
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
The Chow rings of some moduli spaces of curves and surfaces

Permalink
https://escholarship.org/uc/item/7ns5r9w8

Author
Canning, Samir

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7ns5r9w8
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

The Chow rings of some moduli spaces of curves and surfaces

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Mathematics

by

Samir Canning

Committee in charge:

Professor Elham Izadi, Chair
Professor Kenneth Intriligator
Professor Kiran Kedlaya
Professor James McKernan
Professor Dragos Oprea

2022



Copyright

Samir Canning, 2022

All rights reserved.



The Dissertation of Samir Canning is approved, and it is acceptable in

quality and form for publication on microfilm and electronically.

University of California San Diego

2022

iii



DEDICATION

To my parents, Robert and Deval, my grandparents, Anil, Bindu, William, and Edna, and
my brother Krishna.

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.1 Moduli problems and tautological classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Equivariant intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.3 Some moduli spaces of curves and surfaces, and their tautological rings . . 6
0.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 1 Tautological classes on low-degree Hurwitz spaces . . . . . . . . . . . . . . . . . 10
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Projective bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 (Equivariant) Intersection Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 The Hurwitz space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 The Casnati–Ekedahl structure theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 The category of triple covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 The category of quadruple covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.3 The category of regular pentagonal covers . . . . . . . . . . . . . . . . . . . . . 27
1.3.4 Casnati–Ekedahl classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Pairs of vector bundles on P1-bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.1 The rational Chow ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.2 Splitting loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.5 The good opens and codimension bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.5.1 Degree 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.5.2 Degree 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.3 Degree 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.6 Conclusion and preview of subsequent work . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 2 Chow rings of low-degree Hurwitz spaces . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2 Conventions and some intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

v



2.2.1 Projective and Grassmann bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.2.2 The Trapezoid Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.2.3 The Hurwitz space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.3 Relative bundles of principal parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3.2 Directional refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3.3 Bundle-induced refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.3.4 Directional and bundle-induced refinements . . . . . . . . . . . . . . . . . . . . 85

2.4 The Chow ring in degree 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.4.1 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.4.2 Resolution and excision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.4.3 Low genus calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.5 The Chow ring in degree 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.5.1 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.5.2 Relations among CE classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.5.3 All relations in low codimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.5.4 Presentation of the ring and stabilization . . . . . . . . . . . . . . . . . . . . . . 103

2.6 The Chow ring in degree 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.6.1 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.6.2 The construction of the bundle of principal parts and relations . . . 109
2.6.3 All relations in low codimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.6.4 Presentation of the ring and stabilization . . . . . . . . . . . . . . . . . . . . . . 119

2.7 Applications to the moduli space of curves and a generalized Picard rank
conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2.7.1 Push forwards toMg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.7.2 Formulas in degree 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2.7.3 Formulas in degree 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Chapter 3 Integral Picard groups of low-degree Hurwitz spaces . . . . . . . . . . . . . . . . 141
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3.2 Hurwitz Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.3 Stacks of vector bundles on P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.3.1 Construction of the base stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.4 Trigonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3.4.1 Generating line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.4.2 Simple branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.5 Tetragonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.5.1 The open H ′

4,g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.5.2 Excision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
3.5.3 Generating line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.5.4 Simple branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

3.6 Pentagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.6.1 The open substack H ′

5,g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.6.2 Excision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

vi



3.6.3 Generating line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
3.6.4 Simple branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Chapter 4 The Chow rings of the moduli spaces of curves of genus 7, 8, and 9 . . 178
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.1.1 Overview of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.1.2 Notations and conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.2 Hurwitz Schemes and the Tautological Ring . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.2.1 The Casnati–Ekedahl structure theorem . . . . . . . . . . . . . . . . . . . . . . . 190

4.3 Splitting Loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.3.1 Pair splitting loci on H4,g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.3.2 Pair splitting loci on H5,g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4.4 The Tetragonal Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.4.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
4.4.2 Chow rings of locally closed strata outside Ψ . . . . . . . . . . . . . . . . . . . 207
4.4.3 Genus 5 and 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.4.4 Genus 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.4.5 Genus 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.4.6 Genus 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
4.4.7 The end of our luck: bielliptics in genus 10 and beyond . . . . . . . . . . 226

4.5 The Pentagonal Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.5.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
4.5.2 Chow rings of locally closed strata outside Ψ . . . . . . . . . . . . . . . . . . . 233
4.5.3 Genus 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
4.5.4 Genus 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
4.5.5 Genus 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

4.6 The General Genus 9 Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Chapter 5 The Chow rings of moduli spaces of elliptic surfaces over P1 . . . . . . . 262
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
5.2 Elliptic Surfaces and Weierstrass Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . 266
5.3 Computing the Chow ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

5.3.1 Computing the ideal of relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
5.4 The Tautological Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

5.4.1 Stacks of lattice polarized K3 surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 277
5.4.2 The tautological ring of FΛ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
5.4.3 Moduli of elliptic K3 surfaces and Weierstrass fibrations . . . . . . . . . 279
5.4.4 Codimension one classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

vii



LIST OF FIGURES

Figure 1.1. A factoring degree 4 cover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 2.1. A singular triple cover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 2.2. Possible 1-dimensional fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 2.3. Summary of the method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 2.4. Does dPη send S into Tη(p)G? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 2.5. Covers in T , D, and U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 3.1. Components of the complement of H s
k,g ⊂Hk,g . . . . . . . . . . . . . . . . . . 142

Figure 4.1. Example of a stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Figure 4.2. Two partial orders on the genus 7 strata . . . . . . . . . . . . . . . . . . . . . . . . 217

Figure 4.3. Two partial orders on the genus 8 strata . . . . . . . . . . . . . . . . . . . . . . . . 219

Figure 4.4. Our ≤ order in genus 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Figure 4.5. The map β contracts Σ7 and β(Σ7) ⊂ β(Σ8) . . . . . . . . . . . . . . . . . . . . . 223

Figure 4.6. Curves in Σ6 possess a g26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

viii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Elham Izadi, for her guidance

and support over the past five years. She suggested that I work on many of the problems

that are solved in this thesis, guided me along the way, and always made sure that I was

in a stimulating research environment. I am especially grateful that she always made sure

I actually finished writing up my results!

I am very grateful to Kenneth Intriligator, Kiran Kedlaya, James McKernan, and

Dragos Oprea, for agreeing to be on my thesis committee.

I could not have written this thesis without the support of everyone who has taught

me algebraic geometry, both formally and informally, including but not limited to Kenneth

Ascher, Kristin DeVleming, Elham Izadi, Johan de Jong, Kiran Kedlaya, James McKernan,

Dragos Oprea, David Stapleton, and Ravi Vakil. I also want to thank Dawei Chen, Izzet

Coskun, Anand Deopurkar, Rahul Pandharipande, Anand Patel, Dan Petersen, Johannes

Schmitt, Burt Totaro, and Angelo Vistoli for their interest in this work.

I learned a lot from my fellow graduate students at UCSD, especially Iacopo

Brivio, Jonathan Conder, Thomas Grubb, Bochao Kong, Justin Lacini, Woonam Lim,

and Shubham Sinha. Graduate students outside of UCSD were also very helpful to me,

including Andrea Di Lorenzo, Giovanni Inchiostro, Aaron Landesman, and Hannah Larson.

I owe so much to my collaborators Andrea Di Lorenzo, Giovanni Inchiostro, Bochao

Kong, and Hannah Larson. Doing math is a lot more fun in groups, and I am glad to have

worked with all of you. In particular, Hannah and I have been working for many years

together, and the bulk of this thesis is part our joint work thus far.

My parents always made sure that I could pursue my interests and passions, and I

am very grateful to them. I also want to acknowledge my non-mathematical friends for

helping me get away from it all, especially Colette, David, Greg, Jeremy, and Joshua.

Finally, I want to thank Lauren Riddiford, without whom I would not and could

not have finished graduate school. I am glad we did our Ph.D.’s together.

ix



Chapter 1, in full, has been submitted for publication. Chapter 1 is coauthored

with Larson, Hannah. The dissertation author was co-primary investigator and author of

this paper.

Chapter 2, in full, has been accepted for publication. It will appear at Journal für

die Reine und Angewandte Mathematik (Crelle’s Journal) as

• Samir Canning and Hannah Larson, ”Chow rings of low-degree Hurwitz spaces”; in

Journal für die Reine und Angewandte Mathematik (Crelle’s Journal).

Chapter 2 is coauthored with Larson, Hannah. The dissertation author was co-primary

investigator and author of this paper.

Chapter 3, in full, has been submitted for publication. Chapter 3 is coauthored

with Larson, Hannah. The dissertation author was co-primary investigator and author of

this paper.

Chapter 4, in full, has been submitted for publication. Chapter 4 is coauthored

with Larson, Hannah. The dissertation author was co-primary investigator and author of

this paper.

Chapter 5, in full, has been submitted for publication. Chapter 5 is coauthored

with Kong, Bochao. The dissertation author was co-primary investigator and author of

this paper.

The author was partially supported by NSF RTG grant DMS-1502651 while writing

this thesis.

x



VITA

2017 Bachelor of Arts in Mathematics, Columbia University

2017–2021 Graduate Teaching Assistant, Department of Mathematics
University of California San Diego

2018–2022 Graduate Research Assistant, University of California San Diego

2022 Doctor of Philosophy in Mathematics, University of California San Diego

xi



ABSTRACT OF THE DISSERTATION

The Chow rings of some moduli spaces of curves and surfaces

by

Samir Canning

Doctor of Philosophy in Mathematics

University of California San Diego, 2022

Professor Elham Izadi, Chair

We study the Chow rings of the Hurwitz spaces parametrizing degree 3, 4, and 5

covers of the projective line, the Chow rings of the moduli spaces of curves of genus 7, 8,

and 9, and the Chow rings of moduli spaces of elliptic surfaces. We prove a stabilization

result for the Chow rings of the Hurwitz spaces, and completely determine the Chow ring

for degree 3 covers. We use these results to compute the Chow rings of the moduli spaces

of curves of genus 7, 8, and 9. Then, we compute the Chow rings of moduli spaces of

elliptic surfaces. We show that they satisfy a stability property, and that they satisfy

vanishing and dimension properties predicted by Oprea–Pandharipande.

xii



Introduction

0.1 Moduli problems and tautological classes

In algebraic geometry, we study algebraic varieties, which are geometric objects

defined by polynomial equations. A fascinating phenomenon is that there are algebro-

geometric spaces, called moduli spaces, whose points correspond in a natural way to alge-

braic varieties. Moreover, we can often study these moduli spaces using algebro-geometric

techniques. The geometric properties of moduli spaces are interesting by themselves, and

they may also shed light on the varieties that the moduli space parametrizes.

The focus of this thesis is the intersection theory of some moduli spaces of curves

and surfaces. We begin with some definitions and basic examples to see how moduli theory

“tautologically” produces interesting questions in intersection theory.

Definition 0.1.1. Let S be a scheme, F be a contravariant functor from the category of

schemes over S to the category of sets. Suppose that M represents F ; that is, there is a

natural isomorphism

F → Hom(−,M).

We then call F a moduli problem and M the moduli space associated to F .

The natural isomorphism F → Hom(−,M) furnishes a universal object U → M ,

which comes from the point in F (M) corresponding to the identity map in Hom(M,M).

In general, we think of F (T ) as the set of “families” of certain types of schemes over T .

The universal object U → M is the universal family, and every family over T is pulled
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back from the universal family via a morphism T →M .

Example 0.1.2. Consider the functor F from schemes over SpecC to the category of sets

sending a scheme T to the set of isomorphism classes of quotients

O⊕n
T → Q,

where Q is a locally free sheaf of rank n − k on T . The functor F is representable by

the Grassmannian G(k, n), which we think of as parametrizing k-dimensional subspaces

(equivalently n− k-dimensional quotient spaces) of an n-dimensional vector space. The

universal object over G(k, n) is the tautological sequence

0→ S → O⊕n
G(k,n) → Q→ 0, (0.1.1)

where S is locally free of rank k and Q is locally free of rank n− k.

Mumford observed that moduli problems F give rise to interesting objects in the

intersection theory of the moduli space M [Mum83]. In his words,

Whenever a variety or topological space is defined by some universal prop-
erty, one expects that by virtue of its defining property, it possesses certain
cohomology classes called tautological classes.

Example 0.1.3. The cohomology and Chow ring of the Grassmannian have the Chern

classes of the tautological bundles ci(S) and cj(Q). From the tautological exact sequence

(0.1.1), we obtain the relation

c(S)c(Q) = 1. (0.1.2)

In fact, the Chow and cohomology rings of the Grassmannian G(k, n) are generated by

the classes ci(S), and relations can be obtained from equation (0.1.2) by noting that cj(Q)

vanishes for j ≥ n− k + 1. See [EH16, Theorem 5.26] for a complete description of the

Chow ring of G(k, n).
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With the Grassmannian as the guiding example, Mumford [Mum83] defined the

tautological ring of the moduli space of curvesMg as a subring of the Chow ring. The

tautological ring of Mg will play a central role in this thesis, as will the tautological

rings of a few other moduli spaces. In order to define these rings, we will use equivariant

intersection theory.

0.2 Equivariant intersection theory

Unfortunately (or not, depending on your point of view), the moduli problems we

will deal with in this thesis are almost never representable by schemes. We need to enlarge

the spaces we work with to include algebraic stacks. One could work with the associated

coarse moduli spaces when they exist, but these are often singular, and it is difficult to

study intersection theory on singular varieties. In fact, Mumford ran into this problem

when defining the Chow ring ofMg. He showed that the singularities of the coarse moduli

variety ofMg are nice enough so that an intersection product could still be defined, at

least with rational coefficients.

Nowadays, there are other approaches to intersection theory on algebraic stacks,

and we can avoid any discussion of the coarse moduli spaces. In this thesis, we will use

the approach developed by Totaro [Tot99] and Edidin–Graham [EG98] called equivariant

intersection theory. Equivariant intersection theory is inspired by equivariant cohomology,

which is defined as follows. Let G be a topological group acting on a topological space X.

Let BG denote the classifying space for principal G-bundles. It comes equipped with a

universal family,

π : EG→ BG.

The space EG is the total space of the universal principal G-bundle, and π is the quotient

map for a free action of G on EG. The group G acts diagonally on EG×X. One then
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defines the equivariant cohomology of X as

H∗
G(X,Z) := H∗(EG×X/G,Z).

Restricting to the setting where X is a complex algebraic variety and G is an algebraic

group, we would like to compare the cohomology of the quotient stack X := [X/G] with

H∗
G(X,Z). The cohomology of a stack Y over SpecC is defined functorially: a cohomology

class in H∗(Y ,Z) is the data of a cohomology class c(t) ∈ H∗(T,Z) for every scheme

T over C and every object t ∈ Y(T ) satisfying natural compatibility conditions. The

comparison between H∗(X ,Z) and H∗
G(X,Z) is difficult, however, because EG and BG

are not algebraic varieties. In particular, the G-torsor X × EG→ X × EG/G is not an

object of the stack [X/G].

Totaro [Tot99] showed, however, that EG and BG can be approximated by algebraic

varieties in the following sense. Let V be a representation of G and let U ⊂ V be an open

subset such that G acts freely on U , and such that codim(V ∖ U) > i. Then

Hk(U/G) ∼= Hk(BG)

and

Hk(X × U/G) ∼= Hk
G(X).

for k ≤ 2i. Using these approximations, one can show that

H∗(X ,Z) ∼= H∗
G(X,Z).

The above isomorphisms are independent of the choice of representation V . This observation

motivates the definition of equivariant Chow groups of quotient stacks.

Definition 0.2.1 (Totaro [Tot99], Edidin–Graham [EG98]). With notation as above,
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define

CHG
i (X) = CHi+dim(U)−dim(G)(X × U/G).

By definition, the equivariant Chow groups of X are the Chow groups of a scheme,

so they enjoy the usual properties of Chow groups of schemes. In particular, if X is smooth,

then there is an intersection product. We can then define the Chow ring CH∗(X ) to be

the equivariant Chow ring CHG
∗ (X).

This theory works with integral coefficients, but it is typically much more difficult

to compute with integral coefficients than with rational coefficients. For most of this thesis

we will work with A∗(X ) := CH∗(X )⊗Q.

The definition of the Chow ring of a quotient stack as an equivariant Chow ring

agrees with other proposed definitions of Chow rings of stacks, including Mumford’s

definition for so-called Q-varieties [Mum83] and Vistoli’s for Deligne–Mumford stacks

[Vis89b]. See [EG98] for proofs.

We end this section with an example of the computation of an equivariant Chow

ring.

Example 0.2.2. Let Gm be the multiplicative group over a field k. We compute the

Chow ring of the classifying stack BGm := [Spec k/Gm]. The scaling action of Gm on

An+1 is free on the complement of the origin An+1 ∖ 0. The quotient is a familiar variety:

(An+1 ∖ 0)/Gm = Pn. The Chow ring of Pn is simply Z[c1]/(cn+1
1 ), where c1 is the first

Chern class of the tautological line bundle. Taking the limit as n→∞, we see that

CH∗(BGm) = Z[c1].

This computation demonstrates that, unlike the case of smooth schemes, the Chow rings

of stacks can be nonzero in arbitrarily high codimension.
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0.3 Some moduli spaces of curves and surfaces, and

their tautological rings

Now that we know how to define Chow rings of stacks, we will discuss the most

pertinent moduli problems that appear in this thesis and their tautological and Chow

rings. Recall that A∗(X) denotes the Chow ring with Q-coefficients of X.

The first moduli space isMg. The moduli space of curvesMg is the stack whose

objects over a scheme T are smooth proper morphisms C → T of relative dimension 1

such that the geometric fibers are of genus g. There is a universal family

f : C →Mg.

The sheaf of relative differentials ωf furnishes natural classes called the kappa classes in

A∗(Mg):

κi = f∗(c1(ωf )
i+1).

Definition 0.3.1. The tautological ring R∗(Mg) is the Q-subalgebra of A∗(Mg) generated

by the kappa classes.

Immediately, there are two natural questions

• Question 1: Does A∗(Mg) = R∗(Mg)? If they exist, what can we say about the

support of non-tautological classes?

• Question 2: What is the structure of R∗(Mg)?

The answer to Question 1 is no in general. Van Zelm [vZ18] proved that A∗(M12) ̸=

R∗(M12). Question 2 is the subject of Faber’s conjectures [Fab99], which have been

verified computationally for g ≤ 23 using the Faber–Zagier relations [Fab99,Pan18]. In

particular, we know a complete set of generators and relations for the tautological ring of
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R∗(Mg) when g ≤ 23. We will give a positive answer to Question 1 when 7 ≤ g ≤ 9 in

Chapter 4.

The next moduli space is the Hurwitz space Hk,g, which is in fact the key player in

our study ofMg. The objects of the Hurwitz space over a scheme T are smooth proper

morphisms C → P → T such that C → P is finite and flat of degree k, C → T is a

relative curve of genus g, and P → T is a P1-fibration. We have the universal diagram

C P

Hk,g.

α

f
π

Definition 0.3.2. The tautological ring of the Hurwitz space is the Q-subalgebra

R∗(Hk,g) ⊆ A∗(Hk,g) generated by classes of the form

f∗(c1(ωf )
i · α∗c1(ωπ)

j) = π∗(α∗(c1(ωf )
i) · c1(ωπ)j).

Note that when we set j = 0, we recover the pullbacks of the kappa classes fromMg.

We can then ask the same questions for Hk,g that we asked forMg. We also have

the following additional question.

• Question 3: What is the relationship between R∗(Hk,g) and R
∗(Mg)?

We answer Question 3 for k ≤ 5 by showing that classes in R∗(Hk,g) push forward to

R∗(Mg) in Chapter 2.

Finally, we turn our attention to surfaces, specifically K3 surfaces. The moduli

spaces we study are moduli spaces of lattice polarized K3 surfaces. The cohomology lattice

of a K3 surface is isomorphic to the lattice

E8(−1)2 ⊕ U3
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where E8 is the unique postive definite unimodular lattice of rank 8 and U is the hyperbolic

lattice. For any sublattice Λ ⊂ E8(−1)2 ⊕ U3 there are moduli spaces FΛ parametrizing

K3 surfaces whose Picard groups contain the lattice Λ and such that Λ contains the class

of a quasi-polarization. After choosing a basis of Λ, we think of the moduli problem as

follows: the objects of FΛ over a scheme T are the data of a family of K3 surfaces

X → T

together with a choice of line bundles H1, . . . Hr on X, corresponding to the basis elements

of the lattice. There are forgetful morphisms

FΛ′ ↪→ FΛ

for any lattice Λ ⊂ Λ′. We call the subvarieties FΛ′ Noether-Lefschetz loci of FΛ.

The stack FΛ comes equipped with a universal K3 surface

πΛ : XΛ → FΛ.

and universal bundlesH1, . . .Hr on XΛ, well-defined up to pullbacks from FΛ, corresponding

to the chosen basis. Let TπΛ denote the relative tangent bundle. Following [MOP17], we

define the κ-classes

κΛa1,...,ar,b := πΛ∗
(
c1(H1)

a1 · · · c1(Hr)
ar · c2(TπΛ)b

)
.

Definition 0.3.3 (Marian–Oprea–Pandharipande). The tautological ring R∗(FΛ) is the

subring of A∗(FΛ) generated by pushforwards from the Noether–Lefschetz loci of all

κ-classes.

In this thesis, we will focus on FU , the moduli space of hyperbolically polarized
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K3 surfaces. We can ask the analogues of Questions 1 and 2 for FU . We will show that

A∗(FU) = R∗(FU) and completely determine the structure of A∗(FU) in Chapter 5.

0.4 Structure of the thesis

This thesis is made up of five papers, each with its own chapter. It is designed

so that each chapter can be read separately. In particular, all the necessary notations

are (re)introduced in each chapter. The main results of each chapter are presented in the

introduction to each chapter. The first three chapters are about tautological and Chow

rings of Hurwitz spaces. The fourth chapter is about Chow rings of moduli spaces of low

genus curves. The final chapter is about Chow rings of moduli spaces of elliptic surfaces,

with a particular focus on elliptic K3 surfaces.
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Chapter 1

Tautological classes on low-degree
Hurwitz spaces
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1.1 Introduction

When studying intersection theory of moduli spaces, one often introduces certain

natural or “tautological” classes coming from the universal family. In the words of

Mumford [Mum83]:

Whenever a variety or topological space is defined by some universal prop-
erty, one expects that by virtue of its defining property, it possesses certain
cohomology classes called tautological classes.

For example, in the case of the moduli space of curves Mg, the tautological classes

Mumford proposes to study are the kappa classes, defined as follows. Let f : C → Mg

be the universal curve; then κi := f∗(c1(ωf)
i+1) ∈ Ai(Mg), the Chow ring ofMg. The

tautological ring, denoted R∗(Mg) ⊆ A∗(Mg), is the subring of the rational Chow ring

generated by the kappa classes.

In this paper, we study the intersection theory of the Hurwitz spaceHk,g, the moduli

space of degree k, genus g covers of P1, up to automorphisms of the target. Following

Mumford’s philosophy, let us begin by introducing a notion of tautological classes. Let C

be the universal curve and P the universal P1-fibration over the Hurwitz space Hk,g:

C P

Hk,g.

α

f
π

We define the tautological subring of the Hurwitz space R∗(Hk,g) ⊆ A∗(Hk,g) to be the

subring generated by classes of the form f∗(c1(ωf )
i · α∗c1(ωπ)

j) = π∗(α∗(c1(ωf )
i) · c1(ωπ)j).

In general, determining the full Chow ring of a moduli space — such asMg or Hk,g

— may be quite difficult. Having established a notion of tautological classes, however, it

makes sense to split the study of the intersection theory of a moduli space into two parts:

• Question 1: To what extent are classes tautological? If they exist, what can we

say about the support of non-tautological classes?
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• Question 2: What is the structure of the tautological ring? Although the full Chow

ring may be complicated, one hopes that the tautological ring has a more easily

described structure.

In this paper, we provide an answer to Question 1 for Hk,g with k ≤ 5. The ground work

we develop here will also be important for addressing Question 2, which we undertake in

subsequent work [CL21a].

Before stating our results, we highlight some known results about the Chow ring of

Mg related to Question 1 for context.

(1a) (codimension 1) Codimension 1 classes are tautological: A1(Mg) = R1(Mg) [Har83].

(1b) (low genus) For g ≤ 6, all classes are tautological: A∗(Mg) = R∗(Mg) [Mum83,

Fab90a,Fab90b, Iza95,PV15b].

(1c) (bielliptics) In genus 12, the fundamental class of the bielliptic locus B12 is not

tautological: [B12] /∈ R∗(M12) [vZ18].

Remark 1.1.1. Building upon the results for Hurwitz spaces in this paper and its

sequel [CL21a], we extend (1b) to prove A∗(Mg) = R∗(Mg) for all g ≤ 9 in [CL21b].

Meanwhile, for the Hurwitz space Hk,g, the previously known results regarding tautological

classes are as follows:

(2a) (codimension 1) Codimension 1 classes are tautological A1(Hk,g) = R1(Hk,g) for

k ≤ 5 [DP15] and k > g − 1 [Mul20]. The general case remains an open conjecture

known as the Picard rank conjecture.

(2b) (low degree) For k ≤ 3, all classes are tautological: A∗(Hk,g) = R∗(Hk,g). In

the case k = 2, it is well-known that A∗(H2,g) = Q; the case k = 3 is due to

Patel–Vakil [PV15a].
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Our main theorems make significant progress towards answering Question 1 for

the next open cases: the Hurwitz spaces H4,g and H5,g. A degree 4 cover C → P1 can

factor as two degree two covers C → C ′ → P1. Let Hnf
4,g ⊂ H4,g denote the open locus of

non-factoring covers, or equivalently covers whose monodromy group is not contained in

the dihedral group D4. By R
∗(Hnf

4,g) we mean the image of R∗(H4,g) under the restriction

map A∗(H4,g)→ A∗(Hnf
4,g).

Theorem 1.1.2. If they exist, any non-tautological classes on H4,g are supported on the

locus of factoring covers or have codimension at least (g + 3)/4− 4. In other words,

Ai(Hnf
4,g) = Ri(Hnf

4,g) for all i < (g + 3)/4− 4.

Remark 1.1.3. The fact that there may be non-tautological classes on the locus of

factoring covers should be compared with (1c). In fact, using van Zelm’s result that

[B12] is not tautological, we establish in [CL21a, Remark 1.10] that H4,12 indeed possesses

non-tautological classes supported on the factoring locus.

In degree 5, covers cannot factor, and we obtain the following result.

Theorem 1.1.4. If they exist, any non-tautological classes on H5,g have codimension at

least (g + 4)/5− 16. In other words,

Ai(H5,g) = Ri(H5,g) for all i < (g + 4)/5− 16.

Theorems 1.1.2 and 1.1.4 are reminiscent of the Madsen–Weiss theorem [MW07],

which proves Mumford’s conjecture that the stable cohomology ofMg is a polynomial

ring in the kappa classes. Edidin [Edi13, Question 3.34] asked if the analogue of the

Madsen–Weiss theorem holds in the Chow ring A∗(Mg), but very little is known about

this question. We view Theorems 1.1.2 and 1.1.4 as providing some evidence toward a
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positive answer to Edidin’s question. Unlike the case of the stable cohomology ofMg,

we will show in [CL21a] that there are many interesting relations among the tautological

classes on Hk,g when 3 ≤ k ≤ 5.

Sketch of the proof

There are three key ingredients to proving Theorems 1.1.2 and 1.1.4. The set up

we develop will also be essential for later results determining structure of the tautological

ring in [CL21a]. We shall therefore carry them out in the case k = 3 as well, which fits

into the same framework.

(1) Useful generators: We first explain how structure theorems of Casnati–Ekedahl

for finite covers give rise to a collection of classes on Hk,g, which we term Casnati–Ekedahl

(CE) classes. In Theorem 1.3.10, we show that all CE classes are tautological and that

they generate the tautological ring. An interesting consequence of this is that, for fixed

k, i, dimRi(Hk,g) is bounded above, independent of g. (This part works for any k; see

Remark 1.3.11).

(2) The good open: For k = 3, 4, 5, we define a “good open” H′
k,g ⊆ Hk,g. Using our

interpretation of the Casnati–Ekedahl structure theorems, we show that this “good open”

possesses an open embedding inside a vector bundle X ′
k,g over a moduli space B′

k,g of pairs

of vector bundles on P1. The pullbacks of classes along A∗(B′
k,g) = A∗(X ′

k,g)→ A∗(H′
k,g)

are CE classes (essentially by the definition of CE classes). It follows that A∗(H′
k,g) is

generated by tautological classes.

(3) Codimension bounds: By excision, there is a surjection A∗(Hk,g)→ A∗(H′
k,g)

whose kernel is generated by classes supported on the complement of H′
k,g. Thus, the final

step is to bound the codimension of the complement of H′
k,g. When k = 3, it turns out

H′
k,g = Hk,g, so we recover the result of Patel–Vakil [PV15a] that all classes are tautological.

When k = 4, the complement of H′
k,g contains the locus of covers that factor through a
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double cover of a low-genus curve. Thus, the complement has codimension 2. However, it

turns out that the non-factoring covers in the complement of H′
k,g have codimension at

least (g + 3)/4− 4. This leads to the proof of Theorem 1.1.2 at the end of Section 1.5.2.

Finally, for k = 5, there are no factoring covers, and we show that the complement of H′
k,g

has codimension at least (g + 4)/5 − 16. With this, we conclude the proof of Theorem

1.1.4 at the end of Section 1.5.3.

1.2 Notation and conventions

We will work over an algebraically closed field of characteristic 0 or characteristic

p > 5. All schemes in this paper will be taken over this fixed field.

1.2.1 Projective bundles

We follow the subspace convention for projective bundles: given a scheme (or stack)

X and a vector bundle E of rank r on X, we set

PE := Proj(Sym•E∨),

so we have the tautological inclusion

OPE(−1) ↪→ γ∗E,

where γ : PE → X is the structure map. Set ζ := c1(OPE(1)). With this convention, the

Chow ring of PE is given by

A∗(PE) = A∗(X)[ζ]/⟨ζr + ζr−1c1(E) + . . .+ cr(E)⟩. (1.2.1)
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We call this the projective bundle theorem. Note that 1, ζ, ζ2, . . . , ζr−1 form a basis for

A∗(PE) as an A∗(X)-module. Since

γ∗ζ
i =


0 if i ≤ r − 2

1 if i = r − 1,

this determines the γ∗ of all classes from PE.

1.2.2 (Equivariant) Intersection Theory

Let X be a scheme and suppose Z ⊆ X is a closed subscheme of codimension c

and U is its open complement. We denote the Chow ring of X with rational coefficients

by A∗(X). The excision property of Chow is the right exact sequence

A∗−c(Z)→ A∗(X)→ A∗(U)→ 0.

If one knows A∗(X), then to find the Chow ring of an open U ⊂ X, one must describe

the image of A∗−c(Z) → A∗(X). If Z̃ → Z is proper and surjective, then pushforward

A∗(Z̃)→ A∗(Z) is surjective, see [Vis89a, Lemma 1.2]. Given a graded ring R =
⊕

Ri, let

TrundR := R/⊕i≥d Rd

denote the degree d trunction. With this notation, if the complement of U ⊆ X has

codimension c, then the excision property implies

TruncA∗(X)
∼−→ TruncA∗(U). (1.2.2)

Chow rings also satisfy the homotopy property : if V → X is a vector bundle,

then the pullback map A∗(X) → A∗(V ) is an isomorphism. This property motivates
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the definition of equivariant Chow groups as developed by Edidin-Graham in [EG98].

Again, we will be using rational coefficients for our equivariant Chow rings. Let V be a

representation of G and suppose G acts freely on U ⊂ V and the codimension of V ∖ U is

greater than c. If X is a smooth scheme and G is a linear algebraic group acting on X,

Edidin and Graham defined

AcG(X) := Ac((X × U)/G),

and showed that the graded ring A∗
G(X) possesses an intersection product. For quotient

stacks, one has A∗([X/G]) ∼= A∗
G(X) by [EG98, Proposition 19], which may suffice as the

definition of the Chow rings of all stacks appearing in this paper.

By Edidin-Graham [EG98, Proposition 5], there is also an excision sequence for

equivariant Chow groups. Let Z ⊆ X be a G-invariant closed subscheme of codimension c

and U its complement. Then there is an exact sequence

A∗−c
G (Z)→ A∗

G(X)→ A∗
G(U)→ 0.

The following lemma is a useful consequence of the excision sequence. See also [Vis87,

Theorem 2] for a much more general statement.

Lemma 1.2.1. Suppose P → X is a principal Gm-bundle. Then A∗(P ) = A∗(X)/⟨c1(L)⟩,

where L is the corresponding line bundle.

Proof. By the correspondence between principal Gm-bundles and line bundles over X, P

is the complement of the zero section of the line bundle L→ X. The excision sequence

gives

A∗−1(X)→ A∗(L)→ A∗(P )→ 0.

Under the identification of A∗(L) with A∗(X), the first map in the above exact sequence
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is multiplication by c1(L), from which the result follows.

1.2.3 The Hurwitz space

Given a scheme S, an S point of the parametrized Hurwitz scheme H†
k,g is the

data of a finite, flat map C → P1 × S, of constant degree k so that the composition

C → P1 × S → S is smooth with geometrically connected fibers. (We do not impose the

condition that a cover C → P1 be simply branched.)

The unparametrized Hurwitz stack is the PGL2 quotient of the parametrized Hurwitz

scheme. There is also a natural action of SL2 on H†
k,g (via SL2 ⊂ GL2 → PGL2). The

natural map [H†
k,g/ SL2] → [H†

k,g/PGL2] is a µ2 banded gerbe. It is a general fact that

with rational coefficients, the pullback map along a gerbe banded by a finite group is an

isomorphism [PV15b, Section 2.3]. In particular, since we work with rational coefficients

throughout, A∗([H†
k,g/PGL2]) ∼= A∗([H†

k,g/ SL2]). It thus suffices to prove all statements

for the SL2 quotient [H†
k,g/ SL2], which we shall denote by Hk,g from now on.

Explicitly, the SL2 quotient Hk,g is the stack whose objects over a scheme S are

families (C → P → S) where P = PV → S is the projectivization of a rank 2 vector

bundle V with trivial determinant, C → P is a finite, flat, finitely presented morphism of

constant degree k, and the composition C → S has smooth fibers of genus g. The benefit

of working with Hk,g is that the SL2 quotient is equipped with a universal P1-bundle

P → Hk,g that has a relative degree one line bundle OP(1) (a P1-fibration does not).

Working with this P1-bundle simplifies our intersection theory calculations.

1.3 The Casnati–Ekedahl structure theorem

The main objective of this section is to give a description of stacks of low-degree

covers using structure theorems of Casnati–Ekedahl. The descriptions in Sections 1.3.1–

1.3.3 are likely well-known but have not previously been spelled out in the language of

stacks except in the degree 3 case [BV12], as we shall need them. On a first pass, the
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reader may wish to skip forward to Section 1.3.4, where we introduce natural classes

coming from these structure theorems and prove that they generate the tautological ring.

Generalizing earlier results of Schreyer [Sch86] and Miranda [Mir85], Casnati–

Ekedahl [CE96] proved a general structure theorem for degree k, Gorenstein covers of

integral schemes. Given a degree k cover α : X → Y where Y is integral, one obtains an

exact sequence

0→ OY → α∗OX → E∨
α → 0, (1.3.1)

where Eα is a vector bundle of rank k − 1 on Y . When α is Gorenstein, α∗OX ∼= (α∗ωα)
∨

by Serre duality. Pulling back and using adjunction, we therefore obtain a map

ω∨
α → (α∗α∗ωα)

∨ → α∗E∨
α , (1.3.2)

which induces a map X → PE∨ that factors α : X → Y .

Example 1.3.1 (Covers of P1). If α : C → P1 is a degree k, genus g cover, then we have

deg(E∨
α ) = deg(α∗OC) = χ(α∗OC)− k = χ(OC)− k = 1− g − k,

so deg(Eα) = g + k − 1. The map C → PE∨
α factors the canonical embedding C ↪→ Pg−1,

where the map PE∨
α → Pg−1 is given by the line bundle OPE∨

α
(1)⊗ ωP1 . Each linear space

in the image of PE∨
α → Pg−1 is the span of the image of the corresponding fiber of C → P1.

The Casnati–Ekedahl structure theorem below gives a resolution of the ideal sheaf

of X inside of PE∨
α [CE96]; see also [CN07].

Theorem 1.3.2 (Casnati–Ekedahl, Theorem 2.1 of [CE96]). Let X and Y be schemes,

Y integral and let α : X → Y be a Gorenstein cover of degree k ≥ 3. There exists a

unique Pk−2-bundle γ : P → Y and an embedding i : X ↪→ P such that α = γ ◦ i and

Xy := α−1(y) ⊂ γ−1(y) ∼= Pk−2 is a nondegenerate arithmetically Gorenstein subscheme
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for each y ∈ Y . Moreover, the following properties hold.

1. P ∼= PE∨
α where E∨

α := coker(OY → α∗OX).

2. The composition α∗Eα → α∗α∗ωα → ωα is surjective (dually, (1.3.2) does not drop

rank) and the ramification divisor R satisfies OX(R) ∼= ωα ∼= OX(1) := i∗OPE∨
α
(1).

3. There exists an exact sequence of locally free OP sheaves

0→ γ∗Fk−2(−k)→ γ∗Fk−3(−k + 2)→ · · · → γ∗F1(−2)→ OP → OX → 0. (1.3.3)

where Fi is locally free on Y . The restriction of the exact sequence above to a fiber

gives a minimal free resolution of Xy := α−1(y). This sequence is unique up to unique

isomorphism. Moreover the resolution is self-dual, meaning there is a canonical

isomorphism HomOP(Fi, Fk−2) ∼= Fk−2−i. The ranks of the Fi are

rankFi =
i(k − 2− i)

k − 1

(
k

i+ 1

)
.

4. If P ∼= PE ′∨, then E ′ ∼= E if and only if Fk−2
∼= detE ′ in the resolution (1.3.3)

computed with respect to the polarization OPE′∨(1).

Remark 1.3.3. There is a canonical isomorphism Fk−2
∼= detEα, which we describe here.

Following [CE96, p. 446], let A1 be the image of γ∗F1(−2)→ OP, and for 2 ≤ i ≤ k − 3,

let Ai denote the image of γ∗Fi(−i − 1) → γ∗Fi−1(−i). We set Ak−2 to be γ∗Fk−2(−k).

We have exact sequences

0→ A1 → OP → OX → 0 (1.3.4)

and

0→ Ai+1 → γ∗Fi(−i− 1)→ Ai → 0. (1.3.5)
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First, we claim that

Rjγ∗γ
∗Fi(−i− 1) ∼=


Fk−2 ⊗ detE∨ if i = j = k − 2

0 otherwise.

This is very similar to the calculations of [CE96, p. 446], but twisted up by one. To prove

the first case above, we note that the dualizing sheaf of γ is ωγ = (γ∗ detE)(−k + 1), and

apply Serre duality for γ, which is of relative dimension k − 2. The other cases follow

from the theorem on cohomology and base change and the well-known cohomology of

line bundles on projective space. Tensoring the exact sequences of (1.3.5) by OP(1) and

pushing forward by γ, the boundary maps provide us with isomorphisms

γ∗A1(1) ∼= R1γ∗A2(1) ∼= R2γ∗A3(1) ∼= · · · ∼= Rk−1γ∗(γ
∗Fk−2(−k + 1)) = 0.

Similarly, we have

R1γ∗A1(1) ∼= R2γ∗A2(1) ∼= · · · ∼= Rk−2γ∗(γ
∗Fk−2(−k + 1)) ∼= Fk−2 ⊗ detE∨.

On the other hand, tensoring (1.3.4) with OP(1) and pushing forward by γ we obtain

0→ E → α∗OX(1)→ R1γ∗A1(1)→ 0.

Recall that OX(1) ∼= ωα, so dualizing (1.3.1) we see that the cokernel of the left map is

OY . By the universal property of cokernel, we obtain an isomorphism

OY → R1γ∗A1(1) ∼= Fk−2 ⊗ detE∨,

or equivalently, an isomorphism Fk−2
∼= detE.
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In the cases k = 3, 4, 5, using self-duality, only pullbacks of the bundles Eα and F1

and determinants and tensor products thereof appear in the resolution (1.3.3). We set

Fα := F1. Twisting up (1.3.3) by OP(2) and pushing forward by γ, we see that

Fα = ker(Sym2Eα ↠ α∗ω
⊗2
α ).

In these low degrees k = 3, 4, 5, there is a special map δα in the resolution (1.3.3) from

which one can reconstruct the cover. Furthermore, as we shall explain, it is an open

condition on a space of global sections of all such maps δ to define a finite cover. This is

what distinguishes k = 3, 4, 5 and lies at the core of why our methods work in these low

degrees. Below we present an equivalence of categories between the category of degree k,

Gorenstein covers of a scheme S and a category of certain linear algebraic data on S. The

main content of this step is to point out the “essential data” of a cover, which we may

remember instead of the entire resolution. For the case of triple covers, this was done by

Bolognesi–Vistoli [BV12]. We give a slightly different perspective below.

1.3.1 The category of triple covers

Let Trip(S) denote the category of Gorenstein triple covers of a scheme S: the

objects are Gorenstein triple covers α : X → S and the arrows are isomorphisms over S.

Specializing (1.3.3) to the case k = 3, associated to a cover α : X → S, one obtains a rank

2 vector bundle Eα and an exact sequence

0→ OPE∨
α
(−3)⊗ γ∗ detEα

δα−→ OPE∨
α
→ OX → 0.

Conversely, from the above sequence, we can recover the cover α : X → S. Indeed, the

map δα is a global section in H0(PE∨
α ,OPE∨

α
(3) ⊗ γ∗ detE∨

α ), whose zero locus inside of

PE∨
α is X. Meanwhile, given any rank 2 vector bundle E on S, it is an open condition

22



on the space of sections H0(PE∨,OPE∨(3)⊗ γ∗ detE∨) for the vanishing of a section δ to

define a finite triple cover: δ must not be the zero polynomial on any fiber of PE → S.

Equivalently, if

Φ : H0(S, Sym3E ⊗ detE∨)
∼−→ H0(PE∨,OPE∨(3)⊗ γ∗ detE∨) (1.3.6)

denotes the natural isomorphism, then V (δ) ⊂ PE∨ is a Gorenstein triple cover so long as

Φ−1(δ) is non-vanishing.

This “essential data” is captured by a category Trip′(S) we now define. The objects

of Trip′(S) are pairs (E, η) where E is a rank 2 vector bundle and η ∈ H0(S, Sym3E ⊗

detE∨) is non-vanshing on S. An arrow (E1, η1)→ (E2, η2) in Trip′(S) is an isomorphism

E1 → E2 that sends η1 into η2. There is a functor Trip(S) → Trip′(S) that sends

α : X → S to the pair (Eα,Φ
−1(δα)). There is also a functor Trip′(S) → Trip(S) that

sends a pair (E, η) to the triple cover V (Φ(η)) ⊂ PE∨ → S. The following is essentially a

restatement of [CE96, Theorem 3.4], which was proved earlier by Miranda [Mir85].

Theorem 1.3.4 (Miranda, Casnati–Ekedahl). The functors above define an equivalence

of categories Trip(S) ∼= Trip′(S).

1.3.2 The category of quadruple covers

Let Quad(S) denote the category whose objects are Gorenstein quadruple covers

α : X → S and whose arrows are isomorphisms over S. Associated to a degree 4 cover

α : X → S, there is a rank 3 vector bundle Eα and a rank 2 vector bundle Fα and a

resolution

0→ γ∗ detEα(−4)→ γ∗Fα(−2)
δα−→ OPE∨

α
→ OX → 0. (1.3.7)

The section δα ∈ H0(PE∨
α ,OPE∨

α
(2)⊗ γ∗F∨) corresponds to a relative pencil of quadrics.

The cover X can be recovered as the vanishing locus of δα. By comparing (1.3.7) with the
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Koszul resolution of δα,

0→ γ∗ detFα(−4)→ γ∗Fα(−2)
δα−→ OPE∨

α
→ OX → 0, (1.3.8)

the uniqueness of Theorem 1.3.2 (3) induces a distinguished isomorphism ϕα : detFα ∼=

detEα (see [CE96, p. 450]).

We now define a category Quad′(S) of the corresponding linear algebraic data of a

quadruple cover. Given vector bundles E,F on S, there is a natural isomorphism

Φ : H0(S, F∨ ⊗ Sym2E)
∼−→ H0(PE∨, γ∗F∨ ⊗OPE∨(2)). (1.3.9)

Definition 1.3.5. Let E and F be vector bundles of ranks 3 and 2 respectively on S.

