum-

likelihood estimates; for more details, see, e.g., [Dar09, KF09, Mur12].

Analogously, estimates can be obtained for a Bayesian network with FoCS CPDs ΦX|U

with contexts ∆i and the corresponding CPD columns ΘX|∆i
. Namely, we have the maximum-

likelihood estimates θ?x|∆i
= D#(x,∆i)

D#(∆i)
. That is, we count the number of instances compatible

with both x and the context ∆i, and then normalize by the total number of instances

compatible with the context ∆i.

Each maximum likelihood estimates θ?x|∆i
for a FoCS CPD ΦX|U can be computed using

a single pass of the dataset D, and also proportional to the time it takes to test whether

a given example d from the dataset is compatible with ∆i. As contexts of a FoCS CPD

are specified by a function and a set of intervals I1···k, it suffices to evaluate the function

at the given partial instantiation u and then test whether the function value lies in the

corresponding internal Ii.

7.4.2 Learning the Contexts

Next, we propose a simple algorithm to learn the contexts of a FoCS CPD from a given

dataset D. Based on the definition of a FoCS CPD, its context is defined by a function,

that maps parent configurations to a number, and a set of intervals described by thresholds

T1···k−1. The context ∆i consists of parent configurations whose function value fall inside the

interval Ii.

Our approach has two steps: (1) we first construct the function by learning a functional

CPD using an MLP, like the CPDs we discussed in Section 7.2.1, and then (2) we iteratively

learn thresholds on the output of the MLP. As we showed in Theorem 11, MPE inference

using a functional representation of a CPD is in general intractable, like the one we shall

learn in Step (1). As we shall discuss later in Section 7.5, the FoCS CPDs that we obtain

from Step (2) shall give us a way to approach this apparently intractability.

First, we learn a functional representation of the conditional distribution Pr(X | U).

Here, we use an MLP, which we denote by fx(u), to estimate the conditional probabilities

108

U1 U2 X

d1 0 0 1

d2 1 0 0

d3 1 1 0

d4 0 1 1

d5 1 1 1

(a)

U1 U2 f

d2 1 0 σ(−2)

d4 0 1 σ(−1)

d3 1 1 σ(1)

d5 1 1 σ(1)

d1 0 0 σ(2)

(b)

T ∆≤T ∆>T

−∞ {} {d2,d4,d3,d5,d1}
σ(−2) {d2} {d4,d3,d5,d1}
σ(−1) {d2,d4} {d3,d5,d1}
σ(1) {d2,d4,d3,d5} {d1}
σ(2) {d2,d4,d3,d5,d1} {}

(c)

Figure 7.1: (a) a dataset, (b) sorted by MLP output, (c) different thresholds and the resulting

partitions.

Pr(x | u) for some distinguished state x of a variable X; for simplicity, we assume X is

binary (0/1). In particular, the MLP is trained using feature-label pairs (u, x) for all family

instantiations x,u that appear in the original dataset D. In our experiments, we used cross

entropy as a loss function.

Our next step is to obtain a FoCS CPD ΦX|U from the MLP fx(U) that we have just

learned. Our approach is based on learning a threshold on the output of our MLP, which

in turn induces a partition of the input space. By iteratively learning additional thresholds,

we can further refine our partitioning. Suppose for now that we learn a single threshold T ,

which yields the following contexts: ∆≤T = {u | fx(u) ≤ T} and ∆>T = {u | fx(u) > T}
where ∆≤T = ¬∆>T relative to all parent instantiations u, i.e., we have a partitioning.

Consider Figure 7.1, which highlights a simple example. In Figure 7.1a, we have a small

dataset. Suppose that we learn the following MLP f from this dataset: f(u1, u2) = σ(6u1u2−
4u1 − 3u2 + 2). In Figure 7.1b, we have sorted this dataset by the value of f(u); remember

that the sigmoid function σ is a monotonic non-decreasing function, i.e., σ(x) ≤ σ(y) iff

x ≤ y. Note that for any two consecutive output values fi and fj in the sorted list of

Figure 7.1b, any chosen threshold T ∈ (fi, fj] will result in the same partitioning. For

example a threshold T =σ(0) results in the same partition as threshold T =σ(0.9), yielding

the sets ∆≤T = {d2,d4} and ∆>T = {d3,d5,d1} (note that d3 and d5 represent the same

parent instantiation u1 =1, u2 =1).

109

For each threshold T , we can learn the resulting parameters θX|∆≤T
and θX|∆>T

using a

single pass over the dataset, and then compute the resulting conditional log likelihood. If

N is the size of the dataset D, then it suffices to check N possible threshold values, plus

one additional threshold T =−∞ that ensures that ∆≤T is empty, and that ∆>T contains all

of the examples. We then simply pick the single threshold that maximizes the conditional

log likelihood. Finally, one can amortize the complexity of computing the conditional log

likelihoods for all possible thresholds, hence requiring a single pass over the dataset D overall.