We say that a section η ∈ H0(S, F∨ ⊗ Sym2E) has the right codimension at s ∈ S if the

vanishing locus of Φ(η) restricted to the fiber over s ∈ S is zero dimensional.

The objects of Quad′(S) are tuples (E,F, ϕ, η) where E and F are vector bundles of

ranks 3 and 2 respectively, ϕ : detF ∼= detE is an isomorphism and η ∈ H0(S, F∨⊗Sym2E)

has the right codimension at all s ∈ S. An arrow in Quad′(S) is a pair of isomorphisms

ξ : E1 → E2, and ψ : F1 → F2, such that the following diagrams commute

F1 Sym2E1

F2 Sym2E2

ψ

η1

Sym2 ξ

η2

detF1 detE1

detF2 detE2.

ϕ1

detψ det ξ

ϕ2

There is a functor Quad(S)→ Quad′(S) that sends α : X → S to (Eα, Fα, ϕα, ηα)

where ηα := Φ−1(δα). There is also a functor Quad′(S) → Quad(S) that sends a tuple

(E,F, ϕ, η) to the quadruple cover V (Φ(η)) ⊂ PE∨ → S. The following is essentially a

restatement of [CE96, Theorem 4.4].

Theorem 1.3.6 (Casnati–Ekedahl). The functors above define an equivalence of categories

Quad(S) ∼= Quad′(S).
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Proof. Work of Casnati–Ekedahl established that the composition

Quad(S)→ Quad′(S)→ Quad(S)

is equivalent to the identity, as V (δα)→ S is naturally identified with the cover α : X → S.

We must provide a natural isomorphism of Quad′(S) → Quad(S) → Quad′(S)

with the identity on Quad′(S). Suppose we are given (E,F, ϕ, η) ∈ Quad′(S). We want to

define an arrow (E,F, ϕ, η)→ (Eα, Fα, ϕα, ηα). Let X = V (Φ(η)) ⊂ PE∨, and α : X → S.

The Koszul resolution of Φ(η) is

0→ (γ∗ detF )(−4)→ γ∗F (−2) Φ(η)−−→ OPE∨ → OX → 0

and is exact since η has the right codimension at all s ∈ S. We break this into two

sequences

0→ (γ∗ detF )(−4)→ γ∗F (−2)→ A→ 0 (1.3.10)

and

0→ A→ OPE∨ → OX → 0. (1.3.11)

Pushing forward (1.3.11) we get a short exact sequence on S:

0→ OS → α∗OX → R1γ∗A→ 0.

Using (1.3.10), we obtain isomorphisms

R1γ∗A ∼= R2γ∗(γ
∗ detF )(−4) ∼= detF ⊗R2γ∗OPE∨(−4).

Because the dualizing sheaf of γ is ωγ = OPE∨(−3) ⊗ γ∗ detE, using Serre duality, we

obtain an isomorphism R2γ∗OPE∨(−4) ∼= detE∨ ⊗ E∨. Now the universal property of
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cokernel produces an isomorphism

E∨
α = coker(OS → α∗OX)

∼−→ R1γ∗A ∼= detF ⊗ detE∨ ⊗ E∨.

Meanwhile ϕ determines an isomorphism detF ⊗ detE∨ ∼= OS. Composing with this, and

dualizing, we obtain an isomorphism ξ : E → Eα. Next, we have a commuting diagram

0 F Sym2E α∗OX(2) 0

0 Fα Sym2Eα α∗ω
⊗2
α 0

ψ

η

Sym2 ξ

ηα

where the left vertical map is induced by the universal property of kernel. Note that for

any t ∈ O×
S (S), the diagram

F Sym2E

Fα Sym2Eα

t2·ψ

η

Sym2(t·ξ)

ηα

(1.3.12)

also commutes. Finally, the cover α determines an isomorphism ϕα : detFα ∼= detEα. It

may not agree with ϕ, but since the maps below involve isomorphisms of line bundles,

there exists some t ∈ O×
S (S) such that the following diagram commutes

detF detE

detFα detEα.

ϕ

t·detψ det ξ

ϕα

Since E is rank 3 and F is rank 2, this implies the diagram

detF detE

detFα detEα

ϕ

det(t2·ψ) det(t·ξ)

ϕα

(1.3.13)

also commutes. Thus, the pair of isomorphisms t · ξ : E → Eα and t2 · ψ : F → Fα

determine an arrow (E,F, ϕ, η)→ (Eα, Fα, ϕα, ηα).
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1.3.3 The category of regular pentagonal covers

By the Casnati–Ekedahl theorem, each degree 5 Gorenstein cover α : X → S

determines a resolution

0→ γ∗ detEα(−5)→ γ∗(F∨
α ⊗ detEα)(−3)

δα−→ γ∗Fα(−2)→ OP → OX → 0, (1.3.14)

where Eα has rank 4 and Fα has rank 5. Casnati showed that the map δα is alternating in

the sense that it can be identified with a section of ∧2π∗Fα ⊗ γ∗ detE∨
α (1). For any pair

of vector bundles E and F , via push-pull, we have an identification

Φ : H0(S,Hom(E∨ ⊗ detE,∧2F )) ∼−→ H0(PE∨, γ∗(∧2F ⊗ detE∨)(1)). (1.3.15)

Hence, δα corresponds to a map ηα := Φ−1(δα) : E
∨
α ⊗ detEα → ∧2Fα. Throughout this

section we shall write E ′ := E∨ ⊗ detE. A degree 5 cover α : X → S is called regular if

ηα is injective as a map of vector bundles (i.e. the cokernel of ηα is locally free). Casnati

notes that if α−1(s) is a local complete intersection scheme for all s ∈ S, then α is regular,

so all covers we need will be regular. We let Pent(S) denote the category whose objects

are regular, degree 5 Gorenstein covers α : X → S and arrows are isomorphisms over S.

Regular degree 5 covers have a nice geometric description. Indeed, if the cover is

regular, then ηα corresponds to an injective map E ′
α → ∧2Fα, which induces an embedding

PE ′
α ↪→ P(∧2Fα). (1.3.16)

Given a section δ ∈ H0(PE∨, γ∗(∧2F ⊗ detE∨)(1)), we let D(δ) ⊂ PE∨ be the subscheme

defined by the vanishing of 4 × 4 Pfaffians of δ. When α is regular, we can recover

X = D(δα), which is also the same as the scheme defined by the 3 × 3 minors of δα

(Proposition 3.5 of [Cas96]). These 3 × 3 minors are pullbacks to PE ′
α along (1.3.16)
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of the equations that define the Grassmannian bundle G(2, Fα) ⊂ P(∧2Fα) under its

relative Plücker embedding. Using a resolution of the relative Grassmannian, Casnati

obtains another resolution of OX in equation (3.5.2) of [Cas96]. Comparing this resolution

with (1.3.14), the uniqueness of Theorem 1.3.2 (2) induces a distinguished isomorphism

ϵ : Fα ⊗ detF∨
α ⊗ (detEα)

⊗2 → Fα (see p. 467 of [Cas96]). Moreover, both of these vector

bundles arise as subbundles of Sym2Eα and the projectivization of ϵ induces the identity

on points (as it must be the restriction of the identity on P(Sym2Eα)). Hence, we obtain

an isomorphism of line bundles

OPFα(1)⊗ detF∨
α ⊗ (detEα)

⊗2 ∼= OP(Fα⊗detF∨
α ⊗detE2

α)
(1) ∼= ϵ∗OPFα(1) = OPFα(1).

which induces a distinguished isomorphism ϕα : (detEα)
⊗2 ∼= detFα.

Now we define a category Pent′(S) that keeps track of the associated linear algebraic

data of regular degree 5 covers.

Definition 1.3.7. Suppose we are given vector bundles E and F on S of ranks 4 and 5.

Let η ∈ H0(S,Hom(E ′,∧2F )) be a global section. We say η has the right codimension if

every fiber of D(Φ(η)) ⊂ PE∨ → S is 0-dimensional and η : E ′ → ∧2F is injective with

locally free cokernel.

We define Pent′(S) to be the category whose objects are tuples (E,F, ϕ, η) where

E and F are vector bundles on S of ranks 4 and 5 respectively, ϕ is an isomorphism

(detE)⊗2 ∼= detF and η ∈ H0(S,Hom(E∨ ⊗ detE,∧2F )) has the right codimension. An

arrow (E1, F1, ϕ1, η1) → (E2, F2, ϕ2, η2) in Pent′(S) is pair of isomorphisms ξ : E1 → E2

and ψ : F1 → F2 such that the following two diagrams commute

E ′
1 ∧2F1

E ′
2 ∧2F2

det ξ⊗(ξ−1)∨

η1

∧2ψ

η2

detE⊗2
1 detF1

detE⊗2
2 detF2.

(det ξ)⊗2

ϕ1

detψ

ϕ2
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There is a functor Pent(S)→ Pent′(S) that sends α : X → S to the tuple (Eα, Fα, ϕα, ηα).

There is also a functor Pent′(S)→ Pent(S) that sends a tuple (E,F, ϕ, η) to the degree 5

cover D(Φ(η)) ⊂ PE∨ → S. The following is essentially a restatement of [Cas96, Theorem

3.8].

Theorem 1.3.8 (Casnati). The above functors define an equivalence of categories between

Pent(S) and Pent′(S).

Proof. The fact that Pent(S) → Pent′(S) → Pent(S) is equivalent to the identity was

established by Casnati. We provide further details here that Pent′(S) → Pent(S) →

Pent′(S) is naturally isomorphic to the identity on Pent′(S). Let (E,F, ϕ, η) ∈ Pent(S) be

given and let X = D(Φ(η)) and α : X → S. By (3.5.2) of [Cas96], OX admits a resolution

0→ γ∗(detF−2 ⊗ detE5(−5)→ γ∗(F∨ ⊗ detF−1 ⊗ detE3)(−3)

→ γ∗(F ⊗ detF−1 ⊗ detE2)(−2)→ OPE∨ → OX → 0.

Let A1 be the image of γ∗(F ⊗ detF−1 ⊗ detE2)(−2)→ OPE∨ . When we push forward

the above equation by γ, we obtain

0→ OS → α∗OX → R1γ∗A1 → 0.

We use a similar method as in Remark 1.3.3 to produce isomorphisms

Eα ∼= R1γ∗A1
∼= R2γ∗A2

∼= R3γ∗(γ
∗(detF−2 ⊗ detE5))(−5) ∼= detF−2 detE4 ⊗ E∨.

Using ϕ, we turn this into an isomorphism E∨
α
∼= E∨, which we dualize to define ξ : E ∼= Eα.

Using the uniqueness of the CE resolution, we also get an isomorphism F ⊗ detF−1 ⊗

detE2 → Fα. Making use of ϕ again, we obtain an isomorphism ψ : F ∼= Fα. This in turn

induces a map G(2, F ) → G(2, Fα) which sends X into X. Since the points of X span
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each fiber of PE ′ ∼= PE ′
α, the following diagram of linear maps of spaces commutes

PE ′ P(∧2F )

PE ′
α P(∧2Fα).

In other words, there exists t ∈ O×
S (S) such that the first diagram below commutes, and,

since E has rank 4, so does the second:

E ′ ∧2F

E ′
α ∧2Fα

t·det ξ⊗(ξ−1)∨

η

∧2ψ

ηα

E ′ ∧2F

E ′
α ∧2Fα.

det(t·ξ)⊗((t·ξ)−1)∨

η

∧2(t·ψ)

ηα

(1.3.17)

Finally, we must compare ϕ and ϕα. Since all the maps involved are isomorphisms

of line bundles, there exists some x ∈ O×
S (S) such that the first diagram below commutes;

recalling that E is rank 4 and F is rank 5, hence so does the second:

detE⊗2 detF

detE⊗2
α detFα

x·det(t·ξ)2

ϕ

det(t·ψ)

ϕα

detE⊗2 detF

detE⊗2
α detFα.

det(x2t·ξ)2

ϕ

det(x3t·ψ)

ϕα

Finally, note that

E ′ ∧2F

E ′
α ∧2Fα.

det(x2t·ξ)⊗((x2t·ξ)−1)∨

η

∧2(x3t·ψ)

ηα

also commutes, as it just rescales both vertical maps of the second diagram in (1.3.17) by

x6. Hence, pair of isomorphisms x2t · ξ : E → Eα and x3t · ψ : F → Fα define an arrow

(E,F, ϕ, η)→ (Eα, Fα, ϕα, ηα) in Pent′(S).

1.3.4 Casnati–Ekedahl classes

We now define some preferred generators for R∗(Hk,g) using the Chern classes

of vector bundles appearing in the Casnati–Ekedahl resolution. Let π : P → Hk,g

30



denote the universal P1-bundle and α : C → P the universal degree k cover. We define

z := −1
2
c1(ωπ) = c1(OP(1)) and

c2 := c2(π∗OP(1)) ⇒ z2 + π∗c2 = 0, (1.3.18)

where the equality on the right follows from (1.2.1). Define E∨ := E∨
α to be the cokernel

of OP → α∗OC, which is a rank k − 1 vector bundle on P . For i = 1, . . . , k − 1, we define

classes ai ∈ Ai(Hk,g) and a
′
i ∈ Ai−1(Hk,g) by the formula

ai := π∗(z · ci(E)), a′i := π∗(ci(E)) ⇒ ci(E) = π∗ai + π∗a′iz. (1.3.19)

By Example 1.3.1, E has relative degree g+k−1 on the fibers of P → Hk,g, so a
′
1 = g+k−1.

By the Casnati–Ekedahl structure theorem, the universal curve C embeds in PE∨. We

have the associated Casnati–Ekedahl resolution

0→ γ∗Fk−2(−k)→ γ∗Fk−3(−k + 2)→ · · · → γ∗F1(−2)→ OPE∨ → OC → 0.

For each bundle Fj, we define

fj,i := π∗(z · ci(Fj)), f ′
j,i := π∗(ci(Fj)) ⇒ ci(Fj) = π∗fj,i + π∗f ′

j,iz.

Definition 1.3.9. We define c2, ai, a
′
i, fj,i, f

′
j,i to be the Casnati–Ekedahl classes, abbrevi-

ated CE classes.

Theorem 1.3.10. The CE classes are tautological and they generate the tautological ring

R∗(Hk,g).

Remark 1.3.11. The ranks of the Fi depend only on i and k, so this bounds the number

of generators of R∗(Hk,g) and their degrees in terms of k (independent of g).
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Proof. First, we show that the Casnati–Ekedahl classes are tautological. Let us call a

class on P pre-tautological if it is a polynomial in z and classes of the form α∗(c1(ωf)
j).

By the push-pull formula, the π pushforward of a pre-tautological class is tautological.

Therefore, our goal is to show that the Chern classes of E and Fi are pre-tautological.

By Grothendieck–Riemann–Roch and the splitting principle, we have that the

Chern classes of α∗(ω
⊗i
α ) = α∗(ω

⊗i
f )⊗ (ω∨

π )
⊗i are pre-tautological. In particular, the Chern

classes of E are pre-tautological by its defining exact sequence. By the construction of

the Casnati–Ekedahl sequence, F1 is the kernel of a surjective map Sym2 E ↠ α∗(ω
⊗2
α ), so

the Chern classes of F1 are pre-tautological. Similarly, following the construction of Fi

on [CE96, p. 445-446] and using the splitting principle, we inductively see that the Chern

classes of all Fi are pre-tautological.

Next, we must show that all tautological classes are polynomials in Casnati–Ekedahl

classes. We have a diagram

C PE∨

P

Hk,g

α

f

ι

γ

π

(1.3.20)

First, note that

f∗(c1(ωf )
i · α∗(ωπ)

j) = π∗(α∗(c1(ωα) + α∗c1(ωπ))
i · c1(ωπ)j),

so using push-pull, it will suffice to show that π∗(α∗(c1(ωα)
i) · zj) is a polynomial in CE

classes for all pairs i, j. Now, let ζ := c1(OPE∨(1)) and note that ι∗ζ = c1(ωα). We have

α∗(c1(ωα)
i) = γ∗ι∗(ι

∗ζ i) = γ∗([C] · ζ i).

Grothendieck–Riemann–Roch for ι : C ↪→ PE∨ tells us that [C] = chk−2(ι∗OC). By
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additivity of Chern characters in exact sequences, the later is a polynomial in ζ and the

Chern classes of Fi. Using the projective bundle theorem (1.2.1), γ∗([C] · ζ i) is therefore a

polynomial in the Chern classes of E and the Fi. The π push forward of such a polynomial

times any power of z is a polynomial in the CE classes (essentially from the definition of

the CE classes).

Using the idea in the proof above, we explain how to rewrite the κ-classes in terms

of CE classes.

Example 1.3.12 (κ-classes). Let us retain notation as in (1.3.20). Writing ζ for the

hyperplane class of PE∨ and z for the hyperplane class on P , we have

c1(ωf ) = c1(ωα) + c1(ωπ) = ι∗(ζ − 2z).

By the push-pull formula, we have

κi = f∗(c1(ωf )
i+1) = π∗γ∗ι∗(ι

∗(ζ − 2z)i+1) = π∗γ∗([C] · (ζ − 2z)i+1). (1.3.21)

Meanwhile, the fundamental class of C ⊂ PE∨ is

[C] =
k−3∑
i=1

(−1)i−1 chk−2(Fi(−i− 1)) + (−1)k−2 chk−2(Fk−2(−k)) (1.3.22)

=


− ch1(det E(−3)) = c1(det E∨(3)) if k = 3

− ch2(F(−2)) + ch2(det E(−4)) = c2(F∨(2)) if k = 4

− ch3(F(−2)) + ch3((F∨ ⊗ det E)(−3))− ch3(det E(−5)) if k = 5.

Using (1.3.21) and (1.3.22), it is straightforward to compute κi in terms of the CE classes

using a computer.

In degree k = 3, the CE classes are c2, a1, a2, a
′
2. In degrees k = 4, 5, self-duality of
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the Casnati–Ekedahl resolution implies that all CE classes are expressible in terms of c2

the ai, a
′
i and the bi := f1,i and b

′
i := f ′

1,i. These classes are all pulled back from a moduli

space Bk,g of (pairs of) vector bundles on P1, which we shall construct in the next section.

1.4 Pairs of vector bundles on P1-bundles

By the results of Casnati–Ekedahl and Casnati in the previous section, there is a

correspondence between covers of P1 and certain linear algebraic data. In this section,

following ideas of Bolognesi–Vistoli [BV12], we construct moduli stacks parametrizing the

associated linear algebraic data and describe the Chow rings of these stacks. In [BV12],

Bolognesi–Vistoli gave a quotient stack presentation for the moduli stack parametrizing

globally generated vector bundles on P1-fibrations. As explained in Section 1.2.3, we will

instead make use of SL2 quotients, since they have the same rational Chow ring as the

PGL2 quotient.

Definition 1.4.1. Let r, d be nonnegative integers.

1. The objects of V†
r,d are pairs (S,E) where E is a locally free sheaf of rank r on P1×S

whose restriction to each of the fibers of P1 × S → S is globally generated of degree

d. A morphism between objects (S,E) and (S ′, E ′) is a Cartesian diagram

P1 × S ′ P1 × S

S ′ S

F

together with an isomorphism ϕ : F ∗E → E ′.

2. We define Vr,d to be the SL2 quotient of V†
r,d. Explicitly, the objects of Vr,d are

triples (S, V, E) where S is a k-scheme, V is a rank 2 vector bundle on S with trivial

determinant, and E is a rank r vector bundle on PV whose restrictions to the fibers

of PV → S are globally generated of degree d. A morphism between objects (S, V, E)
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and (S ′, V ′, E ′) is a Cartesian diagram

PV ′ PV

S ′ S

F

together with an isomorphism ϕ : F ∗E → E ′.

Bolognesi–Vistoli gave a presentation for V†
r,d as a quotient stack, which we briefly

summarize here. Let Mr,d be the affine space that represents the functor which sends a

scheme S to the set of matrices of size (r + d)× d with entries in H0(P1
S,OP1

S
(1)). We can

identify such a matrix with the associated map

OP1
S
(−1)d → Or+dP1

S
.

Let Ωr,d ⊂Mr,d denote the open subscheme parametrizing injective maps with locally free

cokernel. The group GLd acts Mr,d by multiplication on the left, GLr+d by multiplication

on the right. Bolognesi–Vistoli establish [BV12, Theorem 4.4] that

V†
r,d
∼= [Ωr,d/GLd×GLd+r].

The group SL2 acts by change of coordinates on H0(P1
S,OP1

S
(1)). This commutes with the

GLd×GLd+r action. Thus we obtain the following.

Proposition 1.4.2. There is an isomorphism of fibered categories

Vr,d ∼= [V†
r,d/ SL2] ∼= [Ωr,d/GLd×GLr+d× SL2].

Remark 1.4.3. Bolognesi–Vistoli also describe the PGL2 quotient of V†
r,d, which is slightly

more subtle. This distinction is important in their work which concerns integral coefficients.
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To parametrize the linear algebraic data associated to a low degree cover of P1, we

are interested in products of the form Vr,d ×BSL2 Vs,e, which parametrize a pair of vector

bundles on the same P1-bundle. Let Gr,d,s,e := GLd×GLr+d×GLe×GLs+e. The group

Gr,d,s,e × SL2 acts on Mr,d via the projection Gr,d,s,e × SL2 → GLd×GLr+d× SL2; and

similarly on Ms,e via the projection Gr,d,s,e × SL2 → GLe×GLs+e× SL2. By Proposition

1.4.2, it follows that

Vr,d ×BSL2 Vs,e = [Ωr,d × Ωs,e/Gr,d,s,e × SL2]. (1.4.1)

Let Td and Tr+d denote the universal vector bundles on BGLd and BGLr+d; similarly,

let Se and Ss+e be the universal vector bundles on BGLe and BGLs+e. The Chow ring of

B(Gr,d,s,e × SL2) is the free Q-algebra on the Chern classes of Td, Tr+d, Se, Ss+e, together

with the universal second Chern class c2 on BSL2. Let us denote these classes by

ti = ci(Td) and ui = ci(Tr+d)

vi = ci(Se) and wi = ci(Ss+e).

Since Ωr,d × Ωs,e is open inside the affine space Mr,d ×Ms,e, the excision and homotopy

properties imply

A∗(Vr,d ×BSL2 Vs,e) is generated by the restrictions of the ti, ui, vi, wi. (1.4.2)

We now identify the restrictions of the tautological bundles Td and Td+r in terms

of the universal rank r, degree d vector bundle on P1. Let π : P → Vr,d be the universal

P1-bundle. We write z := c1(OP(1)) ∈ A1(P). We have c2 = c2(π∗OP(1)) ∈ A2(Vr,d), the

universal second Chern class (pulled back via the natural map Vr,d → BSL2). Note that

36



c1(π∗OP(1)) = 0, so by Equation (1.2.1),

A∗(P) = A∗(Vr,d)[z]/(z2 + π∗c2).

Let E be the universal rank r, degree d vector bundle on P . The Chern classes of E may

thus be written as

ci(E) = π∗ai + (π∗a′i)z where ai ∈ Ai(Vr,d), a′i ∈ Ai−1(Vr,d).

Note that a′1 = d. Let γ : Vr,d ×BSL2 Vs,e → B(Gr,d,s,e × SL2) be the structure map. Then

by [Lar21b, Lemma 3.2] (noting that det(π∗OP(1)) is trivial), we have

γ∗Td = π∗E(−1) and γ∗Tr+d = π∗E . (1.4.3)

Since R1π∗E(−1) and R1π∗E are zero, Grothendieck–Riemann–Roch says that the Chern

characters of π∗E(−1) and π∗E are push forwards by π of polynomials in the ci(E) and z.

The push forward of such a polynomial is a polynomial in the ai, a
′
i and c2. In particular,

the restrictions of ti and ui to A
∗(Vr,d) are polynomials in a1, . . . , ar, a

′
2, . . . , a

′
r and c2.

1.4.1 The rational Chow ring

Let us denote the universal rank s vector bundle from the second factor of Vr,d×BSL2

Vs,e by F on P and its Chern classes by

ci(F) = π∗bi + (π∗b′i)z where bi ∈ Ai(Vs,e), b′i ∈ Ai−1(Vs,e).

It follows from Equation (1.4.2) and the discussion following (applied to both factors of the

product) that the ai, a
′
i, bi, b

′
i and c2 are generators for A∗(Vr,d ×BSL2 Vs,d). We now show

that there are no relations among these generators in low degrees. This is a generalization
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of [Lar21b, Theorem 4.1], which shows A∗(Vr,d) is generated by the ai, a
′
i, and c2 with no

relations in degrees less than d+ 1.

Theorem 1.4.4. The rational Chow ring of Vr,d ×BSL2 Vs,e is generated as a Q-algebra by

c2, a1, . . . , ar, a
′
2, . . . , a

′
r, b1, . . . , bs, b

′
2, . . . , b

′
s,

and all relations have degree at least min(d, e) + 1. In the notation of Equation (1.2.2),

Trunmin(d,e)+1A∗(Vr,d ×BSL2 Vs,e)

= Trunmin(d,e)+1Q[c2, a1, . . . , ar, a
′
2, . . . , a

′
r, b1, . . . , bs, b

′
2, . . . , b

′
s].

Remark 1.4.5. (1) The codimension of the complement of Ωr,d ⊂Mr,d is r, so the Theorem

does not follow immediately from dimension counting and excision if min(d, e) > min(r, s).

(2) If s = 0, the fact that there are no bi classes follows immediately from [Lar21b,

Theorem 4.1].

Proof. Let

M := [Mr,d/Gr,d,s,e × SL2] and N := [Ms,e/Gr,d,s,e × SL2].

Equation (1.4.1) says that Vr,d ×BSL2 Vs,e is an open inside the vector bundle M ⊕N over

B := B(Gr,d,s,e × SL2). The complement consists of two components, namely

X := [Ωc
r,d ×Ms,e/Gr,d,s,e × SL2] and Y := [Mr,d × Ωc

s,e/Gr,d,s,e × SL2].

One readily checks that X ⊂ Vr,d ×BSL2 Vs,e is irreducible of codimension r and Y ⊂

Vr,d ×BSL2 Vs,e is irreducible of codimension s (see [BV12, Remark 4.3]). Excision gives a
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right-exact sequence

A∗−r(X)⊕ A∗−s(Y )→ A∗(M ⊕N)→ A∗(Vr,d ×BSL2 Vs,e)→ 0. (1.4.4)

From this it is clear that there are no relations among the restrictions to Vr,d ×BSL2

Vs,e of the Chern classes of Td, Td+r, Se and Ss+e in degrees less than min(r, s). We now

describe relations among the restrictions of these Chern classes in degrees min(r, s) up to

min(d, e). (If min(d, e) < min(r, s) we are already done.) In particular, shall conclude that

Trunmin(d,e)+1A∗(Vr,d ×BSL2 Vs,e) (1.4.5)

= Trunmin(d,e)+1Q[c2, t1, . . . , tr−1, u1, . . . , ur, v1, . . . vs−1, w1, . . . , ws].

Since the classes in the statement of the theorem are generators and have the same degrees

as those above, the statement in the theorem must hold for dimension reasons.

It suffices to understand the image of A∗−r(X) → A∗(M ⊕ N), the other factor

being similar. For this we resolve X (resp. Y ) as in the proof of [Lar21b, Theorem 4.1],

taking the N factor (resp. M factor) “along for the ride”.

Using the excision sequence (1.4.4) and arguing exactly as in [Lar21b, Theorem

4.1], we have

A∗(Vr,d×BSL2 Vs,e) =
Q[c2, t1, . . . , td, u1, . . . , ur+d, v1, . . . , ve, w1, . . . , ws+e]

⟨fi,j : 0 ≤ i ≤ 1, 0 ≤ j ≤ d− 1⟩+ ⟨gi,j : 0 ≤ i ≤ 1, 0 ≤ j ≤ e− 1⟩
. (1.4.6)

where

f1,j−1 = −tj+r + uj+r + . . . f0,j = −(r + d)tj+r + (d− j)uj+r + . . .

g1,j−1 = −vj+s + wj+s + . . . g0,j = −(s+ e)vj+s + (e− j)wj+s + . . . .

Hence, in A∗(Vr,d ×BSL2 Vs,e), the classes tn for r ≤ n ≤ d and um for r + 1 ≤ m ≤ d are
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expressible as polynomials in c2, t1, . . . , tr−1, u1, . . . , ur. Moreover, after eliminating these

higher degree generators, the fi,j produce no additional relations in degrees less than or

equal to d among the restrictions to Vr,d ×BSL2 Vs,e of

c2, t1, . . . , tr−1, u1, . . . , ur, v1, . . . , ve, w1, . . . , ws+e.

With the analogous calculation for the gi,j , equation (1.4.6) then implies (1.4.5), and hence

the statement of the theorem.

1.4.2 Splitting loci

Every vector bundle E on P1 splits as a direct sum of line bundles, E ∼= O(e1)⊕

· · · ⊕ O(er) for integers e1 ≤ · · · ≤ er. We call the non-decreasing sequence of integers

e⃗ = (e1, . . . , er) the splitting type of E and will often abbreviate the corresponding sum

of line bundles by O(e⃗) := O(e1)⊕ · · · ⊕ O(er). Given a family of vector bundles E on a

P1-bundle π : P → B, the base B is stratified by locally closed subvarieties

{b ∈ B : Eπ−1(b)
∼= O(e⃗)},

which we call the splitting locus for e⃗. A subscheme structure on splitting loci is defined

in [Lar21c, Section 2], though it will not be necessary here.

The splitting type e⃗ of E is equivalent to the data of the ranks of cohomology

groups h0(P1, E(m)) for all m ∈ Z. Conversely, the locus of points b ∈ B where the fibers

of E satisfy some cohomological condition is a union of splitting loci. For example, the

locus in B where E fails to be globally generated on fibers is the union of splitting loci for

splitting types e⃗ with e1 ≤ −1. Similarly, SuppR1π∗E(−2) is the union of all splitting loci

with e1 ≤ 0.

Following the argument in [BV12, Lemma 5.1], the codimension in Vr,d of the

splitting locus where the universal E over Vr,d has splitting type e⃗ on fibers of P → Vr,d
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is h1(P1, End(O(e⃗))). If we have a P1-bundle equipped with two vector bundles, we can

consider the intersections of splitting loci for both bundles. The simultaneous splitting

locus in Vr,d ×BSL2 Vs,e where E has splitting type e⃗ and F has splitting type f⃗ is equal to

the product of the e⃗ splitting locus in Vr,d with the f⃗ splitting locus in Vs,e, and therefore

has codimension

h1(P1, End(O(e⃗))) + h1(P1, End(O(f⃗))). (1.4.7)

1.5 The good opens and codimension bounds

For each k = 3, 4, 5 and genus g, we will define a stack Bk,g parametrizing the

vector bundles associated to a degree k, genus g cover of P1. The stack Bk,g will come

equipped with a universal P1-bundle π : P → Bk,g. Then, we will define a vector bundle

Uk,g on P whose sections on a fiber of P → Bk,g is the relevant space of sections in the

linear algebraic data of covers appearing in Section 1.3.

Before treating the case for each k in depth, we briefly outline our construction of

certain open substacks of the Hurwitz stack. For k = 3, we shall define B′
3,g ⊆ B3,g to be

the open substack over which U3,g is globally generated on the fibers of π : P → B. For

k = 4, 5, let us define the open substack

B′
k,g := Bk,g ∖ Supp(R1π∗Uk,g). (1.5.1)

By the theorem on cohomology and base change, the restriction of π∗Uk,g to B′
k,g is locally

free with fibers given by the relevant space of sections in the linear algebraic data of covers

appearing in Section 1.3. We denote the total space of this vector bundle on B′
k,g by

X ′
k,g := π∗Uk,g|B′

k,g
.

As discussed in Section 1.4.2, the complement of B′
k,g is a union of splitting loci.
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The splitting loci in the complement are determined by the condition that Uk,g has a

summand of degree −2 or less. It will also be convenient to work with a slightly smaller

open substack

B◦
k,g := Bk,g ∖ Supp(R1π∗(Uk,g ⊗OP(−2))), (1.5.2)

whose complement consists of splitting loci where Uk,g has a summand of degree 0 or less.

(Having a cut-off in terms of a degree 0 summand will be cleaner than a cut-off in terms

of a −2 summand for our next step of bounding the codimension of the complement. The

open B◦
k,g also plays an important role in our sequel [CL21a], where the slightly stronger

positivity condition on the fibers of Uk,g will be needed.)

Pulling back these open substacks along the natural map Hk,g → Bk,g defines open

substacks of the Hurwitz space as in the diagram below

H◦
k,g H′

k,g Hk,g

B◦
k,g B′

k,g Bk,g.

(1.5.3)

In all cases, we shall see that H′
k,g is an open substack inside the vector bundle X ′

k,g over

B′
k,g. In particular, we will find that the Chow ring of H′

k,g is generated by tautological

classes. To turn this into meaningful results for the Chow ring of Hk,g we must describe

the complement of H′
k,g ⊆ Hk,g. When k = 3, it turns out H′

k,g = Hk,g. For k = 4, the

complement of H′
4,g contains covers that factor through an intermediate curve of low genus.

Nevertheless, we show that the complement of H′
k,g intersects Hnf

4,g in high codimension.

Finally, for k = 5, we show that the complement of H′
5,g has high codimension.

Of course, the complement of H′
k,g is contained in the complement of H◦

k,g, so it will

suffice to bound the codimension of the complement of H◦
k,g (which in turn provides a lower

bound on the codimension of the complement of H′
k,g). For arbitrary g, the coefficient

of g in the bounds we obtain will be sharp (and the same for H◦
k,g and H′

k,g). In any
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particular case, however, one may find slight improvements on our bounds by enumerating

the splitting loci in the complement H′
k,g, and calculating their codimensions.

Along the way, we also bound the codimension of the complement of B◦
k,g. We point

out some immediate corollaries regarding the Chow rings of B◦
k,g, which will be used in

our subsequent work [CL21a].

1.5.1 Degree 3

As a warm-up, we first explain our set-up in degree 3, as it is simplest. The

results in this subsection are not new (they have already been established by Bolognesi–

Vistoli [BV12] and Patel–Vakil [PV15a]) but spelling them out in our language will be

instructive; it will also be useful in our subsequent work [CL21a].

In Section 1.4, we gave a construction for Vr,d as the moduli space of vector bundles

on P1-bundles. As discussed in Section 1.3.1, the linear algebraic data of a degree 3, genus g

cover involves a rank 2, degree g+2 vector bundle E on P1 and section of detE∨⊗Sym3E.

We set

B3,g := V2,g+2 and U3,g := det E∨ ⊗ Sym3 E ,

where E is the universal rank 2 bundle on π : P → V2,g+2. There is a natural map

H3,g → B3,g that sends a family of triple covers C
α−→ P → S in H3,g(S) to the associated

rank 2 vector bundle Eα on P → S in B3,g(S). If C
α−→ P1 is an integral triple cover and

Eα = O(e1)⊕O(e2) is the associated rank 2 vector bundle on P1, then by [BV12, Proposition

2.2], we have e1, e2 ≥ g+2
3
. Equivalently, every summand of detE∨

α ⊗ Sym3Eα is non-

negative. Hence, the map H3,g → B3,g factors through the substack B′
3,g ⊆ B3,g over which

U3,g is globally generated on fibers of P → B3,g. In particular, H′
3,g = H3,g. We define

X ′
3,g := π∗U3,g|B′

3,g
, which is a vector bundle on B′

3,g by the theorem on cohomology and

base change.

Lemma 1.5.1. There is an open inclusion H3,g = H′
3,g → X ′

3,g. In particular, A∗(H3,g) is
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generated by the CE classes c2, a1, a2, a
′
2, and therefore A∗(H3,g) = R∗(H3,g).

Proof. The first sentence was essentially observed in [BV12, p. 12]. We include an

explanation using our notation. Given a scheme S, the objects of X3,g(S) are tuples

(P → S,E, η) where (P → S,E) is an object of B′
3,g(S) and η ∈ H0(P, Sym3E ⊗ detE∨).

We define an open substack Y ′
3,g ⊂ X ′

3,g by the condition that V (Φ(η)) ⊂ PE∨ → S is a

family of smooth curves, where Φ is as in (1.3.6). Considering the Hilbert polynomial of

V (Φ(η)), one sees that the fibers have arithmetic genus g. Theorem 1.3.4 now shows that

there is an equivalence H′
3,g
∼= Y ′

3,g.

By excision, the Chow ring of H3,g = H′
3,g is generated by restrictions of classes

on X ′
3,g. Since X ′

3,g is a vector bundle over B′
3,g, their Chow rings are isomorphic, so the

statement about generators follows from Theorem 1.4.4.

1.5.2 Degree 4

By Casnati–Ekedahl’s characterization of quadruple covers (Theorem 1.3.6), the

linear algebraic data of a quadruple cover of P1 is equivalent to the data of: a rank

3 vector bundle E; a rank 2 vector bundle F ; an isomorphism detF ∼= detE; and a

global section of F∨ ⊗ Sym2E on P1 having the right codimension. By Example 1.3.1,

deg(E) = deg(F ) = g + 3. The stacks V2,g+3 and V3,g+3 both admit natural morphisms to

BSL2, and the fiber product V3,g+3 ×BSL2 V2,g+3 is the stack whose objects are quadruples

(S, V, E, F ) where S is a k-scheme, V is a rank 2-vector bundle with trivial determinant,

E is a rank 3 vector bundle on PV whose restriction to the fibers of PV → S is globally

generated of degree g + 3, and F is a rank 2 vector bundle on PV whose restriction to the

fibers of PV → S is globally generated of degree g + 3.

The additional data of an isomorphism detF ∼= detE is captured by a Gm torsor

over V3,g+3 ×BSL2 V2,g+3 defined as follows. Let E be the universal rank 3 bundle and F be

the universal rank 2 bundle on the universal P1-bundle π : P → V3,g+3 ×BSL2 V2,g+3. Since

det E∨ ⊗ detF has degree 0 on each fiber of π : P → V3,g+3 ×BSL2 V2,g+3, the theorem on
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cohomology and base change shows that L := π∗(det E∨ ⊗ detF) is a line bundle with

π∗L ∼= det E∨ ⊗ detF .

Definition 1.5.2. With notation as above, define the stack B4,g to be the Gm-torsor over

V3,g+3 ×BSL2 V2,g+3 given by the complement of the zero section of the line bundle L.

The objects of B4,g are tuples (S, V, E, F, ϕ) where (S, V, E, F ) is an object of

V3,g+3 ×BSL2 V2,g+3 and ϕ is an isomorphism detF ∼= detE. Recalling the notation of

Section 1.3.2, given an object C
α−→ P → S of H4,g(S), the restriction of Eα and Fα to

fibers of P → S are both known to be globally generated (see Proposition 1.5.6). Hence,

there is a natural map H4,g → B4,g that sends the family C
α−→ P

π−→ S to the tuple

(S, π∗OP (1)∨, Eα, Fα, ϕα).

By slight abuse of notation, let us denote the pullback to B4,g of the universal

P1-bundle by π : P → B4,g, and the universal rank 3 and 2 vector bundles on it by E and

F . Let z = OP(1) and write

ci(E) = π∗ai + (π∗a′i)z and ci(F) = π∗bi + (π∗b′i)z.

for ai, bi ∈ Ai(B4,g) and a′i, b
′
i ∈ Ai−1(B4,g). Note that a′1 = b′1 = g + 3. Moreover, by

definition of B4,g, we have c1(det E∨ ⊗ detF) = 0, so a1 = b1. Further, by Lemma 1.2.1,

we have

A∗(B4,g) = A∗(V3,g+3 ×BSL2 V2,g+3)/⟨c1(L)⟩ = A∗(V3,g+3 ×BSL2 V2,g+3)/⟨a1 − b1⟩. (1.5.4)

Thus, Theorem 1.4.4 shows that c2, a1, a2, a3, a
′
2, a

′
3, b

′
2, b2 generate A∗(B4,g) and

Trung+4A∗(B4,g) = Trung+4 Q[c2, a1, a2, a3, a
′
2, a

′
3, b

′
2, b2]. (1.5.5)

Next, we define U4,g := F∨ ⊗ Sym2 E on P . We then define B′
4,g and B◦

4,g by (1.5.1)
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and (1.5.2) respectively. Correspondingly, the open substacks H◦
4,g ⊆ H′

4,g ⊆ H4,g are

described by

{S → H◦
4,g} = {S → H4,g : R

1(πS)∗(F∨
S ⊗ Sym2 ES ⊗OPS

(−2)) = 0}

{S → H′
4,g} = {S → H4,g : R

1(πS)∗(F∨
S ⊗ Sym2 ES) = 0}.

The key property of H′
4,g is that the map H′

4,g → B′
4,g factors through an open inclusion in

the total space of a vector bundle X ′
4,g := π∗U4,g|B′

4,g
.

Lemma 1.5.3. There is an open inclusion H′
4,g → X ′

4,g. In particular, A∗(H′
4,g) = R∗(H′

4,g)

is generated by the CE classes c2, a1, a2, a3, a
′
2, a

′
3, b

′
2, b2.

Proof. The objects of X ′
4,g are tuples (S, V, E, F, ϕ, η) where (S, V, E, F, ϕ) ∈ B′

4,g and

η ∈ H0(PV, F∨⊗Sym2E). Letting Φ be as in (1.3.9), we define Y ′
4,g ⊂ X ′

4,g to be the open

substack defined by the condition that V (Φ(η)) ⊂ PE∨ → S is a family of smooth curves.

Considering the Hilbert polynomial of V (Φ(η)), using (1.3.7), we see that the fibers have

arithmetic genus g. Using Theorem 1.3.6, we see that H′
4,g is equivalent to Y ′

4,g

By excision, the Chow ring of H′
4,g is generated by restriction of classes from X ′

4,g.

Since X ′
4,g is a vector bundle over B′

4,g, their Chow rings are isomorphic, so the statement

about generators follows from (1.5.4).

Lemma 1.5.4. The codimension of Supp(R1π∗(U4,g ⊗OP(−2))) is at least g+3
4
− 4. That

is, the codimension of the complement of B◦
4,g ⊆ B4,g has codimension at least g+3

4
− 4.

Proof. By equation (1.4.7), the codimension of the support of R1π∗(F∨⊗Sym2 E⊗OP(−2))

is the minimum value of h1(P1, End(O(e⃗))) + h1(P1, End(O(f⃗)) as we range over splitting

types e⃗ = (e1, e2, e3) with e1 ≤ e2 ≤ e3 and f⃗ = (f1, f2) with f1 ≤ f2 and

h1(P1,O(f⃗)∨ ⊗ (Sym2O(e⃗))⊗OP1(−2)) > 0 ⇔ 2e1 ≤ f2.
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We have

h1(P1, End(O(e⃗))) + h1(P1, End(O(f⃗))) ≥ 2e3 − 2e1 − 3 + f2 − f1 − 1.

To find the minimum, we consider the function of 5 real variables

f(x1, x2, x3, y1, y2) := 2x3 − 2x1 + y2 − y1

on the compact region D defined by

0 ≤ x1 ≤ x2 ≤ x3, x1 + x2 + x3 = 1, y1 ≤ y2, y1 + y2 = 1, 2x1 ≤ y2.

Since f is piecewise linear, its extreme values are attained where multiple boundary

conditions intersect at a point. Code provided at [CL21c] performs the linear algebra to

locate such points and evaluates f at the them to determine its minimum. The minimum

is 1
4
, attained at (1

4
, 3
8
, 3
8
, 1
2
, 1
2
). Thus,

dimSuppR1π∗(U4,g ⊗OP(−2)) ≥ (g + 3) ·min
D

(f)− 4 =
g + 3

4
− 4.

For later use, let us note an immediate consequence of the previous lemma: Using

excision and (1.5.4), we see

Trun(g+3)/4−4A∗(B◦
4,g) = Trun(g+3)/4−4Q[c2, a1, a2, a3, a

′
2, a

′
3, b

′
2, b2]. (1.5.6)

Just because the complement of B◦
4,g has high codimension inside B4,g does not

mean that the complement of H◦
4,g will have high codimension in H4,g. The condition for

α : C → P1 to be in H◦
4,g is that h

1(P1, F∨
α ⊗ Sym2Eα) = 0. We shall refer to this as “our

cohomological condition.” Our cohomological condition fails for factoring covers, as we
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explain now. Suppose α : C → P1 factors as C
β−→ C ′ h−→ P1 where C ′ has genus g′. We

claim Eα = O(g′ +1)⊕E ′ for some rank 2 bundle E ′. Indeed, because β is a double cover,

we have

β∗OC ∼= OC′ ⊕ L,

where L is a line bundle on C ′. Pushing forward again by h,

α∗OC ∼= OP1 ⊕OP1(−g′ − 1)⊕ h∗L.

This establishes that Eα has an O(g′ + 1) summand. In particular, since some summand

of F has degree at least g+3
2
,

h1(P1, F∨ ⊗ Sym2E) ≥ g + 3

2
− 2(g′ + 1)− 1.