We can refine the partition further by recursing on each partition, and finding an addi-

tional threshold within each partition, using the same algorithm we described above. We

can continue to recurse and refine our partition, until validation likelihood falls or does not

improve enough.

7.5 Reasoning

In general, if we use a purely functional representation of a CPD, then inference becomes

intractable, as given by Theorem 11. Alternatively, we seek next to obtain tractable FoCS

CPDs, first using recently proposed analytic tools from the domain of explainable AI (XAI).

7.5.1 Marginal Inference via Knowledge Compilation

Recently, in the domain of XAI, [CSS19] showed how a binary neural network (BNN) can

be formally analyzed and verified using symbolic tools from the domain of Knowledge Com-

pilation [DM02]. A BNN is a neural network with binary inputs and a binary output. Such

a neural network represents a Boolean function. Consider for example a linear classifier f :

1.15 ·U1 +0.95 ·U2−1.05 ·U3 ≥ 0.52. Here, U1, U2, U3 are binary (0/1) inputs, and the classi-

fier outputs 1 if this threshold test passes and it outputs 0 otherwise. We can enumerate all

possible inputs and record the classifier output f(u1, u2, u3), leading to the following truth

table:

110

U1 U2 U3 f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

U1 U2 U3 f

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

The original numerical linear classifier is thus equivalent to the propositional sentence [¬U3∧
(U1∨U2)]∨ [U3∧U1∧U2]. Previously, [CD03] showed how to extract the Boolean function of

a given linear classifier, which includes neurons with step activations as a special case. More

recently, [CSS19] showed that one can compose the Boolean functions of binary neurons and

aggregate them to obtain the Boolean function of a binary neural network. By compiling

this Boolean function into a tractable logical representation, such as an Ordered Binary

Decision Diagram (OBDD) or as a Sentential Decision Diagram (SDD), then certain queries

and transformations can be performed in time that is polynomial in the size of the resulting

circuit [DM02, Dar11].

Here, we use the algorithm proposed by [CSS19], to compile a binary neural network

into an SDD circuit, in order to compile a FoCS CPD into a Conditional PSDD. First, if

we threshold the output of an MLP with step-activations, then it corresponds to a binary

neural network. Hence, we can compile each FoCS CPD context ∆i into an SDD. Second,

it is straightforward to compile a CPD column ΘX|. into a PSDD [SCD18]. It is then

straightforward to aggregate all of the context SDDs and CPD column PSDDs into a single

Conditional PSDD [SCD18]. If we obtain the CPDs of a Bayesian network as a Conditional

PSDD, then we can employ the algorithms in [SGD19, SCD16], in order to compute marginals

in the Bayesian network.3

7.5.2 MPE Inference via Mixed-Integer Linear Programming

Consider the most probable explanation (MPE) query in a Bayesian network: argmaxx∼e Pr(x),

where x is a complete instantiation of the network variables, e is the observed evidence, and

3Note that while multiplying two PSDDs is a tractable operation, multiplying n PSDDs may not be.

111

∼ denotes compatiability between x and e (they set common variables to the same values).

Computing the MPE is an NP-complete problem [Shi94]. Theorem 11 shows that MPE is

still NP-complete with independent parents U and a common observed child X with a func-

tional CPD. However, MPE is still easier than computing marginals, which is PP-complete

to even approximate [Rot96]. Hence, compiling to conditional PSDD may be overkill if we

only care about MPEs.

Given a FoCS CPD, it suffices to apply a mixed-integer linear programming (MILP) solver

to the task of solving an MPE query, i.e., to compute argmaxu Pr(u, x) where Pr(X|U) is

represented with a FoCS CPD. First, the log of the MPE is a linear function of the log

parameters of the network parameters, which we use as the objective of the MILP. Using

a FoCS CPD for a binary variable X, an observation x effectively adds another term to

the objective function, which depends on the context implied by the input u. This can be

incorporated to the MILP after observing that an MLP with step activations can be reduced

to an MILP, as in [NKR18, GNS08].

7.6 Experiments

In this section, we empirically evaluate the FoCS CPD representation that we proposed in

Section 7.3, as well as the learning algorithm that we proposed in Section 7.4. In particular,

we evaluate it in terms of our effectiveness at learning conditional distributions, in comparison

to other functional and context-specific representations. We shall subsequently evaluate the

reasoning algorithms proposed in Section 7.5, via a case study in Section 7.7.

We evaluate two sets of benchmarks, one synthetic, and one real-world. We consider

two baselines: (1) a functional CPD representation, using a multi-layer perceptron (MLP),

and (2) a context-specific CPD representation, namely a tree CPD, which was learned using

ID3. We compare each representation based on their (negated) conditional log likelihood

(CLL); lower is better. When learning any CPD column, we further use Laplace (add-one)

smoothing.