Thus, covers that factor with g′ small are never in H◦
4,g. More precisely, if a factoring cover

does satisfy our cohomological condition, then the genus of the intermediate curve must

satisfy 2(g′ + 1) ≥ g+3
2
.

Lemma 1.5.5. The locus of degree 4 covers C → P1 that factor C → C ′ → P1 where C ′

has genus g′ has codimension 2(g′+1) in H4,g. Hence, the complement of H◦
4,g∩Hnf

4,g ⊂ H◦
4,g

has codimension at least g+3
2
.

Proof. The dimension of the Hurwitz stack is the degree of the branch locus minus 3 =

dimAut(P1), giving dimH4,g = 2g + 3. Meanwhile, by Riemann–Hurwitz, the dimension

of the space of genus g double covers of a fixed curve C ′ of genus g′ is 2g − 2− 2(2g′ − 2).

The dimension of the stack of genus g′ double covers of P1 modulo Aut(P1) is 2g′ − 1.

Therefore, the dimension of the space of degree 4 covers that factor through a curve of
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genus g′ is

2g − 2− 2(2g′ − 2) + 2g′ − 1 = 2g + 1− 2g′ = dimH4,g − 2(g′ + 1).

Covers that factor through a curve of low g′ are therefore loci of fixed codimension

that fail our cohomological condition. For this reason, in degree 4, our techniques will

only prove that certain Chow groups of the locus of non-factoring covers are generated

by tautological classes. Below, we collect some results about the splitting types of the

vector bundles associated to a degree 4 cover. These facts were known to Schreyer [Sch86]

(though Schreyer’s notation differs from ours). We include proofs here as they demonstrate

the geometric meaning of splitting types.

Proposition 1.5.6. Suppose α : C → P1 is a degree 4 cover and Eα = O(e1)⊕O(e2)⊕O(e3)

with e1 ≤ e2 ≤ e3, and F = O(f1)⊕O(f2) with f1 ≤ f2. The following are true:

1. e1 + e2 + e3 = f1 + f2 = g + 3 and with e1 ≥ 1 if C irreducible.

2. If C is irreducible, 2e1 ≥ f1, and 2e2 ≥ f2. Hence F is globally generated.

3. If α does not factor then e1 + e3 − f2 ≥ 0.

Proof. (1) follows from Example 1.3.1 and fact that detEα ∼= detFα. If C is irreducible,

we have h0(P1, E∨
α ) = h0(P1, α∗OC)− 1 = 0, so e1 ≥ 1.

The remaining conditions can be seen from the description of C as the intersection

of two relative quadrics on PE∨
α . Let us choose a splitting E = O(e1) ⊕ O(e2) ⊕ O(e3)

and corresponding coordinates X, Y, Z on PE∨. The two quadrics that define C are of the

form

p = p1,1X
2 + p1,2XY + p2,2Y

2 + p1,3XZ + p2,3Y Z + p3,3Z
2 (1.5.7)

q = q1,1X
2 + q1,2XY + q2,2Y

2 + q1,3XZ + q2,3Y Z + q3,3, Z
2 (1.5.8)
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Figure 1.1. A factoring degree 4 cover.

where pi,j is a polynomial on P1 of degree ei + ej − f1 and qi,j is a polynomial on P1 of

degree ei + ej − f2. If this degree is negative, then we mean this coefficient is zero.

(2) If 2e1 < f1, then p1,1 = q1,1 = 0 and C = V (p, q) would contain the curve

Y = Z = 0, forcing C to be reducible. If 2e2 < f2, then q1,1 = q1,2 = q2,2 = 0 so Z divides

q. If C were irreducible, it would be contained in one of the linear components of V (q)

but this is impossible. The global generation of F follows because the inequalities imply

f1 = g + 3− f2 ≥ e1 ≥ 1.

(3) If e1 + e3 − f2 ≤ −1, then we show α factors. This inequality implies

2e1 − f2 ≤ e1 + e2 − f2 ≤ e1 + e3 − f2 ≤ −1,

so the coefficients p1,1, p1,2, and p1,3 vanish. Therefore, p is a combination of Y 2, Y Z, and

Z2. Hence, V (p) is reducible in every fiber and contains the point [1, 0, 0] in each fiber.

In other words, each fiber of C → P1 consists of two pairs of points colinear with [1, 0, 0].

Projection away from the line Y = Z = 0 defines a double cover C → C ′ that factors

α.
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The simultaneous splitting loci of the universal E and F over H4,g give rise to a

stratification of H4,g. In [DP15, Remark 4.2], Deopurkar–Patel show that the codimension

of the splitting locus where E has splitting type e⃗ and F has splitting type f⃗ is

h1(P1, End(O(e⃗))) + h1(P1, End(O(f⃗)))− h1(P1,O(f⃗)∨ ⊗ Sym2O(e⃗)). (1.5.9)

Note that this differs from (1.4.7) by h1(P1,O(f⃗)∨ ⊗ Sym2O(e⃗))!

Example 1.5.7 (g = 6). We have dimH4,6 = dimM6 = 15. Using Proposition 1.5.6 (2),

we see that the non-empty strata are

1. e⃗ = (3, 3, 3), f⃗ = (4, 5), (codimension 0): The generic stratum.

2. e⃗ = (2, 3, 4), f⃗ = (4, 5), (codimension 1): By Casnati-Del Centina [CDC02], the

bielliptic locus is contained in this stratum as the locus where p1,2 = 0 and p1,3 = 0.

Note that deg(p1,2) = 0 and deg(p1,3) = 1, so this represents 3 conditions, making

the bielliptic locus codimension 4 inside H4,6.

3. e⃗ = (3, 3, 3), f⃗ = (3, 6), (codimension 2): This stratum consists of trigonal curves.

We have PE∨ ∼= P1 × P2. Since deg(qi,j) = 0 and deg(pi,j) = 3 for all i, j, the

projection onto the P2 factor realizes C as a degree 3 cover of a conic in P2.

4. e⃗ = (2, 3, 4), f⃗ = (3, 6), (codimension 2): Curves with a g25. We have p1,1 = 0 and

deg(q1,1) = 1, so the curve meets the line Y = Z = 0 in PE∨ in one point, say ν ∈ C.

The canonical line bundle on C is the restriction of OPE∨(1)⊗ ωP1 , which contracts

the line Y = Z = 0 in the map PE∨ → P5. Thus, ν is contained in each of the

planes spanned by the image of a fiber of α under the canoncial. Hence, the g14 plus

ν is a g25. The locus of genus 6 curves possessing a g25 is codimension 3 inM6, but

this stratum has codimension 2 in H4,6 because projection from any point on a plane

quintic gives a g14.
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5. e⃗ = (1, 4, 4), f⃗ = (2, 7), (codimension 2): Hyperelliptic curves

The open H′
4,6 is the union of strata (1), (2), and (3), while H◦

4,6 contains only the generic

stratum (1). The image inMg ofH′
4,6 under the forgetful map is what Penev–Vakil [PV15b]

call the “Mukai general locus” of genus 6 curves.

Using the numerical results of Lemma 1.5.6, we show that the codimension of

non-factoring covers that fail our cohomological condition grows as a positive fraction of

the genus.

Lemma 1.5.8. The locus of non-factoring degree 4 covers α : C → P1 such that

h1(P1, F∨
α ⊗ Sym2Eα ⊗O(−2)) > 0

has codimension at least g+3
4
−4. That is, the codimension the complement of H◦

4,g∩Hnf
4,g ⊂

Hnf
4,g is at least g+3

4
− 4.

Proof. By equation (1.5.9), the codimension of the locus of covers α with Eα = O(e⃗) and

Fα = O(f⃗) is

u(e⃗, f⃗) := h1(P1, End(O(e⃗))) + h1(P1, End(O(f⃗)))− h1(P1,O(f⃗)∨ ⊗ Sym2O(e⃗))

≥ 2e3 − 2e1 + f2 − f1 − 4− h1(P1,O(f⃗)∨ ⊗ Sym2O(e⃗)).

Assuming α does not factor, Proposition 1.5.6 (2) and (3) show that the only summands

of O(f⃗)∨ ⊗ Sym2O(e⃗) that can contribute to h1(P1,O(f⃗)∨ ⊗ Sym2O(e⃗)) are O(2e1 − f2)

and O(e1 + e2 − f2). Thus, our task is to bound the function

2e3 − 2e1 + f2 − f1 − 4−max{0, f2 − 2e1 − 1} −max{0, f2 − e1 − e2 − 1}

from below on the region where the conditions of Proposition 1.5.6 hold and 2e1 − f2 ≤ 0,

which is equivalent to h1(P1,O(f⃗)∨ ⊗ Sym2O(e⃗)⊗O(−2)) > 0.
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Let us introduce a function of 5 real variables

f(x1, x2, x3, y1, y2) := 2x3 − 2x1 + y2 − y1 −max{0, y2 − 2x1} −max{0, y2 − x1 − x2}

so that

u(e⃗, f⃗) ≥ (g + 3)f

(
e1

g + 3
,
e2

g + 3
,
e3

g + 3
,
f1

g + 3
,
f2

g + 3

)
− 4.

We wish to minimize f on the compact region defined by

x1 + x2 + x3 = 1, y1 + y2 = 1, 0 ≤ x1 ≤ x2 ≤ x3, 0 ≤ y1 ≤ 2x1 ≤ y2 ≤ 2x2, x1 + x3.

These correspond to the conditions from Proposition 1.5.6, together with the condition

that 2e1 ≤ f2, which must be satisfied if the cohomological condition is failed. Since f

is piecewise linear, its extreme values are attained where multiple boundary conditions

(including those where the function changes) intersect at a point. A program provied

in [CL21c] performs the linear algebra to locate such points and evaluates f at them to

determine its minimum. The minimum is 1
4
, attained at (x1, x2, x3, y1, y2) = (1

4
, 3
8
, 3
8
, 1
2
, 1
2
).

It follows that, if h1(P1,O(f⃗)∨ ⊗ Sym2O(e⃗)⊗O(−2)) > 0, then u(e⃗, f⃗) ≥ g+3
4
− 4.

Remark 1.5.9. Aaron Landesman points out that our above Lemma 1.5.8 parallels [Bha05,

Lemma 11] of Bhargava. Bhargava’s two cases a11 = 0 or a11 = a12 = 0 correspond to

the fact that either O(2e1 − f2) or O(2e1 − f2) and O(e1 + e2 − f2) are the only possible

negative summands of F∨
α ⊗ Sym2Eα for a non-factoring cover α.

Lemmas 1.5.5 and 1.5.8 together should be thought of as saying that H◦
4,g and Hnf

4,g

are “good approximations” of each other. We can now complete the proof of Theorem

1.1.2.
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Proof of Theorem 1.1.2. Suppose i < g+3
4
− 4. Consider the restriction maps

Ai(Hnf
4,g)

∼−→ Ai(Hnf
4,g ∩H◦

4,g)
∼←− Ai(H◦

4,g).

Lemma 1.5.8 says the arrow on the left is an isomorphism; Lemma 1.5.5 says the arrow on

the right is an isomorphism. In turn then, we also have

Ri(Hnf
4,g)

∼−→ Ri(Hnf
4,g ∩H◦

4,g)
∼←− Ri(H◦

4,g),

where Ri of an open substack of H4,g means the image of tautological classes under the

restriction to that open. Since H◦
4,g ⊂ H′

4,g, Lemma 1.5.3 implies Ai(H◦
4,g) = Ri(H◦

4,g).

Thus, we conclude

Ai(Hnf
4,g) = Ai(H◦

4,g) = Ri(H◦
4,g) = Ri(Hnf

4,g).

1.5.3 Degree 5

Using Casnati’s characterization of regular degree 5 covers (Theorem 1.3.8), a regular

degree 5 cover of is equivalent to the data of a rank 4 vector bundle E; a rank 5 vector bundle

F ; an isomorphism (detE)⊗2 ∼= detF ; and a global section of Hom(E∨ ⊗ detE,∧2F )

satisfying certain conditions. By Example 1.3.1, if a cover α : C → P1 has genus g, then

deg(Eα) = g + 4. In turn, deg(Fα) = 2 deg(Eα) = 2g + 8. To build the appropriate

base stack, we start with V4,g+4×BSL2 V5,2g+8 which parametrizes tuples (S, V, E, F ) where

V is a rank 2 vector bundle on S with trivial determinant, and E and F are vector

bundles of the appropriate ranks and degrees on PV . We let E denote the universal

rank 4 vector bundle and F the universal rank 5 bundle on the universal P1-bundle

π : P → V4,g+4 ×BSL2 V5,2g+8. Since det E⊗2 ⊗ detF∨ is a line bundle of degree 0 on each

fiber of π, we have det E⊗2 ⊗ detF∨ ∼= π∗L where L := π∗(det E⊗2 ⊗ detF∨), which is a
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line bundle by cohomology and base change.

Definition 1.5.10. With notation as above, we define the stack B5,g as the Gm-torsor

over V5,g+4 ×BSL2 V5,2g+8 given by the complement of the zero section of the line bundle L.

By slight abuse of notation, we continue to denote the universal π : P1-bundle by

P → B5,g and the universal rank 4 and 5 vector bundles on it by E and F . Let z = OP(1)

and write

ci(E) = π∗ai + (π∗a′i)z and ci(F) = π∗bi + (π∗b′i)z.

for ai, bi ∈ Ai(B5,g) and a′i, b′i ∈ Ai−1(B5,g). Note that 2a′1 = b′1 = 2(g + 4). Moreover, by

definition of B5,g, we have c1(det E⊗2 ⊗ detF∨) = 0, so b1 = 2a1. Using Lemma 1.2.1 and

Theorem 1.4.4 as in the previous subsection, we have

Trung+5A∗(B5,g) = Trung+5Q[c2, a1, . . . , a4, a
′
2, . . . , a

′
4, b2, . . . , b5, b

′
2, . . . , b

′
5]. (1.5.10)

We define U5,g := Hom(E∨⊗det E ,∧2F), and B′
5,g and B◦

5,g as in (1.5.1) and (1.5.2),

respectively. Given a map S → H5,g, let πS : PS → S denote the P1-bundle and let ES

(resp. FS) be the rank 4 (resp. rank 5) vector bundle on PS associated to the family in

the sense of Casnati–Ekedahl. The open substacks H◦
5,g ⊆ H′

5,g ⊆ H5,g are defined by

{S → H◦
5,g} = {S → H5,g : R

1(πS)∗(Hom(E∨S ⊗ det ES,∧2FS)⊗OPS
(−2)) = 0

and FS globally generated on fibers of πS}.

{S → H′
5,g} = {S → H5,g : R

1(πS)∗(Hom(E∨S ⊗ det ES,∧2FS)) = 0

and FS globally generated on fibers of πS}.

The important feature of the open H′
5,g is that it can be realized as an open inside

the vector bundle X ′
5,g := π∗U5,g|B′

5,g
over B′

5,g.
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Lemma 1.5.11. There is an open inclusion H′
5,g → X ′

5,g. In particular, A∗(H′
5,g) =

R∗(H′
5,g) is generated by the CE classes c2, a1, . . . , a4, a

′
2, . . . , a

′
4, b2, . . . , b5, b

′
2, . . . , b

′
5.

Proof. The objects of X ′
5,g are tuples (S, V, E, F, ϕ, η) where (S, V, E, F, ϕ) ∈ B′

5,g and

η ∈ H0(PV,Hom(E∨ ⊗ detE,∧2F )). Using the notation of Section 1.3.3, we define

Y ′
5,g ⊂ X ′

5,g to be the open substack defined by the condition that D(Φ(η)) ⊂ PE∨ → S

is a family of smooth curves. Considering their Hilbert polynomials as determined by

the resolution (1.3.14), we see that the fibers of D(Φ(η)) → S have arithmetic genus g.

Applying Theorem 1.3.8, we see that H′
5,g is equivalent to Y ′

5,g

By excision, the Chow ring of H′
5,g is generated by restriction of classes from X ′

5,g.

Since X ′
5,g is a vector bundle over B′

5,g, their Chow rings are isomorphic, so the statement

about generators follows from Theorem 1.4.4.

Now we show that the complements of the opens we have defined have high

codimension.

Lemma 1.5.12. The support of R1π∗(U5,g ⊗OP(−2)) has codimension at least g+4
5
− 16.

That is, the codimension of the complement of B◦
5,g ⊂ B5,g is at least g+4

5
− 16.

Proof. By (1.4.7), the codimension of the support ofR1π∗(Hom(E∨⊗det E ,∧2F)⊗OP(−2))

is the minimum value of

h1(P1, End(O(e⃗))) + h1(P1, End(O(f⃗)))

as we range over splitting types e⃗ of degree g + 4 and f⃗ of degree 2g + 8 so that

h1(P1,Hom(O(e⃗)∨⊗ detO(e⃗),∧2O(f⃗))⊗OP1(−2)) > 0 ⇔ e1 + f1 + f2− (g+4) ≤ 0.

Similar to the proof of Lemma 1.5.4, we may find this minimum by finding the
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minimum of the function

f(x1, . . . , x4, y1, . . . , y5) = 3x4 + x3 − x2 − 3x1 + 4y5 + 2y4 − 2y2 − 4y1

on the compact region D defined by

0 ≤ x1 ≤ · · · ≤ x4, x1 + . . .+ x4 = 1, 0 ≤ y1 ≤ · · · ≤ y5, y1 + . . .+ y5 = 2

x1 + y1 + y2 − 1 ≤ 0.

Using our code [CL21c], we find that the minimum of the linear function f over D is 1
5

attained at (1
5
, 4
15
, 4
15
, 4
15
, 2
5
, 2
5
, 2
5
, 2
5
, 2
5
). Thus,

dimSuppR1π∗(U5,g ⊗OP(−2)) ≥ (g + 4) ·min
D

(f)− 16 =
g + 4

5
− 16.

For later use, let us note an immediate consequence of the previous lemma: Using

excision and (1.5.10), we see

Trun(g+4)/5−16A∗(B◦
5,g) = Trun(g+4)/5−16Q[c2, a1, . . . , a4, a

′
2, . . . , a

′
4, b2, . . . , b5, b

′
2, . . . , b

′
5].

(1.5.11)

Lemma 1.5.13. The codimension of the locus of smooth degree 5 covers α such that

h1(Hom(E∨
α ⊗ detEα,∧2Fα)⊗OP1(−2)) > 0

has codimension at least g+4
5
− 16. That is, the codimension of the complement of H◦

5,g

inside H5,g is at least g+4
5
− 16.

Proof. The cohomological statement depends only on the splitting type of Eα and Fα. In

the proof of [DP15, Proposition 5.2], Deopurkar–Patel show that the codimension of the
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locus of covers such that Eα ∼= O(e⃗) and Fα ∼= O(f⃗) has codimension

u(e⃗, f⃗) := h1(P1, End(O(e⃗))) + h1(P1, End(O(f⃗))) (1.5.12)

− h1(P1,O(e⃗)⊗ ∧2O(f⃗)⊗OP1(−g − 4)).

A cover with these discrete invariants corresponds to a global section η of

Hom(O(e⃗)∨ ⊗ detO(e⃗),∧2O(f⃗)) = O(e⃗)⊗ ∧2O(f⃗)⊗OP1(−g − 4).

Such a global section can be represented by a skew-symmetric matrix

Mη =



0 L1,2 L1,3 L1,4 L1,5

−L1,2 0 L2,3 L2,4 L2,5

−L1,3 −L2,3 0 L3,4 L3,5

−L1,4 −L2,4 −L3,4 0 L4,5

−L1,5 −L2,5 −L3,5 −L4,5 0


, (1.5.13)

where Li,j ∈ H0(O(fi + fj)⊗O(e⃗)⊗O(−g − 4)). The corresponding curve C ⊂ PE∨ is

cut out by the 4× 4 Pfaffians of the main minors of Mη. The Pfaffian of the submatrix

obtained by deleting the last row and column is

Q5 = L1,2L3,4 − L1,3L2,4 + L2,3L1,4.

If Q5 is reducible, then C is reducible. Indeed, if C were irreducible, it would be contained

in one component of Q5, forcing every fiber to be contained in a hyperplane, violating the

Geometric-Riemann-Roch theorem. Therefore, as observed in [DP15, p. 21], L1,2 and L1,3
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cannot both be identically zero, and so

f1 + f3 + e4 − (g + 4) ≥ 0. (1.5.14)

Let X1, . . . , X4 be coordinates on PE∨ corresponding to a choice of splitting E ∼= O(e⃗), so

we think of Li,j as a linear form in X1, . . . , X4 where the coefficient of Xk is a section of

O(fi+fj)⊗O(ek)⊗O(−g−4), i.e. a homogeneous polynomial of degree fi+fj+ek−(g+4) on

P1. If Q5 is irreducible, it cannot be divisible by X4. Observe that if fi+fj+e3−(g+4) < 0,

then the coefficients of Xk for k ≤ 3 vanish, so X4 divides Li,j . If X4 divides L1,2, L1,3 and

L1,4, then X4 divides Q5 and Q5 is reducible. To prevent this, we must have

f1 + f4 + e3 − (g + 4) ≥ 0. (1.5.15)

Similarly, if X4 divides L1,2, L1,3 and L2,3, then X4 divides Q5 and Q5 is reducible. To

prevent this, we must have

f2 + f3 + e3 − (g + 4) ≥ 0. (1.5.16)

For splitting types satisfying (1.5.14), (1.5.15), and (1.5.16), at most 11 of the 40

summands of the form O(ei + fj + fk − (g + 4)) in O(e⃗)⊗ ∧2O(f⃗)⊗OP1(−g − 4) can be

negative. For these allowed splitting types, we have

u(e⃗, f⃗) = h1(P1, End(O(e⃗))) + h1(P1, End(O(f⃗)))

−
4∑
i=1

max{0, g + 3− f1 − f2 − ei} −
3∑
i=1

max{0, g + 3− f1 − f3 − ei}

−
2∑
i=1

max{0, g + 3− f1 − f4 − ei} −
2∑
i=1

max{0, g + 3− f2 − f3 − ei}.

We seek a lower bound on u(e⃗, f⃗) given that O(e⃗)⊗∧2O(f⃗)⊗O(−g−4) has a non-positive
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summand, i.e. in the region where e1 + f1 + f2 − (g + 4) ≤ 0. Note that

h1(P1, End(O(e⃗)) ≥ 3e4 + e3 − e2 − 3e1 − 6

h1(P1, End(O(f⃗)) ≥ 4f5 + 2f4 − 2f2 − 4f1 − 10.

Let us define a function of 9 real variables

f(x1, . . . , x4, y1, . . . , y5) := 3x4 + x3 − x2 − 3x1 + 4y5 + 2y4 − 2y2 − 4y1

−
4∑
i=1

max{0, 1− y1 − y2 − xi} −
3∑
i=1

max{0, 1− y1 − y3 − xi}

−
2∑
i=1

max{0, 1− y1 − y4 − xi} −
2∑
i=1

max{0, 1− y2 − y3 − xi}

so that

u(e⃗, f⃗) ≥ (g + 4)f

(
e1

g + 4
, . . . ,

e4
g + 4

,
f1

g + 4
, . . . ,

f5
g + 4

)
− 16.

Now we wish to find the minimum of f on the compact region defined by

0 ≤ x1 ≤ · · · ≤ x4, x1 + . . .+ x4 = 1, 0 ≤ y1 ≤ · · · ≤ y5, y1 + . . .+ y5 = 2

y1 + y3 + x4 − 1 ≥ 0, y1 + y4 + x3 − 1 ≥ 0, y2 + y3 + x3 − 1 ≥ 0

x1 + y1 + y2 − 1 ≤ 0.

Since f is piecewise linear, its extreme values are attained at points where multiple

boundary conditions (including those where the linear function changes) intersect to

give a single point. Our code [CL21c] performs the linear algebra to locate such points

and determines that the minimum is 1
5
, which is attained at (1

5
, 4
15
, 4
15
, 4
15
, 2
5
, 2
5
, 2
5
, 2
5
, 2
5
). It

follows that if e⃗ and f⃗ satisfy h1(P1,O(e⃗) ⊗ ∧2O(f⃗) ⊗ O(−g − 4) ⊗ O(−2)) > 0 then

u(e⃗, f⃗) ≥ g+4
5
− 16.
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We now prove Theorem 1.1.4 to complete the k = 5 case.

Proof of Theorem 1.1.4. Suppose i < g+4
5
− 16. Then, by excision and Lemma 1.5.13, the

restriction map Ai(H5,g) → Ai(H◦
5,g) is an isomorphism. Hence, Ri(H5,g) → Ri(H◦

5,g) is

also an isomorphism. Since H◦
5,g ⊆ H′

5,g, Lemma 1.5.11 tells us that Ai(H◦
5,g) = Ri(H◦

5,g).

Hence, we have shown

Ai(H5,g) = Ai(H◦
5,g) = Ri(H◦

5,g) = Ri(H5,g).

1.6 Conclusion and preview of subsequent work

At this point, we have established that, for k ≤ 5, a large portion of the Chow ring

of the (non-factoring) Hurwitz space Hnf
k,g is tautological. We did so by showing that Hnf

k,g

is closely approximated by an open substack H◦
k,g which, in turn, can be realized as an open

substack of a vector bundle X ◦
r,d = X ′

r,d|B◦
r,d

over the stack B◦
r,d. By (1.5.6) and (1.5.11),

we understand A∗(B◦
r,d)
∼= A∗(X ◦

r,d) well. First of all, we know A∗(B◦
r,d) is generated by

classes which pullback to the CE classes on H◦
k,g; this is how we saw A∗(H◦

k,g) = R∗(H◦
k,g).

However, we actually know a bit more: the generators we list for A∗(B◦
r,d)
∼= A∗(X ◦

r,d)

satisfy no relations in low degrees. In other words, all relations that their pullbacks to

H◦
k,g satisfy come from performing excision on the complement of H◦

k,g ⊂ X ◦
r,d.

Determining these relations will be the focus of our subsequent work [CL21a].

The central innovation there is to find an appropriate resolution of the complement of

H◦
k,g ⊂ X ◦

r,d, which allows us to determine all relations in degrees up to roughly g/k.

Furthermore, we will prove that the relations we find among the restrictions of CE classes

to H◦
k,g actually hold on all of Hk,g. Using the codimension bounds we established in

Section 5 here, results about the structure of A∗(H◦
k,g) = R∗(H◦

k,g) will then translate into

results about the structure of A∗(Hnf
k,g) and R

∗(Hk,g) in degrees up to roughly g/k.
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This chapter, in full, has been submitted for publication. It is coauthored with

Larson, Hannah. The dissertation author was co-primary investigator and author of this

paper.
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Chapter 2

Chow rings of low-degree Hurwitz
spaces
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2.1 Introduction

Intersection theory on the moduli space of curvesMg has received much attention

since Mumford’s famous paper [Mum83], in which he introduced the Chow ring ofMg.

Based on Harer’s result [Har85] that the cohomology of the moduli space of curves is

independent of the genus g in degrees small relative to g, Mumford conjectured that the

stable cohomology ring is isomorphic to Q[κ1, κ2, κ3, . . .]. Madsen–Weiss [MW07] later

proved Mumford’s conjecture. It is unknown whether there is an analogous stabilization

result in the Chow ring ofMg. Upon restricting attention to the tautological ring, however,

more is known.

The tautological subring R∗(Mg) ⊆ A∗(Mg) is defined to be the subring of the

rational Chow ring generated by the kappa classes. There are many conjectures concerning

the relations and structure of the tautological ring. Prominent among them is Faber’s con-

jecture [Fab99, Conjecture 1], which states that the tautological ring should be Gorenstein

with socle in codimension g − 2 and generated by the first ⌊g/3⌋ kappa classes with no

relations in degree less than ⌊g/3⌋. The Gorenstein part of Faber’s conjecture is unknown,

although it has been shown to hold when g ≤ 23 by a direct computer calculation of Faber.

The second portion of Faber’s conjecture has been proved: Ionel [Ion05] proved that the

tautological ring is generated by κ1, κ2, . . . , κ⌊g/3⌋, and Boldsen [Bol12] proved that there

are no relations among the κ-classes in degrees less than ⌊g/3⌋. In other words, there is a

surjection

Q[κ1, κ2, . . . , κ⌊g/3⌋] ↠ R∗(Mg), (2.1.1)

which is an isomorphism in degrees less than ⌊g/3⌋.

In this paper, we study the Chow rings of low-degree Hurwitz spaces. Our main

theorem is a stabilization result of a similar flavor to (2.1.1). Let Hk,g be the Hurwitz

stack parametrizing degree k, genus g covers of P1 up to automorphisms of the target. Let
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C be the universal curve and P the universal P1-fibration over the Hurwitz space Hk,g:

C P

Hk,g.

α

f
π

We define the tautological subring of the Hurwitz space R∗(Hk,g) ⊆ A∗(Hk,g) to be the

subring generated by classes of the form f∗(c1(ωf )
i · α∗c1(ωπ)

j) = π∗(α∗(c1(ωf )
i) · c1(ωπ)j).

Let E∨ be the cokernel of the map OP → α∗OC (the universal “Tschirnhausen bundle”).

Set z = −1
2
c1(ωπ)“ = c1(OP(1))”. Our theorem will be stated in terms of the tautological

classes c2 = −π∗(z3) ∈ A2(Hk,g) and

ai = π∗(ci(E) · z) ∈ Ai(Hk,g) and a′i = π∗(ci(E)) ∈ Ai−1(Hk,g).

When k = 3, 4, 5, our main theorem gives a minimal set of generators for R∗(Hk,g)

and determines all relations among them in degrees up to roughly g/k. In contrast with

the case ofMg in (2.1.1), the tautological ring of Hk,g does not require a growing number

of generators as g increases. In degree 3, we determine the full Chow ring of H3,g. When

k = 3, 5, our results imply that the dimensions of the Chow groups of Hk,g are independent

of g for g sufficiently large. In degree 4, factoring covers — i.e. covers C → P1 that

factor as a composition of two double covers C → C ′ → P1 — present a difficulty. We

instead obtain stabilization results for the Chow groups of Hnf
4,g ⊆ H4,g, the open substack

parametrizing non-factoring covers, or equivalently covers whose monodromy group is not

contained in the dihedral group D4.

Theorem 2.1.1. Let g ≥ 2 be an integer.
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1. The rational Chow ring of H3,g is

A∗(H3,g) = R∗(H3,g) =


Q if g = 2

Q[a1]/(a
2
1) if g = 3, 4, 5

Q[a1]/(a
3
1) if g ≥ 6.

2. Let ri = ri(g) be defined as in Section 2.5.4. For each g there is a map

Q[a1, a
′
2, a

′
3]

⟨r1, r2, r3, r4⟩
↠ R∗(H4,g) ⊆ A∗(H4,g)→ A∗(Hnf

4,g),

such that the composition is an isomorphism in degrees up to g+3
4
− 4. Furthermore,

the dimension of the Chow group Ai(Hnf
4,g) is independent of g for g > 4i+12. When

g > 4i+ 12, the dimensions are given by

dimAi(Hnf
4,g) = dimRi(H4,g) =



2 i = 1, 4

4 i = 2

3 i = 3

1 i ≥ 5.

3. Let ri = ri(g) be as defined in Section 2.6.4. There is a map

Q[a1, a
′
2, a2, c2]

⟨r1, r2, r3, r4, r5⟩
↠ R∗(H5,g) ⊆ A∗(H5,g)

such that the composition is an isomorphism in degrees ≤ g+4
5
− 16. Furthermore,

the dimension of the Chow group Ai(H5,g) is independent of g for g > 5i+76. When
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g > 5i+ 76, the dimensions are given by

dimAi(H5,g) = dimRi(H5,g) =



2 i = 1, i ≥ 7

5 i = 2

6 i = 3

7 i = 4

4 i = 5

3 i = 6.

Remark 2.1.2. Angelina Zheng recently computed the rational cohomology of H3,5

in [Zhe20], and, in subsequent work [Zhe21], finds the stable rational cohomology of

H3,g. Together, our results prove that the cycle class map is injective. The corresponding

statement forMg is unknown, but when g ≤ 6 it follows from the fact that the tautological

ring is the entire Chow ring.

Remark 2.1.3. Note that Theorem 2.1.1(2) implies that the restriction map Ri(H4,g)→

Ri(Hnf
4,g) is an isomorphism for i < g+3

4
− 4. This implies an interesting vanishing result:

Any tautological class of codimension i < g+3
4
− 4 supported on the locus of factoring

covers is zero.

Remark 2.1.4. In [Bha04a,Bha04b,Bha08,Bha05,Bha10], Bhargava famously applied

structure theorems for degree 3, 4, and 5 covers to counting number fields. As in Bhargava’s

work, our techniques rely on special aspects of structure theorems that do not seem to

extend to covers of degree k ≥ 6. Our need to throw out factoring covers in order to obtain

asymptotic results for the full Chow ring seems to parallel the fact that, when quartic

covers are counted by discriminant, the D4 covers constitute a positive proportion of all

covers [Bha05, Theorem 4].
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Remark 2.1.5. Ellenberg-Venkatesh-Westerland [EVW16] have studied stability in the

homology of Hurwitz spaces of G covers (which in particular separates out factoring

covers). Like the work of Harer and Madsen-Weiss, their techniques are topological. On

the other hand, ours are algebro-geometric: they are about the Chow groups rather than

(co)homology and they work in characteristic p > 5 without the use of a comparison

theorem.

Remark 2.1.6. For g suitably large, our proof of Theorem 2.1.1 (2) shows dimRi(H4,g) ≤ 1

for all i ≥ 5, and similarly in (3) that dimRi(H5,g) ≤ 2 for all i ≥ 7. Hence, R∗(H4,g)

and R∗(H5,g) are not Gorenstein because there cannot be a perfect pairing for dimension

reasons. On the other hand, A∗(H3,g) = R∗(H3,g) is Gorenstein.

Our method of proof is to study a large open substack H◦
k,g ⊂ Hk,g, which can be

represented as an open substack of a vector bundle X ◦
k,g over a certain moduli stack of

vector bundles on P1. The fact that the moduli space admits such a description comes

from the structure theorms of degree 3, 4, 5 covers and is precisely what is so special about

these low-degree cases. We then determine the Chow ring of H◦
k,g via excision on the

complement of H◦
k,g inside X ◦

k,g. This complement is a “discriminant locus” parametrizing

singular covers and maps that are not even finite. The stability of the Chow groups we

find fits in with the philosophy of Vakil–Wood [VW15] about discriminants and suggests

some possible variations on their theme. The key point, which is reflected in the ampleness

assumptions in some of the conjectures from [VW15], is that the covers we parametrize

correspond to sections of a vector bundle that becomes “more positive” as the genus of

the curve grows. We compute generators for the Chow ring of the discriminant locus by

constructing a resolution whose Chow ring we can compute. See Figure 2.3 in Section

2.5.3 for a picture summarizing our method.

We also give formulas in Section 2.7 that express other natural classes on Hk,g —

namely the κ-classes pulled back fromMg and the classes corresponding to covers with
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certain ramification profiles — in terms of the generators from Theorem 2.1.1. We give

two applications of these formulas. First, we show that for k = 4, 5, “the push forward

of tautological classes on Hk,g are tautological onMg.” (The case k = 3 already follows

from Patel–Vakil’s result that A∗(H3,g) = R∗(H3,g) is generated by κ1 when g > 3, and

and all classes on M3 are tautological.) Note that for k > 3, there are tautological

classes on Hk,g that are not pullbacks of tautological classes on Mg: Theorem 2.1.1

implies dimR1(Hk,g) > 1, so it cannot be spanned by the pullback of κ1. Hence, our

claim regarding pushforwards is not a priori true. To set the stage for the theorem, let

β : Hk,g →Mg be the forgetful morphism. DefineMk
g ⊂ Mg to be the locus of curves

of gonality ≤ k. There is a proper morphism β′ : Hk,g \ β−1(Mk−1
g )→Mg ∖Mk−1

g . We

define a class to be tautological onMg ∖Mk−1
g if it is the restriction of a tautological

class onMg.

Theorem 2.1.7. Let g ≥ 2 be an integer and k ∈ {3, 4, 5}. The β′ push forward of classes

in R∗(Hk,g) are tautological onMg ∖Mk−1
g .

Remark 2.1.8. Theorem 2.1.7 is a key tool in recent work of the authors [CL21b], which

proves that the Chow rings ofM7,M8 andM9 are tautological. Because the tautological

ring has been computed in these cases by Faber [Fab99], this work settles the next open

case in the program suggested by Mumford [Mum83] of determining the Chow ring ofMg

for small g.

Remark 2.1.9. We emphasize that when k = 4, there can be non-tautological classes in

low codimension supported on the locus of factoring covers. In particular, the fundamental

class of the bielliptic locus onM12 is not tautological by a theorem of van Zelm [vZ18], so

Theorem 2.1.7 implies R∗(H4,g) ̸= A∗(H4,g) for g = 12.

The second application of our formulas is to vanishing results for the Chow groups

of the simply branched Hurwitz space Hs
k,g ⊆ Hk,g. The Hurwitz space Picard rank
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conjecture [HM98, Conjecture 2.49] says that A1(Hs
k,g) = Pic(Hs

k,g) ⊗ Q = 0 . This

conjecture is known for k ≤ 5 [DP15], and for k > g− 1 [Mul20]. In the cases k = 2, 3, the

stronger vanishing result Ai(Hs
k,g) = 0 holds for all i > 0. The following theorem provides

further evidence for a generalization of the Hurwitz space Picard rank conjecture to higher

codimension cycles.

Theorem 2.1.10. Let g ≥ 2 be an integer. The rational Chow groups of the simply-

branched Hurwitz space satisfy

Ai(Hs
4,g) = 0 for 1 ≤ i <

g + 3

4
− 4

Ai(Hs
5,g) = 0 for 1 ≤ i <

g + 4

5
− 16.

The paper is structured as follows. In Section 2.2, we introduce some notational

conventions and some basic ideas from (equivariant) intersection theory that we will use

throughout the paper. We prove a lemma, the “Trapezoid Lemma”, which establishes a

useful set up where one can determine all relations coming from certain excisions with

an appropriate resolution. In Section 2.3, we introduce certain bundles of principal parts,

which will be used throughout the remainder of the paper. Loosely speaking, these bundles

help detect singularities and ramification behavior. As we shall see in the later sections of

the paper, constructing a suitable principal parts bundle often requires geometric insights

and can be somewhat involved. In Sections 2.4, 2.5, and 2.6, we use principal parts

bundles and the Trapezoid Lemma to produce relations among tautological classes in

A∗(H3,g), A
∗(H4,g), and A

∗(H5,g), respectively. From these calculations, we obtain the

proof Theorem 2.1.1. Finally, in Section 2.7, we rewrite the κ-classes and classes that

parametrize covers with certain ramification behavior in terms of our preferred generators.

These calculations allow us to prove Theorems 2.1.7 and 2.1.10.

Several of the calculations in this paper were using the Macaulay2 [GS] package
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Schubert2 [GSS+]. All of the code used in this paper is provided in a Github repository

[CL21c]. Whenever there is a reference to a calculation done with a computer, one can

find the code to perform that calculation in the Github repository.

2.2 Conventions and some intersection theory

We will work over an algebraically closed field of characteristic 0 or characteristic

p > 5. All schemes in this paper will be taken over this fixed field.

2.2.1 Projective and Grassmann bundles

We follow the subspace convention for projective bundles: given a scheme (or stack)

X and a vector bundle E of rank r on X, set

PE := Proj(Sym•E∨),

so we have the tautological inclusion

OPE(−1) ↪→ γ∗E,

where γ : PE → X is the structure map. Set ζ := c1(OPE(1)). With this convention, the

Chow ring of PE is given by

A∗(PE) = A∗(X)[ζ]/⟨ζr + ζr−1c1(E) + . . .+ cr(E)⟩. (2.2.1)

We call this the projective bundle theorem. Note that 1, ζ, ζ2, . . . , ζr−1 form a basis for

A∗(PE) as an A∗(X)-module. Since

γ∗ζ
i =


0 if i ≤ r − 2

1 if i = r − 1,
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this determines the γ∗ of all classes from PE.

More generally, we define the Grassmann bundle G(n,E) of n-dimensional subspaces

in E, which is equipped with a tautological sequence

0→ S → γ∗E → Q→ 0

where γ : G(n,E) → X is the structure map and S has rank n. The relative tangent

bundle of G(n,E) → X is Hom(S,Q). The Chow ring A∗(G(n,E)) is generated as an

A∗(X)-algebra by the classes ζi = ci(Q). Of particular interest to us will be Grassmann

bundles A∗(G(2, E)) when the rank of E is either 4 or 5. If the rank of E is 4, A∗(G(2, E))

is generated as a A∗(X)-module by ζ i1ζ
j
2 for 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, 0 ≤ i+ j ≤ 2. If the rank

of E is 5, A∗(G(2, E)) is generated as a A∗(X) module by ζ i1ζ
j
2ζ

k
3 for 0 ≤ i ≤ 2, 0 ≤ j ≤ 2,

0 ≤ k ≤ 2 and 0 ≤ i+ j + k ≤ 2. See [GSS12] for a much more general discussion on the

Chow rings of flag bundles. In particular, these bases seem to be the preferred ones of the

Macaulay2 [GS] package Schubert2 [GSS+], which is what we use for calculations in this

paper.

2.2.2 The Trapezoid Lemma

Let τ : V → B be a rank r vector bundle. If σ is a section of V which vanishes

in codimension r, then the vanishing locus of σ has fundamental class cr(V ) ∈ Ar(B).

The identity induces a section of τ ∗V on the total space of V whose vanishing locus

is the zero section. Thus, a special case of this fact is that the zero section in the

total space of a vector bundle has class cr(τ
∗V ) = τ ∗cr(V ) ∈ Ar(V ) ∼= τ ∗Ar(B). More

generally, suppose ρ : X → B is another vector bundle on B and we are given a map

of vector bundles ϕ : X → V over B. Composing ϕ after the section induced by the

identity on the total space of X defines a section of ρ∗V on the total space of X. We

call the vanishing locus K of this section the preimage under ϕ of the zero section in
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V . If ϕ is a surjection of vector bundles, then K is simply the total space of the kernel

subbundle. If K has codimension r inside the total space of W , then its fundamental class

is [K] = cr(ρ
∗V ) = ρ∗cr(V ) ∈ Ar(X) ∼= ρ∗Ar(B).

A basic tool we shall use repeatedly is the following.

Lemma 2.2.1 (“Trapezoid push forwards”). Suppose B̃ → B is proper (e.g. a tower

of Grassmann bundles). Let X be a vector bundle on B and let V be a vector bundle of

rank r on B̃. Suppose that we are given a map of vector bundles ϕ : σ∗X → V on B̃.

Let K ⊂ σ∗X be the preimage under ϕ of the zero section in V , and suppose that K has

codimension r. We call this a trapezoid diagram:

K σ∗X X

B̃ B.

ρ′′

ι

ρ′

σ′

ρ

σ

The image of (σ′ ◦ ι)∗ : A∗(K)→ A∗(X) contains the ideal generated by ρ∗(σ∗(cr(V ) · αi))

as αi ∈ A∗(B̃) ranges over generators for A∗(B̃) as a A∗(B)-module. Equality holds if ϕ

is a surjection. In other words, we have a surjective map of rings

A∗(B)/⟨σ∗(cr(V ) · αi))⟩ → A∗(X ∖ σ′(ι(K))),

which is an isomorphism when ϕ is a surjection of vector bundles.

Proof. The pullback maps (ρ′)∗ and ρ∗ are isomorphisms on Chow rings. The fundamental

class of K in σ∗X is (ρ′)∗cr(V ), since it is defined by the vanishing of a section of (ρ′)∗V .

Consider classes in A∗(K) of the form (ρ′′)∗α, where α ∈ A∗(B̃). The effect of (σ′ ◦ ι)∗ on

such classes is

σ′
∗ι∗(ρ

′′)∗α = σ′
∗ι∗ι

∗(ρ′)∗α = σ′
∗([K] ·(ρ′)∗α) = σ′

∗(ρ
′)∗(cr(V ) ·α) = ρ∗σ∗(cr(V ) ·α). (2.2.2)

The last step uses that flat pull back and proper push forward commute in fiber diagram.
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If α =
∑

i(σ
∗βi) · αi, then the projection formula gives

ρ∗σ∗(cr(V ) · α) =
∑
i

ρ∗(βi) · ρ∗(σ∗(cr(V ) · αi)).

If K is a vector bundle, then every class in A∗(K) has the form (ρ′′)∗α for some α ∈ A∗(B̃).

Thus, if K is a vector bundle, the image of (σ′ ◦ ι)∗ is generated over A∗(X) ∼= ρ∗A∗(B) by

the classes ρ∗(σ∗(cr(V ) ·αi)), as αi runs over generators for A∗(B̃) as a A∗(B)-module.