We trained an MLP fx(U) to predict the value of variable X given an instantiation

112

100 101 102 103 104

number of leaf probabilities

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ne

ga
tiv

e
te

st
C

LL
id3
FoCS
MLP

100 101 102 103 104

number of leaf probabilities

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ne
ga

tiv
e

te
st

C
LL

id3
FoCS
MLP

100 101 102 103

number of leaf probabilities

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ne
ga

tiv
e

te
st

C
LL

id3
FoCS
MLP

Figure 7.2: Number of contexts vs. CLL, for k ∈ {2, 4, 8} from left to right (synthetic

benchmark).

of the parents U. We used a single hidden layer of 16 neurons with ReLU activations,

whose parameters were learned with cross-entropy loss. The MLP was trained using the

Adam optimizer in TensorFlow. We trained a tree CPD using the ID3 algorithm of the

toolkit scikit-learn. In our experiments, we learned decision trees of gradually increasing

complexity (measured by counting decision tree leaves), by gradually increasing the bound

on tree depth, which is a parameter of the ID3 algorithm.

Finally, to obtain a FoCS CPD, we use the learning algorithm described in Section 7.4,

using the MLP that we trained above. In our experiments, we also gradually increased the

number of contexts created. With k − 1 thresholds created, we create k contexts, which we

compare with the number of contexts found by the tree CPD (i.e., the number of decision

tree leaves).

Synthetic Benchmark. In our synthetic experiment, we simulated training data from a

conditional distribution exhibiting many context-specific independencies. That is, we sim-

ulated data where the value of variable X depends only on the cardinality of its parents

U, where X and U are binary (0/1). If the fraction of parents set to 1 is at most 1
s
, then

Pr(x|u) = 0.05; otherwise Pr(x|u) = 0.95. In our experiments, we simulated parent instan-

tations u such that the two different contexts (≤ 1
s

and > 1
s
) had the same probability of

being generated. The size of parent variables was set to be 16. Each FoCS CPD was trained

using 16, 384 examples, and we reported the negative CLL on 16, 384 testing examples.

113

In Figure 7.2, we plot results for s ∈ {2, 4, 8}. On the x-axis we increase the number

of contexts for the tree CPD (by increasing the bound on depth) and for the FoCS CPD

(by adding more thresholds); the MLP is a functional CPD without any explicit CSIs, and

hence is a flat line on each plot. We make the following observations in Figure 7.2: (1) as

we increase the number of contexts of the tree CPD (ID3), the better the CLL, (2) the MLP

and the FoCS CPD perform similarly, and both obtain better CLLs than the tree CPD, and

(3) the FoCS CPD obtains a good CLL using only a small number of contexts, and obtains

a better CLL than the MLP that it was created from.

It is well-known that decision trees cannot succinctly represent certain (Boolean) func-

tions. For example, a decision tree must be complete, using 2n leaves, to represent the parity

function over n variables. This is also the case for cardinality constraints over n variables,

which have less succinct decision trees for s = 2 and succinct decision trees for s = 1 or

s = n. We see this pattern as well in Figure 7.2, as the performance of ID3 more closely

approaches that of MLP and our FoCS CPD.

Compared to the MLP, our FoCS model estimates much fewer parameters—once we are

given k contexts ∆i, then we simply need to estimate the k corresponding CPD columns

ΘX|∆i
. The fact that our learning appears to converge almost immediately, suggests that

our learning algorithm is indeed learning the context-sensitive inherent in the cardinality

constrained data that we simulated. In contrast, the MLP does not search for CSIs. Hence,

this explains the ability of our FoCS model to obtain better CLLs than the MLP that our

FoCS model was based on.

Real-World Benchmark. Next, we consider a real-world dataset: MNIST digits. This

dataset is composed of 28×28 pixel grayscale images, which we binarized to black-and-white.

We consider one-vs-all classification, where the parents U represent the input image, and

the child X represents whether the input is of a particular digit d (X= true) or some other

digit from 0 to 9 (X= false).

Figure 7.3 highlights the result. Our FoCS model consistently estimates the conditional

distribution more accurately using fewer contexts compared to the tree CPD model. This

114

100 101 102 103

number of leaf probabilities

0.00

0.05

0.10

0.15

0.20
ne

ga
tiv

e
te

st
C

LL
id3
FoCS
MLP

100 101 102 103

number of leaf probabilities

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ne
ga

tiv
e

te
st

C
LL

id3
FoCS
MLP

100 101 102 103

number of leaf probabilities

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ne
ga

tiv
e

te
st

C
LL

id3
FoCS
MLP

Figure 7.3: Number of contexts vs. CLL, for digits d ∈ {0, 1, 2} from left-to-right (MNIST).

provides strong evidence that exploiting the structure from a learned functional model is

more efficient than searching for the structure of contexts by variable-splitting as done when

learning a decision tree. Again, given that our FoCS model appears to converge relatively

quickly, this suggests that our learning algorithm is able to learn the CSIs from data (a CSI

may represent here a partial instantiation of the input pixels that will almost guarantee the

classification of a digit). However, a small number of contexts may not be enough to obtain

the performance of an MLP. Note that there may be only a limited number of contexts that

our learning algorithm can discover, if the training data is not diverse enough, hence why

the curve for our FoCS model stops earlier than that for the tree CPD.4

7.7 Case Study: Learning to Decode

In this section, we show through a simple case study how FoCS CPDs allow us to reason

about and learn from complex processes. Our case study is done in the context of channel

coding, where our goal is to encode data in a way that allows us to detect and correct

for any errors that may occur after transmission through a noisy channel. In subsequent

experiments, we show, using our proposed learning algorithm, how one can learn to decode

encoded messages, without knowing the original code that was used to encode them!