2.2.3 The Hurwitz space

Given a scheme S, an S point of the parametrized Hurwitz scheme H†
k,g is the

data of a finite, flat map C → P1 × S, of constant degree k so that the composition

C → P1 × S → S is smooth with geometrically connected fibers. (We do not impose the

condition that a cover C → P1 be simply branched.)

The unparametrized Hurwitz stack is the PGL2 quotient of the parametrized Hurwitz

scheme. There is also a natural action of SL2 on H†
k,g (via SL2 ⊂ GL2 → PGL2). The

natural map [H†
k,g/ SL2] → [H†

k,g/PGL2] is a µ2 banded gerbe. It is a general fact that

with rational coefficients, the pullback map along a gerbe banded by a finite group is an

isomorphism [PV15b, Section 2.3]. In particular, since we work with rational coefficients

throughout, A∗([H†
k,g/PGL2]) ∼= A∗([H†

k,g/ SL2]). It thus suffices to prove all statements

for the SL2 quotient [H†
k,g/ SL2], which we denote by Hk,g from now on.

Explicitly, Hk,g = [H†
k,g/ SL2] is the stack whose objects over a scheme S are families

(C → P → S) where P = PV → S is the projectivization of a rank 2 vector bundle V

with trivial determinant, C → P is a finite flat finitely presented morphism of constant

degree k, and the composition C → S has smooth fibers of genus g. The benefit of working

with Hk,g is that the SL2 quotient is equipped with a universal P1-bundle P → Hk,g that

has a relative degree one line bundle OP(1) (a P1-fibration does not). Working with this

P1-bundle simplifies our intersection theory calculations.
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We shall also work with Hnf
k,g, the open substack of Hk,g parametrizing covers that

do not factor through a lower genus curve. When k is prime, Hnf
k,g = Hk,g. In Section 2.7

of the paper, we will consider the open substack Hs
k,g ⊂ Hk,g, which parametrizes covers

that are simply branched. Note that Hs
k,g ⊆ Hnf

k,g.

2.3 Relative bundles of principal parts

In this section, we collect some background on bundles of principal parts, which

will be used to produce relations among tautological classes in Sections 2.4, 2.5, 2.6, and

to compute classes of certain ramification strata in Section 2.7. For the basics, we follow

the exposition in Eisenbud-Harris [EH16].

2.3.1 Basic properties

Let b : Y → Z be a smooth proper morphism. Let ∆Y/Z ⊂ Y ×Z Y be the relative

diagonal. With p1 and p2 the projection maps, we obtain the following commutative

diagram:

∆Y/Z

Y ×Z Y Y

Y Z.

p2

p1

b

b

Definition 2.3.1. Let W be a vector bundle on Y and let I∆Y/Z
denote the ideal sheaf

of the diagonal in Y ×Z Y . The bundle of relative mth order principal parts Pm
Y/Z(W) is

defined as

Pm
Y/Z(W) = p2∗(p

∗
1W ⊗OY×ZY /Im+1

∆Y/Z
).

The following explains all the basic properties of bundles of principal parts that we

need. Parts (1) and (2) are Theorem 11.2 in [EH16]. Let m∆Y/Z be the closed subscheme

of Y ×Z Y defined by the ideal sheaf Im∆Y/Z
. Part (3) below follows because the restriction
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of p2 to the thickened diagonal m∆Y/Z → Y is finite, so the push forward is exact.

Proposition 2.3.2. With notation as above,

1. The quotient map p∗1W → p∗1W ⊗OY×ZY /Im+1
∆Y/Z

pushes forward to a map

b∗b∗W ∼= p2∗p
∗
1W → Pm

Y/Z(W),

which, fiber by fiber, associates to a global section δ of W a section δ′ whose value at

z ∈ Z is the restriction of δ to an mth order neighborhood of z in the fiber b−1b(z).

2. P 0
Y/Z(W) = W. For m > 1, the filtration of the fibers Pm

Y/Z(W)y by order of

vanishing at y gives a filtration of Pm
Y/Z(W) by subbundles that are kernels of the

natural surjections Pm
Y/Z(W) → P k

Y/Z(W) for k < m. The graded pieces of the

filtration are identified by the exact sequences

0→W ⊗ Symm(ΩY/Z)→ Pm
Y/Z(W)→ Pm−1

Y/Z (W)→ 0.

3. A short exact sequence 0→ K →W →W ′ → 0 of vector bundles on Y induces an

exact sequence of principal parts bundles

0→ Pm
Y/Z(K)→ Pm

Y/Z(W)→ Pm
Y/Z(W ′)→ 0

We will need to know when the map from part (1) is surjective.

Lemma 2.3.3. SupposeW is a relatively very ample line bundle on Y . Then the evaluation

map b∗b∗W → P 1
Y/Z(W) is surjective.

Proof. The statement can be checked fiber by fiber over Z. Then, it follows from the fact

that very ample line bundles separate points and tangent vectors.
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Together with the above lemma, the following two lemmas will help us establish

when evaluation maps are surjective in our particular setting.

Lemma 2.3.4. Let E = O(e1)⊕ · · · ⊕ O(er) be a vector bundle on P1 with e1 ≤ · · · ≤ er

and let γ : PE∨ → P1 be the projectivization. The line bundle L = γ∗OP1(a)⊗OPE∨(m) is

very ample if and only if m ≥ 1 and a+me1 ≥ 1, equivalently if and only if h1(P1, γ∗L⊗

OP1(−2)) = 0.

Proof. First, note that L is the pullback of O(1) under a degree m relative Veronese

embedding PE∨ ↪→ P(O(a)⊗ SymmE)∨. The O(1) on the projective bundle P(OP1(a)⊗

SymmE)∨ is very ample if and only if all summands of OP1(a) ⊗ SymmE = γ∗L have

positive degree (see [EH16, Section 9.1.1]). These summands have degrees of the form

a+ ei1 + . . .+ eim , all of which are at least a+me1.

Lemma 2.3.5. Suppose E is a vector bundle on a P1-bundle π : P → B and let γ : PE∨ →

P be the projectivization. Suppose W = (γ∗A) ⊗ OPE∨(m) for some m ≥ 1 and vector

bundle A on P. If R1π∗[γ∗W ⊗OP(−2)] = 0, then the evaluation map

(π ◦ γ)∗(π ◦ γ)∗W → P 1
PE∨/B(W)

is surjective.

Proof. It suffices to check surjectivity in each of the fibers over B, so we are reduced to

the case that B is a point. Now we may assume A splits as a sum of line bundles, say A ∼=

O(a1)⊕· · ·⊕O(ar). By cohomology and base change, we have h1(P1, γ∗W⊗OP1(−2)) = 0,

which implies h1(P1, γ∗(γ
∗O(ai)⊗OPE∨(m))⊗O(−2)) = 0 for each i. By Lemma 2.3.4,

we have that W is a sum of very ample line bundles (over B). The bundle of principal

parts respects direct sums, so the evaluation map is surjective by Lemma 2.3.3.

The following lemma should be thought of as saying “pulled back sections have

vanishing vertical derivatives.”
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Lemma 2.3.6. Let X
a−→ Y

b−→ Z be a tower of schemes with a and b smooth, and let W

be a vector bundle on Y . For each m there is a natural map a∗Pm
Y/Z(W)→ Pm

X/Z(a
∗W).

This map fits in an exact sequence

0→ a∗Pm
Y/Z(W)→ Pm

X/Z(a
∗W)→ Fm → 0,

where F1
∼= ΩX/Y ⊗ a∗W and Fm for m > 1 is filtered as

0→ Symm−1ΩX/Z ⊗ ΩX/Y ⊗ a∗W → Fm → Fm−1 → 0.

In particular, the evaluation map

b∗b∗W → Pm
Y/Z(W)

gives rise to a composition

a∗b∗b∗W → a∗Pm
Y/Z(W)→ Pm

X/Z(a
∗W),

which, fiber by fiber, gives the Taylor expansion of sections of W along the “horizontal”

pulled back directions.

Proof. We begin by constructing the map a∗Pm
X/Z(W) → Pm

Y/Z(a
∗W). Consider the

following commutative diagram:

X X ×Z X X

Z Y Y ×Z Y Y Z

a

p2 p1

a×a a

b q1q2 b

Let ∆Y ⊂ Y ×Z Y denote the relative diagonal, and similarly for ∆X ⊂ X ×Z X. By
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definition, we have

a∗Pm
Y/Z(W) = a∗(q1∗(OY×ZY /Im+1

∆Y
⊗ q∗2W)).

The natural transformation of functors a∗q1∗ → p1∗(a× a)∗ induces a map

a∗Pm
Y/Z(W)→ p1∗((a× a)∗(OY×ZY /Im+1

∆Y
)⊗ (a× a)∗q∗2W)).

The transform (q2 ◦ (a× a))∗ → (a ◦ p2)∗ induces a map

p1∗((a× a)∗(OY×ZY /Im+1
∆Y

)⊗ (a× a)∗q∗2W))→ p1∗((a× a)∗(OY×ZY /Im+1
∆Y

)⊗ p∗2a∗W).

The natural morphism of sheaves OY×ZY → (a× a)∗OX×ZX induces a map on quotients

OY×ZY /Im+1
∆Y
→ (a× a)∗(OX×ZX/Im+1

∆X
). By adjunction, we obtain a map

(a× a)∗(OY×ZY /Im+1
∆Y

)→ OX×ZX/Im+1
∆X

.

Then we have a morphism

p1∗((a× a)∗(OY×ZY /Im+1
∆Y

)⊗ p∗2a∗W)→ p1∗(OX×ZX/Im+1
∆X
⊗ p∗2(a∗W)) = Pm

X/Z(a
∗W).

By construction, the maps a∗Pm
Y/Z(W)→ Pm

X/Z(a
∗W) are compatible with the filtrations

on the fibers by order of vanishing, so we obtain an induced map on the graded pieces of

the filtrations:

0 Symm(a∗ΩY/Z)⊗ a∗W a∗Pm
Y/Z(W) a∗Pm−1

Y/Z (W) 0

0 Symm(ΩX/Z)⊗ a∗W Pm
X/Z(a

∗W) Pm−1
X/Z (a∗W) 0
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When m = 1, the right vertical map is the identity on a∗W. Hence, a∗P 1
Y/Z(W) →

P 1
X/Z(a

∗W) is injective. By the snake lemma, the cokernel is isomorphic to the cokernel

of the left vertical map, which in turn is ΩX/Y ⊗ a∗W because a and b are smooth and

W is locally free. For m > 1, we may assume by induction that the right vertical map is

injective, hence the center vertical map is injective. The filtration of the cokernel Fm of

the center vertical map follows by induction and the snake lemma.

2.3.2 Directional refinements

Much of the exposition in this subsection is based on unpublished notes of Ravi

Vakil. Suppose we have a tower X
a−→ Y

b−→ Z and a∗ΩY/Z admits a filtration on X

0→ Ωy → a∗ΩY/Z → Ωx → 0. (2.3.1)

For example, take X = P(ΩY/Z) or G(n,ΩY/Z) with the filtration given by the tautological

sequence. First, suppose Ωx and Ωy are rank 1. The filtration (2.3.1) is the same as saying

we can choose local coordinates x, y at each point of Y where y is well-defined up to (x, y)2,

and x is only defined modulo y. The vanishing of y defines a distinguished “x-direction”

on the tangent space TY/Z at each point, which is dual to the quotient a∗ΩY/Z → Ωx.

The goal of this section is to define principal parts bundles that measure certain

parts of a Taylor expansion with respect to these local coordinates. These principal parts

bundles will be indexed by admissible sets S of monomials in x and y (defined below). If

xiyj ∈ S, then P S
Y/Z(W) will keep track of the coefficient of xiyj in the Taylor expansion of

a section of W . For example, S = {1, x} will correspond to a quotient of a∗P 1
Y/Z(W) that

measures only derivatives in the x-direction. The set S = {1, x, y, x2, xy, y2} corresponds

to the pullback of the usual second order principal parts. It is helpful to visualize these

sets with diagrams as below, where we place a dot at coordinate (i, j) if xiyj ∈ S.
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i

j

{1, x} {1, x, y, x2, xy, y2}

More generally, if Ωx and Ωy have any ranks, the quotient Ωx is dual to a dis-

tinguished subspace of TY/Z . The construction below will build bundles P S
Y/Z(W) such

that if xiyj ∈ S, then P S
Y/Z(W) tracks the coefficients of all monomials corresponding

to SymiΩx ⊗ Symj Ωy. In other words, P S
Y/Z(W) will admit a filtration with quotients

SymiΩx ⊗ Symj Ωy ⊗ W for each (i, j) such that xiyj ∈ S. Each dot in the diagram

corresponds to a piece of this filtration. Only diagrams of certain shapes are allowed.

Definition 2.3.7. A set S is admissible if the following hold

• If xiyj ∈ S, then xi−1yj ∈ S (if i− 1 ≥ 0). That is, for each dot in the diagram, the

dot to its left is also in the diagram if possible.

• If xiyj ∈ S, then xi−2yj+1 (if i− 2 ≥ 0). That is, for each dot in the diagram, the

dot two to the left and one down is also in the diagram if possible.

Equivalently, the diagram associated to S is built, via intersections and unions, from

triangular collections of lattice points bounded by the axes and a line of slope 1 or slope 1
2
.

To build the principal parts bundles P S
Y/Z(W ), let us consider the diagram

∆̃ ∆

X ×Z Y Y ×Z Y Y

X Y Z,

ι

p̃2

ã

p2

p1

b

a b

where ∆ = ∆Y/Z ⊂ Y ×Z Y is the diagonal and all squares are fibered squares. The

composition of vertical maps give isomorphisms ∆ ∼= Y and ∆̃ ∼= X. There is an
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identification ι∗Ω∆̃/Z
∼= I∆̃/I2∆̃. Using (2.3.1) and the isomorphism ∆̃ ∼= X, we obtain an

injection

ι∗Ωy → ι∗a
∗ΩY/Z → ι∗ΩX/Z

∼= I∆̃/I
2
∆̃
,

which determines a subsheaf J ⊂ I∆̃ =: I. The sheaf I corresponds to the monomials

{xiyj : i + j ≥ 1} (see (2.3.3) below). The subsheaf J corresponds to the monomials

{xiyj : i+ j ≥ 2 or j ≥ 1} (see (2.3.4) below). The condition i+ j ≥ 2 says I2 ⊂ J . The

condition j ≥ 1 says J ⊂ I and it “picks out our y-coordinate(s) to first order.”

In the next paragraph, we will explain how to construct an ideal IS, via intersections

and unions of I and J , corresponding to monomials not in S. Our refined principal parts

bundles will then be defined as

P S
Y/Z(W) := p̃2∗ (ã

∗p∗1W ⊗OX×ZY /IS) ,

The bundle P S
Y/Z(W) is defined on X and will be a quotient of a∗Pm

Y/Z(W) for m =

max{i+ j : xiyj ∈ S}. In particular, there are restricted evaluation maps

a∗b∗b∗W → a∗Pm
Y/Z(W)→ P S

Y/Z(W), (2.3.2)

which we think of as Taylor expansions only along certain directions specified by S.

To start, we shall have I{1,x,y} := I and I{1,x} := J . Powers of these ideals

correspond to regions below lines of slope 1 and 1
2
respectively.

. . .

I

. . .

I2 I3

. . .
(2.3.3)
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. . .

J

. . .

J 2 J 3

. . .
(2.3.4)

To say that S is admissible is to say that IS is built by taking unions and intersections

such half planes, which corresponds to intersections and unions of I and J . We list below

the principal parts bundles we require in the remainder of the paper and their associated

ideal IS.

1. S = {1, x} with IS = J , which we call the bundle of restricted principal parts.

2. S = {1, x, y, x2} with IS = J 2 will arise in triple point calculations.

3. S = {1, x, y, x2, xy} with IS = I3 + J 3 arises when finding quadruple points in a

pencil of conics.

4. S = {1, x, y, x2, xy, x3} with IS = J 3 will arise in finding quadruple points in

pentagonal covers.

Diagrams corresponding to these sets appear at the end of the next subsection. Given

two admissible sets S ⊂ S ′, there is a natural surjection P S′

Y/Z(W) → P S
Y/Z(W), which

corresponds to truncating Taylor series. This determines the order(s) that the terms

Symi Ωx⊗Symj Ωy⊗W corresponding to xiyj ∈ S ′ may appear as quotients in a filtration:

a term corresponding to xiyj ∈ S ′ is a well-defined subbundle of P S′

Y/Z(W) if S ′ ∖ xiyj is

an admissible set.
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2.3.3 Bundle-induced refinements

Now suppose that a∗W admits a filtration on X by

0→ K → a∗W →W ′ → 0, (2.3.5)

where W ′ is a vector bundle, and hence so is K. Exactness of principal parts for X over

Z gives an exact sequence

0→ Pm
X/Z(K)→ Pm

X/Z(a
∗W)→ Pm

X/Z(W ′)→ 0.

We are interested in the restriction of this filtration to a∗Pm
Y/Z(W) ⊂ Pm

X/Z(a
∗W). First,

we need the following fact.

Lemma 2.3.8. The intersection of the two subbundles

Pm
X/Z(K) ⊂ Pm

X/Z(a
∗W) and a∗Pm

Y/Z(W) ⊂ Pm
X/Z(a

∗W) (2.3.6)

is a subbundle.

Proof. We proceed by induction. For m = 0, the claim is just that K is a subbundle of

a∗W. The question is local, so we can assume that the vanishing order filtration exact

sequences

0→ SymmΩX/Z ⊗ a∗W → Pm
X/Z(a

∗W)→ Pm−1
X/Z (a∗W)→ 0,

are split. By induction and the (locally split) exact sequences,

0→ SymmΩX/Z ⊗K → Pm
X/Z(K)→ Pm−1

X/Z (K)→ 0

and

0→ a∗ SymmΩY/Z ⊗ a∗W → a∗Pm
Y/Z(W)→ a∗Pm−1

Y/Z (W)→ 0
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it suffices to show that the intersection of SymmΩX/Z ⊗K and a∗ SymmΩY/Z ⊗ a∗W is

a subbundle of SymmΩX/Z ⊗ a∗W. But this intersection is given by a∗ SymmΩY/Z ⊗K,

which is a subbundle.

Definition 2.3.9. We define Pm
Y/Z(K) to be the intersection of the two subbundles in

(2.3.6). This subbundle tracks principal parts of K in the directions of Y/Z. We include

the underline to remind ourselves that this bundle is defined on X since K is defined on

X. We define Qm
Y/Z(W ′) to be the cokernel of Pm

Y/Z(K)→ a∗Pm
Y/Z(W).

When K = a∗K ′ for a bundle K ′ on Y , the bundle Pm
Y/Z(K) is just the bundle

a∗Pm
Y/Z(K

′).

The vanishing order filtrations from Proposition 2.3.2 of Pm
X/Z(K) and a∗Pm

Y/Z(W)

restrict to a vanishing order filtration on Pm
Y/Z(K), which in turn induces a vanishing order

filtration on Qm
Y/Z(W ′). We describe this for m = 1 below for future use.

Lemma 2.3.10. The bundle Q1
Y/Z(W ′) is equipped with a surjection a∗P 1

Y/Z(W) →

Q1
Y/Z(W ′) and a filtration

0→ a∗ΩY/Z ⊗W ′ → Q1
Y/Z(W ′)→W ′ → 0

A section OY
δ−→W on X induces a section OX

δ′−→ a∗P 1
Y/Z(W)→ Q1

Y/Z(W ′) that records

the values and “horizontal derivatives” of δ in the quotient W ′.

2.3.4 Directional and bundle-induced refinements

The principal parts bundles constructed in this subsection will not be needed until

Section 2.7. Here, we suppose that we have filtrations as in (2.3.1) and (2.3.5). We have

an inclusion Pm
Y/Z(K) ↪→ a∗Pm

Y/Z(W) as well as a quotient a∗Pm
Y/Z(W) → P S

Y/Z(W). We

define P S
Y/Z(K) to be image of the composition

Pm
Y/Z(K) ↪→ a∗Pm

Y/Z(W)→ P S
Y/Z(W),
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which tracks the principal parts of K in the Y/Z directions specified by S.

Given two admissible sets S ⊂ S ′, there is a quotient P S′

Y/Z(K)→ P S
Y/Z(K). Let

V ⊂ P S′

Y/Z(K) be the kernel. We define P S⊂S′

Y/Z (W → W ′) to be the cokernel of the

composition

V ↪→ P S′

Y/Z(K) ↪→ P S′

Y/Z(W).

The bundle P S⊂S′

Y/Z (W →W ′) tracks the principal parts associated to S on W and then

the principal parts associated to the rest of S ′ but just in the W ′ quotient. We visualize

P S⊂S′

Y/Z (W → W ′) by a decorated diagram of shape S ′, where the dots are filled in the

subshape S and half filled (representing values just inW ′) in the remainder S ′∖S (colored

in blue below). A preview of the cases we shall need later are pictured below.

(6.4A) S = {1, x} and S ′ = {1, x, y, x2}, for triple points in Section 2.7.3.

(6.4B) S = {1, x} and S ′ = {1, x, y, x2, xy}, for quadruple points in Lemma 2.7.7.

(6.4C) S = {1, x} and S ′ = {1, x, y, x2, xy, x3}, for quadruple points in Lemma 2.7.13.

Revisiting Definition 2.3.9, Q1
Y/Z(W ′) = P∅⊂{1,x,y}(W →W ′) would be represented by
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2.4 The Chow ring in degree 3

2.4.1 Set up

We begin by recalling the linear algebraic data associated to a degree 3 cover

as developed by Miranda and Casnsati–Ekedahl [Mir85,CE96]. For more details in our

context, see [BV12] and [CL21d, Section 3.1]. Given a degree 3, genus g cover, α : C → P1,

define Eα := (α∗OC/OP1)∨, which is a rank 2, degree g + 2 vector bundle on P1. There is

a natural embedding C ⊂ PE∨
α and C is the zero locus of a section of

H0(PE∨
α , γ

∗ detE∨
α ⊗OPE∨

α
(3)) ∼= H0(P1, detE∨

α ⊗ Sym3Eα),

where γ : PE∨
α → P1 is the structure map. Conversely, given a globally generated, rank 2,

degree g+2 vector bundle E on P1 with Sym3E⊗detE∨ globally generated, the vanishing

of a general section δ ∈ H0(PE∨, γ∗ detE∨ ⊗OPE∨(3)) defines a smooth, genus g triple

cover α : C = V (δ) ⊂ PE∨ → P1 such that Eα ∼= E. First, let us give a characterization

of which sections do not yield covers parametrized by H3,g.

Lemma 2.4.1. Let E be a rank 2, degree g + 2 vector bundle on P1 such that Sym3E ⊗

detE∨ is globally generated. Let δ ∈ H0(PE, γ∗ detE∨ ⊗OPEα(3)). Suppose that the zero

locus C = V (δ) ⊆ PE∨ is not a smooth, irreducible genus g triple cover of P1. Then there

exists a point p ∈ C such that dimTpC = 2.

Proof. If δ = 0, then C is 2-dimensional and the claim follows. Now suppose δ ̸= 0. We

will show that C is connected, which implies that if C fails to be an irreducible triple

cover, it must have a point with 2 dimensional tangent space. If Sym3E ⊗ detE∨ is

globally generated, then both summands of E = O(e1) ⊕ O(e2) have degree at least

g+2
3
. Hence, h0(P1, E∨) = 0. If C → P1 is finite we have h0(C,OC) = h0(P1, α∗OC) =

h0(P1,OP1)+h0(P1, E∨
α ) = 1, so C is connected. Now suppose C has a positive dimensional

fiber over P1. Any curve in the class OPE∨(3) ⊗ γ∗ detE∨ has a component that meets
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Figure 2.1. A singular triple cover.

every fiber, thus C is again connected.

We now recall some notation and constructions from [CL21d]. The association of

α : C → P1 with Eα gives rise to a map of H3,g to the moduli stack B3,g of rank 2, degree

g + 3, globally generated vector bundles on P1-bundles. Let π : P → B3,g be the universal

P1-bundle and let E be the universal rank 2 vector bundle on P . Continuing the notation

of [CL21d], let z = c1(OP(1)) and define classes ai ∈ Ai(B3,g) and a′i ∈ Ai−1(B3,g) by the

formula

ci(E) = π∗ai + π∗a′iz.

We also define c2 = −π∗(z3) ∈ A2(B3,g), which is the pullback of the universal second

Chern class on BSL2. By [CL21d, Theorem 4.4],

a1, a2, a
′
2, c2 generate A∗(B3,g) and satisfy no relations in degrees up to g + 2. (2.4.1)

Now, let γ : PE∨ → P and define W := OPE∨(3)⊗ γ∗ det E∨, which is a line bundle

on PE∨. Consider the bundle U3,g := γ∗W = Sym3 E ⊗ det E∨. We define

B′
3,g := B3,g ∖ SuppR1π∗U3,g(−1). (2.4.2)
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Equivalently, B′
3,g is the open locus where U3,g is globally generated on the fibers of π. By

the theorem on cohomology and base change

X ′
3,g := π∗U3,g|B′

3,g

is a vector bundle. In [CL21d, Lemma 5.1], we showed that the map H3,g → B3,g factors

through an open embedding H3,g → X ′
3,g. Hence, the Chow ring of H3,g is generated by

the pullbacks of the classes a1, a
′
2, a2, c2 from B′

3,g. We must determine the relations among

these classes that come from excising SuppR1π∗U3,g(−1) from B3,g and from excising

∆3,g := X ′
3,g ∖H3,g.

In other words, we shall compute the Chow ring A∗(H3,g) by computing the image of the

left-hand map in the excision sequence

A∗−1(∆3,g)→ A∗(X ′
3,g)→ A∗(H3,g)→ 0.

2.4.2 Resolution and excision

We begin by constructing a space ∆̃3,g, which corresponds to triple covers (or

worse) with a marked singular point. By forgetting the marked point, we will obtain

a proper surjective morphism ∆̃3,g → ∆3,g by Lemma 2.4.1. Because our Chow rings

are taken with rational coefficients, pushforward induces a surjection on Chow groups

A∗(∆̃3,g)→ A∗(∆3,g). Thus, it will suffice to describe the image of A∗−1(∆̃3,g)→ A∗(X ′
3,g).

To build ∆̃3,g, we use the machinery of bundles of relative principal parts. By

Proposition 2.3.2 part (1), there is an evaluation map

γ∗π∗X ′
3,g = (π ◦ γ)∗(π ◦ γ)∗W → P 1

PE∨/B′
3,g
(W). (2.4.3)
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A geometric point of γ∗π∗X ′
3,g is the data of (E, δ, p) where E is a geometric point of B′

3,g,

δ a section of OPE(3)⊗ γ∗ detE∨, and p a point of PE∨. Such a point lies in the kernel

of the evaluation map (2.4.3) precisely when δ(p) = 0 and the first order derivatives of

δ also vanish at p, which is to say V (δ) ⊂ PE∨ has 2-dimensional tangent space at p. A

similar description works in arbitrary families. We define ∆̃3,g to be the preimage of the

zero section of (2.4.3) so we obtain a “trapezoid” diagram:

∆̃3,g γ∗π∗X ′
3,g π∗X ′

3,g X ′
3,g

PE∨ P B′
3,g.

i

ρ′′

γ′

ρ′

π′

ρ

γ π

(2.4.4)

We can thus determine information about the Chow ring of H3,g = X ′
3,g ∖ (π′ ◦ γ′ ◦

i)(∆̃3,g) using the Trapezoid Lemma 2.2.1.

Lemma 2.4.2. The rational Chow ring of H3,g is a quotient of Q[a1]/(a
3
1). Moreover,

1. For all g ≥ 3, we have A1(H3,g) = Qa1.

2. For all g ≥ 6, we have A2(H3,g) = Qa21.

Proof. Let z = c1(OP(1)) and ζ = c1(OPE∨(1)), so ziζj for 0 ≤ i, j ≤ 1 form a basis for

A∗(PE∨) as a A∗(B′
3,g) module. Let I be the ideal generated by (π ◦ γ)∗(c3(P 1

PE∨/B′
3,g
(W)) ·

ziζj) for 0 ≤ i, j ≤ 1. We compute expressions for these push forwards in terms of

a1, a2, a
′
2, c2, and we find Q[a1, a

′
2, a2, c2]/I

∼= Q[a1]/(a
3
1). The code to do the above

computations is provided at [CL21c]. For example, when i = j = 0, because ∆̃3,g → ∆3,g

is generically one-to-one, this allows us to find

[∆3,g] = π′
∗γ

′
∗[∆̃3,g] = ρ∗(π ◦ γ)∗(c3(P 1

PE∨/B′
3,g
(W)) = (8g + 12)a1 − 9a′2. (2.4.5)

By the Trapezoid Lemma 2.2.1, we have that A∗(H3,g) is a quotient of A∗(B′
3,g)/I. Since

A∗(B′
3,g) is a quotient of Q[a1, a2, a

′
2, c2], it follows that A

∗(H3,g) is a quotient of Q[a1]/(a
3
1).
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First, note that the complement of B′
3,g inside B3,g is the union of splitting loci

where E = O(e1) ⊕ O(e2) for 3e1 < g + 2 (see [CL21d, Section 4.2] for a review of

splitting loci in our context). The codimension of the (e1, e2) splitting locus with e1 ≤ e2

is max{0, e2 − e1 − 1}. Using this, one readily checks that the complement of B′
3,g has

codimension at least 2 for g ≥ 3 and at least 3 for g ≥ 6. Thus, by (2.4.1), for g ≥ 3, the

only relations in codimension 1 come from the push forwards of classes on ∆̃3,g. Further,

for g ≥ 6, the only relations in codimension 2 come from the push forwards of classes

supported on ∆̃3,g.

To prove (1) and (2), it suffices to show that I already accounts for all such relations

in codimension 1 when g ≥ 3 and for all such relations in codimension 2 when g ≥ 6.

Precisely, let Z ⊂ PE∨ be the locus where the map (2.4.3) fails to be surjective on fibers.

We will show that

A0(∆̃3,g) = A0(∆̃3,g ∖ ρ′′−1(Z)) ∼= ρ′′∗A0(PE∨ ∖ Z) = ρ′′∗A0(PE∨) (2.4.6)

and when g ̸= 4, that

A1(∆̃3,g) = A1(∆̃3,g ∖ ρ′′−1(Z)) ∼= ρ′′∗A1(PE∨ ∖ Z) = ρ′′∗A1(PE∨). (2.4.7)

The middle isomorphism follows in both cases from the fact that ∆̃3,g∖ρ′′−1(Z) is a vector

bundle over PE∨ ∖ Z. To show the other equalities we use excision.

We claim that the map (2.4.3) always has rank at least 2. To see this, consider the

diagram

γ∗π∗π∗γ∗W P 1
PE∨/B′

3,g
(W)

γ∗γ∗W P 1
PE∨/P(W)

(2.4.8)

The left vertical map is a surjection because γ∗W is relatively globally generated along
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P → B′
3,g (by definition of B′

3,g, see (2.4.2)); the bottom horizontal map is surjective by

Lemma 2.3.3 because W is relatively very ample on PE∨ over P . Thus, the top horizontal

map must have rank at least 2 = rank(P 1
PE∨/P(W)). It follows that

codim(ρ′′−1(Z) ⊂ ∆̃3,g) = codim(Z ⊂ PE∨)− 1. (2.4.9)

By the argument in Lemma 2.3.5, Z is the locus where W fails to induce a relative

embedding on PE∨ over B′
3,g. By Lemma 2.3.4, the restriction to a fiber over B′

3,g, say

W|PE∨ ∼= OPE∨(3)⊗γ∗OP1(−g− 2) fails to be very ample if and only if E ∼= O(e1)⊕O(e2)

with 3e1 ≤ g + 2. Moreover, in this case, the linear system fails to induce an embedding

precisely along the directrix of PE∨. By definition of B′
3,g, we always have 3e1 ≥ g + 2.

Thus, γ(Z) is contained in at most one splitting locus, which is nonempty if and only if

g ≡ 1 (mod 3). In particular:

1. if g = 4, then γ(Z) is the splitting locus (e1, e2) = (2, 4), which has codimension 1

2. if g = 7, then γ(Z) is the splitting locus (e1, e2) = (3, 6), which has codimension 2

3. if g ̸= 4, 7, then γ(Z) has codimension at least 3

Since the directrix has codimension 1, it follows that

codim(Z ⊂ PE∨) =


2 if g = 4

3 if g = 7

≥ 4 otherwise.

By (2.4.9), we see then that ρ′′−1(Z) has suitably high codimension so that (2.4.6) is

satisfied for all g and (2.4.7) is satisfied for g ̸= 4.

This completes the proof of Theorem 2.1.1(1) when g ≥ 6.
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2.4.3 Low genus calculations

The lemmas in this section show that the remaining Chow groups not already

determined by Lemma 2.4.2 vanish. This is due to certain geometric phenomena that

occur in low codimension when the genus is small.

Lemma 2.4.3. When g = 2, we have A∗(H3,2) = 0.

Proof. When g = 2, the complement of B′
3,2 ⊂ B3,2 is the (1, 3) splitting locus, which has

codimension 1. As a consequence, a1 and a′2 satisfy a relation on B′
3,2. Using [Lar21c,

Lemma 5.1], we calculate the class of the (1, 3) splitting locus as the degree 1 piece of a

ratio of total Chern classes below, which we compute with the code [CL21c]:

0 = s1,3 =

[
c((π∗E(−2)⊗ π∗OP(1))

∨)

c((π∗E(−1))∨)

]
1

= a′2 − 2a1

on B′
3,2. Specializing (2.4.5) to g = 2, we also have the additional relation 0 = [∆3,2] =

28a1−9a′2 in A
1(H3,g), so we conclude a1 = a′2 = 0 and hence, the Chow ring is trivial.

Lemma 2.4.4. For g = 3, 4, 5, we have A2(H3,g) = 0.

Proof. We first explain the case g = 3. Here, the complement of B′
3,3 inside B3,3 is the

closure of the splitting locus (e1, e2) = (1, 4), which has codimension 2. The universal

formulas for classes of splitting loci [Lar21c] say that the class of this unbalanced splitting

locus is the degree 2 piece of a ratio of total Chern classes, which we computed in the

code [CL21c],

s1,4 =

[
c((π∗E(−2)⊗ π∗OP(1))

∨)

c((π∗E(−1))∨)

]
2

= 3a21 +
1

2
a2 −

5

2
a1a

′
2 +

1

2
a′22 + 3c2.

It follows that A∗(H3,3) is a quotient of Q[a1, a2, a
′
2, c2]/(I + ⟨s1,4⟩). We checked in the

code [CL21c] that the codimension 2 piece of this ring is zero.
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The case g = 5 is very similar so we explain it next. The complement of B′
3,5 inside

B3,5 is the closure of the splitting locus (e1, e2) = (2, 5), which has codimension 2. The

class of this splitting locus is computed similarly:

s2,5 =

[
c((π∗E(−3)⊗ π∗OP(1))

∨)

c((π∗E(−2))∨)

]
2

= 6a21 +
1

2
a2 −

7

2
a1a

′
2 +

1

2
a′22 + 6c2.

Therefore, A∗(H5,3) is a quotient Q[a1, a2, a
′
2, c2]/(I + ⟨s2,5⟩), whose codimension 2 piece

we also checked is zero [CL21c].

In the case g = 4, our additional relation will come from ρ′′−1(Z) ⊂ ∆̃3,4, which

has codimension 1, and whose push forward therefore determines a class that is zero

in A2(H3,4). By (2.4.8), we have that ρ′′−1(Z) is the transverse intersection of ρ′−1(Z)

with the kernel subbundle of γ∗π∗π∗γ∗W → P 1
PE∨/P(W). That is, our possible additional

relation is given by

s := π′
∗γ

′
∗i∗[ρ

′′−1(Z)] = γ′∗π
′
∗(ρ

′∗[Z] · ρ′∗c2(P 1
PE∨/P(W))) = ρ∗γ∗π∗([Z] · c2(P 1

PE∨/P(W))).

(2.4.10)

It remains to compute [Z], which we do now. Let Σ = γ(Z) ⊂ B′
3,4 be the (2, 4) splitting

locus. Using the formulas for classes of splitting loci [Lar21c], we compute

[Σ] = s1,4 =

[
c(((π∗E(−3)⊗ π∗OP(1))

∨)

c(((π∗E(−2))∨)

]
1

= a′2 − 3a1.

Over Σ, there is a sequence

0→ π∗M(−2)→ E∨|Σ → π∗N (−4)→ 0 (2.4.11)

for line bundlesM and N on Σ. Let m = c1(M) and n = c1(N ). The directrix over Σ

is Z = P(π∗M(−2)) ⊂ PE∨|Σ. By [EH16, Proposition 9.13], the fundamental class of Z

inside PE∨|Σ is ζ + c1(π
∗N (−4)) = ζ + n − 4z. Considering Chern classes in the exact

94



sequence (2.4.11), we learn (recall a′1 = g + 2 = 6)

−a1|Σ − 6z = c1(E∨|Σ) = m− 4z + n− 2z ⇒ m+ n = −a1|Σ

and

a2|Σ + (a′2|Σ) · z = c2(E∨|Σ) = (m− 4z)(n− 2z)

= mn− c2 − (2m+ 4n)z ⇒ 2m+ 4n = −a′2|Σ.

In particular, n =
(
a1 − a′2

2

)∣∣∣
Σ
. Hence, the fundamental class of Z inside all of PE∨ is

[Z] = (ζ + a1 − a′2
2
− 4z) · [Σ] = (ζ + a1 − a′2

2
− 4z)(a′2 − 3a1).

This allows us to compute s in (2.4.10), and our code confirms that the codimension 2

piece of Q[a1, a2, a
′
2, c2]/(I + ⟨s⟩) is zero [CL21c].

Together, Lemmas 2.4.2, 2.4.3 and 2.4.4 determine the rational Chow ring of H3,g

for all g:

A∗(H3,g) =


Q if g = 2

Q[a1]/(a
2
1) if g = 3, 4, 5

Q[a1]/(a
3
1) if g ≥ 6.

This completes the proof of Theorem 2.1.1(1).

2.5 The Chow ring in degree 4

2.5.1 Set up

We begin by briefly recalling the linear algebraic data associated to a degree

4 cover, as developed by Casnati–Ekedahl [CE96]. For more details in our context,
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see [CL21d, Section 3.2]. Given a degree 4 cover α : C → P1, we associate two vector

bundles on P1:

Eα := (α∗OC/OP1)∨ = ker(α∗ωα → OP1) and Fα := ker(Sym2Eα → α∗ω
⊗2
α ).

The first is rank 3 and the second is rank 2. If C has genus g, then both bundles have

degree g + 3. Geometrically, the curve C is embedded in γ : PE∨
α → P1 as the zero locus

of a section

δα ∈ H0(PE∨
α ,OPE∨

α
(2)⊗ γ∗F∨

α ).

In each fiber of γ, the four points are the base locus of a pencil of conics parametrized by

Fα.

Conversely, given vector bundles E,F of ranks 3 and 2, both of degree g + 3, we

wish to characterize when a section

δ ∈ H0(PE∨,OPE∨(2)⊗ γ∗F∨)

fails to produce a smooth degree 4, genus g cover.

Lemma 2.5.1. Suppose E,F, δ are as above with F∨ ⊗ Sym2E globally generated. If the

zero locus C = V (δ) is not an irreducible, smooth quadruple cover of P1, then there is a

point p ∈ C such that dimTpC ≥ 2.

Proof. If C is connected or has a component of dimension at least 2 then the lemma is

immediate. Suppose C is 1-dimensional and disconnected. We first rule out the case in

which C has at least 2 connected components, both mapping finitely onto P1. In this case,

α∗OC has more than one O factor; then E has a degree 0 summand, so Sym2E ⊗ F∨

would have a negative degree summand, which we are assuming is not the case.

Next suppose C has a component C0 which does not map finitely onto P1. Then
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C0 must be contained in a fiber of γ : PE∨ → P1. The restriction of the zero locus of δ to

a fiber is the intersection of two (possibly singular) conics in P2. The only way for such

an intersection to have a 1-dimensional component is for the conics to have a common

component C0. Hence, some fiber of C is equal to C0 union a finite subscheme of length

less than 4 (length 1 if C0 is a line, empty if C0 is a conic). Since the generic fiber consists

of 4 points, some of those 4 points must specialize to C0, which means C is singular at

those points on C0 (and C is connected).

The association of α : C → P1 with the pair (Eα, Fα) gives rise to map H4,g to the

moduli stack B4,g of pairs of vector bundles on P1-bundles, as defined in [CL21d, Definition

5.2]. Let π : P → B4,g be the universal P1-bundle. Let E be the universal rank 3 vector

bundle on P , and F the universal rank 2 bundle on P . Continuing the notation of [CL21d],

let z = c1(OP(1)) and define classes ai, bi ∈ Ai(B4,g) and a′i, b′i ∈ Ai−1(B4,g) by the formula

ci(E) = π∗ai + π∗a′iz and ci(F) = π∗bi + π∗b′iz.

(Note that there is a “determinant compatibility” condition which implies a1 = b1, see

[CL21d, Equation 5.4].) We also define c2 = −π∗(z3) ∈ A2(B4,g), which is the pullback of
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the universal second Chern class on BSL2. By [CL21d, Equation 5.5],

a1, a2, a3, a
′
2, a

′
3, b2, b

′
2, c2 generate A∗(B4,g) and satisfy (2.5.1)

no relations in degrees up to g + 3.

We call the pullbacks of E and F to H4,g the CE bundles (these are the bundles appearing

in the Casnati–Ekedahl resolution for the universal curve). We call the pullbacks to H4,g

of the associated classes in (2.5.1) the CE classes. By [CL21d, Theorem 3.10], the CE

classes are tautological and generate the tautological ring.

Up to this point, the set up has been quite similar to degree 3. However, unlike in

degree 3, the full Hurwitz stack H4,g cannot be realized as an open substack of a vector

bundle over an open substack of B4,g. This is why we were unable to determine the full

Chow ring of H4,g with our techniques. We now proceed in two steps. First, in Section

2.5.2 we shall produce several relations among CE classes on H4,g using principal parts

bundles. Then, in Section 2.5.3, we shall define an open substack H◦
4,g ⊂ H4,g, which does

lie inside a vector bundle over an open substack B◦
4,g ⊂ B4,g, and use it to demonstrate

that we have found all relations in degrees up to roughly g/4. It may help to think of

H◦
4,g as an open substack that is “large enough to witness the independence of many CE

classes.”

2.5.2 Relations among CE classes

Let E and F be the CE bundles on the universal P1-bundle π : P → H4,g. Let

γ : PE∨ → P be the structure map. We define a rank 2 vector bundle on PE∨ by

W := OPE∨(2)⊗F∨. By the Casnati–Ekedahl theorem in degree 4, see [CL21d, Equation

3.7] or [CE96], the universal curve C ⊂ PE∨ determines a global section δuniv of W , whose

vanishing locus is V (δuniv) = C ⊂ PE∨.

The global section δuniv induces a global section δuniv′ of the principal parts bundle

98



P 1
PE∨/H4,g

(W) on PE∨, which records the value and derivatives of δuniv. Now consider the

tower

G(2, TPE∨/H4,g) PE∨ P H4,g,a γ π

where G(2, TPE∨/H4,g) parametrizes 2 dimensional subspaces of the vertical tangent space of

PE∨ over H4,g. Dualizing the tautological sequence on G(2, TPE∨/H◦
4,g
) we obtain a filtration

0→ Ωy → a∗ΩPE∨/H4,g → Ωx → 0,

where Ωy is rank 1 and Ωx is rank 2. Let P
{1,x}
PE∨/H4,g

(W) be the bundle of restricted principal

parts as defined in Section 2.3.2.

On G(2, TPE∨/H4,g), we obtain a global section, call it δuniv′′, of P
{1,x}
PE∨/H4,g

(W) by

composing the section a∗δuniv′ with the quotient a∗P 1
PE∨/H4,g

(W) → P
{1,x}
PE∨/H4,g

(W). The

vanishing locus of δuniv′′ is the space of pairs (p, S) where p ∈ V (δuniv) ⊂ PE∨ and S is a

two-dimensional subspace of the tangent space of the fiber of V (δuniv) → H4,g through

p. But V (δuniv) = C → H4,g is smooth of relative dimension 1. Thus, δuniv′′ must be

non-vanishing on G(2, TPE∨/H4,g).

Since P
{1,x}
PE∨/H4,g

(W) has a non-vanishing global section, its top Chern class, we have

c6(P
{1,x}
PE∨/H4,g

(W)) = 0.

Moreover, the push forward of this class times any class on G(2, TPE∨/H4,g) is also zero.

Such relations are generated by the following classes.

Lemma 2.5.2. Let τ = c1(Ω
∨
y ) where Ω∨

y is the tautological quotient on G(2, TPE∨/H4,g).