4For example, if the MLP is trained to the point where it obtains 100% confidence in most of the training
examples (which is not unlikely for datasets such as MNIST), then we would not be able to split any of the
resulting contexts).

115

· · ·U0 Un−1

· · ·X0 Xn−1

Figure 7.4: The Bayesian network modeling the encoding process.

7.7.1 Channel Coding: A Brief Introduction

Consider the following problem. Say you have a message represented using n bits U0, . . . , Un−1

that can be either 0 or 1. We want to transmit this message across a noisy channel, where

there is a chance that each bit Ui might be corrupted by noise (say flipped from 0 to 1, or

from 1 to 0). To improve the reliability of this process we can send additional bits, say m

of them X0, . . . , Xm−1. We refer to the original bits u as the message and the redundant

bits x as the encoding (or alternatively the channel input). We further refer to the encoding

process as the code. The channel output are the bits y received from the noisy channel.

Finally, there is a decoding process that attempts to detect and correct any errors in the

channel output.

One simple example of a code, is the repetition code, which sends l additional copies of

the message across the noisy channel (say 3 copies total). At the channel output, one detects

an error if any of the 3 copies reports a discrepency among the corresponding bits. One can

attempt to correct for the error by taking a majority vote. Repetition codes are among the

simplest type of error-correcting code. More sophisticated codes include turbo codes and

low density parity check codes, whose decoders were shown to be instances of loopy belief

propagation in a Bayesian network; see [FM97] for a short perspective. Another common

type of code uses parity checks among randomly selected sets of message bits, as redundant

bits in the encoding.

116

7.7.2 Experiments

We can model a message encoder using a Bayesian network like the one in Figure 7.4. Root

nodes Ui represent the bits (0/1) to be encoded, and the leaf nodes Xi represent the encoded

bits (0/1) that are to be transmitted across a noisy channel. For simplicity, we assume that

both the message and the encoding are composed of n bits. We assume the message bits

Ui are marginally independent. Each of the encoded bits Xi can in general depend on any

of the message bits Ui, depending on the particular code being used. At the same time,

we can model the noisy channel, which may flip a bit from 0 to 1 or from 1 to 0, with

some probability. The traditional reasoning task would be, given a code, i.e., the conditional

distributions Pr(Xi | U), and a message x received over the noisy channel, to find the most

likely message u that was originally encoded.

Consider for example a simple code where we record the parity of every pair of adjacent

message bits. Such an encoding, can be represented using the following CPD:

Pr(Xi=1 | U) =

100% if Ui ⊕ Ui+1 mod n = 1

0% if Ui ⊕ Ui+1 mod n = 0

.

We can further model the noise in the channel with the following modified CPD.

Pr(Xi=1 | U) =

95% if Ui ⊕ Ui+1 mod n = 1

5% if Ui ⊕ Ui+1 mod n = 0

.

Given a set of message/encoding pairs (u,x) we can try to learn the code used to encode the

messages, i.e., learn the conditional distributions Pr(Xi | U). We represent each conditional

distribution using a FoCS CPD, as a tabular representation would be intractable for this

type of problem: the table would have a number of entries that is exponential in n, and we

would need at least as much data to learn the parameters.

We learn a FoCS CPD as described in Section 7.4, starting with an MLP with a single

hidden layer containing 8 neurons with sigmoid activations. We convert the sigmoid activa-

tions to step activations for the purposes of reducing it to MILP, in order to perform MPE

117

inference as described in Section 7.5. From the MLP, we obtain a FoCS CPD by learning

one threshold, which yields 2 different contexts.

Once we have learned a FoCS model from data, we can then try to decode an encoded

message. That is, given an encoded message x, we can find the most likely original encoding

via: argmaxu Pr(u | x), which is an MPE query. We used the MILP solver Gurobi [Gur20]

with the cvxpy optimizer.

We want to recognize that this task also known as a structured prediction. Many existing

methods can directly train a model for this particular MPE queries, [TJH05, SM12, SMV19,

XZF18]. However, learning a query-specific model prevents us from taking advantage of the

generation process of these bits, which is shown in Figure 7.4.

To obtain a training and testing set of messages u we sampled bits at random with

Pr(ui) = 0.8. To obtain a set of encoded messages x, we used a code where each encoded bit

took the parity of three consecutive bits (there are n such encoded bits). We assume that

the channel has a 5% chance of flipping an transmitted bit. We simulated datasets of size

214 = 16, 384, and performed 5-fold cross validation. The following table summarizes our

results.

n word accuracy bit accuracy Hamming error time (s)

10 0.750± 0.003 0.902± 0.002 0.974± 0.021 0.247± 0.001

15 0.651± 0.005 0.900± 0.002 1.493± 0.044 0.469± 0.004

20 0.578± 0.005 0.905± 0.001 1.886± 0.037 1.047± 0.036

25 0.493± 0.007 0.905± 0.001 2.371± 0.043 11.382± 0.549

30 0.414± 0.006 0.901± 0.003 2.963± 0.099 140.190± 11.539

From top-to-bottom, each row represents increasing message sizes. We report word accuracy

(the percentage of instances where the original message was successfuly decoded from the

encoding without error), bit accuracy (the percentage of bits that were decoded without

error), Hamming error (the average number of incorrect bits in a decoded message), and

time (in seconds).

We make a few observations. Bit accuracy remains consistent around 90%, for all message

118

sizes n. Word accuracy falls, as expected, since it becomes more difficult to decode the entire

message without error, the longer the message gets. Note that a 41.4% for n = 30 is quite

good compared to the expected word accuracy one would have obtained by composing a

message estimate from most-likely-bit estimates at 90% accuracy, which would be 0.930 =

4.24%. When we consider the hamming error, even if there were an error in the decoding,

only a few bits were incorrect on average. Finally, we see that inference time appears to

grow exponentially as n grows. This is also expected as decoding is in general an NP-hard

problem.

7.8 Conclusion

We proposed here the FoCS CPD model, for representing CSIs in conditional distributions.

We proposed an algorithm for learning the parameters as well as the contexts of FoCS CPDs.

We showed how efficient inference can be enabled using FoCS CPDs, by leveraging tools from

knowledge compilation and optimization. We highlighted some of the advantages of FoCS

CPDs compared to more traditional functional and context-sensitive CPD representations.

Finally, we provided a case study showing how FoCS CPDs enable us to “learn how to

decode.”

119

CHAPTER 8

Conclusion

We considered two types of knowledge in this dissertation: global conditional independence

and local context-specific independence. We tackled the problem of incorporating these two

types of knowledge in a unified framework. Traditionally, BNs achieved this goal to some ex-

tent; it uses a DAG to capture the global structure, and local context-specific independence

is modeled using a structured representations of conditional probabilities, e.g. tree CPT.

However, this was not sufficient when massive logical constraints were present in the prob-

lem; the DAG of the BN became so densely connected that problem structure was hidden.

Furthermore, modeling local structure at the variable level missed opportunities to extract

higher-order patterns that were implied by logical constraints.

To address these limitations, we proposed structured Bayesian networks. In contrast to

regular BNs, SBNs used a cluster DAG to represent global knowledge. The cluster DAG

produced a weaker global structure, by keeping silent about the structure among variables

in the same cluster. We further proposed and developed conditional PSDDs to capture the

local structure between a cluster and its parents. As the conditional probabilities of an SBN

describes dependencies between sets of variables, conditional PSDDs captured higher-order

structures, especially with conditional constraints.

We later studied the inference problem on SBNs. We first studied the tractable operations

on (conditional) PSDDs, which were used to model the local probabilities of an SBN. We have

presented a simple inference algorithm that compiles an SBN to a single PSDD representing

the same joint probability. The compilation utilized the tractable operation of PSDDs, called

multiply.

On the application side, we thoroughly case studied the usage of this new framework

120

on modeling a distribution over routes. We proposed hierarchical assumptions, from which

we crafted a global structure, a cluster DAG, of the SBN. Each node in the cluster DAG

was also logically connected with its parents, and this logical constrain formed the structure

of the conditional PSDD that was used to model the probabilistic interactions between the

node and its parents. Moreover, we presented a sub-class of the model that scales to the size

of a city, and we have empirically shown that this model was good at many tasks, including

route completion and classification.

At last, we considered the problem of learning conditional PSDDs solely from data. In

particular, we demonstrated that context-specific independence can be extracted from a

functional model. We have shown an algorithm that extracted this local structure from a

trained functional model. The extracted local knowledge was then converted to conditional

PSDDs, which was a more concrete conditional representation.

Overall, we hope that this dissertation can shine a light on the opportunities of incorpo-

rating more types of domain knowledge into a graphical model.

121

REFERENCES

[Bar12] David Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, 2012.

[BB00] S. Bengio and Y. Bengio. “Taking on the Curse of Dimensionality in Joint Distri-
butions Using Neural Networks.” Trans. Neur. Netw., 11(3):550–557, May 2000.

[BDC15] Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, and Guy Van den
Broeck. “Tractable Learning for Complex Probability Queries.” In NIPS, 2015.

[BFG96] Craig Boutilier, Nir Friedman, Moisés Goldszmidt, and Daphne Koller. “Context-
Specific Independence in Bayesian Networks.” In UAI, pp. 115–123, 1996.