Let ζ = OPE∨(1) and z = c1(OP(1)). Then all classes of the form

π∗γ∗a∗(c6(P
{1,x}
PE∨/H4,g

(W)) · τ iζjzk) (2.5.2)
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are zero in R∗(H4,g) ⊆ A∗(H4,g).

It is straightforward for a computer to compute such push forwards as polynomials

in the CE classes. We describe the ideal these push forwards generate in Section 2.5.4

2.5.3 All relations in low codimension

We now recall the construction of our “large open” substack H◦
4,g ⊂ H4,g. We start

with B4,g, the moduli space of pairs of vector bundles E of rank 3, degree g + 3 and F of

rank 2, degree g + 3 on P1-bundles together with an isomorphism of their determinants

(see [CL21d, Section 5.2]). Now, working over B4,g, let E and F be the universal bundles

on π : P → B4,g and let γ : PE∨ → P be the structure map. Define W := γ∗F∨⊗OPE∨(2),

and let U4,g := γ∗W = F∨ ⊗ Sym2 E . We consider an open substack B◦
4,g ⊂ B4,g, defined

by a certain positivity condition for the bundle U4,g

B◦
4,g := B4,g ∖ SuppR1π∗(U4,g(−2)). (2.5.3)

Let H◦
4,g denote the base change of H4,g → B4,g along the open embedding B◦

4,g ↪→ B4,g.

Remark 2.5.3. We note that the complement of H◦
4,g ⊂ H4,g (represented in blue in the

right of Figure 2.3) contains covers that factor through a curve of low genus (see [CL21d, p.

21-22]). Thus, the codimension of the complement of H◦
4,g ⊂ H4,g is 2. However, upon

restricting to non-factoring covers, the codimension of the complement ofH◦
4,g∩Hnf

4,g ⊂ Hnf
4,g

has codimension at least g+3
4
− 4 [CL21d, Lemma 5.5]. In this sense, Hnf

4,g and H◦
4,g are

“good approximations” to each other. This is what allows us to find stabilization results

for dimAi(Hnf
4,g).

Over B◦
4,g, we see that X ◦

4,g := π∗U4,g|B◦
4,g

is a vector bundle whose fibers correspond

to sections of U4,g. The open H◦
4,g is contained in the open H′

4,g of [CL21d, Lemma 5.3],
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so that lemma implies H◦
4,g → B◦

4,g factors through an open embedding in X ◦
4,g. We define

∆4,g := X ◦
4,g ∖H◦

4,g,

represented in red in the middle column of Figure 2.3. Now we wish to use the excision to

determine the Chow ring of H◦
4,g in degrees up to g+3

4
− 4. Note that A∗(X ◦

4,g)
∼= A∗(B◦

4,g),

and we have already determined the latter in degrees up to g+3
4
− 4 by [CL21d, Equation

5.6].

The next step is to construct a space ∆̃4,g (pictured in red on the far left of Figure

2.3), which surjects properly onto ∆4,g. With rational coefficients, the push forward

∆̃4,g → ∆4,g will be surjective on Chow groups. Thus, pushing forward all classes from
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∆̃4,g will produce all relations needed to describe H◦
4,g as a quotient of A∗(X ◦

4,g)
∼= A∗(B◦

4,g).

Each geometric point of X ◦
4,g corresponds to a tuple (E,F, δ) where E,F are vector

bundles on P1 and δ ∈ H0(PE∨, F∨⊗OPE∨(2)). We now use restricted bundles of relative

principal parts for PE∨ → B◦
4,g to define a space parametrizing triples

((E,F, δ) ∈ X ◦
4,g, p ∈ V (δ), S ⊂ TpV (δ) of dimension 2).

Let a : G(2, TPE∨/B◦
4,g
)→ PE∨ be the Grassmann bundle of 2-planes in the relative tangent

bundle. Dualizing the tautological sequence on G(2, TPE∨/B◦
4,g
) we obtain a filtration

0→ Ωy → a∗ΩPE∨/B◦
4,g
→ Ωx → 0,

where Ωy is rank 1 and Ωx is rank 2. Using the bundle of restricted principal parts

constructed in Section 2.3.2, we obtain an evaluation map

a∗γ∗π∗π∗γ∗W ∼= a∗γ∗π∗X ◦
4,g → P 1

PE∨/B◦
4,g
(W)→ P

{1,x}
PE∨/B◦

4,g
(W), (2.5.4)

which we claim is surjective. The rightmost map from principal parts to restricted principal

parts is always a surjection. Thus, it suffices to show that the map γ∗π∗X ◦
4,g → P 1

PE∨/B◦
4,g
(W)

is surjective. By definition of B◦
4,g (see (2.5.3)), we have R1π∗[(γ∗W)⊗OP(−2)] = 0, so

the surjectivity follows from Lemma 2.3.5.

We define ∆̃4,g to be the kernel bundle of (2.5.4). We have the following “trapezoid”

diagram:

∆̃4,g a∗γ∗π∗X ◦
4,g γ∗π∗X ◦

4,g π∗X ◦
4,g X ◦

4,g

G(2, TPE∨/B◦
4,g
) PE∨ P B◦

4,g

ρ′′

a′

ρ′

γ′ π′

ρ

a γ π

(2.5.5)
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Proposition 2.5.4. Let τ = c1(Ω
∨
y ) where Ω∨

y is the tautological quotient line bundle on

G(2, TPE∨/B◦
4,g
). Let ζ = OPE∨(1) and z = c1(OP(1)). Let I be the ideal generated by

π∗γ∗a∗(c6(P
{1,x}
PE∨/B◦

4,g
(W)) · τ iζjzk) for 0 ≤ i, j ≤ 2, 0 ≤ k ≤ 1. (2.5.6)

Then A∗(H◦
4,g)
∼= A∗(B◦

4,g)/I. Together with a1 = b1, the classes in (2.5.2) therefore

generate all relations among the CE classes on H4,g in degrees less than g+3
4
− 4.

Proof. By Lemma 2.5.1, ∆̃4,g surjects onto ∆4,g, so we may apply the Trapezoid Lemma

2.2.1. Since TPE∨/B◦
4,g

has rank 3, the Grassmann bundle G(2, TPE∨/B◦
4,g
) is just the projec-

tivization of T∨
PE∨/B◦

4,g
; hence its Chow ring is generated as a module over A∗(PE∨) by τ i for

0 ≤ i ≤ 2. Similarly A∗(PE∨) is generated as a module over A∗(P) by ζj for 0 ≤ j ≤ 2 and

A∗(P) is generated as a module over A∗(B◦
4,g) by z

k for 0 ≤ k ≤ 1. Thus, the Trapezoid

Lemma 2.2.1 implies that the classes in (2.5.6) generate all relations among the pullbacks

of classes on B◦
4,g. In particular, setting i = j = k = 0, we obtain

[∆4,g] = π′
∗γ

′
∗a

′
∗[∆̃4,g] = ρ∗(π ◦ γ ◦ a)∗(c6(P 1

PE∨/B◦
4,g
(W))) = (8g+20)a1− 8a′2− b′2. (2.5.7)

To see the second claim, note that the classes in (2.5.6) pullback to the classes in

(2.5.2). By [CL21d, Equation 5.6], the generators a1 = b1, a2, a
′
2, a3, a

′
3, b2, b

′
2, c2 of A∗(B◦

4,g)

satisfy no relations in codimension less than g+3
4
− 4 (besides a1 = b1). Since one can only

obtain more relations under restriction A∗(H4,g)→ A∗(H◦
4,g), we have found all relations

among CE classes in degrees less than g+3
4
− 4.

2.5.4 Presentation of the ring and stabilization

We use the code [CL21c] compute the classes in (2.5.2). Let I be the ideal they

generate in the Q-algebra on the CE classes. It turns out that modulo I, all CE classes
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are expressible in terms of a1, a
′
2, a

′
3. In particular,

Q[c2, a1, a2, a3, a
′
2, a

′
3, b

′
2, b2]/I

∼= Q[a1, a
′
2, a

′
3]/⟨r1, r2, r3, r4⟩, (2.5.8)

where

r1 = (2g3 + 9g2 + 10g)a31 − (8g2 + 24g + 8)a1a
′
3

r2 = (12g3 + 42g2 + 36g)a21a
′
2 − (22g3 + 121g2 + 187g + 66)a1a

′
3 − (24g2 + 24g)a′2a

′
3

r3 = (432g3 + 1512g2 + 1296g)a1a
′2
2 − (1450g3 + 8001g2 + 13115g + 5442)a1a

′
3

− (1584g3 + 5544g2 + 3936g)a′2a
′
3

r4 = (14344g6 + 165692g5 + 747682g4 + 1636869g3 + 1719009g2 + 677844g − 540)a21a
′
3

− (17280g4 + 112320g3 + 224640g2 + 129600g)a′22 a
′
3 + (352g5 + 1440g4 + 1448g3 + 120g2)a′23 .

Remark 2.5.5. In contrast with the degree 3 case, brute force computations show that

there is no presentation of the Chow ring whose relations do not involve g.

Corollary 2.5.6. Suppose g ≥ 2.

1. R1(H4,g) is spanned by {a1, a′2}.

2. R2(H4,g) is spanned by {a21, a1a′2, a′22 , a′3}.

3. R3(H4,g) is spanned by {a1a′3, a′32 , a′2a′3}.

4. R4(H4,g) is spanned by {a′42 , a′23 }.

5. For i ≥ 5, Ri(H4,g) is spanned by {a′i2}.

For g > 4i+ 12, the spanning set of Ri(H4,g) given above is a basis.

Proof. Our code [CL21c] verifies that the lists above are bases for Q[a1, a
′
2, a

′
3]/⟨r1, r2, r3, r4⟩

in degrees i ≤ 9. In particular, for 5 ≤ i ≤ 10, every monomial in a1, a
′
2, a

′
3 of degree i
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is a multiple of a′i2 . By inspection, a′i2 is not in the ideal ⟨r1, r2, r3, r4⟩ for any i, so a′i2 is

non-zero for all i. For i ≥ 11, every monomial of degree i in a1, a
′
2, a

′
3 is expressible as a

product of monomials having degrees between 5 and 10. It follows that every monomial of

degree i ≥ 11 is a multiple of a′i2 .

Proposition 2.5.4 states that I provides all relations among the CE classes in degrees

less than g+3
4
− 4. That is, the left-hand side of (2.5.8) maps to R∗(H4,g) isomorphically

in degrees i < g+3
4
− 4. Hence, a basis for the degree i piece of Q[a1, a

′
2, a

′
3]/⟨r1, r2, r3, r4⟩

is a basis for Ri(H4,g) when i <
g+3
4
− 4, equivalently when g > 4i+ 12.

Proof of Theorem 2.1.1(2). Consider the equation

Q[a1, a
′
2, a

′
3]

⟨r1, r2, r3, r4⟩
→ R∗(H4,g)→ R∗(H◦

4,g) = A∗(H◦
4,g).

The first map exists and is surjective by Proposition 2.5.2 and the presentation (2.5.8).

Meanwhile, Lemma 2.5.4 establishes that the composition is an isomorphism in degrees

less than g+3
4
− 4. Therefore, the first map can have no kernel in codimension less than

g+3
4
− 4.

Finally, in [CL21d, Lemmas 5.5 and 5.8], we showed that H◦
4,g and Hnf

4,g are

“good approximations of each other” in the sense that the codimension the complement of

H◦
4,g∩Hnf

4,g ⊂ Hnf
4,g and ofH◦

4,g∩Hnf
4,g ⊂ H◦

4,g are both at least g+3
4
−4. Therefore, by excision

there is an isomorphism Ai(H◦
4,g)
∼= Ai(Hnf

4,g). In particular, we have dimAi(Hnf
4,g) =

dimAi(H◦
4,g) = dimRi(H4,g). The calculation of dimRi(H4,g) follows from Corollary

2.5.6.
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2.6 The Chow ring in degree 5

2.6.1 Set up

We begin by recalling the linear algebraic data associated to degree 5 covers, as

developed by Casnati [Cas96]. For more details in our context, see [CL21d, Section 3.3].

To a degree 5, cover α : C → P1, we again associate two vector bundles on P1:

Eα := (α∗OC/OP1)∨ = ker(α∗ωα → OP1) and Fα := ker(Sym2Eα → α∗ω
⊗2
α ).

If C has genus g, then Eα has degree g + 4, and rank 4, while Fα has degree 2g + 8 and

rank 5. Geometrically, the curve C is embedded in γ : P(E∨
α ⊗detEα)→ P1, which further

maps to P(∧2Fα) via an associated section

η ∈ H0(P1,Hom(E∨
α ⊗ detEα,∧2Fα)).

The curve C is obtained as the intersection of the image of P(E∨
α ⊗ detEα) with the

Grassmann bundle G(2, Fα) ⊂ P(∧2Fα).

Conversely, suppose we are given a rank 4, degree g+4 vector bundle E and a rank

5, degree 2g + 8 vector bundle F on P1. We write E ′ := E∨ ⊗ detE and γ : PE ′ → P1.

We characterize which sections η fail to produce a smooth degree 5, genus g cover. Let

Φ : H0(P1,Hom(E∨ ⊗ detE,∧2F ) ∼−→ H0(PE ′, γ∗ ∧2 F ⊗OPE′(1)).

Lemma 2.6.1. Let E and F be as above, with Hom(E ′,∧2F ) globally generated. Suppose

we have a map η : E ′ → ∧2F .

1. If η is not injective on fibers then the subscheme D(Φ(η)) ⊂ PE ′ cut by the 4 × 4

Pfaffians of Φ(η) is not smooth of dimension 1.
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2. If η : E ′ → ∧2F is injective on fibers, the intersection C = η(PE ′) ∩ G(2, F ) fails

to be a smooth, irreducible genus g, degree 5 cover of P1 if and only if there exists

p ∈ C so that dimTpC ≥ 2.

Proof. (1) Suppose η(e1) = 0 for e1 a vector in the fiber of E ′ over 0 ∈ P1, where P1

has coordinate t. We can choose coordinates X1, X2, X3, X4 on PE ′ so that span(e1) ∈

PE ′|0 ⊂ PE ′ is defined by vanishing of t and X2, X3, X4. Since η(e1) vanishes at t = 0,

all entries of a matrix representative Mη for Φ(η) as in [CL21d, Equation 5.13] would

have coefficient of X1 divisible by t. In particular, the quadrics Qi that define the Pfaffian

locus C = D(Φ(η)) of η lie in the ideal (t) + (X2, X3, X4)
2. Hence, TpC contains the entire

vertical tangent space of PE ′ → P1, and therefore has dimension at least 3.

(2) If η(PE ′) ∩G(2, F ) ⊂ P(∧2F ) is connected, or has a component of dimension

≥ 2, then we are done, so we suppose dimC = 1. The general fiber of C over P1 consists

of 5 points. The global generation of Hom(E ′,∧2F ) implies all summands of E have

positive degree, so h0(P1, E∨) = 0. Hence, if C has the right codimension in each fiber,

then h0(C,OC) = h0(P1, E∨) + 1 = 1 so C is connected.

Now suppose that C has a component C0 that is contained in a fiber. We claim C

is connected (and thus has a two dimension tangent space at some point on C0). Suppose

that the fiber over x ∈ P1 is the union of a one dimensional component C0 together with a

finite scheme Γ. The image η(PE ′|x) is the intersection of six hyperplanes Hi in the fiber

P(∧2F)|x ∼= P9. Thus the fiber of C over x is the intersection of six hyperplanes Hi and

the Grassmannian G(2, F |x) in its Plücker embedding. Because the Plücker embedding is

nondegenerate, we can arrange it so that H1 ∩ · · · ∩H5 ∩G(2, F |x) has pure dimension

1, i.e. the excess dimension appears only after intersecting with H6; see [EH16, Section

13.3.6] for a similar argument due to Vogel.

To obtain the excess component C0 in the final intersection, we must have that

H1 ∩ · · · ∩H5 ∩G(2, F |x) = C0 ∪ Φ
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with C0 ⊂ H6. Note that the reducible curve C0 ∪ Φ must have degree 5 = degG(2, F |x),

so each component has degree at most 4. Therefore, the finite scheme Γ = Φ ∩H6 has

degree at most 4. Because the general fiber of C over P1 consists of a degree five zero

dimensional subscheme, it follows that some of the five points in the general fiber must

specialize into C0, and the intersection η(PE ′) ∩G(2, F ) is singular there.

The association of α : C → P1 with the pair (Eα, Fα) gives rise to a mapH5,g → B5,g,

where B5,g is the moduli stack of pairs of vector bundles on P1-bundles, as defined

in [CL21d, Definition 5.10]. Let π : P → B5,g be the universal P1-bundle and let E be the

universal rank 4 vector bundle on P . Continuing the notation of [CL21d], let z = c1(OP(1))

and define classes ai, bi ∈ Ai(B5,g) and a′i, b′i ∈ Ai−1(B5,g) by the formula

ci(E) = π∗ai + π∗a′iz and ci(F) = π∗bi + π∗b′iz.

(Note that there is a “determinant compatibility condition” which implies 2a1 = b1,

see [CL21d, p. 25].) We also define c2 = −π∗(z3) ∈ A2(B5,g), which is the pullback of the

universal second Chern class on BSL2.

By [CL21d, Equation 5.10]

a1, a2, a3, a4, a
′
2, a

′
3, a

′
4, b2, b3, b4, b5, b

′
2, b

′
3, b

′
4, b

′
5, c2 generate A∗(B5,g) and satisfy (2.6.1)

no relations in degrees up to g + 4.

We call the pullbacks of E and F to H5,g the CE bundles, just like in the degree

4 case. Similarly, the pullbacks of the classes appearing in 2.6.1 to H5,g are called the

CE classes. By [CL21d, Theorem 3.10], the CE classes are tautological and generate the

tautological ring.

In order to prove Theorem 2.1.1(3), we proceed in two steps, just like we did in

degree 4. First, in Section 2.6.2, we construct a certain bundle of principal parts, and
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it to find relations among the CE classes. In Section 2.6.3, we define an open substack

H◦
5,g ⊂ H5,g, which is an open substack of a vector bundle over B◦

5,g ⊂ B5,g, and use it to

demonstrate that we have found all relations in degrees up to roughly g/5. Just like in

degree 4, the method is summarized by Figure 2.3, but this time there are no factoring

covers, so one can ignore the top row.

2.6.2 The construction of the bundle of principal parts and
relations

In this section, we will perform a construction that starts with the data (P →

B, E ,F , η) associated to degree 5 covers and produces a vector bundle called RQ1
PE ′/B(W ′)

whose sections help us detect when the associated subscheme D(Φ(η)) ⊂ PE ′ defined by

the vanishing of Pfaffians fails to be smooth of relative dimension 1 over B. The formation

of this bundle commutes with base change. We will use this construction to produce

relations among CE classes in the Chow ring of H5,g.

Suppose we are given the data (P → B, E ,F , η) where P → B is a P1-bundle, E is

a rank 4 vector bundle on P , F is a rank 5 vector bundle on P , and η ∈ H0(P ,Hom(E∨⊗

det E ,∧2F)). Set E ′ = E∨ ⊗ det E . Furthermore, we will assume that η : E ′ → ∧2F is

injective with locally free cokernel. It thus induces an inclusion Pη : PE ′ → P(∧2F).

To set up this construction, let Y := G(2,F)×P PE ′ and let p1 : Y → G(2,F) and

p2 : Y → PE ′ be the projection maps, so we have the diagram below.

X G(2,F)

PE ′ ×P P(∧2F) P(∧2F)

PE ′ P

B

p2

p1

i

q2

q1

ϵ

γ

π

These spaces come equipped with tautological sequences, which we label as follows. On
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G(2,F), we have an exact sequence

0→ T → i∗ϵ∗F → R→ 0,

where T is rank 2 and R is rank 3. Meanwhile, on P(∧2F), we have an exact sequence

0→ OP(∧2F)(−1)→ ϵ∗(∧2F)→ U9 → 0 (2.6.2)

where U9 is the tautological rank 9 quotient bundle. Noting that the Plücker embedding

satisfies i∗OP(∧2F)(−1) = ∧2T , the restriction of (2.6.2) to G(2,F) takes the form

0→ ∧2T → i∗ϵ∗(∧2F)→ i∗U9 → 0. (2.6.3)

It follows that the map i∗ϵ∗(∧2F)→ ∧2R descends to a map

i∗U9 → ∧2R. (2.6.4)

Remark 2.6.2. The tensor product of (2.6.4) with i∗OP(∧2F)(1) is the natural map from

the restriction of the tangent bundle to the normal bundle, i∗TP(∧2F) → NG(2,F)/P(∧2F).

We define

W := Hom(OPE ′(−1), γ∗(∧2F)) = OPE∨(1)⊗ γ∗(∧2F)⊗ det E ,

which is a rank 10 vector bundle on PE ′. The composition

OPE ′(−1)→ γ∗E ′ γ∗η−−→ γ∗(∧2F)

defines a section δ of W . Pulling back to PE ′×P P(∧2F), consider the further composition

110



q∗2OPE ′(−1)→ q∗2γ
∗E ′

q∗1ϵ
∗η

−−−→ q∗1ϵ
∗(∧2F)→ q∗1U9. (2.6.5)

The vanishing locus of this composition is precisely the graph of Pη inside PE ′ ×P P(∧2F).

Restricting (2.6.5) to Y , we obtain a section, which we call δ, of the rank 9 vector bundle

W ′ := Hom(p∗2OPE ′(−1), p∗1i∗U9).

The vanishing V (δ) ⊂ Y is the intersection of the graph of Pη with Y and is therefore

identified with the intersection G(2,F) ∩ Pη(PE ′). Viewed inside PE ′, this intersection is

equal to the desired associated subscheme D(Φ(η)) ⊂ PE ′.

Remark 2.6.3. The subscheme D(Φ(η)) ⊆ PE ′ is not in general the zero locus of a section

of a vector bundle. However, we have found how to realize this scheme as the zero locus

of a section of a vector bundle on Y, basically by using the fact that the graph of Pη is

defined by the zero locus of a section of a vector bundle.

Next, we are going to construct a certain restricted principal parts bundle from W ′

that will detect when fibers of C = V (δ)→ B have vertical tangent space of dimension 2

or more. Before giving the construction, let us describe the geometric picture on a single

fiber P1 of P → B. Let E and F be vector bundles on P1 of ranks 4 and 5 respectively

and suppose η : E ′ → ∧2F is an injection of vector bundles with locally free cokernel.

Let p ∈ PE ′. The intersection G(2, F ) ∩ η(PE ′) has a two dimensional tangent space

at η(p) ∈ G(2, F ) if and only if there exists a two dimensional subspace S ⊂ TpPE ′

such that the differential of the projectivization of η sends S into TqG(2, F ) ⊂ TqP(∧2F ).

Equivalently, the composition S ⊂ TpPE ′ dPη−−→ Tη(p)P(∧2F ) → NG(2,F )/P(∧2F )|η(p) is zero

(see Figure 2.4).

First consider Q1
PE ′/B(W ′) (see Definition 2.3.9), which comes equipped with a
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Figure 2.4. Does dPη send S into Tη(p)G?

filtration

0→ p∗2ΩPE ′/B ⊗W ′ → Q1
PE ′/B(W ′)→W ′ → 0. (2.6.6)

Given any section δ of W, there is an induced section of Q1
PE ′/B(W ′), which records the

values and first order changes of the induced section δ of W ′ as we move across PE ′. Now

let X̃ := G(2, p∗2TPE ′/B)
a−→ X , which comes equipped with a tautological sequence

0→ Ω∨
x → a∗p∗2TPE ′/B → Ω∨

y → 0,

where Ωx and Ωy are both rank 2. Dualizing the left map gives

a∗p∗2ΩPE ′/B → Ωx. (2.6.7)

Meanwhile, tensoring the p∗1 of (2.6.4) with p∗2OPE ′(1), we have a quotient

W ′ → p∗2OPE ′(1)⊗ p∗1(∧2R). (2.6.8)

Remark 2.6.4. If one has an injection η : E ′ → ∧2F , then one has an isomorphism of

p∗2OPE ′(1) with p∗1i
∗OP(∧2F)(1) on V (δ) (coming from (2.6.5)). By Remark 2.6.2, the restric-

tion of (2.6.8) to V (δ) then agrees with the restriction of p∗1i
∗TP(∧2F) → p∗1NG(2,F)/P(∧2F)

to V (δ). This was the geometric intuition behind the definition we are about to make.
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Pulling back (2.6.8) to X̃ and tensoring with (2.6.7), we obtain a quotient

a∗(p∗2ΩPE ′/B ⊗W ′)→ Ωx ⊗ a∗(p∗2OPE ′(1)⊗ p∗1(∧2R)). (2.6.9)

Note that the term on the left of (2.6.9) is the a∗ of the term on the left of (2.6.6) (the

“derivatives part” of the principal parts bundle). Let RQ1
PE ′/B(W ′) be the quotient of

a∗Q1
PE ′/B(W ′) by the kernel of (2.6.9). This bundle comes equipped with a filtration

0→ Ωx ⊗ a∗(p∗2OPE ′(1)⊗ p∗1(∧2R))→ RQ1
PE ′/B(W ′)→W ′ → 0 (2.6.10)

and has rank 15. The bundle RQ1
PE ′/B(W ′) remembers derivatives just in the “x-directions”

(i.e. along a distinguished 2-plane) and remembers their values under the quotient (2.6.8).

Considering Remark 2.6.4 and Figure 2.4, this is telling us to what extent vectors in the

subspace S corresponding to “x-directions” leave Tη(p)G(2, F ). This will be spelled out in

local coordinates in the lemma below.

The global section δ of W ′ induces a global section δ
′
of Q1

PE ′/B(W ′), which in

turn gives rise to a global section δ
′′
of RQ1

PE ′/B(W ′). The following lemma describes the

geometric condition for such an induced section to vanish at a geometric point of X̃ .

Lemma 2.6.5. Let E and F be vector bundles on P1 of ranks 4 and 5 respectively. Let

Y = PE ′×P1 G(2, F ) and let W , W ′, R, Q1
PE′(W ′) and RQ1

PE′(W ′) be defined analogously

to the constructions above (working over a point instead of B). Suppose η : E ′ → ∧2F is

an injection of vector bundles. Then the following are true:

1. The induced section δ of W ′ corresponding to η vanishes at (p, q) ∈ Y if and only if

the projectivization of η sends p to q.

2. The induced section δ
′′
of RQ1

PE′(W ′) corresponding to η vanishes at (p, q, S) ∈ Ỹ if

and only if the differential of the projectivization of η sends the subspace S ⊂ TpPE ′

into the subspace TqG(2, F ) ⊂ TqP(∧2F ).
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Hence, given any family (P → B, E ,F , η), the image of the vanishing of the induced section

δ
′′
of RQ1

PE ′(W ′) is the locus in B over which fibers of D(Φ(η))→ B fail to be smooth of

relative dimension 1.

Proof. (1) Let t be a coordinate on P1, and let p ∈ PE ′ and q ∈ G(2, F ) be points in

the fiber over 0 ∈ P1. To say η sends p to q is to say that η sends the subspace of E ′|0

corresponding to p into the subspace of ∧2F |0 corresponding to q. Hence, by the definition

of the tautological sequences, η sends p to q if and only if the composition

p∗2OPE′(−1)→ p∗2γ
∗E ′ → p∗1i

∗ϵ∗(∧2F )→ p∗1i
∗U9

vanishes at (p, q), which is to say δ vanishes.

(2) Trivializing E and F over an open 0 ∈ U ⊂ P1, we may choose a basis e1, . . . , e4

for E so that p = span(e1) and a basis f1, . . . , f5 for F so that q = span(f1 ∧ f2). Let ηk,ij

be the coefficient of fi ∧ fj in η(ek), so ηk,ij is a polynomial in t. In these local coordinates,

to say η sends p to q is to say that η1,ij|t=0 = 0 for ij ̸= 12.

The map p∗1 ∧2 F → ∧2R corresponds to projection onto the span of f3 ∧ f4, f3 ∧ f5,

and f4∧f5. If η sends p to q, then the induced section δ of W ′ already vanishes. Therefore,

the value of δ
′′
at (p, q) lands in the subbundle p∗2ΩPE′/B⊗p∗2OPE′(1)⊗p∗1(∧2R) ⊂ Q1

PE′(W ′).

This “value” of δ
′′
at (p, q) records the first order information of η1,ij for ij = 34, 35, 45 as

p deforms.

First order deformations of p are of the form span(e1) 7→ span(e1 + ϵ(ae2 + be3 +

ce4))|t=ϵd, where ϵ2 = 0. Here, a, b, c, d are coordinates on the tangent space at p (a, b, c

are vertical coordinates and d is the horizontal coordinate). The coefficient of fi ∧ fj in

η(e1 + ϵ(ae2 + be3 + ce4))|t=ϵd is

η1,ij +

(
d

(
d

dt
η1,ij

)∣∣∣∣
t=0

+ aη2,ij|t=0 + bη3,ij|t=0 + cη4,ij|t=0

)
ϵ for ij = 34, 35, 45.

(2.6.11)
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Locally, aϵ, bϵ, cϵ, dϵ are our basis for ΩPE and fi ∧ fj for ij = 34, 35, 45 is our basis for

∧2R. The “value” we wish to extract in the fiber of p∗2ΩPE′/B ⊗ p∗2OPE′(1)⊗ p∗1(∧2R) over

(p, q) is the coefficients of aϵ, bϵ, cϵ, and dϵ in (2.6.11) for ij = 34, 35, 45.

Now suppose η is injective on fibers, so Pη is well-defined. In particular, η1,12|t=0 ̸= 0.

With respect to a, b, c, d the differential of Pη, from TpPE ′ → TqP(∧2F ), is represented by

a 9× 4 matrix

1

η1,12|t=0



d
dt
η1,13|t=0 η2,13|t=0 η3,13|t=0 η4,13|t=0

d
dt
η1,14|t=0 η2,14|t=0 η3,14|t=0 η4,14|t=0

...
...

d
dt
η1,45|t=0 η2,45|t=0 η3,45|t=0 η4,45|t=0


. (2.6.12)

The subspace TqG(2, F ) ⊂ TqP(∧2F ) corresponds to the first 6 coordinates. (A first order

deformation of f1 ∧ f2 remains a pure wedge to first order if and only if the fi ∧ fj with

non-zero coefficient in the deformation have one of i, j is equal to 1 or 2. See also Remark

2.6.4.) Thus, Pη sends TpPE ′ into TqG(2, F ) if and only if the bottom three rows of (2.6.12)

vanish, which occurs if and only if the coefficients of a, b, c, d in (2.6.11) vanish. More

generally, a tangent vector in TpPE ′ is sent into TqG(2, F ) if and only if (2.6.11) vanishes

(for ij = 34, 35, 45) when the corresponding values of a, b, c, d are plugged in. Plugging in

values for a, b, c, d in a given two dimensional subspace S of TpPE ′ then corresponds to

the “value” of η in S∨ ⊗ p∗2OPE′(1)⊗ p∗1(∧2R) over (p, q). By the filtration (2.6.10), this

“value” is zero if and only if δ
′′
vanishes at (p, q, S) ∈ X̃.

Since the formation of these (refined) principal parts bundles commutes with base

change, the claim regarding families follows.

We now apply the above construction in the case B = H5,g and η = ηuniv, the

section associated to the universal cover C → P. By Lemma 2.6.5 and the fact that the

universal curve C = V (δ
′′
) is smooth of relative dimension 1 over H5,g, the global section
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δ
′′
of RQ1

PE ′/H5,g
(W ′) is nowhere vanishing. We therefore have the following lemma, which

gives a source of relations among the CE classes on H5,g.

Lemma 2.6.6. Let z = c1(OP(1)), ζ = c1(OPE ′(1)), σi = ci(R), and si = ci(Ω
∨
y ). All

classes of the form (some pullbacks omitted for ease of notation):

a∗p2∗γ∗π∗(c15(RQ
1
PE ′/H5,g

(W ′)) · sl11 sl22 σk11 σk22 σk33 ζjzi)

are zero in R∗(H5,g) ⊆ A∗(H5,g).

2.6.3 All relations in low codimension

We recall the construction of an open substack H◦
5,g ⊂ H5,g and what we already

know about its Chow ring from [CL21d]. We start with B5,g, the moduli space of pairs

of vector bundles E of rank 4, degree g + 4 and F of rank 5, degree g + 5 on P1-bundles

together with an isomorphism of detE⊗2 and detF (see [CL21d, Section 5.3]). Let E and

F be the universal bundles on π : P → B5,g and let γ : PE∨ → P be the structure map.

Define U5,g := Hom(E∨ ⊗ det E ,∧2F). We consider an open substack B◦
5,g ⊂ B5,g, defined

by a certain positivity condition for the bundle U5,g

B◦
5,g := B5,g ∖ SuppR1π∗(U5,g(−2)). (2.6.13)

Let H◦
5,g denote the base change of H5,g → B5,g along the open embedding B◦

5,g ↪→ B5,g.

Over B◦
5,g, we see that X ◦

5,g := π∗U5,g|B◦
5,g

is a vector bundle whose fibers correspond

to sections of U5,g. The open H◦
5,g is contained in the open H′

5,g of [CL21d, Lemma 5.11],

so that lemma implies H◦
5,g → B◦

5,g factors through an open embedding in X ◦
5,g. We define

∆5,g := X ◦
5,g ∖H◦

5,g,

represented in red in the middle column of Figure 2.3. Now we wish to use excision
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to determine the Chow ring of H◦
5,g in degrees up to g+4

5
− 16. We already understand

A∗(X ◦
5,g)
∼= A∗(B◦

5,g) in degrees up to g+4
5
− 16 by [CL21d, Equation 5.11]. Lemma 2.6.1

says we need to remove the locus of non-injective maps and the locus of injective maps

such that the induced intersection of PE ′ and G(2,F) has a singular point.

We begin by computing the relations obtained from removing the locus of non-

injective maps E ′ → ∧2F , i.e. maps that drop rank along some point on P . Consider the

projective bundle γ : PE ′ → P → B◦
5,g, and let W := OPE ′(1) ⊗ γ∗(∧2F). We have that

γ∗W = Hom(E ′,∧2F) = U5,g, so by the definition of B◦
5,g (see (2.6.13)) and Lemma 2.3.5,

the map

γ∗π∗X ◦
5,g = γ∗π∗π∗γ∗W → P 1

PE ′/B◦
5,g
(W) is surjective. (2.6.14)

Composing with the surjection P 1
PE ′/B◦

5,g
(W)→W , we obtain a surjection γ∗π∗X ◦

5,g →W ,

whose kernel we define to be X̃ ni. The fiber of X̃ ni at a point p ∈ PE ′ corresponds to maps

of E ′ → ∧2F (on the fiber over π(γ(p))) whose kernel contains the subspace referred to by

p.

We then have the following trapezoid diagram:

X̃ ni γ∗π∗X ◦
5,g π∗X ◦

5,g X ◦
5,g

PE ′ P B◦
5,gγ π

Thus, Lemma 2.2.1 yields:

Proposition 2.6.7. The image of the pushforward map A∗(X̃ ni)→ A∗(X5,g) is equal to

the ideal generated by

ρ∗π∗γ∗(c10(W)) · ζjzi), 0 ≤ j ≤ 3, 0 ≤ i ≤ 1. (2.6.15)

where ζ = c1(OPE ′(1)) and z = c1(OP(1)).
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Next, we excise the locus of injective maps such that the induced intersection of

PE ′ and G(2,F) has a singular point. From the construction in Section 2.6.2 applied to

the case B = B◦
5,g, we have a rank 15 vector bundle RQ1

PE ′/B◦
5,g
(W ′) on X̃ , which comes

equipped with a series of surjections (see Lemma 2.3.10 for the first map; the second map

comes from the construction of RQ1
PE ′/B◦

5,g
(W ′), which was made just after (2.6.9)):

a∗p∗1P
1
PE ′/B◦

5,g
(W)→ a∗Q1

PE ′/B◦
5,g
(W ′)→ RQ1

PE ′/B◦
5,g
(W ′). (2.6.16)

Applying a∗p∗2 to (2.6.14) and composing the result with (2.6.16), we obtain a surjection

a∗p∗2γ
∗π∗X ◦

5,g → RQ1
PE ′/B◦

5,g
(W ′). (2.6.17)

Define ∆̃5,g to be the kernel of (2.6.17), so that we obtain a trapezoid diagram:

∆̃5,g σ∗p∗2γ
∗π∗X ◦

5,g p∗2γ
∗π∗X ◦

5,g γ∗π∗X ◦
5,g π∗X ◦

5,g X ◦
5,g

X̃ X PE ′ P B◦
5,g

i

ρ′′
ρ′ ρ

a p2 γ π

Lemma 2.6.8. Let z = c1(OP(1)), ζ = c1(OPE ′(1)), σi = ci(R), and si = ci(Ω
∨
y ). The

image of the push forward A∗(∆̃5,g)→ A∗(X ◦
5,g) is the ideal generated by

ρ∗a∗p2∗γ∗π∗(c15(RQ
1
PE ′/B◦

5,g
(W ′)) · sl11 sl22 σk11 σk22 σk33 ζjzi) (2.6.18)

for 0 ≤ j ≤ 3, 0 ≤ i ≤ 1, 0 ≤ l1, l2 ≤ 2 with l1 + l2 ≤ 2, and 0 ≤ k1, k2, k3 ≤ 2 with

k1 + k2 + k3 ≤ 2.

Proof. The monomials sl11 s
l2
2 σ

k1
1 σ

k2
2 σ

k3
3 ζ

jzi with exponents satisfying the inequalities in the

statement of the lemma generate A∗(X̃ ) as an A∗(B◦
5,g) module (see the last paragraph of

Section 2.2.1). The result now follows from the Trapezoid Lemma 2.2.1. In codimension 1,
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for example, since ∆̃5,g → ∆5,g is generically one-to-one, we see

[∆5,g] = ρ∗(π ◦ γ ◦ p2 ◦ a)∗(c15(RQ1
PE ′/B◦

5,g
(W ′))) = (10g + 36)a1 − 7a′2 − b′2. (2.6.19)

Lemma 2.6.9. Let I be the ideal generated by the classes in (2.6.15) and (2.6.18). Then

A∗(H◦
5,g) = A∗(B◦

5,g)/I. In fact, I is generated by the classes in (2.6.18), so Lemma 2.6.6

determines all relations among CE classes in codimension up to g+4
5
− 16.

Proof. By Lemmas 2.6.5 and 2.6.1, we have that ∆5,g is the union of the image of ∆̃5,g in

X ◦
5,g with the image of X̃ ni in X ◦

5,g. The first claim now follows from excision, the fact that

push forward is surjective with rational coefficients, and Lemmas 2.6.7 and 2.6.8.

Meanwhile, direct computation [CL21c] shows that I is generated by the classes

in (2.6.18). Since ρ is flat, the classes in (2.6.18) equal the classes of Lemma 2.6.6.

Next, [CL21d, Equation 5.11] says that our generators on B◦
5,g satisfy no relations in

codimension less than g+4
5
− 16. Thus, we have determined all relations among CE classes

in codimension up to g+4
5
− 16

2.6.4 Presentation of the ring and stabilization

Modulo the relations in Lemma 2.6.9, it turns out R∗(H5,g) is generated by a1, a
′
2 ∈

R1(H5,g) and a2, c2 ∈ R2(H5,g), as we now explain. Let I be the ideal generated by the

classes in (2.6.15) and (2.6.18) in the Q-algebra on the CE classes. Using Macaulay, we

determined a simplified presentation

Q[c2, a1, . . . , a4, a
′
2, . . . , a

′
4, b2, . . . , b5, b

′
2, . . . , b

′
5]/I
∼= Q[a1, a

′
2, a2, c2]/⟨r1, r2, r3, r4, r5⟩,

(2.6.20)
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where

r1 = (1064g + 3610)a31 − 1074a21a
′
2 + (−2148g − 7272)a1a2 + 2160a2a

′
2+

+ (−1064g3 − 10830g2 − 36680g − 41360)a1c2 + (1074g2 + 7272g + 12288)a′2c2

r2 = (−6412g − 21255)a31 + 6207a21a
′
2 + (12414g + 40896)a1a2 + (−11880)a2a′2+

+ (6412g3 + 63765g2 + 211540g + 234480)a1c2 + (−6207g2 − 40896g − 68184)a′2c2

r3 = (−22845g − 67763)a41 + 18141a31a
′
2 + (54423g + 146550)a21a2 − 35640a1a2a2

+ (45690g3 + 406578g2 + 1184220g + 1123060)a21c2

− (54423g2 + 293100g + 372648)a1a
′
2c2 + (17820g + 24840)a′22 c2

− (17820g + 24840)a22 − (18141g3 + 146550g2 + 372648g + 283824)a2c2

− (4569g5 + 67763g4 + 394740g3 + 1123060g2 + 1546176g + 810432)c22

r4 = 133a41 − 537a21a2 + (−798g2 − 5415g − 9170)a21c2 + (1074g + 3636)a1a
′
2c2

− 540a′22 c2 + 540a22 + (537g2 + 3636g + 6144)a2c2

+ (133g4 + 1805g3 + 9170g2 + 20680g + 17472)c22

r5 = (−18545g − 68407)a41 + 15261a31a
′
2 + (45783g + 175866)a21a2 − 31320a1a2a

′
2

+ (37090g3 + 410442g2 + 1499460g + 1811300)a21c2

+ (−45783g2 − 351732g − 662976)a1a
′
2c2 + (15660g + 72360)a′22 c2

+ (−15660g − 72360)a22 + (−15261g3 − 175866g2 − 662976g − 822096)a2c2

+ (−3709g5 − 68407g4 − 499820g3 − 1811300g2 − 3260256g − 2334528)c22.

As a corollary of the above presentation, we can use Macaulay2 to determine a

spanning set for each group Ri(H5,g), which is actually a basis when g is sufficiently large

relative to i. We will use these spanning sets in Section 2.7.3 to prove another collection

of classes are additive generators.

Corollary 2.6.10. Suppose g ≥ 2.

1. R1(H5,g) is spanned by {a1, a′2}.
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2. R2(H5,g) is spanned by {a21, a1a′2, a2, a′22 , c2}.

3. R3(H5,g) is spanned by {a21a′2, a1a′22 , a1c2, a2a′2, a′2c2}.

4. R4(H5,g) is spanned by {a21c2, a1a′32 , a1a′2c2, a2c2, a′42 , a′22 , a′22 c2, c22}.

5. R5(H5,g) is spanned by {a1a′42 , a1c22, a′52 , a′2c22}

6. R6(H5,g) is spanned by {a1a′52 , a′62 , c32}

7. For i ≥ 7, R7(H5,g) is spanned by {a1a′i−1
2 , a′i2}.

The above spanning set for Ri(H5,g) is a basis when g > 5i+ 76.

Proof. Let Si denote the degree i group of the graded ring Q[a1, a
′
2, a2, c2]/⟨r1, r2, r3, r4, r5⟩.

By Proposition 2.6.9 and Equation (2.6.20), Si surjects onto Ri(H5,g) and is an isomorphism

in degrees i < g+4
5
− 16, equivalently when g > 5i+ 76.

Using Macaulay, we check that the set listed in the lemma is a basis of Si for i ≤ 14.

For 7 ≤ i ≤ 14, in particular, we see that a′i2 and a′i−1
2 a1 form a basis for the group Si.

For i ≥ 15, every monomial of degree i in a1, a
′
2, a2, c2 is expressible as a product of two

monomials, both of degree at least 7. Then the product of two such monomials is in the

span of a′i2 , a
′i−1
2 a1 and a′i−2

2 a21 = a′i−7
2 (a′52 a

2
1). The last monomial is already in the span of

the first two because S7 is spanned by a′72 , a
′6
2 a1. It follows that a

′i
2 and a′i−1

2 a1 span Si for

all i ≥ 15. Meanwhile, no monomial of the form a′i2 or a′i−1
2 a1 appears in the relations

r1, . . . , r5. Hence, no combination of a′i2 and a′i−1
2 a1 lies in ⟨r1, . . . , r5⟩, so a1a′i−1

2 and a′i2

are independent for all i.

Proof of Theorem 2.1.1(3). Consider the equation

Q[a1, a
′
2, a2, c2]

⟨r1, r2, r3, r4, r5⟩
→ R∗(H5,g)→ R∗(H◦

5,g) = A∗(H◦
5,g).
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Figure 2.5. Covers in T , D, and U .

The first map exists and is surjective by Proposition 2.6.6. Meanwhile, Lemma 2.6.9

establishes that the composition is an isomorphism in degrees less than g+4
5
−16. Therefore,

the first map can have no kernel in codimension less than g+4
5
−16. Finally, for i < g+4

5
−16,

we have Ai(H5,g) = Ri(H5,g) by [CL21d, Theorem 1.4]. The dimension of Ri(H5,g) follows

from Corollary 2.6.10.

2.7 Applications to the moduli space of curves and

a generalized Picard rank conjecture

In this section, we express the Chow rings we have computed in terms of some

natural classes associated to the Hurwitz spaces. We use those expressions to prove

Theorems 2.1.7 and 2.1.10. The natural classes we discuss can be defined on Hk,g for any k.

They are the kappa classes and loci parametrizing covers with certain ramification profiles.

Definition 2.7.1. We define the following three closed loci in Hk,g:

1. T := {[α : C → P1] : α−1(q) = 3p1 + p2 · · ·+ pk−2, for some q and distinct pi}

2. D := {[α : C → P1] : α−1(q) = 2p1 + 2p2 · · ·+ pk−2, for some q and distinct pi}

3. U := {[α : C → P1] : α−1(q) = 4p1 + p2 · · ·+ pk−2, for some q and distinct pi}

The loci T and D have codimension 1. The locus U is one component of the

intersection T ∩D, and U has codimension 2.
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Of course, one could consider other ramification behavior, but these three suffice for

the applications in this paper. One benefit of these classes is that their push forwards to

the moduli space of curves are known to be tautological. We make this precise in the next

subsection. Then in the next two subsections, we rewrite the κ-classes and ramification

loci in terms of CE classes to show that [T ], [D], [T ] · [D] and [U ] generate R∗(Hk,g) as a

module over R∗(Mg) in degrees k = 4, 5 respectively.

2.7.1 Push forwards to Mg

To push forward cycles from the Hurwitz stack toMg, we first need to show that

the relevant forgetful maps are proper. Consider the gonality stratification on the moduli

space of curves:

Md
g := {[C] ∈Mg : C has a g1d}.

Because we don’t require base point freeness in the equation above, we have the inclusions

Md
g ⊂Md+1

g . Because gonality is lower semi-continuous,Mg \Md
g is open for any d. We

have the map

β : Hk,g →Mg

obtained by forgetting the map to P1. After removing curves of lower gonality, we obtain

a proper map

βk : Hk,g \ β−1(Mk−1
g )→Mg \Mk−1

g ,

essentially by the same proof as [BV12, Proposition 2.3].

Remark 2.7.2. If k = 3 or 5 and g is sufficiently large, the maps βk are actually closed

embeddings. See [BV12, Proposition 2.3] for the k = 3 case. On the other hand, the map

β4 is not injective on points because bielliptic curves admit infinitely many degree 4 maps

to P1.

BecauseMg \Mk
g is open inMg, there is a restriction map A∗(Mg)→ A∗(Mg \
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Mk
g).

Definition 2.7.3. The tautological ring R∗(Mg \Mk
g) ofMg \Mk

g is defined to be the

image of the tautological ring R∗(Mg) under the restriction map A∗(Mg)→ A∗(Mg \Mk
g).

We need the following result of Faber-Pandharipande [FP05], which concerns push

forwards of classes of ramification loci quite generally. Let µ1, . . . , µm be m partitions of

equal size k and length ℓ(µi) that satisfy

2g − 2 + 2k =
m∑
i=1

(d− ℓ(µi)).

Faber and Pandharipande use the Hurwitz space Hg(µ
1, . . . , µm) that parametrizes

morphisms α : C → P1 that has marked ramification profiles µ1, . . . , µm over m ordered

points of the target and no ramification elsewhere. Two morphisms are equivalent if

they are related by composition with an automorphism on P1. By the Riemann-Hurwitz

formula, these are covers of genus g and degree k. They then consider the compactification

by admissible covers Hg(µ
1, . . . , µm). It admits a natural map to the moduli space of

stable curves with marked points by forgetting the map to P1:

ρ : Hg(µ
1, . . . , µm)→Mg,

∑m
i=1 ℓ(µ

i).

Theorem 2.7.4 (Faber-Pandharipande [FP05]). The pushforwards ρ∗(Hg(µ
1, . . . , µm))

are tautological classes in A∗(Mg,
∑m

i=1 ℓ(µ
i)).
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We then have the following diagram:

Hg(µ
1, . . . , µm)

Mg,
∑m

i=1 ℓ(µ
i)

Hk,g \ β−1(Mk−1
g ) Mg \Mk−1

g Mg Mg

ρ

βk

Because the tautological ring is closed under forgetting marked points and under the

pullback fromMg toMg, it follows that the image of [Hg(µ
1, . . . , µm)] in A∗(Mg \Mk−1

g )

is a tautological class.

Corollary 2.7.5. Let k ∈ {3, 4, 5}. Then the classes βk∗[T ], βk∗[D], βk∗[U ], and βk∗([T ] ·

[D]) lie in the tautological ring ofMg \Mk−1
g .

Proof. We explain the proof in the case k = 5. The other cases are similar. The image

of T , D, and U inMg \Mk−1
g are the images of the corresponding spaces considered by

Faber-Pandharipande. Indeed, for T , take µ1 = (3, 1, 1) and µi = (2, 1, 1, 1) for all other i.

For D, take µ1 = (2, 2, 1) and µi = (2, 1, 1, 1) for all other i. For U , take µ1 = (4, 1) and

µi = (2, 1, 1, 1) for all other i.

One can see that the image of T ∩D under βk is supported on the image of the

following three spaces considered by Faber-Pandharipande:

1. The image of the space with µ1 = (4, 1) and all other µi = (2, 1, 1, 1)

2. The image of the space with µ1 = (3, 2) and all other µi = (2, 1, 1, 1)

3. The image of the space with µ1 = (3, 1, 1) and µ2 = (2, 2, 1)

It follows that the pushforward of [T ] · [D] is a linear combination of the restrictions of

images of the above three spaces. Hence, βk∗([T ] · [D]) is also tautological.
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2.7.2 Formulas in degree 4

In this section, we compute formulas for the some of the natural classes on H4,g.

We will do the computations in A∗(H4,g) in order to simplify the intersection theory

calculation. This simplification is of no consequence to the end results because of the

isomorphism A∗(H4,g) ∼= A∗(H4,g).

Deopurkar-Patel [DP18, Proposition 2.8] computed formulas for the classes of T

and D in terms of κ1 and a1. In [CL21d, Example 3.12] we explained how to write the

κ-classes in terms of CE classes, so we obtain the following.

Lemma 2.7.6. The following identities hold in A1(H4,g)

κ1 = (12g+24)a1− 12a′2, [T ] = (24g+60)a1− 24a′2, [D] = (−32g− 80)a1+36a′2.

Next, we compute the codimension two class [U ]. In particular, we will see that

[U ] is not in the span of products of codimension 1 classes, from which it follows that the

classes of [T ], [D], [U ] generate R∗(H4,g) as a ring.

Lemma 2.7.7. The class of the quadruple ramification stratum U on H4,g is

[U ] = 36a1a
′
2 − (32g + 80)a21 + (4g + 4)a2 − (4g + 4)b2.

Modulo the relations from Proposition 2.5.4, we have [U ] = 4a′3.

Proof. The fibers of a degree 4 cover α : C → P1 are given by the base locus of a pencil of

conics. A pencil of conics has base locus 4p if and only if every element of the pencil is

tangent to a given line L and 2L is a member of the pencil. Equivalently, 4p is the base

locus of a pencil of conics if and only if in some choice of local coordinates x, y at p

(U1) All members of the pencil are tangent to the line y = 0 at p, i.e. have vanishing

coefficient of x, 1.
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(U2) Some member of the pencil is a multiple of y2, i.e. has vanishing coefficient of

1, x, y, x2, xy.

Note that the base locus of a pencil containing two double lines is not a curve-linear

scheme (i.e. a subscheme of smooth curve) since it has two dimensional tangent space at

the intersection point. Therefore, if If p is a point of quadruple ramification on a smooth

curve C
α−→ P1, then the line L ⊂ (PE∨

α )α−1(α(p))
∼= P2 is unique. That is, there is a unique

direction and member of the pencil satisfying (U1) and (U2).

We will use the theory of restricted bundles of principal parts developed in Section

6 to characterize the covers satisfying these conditions. Let X := PTPE∨/P ×P PF . The

first factor PTPE∨/P keeps track of a “x-direction” and the second factor PF keeps track of

a particular member of the pencil. We will apply the constructions of Section 6 to the

tower

X
a−→ PE∨ γ−→ P .

In particular, pulling back the dual of the tautological sequence on the PTPE∨/P factor, we

obtain a filtration on X

0→ Ωy → a∗ΩPE∨/P → Ωx → 0.

Meanwhile, pulling back the dual of the tautological sequence from the PF we obtain a

quotient

a∗γ∗F∨ → OPF(1)→ 0

Tensoring with a∗OPE∨(2), we obtain a filtration of a∗W = a∗(γ∗F∨ ⊗OPE∨(2)):

0→ K → a∗W → OPF(1)⊗OPE∨(2) =:W ′ → 0.

To track the data in (U1) and (U2) we define Q := P S⊂S′

PE∨/P(W → W ′) where
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S = {1, x} and S ′ = {1, x, y, x2, xy}. This is represented by the diagram

(2.7.1)

There is a natural quotient a∗P 2
PE∨/P(W)→ Q, corresponding to the picture below.

−→

As discussed in Section 2.5 the Casnati–Ekedahl theorem determines a global

section δuniv of W whose vanishing is the universal curve. The induced section of Q

OX
a∗δuniv′−−−−→ a∗P 2

PE∨/P(W)→ Q (2.7.2)

vanishes at a point of X over p precisely when conditions (U1) and (U2) above are satisfied

at p for the corresponding direction and member of the pencil. Let Ũ be the vanishing

locus of the section in (2.7.2).

The map a sends Ũ one-to-one onto the universal quadruple ramification point. In

turn, the universal quadruple ramification point maps generically one-to-one onto U , so

[U ] = π∗γ∗a∗[Ũ ].

Since all fibers of the map Ũ → U are finite we have dim Ũ = dimU . Note that X has

relative dimension 2 over PE∨, which has relative dimension 3 over H4,g. Thus, we have

codim(Ũ ⊂ X) = codim(U ⊂ H4,g) + relative dim of X/H4,g = 2 + (2 + 3) = 7.

Meanwhile, rankΩx = rankΩy = rankW ′ = rankK = 1. Each dot in the diagram (2.7.1)

corresponds to a piece of a filtration of Q. The filled dots  correspond to pieces of rank
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2 and half-filled dots G# correspond to pieces of rank 1. Hence, rankQ = 7. In particular,

codim(Ũ ⊂ X) = rankQ, so [Ũ ] = c7(Q). The top Chern class of Q can be computed

using its filtration, and its push forward to H4,g is computed in Macaulay2 [CL21c], which

gives the expressions in the statement of the Lemma.

In the example below, we provide expressions for some other codimension 2 classes

in terms of our preferred generators.

Example 2.7.8. Using the relations provided in the code, we can rewrite c2 in terms of

our preferred generators as

c2 =
3

g2 + 4g + 3
a21 −

8

g3 + 6g2 + 11g + 6
a′3 (2.7.3)

Using [CL21d, Example 3.12], we can compute

κ2 = a1b
′
2 − 6a1a

′
2 + (6g + 6)a21 − (6g − 6)a2 + (g − 3)b2 (2.7.4)

− (2g3 + 6g2 + 6g − 14)c2 + 4a′3

=
44g2 + 200g + 300

g2 + 4g + 3
a21 −

44

g + 1
a1a

′
2 +

2g3 − 32g2 + 138g − 12

3g3 + 18g2 + 33g + 18
a′3. (2.7.5)

Since the coefficient of a′3 is non-zero in (2.7.3) (resp. (2.7.5)), we see that c2 (resp. κ2)

may be used instead of a′3 as the generator of R∗(H4,g) in codimension 2.

We can now prove Theorem 2.1.10 in when k = 4.

Proof of Theorem 2.1.10, k = 4. By Lemmas 2.7.6 and 2.7.7 and Theorem 2.1.1, it follows

that [T ], [D], [U ] generate R∗(H4,g). Moreover, Ri(H4,g)→ Ai(Hnf
4,g) is surjective in degrees

i ≤ g+3
4
− 4 by Theorem 2.1.1 (2). We have that A∗(Hnf

4,g)→ A∗(Hs
4,g) is surjective and

the ideal generated by T,D, U is in the kernel. Hence, Ai(Hs
4,g) = 0 for i ≤ g+3

4
− 4.
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Above, we showed that [T ], [D], [U ] generate R∗(H4,g) as a ring. We now show that

[T ], [D], [U ], [T ] · [D] generate R∗(H4,g) as a module over Q[κ1].

Lemma 2.7.9. The following are true:

1. R1(H4,g) is spanned by [T ] and [D]. Alternatively, it is spanned by [T ] and κ1.

2. R2(H4,g) is spanned by [T ]κ1, [D]κ1, [T ] · [D] and [U ].

3. R3(H4,g) is spanned by κ21[T ], κ
2
1[D], κ1[U ].

4. R4(H4,g) is spanned by κ41 and κ21[U ].

5. For i ≥ 5, Ri(H4,g) is spanned by κi1.

Proof. (1) By Lemma 2.7.6, any pair of [T ], [D], κ1 span R1(H4,g).

(2) By Corollary 2.5.6, we have that R2(H4,g) is spanned by {a21, a1a′2, a′22 , a′3}.

Hence, Lemma 2.7.7 shows that [U ] and products of codimension 1 classes span R2(H4,g).

(3) Since a1, a
′
2, a

′
3 generate R∗(H4,g) as a ring, the classes

{a31, a21a′2, a1a′22 , a′32 , a1a′3, a′2a′3}

span R3(H4,g). To show that κ21[T ], κ
2
1[D], and κ1[U ] span R

3(H4,g), we first rewrite them

in terms of CE classes. It then suffices to see that these three classes, together with the

codimension 3 relations r1, r2, r3 of Section 2.5.4, span {a31, a21a′2, a1a′22 , a′32 , a1a′3, a′2a′3}. One

way to accomplish this is as follows. By Corollary 2.5.6, {a1a′3, a′32 , a′2a′3} is a spanning

set modulo r1, r2, r3 and one can readily rewrite κ21[T ], κ
2
1[D], and κ1[U ] in terms of

{a1a′3, a′32 , a′2a′3} modulo the relations. We record the coefficients of these expressions in

a 3× 3 matrix. The determinant of this matrix has non-vanishing determinant for all g,

so we conclude that κ21[T ], κ
2
1[D], and κ1[U ] are also a spanning set modulo the relations.

The calculation of the determinant is provided at [CL21c].
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(4) The proof is similar to the previous part. By Corollary 2.5.6, {a′42 , a′23 } spans the

degree 4 piece of Q[a1, a
′
2, a

′
3]/⟨r1, r2, r3, r4⟩. We then write a 2× 2 matrix of coefficients

that expresses κ41 and κ21[U ] in terms of {a′42 , a′23 } modulo the relations. We then check

that the determinant is non-vanshing.

(5) From a direct calculation provided in the code, we see that κi1 is a nonzero

multiple of a′i2 for 5 ≤ i ≤ 10. For all i ≥ 11, a monomial of degree i in the generators

a1, a
′
2, a

′
3 can be written as a product of monomials having degrees between 5 and 10, so

the claim follows.

Proof of Theorem 2.1.7, k = 4. By Lemma 2.7.9, we see that every class in R∗(H4,g) is

expressible as a polynomial in κ1 times [T ], [D], [T ] · [D], or [U ]. By Corollary 2.7.5, the

push forwards of [T ], [D], [T ] · [D], [U ] are tautological, so by push-pull, the push forwards

of all classes in R∗(H4,g) are tautological onMg ∖M3
g.

2.7.3 Formulas in degree 5

As in the previous section, we will perform the calculations on the spaces H5,g

instead of H5,g. As in degree 4, the codimension 1 identities are easily converted from

Deopukar-Patel [DP18, Proposition 2.8] and [CL21d, Example 3.12], which computes κ1

in terms of CE classes.

Lemma 2.7.10. The following identities hold in A1(H5,g)

κ1 = (12g+36)a1− 12a′2 [T ] = (24g+84)a1− 24a′2 [D] = −(32g+112)a1 +36a′2.

Using the method explained in [CL21d, Example 3.12], it is not difficult to compute

κ2 in terms of CE classes with our code [CL21c].

Lemma 2.7.11. The following identities hold in A2(H5,g)

κ2 = (6g2 + 24g + 40)c2 − 6a21 + (−7g + 2)a2 − 7a1a
′
2 + (2g + 2)b2 + 2a1b

′
2 + 5a′3 − b′3.
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Modulo the relations found in Lemma 2.6.9,

κ2 = (30g + 66)a21 + (−21g + 2)a2 − 21a1a
′
2 − (10g3 + 66g2 + 104g)c2.

Next, we wish to compute [U ] in terms of CE classes, which will require more work

and geometric input. Once we have [U ] in terms of CE classes, it will not be hard to

see that [T ], [D], [U ] and [T ] · [U ] generate R∗(H5,g) as a module over Q[κ1, κ2]. However,

in contrast with the case k = 4, the classes [T ], [D], [U ] do not generate R∗(H5,g) as a

ring, so additional work is needed to prove the vanishing results for Ai(Hs
5,g). We do this

by constructing the universal triple ramification point and showing that an additional

codimension 2 class needed to generate R∗(H5,g) as a ring is supported on T .

For these last computations, we work with the realization of the universal curve

C ⊂ G(2,F) as the vanishing locus of a section of a rank 6 vector bundle, as we now

describe. On π : P → H5,g, Casnati’s structure theorem in degree 5 determines a universal

injection ηuniv : E ′ → ∧2F . Let Q be the rank 6 cokernel. Let µ : G := Gr(2,F)→ P be

the Grassmann bundle. Then C ⊂ G is defined by the vanishing of the composition

OG(−1) := OP(∧2F)(−1)|G → µ∗(∧2F)→ µ∗Q,

which we view as a section σ of µ∗Q⊗OG(1) =:W . Studying appropriate principal parts

of this section σ of W on G over P helps us describe when C → P has a point of higher

order ramification.

Precisely, the universal curve has a triple (resp. quadruple) ramification point at

p ∈ C ⊂ G if and only if there exists a direction x in (TG/P)p such that

1. the coefficient of x vanishes in all equations. This implies that the universal curve

has a vertical tangent vector in the x direction, and so is ramified at p.

2. Let y1, . . . , y5 be the remaining first order coordinates on (TG/P)p. Locally σ cor-
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responds to 6 equations on G. Since the universal curve is smooth, when we

expand these equations to first order, the coefficients of y1, . . . , y5 must span a

five-dimensional space. That is, on C each yi may be solved for as a power series

in x with leading term order 2. Moreover, there is also a “distinguished equation”

whose first order parts are all zero. This “distinguished equation” will correspond to

a particular quotient of W .

3. After substituting for yi as a power series in x using (2), all equations vanish to

order 2 (resp. order 3). This is only a condition on the distinguished equation (the

substitutions for yi were determined so that the other five are identically zero). For

order 2 vanishing, this condition is just that the coefficient of x2 in the distinguished

equation is zero. For order 3 vanishing, this will involve expanding through the

coefficients of xyi and x
3.

Note that because C is smooth over H, the distinguished direction x and distinguished

equation of (2) are unique.

Let X := PTG/P ×P PW∨. The first factor keeps track of an “x-direction” and the

second factor keeps track of a “distinguished equation” among the equations. We apply

the constructions of Section 6 to the tower

X
a−→ G

µ−→ P .

The pullback to X of the dual of the tautological sequence on PTG/P gives a filtration

0→ Ωy → a∗ΩG/P → Ωx → 0.

Meanwhile, the pullback of the dual of the tautological sequence on PW∨ gives a quotient

a∗µ∗W → OPW∨(1) =:W ′ → 0.
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Let S = {1, x} and S ′ = {1, x, y, x2} and set M := P S⊂S′

G/P (W →W ′), which is a quotient

a∗P 2
G/P(W) corresponding to (2.3.4A), pictured again below. The bundles that appear in

the filtration are listed in the corresponding location to the right.

W W ⊗ Ωx W ′ ⊗ Ω2
x

W ′ ⊗ Ωy (2.7.6)

The bundle M measures the values and coefficients of x in the equations, as well as the

coefficients of the yi and x
2 in a distinguished equation. It has rank 18.

A section of a∗P 2
G/P(W) induces a section of M . In particular, the global section σ

of W induces a section σ′ of a∗P 2
G/P(W), which then gives a section σ′′ of M . We claim

that this section σ′′ vanishes at some point p̃ ∈ X lying over p ∈ G if and only if conditions

(1) – (3) above are satisfied (to order 2) for the distinguished direction and distinguished

equation referred to by p̃. In more detail: the left  =W corresponds to the condition

p ∈ C; the right  =W ⊗ Ωx gives condition (1); the lower G# =W ′ ⊗ Ωy corresponds to

condition (2); and and the right G# =W ′ ⊗ Ω2
x corresponds to condition (3).

Hence, the vanishing locus T̃ of this induced section of M maps isomorphically

to the universal triple ramification point. A computation similar to the one in Lemma

2.7.7 shows that this vanishing occurs in the expected codimension, so [T̃ ] = c18(M). The

composition from T̃ → H5,g is generically one-to-one onto its image, so we obtain an

equality of classes

[T ] = π∗µ∗a∗[T̃ ].

This pushforward can be computed using a computer, and agrees with Lemma 2.7.10.

The universal quadruple ramification point is cut out inside T̃ by one more condition:

namely, after replacing each yi with its power series in x as in (2), the coefficient of x3 in

the distinguished equation must vanish.
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Since yi is of order 2 in x, only the terms xyi can contribute to the coefficient of

x3. We already know that the coefficients of 1, y1, . . . , y5, x, x
2 vanish in the distinguished

equation (corresponding to the shape (2.7.6)). We therefore wish to study the expansion

of the distinguished equation through its coefficients of xy1, . . . , xy5 and x3. This will

correspond to two new dots (represented below in red). Let S ′′ = {1, x, y, x2, xy, y2, x3}.

The part of the Taylor expansion we need corresponds to the bundle N := P S⊂S′′

G/P (W →W ′)

from (2.3.4C), pictured below. The bundles in the filtration are listed in the corresponding

location on the right.

W W ⊗ Ωx W ′ ⊗ Ω2
x W ′ ⊗ Ω3

x

W ′ ⊗ Ωy W ′ ⊗ Ωx ⊗ Ωy

Let NG# ⊂ N be the kernel of N →M . Visually, NG# is subbundle corresponding to the

right-most partially filled circles, which is filtered by W ′ ⊗ Ωx ⊗ Ωy and W ′ ⊗ Ω3
x. By the

definition of T̃ , on T̃ ⊂ X, the section of N induced by σ factors through NG#. We call

this section σG#.

To get a quadruple point, it needs to be the case that when we sub in the power

series of the yi’s in terms of x into the distinguished equation, the coefficient of x3 vanishes.

This is the same as saying that the expansion of the distinguished equation lies in the span

of “x times” the {y, x2} parts of the other equations. This will correspond to vanishing

of evaluation in a rank 1 quotient of NG# that we define below. This quotient will be

isomorphic to W ′ ⊗ Ω3
x.

Remark 2.7.12. The vanishing order filtration on NG# provides a subbundle W ′ ⊗ Ω3
x ⊂

NG#. The construction of our desired quotient NG# →W ′ ⊗Ω3
x on T̃ will crucially use the

fact that the subschemes in the fibers of C → P are curve-linear (in particular, have 1

dimensional tangent space). This is equivalent to the statement in (2) that the other yi’s

may be solved for as power series in x.
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To make this precise, let V be the kernel of P
{1,x,y,x2}
G/P (O) → O, which comes

equipped with a filtration

0→ Ω2
x → V → a∗ΩG/P → 0.

The bundle V is like the tangent bundle but “with a bit of second order information in the

distinguished direction.” Considering the triple point inside G referred to by each point of

T̃ determines a rank 2 quotient Qtrip of V on T̃ that fits in a diagram

0 Ω2
x V a∗ΩG/P 0

Qtrip Ωx.

Just as having a distinguished quotient of a∗ΩG/P allowed us to refine bundles of principal

parts in Section 2.3.2, so too does having this rank 2 quotient of V . Let L be the kernel of

Qtrip → Ωx, so L corresponds to the second order data along a triple ramification point.

The map from upper left to lower right, Ω2
x → L, is non-vanishing because the square of the

first order coordinate is non-zero on the triple point (this uses curve-linearity), so L ∼= Ω2
x.

Equivalently, the quotient V → Qtrip does factor through a∗ΩG/P on any fiber (which

would mean the fiber through p had two-dimensional tangent space). Now, ker(V → Ωx)

corresponds to the {y, x2} parts of our expansions. Similarly, ker(V → Ωx)⊗Ωx corresponds

to the {xy, x3} parts. Tensoring ker(V → Ωx) → L with W ′ ⊗ Ωx, we get the desired

quotient

NG# =W ′ ⊗ Ωx ⊗ ker(V → Ωx)→W ′ ⊗ Ωx ⊗ L ∼=W ′ ⊗ Ω3
x.

The evaluation of δG# in this quotient is zero precisely when condition (3) above is satisfied

to order 3.

Hence, the universal quadruple ramification point is determined by the vanishing
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of a section of a line bundle W ′ ⊗ Ω3
x on T̃ . In particular,

[U ] = π∗µ∗a∗([T̃ ] · c1(W ′ ⊗ Ω3
x)),

which we computed in Macaulay.

Lemma 2.7.13. The class of the ramification locus U on H5,g is

[U ] = (12g + 48)a21 − (4g + 16)b2 − (4g3 + 48g2 + 192g + 256)c2 − 4a1b
′
2 + 4b′3.

Modulo the relations from Lemma 2.6.9,

[U ] =
156g + 468

5
a21 −

108g + 216

5
a2 −

108

5
a1a

′
2 −

52g3 + 468g2 + 1352g + 1248

5
c2.

We now give additive generators for R∗(H5,g).

Lemma 2.7.14. Suppose g ≥ 2. Then,

1. R1(H5,g) is spanned by [T ] and [D]. Alternately, it is spanned by [T ] and κ1.

2. R2(H5,g) is spanned by [T ]κ1, [D]κ1, [T ] · [D], [U ], κ2.

3. R3(H5,g) is spanned by [T ]κ21, [D]κ21, [T ] · [D]κ1, [U ]κ1, [T ]κ2, [D]κ2.

4. R4(H5,g) is spanned by [T ]κ31, κ
4
1, [T ]κ1κ2, [T ] · [D]κ2, κ

2
2, κ

2
1κ2, [U ]κ2.

5. R5(H5,g) is spanned by [T ]κ41, [T ]κ
2
2, κ

5
1, κ1κ

2
2.

6. R6(H5,g) is spanned by [T ]κ51, κ
6
1, κ

4
1κ2.

7. Ri(H5,g) is spanned by [T ]κi−1
1 , κi1 for i ≥ 7.

Proof. Using Lemmas 2.7.10, 2.7.11, and 2.7.13, we can write down expressions for each

class in the statement of the Lemma in terms of Casnati–Ekedahl classes. Modulo our
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relations in Section 2.6.9, Macaulay gives a formula for these classes in terms of the

spanning sets of Corollary 2.6.10.

For each i, we can then write down a matrix whose entries are the coefficients of

the expression for the classes in the statement of the lemma in terms of the CE spanning

set. We then check if the determinant of the matrix of coefficients, which is a polynomial

in g, has no positive integer roots. For example, in codimension 1, we have that {a1, a′2} is

a spanning set, and we have

[T ] = (24g + 84)a1 − 24a′2 [D] = −(32g + 112)a1 + 36a′2.

The matrix of coefficients  24g + 84 −24

−32g − 112 36


has determinant 96g + 336, which has no integer roots, so [T ] and [D] span R1(H5,g). A

similar calculation shows that [T ] and κ1 span R1(H5,g). For 2 ≤ i ≤ 6, we repeat the

process, and the determinants are calculated at [CL21c]. None of them has roots at any

integer g ≥ 2.

When i ≥ 7, we use an argument similar to Section 2.6.4. For 7 ≤ i ≤ 14, we check

that [T ]κi−1
1 and κi1 span, by showing that the matrix of coefficients to express these in

terms of a1a
′i−1
2 and a′i2 is invertible. Because it R∗(H5,g) is generated in degrees 1 and 2,

for i ≥ 15, every monomial class in R∗(H5,g) is expressible as a product of two monomials,

both of degree at least 7. Then the product of two such monomials is in the span of

κi1, κ
i−1
1 [T ] and κi−2

1 [T ]2 = κi−7
1 (κ51[T ]

2). The last monomial is already in the span of the

first two because R7(H5,g) is spanned by κ71, κ
6
1[T ]. The last part (7) now follows.

As a consequence, we finish the proofs of Theorem 2.1.7 and Theorem 2.1.10.

Proof of Theorem 2.1.7, k = 5. By Lemma 2.7.14, we see that every class in R∗(H5,g) is
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expressible as a polynomial in the kappa classes times [T ], [D], or [U ]. By Corollary 2.7.5,

the push forwards of [T ], [D], [U ] are tautological, so by push-pull, the push forwards of all

classes in R∗(H5,g) are tautological onMg.

Proof of Theorem 2.1.10, k = 5. For i in the range of the statement, we have Ai(H5,g) =

Ri(H5,g). Thus, it suffices to produce generators for R∗(H5,g) as a ring that are supported

on T and D. We know from Theorem 2.1.1 (3) that R∗(H5,g) is generated by two classes

in degree 1 and two classes in degree 2. The classes [T ] and [D] generate R1(H5,g). Then,

we computed π∗(µ∗a∗([T̃ ]) · z), which is supported on T , in the code [CL21c]. The result

is that

π∗(µ∗a∗([T̃ ]) · z) = (3g2 + 24g + 48)c2 − 3a21 − 3a2 + 3b2.

Modulo the relations from Lemma 2.6.6, this class is given by

π∗(µ∗a∗([T̃ ]) = 12a21 − 24a2 − (12g2 + 84g − 144)c2. (2.7.7)

Using Lemma 2.7.13, we see that π∗(µ∗a∗([T̃ ])·z) and [U ] are independent modulo products

of codimension 1 classes. Since R∗(H5,g) is generated in codimension 1 and 2, we conclude

that R∗(H5,g) is generated by [T ], [D], [U ] and the class in (2.7.7), which are all supported

on T and D.
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Chapter 2, in full, has been accepted for publication. It will appear at Journal für

die Reine und Angewandte Mathematik (Crelle’s Journal) as

• Samir Canning and Hannah Larson, ”Chow rings of low-degree Hurwitz spaces”; in

Journal für die Reine und Angewandte Mathematik (Crelle’s Journal).

Chapter 2 is coauthored with Larson, Hannah. The dissertation author was co-primary

investigator and author of this paper.
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Chapter 3

Integral Picard groups of low-degree
Hurwitz spaces
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3.1 Introduction

Let Hk,g be the Hurwitz stack parametrizing degree k covers by genus g curves

of P1, up to automorphisms of the target P1. Let H s
k,g ⊆ Hk,g be the open substack

parametrizing simply branched covers. The Hurwitz space Picard rank conjecture posits

that Pic(H s
k,g) ⊗ Q = 0. For k ≥ 4, the complement of H s

k,g ⊂ Hk,g consists of two

irreducible divisors: D, parametrizing covers with two points of ramification in the same

fiber (pictured left) and T , parametrizing covers with a point of triple ramification (pictured

right).

Figure 3.1. Components of the complement of H s
k,g ⊂Hk,g

In [DP15], Deopurkar–Patel prove that for k ≥ 4, the classes of T and D are linearly

independent in Pic(Hk,g)⊗Q. Note that D is empty when k = 3. For k ≥ 4, the Picard

rank conjecture is then equivalent to Pic(Hk,g)⊗Q ∼= Q⊕2. The conjecture is known by

work of Stankova-Frenkel and Deopurkar–Patel for k ≤ 5 [SF00,DP15], and for k > g − 1

by work of Mullane [Mul20].

In this paper, we will study Pic(Hk,g) and Pic(H s
k,g) with integral coefficients.

Much less is known in this case: Arsie–Vistoli [AV04] computed Pic(H2,g), and Bolognesi–

Vistoli [BV12] computed Pic(H3,g). In both cases, there are torsion classes depending on

the genus. Our main theorem shows that this torsion phenomenon does not extend to

k = 4, 5 when g ≥ 3.
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Theorem 3.1.1. For g ≥ 2, the integral Picard groups of the Hurwitz stacks are as follows.

1. We have

Pic(H4,g) =


Z⊕ Z/10Z if g = 2

Z⊕ Z if g ≥ 3.

2. We have

Pic(H5,g) =


Z⊕ Z/10Z if g = 2

Z⊕ Z if g ≥ 3.

We also provide explicit line bundles generating Pic(Hk,g) (Sections 3.4.1, 3.5.3,

and 3.6.3). One of those line bundles is the determinant of the Hodge bundle, which is

pulled back from the moduli space of curves. The torsion in the case g = 2 arises from the

torsion in the Picard group of the moduli space of genus 2 curves, as the first Chern class

λ of the Hodge bundle is 10-torsion when g = 2 [Vis98].

Remark 3.1.2. This 10-torsion phenomenon is also present when k = 3, namely we shall

prove Pic(H3,2) = Z/10Z, correcting the g = 2 case of [BV12].

The classes of the divisors T and D have been previously computed [DP15,CL21a].

Using these computations, we determine the integral Picard groups of the simply branched

Hurwitz spaces. They are, of course, torsion.

Corollary 3.1.3. For g ≥ 2, the integral Picard groups of the simply branched Hurwitz

stacks are as follows:

1. We have

Pic(H s
3,g) =


Z/2Z if g = 2

Z/(4g + 6)Z⊕ Z/3Z if g ≥ 3 odd

Z/(8g + 12)Z⊕ Z/3Z if g ≥ 3 even
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2. We have

Pic(H s
4,g) =


Z/18Z⊕ Z/2Z if g = 2

Z/(8g + 20)Z⊕ Z/12Z if g ≥ 3 odd

Z/(4g + 10)Z⊕ Z/12Z if g ≥ 3 even.

3. We have

Pic(H s
5,g) =


Z/44Z⊕ Z/2Z if g = 2

Z/(4g + 14)Z⊕ Z/12Z if g ≥ 3 odd

Z/(8g + 28)Z⊕ Z/12Z if g ≥ 3 even.

The paper is structured as follows. In Section 3.2, we define the stacks Hk,g and

their closely related counterparts Hk,g. When k ≤ 5, these stacks have a nice relationship

with stacks parametrizing pairs of vector bundles on P1-fibrations, respectively pairs of

vector bundles on P1-bundles (the former may not have a relative degree 1 line bundle; this

distinction is important for results with integral coefficients). We construct these stacks

of vector bundles on P1-fibrations, respectively P1-bundles, in Section 3.3, compute their

integral Picard groups and explain how they are related to each other. In Section 3.4, we

calculate Pic(H3,g), which is originally due to Bolognesi–Vistoli, in a different way. This

new perspective is used to prove Corollary 3.1.3(1). Along the way, we also obtain results

in genus 2 that will be useful in Sections 3.5 and 3.6. In Section 3.5, we prove Theorem

3.1.1(1) and from it Corollary 3.1.3(2). In Section 3.6, we prove Theorem 3.1.1(2) and

Corollary 3.1.3(3).

3.2 Hurwitz Stacks

We say a morphism P → S is a P1-fibration if it is a flat, proper, finitely presented

morphism of schemes whose geometric fibers are isomorphic to P1. We define the un-

parametrized Hurwitz stack Hk,g of degree k, genus g covers of P1 to be the stack whose
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objects over a scheme S are of the form (C → P → S) where P → S is a P1-fibration,

C → P is a finite, flat, finitely presented morphism of constant degree k, and the com-

position C → S is smooth with geometrically connected fibers. We do not impose the

condition that our covers C → P1 be simply branched. In the case k = 3, H3,g is the stack

Tg from [BV12].

The parametrized Hurwitz scheme H †
k,g is defined similarly, except P → S is

replaced by P1
S. Therefore, the unparametrized Hurwitz stack is the PGL2 quotient of

the parametrized Hurwitz scheme. There is also a natural action of SL2 on H †
k,g (via

SL2 ⊂ GL2 → PGL2).

We shall use script font Hk,g := [H †
k,g/PGL2] for the PGL2 quotient,

and caligraphic font Hk,g := [H †
k,g/ SL2] for the SL2 quotient.

Explicitly, the SL2 quotient Hk,g is the stack whose objects over a scheme S are

families (C → P → S) where P = PV → S is the projectivization of a rank 2 vector

bundle V with trivial determinant, C → P is a finite flat finitely presented morphism of

constant degree k, and the composition C → S has smooth fibers of genus g. The benefit

of working with Hk,g is that the SL2 quotient is equipped with a universal P1-bundle

P → Hk,g that has a relative degree one line bundle OP(1) (a P1-fibration does not).

The Hurwitz stacks come with universal diagrams

C P

Hk,g,

α

f
π (3.2.1)

where C → Hk,g is the universal curve, C → P is the universal degree k cover, and

P → Hk,g is the universal P1-fibration. One can also form the analogous diagram for

Hk,g. We set

λ := c1(f∗ωf ),
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which is pulled back from the moduli space of curvesMg.

3.3 Stacks of vector bundles on P1

In this section, we discuss these stacks of vector bundles on P1-fibrations and

P1-bundles, and compute their Picard groups.

Definition 3.3.1. Let r, d be nonnegative integers.

1. The objects of Vr,d are pairs (P → S,E) where P → S is a P1-fibration over a

k-scheme S and E is a locally free sheaf of rank r on P whose restriction to each of

the fibers of P → S is globally generated of degree d. A morphism between objects

(P → S,E) and (P ′ → S ′, E ′) is a Cartesian diagram

P ′ P

S ′ S

F

together with an isomorphism ϕ : F ∗E → E ′.

2. The objects of Vr,d are triples (S, V, E) where S is a k-scheme, V is a rank 2 vector

bundle on S with trivial determinant, and E is a rank r vector bundle on PV whose

restrictions to the fibers of PV → S are globally generated of degree d. A morphism

between objects (S, V, E) and (S ′, V ′, E ′) is a Cartesian diagram

PV ′ PV

S ′ S

F

together with an isomorphism ϕ : F ∗E → E ′.

Bolognesi–Vistoli [BV12] gave a presentation for Vr,d as a quotient stack, which

we briefly summarize here. Let Mr,d be the affine space that represents the functor which
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sends a scheme S to the set of matrices of size (r + d)× d with entries in H0(P1
S,OP1

S
(1)).

We can identify such a matrix with the associated map

OP1
S
(−1)d → Or+dP1

S
.

Let Ωr,d ⊂Mr,d denote the open subscheme parametrizing injective maps with locally free

cokernel. The group GLd acts on Mr,d by multiplication on the left, GLr+d acts by multi-

plication on the right, and GL2 acts by change of coordinates on H0(P1
S,OP1

S
(1)). These

actions commute with each other and leave Ωr,d invariant, and hence GLd×GLr+d×GL2

acts on Ωr,d. There is a copy of Gm inside of GLd×GLr+d×GL2 embedded by t 7→

(t Idd, Idr+d, t
−1 Id2). The image T acts trivially on Mr,d and so we can define an action of

the quotient

Γr,d := GLd×GLr+d×GL2 /T

on Ωr,d. There is an exact sequence

1→ GLd×GLr+d → Γr,d → PGL2 → 1,

where the map Γr,d → PGL2 is induced by the projection of GLd×GLr+d×GL2 → GL2.

Theorem 3.3.2 (Bolognesi–Vistoli [BV12], Theorem 4.4). There is an isomorphism of

fibered categories

Vr,d ∼= [Ωr,d/Γr,d.]

A slight modification of the argument in Bolognesi–Vistoli gives a quotient structure

for Vr,d, which we have utilized in our previous work [CL21d,CL21a].

Proposition 3.3.3. There is an isomorphism of fibered categories

Vr,d ∼= [Ωr,d/GLd×GLr+d× SL2].
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Proof. The proof is the same as in [BV12, Theorem 4.4], except that instead of taking

P → S a P1-fibration in the definition of the various stacks, we take P = PV → S where

V is a rank 2 vector bundle with trivial determinant.

To parametrize the linear algebraic data associated to a low degree cover of P1, we

will need to construct stacks parametrizing pairs of vector bundles on P1. These stacks

are products of the form Vr,d ×BSL2 Vs,e, which parametrize a pair of vector bundles on the

same P1-bundle, or Vr,d ×BPGL2 Vs,e, which parametrize a pair of vector bundles on the

same P1-fibration.

Let Gr,d,s,e := GLd×GLr+d×GLe×GLs+e. The group Gr,d,s,e × SL2 acts on Mr,d

via the projection Gr,d,s,e × SL2 → GLd×GLr+d× SL2; and similarly on Ms,e via the

projection Gr,d,s,e × SL2 → GLe×GLs+e× SL2. By Proposition 3.3.3, we have

Vr,d ×BSL2 Vs,e = [Ωr,d × Ωs,e/Gr,d,s,e × SL2]. (3.3.1)

Let Td and Tr+d denote the universal vector bundles on BGLd and BGLr+d; similarly,

let Se and Ss+e be the universal vector bundles on BGLe and BGLs+e. The integral Chow

ring of B(Gr,d,s,e × SL2) is the free Z-algebra on the Chern classes of Td, Tr+d, Se, Ss+e,

together with the universal second Chern class c2 on BSL2. Let us denote these classes by

ti = ci(Td) and ui = ci(Tr+d)

vi = ci(Se) and wi = ci(Ss+e).

Since Ωr,d × Ωs,e is open inside the affine space Mr,d ×Ms,e, the excision and homotopy

properties imply

Pic(Vr,d ×BSL2 Vs,e) is generated by the restrictions of t1, u1, v1, w1. (3.3.2)
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We now identify the restrictions of the tautological bundles Td and Td+r in terms

of the universal rank r, degree d vector bundle on P1. Let π : P → Vr,d be the universal

P1-bundle. We write z := c1(OP(1)) ∈ A1(P). We have c2 = c2(π∗OP(1)) ∈ A2(Vr,d), the

universal second Chern class, pulled back via the natural map Vr,d → BSL2). Note that

c1(π∗OP(1)) = 0, so by the projective bundle formula

A∗(P) = A∗(Vr,d)[z]/(z2 + π∗c2).

Let E be the universal rank r, degree d vector bundle on P . The Chern classes of E may

thus be written as

ci(E) = π∗ai + (π∗a′i)z where ai ∈ Ai(Vr,d), a′i ∈ Ai−1(Vr,d).

Note that a′1 = d. Let γ : Vr,d ×BSL2 Vs,e → B(Gr,d,s,e × SL2) be the structure map. Then

by [Lar21b, Lemma 3.2] (noting that det(π∗OP(1)) is trivial), we have

γ∗Td = π∗E(−1) and γ∗Tr+d = π∗E . (3.3.3)

Since R1π∗E(−1) and R1π∗E are zero, Grothendieck–Riemann–Roch says that the Chern

characters of π∗E(−1) and π∗E are push forwards by π of polynomials in the ci(E) and z.

The push forward of such a polynomial is a polynomial in the ai, a
′
i and c2. In particular,

the restrictions of t1 and u1 to Pic(Vr,d) are linear combinations of a1 and a
′
2. We calculate

this explicitly in the following example.

Example 3.3.4 (First Chern classes). Let Tπ = OP(2) denote the relative tangent bundle

of π : P → Vr,d, so the the relative Todd class is Tdπ = 1 + 1
2
c1(Tπ) + . . . = 1 + z + . . ..
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Using Equation (1.4.3), and then Grothedieck–Riemann–Roch, we have that on Vr,d,

t1 = c1(π∗E(−1)) = ch1(π∗E(−1)) = [π∗(ch(E) · ch(OP(−1)) · Tdπ)]1

= [π∗(ch(E) · (1− z) · (1 + z))]1 = π∗(ch2(E)) = π∗

(
1

2
c1(E)2 − c2(E)

)
= da1 − a′2

u1 = c1(π∗E) = ch1(π∗E) = [π∗(ch(E) · Tdπ)]1 = [π∗(ch(E) · (1 + z))]1

= π∗(ch2(E) + ch1(E)z) = (da1 − a′2) + a1

= (d+ 1)a1 − a′2.

It follows that a1 = u1 − t1 and a′2 = du1 − (d+ 1)t1.

In Equation (1.4.1), we described Vr,d ×BSL2 Vs,e as a quotient. To similarly under-

stand the moduli space of pairs of vector bundles on a P1-fibration, we need the “pair”

version of Γr,d and of Theorem 3.3.2. Precisely, let us define Γr,d,s,e to be the quotient of

Gr,d,s,e ×GL2 by t 7→ (t Idd, Idr+d, t Ide, Is+e, t
−1 Id2). Then, we have

Vr,d ×BPGL2 Vs,e = [Ωr,d × Ωs,e/Γr,d,s,e].