[Bov16] Simone Bova. “SDDs Are Exponentially More Succinct than OBDDs.” In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 929–935,
2016.

[CD03] Hei Chan and Adnan Darwiche. “Reasoning about Bayesian Network Classifiers.”
In UAI, pp. 107–115, 2003.

[CD06] Hei Chan and Adnan Darwiche. “On the Robustness of Most Probable Explana-
tions.” In UAI, 2006.

[CD07] Mark Chavira and Adnan Darwiche. “Compiling Bayesian Networks Using Vari-
able Elimination.” In IJCAI, 2007.

[CD08] Mark Chavira and Adnan Darwiche. “On Probabilistic Inference by Weighted
Model Counting.” AIJ, 172(6–7):772–799, April 2008.

[CD11] Arthur Choi and Adnan Darwiche. “Relax, Compensate and Then Recover.” In
Takashi Onada, Daisuke Bekki, and Eric McCready, editors, NFAI, volume 6797
of LNCF, pp. 167–180. Springer, 2011.

[CD13] Arthur Choi and Adnan Darwiche. “Dynamic Minimization of Sentential Deci-
sion Diagrams.” In Proceedings of the 27th Conference on Artificial Intelligence
(AAAI), 2013.

[CD17] Arthur Choi and Adnan Darwiche. “On Relaxing Determinism in Arithmetic Cir-
cuits.” In Proceedings of the Thirty-Fourth International Conference on Machine
Learning (ICML), 2017.

[CHM13] David Maxwell Chickering, David Heckerman, and Christopher Meek. “A
Bayesian Approach to Learning Bayesian Networks with Local Structure.” CoRR,
abs/1302.1528, 2013.

[CKD13] Arthur Choi, Doga Kisa, and Adnan Darwiche. “Compiling Probabilistic Graph-
ical Models using Sentential Decision Diagrams.” In ECSQARU, pp. 121–132,
2013.

122

[Coo90] Gregory F. Cooper. “The Computational Complexity of Probabilistic Inference
Using Bayesian Belief Networks (Research Note).” Artif. Intell., 42(2–3):393–405,
March 1990.

[CSD17] Arthur Choi, Yujia Shen, and Adnan Darwiche. “Tractability in Structured Prob-
ability Spaces.” In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, pp. 3477–3485, 2017.

[CSS19] Arthur Choi, Weijia Shi, Andy Shih, and Adnan Darwiche. “Compiling Neu-
ral Networks into Tractable Boolean Circuits.” In AAAI Spring Symposium on
Verification of Neural Networks (VNN), 2019.

[CTD16] Arthur Choi, Nazgol Tavabi, and Adnan Darwiche. “Structured Features in Naive
Bayes Classification.” In Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI), 2016.

[CVD15] Arthur Choi, Guy Van den Broeck, and Adnan Darwiche. “Tractable Learning
for Structured Probability Spaces: A Case Study in Learning Preference Distri-
butions.” In Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

[Dar01a] Adnan Darwiche. “Decomposable Negation Normal Form.” J. ACM, 48(4):608–
647, 2001.

[Dar01b] Adnan Darwiche. “On the Tractable Counting of Theory Models and its Applica-
tion to Truth Maintenance and Belief Revision.” Journal of Applied Non-Classical
Logics, 11(1-2):11–34, 2001.

[Dar03] Adnan Darwiche. “A Differential Approach to Inference in Bayesian Networks.”
J. ACM, 50(3):280–305, 2003.

[Dar09] Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge
University Press, USA, 1st edition, 2009.

[Dar11] Adnan Darwiche. “SDD: A New Canonical Representation of Propositional
Knowledge Bases.” In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, pp. 819–826, 2011.

[DDC08] Adnan Darwiche, Rina Dechter, Arthur Choi, Vibhav Gogate, and Lars Ot-
ten. “Results from the Probabilistic Inference Evaluation of UAI-08.” http:

//graphmod.ics.uci.edu/uai08/Evaluation/Report, 2008.

[DM02] Adnan Darwiche and Pierre Marquis. “A knowledge compilation map.” JAIR,
17:229–264, 2002.

123

[dRG05] Marie desJardins, Priyang Rathod, and Lise Getoor. “Bayesian Network Learning
with Abstraction Hierarchies and Context-Specific Independence.” In ECML, pp.
485–496, 2005.

[DV15] Aaron W. Dennis and Dan Ventura. “Greedy Structure Search for Sum-Product
Networks.” In Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence (IJCAI), pp. 932–938, 2015.

[FG98] Nir Friedman and Moises Goldszmidt. “Learning Bayesian networks with local
structure.” In Learning in graphical models, pp. 421–459. Springer, 1998.

[FM97] Brendan J. Frey and David J. C. MacKay. “A Revolution: Belief Propagation in
Graphs with Cycles.” In NIPS, pp. 479–485, 1997.

[Fre98] Brendan J. Frey. Graphical Models for Machine Learning and Digital Communi-
cation. MIT Press, Cambridge, MA, USA, 1998.