Considering the commutative diagram

1 µ2 Gr,d,s,e × SL2 • 1

1 Gm Gr,d,s,e ×GL2 Γr,d,s,e 1

Gm Gm

∼

(−)2 det

id

we see by the snake lemma that Γr,d,s,e is a µ2 quotient of Gr,d,s,e × SL2.

Let us assume r, s > 1, so that the complement of Ωr,d × Ωs,e ⊂ Mr,d ×Ms,e has

codimension at least 2. In particular, by the excision and homotopy properties, we have
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natural identifications

Pic(Vr,d ×BSL2 Vs,e) = Pic(B(Gr,d,s,e × SL2)),

and

Pic(Vr,d ×BPGL2 Vs,e) = Pic(BΓr,d,s,e).

The group Pic(B(Gr,d,s,e × SL2)) is the free Z-module generated by t1, u1, v1, w1 (see

(1.4.2)). Using Example 3.3.4, we see that the classes a1, a
′
2, b1, b

′
2 also freely generate

Pic(Vr,d ×BSL2 Vs,e).

Lemma 3.3.5. The natural map Vr,d ×BSL2 Vs,e → Vr,d ×BPGL2 Vs,e induces an inclusion

Pic(Vr,d ×BPGL2 Vs,e) ↪→ Pic(Vr,d ×BSL2 Vs,e),

whose image is the subgroup generated by



t1, u1, v1, w1 if d, e both even

2t1, u1, v1, w1 if d odd and e even

t1, u1, 2v1, w1 if d even and e odd

t1 − v1, 2t1, u1, w1 if d, e both odd,

(3.3.4)

or equivalently by 

a1, a
′
2, b1, b

′
2 if d, e both even

2a1, a
′
2, b1, b

′
2 if d odd and e even

a1, a
′
2, 2b1, b

′
2 if d even and e odd

a1 − b1, 2a1, a′2, b′2 if d, e both odd.

(3.3.5)

Proof. Recall that Pic(BG) is naturally identified with the character group of G because
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it is identified with Mumford’s functorial Picard group. The exact sequence of groups

0→ µ2 → Gr,d,s,e × SL2 → Γr,d,s,e → 0

induces a left exact sequence

0→ Pic(BΓr,d,s,e)→ Pic(B(Gr,d,s,e × SL2))→ Pic(Bµ2). (3.3.6)

The Picard group Pic(Bµ2) is isomorphic to Z/2Z. Let h be a generator of Pic(Bµ2).

Recall that the map µ2 → Gr,d,s,e×SL2 sends −1 to (− Idd, Idr+d,− Ide, Ids+e,− Id2). The

generator t1 ∈ Pic(B(Gr,d,s,e × SL2)) corresponds to the determinant of the rank d matrix.

Thus, the right-hand map in (3.3.6) sends t1 to dh. Similarly, u1 and w1 are sent to zero,

and v1 to eh. The kernel is thus the subgroup generated by the classes listed in (3.3.4).

The translation between (3.3.4) and (3.3.5) follows from Example 3.3.4. We explain

the case d, e both odd, the other cases being similar but simpler. Since d and e are both

odd, the following change of basis matrix has integer coefficients



t1 − v1

2t1

u1

w1


=



e d−e
2
−1 1

0 d −2 0

0 d+1
2
−1 0

−(e+ 1) e+1
2

0 −1





a1 − b1

2a1

a′2

b′2


.

The determinant of the 4× 4 matrix above is 1 so the entries of the two column vectors

generate the same subgroup with Z-coefficients.

Lemma 3.3.6. Let X ′ ⊂ X be an open substack. Given a smooth map f : Y → X, let

Y ′ ⊂ Y be the preimage of X ′. If Pic(X)→ Pic(Y ) is injective, then Pic(X ′)→ Pic(Y ′)

is injective.
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Proof. It suffices to treat the case when X ′ ⊂ X is the complement of an irreducible

divisor D. (Removing any component of codimension two or more from X does not change

Pic(X); if X ′ is the complement of a reducible divisor, then we just apply the irreducible

case to each component in turn.)

Because f : Y → X is smooth, Y ′ ⊂ Y is the complement of the irreducible divisor

f−1(D), which has class f ∗[D]. Let ⟨[D]⟩ denote the subgroup of Pic(X) generated by

the fundamental class of D and similarly for ⟨f ∗[D]⟩ inside Pic(Y ). We therefore have a

diagram of exact sequences where the left vertical map is surjective.

0 ⟨[D]⟩ Pic(X) Pic(X ′) 0

0 ⟨f ∗[D]⟩ Pic(Y ) Pic(Y ′) 0.

The result now follows from the snake lemma.

We shall be applying Lemma 3.3.6 in the context of a smooth map Y → X which is

induced by a base change BSL2 → BPGL2. The basic idea is that injectivity of a certain

map of Picard groups will allow us to argue that our previous calculations determining

relations in Pic(Hk,g) actually hold in Pic(Hk,g) with the “same formulas.” We then just

need to understand which classes are integral, which will be deduced from Lemma 3.3.5.

3.3.1 Construction of the base stacks

To keep track of the integrality conditions arising from Lemma 3.3.5, we shall find

it useful to use the quantity

ϵ := ϵk,g =


1 if g + k − 1 is even

2 if g + k − 1 is odd,

(3.3.7)

which keeps track of the parity of the degree of certain vector bundles on P1 we associate to

degree k, genus g covers. We shall often drop the subscript when k and g are understood.
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Below, we introduce the “base stacks” Bk,g that parametrize the bundles on P1 we shall

associate to degree k, genus g covers in Sections 3.4, 3.5, and 3.6.

Degree 3

We set B3,g := V2,g+2. Then, by Lemma 3.3.5, we have

Pic(B3,g) = Z(ϵa1)⊕ Za′2, (3.3.8)

where ϵ is as in (3.3.7).

Degree 4

First let us recall a standard, but very useful fact.

Lemma 3.3.7. Suppose that X → Y is a Gm-torsor with associated line bundle L. Then,

Pic(X) ∼= Pic(Y )/⟨c1(L)⟩.

Proof. Under the correspondence between Gm-torsors and line bundles, X is the comple-

ment of the zero section in the total space of the line bundle L → Y . We thus have the

exact sequence

Pic(Y )→ Pic(L)→ Pic(X)→ 0.

After identifying Pic(L) with Pic(Y ), the first map in the sequence is given by multiplication

by the first Chern class c1(L), and the result follows.

Let π : P → V3,g+3 ×BPGL2 V2,g+3 be the universal P1-fibration, equipped with

universal bundles E of rank 3 and F of rank 2. Define B4,g be the Gm-torsor over

V3,g+3 ×BPGL2 V2,g+3 associated to π∗(detE ⊗ detF∨). This push forward is a line bundle

by cohomology and base change, and has class c1(π∗(detE ⊗ detF∨)) = a1 − b1 ∈
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Pic(V3,g+3 ×BPGL2 V2,g+3). The stack B4,g parametrizes pairs of vector bundles (E,F ) on

P1-fibrations together with an isomorphism of their determinants.

Combining Lemma 3.3.7 and Lemma 3.3.5 (where we are necessarily either in the

first or last case of (3.3.5)), we find

Pic(B4,g) = Z(ϵa1)⊕ Za′2 ⊕ Zb′2, (3.3.9)

where again, ϵ is as in (3.3.7).

Degree 5

Let π : P → V4,g+4 ×BPGL2 V5,2g+8 be the universal P1-fibration, equipped with

universal bundles E of rank 4, degree g+4, and F of rank 5 degree 2g+8. Define B5,g to

be the Gm-torsor over V4,g+4×BPGL2 V5,2g+8 associated to the bundle π∗(detE ⊗2⊗detF∨),

which is a line bundle by cohomology and base change. It has first Chern class 2a1 − b1.

The stack B5,g parametrizes pairs of vector bundles (E,F ) on a P1-fibration together with

an isomorphism between (detE)⊗2 and detF . By Lemmas 3.3.5 and 3.3.7,

Pic(B5,g) = Z(ϵa1)⊕ Za′2 ⊕ Zb′2. (3.3.10)

3.4 Trigonal

The Picard group of H3,g was computed by Bolognesi–Vistoli [BV12, Theorem 1.1]

when g ≥ 3. As a warm-up for k = 4, 5, we give a slightly different proof of their result;

we also treat the case g = 2, and compute Pic(H3,2).

Let us recall the linear algebraic data associated to a degree 3 cover, as developed

by Miranda [Mir85], and later Casnati–Ekedahl [CE96]. For more details in our context

see also [BV12] and [CL21d, Section 3.1]. Given a degree 3 cover α : C → P1, we associate

a rank 2 vector bundle Eα := (α∗OC/OP1)∨ on P1. The cover naturally factors through an
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embedding C ⊂ PE∨
α → P1 and C ⊂ PE∨

α is defined as the zero locus of a section

ηα ∈ H0(P1, detE∨
α ⊗ Sym3Eα) ∼= H0(PEα, detE∨

α ⊗OPEα(3)).

The association of α with Eα defines a map H3,g → B3,g := V2,g+2. Let π : P → B3,g be

the universal P1-fibration, equipped with universal rank 2 bundle E . We define B′
3,g to be

the locus where detE ∨ ⊗ Sym3 E is globally generated on the fibers of π. Equivalently,

B′
3,g is the locus where E has splitting type (e1, e2) for e1 ≤ e2 and 2e1 − e2 ≥ 0 on fibers

of π.

Let X ′
3,g be the total space of the vector bundle π∗(detE ∨⊗ Sym3 E )|B′

3,g
, which is

locally free by the theorem on cohomology and base change, on B′
3,g. Arguing exactly as

in [CL21d, Lemma 5.1], one sees that the association of α : C → P1 with (Eα, ηα) defines

an open embedding of H3,g into X ′
3,g. Let D3,g := X ′

3,g ∖ H3,g be the closed complement.

At this point, we have described stacks and morphisms

D3,g →X ′
3,g → B′

3,g → B3,g = V2,g+3 → BPGL2,

Base changing by BSL2 → BPGL2, we obtain the stacks and morphisms studied in [CL21a,

Section 4.2].

∆3,g → X ′
3,g → B′

3,g → B3,g = V2,g+2 → BSL2 .

In [CL21a, Equation 4.5], we showed that ∆3,g is irreducible with fundamental class given

by

[∆3,g] = (8g + 12)a1 − 9a′2 ∈ Pic(X ′
3,g)
∼= Pic(B′

3,g).

Recall that Pic(V2,g+2)→ Pic(V2,g+2) is injective (Lemma 3.3.5). Applying Lemma

3.3.6, we also see that Pic(B′
3,g)→ Pic(B′

3,g) is injective, and then so too is Pic(X ′
3,g)→
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Pic(X ′
3,g). Since D3,g pulls back to ∆3,g, it follows that D3,g is irreducible of class

[D3,g] =
8g + 12

ϵ
(ϵa1)− 9a′2 ∈ Pic(X ′

3,g)
∼= Pic(B′

3,g).

where ϵ is as in (3.3.7). (Recall ϵ is always 1 or 2 so the coefficient above is an integer.)

Now, by excision, we have

Pic(H3,g) =
Pic(X ′

3,g)

⟨[D3,g]⟩
=

Pic(B′
3,g)

⟨[D3,g]⟩
.

When g > 2, the complement of B′
3,g ⊂ B3,g has codimension at least 2 by [CL21a, p. 16].

Hence, Pic(B′
3,g) = Pic(B3,g) = Z(ϵa1)⊕ Za′2. Therefore, for g > 2, we have

Pic(H3,g) =
Z(ϵa1)⊕ Za′2
⟨(8g+12

ϵ
)a1 − 9a′2⟩

∼=


Z if g ̸= 0 (mod 3) and g ̸= 2

Z⊕ Z/3Z if g = 0 (mod 3) and g ̸= 3 (mod 9)

Z⊕ Z/9Z if g = 3 (mod 9).

Meahwhile, when g = 2, the complement of B′
3,g ⊂ B3,g is an irreducible divisor

corresponding to the locus where the universal bundle E has splitting type (1, 3) on the

fibers of P → B3,g. As found in the proof of [CL21d, Lemma 4.3], the (pullback to

Pic(B3,g) of the) class of this splitting locus is

s1,3 = a′2 − 2a1 ∈ Pic(B3,g) ⊆ Pic(B3,g). (3.4.1)

Hence, noting that ϵ = 1 when g = 2, we have

Pic(H3,2) =
Za1 ⊕ Za′2

⟨28a1 − 9a′2, a
′
2 − 2a1⟩

∼= Z/10Z.
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3.4.1 Generating line bundles

One natural class on H3,g is λ := c1(f∗ωf ) (which is pulled back fromMg). Using

Example 3.3.4, we compute that the pullback of λ to H3,2 is

λ = c1(f∗ωf ) = c1(π∗(α∗ωα)⊗ ωπ) = c1(π∗E(−2)) = (g + 1)a1 − a′2.

(See (3.2.1) for definitions of the maps f, α, π). Note that when g is odd, the coefficient

of a1 is even, so using Lemma 3.3.5, this class lies in the subgroup Pic(H3,g), as it must.

In the case of genus 2, we have λ = a1 + s1,3 (where s1,3 is the relation in (3.4.1)), so

λ generates Pic(H3,2). This is not surprising: in [Vis98], Vistoli computed the integral

Chow ring of the stackM2 and found in particular that Pic(M2) = Z/10Z, generated by

λ. This means that the pullback map Pic(M2)→ Pic(H3,2) is an isomorphism.

We note here a corollary of this fact for use in the later sections of the paper. Let

Pick be the universal Picard stack overM2. Over a scheme S, its objects are families of

smooth curves C → S of genus 2 together with a line bundle L of relative degree k on the

fibers. The group Gm injects into the automorphism group of every object by scaling the

line bundle. One can form the so-called Gm-rigidifcation of Pick, which is a stack Pk

such that Pick →Pk is a Gm-banded gerbe.

Corollary 3.4.1. Let Pk →M2 be as above. Then the pullback map Pic(M2)→ Pic(Pk)

is injective.

Proof. There are natural isomorphisms Pk ∼= Pk+2 (given by tensoring with the canoni-

cal), so it suffices to prove the claim for k = 2 and k = 3. When k = 2, the canonical line

bundle gives a sectionM2 →Pk, so the pullback map must be injective.

Now consider the case k = 3. Every degree 3 line bundle on a genus 2 curve has 2

sections. Therefore, H3,2 is naturally an open substack inside P3. (It is the complement of

the universal curve C ↪→P3 embedded by summing each point with a canonical divisor.)
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The isomorphism Pic(M2) → Pic(H3,2) factors through Pic(M2) → Pic(P3), so the

latter must also be injective.

For g ̸= 2, 5, however, λ cannot be used as a generator of Pic(H3,g). (This follows

from the fact that det

 g+1
ϵ

−1
8g+12
ϵ

−9

 = g−3
ϵ

is not a unit, unless g = 2 or 5.)

To describe line bundles generating Pic(H3,g), let E be the universal rank 2 bundle

on π : P →H3,g (recall E = (α∗OC /OP)∨.) For g > 2, we can generate the free part of

Pic(H3,g) by

L =


π∗

(
detE ⊗ ω⊗(g+2)/2

π

)
if g even

π∗

(
(detE )⊗2 ⊗ ω⊗(g+2)

π

)
if g odd

which has c1(L1) = ϵa1.

When g = 0 (mod 3) and g ̸= 3 (mod 9), the torsion subgroup is generated by

8g + 12

3
a1 − 3a′2 = 3λ−

(
g − 3

3ϵ

)
c1(L ).

When g = 3 (mod 9), the torsion subgroup is generated by

8g + 12

9
a1 − a′2 = λ−

(
g − 3

9ϵ

)
c1(L ).

3.4.2 Simple branching

Let T ⊂H3,g be the divisor of covers with a point of triple ramification, as defined

in the introduction (see Figure 3.1). In [DP18, Proposition 2.8], Deopurkar–Patel compute

the class of T . In terms of our generators, we have

T = (24g + 36)a1 − 24a′2.
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Proof of Corollary 3.1.3(1). Using excision, for g ≥ 3, we have

Pic(H s
3,g) = Pic(H3,g)/⟨T ⟩ =

Z(ϵa1)⊕ Za′2
⟨
(
8g+12
ϵ

)
ϵa1 − 9a′2,

(
24g+36

ϵ

)
ϵa1 − 24a′2⟩

Now observe that−8 3

−3 1


 (8g + 12)/ϵ −9

(24g + 36)/ϵ −24

 =

(8g + 12)/ϵ 0

0 3

 . (3.4.2)

The matrix on the left of (3.4.2) is invertible over Z. Thus, Pic(H s
3,g) is the sum of two

cyclic groups with orders given by the diagonal entries of the matrix on the right of (3.4.2).

This completes the proof for g ≥ 3.

Finally, for g = 2, we already know a′2 = 2a1 by (3.4.1) and that 10a1 = 0 in

Pic(H3,g). When we remove T , this creates one additional relation 0 = T = 84a1− 24a′2 =

36a1 in Pic(H s
3,g). We have gcd(10, 36) = 2, so Pic(H s

3,2) = Z/2Z.

3.5 Tetragonal

We begin by briefly recalling the linear algebraic data associated to a degree

4 cover, as developed by Casnati–Ekedahl [CE96]. For more details in our context,

see [CL21d, Section 3.2]. Given a degree 4 cover α : C → P1, we associate two vector

bundles on P1:

Eα := (α∗OC/OP1)∨ = ker(α∗ωα → OP1) and Fα := ker(Sym2Eα → α∗ω
⊗2
α ).

The first is rank 3 and the second is rank 2. If C has genus g, then both bundles have

degree g + 3. Geometrically, the curve C is embedded in γ : PE∨
α → P1 as the zero locus

of a section

δα ∈ H0(PE∨
α ,OPE∨

α
(2)⊗ γ∗F∨

α ).
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In each fiber of γ, the four points are the base locus of a pencil of conics parametrized by

Fα. We can also think of δα as a section of a bundle on P1 through the natural isomorphism

H0(PE∨
α ,OPE∨

α
(2)⊗ γ∗F∨

α )
∼= H0(P1, Sym2Eα ⊗ F∨

α ).

The cover α also determines an isomorphism ϕα : detEα ∼= detFα (see [CL21d, Section

3.2])

The association of α : C → P1 with the triple (Eα, Fα, ϕα) gives rise to a map

of H4,g to the base stack B4,g defined in 3.3.1. Unlike in the degree 3 case, the map

H4,g → B4,g does not factor through a vector bundle over B4,g. Nevertheless, we shall

define an open substack H ′
4,g that does admit such a nice description. The key fact, to be

established in Lemma 3.5.1, is that the complement of H ′
4,g ⊂H4,g has codimension at

least 2 for all g ̸= 3. Thus, it will suffice to compute Pic(H ′
4,g).

3.5.1 The open H ′
4,g

First define B′
4,g := B4,g ∖R1π∗(F∨ ⊗ Sym2 E ). We define H ′

4,g ⊂H4,g to be the

base change of the map H4,g → B4,g along the open embedding B′
4,g ↪→ B4,g. The key

property of H ′
4,g is that the map H ′

4,g → B′
4,g factors through an open inclusion in the

total space of a vector bundle (by an argument identical to [CL21d, Lemma 5.3]):

H ′
4,g ↪→X ′

4,g := π∗(F
∨ ⊗ Sym2 E )|B′

4,g
. (3.5.1)

As promised, we now show that the complement of H ′
4,g ⊂H4,g has codimension at

least 2 (except when g = 3). This essentially follows from earlier work of Deopurkar–Patel.

Lemma 3.5.1. If g ̸= 3, every component of the complement of H ′
4,g ⊂ H4,g has

codimension at least 2. Hence, there is an isomorphism Pic(H4,g) ∼= Pic(H ′
4,g).

Proof. Following the notation of [DP15], let M(E,F ) ⊂H4,g denote the locus of covers α
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with Eα ∼= E and Fα ∼= F . The complement of H ′
4,g ⊂H4,g is the union of M(E,F ) such

that

h1(P1, F∨ ⊗ Sym2E) > 0. (3.5.2)

If E = O(e1) ⊕ O(e2) ⊕ O(e3) with e1 ≤ e2 ≤ e3 and F = O(f1) ⊕ O(f2) with f1 ≤ f2,

then (3.5.2) is equivalent to 2e1 − f1 ≤ −2.

Next, let Egen and Fgen denote the balanced bundles of rank 3 and 2 and degree

g+3. First note that h1(F∨
gen⊗Sym2Egen) = 0: this is equivalent to 2⌊g+3

3
⌋− ⌈g+3

2
⌉ ≥ −1.

This says that M(Egen, Fgen) ⊆H ′
4,g. Hence, any divisorial component of H4,g ∖ H ′

4,g is

contained in a divisorial component of H4,g ∖M(Egen, Fgen).

Next, let us define bundles that are “one-off” from balanced

F1 := O(n− 1)⊕O(n+ 1) if n =
g + 3

2
is an integer

E1 := O(m− 1)⊕O(m)⊕O(m+ 1) if m =
g + 3

3
is an integer.

In [DP15, p. 20], Deopurkar–Patel enumerate the divisorial components of H4,g ∖

M(Egen, Fgen) and show that, for g ̸= 3, they are always of the form

M(Egen, F1) if 2 | g + 3 (3.5.3)

M(E1, Fgen) if 3 | g + 3. (3.5.4)

Note that we are using the irreducibility of M and CE in [DP15, Propositions 4.5 and

4.7] to write these divisors as the closures above. Meanwhile, when g = 3, the stratum

M(E1, F1) =M(O(1)⊕O(2)⊕O(3),O(2)⊕O(4)) (3.5.5)

is also a divisor. This divisor does not lie in H ′
4,g.
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One readily checks that

h1(F∨
1 ⊗ Sym2Egen) = h1(F∨

gen ⊗ Sym2E1) = 0. (3.5.6)

Hence, when they are defined, H ′
4,g contains each of

M(Egen, Fgen), M(Egen, F1), M(E1, Fgen),

and, for g ̸= 3, all other possible M(E,F ) have codimension at least 2.

Remark 3.5.2. EachM(E,F ) can be constructed directly as a global quotient, giving rise

to a bound on Pic(M(E,F )). Deopurkar–Patel use their enumeration of the components

of H4,g ∖M(Egen, Fgen) to count ranks and prove the Picard rank conjecture for k ≤ 5.

The new innovation in our work is that we have built a larger open H ′
4,g which

contains several M(E,F ) and, in particular, is not missing any divisorial components

(when g ≠ 3). Hence, we see Pic(H4,g) = Pic(H ′
4,g), and we can compute the later

integrally using excision on H ′
4,g ⊂X ′

4,g.

Lemma 3.5.3. When g = 3, the complement of H ′
4,3 ⊂ H4,3 is an irreducible divisor

whose class lies in the subgroup generated by ϵa1 and a′2 (these classes are defined on all

of H4,3 via pull back along Pic(B4,3)→ Pic(H4,g).)

Proof. Continuing the notation of the previous lemma, first note that if

M(O(1)⊕O(2)⊕O(3),O(f1)⊕O(f2)) ̸= ∅

then by [CL21d, Proposition 5.6(2)], we have f1 ≤ 2 and f2 ≤ 4 and f1 + f2 = 6, hence

f1 = 2 and f2 = 4. The divisor in (3.5.5) can therefore be viewed as the locus were

the universal E (pulled back along H4,3 → B4,3) has splitting type (1, 2, 3) on fibers of

the universal P1-fibration. As a splitting locus for E , this divisor occurs in the expected
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codimension, so its fundamental class is determined by the universal splitting loci formulas

of [Lar21c]. In particular, it can be expressed in terms of the classes ϵa1, a
′
2.

3.5.2 Excision

Recall the inclusion of (3.5.1) and let D4,g := X ′
4,g ∖ H ′

4,g be the complement. By

excision, we have a series of surjections (the middle map is an isomorphism because X ′
4,g

is a vector bundle over B′
4,g):

Pic(B4,g)→ Pic(B′
4,g)
∼= Pic(X ′

4,g)→ Pic(H ′
4,g). (3.5.7)

Moreover, the fundamental class [D4,g] ∈ Pic(X ′
4,g) lies in the kernel of the last map in

(3.5.7) (and it generates the kernel when D4,g is irreducible.)

At this point we have defined a sequence of morphisms

D4,g →X ′
4,g → B′

4,g → B4,g → V3,g+3 ×BPGL2 V2,g+3 → BPGL2 . (3.5.8)

Lemma 3.5.4. For g ≥ 2, some combination of components of D4,g has class

8g + 20

ϵ
(ϵa1)− 8a′2 − b′2 ∈ Pic(X ′

4,g)
∼= Pic(B′

4,g).

In particular, an integral relation holds in Pic(H ′
4,g) expressing b

′
2 in terms of ϵa1 and a′2.

Proof. Base changing (3.5.8) by BSL2 → BPGL2, we obtain the stacks and morphisms

considered in [CL21d, Section 5.2] (below ∆′
4,g is the complement of the open inclusion

H′
4,g ↪→ X ′

4,g of [CL21d, Lemma 5.3]):

∆′
4,g → X ′

4,g → B′
4,g → B4,g → V3,g+3 ×BSL2 V2,g+3 → BSL2 .
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We claim some combination of components of ∆′
4,g has class

(8g + 20)a1 − 8a′2 − b′2 ∈ Pic(X ′
4,g)
∼= Pic(B4,g).

This will establish the lemma since the map Pic(X ′
4,g) → Pic(X ′

4,g) sends the class of

a component of D4,g to the class of the corresponding component of ∆′
4,g. Because

Pic(X ′
4,g)→ Pic(X ′

4,g) is injective (by Lemma 3.3.6), classes are represented by the same

formulas in either group.

By [CL21a, Lemma 5.2 and Equation 5.7], we know that (8g+20)a1− 8a′2− b′2 = 0

in Pic(H4,g), so this relation must also hold on the open substack H′
4,g ⊂ H4,g. But, we

also know H′
4,g
∼= X ′

4,g ∖∆′
4,g. By excision, every relation among a1, a

′
2, b

′
2 restricted to

Pic(H′
4,g) comes from a class supported on ∆′

4,g ⊂ X ′
4,g. That is, some combination of

components of ∆′
4,g has class (8g + 20)a1 − 8a′2 − b′2 = 0. The corresponding combination

of components of D4,g will have the same class.

Remark 3.5.5. In fact, the fundamental class of D4,g has the class displayed in Lemma

3.5.4. For a more conceptual explanation, we sketch the following argument. Recall that

in [CL21a, Equation 5.7], we computed the restriction of [∆′
4,g] to a slightly smaller open

X ◦
4,g ⊂ X ′

4,g via principal parts bundle techniques. For g sufficiently large, the complement

of X ◦
4,g ⊂ X ′

4,g has codimension at least 2, so the codimesnion 1 calculation holds on all of

X ′
4,g. That is [∆

′
4,g] = (8g + 20)a1 − 8a′2 − b′2 and so [D4,g] also has this class.

But even for smaller g, we claim the formula for [∆4,g] in [CL21a, Equation 5.7]

holds on all of X ′
4,g. Although the principal parts map of [CL21a, Equation 5.4] need not

be surjective over all of X ′
4,g (so the vanishing locus ∆̃4,g of the principal parts bundle map

need not be a vector bundle) the calculation of the fundamental class holds so long as ∆̃4,g

has the correct codimension. One can verify this by stratifying the base by loci where

the rank drops and checking that the strata where the rank drops by δ have codimension

greater than δ. This also establishes irreducibility of ∆′
4,g and D4,g when g ≥ 4. However,
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this fact is not actually necessary for our argument.

Proof of Theorem 3.1.1(1) for g ≥ 4. By excision, we know that

Pic(H ′
4,g)
∼=

Pic(X ′
4,g)

classes supported on D4,g

.

Meanwhile, Pic(X ′
4,g) is a quotient of Pic(B4,g) = Z(ϵa1)⊕Za′2⊕Zb′2 (see (3.3.9)). Hence,

using Lemma 3.5.4, we see Pic(H ′
4,g) is a quotient of

Z(ϵa1)⊕ Za′2 ⊕ Zb′2
⟨8g+20

ϵ
(ϵa1)− 8a′2 − b′2⟩

∼= Z(ϵa1)⊕ Za′2.

Recall that in Lemma 3.5.1, we showed Pic(H4,g) = Pic(H ′
4,g) for g ≥ 4. By [DP15,

Proposition 2.15], this group has rank at least 2. Therefore, Pic(H4,g) = Z⊕ Z, since any

quotient would have smaller rank.

Genus 3

When g = 3, we require a different argument, as Lemma 3.5.3 tells us that

H ′
4,3 ⊂H4,3 is the complement of a divisor.

Proof of Theorem 3.1.1(1) when g = 3. By Lemma 3.5.3, the kernel of the restriction map

Pic(H4,3)→ Pic(H ′
4,3)

lies in the subgroup ⟨a1, a′2⟩. We know that Pic(H ′
4,g) is generated by the classes a1, a

′
2, b

′
2,

so it follows that Pic(H4,3) is also generated by these 3 classes.

Next, we claim that b′2 is integrally expressible in terms of a1, a
′
2. By Lemma

3.5.4, we know b′2 is expressible in terms of a1, a
′
2 in Pic(H ′

4,3). But, the kernel of

Pic(H4,3)→ Pic(H ′
4,3) lies in ⟨a1, a′2⟩, so b′2 must also be expressible in terms of a1, a

′
2 in

Pic(H4,3).
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It follows that Pic(H4,3) is a quotient of Za1 ⊕ Za′2. However, by [DP15], we know

that Pic(H4,3) has rank 2. Any further quotient would have lower rank, so we are done.

Genus 2

The proof of [DP15, Proposition 2.15] (showing Pic(H4,g) has rank 2) does not go

through when g = 2 because Deopurkar–Patel’s test familyB3 has curves with disconnecting

nodes, so it does not lie in their H̃ns
4,2. However, their proof does establish that the rank of

Pic(H4,2) is at least 1. This, together with Lemma 3.4.1, provides enough information to

determine the Picard group.

Proof of Theorem 3.1.1(1) when g = 2. We have already established that Pic(H4,2) is

generated by 2a1 and a
′
2. Using Example 3.3.4, we compute that (see (3.2.1) for definitions

of the maps f, α, π)

λ = c1(f∗ωf ) = c1(π∗(α∗ωα)⊗ ωπ) = c1(π∗E(−2)) = 4a1 − a′2 = 2(2a1)− a′2.

From this we see that λ and 2a1 are generators for Pic(H4,2). Since λ is the generator of

Pic(M2) ∼= Z/10Z, we see that Pic(H4,2) is a quotient of Z⊕ Z/10.

By the discussion at the start of this section, we know Pic(H4,2) has rank at least

1. Thus, it remains to prove that Pic(M2)→ Pic(H4,2) is injective.

Let Pk be the universal Picard variety over M2 as in Section 3.4.1 (the Gm-

rigidification of the universal Picard stack Pick). As in [Moc95, Section 6], the natural

map H4,2 →P4 factors through a Grassmann fibration. For this, recall that every degree

4 line bundle on a genus 2 curve has a 3-dimensional space of sections. Let G → P4

be the Grassmann fibration parametrizing two-dimensional subspaces of the space of

global sections of a degree 4 line bundle. Then H4,2 sits naturally as an open substack

G . Its complement Z = G ∖ H4,2 is the locus of pencils with a base point. Note that

Z has 1-dimensional irreducible fibers over P4, so Z is irreducible. Since Z meets each

167



fiber of G →P4, it is not equivalent to the pullback of a divisor on P4. In particular,

the map Pic(P4)→ Pic(H4,2) must be injective. Using Lemma 3.4.1, we conclude that

Pic(M2)→ Pic(H4,2) is also injective, completing the proof.

Remark 3.5.6. Geometrically, the fact that Pic(H4,2) has rank 1 can be explained by

the fact that ∆′
4,2 is reducible. Thus, its components give rise to further relations beyond

just its fundamental class.

3.5.3 Generating line bundles

Let ϵ = 1 if g is odd and ϵ = 2 if g is even. We have shown that Pic(H4,g) is

generated by ϵa1 and a
′
2, or equivalently by ϵa1 and λ := (g+2)a1−a′2. Let π : P →H4,g

be the universal P1-fibration and E the universal rank 3, degree g+ 3 vector bundle on P .

Recall that ωπ has relative degree −2. Line bundles generating Pic(H4,g) are given by

L1 =


π∗

(
detE ⊗ ω⊗(g+3)/2

π

)
if g odd

π∗

(
(detE )⊗2 ⊗ ω⊗(g+3)

π

)
if g even

which has c1(L1) = ϵa1

and

L2 = det f∗(ωf ) = det π∗(E ⊗ ωπ) which has c1(L2) = λ = (g + 2)a1 − a′2.

3.5.4 Simple branching

Let T and D be the divisors in H4,g as in the introduction (see Figure 3.1).

In [CL21a, Lemma 7.6], we wrote T and D (pulled back to Pic(H4,g)) in terms of our

generators a1 and a′2:

T = (24g + 60)a1 − 24a′2 D = −(32g + 80)a1 + 36a′2.
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Note that the coefficient of a1 is a multiple of ϵ, as it must be, since these classes are

defined in Pic(H4,g) ⊆ Pic(H4,g).

Proof of Corollary 3.1.3(2). By excision, we have Pic(H s
4,g) = Pic(H4,g)/⟨T,D⟩. Row

operations over Z diagonalize the change of basis matrix for ϵa1, a
′
2 to T,D, namely we

have 3 2

4 3


 (24g + 60)/ϵ −24

(−32g − 80)/ϵ 36

 =

(8g + 20)/ϵ 0

0 12

 ,

where the matrix on the left is invertible over Z. By its definition in (3.3.7), we have ϵ = 1

when g is odd and ϵ = 2 when g is even, so the corollary follows for g ≥ 3.

Finally, when g = 2, the above tells us 18(2a1) = 0 and 12a′2 = 0, and we have the

additional relation

0 = 10λ = 10(4a1 − a′2) ⇒ 0 = 2(2a1 + a′2).

Using generators 2a1 + a′2 and 2a1, we see that they generate cyclic groups of order 2 and

18 respectively.

3.6 Pentagonal

We begin by recalling the linear algebraic data associated to degree 5 covers, as

developed by Casnati [Cas96]. For more details in our context, see [CL21d, Section 3.3].

To a degree 5, cover α : C → P1, we again associate two vector bundles on P1:

Eα := (α∗OC/OP1)∨ = ker(α∗ωα → OP1) and Fα := ker(Sym2Eα → α∗ω
⊗2
α ).

If C has genus g, then Eα has degree g + 4, and rank 4, while Fα has degree 2g + 8 and

rank 5. Geometrically, the curve C is embedded in γ : P(E∨
α ⊗detEα)→ P1, which further
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maps to P(∧2Fα) via an associated section

ηα ∈ H0(P1,Hom(E∨
α ⊗ detEα,∧2Fα)).

The curve C is obtained as the intersection of the image of P(E∨
α ⊗ detEα) with the

Grassmann bundle G(2, Fα) ⊂ P(∧2Fα). The cover α also determines an isomorphism

ϕα : detE⊗2
α → detFα, [CL21d, p. 10].

The association of α : C → P1 with the triple (Eα, Fα, ϕα) gives rise to a map

H5,g → B5,g, for the base stack B5,g defined in 3.3.1. Just like in the degree 4 case,

the map H5,g → B5,g does not factor through a vector bundle over B5,g, but an open

substack H ′
5,g does. When g ̸= 3, we will show that the complement of H ′

5,g in H5,g has

codimension at least 2, so it will suffice to compute Pic(H5,g). We will then deal with the

g = 3 case separately.

3.6.1 The open substack H ′
5,g

First, define B′
5,g := B5,g ∖R1π∗(Hom(E ∨ ⊗ detE ,∧2F )). Let H ′

5,g be the base

change of H5,g → B5,g along the open embedding B′
5,g ↪→ B5,g. Arguing exactly as

in [CL21d, Lemma 5.3], the morphism H ′
5,g → B′

5,g factors through the total space of a

vector bundle over B′
5,g:

H ′
5,g ↪→X ′

5,g := π∗(Hom(E ∨ ⊗ detE ,∧2F ))|B′
5,g
.

Lemma 3.6.1. Suppose g ̸= 3. Then, every component of the complement of H ′
5,g ⊂H5,g

has codimension at least 2. In particular, Pic(H5,g) = Pic(H ′
5,g)

Proof. Following the notation of [DP15], let M(E,F ) ⊂H5,g denote the locus of covers α

with Eα ∼= E and Fα ∼= F . The complement of H ′
5,g ⊂H5,g is the union of M(E,F ) such
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that

h1(E ⊗ detE∨ ⊗ ∧2F∨) > 0. (3.6.1)

If E = O(e1) ⊕ · · · ⊕ O(e4) with e1 ≤ · · · ≤ e4 and F = O(f1) ⊕ · · · ⊕ O(f5) with

f1 ≤ · · · ≤ f5, then (3.6.1) is equivalent to e1 + f1 + f2 − (g + 4) ≤ −2.

Next, let Egen, respectively Fgen, denote the balanced bundle of rank 4 and degree

g+4, respectively rank 5 and degree 2g+8. First note that h1(Egen⊗detE∨
gen⊗∧2F∨

gen) = 0,

as in this case, e1 + f1 + f2 − (g + 4) ≥ ⌊g+4
4
⌋+ 2⌊2(g+4)

5
⌋ − (g + 4) ≥ −1 (except when

g = 3, in which case f2 = ⌈2(g+4)
5
⌉, so we still have e1 + f1 + f2 ≥ −1.) This says that

M(Egen, Fgen) ⊆H ′
5,g. Hence, any divisorial component of H5,g ∖ H ′

5,g is contained in a

divisorial component of H5,g ∖M(Egen, Fgen).

Again, let us define bundles that are “one-off” from balanced

F1 := O(n− 1)⊕⊕O(n)⊕3O(n+ 1) if n =
2g + 8

5
is an integer

E1 := O(m− 1)⊕O(m)⊕2 ⊕O(m+ 1) if m =
g + 4

4
is an integer.

In [DP15, p. 25], Deopurkar–Patel enumerate the divisorial components of H5,g ∖

M(Egen, Fgen) and show that, for g ̸= 3, they are always of the form

M(Egen, F1) if 5 | 2g + 8

M(E1, Fgen) if 4 | g + 4.

Note that we are using the irreducibility of M and CE in [DP15, Propositions 5.1 and

5.2] to write these divisors as the closures above. One readily checks that

h1(Egen ⊗ detE∨
gen ⊗ ∧2F1) = h1(E1 ⊗ detE∨

1 ⊗ ∧2Fgen) = 0
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Hence, when they are defined, H ′
5,g contains each of

M(Egen, Fgen), M(Egen, F1), M(E1, Fgen),

and all other possible M(E,F ) have codimension at least 2.

Lemma 3.6.2. When g = 3, the complement of H ′
5,3 ⊂ H5,3 is an irreducible divisor

whose class lies in the subgroup generated by 2a1 and a′2.

Proof. The divisorial component of the complement of H ′
5,3 inside H5,3 is the locus

M(E1, F1) =M(O(1)⊕O(2)⊕3,O(2)⊕2 ⊕O(3)⊕2 ⊕O(4)).

By [DP15, Proposition 5.2], this locus is precisely the preimage of the hyperelliptic locus

under the natural morphism H5,3 →M3. By [DL20], the hyperelliptic locus inM3 has

class 9λ. The class λ = c1(f∗ωf ) = c1(π∗E ⊗ωπ) ∈ Pic(H5,3) is pulled back from Pic(B5,3).

Since Pic(B5,3) includes into Pic(B5,3), we can determine this class via a calculation on

the SL2 quotient, as in Example 3.3.4:

[M(E1, F1)] = 9λ = 9c1(f∗ωf ) = 9c1(π∗E(−2)) = 54a1 − 9a′2 = 27(2a1)− 9a′2,

which is in the span of 2a1 and a′2.

3.6.2 Excision

We proceed similarly to the k = 4 case. Let D5,g ⊂X ′
5,g ∖ H ′

5,g. There is a series

of surjections

Pic(B5,g)→ Pic(B′
5,g)
∼= Pic(X ′

5,g)→ Pic(H ′
5,g). (3.6.2)

172



The middle map is an isomorphism because X ′
5,g → B′

5,g is a vector bundle. We have

defined a sequence of morphisms

D5,g →X ′
5,g → B′

5,g → B5,g → V4,g+4 ×BPGL2 V5,2g+8 → BPGL2 . (3.6.3)

Lemma 3.6.3. For g ≥ 2, some combination of the components of D5,g has class

(10g + 36)

ϵ
(ϵa1)− 7a′2 − b′2 ∈ Pic(X ′

5,g)
∼= Pic(B′

5,g).

Proof. Base changing (3.6.3) by BSL2 → BPGL2, we obtain the stacks and morphisms

considered in [CL21d, Section 5.3] (below ∆′
5,g is the complement of the open inclusion

H′
5,g ↪→ X ′

5,g of [CL21d, Lemma 5.11]):

∆′
5,g → X ′

5,g → B′
5,g → B5,g → V4,g+4 ×BSL2 V5,2g+8 → BSL2 .

By [CL21a, Lemma 6.6 and Equation 6.19], the relation (10g+36)
ϵ

(ϵa1)− 7a′2 − b′2 = 0 holds

in Pic(H5,g), so it must also hold on the open substack H′
5,g. Since H′

5,g = X ′
5,g ∖∆′

5,g, any

relation among a1, a
′
2, b

′
2 on H′

5,g must come from a class supported on ∆′
5,g. Therefore,

some combination of components of ∆′
5,g has class (10g+36)a1−7a′2−b′2. The corresponding

combination of components on D5,g has the same class.

Proof of Theorem 1.1(3) when g ≥ 4. By Lemma 3.6.1, Pic(H5,g) ∼= Pic(H ′
5,g) for g ≥ 4.

We have that Pic(H ′
5,g) is a quotient of Pic(X ′

5,g)
∼= Pic(B′

5,g) by classes supported on

D5,g. By Lemma 3.6.3, one such class is (10g + 36)a1 − 7a′2 − b′2. Therefore, Pic(H ′
5,g) is a

quotient of

Z(ϵa1)⊕ Za′2 ⊕ Zb′2
⟨10g+36

ϵ
(ϵa1)− 7a′2 − b′2⟩

∼= Z(ϵa1)⊕ Za′2.

By [DP15, Proposition 2.15], the rank of Pic(H5,g)⊗Q is at least 2, so we must have that

Pic(H5,g) ∼= Z(ϵa1)⊕ Za′2.
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Genus 3

As in the k = 4 case, when g = 3, we require a different argument because Lemma

3.6.2 tells us that H ′
5,3 ⊂H5,3 is the complement of a divisor.

Proof of Theorem 3.1.1(2) when g = 3. By Lemma 3.6.2, the kernel of the restriction map

Pic(H5,3)→ Pic(H ′
5,3)

lies in the subgroup ⟨2a1, a′2⟩. We know that Pic(H ′
5,g) is generated by the classes a1, a

′
2, b

′
2,

so it follows that Pic(H5,3) is also generated by these 3 classes.

Next, we claim that b′2 is integrally expressible in terms of a1, a
′
2. By Lemma

3.6.3, we know b′2 is expressible in terms of a1, a
′
2 in Pic(H ′

5,3). But, the kernel of

Pic(H5,3)→ Pic(H ′
5,3) lies in ⟨a1, a′2⟩, so b′2 must also be expressible in terms of a1, a

′
2 in

Pic(H5,3).

It follows that Pic(H5,3) is a quotient of Za1 ⊕ Za′2. However, by [DP15], we know

that Pic(H5,3)⊗Q has rank 2, so Pic(H5,3) ∼= Z⊕ Z.

Genus 2

As in Section 3.5.2, the argument of Deopurkar–Patel [DP15, Proposition 2.15] in

genus 2 establishes that the rank of Pic(H5,2) is at least 1.

Proof of Theorem 3.1.1(2) when g = 2. We have already established that a1, a
′
2 are gener-

ators for Pic(H5,2). We compute directly λ = 5a1 − a′2 as in Section 3.5.2, from which we

see λ and a1 are generators for Pic(H5,2). Arguing as in Section 3.5.2, it suffices to show

that the map Pic(M2)→ Pic(H5,2) is injective.

Every degree 5 line bundle on a genus 2 curve has a 4-dimensional space of sections.

The Hurwitz space H5,2 then sits naturally as an open inside the Grassmann fibration

G →P5 parametrizing 2-dimensional subspaces of the space of global sections of a degree
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5 line bundle. The complement of H5,2 ⊂ G is the locus of pencils with a base point,

which we again see is irreducible and not equivalent to the pullback of a divisor on P5.

In particular, the map Pic(P5)→ Pic(H5,2) must be injective. Applying Lemma 3.4.1,

we conclude that Pic(M2)→ Pic(H5,2) is also injective, completing the proof.