[GD12] Robert Gens and Pedro M. Domingos. “Discriminative Learning of Sum-Product
Networks.” In Advances in Neural Information Processing Systems 25 (NIPS),
pp. 3248–3256, 2012.

[GD13] Robert Gens and Pedro M. Domingos. “Learning the Structure of Sum-Product
Networks.” In Proceedings of the 30th International Conference on Machine
Learning (ICML), pp. 873–880, 2013.

[GNG14] William Groves, Ernesto Nunes, and Maria L. Gini. “A framework for predicting
trajectories using global and local information.” In Proceedings of the 11th ACM
Conference on Computing Frontiers, pp. 1–10, 2014.

[GNS08] Igor Griva, Stephen G. Nash, and Ariela Sofer. Linear and Nonlinear Optimization
(2. ed.). SIAM, 2008.

[Gur20] LLC Gurobi Optimization. “Gurobi Optimizer Reference Manual.”, 2020.

[HKG12] Jonathan Huang, Ashish Kapoor, and Carlos Guestrin. “Riffled Independence for
Efficient Inference with Partial Rankings.” J. Artif. Intell. Res. (JAIR), 44:491–
532, 2012.

[HPK18] Antti Hyttinen, Johan Pensar, Juha Kontinen, and Jukka Corander. “Structure
learning for Bayesian networks over labeled DAGs.” In International Conference
on Probabilistic Graphical Models, pp. 133–144, 2018.

[Kam03] Toshihiro Kamishima. “Nantonac collaborative filtering: recommendation based
on order responses.” In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 583–588, 2003.

[KF09] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, 2009.

124

[Kru08] John Krumm. “A Markov model for driver turn prediction.” Technical report,
SAE Technical Paper, 2008.

[KS05] Mikko Koivisto and Kismat Sood. “Computational aspects of Bayesian partition
models.” In Proceedings of the 22nd international conference on Machine learning,
pp. 433–440, 2005.

[KVC14] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. “Proba-
bilistic Sentential Decision Diagrams.” In Proceedings of the 14th International
Conference on Principles of Knowledge Representation and Reasoning (KR), 2014.

[KVD17] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. “Algebraic model
counting.” J. Applied Logic, 22:46–62, 2017.

[KW14] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes.” In
ICLR, 2014.

[LB11] Tyler Lu and Craig Boutilier. “Learning Mallows Models with Pairwise Prefer-
ences.” In ICML, pp. 145–152, 2011.

[LBB17] Yitao Liang, Jessa Bekker, and Guy Van den Broeck. “Learning the Structure of
Probabilistic Sentential Decision Diagrams.” In Proceedings of the 33rd Conference
on Uncertainty in Artificial Intelligence (UAI), 2017.

[LD03] David Larkin and Rina Dechter. “Bayesian Inference in the Presence of Deter-
minism.” In AISTATS, 2003.

[LD08] Daniel Lowd and Pedro M. Domingos. “Learning Arithmetic Circuits.” In Pro-
ceedings of the 24th Conference in Uncertainty in Artificial Intelligence (UAI), pp.
383–392, 2008.

[LR13] Daniel Lowd and Amirmohammad Rooshenas. “Learning Markov Networks With
Arithmetic Circuits.” In Proceedings of the 16th International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), pp. 406–414, 2013.

[Mal57] Colin L. Mallows. “Non-null ranking models.” Biometrika, 44:114–130, 1957.

[MT98] Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures in
VLSI Design: OBDD — Foundations and Applications. Springer, 1998.

[Mur12] Kevin Patrick Murphy. Machine Learning: A Probabilistic Perspective. MIT
Press, 2012.

[NKR18] Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv,
and Toby Walsh. “Verifying Properties of Binarized Deep Neural Networks.” In
AAAI, 2018.

[NYM17] Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Nagata. “Com-
piling Graph Substructures into Sentential Decision Diagrams.” In AAAI, pp.
1213–1221, 2017.

125

[OCD16] Umut Oztok, Arthur Choi, and Adnan Darwiche. “Solving PP PP -Complete Prob-
lems Using Knowledge Compilation.” In Proceedings of the 15th International
Conference on Principles of Knowledge Representation and Reasoning (KR), pp.
94–103, 2016.

[OD14] Umut Oztok and Adnan Darwiche. “On Compiling CNF into Decision-DNNF.”
In CP, pp. 42–57, 2014.

[PD11] Hoifung Poon and Pedro M. Domingos. “Sum-Product Networks: A New Deep
Architecture.” In Proceedings of the Twenty-Seventh Conference on Uncertainty
in Artificial Intelligence (UAI), pp. 337–346, 2011.

[Pea89] Judea Pearl. Probabilistic reasoning in intelligent systems - networks of plausi-
ble inference. Morgan Kaufmann series in representation and reasoning. Morgan
Kaufmann, 1989.

[PNK15] Johan Pensar, Henrik Nyman, Timo Koski, and Jukka Corander. “Labeled di-
rected acyclic graphs: a generalization of context-specific independence in directed
graphical models.” Data mining and knowledge discovery, 29(2):503–533, 2015.

[PSG09] Michal Piorkowski, Natasa Sarafijanovoc-Djukic, and Matthias Grossglauser.
“A Parsimonious Model of Mobile Partitioned Networks with Clustering.” In
The First International Conference on COMmunication Systems and NETworkS
(COMSNETS), January 2009.

[PZ03] David Poole and Nevin Lianwen Zhang. “Exploiting contextual independence in
probabilistic inference.” Journal of Artificial Intelligence Research, 18:263–313,
2003.

[RKG14] Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. “Cutset Networks: A
Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu
Trees.” In European Conference on Machine Learning and Knowledge Discovery
in Databases (ECML-PKDD), pp. 630–645, 2014.

[Rot96] Dan Roth. “On the Hardness of Approximate Reasoning.” Artif. Intell., 82(1-
2):273–302, 1996.

[SBZ06] Reid Simmons, Brett Browning, Yilu Zhang, and Varsha Sadekar. “Learning to
predict driver route and destination intent.” In Intelligent Transportation Systems
Conference, pp. 127–132, 2006.

[SCD16] Yujia Shen, Arthur Choi, and Adnan Darwiche. “Tractable Operations for Arith-
metic Circuits of Probabilistic Models.” In Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 29: Annual Conference on Neural Infor-
mation Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp.
3936–3944, 2016.

126

[SCD17] Yujia Shen, Arthur Choi, and Adnan Darwiche. “A Tractable Probabilistic Model
for Subset Selection.” In Gal Elidan, Kristian Kersting, and Alexander T. Ihler,
editors, Proceedings of the Thirty-Third Conference on Uncertainty in Artificial
Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press, 2017.

[SCD18] Yujia Shen, Arthur Choi, and Adnan Darwiche. “Conditional PSDDs: Modeling
and Learning With Modular Knowledge.” In Sheila A. McIlraith and Kilian Q.
Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial In-
telligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, pp. 6433–6442. AAAI Press, 2018.

[SCD20] Yujia Shen, Arthur Choi, and Adnan Darwiche. “A New Perspective on Learning
Context-Specific Independence.” In 10th International Conference on Probabilistic
Graphical Models, 2020.

[SGD19] Yujia Shen, Anchal Goyanka, Adnan Darwiche, and Arthur Choi. “Structured
Bayesian Networks: From Inference to Learning with Routes.” In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 7957–7965.
AAAI Press, 2019.

[Shi94] Solomon Eyal Shimony. “Finding MAPs for Belief Networks is NP-Hard.” Artif.
Intell., 68(2):399–410, 1994.

[SM05] Scott Sanner and David A. McAllester. “Affine Algebraic Decision Diagrams
(AADDs) and their Application to Structured Probabilistic Inference.” In IJCAI,
pp. 1384–1390, 2005.

[SM12] Charles Sutton and Andrew McCallum. “An Introduction to Conditional Random
Fields.” Found. Trends Mach. Learn., 4(4):267–373, April 2012.

[SMV19] Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Pe-
harz, Thomas Liebig, and Kristian Kersting. “Conditional Sum-Product Net-
works: Imposing Structure on Deep Probabilistic Architectures.” arXiv preprint
arXiv:1905.08550, 2019.

[STA12] Kevin Swersky, Daniel Tarlow, Ryan P. Adams, Richard S. Zemel, and Bren-
dan J. Frey. “Probabilistic n-Choose-k Models for Classification and Ranking.”
In Advances in Neural Information Processing Systems 25 (NIPS), pp. 3059–3067,
2012.

[SW93] Detlef Sieling and Ingo Wegener. “NC-Algorithms for Operations on Binary De-
cision Diagrams.” Parallel Processing Letters, 3:3–12, 1993.

127

[TJH05] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Al-
tun. “Large Margin Methods for Structured and Interdependent Output Vari-
ables.” J. Mach. Learn. Res., 6:1453–1484, December 2005.

[Vom06] Jiŕı Vomlel. “Noisy-or classifier.” Int. J. Intell. Syst., 21(3):381–398, 2006.

[Weg00] Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

[XCD12] Yexiang Xue, Arthur Choi, and Adnan Darwiche. “Basing Decisions on Sentences
in Decision Diagrams.” In AAAI, pp. 842–849, 2012.

[XZF18] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. “A
Semantic Loss Function for Deep Learning with Symbolic Knowledge.” In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 5502–5511, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[YFW05] Jonathan Yedidia, William Freeman, and Yair Weiss. “Constructing free-energy
approximations and generalized belief propagation algorithms.” IEEE Transac-
tions on Information Theory, 51(7):2282–2312, 2005.

[Zhe15] Yu Zheng. “Trajectory Data Mining: An Overview.” ACM Transaction on Intel-
ligent Systems and Technology, 2015.

128