3.6.3 Generating line bundles

Line bundles generating Pic(H5,g) are given by

L1 =


π∗

(
detE ⊗ ω⊗(g+4)/2

π

)
if g even

π∗

(
(detE )⊗2 ⊗ ω⊗(g+4)

π

)
if g odd

which has c1(L1) = ϵa1

and

L2 = det f∗(ωf ) = det π∗(E ⊗ ωπ) which has c1(L2) = λ = (g + 3)a1 − a′2.

3.6.4 Simple branching

Let T and D be as in Figure 3.1. In [CL21a, Lemma 7.10], we wrote the classes of

T and D in terms of our generators a1 and a′2:

T = (24g + 84)a1 − 24a′2 D = −(32g + 112)a1 + 36a′2.

Note that the coefficient of a1 is a multiple of ϵ, as it must be because these classes are

defined in Pic(H5,g) ⊆ Pic(H5,g).

Proof of Corollary 3.1.3(3). By excision Pic(H s
5,g) = Pic(H5,g)/⟨T,D⟩. Again, row oper-
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ations over Z diagonalize the change of basis matrix for ϵa1, a
′
2 to T,D:

3 2

4 3


 (24g + 84)/ϵ −24

(−32g − 112)/ϵ 36

 =

(8g + 28)/ϵ 0

0 12

 .

For g ≥ 3, these are the only relations, so Pic(H s
5,g) is the sum of two cyclic groups of

orders equal to the diagonal entries above.

In genus 2, the above gives 44a1 = 0 and 12a′2 = 0, and we have the additional

relation

0 = 10λ = 10(5a1 − a′2) ⇒ 0 = 2(3a1 + a′2)

The generators a1 and 3a1 + a′2 generate cyclic groups of order 44 and 2 respectively.
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paper.
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Chapter 4

The Chow rings of the moduli spaces
of curves of genus 7, 8, and 9
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4.1 Introduction

In his landmark paper [Mum83], Mumford introduced the Chow ring of the moduli

spaceMg of genus g curves. Since then, much progress has been made on the determination

of A∗(Mg) in low genus, which we summarize below.

• (g = 2) Mumford [Mum83] in 1983, determined A∗(M2) with rational coefficients.

Vistoli [Vis98] in 1998, determined A∗(M2) with integral coefficients,

E. Larson [Lar21a] in 2020, determined A∗(M2) with integral coefficients.

• (g = 3) Faber [Fab90a] in 1990, determined A∗(M3) with rational coefficients,

Di Lorenzo–Fulghesu–Vistoli [LFV20] in 2020, determined the integral Chow ring of

the locus of smooth plane quartics.

• (g = 4) Faber [Fab90b] in 1990, determined A∗(M4) with rational coefficients.

• (g = 5) Izadi [Iza95] in 1995, determined A∗(M5) with rational coefficients.

• (g = 6) Penev–Vakil [PV15b] in 2015, determined A∗(M6) with rational coefficients.

In each of the above cases, the rational Chow ring ofMg is equal to the tautological

subring R∗(Mg) ⊆ A∗(Mg), a subring generated by certain natural classes which we now

define. Let f : C →Mg be the universal curve. The tautological subring is the subring of

A∗(Mg) generated by the kappa classes, κi := f∗(c1(ωf )
i+1).

In this paper, we tackle the next open cases of genus 7, 8, and 9 using the new

machinery of tautological classes on the Hurwitz space [CL21d,CL21a]. We prove that

the rational Chow rings of M7,M8, and M9 are all generated by tautological classes,

and thereby determine these Chow rings using work of Faber [Fab99]. In addition to our

theorems in genus 7, 8, and 9, our techniques give new and much simpler proofs of the

genus 5 and 6 cases (see Section 4.4.3). In particular, in genus 6, we establish that all
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classes supported on the bielliptic locus are tautological, which was not fully explained

in [PV15b].

Theorem 4.1.1. The Chow ring of the moduli space of genus 7 curves is generated by

tautological classes. Hence,

A∗(M7) ∼= Q[κ1, κ2]/I7,

where I7 is the ideal generated by the classes


2423κ21κ2 − 52632κ22

1152000κ22 − 2423κ41

16000κ31κ2 − 731κ41.

The computation of the tautological ring is originally due to Faber [Fab99]. We

used the Sage [S+20] package admcycles [DSvZ20] and a program of Pixton [Pix20] to

obtain the above presentation and those below.

Theorem 4.1.2. The Chow ring of the moduli space of genus 8 curves is generated by

tautological classes. Hence,

A∗(M8) = Q[κ1, κ2]/I8,

where I8 is the ideal generated by the classes


714894336κ22 + 55211328κ21κ2 − 1058587κ41

62208000κ1κ
2
2 − 95287κ51

144000κ31κ2 − 5617κ51.

Remark 4.1.3. The authors would like to point out contemporaneous work of Maxwell

da Paixão de Jesus Santos, which, using different techniques, makes significant progress

towards showing A∗(M8) is tautological (it is proved that non-tautological classes must
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be supported on the bielliptic locus).

Theorem 4.1.4. The Chow ring of the moduli space of genus 9 curves is generated by

tautological classes. Hence,

A∗(M9) = Q[κ1, κ2, κ3]/I9,

where I9 is the ideal generated by the classes



5195κ41 + 3644694κ1κ3 + 749412κ22 − 265788κ21κ2

33859814400κ2κ3 − 95311440κ31κ2 + 2288539κ51

19151377κ51 + 16929907200κ1κ
2
2 − 114345520κ31κ2

1422489600κ23 − 983κ61

1185408000κ32 − 47543κ61.

Remark 4.1.5. Despite their complicated looking presentations, the tautological rings

above have many nice properties. Faber proved that they are Gorenstein rings with socle

in degree g − 2 [Fab99]. He also points out that g = 9 is the first case in which the

tautological ring is not a complete intersection ring. Several different methods of producing

relations among tautological classes in arbitrary genus have found only the Faber–Zagier

relations, which may suggest that the Gorenstein property only occurs in low genus cases

(see [Pan18] for a discussion).

Remark 4.1.6. An interesting consequence of Theorems 4.1.1, 4.1.2, and 4.1.4 is that

for g = 7, 8, 9, the cycle class map A∗(Mg) → H2∗(Mg,Q) is injective. It is unknown

whether this holds in general, and it could even fail quite dramatically: when g is large,

it is unknown whether A∗(Mg) is finite or infinite dimensional as a Q-vector space,

whereas cohomology is finitely generated for any algebraic variety. On the moduli space
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of stable curves, Pikaart [Pik95, Corollary 4.7] has shown that H33(Mg,Q) ̸= 0 for g

sufficiently large. It then follows from work of Jannsen [Jan94, Theorem 3.6] that the map

A∗(Mg)→ H2∗(Mg,Q) is not injective for g sufficiently large.

In our previous work about tautological classes on the Hurwitz space [CL21d,CL21a],

degree four covers C → P1 that factor through a lower genus curve presented a major

difficulty. The primary example of this issue is when C is bielliptic, where degree four

covers C → P1 arise from the double cover C → E and any double cover E → P1, where

E is an elliptic curve. A main challenge of this paper is therefore to prove that classes

supported on the bielliptic locus ofMg for g ≤ 9 are tautological. Indeed, the bielliptic

locus is the source of the first known example of a nontautological algebraic class onMg:

in [vZ18], van Zelm proves that the fundamental class of the locus of bielliptic curves

B12 ⊂M12 is nontautological. The techniques we develop for the bielliptic locus in genus

g ≤ 9 also extend to genus 10.

Theorem 4.1.7. The fundamental class of the bielliptic locus B10 ⊂M10 is tautological

(hence equal to zero).

4.1.1 Overview of the proof

Our basic approach is to use the stratification of Mg by gonality, the minimal

degree of a map C → P1. Precisely, let us define

Mk
g := {[C] ∈Mg : C has a g1k},

which is the locus of curves of gonality less than or equal to k. For g = 7, 8, a general

curve of genus g has gonality 5, so our stratification takes the form

M2
g ⊂M3

g ⊂M4
g ⊂M5

g =Mg.
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In genus 9, a general curve has gonality 6, so we have one more stratum

M2
9 ⊂M3

9 ⊂M4
9 ⊂M5

9 ⊂M6
9 =M9.

It suffices to show for each k that all classes supported onMk
g are tautological up to classes

supported onMk−1
g . In other words, we must show that every class in A∗(Mk

g ∖Mk−1
g )

pushes forward to a class in A∗(Mg ∖Mk−1
g ) that is the restriction of a tautological class

onMg.

We shall call a class on A∗(Mg ∖Mk−1
g ) tautological if it is the restriction of a

tautological class from Mg. As k increases, each stratum Mk
g ∖Mk−1

g becomes more

complicated. Our main contribution is a better understanding of the strata for k = 4, 5,

which was the main stumbling block in extending previous work on low genus curves. We

now explain our process in more detail, starting with the curves of lowest gonality and

working upwards.

(1) An easy start

Faber [Fab99] showed that the fundamental class of any Brill–Noether locus of

the expected dimension is tautological. In particular the fundamental class of Mk
g is

tautological. It is well known that A∗(M2
g)
∼= Q for all g. By a result of Patel-Vakil [PV15a],

A∗(M3
g ∖M2

g) is generated by the restriction of κ1 for all g ≠ 3. Using Faber’s result and

the push-pull formula this establishes for g ̸= 3 that

all classes supported onM3
g are tautological. (4.1.1)

(See Remark 4.2.5 for an alternative argument when g = 3.) Note that (4.1.1) already

establishes that A∗(Mg) = R∗(Mg) for g ≤ 4. More generally, using the push-pull formula

and Faber’s result, if the Chow ring of each locally closed stratum A∗(Mk
g ∖Mk−1

g ) were

183



generated by the restrictions of tautological classes for all k, we would be done. However,

this is not the case for k > 3.

(2) Why it must get harder

For k = 4, 5, the Chow ring ofMk
g∖Mk−1

g is not in general generated by restrictions

of tautological classes. By considering curves of bidegree (4, 4) on P1 × P1, one can show

that when g ≥ 8, the map β : H4,g →M4
g is an isomorphism away from loci of codimension

2 in both spaces. Therefore, the Picard rank conjecture, proved by Deopurkar–Patel [DP15]

for k = 4, 5, shows that

dimA1(M4
g ∖M3

g) = dimA1(H4,g) = 2.

Hence, the first Chow group of the locally closed stratumM4
g ∖M3

g cannot be generated

by the restriction of κ1. The analogous result holds for k = 5 when g ≥ 10. Furthermore, it

is known that there exist classes supported onM4
g that are not tautological in some genera:

van Zelm [vZ18] has shown that the fundamental class of the bielliptic locus B12 ⊂M12 is

not a tautological class. This makes the tetragonal locus (Section 4.4) one of the most

interesting parts, and it will, of course, require some special observations about genus 7,

8, and 9 curves. (In Section 4.4.3, we also explain how to prove A∗(Mg) = R∗(Mg) for

g = 5 and 6 using our techniques.) In Section 4.4.7, we discuss why our techniques cannot

access the bielliptic locus when g ≥ 11. In the case g = 10, we prove Theorem 4.1.7: the

class of the bielliptic locus B10 ⊂M10 is tautological.

(3) Using the Hurwitz space

Our approach is to study the Chow rings of the Hurwitz stacks H4,g and H5,g

parametrizing degree 4 and 5 covers, respectively, of the projective line. Let β : Hk,g →Mg

denote the forgetful map. The induced map Hk,g ∖ β−1(Mk−1
g )→Mk

g ∖Mk−1
g is proper
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and surjective, and thus induces a surjection on rational Chow groups. In [CL21a], we

showed that for k = 4, 5, classes in the tautological ring of Hk,g∖β−1(Mk−1
g ) (see Definition

4.2.2) push forward to tautological classes onMg ∖Mk−1
g (see Theorem 4.2.4). This is a

useful (and non-trivial) tool because there are tautological classes on the Hurwitz space

which are not pullbacks of tautological classes onMg. Thus, we wish to show that the

Chow rings of Hk,g ∖ β−1(Mk−1
g ) are tautological for k = 4, 5 and g = 7, 8, 9. We succeed

in proving this in each of these cases except k = 4, g = 9, where some additional special

arguments are used. These arguments are carried out in Section 4.4 for k = 4 and Section

4.5 for k = 5.

To accomplish this, we further stratify Hk,g. Given a cover α : C → P1, we define

Eα := (α∗OC/OP1)∨ and Fα := ker(Sym2Eα → α∗ω
⊗2
α ), which are vector bundles on P1.

See Section 4.2.1 for an elaboration of the properties of Eα and Fα. We then stratify

Hk,g by the pair of splitting types of Eα and Fα. Each of these “pair splitting loci”

has a nice description as a quotient stack (Lemmas 4.3.10 and 4.3.11). As a starting

point, our previous work [CL21a] shows that the Chow ring of a union Ψ of the several

largest strata is generated by tautological classes (Proposition 4.2.9). This result allows

us to narrow down the possible sources of non-tautological classes: they all occur on the

complement of Ψ. Some “bad” pair splitting loci Σi remain outside of Ψ and not inside

β−1(Mk−1
g ). These bad Σi are the main focus of this paper. Part of the difficulty of

these strata is that they all occur in the “unexpected (pair) codimension” in the sense of

Deopurkar–Patel [DP15, Remark 4.2].

(4) The key coincidence and work to be done.

Using universal degeneracy formulas from [Lar21c], we show that the fundamental

class of a single splitting locus (i.e. where one of the two vector bundles has a given

splitting type) is tautological if it occurs in the “expected codimension.” Perhaps the

most surprising part of the proof is the following coincidence (when (k, g) ̸= (4, 9)): after
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excising strata contained in β−1(Mk−1
g ), every bad Σi can be realized as a single splitting

locus, and that single splitting locus occurs in the expected codimension (proofs of Lemmas

4.4.8, 4.4.9, 4.5.7, 4.5.9). Hence, the fundamental class of the closure of each bad Σi is

tautological in A∗(Hk,g ∖ β−1(Mk−1
g )). That these fundamental classes are tautological is

a “coincidence of small numbers.” It in fact fails for k = 4, g = 12 by the result of van

Zelm [vZ18].

We then study the Chow rings of the locally closed strata Σi. Using the description

of Σi as a quotient, we show that the Chow ring of each stratum A∗(Σi ∖ β−1(Mk−1
g )) is

generated by restrictions of tautological classes on Hk,g (Sections 4.4.2 and 4.5.2). This

last step requires a geometric understanding of the equations that define C inside the

associated scroll PE∨
α , and when a collection of equations of this type fail to define a

smooth curve or produce a curve of gonality less than k. These ideas do extend to arbitrary

genus, unlike the results in the previous paragraph concerning fundamental classes. We

state them as broadly as possible for arbitrary genera as they may be of future use.

(5) The further work in genus 9

As the genus increases, the luck with fundamental classes starts to run out and

more subtle arguments are required. In the case g = 9, k = 4, we encounter two bad pair

strata Σi that occur in unexpected codimension and cannot be realized as a single splitting

locus. Although we do not compute their classes on H4,9, we still manage to show that

their push forwards to M9 ∖M3
9 are tautological. For example, one of these problem

strata corresponds to the locus of plane sextics with one double point (Lemma 4.4.14).

The class of this locus is tautological onM9 ∖M3
9 because it is a Brill–Noether locus of

the expected codimension. We then show that the Chow ring of this stratum is generated

by the pullback of κ1 and κ2, which is a stronger statement than being generated by

restrictions of tautological classes on H4,9. By the push-pull formula, the push forward

of every class supported on this stratum is tautological onM9 ∖M3
9 (though we remain
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unsure if they are tautological upstairs on H4,9). We deal with the other problem stratum

by showing that its union with the bielliptic locus β−1(B9) has tautological fundamental

class on H4,9 ∖ β−1(M3
9) and a trick explained in Figure 4.5.

In genus 9, we must also deal with curves of gonality 6. The approach we take to

these curves in Section 4.6 is quite different from the approach taken to curves of gonality 5

and below because there is no uniform description for degree 6 covers in terms of associated

vector bundles. Instead, using results of Mukai [Muk10], we realize M9 ∖M5
9 (up to

a µ2 gerbe) as a global quotient of an open subvariety of a Grassmannian by Sp6. The

tautological subbundle on the resulting Grassmann bundle over BSp6 is the Hodge bundle

(up to possibly twisting by a line bundle, see Lemma 4.6.9). It then remains to see that

Chern classes of the rank 6 vector bundle V associated to this quotient are tautological.

We see this by proving that the rank 21 vector bundle Sym2 V is the bundle of 21 quadrics

that cut out a canonical genus 9 curve (Lemma 4.6.10). From this, it follows that the

Chern classes of Sym2 V are tautological, and, using the splitting principle, the Chern

classes of V are seen to be tautological as well.

4.1.2 Notations and conventions.

All schemes in this paper are taken over a fixed algebraically closed field of char-

acteristic 0 or p > 5. All Chow rings are taken with rational coefficients. We use the

subspace convention for projective bundles and Grassmann bundles.

4.2 Hurwitz Schemes and the Tautological Ring

In order to study the lociM4
g ∖M3

g andM5
g ∖M4

g, we will study the Hurwitz

stacks H4,g and H5,g parametrizing degree 4 and 5 covers, respectively, of the projective

line.

Definition 4.2.1. The unparametrized Hurwitz stack Hk,g is the stack whose objects
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over a scheme S are of the form (C → P → S) where P → S is a P1-fibration, C → P is

a finite flat finitely presented morphism of constant degree k, and the composition C → S

is a family of smooth genus g curves.

The Hurwitz stack Hk,g admits a universal diagram

C P

Hk,g

α

f
π

The universal diagram furnishes several natural classes in the Chow ring of Hk,g.

Definition 4.2.2. The tautological ring R∗(Hk,g) is the subring of A∗(Hk,g) generated by

classes of the form

f∗(c1(ωf )
i · α∗c1(ωπ)

j).

If U ⊆ Hk,g is an open substack of Hk,g, we define the tautological ring of the open R∗(U)

to be the image of the tautological ring under the restriction map

A∗(Hk,g)→ A∗(U).

Remark 4.2.3 (A note on the SL2 quotient). The Hurwitz stack Hk,g is the PGL2

quotient of the parametrized Hurwitz scheme H†
k,g. One can also take the quotient of

H†
k,g by SL2. The map [H†

k,g/ SL2] → [H†
k,g/PGL2] = Hk,g is a µ2-banded gerbe. It is a

general fact that, with rational coefficients, the pullback map along any gerbe banded by a

finite group induces an isomorphism on Chow rings [PV15b, Section 2.3]. In particular,

A∗(Hk,g) ∼= A∗([H†
k,g/ SL2]). The benefit of the SL2 quotient is that the pullback of the

universal P1-fibration to the SL2 quotient is a P1 bundle, i.e. it is equipped with a line

bundle of relative degree 1. Since we work with rational coefficients throughout, we do

not distinguish the PGL2 and SL2 quotients and freely assume that P is equipped with a
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line bundle OP(1) of relative degree 1. The push forward π∗OP(1) is the pullback of the

universal rank 2 vector bundle on BSL2.

By forgetting the map C → P , we obtain a morphism

β : Hk,g →Mg.

Let

β′ : Hk,g ∖ β−1(Mk−1
g )→Mg ∖Mk−1

g

be the restriction of β to Hk,g ∖ β−1(Mk−1
g ). The map β′ is proper (see e.g. [BV12,

Proposition 2.3]). In [CL21a, Theorem 1.7], we showed the following result relating the

tautological rings of the relevant Hurwitz stacks andMg.

Theorem 4.2.4. Let k = 4, 5. The map β′ is proper, so the induced push forward map

β′
∗ : A

∗(Hk,g ∖ β−1(Mk−1
g ))→ A∗(Mk

g ∖Mk−1
g )

is surjective. Moreover, β′
∗(R

∗(Hk,g ∖ β−1(Mk−1
g ))) ⊆ R∗(Mg ∖Mk−1

g ).

Remark 4.2.5. In the case k = 3, it is also true that β′
∗(R

∗(H3,g ∖ β−1(M2
g))) ⊂

R∗(Mg ∖M2
g). For g ̸= 3, this follows from work of Patel–Vakil [PV15b] which shows

A∗(H3,g) = R∗(H3,g) is generated by β∗κ1. In genus 3, it turns out β∗κ1 = 0, so we instead

prove the claim as follows. (The following argument does not presuppose A∗(M3) =

R∗(M3) and therefore provides a new proof of this fact in line with our approach.) Let

T ∈ A1(H3,3) be the class of the locus of covers with a point of triple ramification.

By [DP15, Proposition 2.15], we have A1(H3,3) = R1(H3,3) = Q · T . By [CL21a, Theorem

1.1 (1)], we have Ai(H3,3) = 0 for all i ≥ 2 and R∗(H3,3) = A∗(H3,3). By [CL21a, Corollary

7.5], β′
∗(T ) is tautological. Hence, the push forwards of all classes from H3,3 are tautological

onM3∖M2
3. This argument is representative of the ideas that were used to prove Theorem
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4.2.4 in [CL21a, Theorem 1.7].

In light of Theorem 4.2.4, in order to prove Theorems 4.1.1 and 4.1.2, it suffices

to show that A∗(H4,g ∖ β−1(M3
g)) and A

∗(H5,g ∖ β−1(M4
g)) are generated by tautological

classes for g = 7, 8. We will prove this in Sections 4.4 and 4.5. More work is required

when g = 9.

4.2.1 The Casnati–Ekedahl structure theorem

Here, we recall the Casnati–Ekedahl structure theorems for finite Gorenstein covers.

The structure theorems furnish distinguished tautological classes, which we call the

Casnati–Ekedahl classes, abbreviated CE classes.

We begin with the most general statement, which holds for covers of every degree.

Given a degree k cover α : X → Y where Y is integral, one obtains an exact sequence

0→ OY → α∗OX → E∨
α → 0, (4.2.1)

where Eα is a vector bundle of rank k − 1. When α is Gorenstein, α∗OX ∼= (α∗ωα)
∨.

Pulling back and using adjunction, we therefore obtain a map

ω∨
α → (α∗α∗ωα)

∨ → α∗E∨
α ,

which induces a map X → PE∨
α that factors α : X → Y . The Casnati–Ekedahl structure

theorem gives a resolution of the ideal sheaf of X inside of PE∨
α [CE96].

Theorem 4.2.6 (Casnati–Ekedahl [CE96]). Let X and Y be schemes, Y integral and let

α : X → Y be a Gorenstein cover of degree k ≥ 3. There exists a unique Pk−2-bundle

γ : P→ Y and an embedding i : X ↪→ P such that α = γ ◦ i and Xy := α−1(y) ⊂ γ−1(y) ∼=

Pk−2 is a nondegenerate arithmetically Gorenstein subscheme for each y ∈ Y . Moreover,

the following properties hold.
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1. P ∼= PE∨
α where E∨

α := coker(OY → α∗OX), and i∗OP(1) ∼= ωα.

2. There is a unique up to unique isomorphism exact sequence of locally free OP sheaves

0→ γ∗Fk−2(−k)→ γ∗Fk−3(−k + 2)→ · · · → γ∗F1(−2)→ OP → OX → 0. (4.2.2)

where Fi is locally free on Y . The restriction of the exact sequence above to a fiber

gives a minimal free resolution of Xy := α−1(y). Moreover the resolution is self-dual,

so there is a canonical isomorphism HomOP(Fi, Fk−2) ∼= Fk−2−i.

3. The ranks of the Fi are

rankFi =
i(k − 2− i)

k − 1

(
k

i+ 1

)
.

4. There is a canonical isomorphism Fk−2
∼= detEα.

In the cases k = 4, 5, self-duality of the resolution determines all of the bundles

Fi in terms of Eα and Fα := F1 and tensor products and determinants thereof. Twisting

(1.3.3) by OP(2) and pushing forward, we see that Fα = ker(Sym2Eα → α∗ω
⊗2
α ). We shall

use this notation throughout.

Applying this to the universal cover α : C → P over Hk,g, we obtain vector bundles

E := Eα and F := Fα on P . The bundle E is sometimes called the “universal Tschirnhausen

bundle” and has degree g + k − 1 on the fibers of π : P → Hk,g (see e.g. [CL21d, Example

3.1]). Next, let z := −1
2
c1(ωπ) = c1(OP(1)). For i = 1, . . . , k − 1, we define classes

ai ∈ Ai(Hk,g) and a
′
i ∈ Ai−1(Hk,g) by the formula

ai := π∗(z · ci(E)), a′i := π∗(ci(E)) ⇒ ci(E) = π∗ai + π∗a′iz. (4.2.3)
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Similarly, we define

bi := π∗(z · ci(F)), b′i := π∗(ci(F)) ⇒ ci(F) = π∗bi + π∗b′iz. (4.2.4)

Finally, we set c2 := c2(π∗OP(1)) ∈ A∗(Hk,g), so z
2 = −π∗c2 ∈ A2(P).

Definition 4.2.7. We define ai, a
′
i, bi, b

′
i, c2 to be the Casnati–Ekedahl (CE) classes.

Note that the CE classes generate all π∗’s of polynomials in z and the Chern classes

of E and F . In [CL21d, Theorem 3.10], we proved that the CE classes (together with some

suitable generalizations when k > 5) are generators for the tautological ring.

Lemma 4.2.8. The Casnati–Ekedahl classes lie in the tautological ring R∗(Hk,g). Con-

versely, when k = 4, 5, every tautological class is a polynomial in the above Casnati–Ekedahl

classes.

Furthermore, we proved in [CL21d, Lemmas 5.3 and 5.11] that the CE classes are

generators for the entire Chow ring of a certain open substack of Hk,g when k = 4, 5.

Proposition 4.2.9. Let g ≥ 2 be an integer. Then the following hold:

1. The Chow ring of Ψ = H4,g∖SuppR1π∗(F∨⊗Sym2 E) is generated by the restrictions

of CE classes.

2. The Chow ring of Ψ = H5,g ∖ SuppR1π∗(∧2F ⊗ E ⊗ det E∨) is generated by the

restrictions of CE classes.

Remark 4.2.10. Combining Theorem 4.2.4, Lemma 4.2.8, and Proposition 4.2.9, if we

knew that SuppR1π∗(F∨ ⊗ Sym2 E) were contained in β−1(M3
g) and SuppR1π∗(∧2F ⊗

E ⊗ det E∨) were contained in β−1(M4
g), we would be done. However, as we shall see, this

is not the case (except when k = 5, g = 7, which seems mostly a coincidence).
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4.3 Splitting Loci

Every vector bundle E on P1 splits as a direct sum of line bundles, E ∼= O(e1)⊕· · ·⊕

O(er). We call the tuple of integers e⃗ = (e1, . . . , er) with e1 ≤ · · · ≤ er the splitting type of

E and abbreviate the corresponding sum of line bundles by O(e⃗) := O(e1)⊕ · · · ⊕ O(er).

If E is a vector bundle on a P1 bundle π : P → B, then the base B is stratified by

locally closed subvarieties called splitting loci

Σe⃗(E) := {b ∈ B : E|π−1(b)
∼= O(e⃗)}.

The above equation describes splitting loci set-theoretically. Below, we give a moduli-

theoretic interpretation. Though not necessary here, equations giving a subscheme structure

to Σe⃗(E) ⊂ B in terms of Fitting supports can be found in [Lar21c, Section 2].

Suppose W is a rank 2 vector bundle with trivial determinant. We say that a vector

bundle E on π : PW → B is a family of vector bundles of splitting type e⃗ if B admits a

cover Ui so that:

• there exist isomorphisms ψi : W |Ui
∼= A2 × Ui (and therefore π−1(Ui) ∼= Ui × P1).

• there exist isomorphisms ϕi : E|π−1(Ui)
∼= q∗iO(e⃗), where qi : π−1(Ui) ∼= Ui × P1 → P1

is the composition of the isomorphism above with the second projection.

This gives rise to gluing data on the overlaps which satisfy a cocycle condition on the

triple overlaps. The data of the vector bundle W is equivalent to the data of a principal

SL2 bundle. A family of vector bundles of splitting type e⃗, is equivalent to the data of:

• transition functions for W over Ui ∩ Uj , i.e. maps ψij : Ui ∩ Uj → SL2 satisfying the

cocycle condition ψik = ψij ◦ ψjk on Ui ∩ Uj ∩ Uk

• transition functions for E over Ui ∩ Uj, i.e. maps ϕij : Ui ∩ Uj → Aut(O(e⃗)) such

that when restricted to the triple overlap Ui ∩ Uj ∩ Uk we have ϕik = ϕij ◦ (ψij · ϕjk)
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where ψij acts on ϕjk by change of coordinates (made precise below).

The action of SL2 on Aut(O(e⃗)) that arises above can be described concretely as follows.

We have

Aut(e⃗) := Aut(O(e⃗)) ⊂ H0(P1, End(O(e⃗)) =
⊕
i,j

H0(P1,OP1(ej − ei)).

We let SL2 act on a factor H0(P1,O(ej − ei)) via the (ej − ei)th symmetric power of the

standard representation (if ej − ei < 0 then this cohomology group is 0). The cocycle

conditions above are described by multiplication in the semidirect product SL2⋉Aut(e⃗).

By this discussion, a family of vector bundles of splitting type e⃗ over B determines a

principal SL2⋉Aut(e⃗) bundle on B and vice versa. In other words, the universal e⃗ splitting

locus is the classifying stack B(SL2⋉Aut(e⃗)). Let us write π : P → B(SL2⋉Aut(e⃗))

for the universal P1 bundle (which is pulled back from BSL2), and let V(e⃗) denote the

universal vector bundle of splitting type e⃗ on P .

Suppose that e⃗ = (e1, . . . , er) consists of distinct degrees d1 < · · · < ds and that di

occurs with multiplicity ni. Then, we have

Aut(e⃗) =
s∏
i=1

GLni
⋉
∏
i<j

H0(P1,OP1(dj − di))⊕(ninj).

Elements of Aut(e⃗) can be represented by block upper triangular matrices where the off

diagonal entries are polynomials of the specified degrees on P1.

The SL2 action is trivial on the block diagonal matrices (the product of GLni

subgroup). It follows that

SL2⋉Aut(e⃗) ∼=

(
SL2×

s∏
i=1

GLni

)
⋉
∏
i<j

H0(P1,O(dj − di))⊕ninj . (4.3.1)

Hence, we have a map SL2⋉Aut(e⃗) →
∏s

i=1GLni
. Let Ni on B(SL2⋉Aut(e⃗)) be the
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pullback of the tautological rank ni vector bundle from the BGLni
factor. The Harder-

Narasimhan filtration on the restriction of V(e⃗) to each fiber of P → B induces a filtration

of V(e⃗) where the successive quotients are (π∗Ni)(di). We call this the HN filtration of

V(e⃗) and we call the bundles Ni on B(SL2⋉Aut(e⃗)) the HN bundles for V(e⃗).

Meanwhile, we also have an inclusion SL2×
∏s

i=1GLni
→ SL2⋉Aut(e⃗). This

induces a map φ : BSL2×
∏s

i=1 BGLni
→ B(SL2⋉Aut(e⃗)), which by (4.3.1) is an affine

bundle. The pullback φ∗Ni is again the tautological rank ni bundle coming from the

BGLni
factor. We have the fiber diagram

P ′ P

BSL2×
∏s

i=1 BGLni
B(SL2⋉Aut(e⃗)).

π′

φ′

π

φ

We note in passing that the pullback φ′∗V(e⃗) on P ′ actually splits as a direct sum

φ′∗V(e⃗) ∼=
s⊕
i=1

φ′∗(π∗Ni)(di).

Since φ is a vector bundle map, it induces an isomorphism on Chow. This establishes the

following.

Lemma 4.3.1. The Chow ring of B(SL2⋉Aut(e⃗)) is the free Z algebra on the universal

c2 pulled back from BSL2 and the Chern classes of the HN bundles N1, . . . ,Ns.

Remark 4.3.2. The statement above holds with Z-coefficients. We will only use it,

however, with Q-coefficients.

The above argument works just as well for a pair of splitting types.

Lemma 4.3.3. The Chow ring of B(SL2⋉(Aut(e⃗)×Aut(f⃗))) is the free Z algebra on the

universal c2 pulled back from BSL2, the Chern classes of the HN bundles for V(e⃗), and

Chern classes of the HN bundles for V(f⃗).
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From our description of the universal e⃗ splitting locus, one sees that its codimension

in the moduli stack of vector bundles on P1 bundles is h1(P1, End(O(e⃗))). Given a family

of vector bundles on P1 bundles with splitting type e⃗, we say that h1(P1, End(O(e⃗))) is

the expected codimension. It follows that, if non-empty, the codimension of a splitting

locus is always at most the expected codimension. There is a partial ordering on splitting

types defined by e⃗ ′ ≤ e⃗ if e′1 + . . .+ e′j ≤ e1 + . . .+ ej for all j. On the moduli space of

vector bundles on P1 bundles, the e⃗ ′ splitting locus is in the closure of the e⃗ splitting locus

if and only if e⃗ ′ ≤ e⃗. (Of course, this need not be the case in every family, as we shall

see.) Since codimension can only decrease under pullback, this implies the following fact

Every component of
⋃
e⃗ ′≤e⃗

Σe⃗(E) has at most the expected codimension. (4.3.2)

We note that the union
⋃
e⃗ ′≤e⃗Σe⃗(E) may not be the closure of Σe⃗(E), but it is always

closed in the base.

Definition 4.3.4 (Stratifications). Throughout this paper a stratification of B shall mean

a disjoint union B =
⊔
S∈S S into locally closed subvarieties (or substacks) equipped with

a partial ordering S ′ ≤ S such that for each S ∈ S, the union
⋃
S′≤S S

′ is closed in B.

Example 4.3.5 (Warning). Our notion of stratification is weaker than some in the

literature. For example, say B is the union of the two coordinate axes B = V (xy) ⊂

Spec k[x, y] ∼= A2. Then S = {V (y), V (x) ∖ (0, 0)} is a stratification of B with partial

order V (y) ≤ V (x)∖ (0, 0). We represent this partial order diagramatically as pictured on

the right.

We make use of the following key result from [Lar21c].

Theorem 4.3.6 (Theorem 1.2 of [Lar21c]). Let E be a vector bundle on a P1 bundle

π : P → B. Suppose that Σe⃗(E) occurs in the expected codimension. Then, modulo classes

supported on Σe⃗ ′(E) for e⃗ ′ < e⃗, the fundamental class of the closure of Σe⃗(E) is given by
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V (x)∖ (0, 0)

V (y)

V (x)∖ (0, 0)

V (y)

Figure 4.1. Example of a stratification

a universal formula in terms of the Chern classes of π∗OP (1), π∗E(m − 1) and π∗E(m)

for some m suitably large.

Applying this to the universal CE bundles, we obtain the following.

Lemma 4.3.7. Let E and F be the universal CE bundles on P → Hk,g. If Σe⃗(E) occurs

in the expected codimension, then, modulo classes supported on Σe⃗ ′(E) for e⃗ ′ < e⃗ the

fundamental class of its closure is expressible in terms of CE classes. The analogous

statement holds for the classes of Σf⃗ (F).

Proof. Recall that the class c2 = c2(π∗OP(1)) is a CE class by definition (and c1(OP(1)) = 0

because we are working over BSL2). For m suitably large, we have R1π∗E(m) = 0 and

R1π∗E(m− 1) = 0, so by Grothendieck–Riemann–Roch, the Chern classes of π∗E(m) and

π∗E(m − 1) are polynomials in the CE classes. Similarly, the Chern classes of π∗F(m)

and π∗F(m− 1) are polynomials in the CE classes for m suitably large. The result now

follows from Theorem 4.3.6.

We shall need a slight variant of the above lemma concerning particular unions of

splitting loci (some of which will be allowed to occur in the wrong codimension). Let us

define

Σ(n,∗,...,∗)(E) :=
⋃
e1=n

Σe⃗(E)
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In [Lar21c, Lemma 5.1], it was shown that if the above union occurs in its expected

codimension, equal to deg(e⃗)+1−(n+1)r, then —modulo classes supported on Σ(n′,∗,...,∗)(E)

for n′ < n — its fundamental class can be computed with the Porteous formula. In

particular, it is expressible in terms of the Chern classes of π∗E(m − 1), π∗E(m) and

π∗OP (1) for m suitably large. Arguing as in Lemma 4.3.7, we obtain the following result.

Lemma 4.3.8. Suppose that every component of the union Σ(n,∗,...,∗)(E) occurs in codi-

mension deg(e⃗) + 1− (n+1)r. Then, modulo classes supported on Σ(n′,∗,...,∗)(E) for n′ < n,

the fundamental class of the closure of Σ(n,∗,...,∗)(E) is expressible in terms of CE classes.

This is useful to us as illustrated in the following example.

Example 4.3.9. The expected codimension for splitting type (2, 4, 6) is 5, but suppose

that Σ(2,4,6)(E) occurs in codimension 4. Suppose Σ(2,5,5)(E) also occurs in codimension 4

and Σ(2,3,7)(E) and Σ(2,2,8)(E) are empty. Then, we have Σ(2,∗,∗)(E) = Σ(2,4,6)(E)∪Σ(2,5,5)(E),

and every component occurs occurs in codimension 4 = 13− 9 = deg(e⃗) + 1− (2 + 1)(3).

Thus, the above lemma shows that the fundamental class of the union Σ(2,4,6)(E)∪Σ(2,5,5)(E)

is expressible in terms of CE classes (modulo classes supported on Σ(n′,∗,∗)(E) for n′ < 2).

4.3.1 Pair splitting loci on H4,g

Let E and F be the universal CE bundles on P, the universal P1-bundle on H4,g.

Let e⃗ be a splitting type of rank 3 and degree g + 3, and let f⃗ be a splitting type of rank

2 and degree g + 3. Each splitting locus of the form Σ := Σe⃗(E) ∩ Σf⃗(F) has a concrete

description as a quotient stack. This description seems well-known in the literature, but

with slightly different presentations (see for example [DP15, p. 20], [CE96, Theorem

4.4], and [CDC02, Section 3]). Here, we outline our preferred way of thinking about this

quotient, following our set-up in [CL21d, Section 3].

The vector space

Φ : H0(P1,O(f⃗)∨ ⊗ Sym2O(e⃗)) ∼−→ H0(PO(e⃗)∨, γ∗O(f⃗)∨ ⊗OPO(e⃗)∨(2))
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parametrizes pencils of relative quadrics on the P1 bundle PO(e⃗)∨. Let

U ⊂ H0(P1,O(f⃗)∨ ⊗ Sym2O(e⃗))

be the open subset of sections η whose vanishing locus V (Φ(η)) ⊂ PO(e⃗)∨ defines a smooth,

irreducible quadruple cover of P1. Considering its Hilbert polynomial, one can show that

such a cover will have genus g. It turns out — essentially from the Casnati–Ekedahl

structure theorem — that all degree 4, genus g covers α : C → P1 with Eα ∼= O(e⃗) and

Fα ∼= O(f⃗) arise in this way. We make this precise below.

There is a natural action of SL2⋉(Aut(e⃗)× Aut(f⃗)) on U . Since e⃗ and f⃗ are the

same degree, we have detO(e⃗)⊗ detO(f⃗)∨ ∼= OP1 , so SL2⋉(Aut(e⃗)× Aut(f⃗)) also acts

on a copy of Gm ⊂ H0(P1, detO(e⃗)⊗detO(f⃗)∨). Our discussion will be simplified slightly

by considering also the framed Hurwitz space ρ : H†
k,g → Hk,g (see Remark 4.2.3). Let us

write Σ† := ρ−1(Σ), so Σ = [Σ†/ SL2]. This allows us to think about the quotient in two

steps.

Lemma 4.3.10. We have Σ† ∼= [(U ×Gm)/Aut(e⃗)× Aut(f⃗)], and therefore

Σ = [Σ†/ SL2] ∼= [(U ×Gm)/ SL2⋉(Aut(e⃗)× Aut(f⃗))].

Proof. We shall prove the statement for the framed stratum Σ†, from which the second

statement follows. By definition, Σ† ⊂ H4,g parametrizes covers α : C → P1 such that

Eα ∼= O(e⃗) and Fα ∼= O(e⃗). As a fiber category, the objects of Σ†(S) for a scheme S are

degree 4 covers α : C → P1 × S such that

1. Eα on P1 × S is a family of vector bundles of splitting type e⃗

2. Fα on P1 × S is a family of vector bundles on splitting type f⃗ .

3. C → S is a family of smooth genus g curves.
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The morphisms in Σ†(S) are isomorphisms of covers over P1×S. The category Σ†(S) is the

subcategory of Quad(P1 × S) from [CL21d, Section 3.2] where we impose the additional

conditions on the splitting types in (1) and (2), and the smoothness in condition (3).

Let G := Aut(e⃗) × Aut(f⃗). As explained in the start of this section, a principal

Aut(e⃗) bundle is equivalent to a family of vector bundles of splitting type e⃗ on P1×S. Via

this identification, [(U ×Gm)/G](S) is the category whose objects are tuples (E,F, ϕ, η)

where

(1′) E on P1 × S is a family of vector bundles of splitting type e⃗

(2′) F on P1 × S is a family of vector bundles of splitting type f⃗

(3′) ϕ is an isomorphism detE ∼= detF

(4′) η is a global section of F∨ ⊗ Sym2E such that V (η) ⊂ PE∨ → P1 × S is a degree 4

cover over S, and the composition V (η)→ S is a family of smooth curves.

An arrow (E1, F1, ϕ1, η1) to (E2, F2, ϕ2, η2) is a pair of isomorphisms ξ : E1 → E2, and

ψ : F1 → F2, such that the following diagrams commute

F1 Sym2E1

F2 Sym2E2

ψ

η1

Sym2 ξ

η2

detF1 detE1

detF2 detE2.

ϕ1

detψ det ξ

ϕ2

Thus, the category [(U ×Gm)/G](S) is the subcategory of Quad′(P1 × S) from [CL21d,

Section 3.2] where we impose the additional conditions on the splitting types in (1′) and

(2′) and the smoothness in condition (4′).

There is a natural map [(U ×Gm)/G]→ Σ† that sends a tuple (E,F, ϕ, η) over S

to the degree 4 cover V (Φ(η)) ⊂ PE∨ → P1 × S. Theorem 3.6 of [CL21d] showed that a

corresponding map Quad′(P1 × S)→ Quad(P1 × S) is an equivalence of categories. The

argument there restricts to give an equivalence of the subcategories [(U ×Gm)/G](S) and

Σ†(S).
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It follows from Lemma 4.3.10 that the e⃗, f⃗ splitting locus is irreducible of codimen-

sion

h1(P1, End(O(e⃗))) + h1(P1, End(O(f⃗)))− h1(P1,O(f⃗)∨ ⊗ Sym2O(e⃗)) (4.3.3)

inside H4,g (see also [DP15, Remark 4.2]). In light of Proposition 4.2.9, we are primarily

concerned with the e⃗, f⃗ splitting loci for which h1(P1,O(f⃗)∨⊗Sym2O(e⃗)) ̸= 0, equivalently

2e1 − f2 ≤ −2. By (4.3.3) these are the pair splitting loci whose codimension is not the

sum of the expected codimensions for e⃗ and f⃗ .

4.3.2 Pair splitting loci on H5,g

Let E and F be the universal CE bundles on π : P → H5,g. Let e⃗ be a splitting

type of rank 4 and degree g + 4, and let f⃗ be a splitting type of rank 5 and degree

2(g + 4). Similar to the previous subsection, we describe each splitting locus of the form

Σ := Σe⃗(E) ∩ Σf⃗(F) as a quotient stack. Again this description is well-known, though

in varying language (see for example [DP15, p. 24], [Cas96, Theorem 3.8]). We give a

presentation following our set up in [CL21d, Section 3].

In degree 5, the relevant space of section is

Φ : H0(P1,O(e⃗)⊗O(−g − 4)⊗ ∧2O(f⃗))
∼−→ H0(PO(e⃗)∨,OPO(e⃗)∨(1)⊗ γ∗(OP1(−g − 4)⊗ ∧2O(f⃗)))

Sections of the right-hand side are represented by 5× 5 skew-symmetric matrices M of

linear forms on PO(e⃗)∨. Given such a matrix M , we write D(M) ⊂ PO(e⃗)∨ to mean

the subscheme defined by the 4× 4 Pfaffians of M (see Section 4.5 for explicit equations

in coordinates). These Pfaffians correspond to the equations of the Grassmann bundle

G(2,O(f⃗)) ⊂ P(∧2O(f⃗)) under its relative Plücker embedding, as we now explain. A
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section

η ∈ H := H0(P1,O(e⃗)⊗O(−g − 4)⊗ ∧2O(f⃗))

can be viewed as a linear map η : O(e⃗)∨ ⊗O(g + 4)→ ∧2O(f⃗). If this map is injective

with locally free cokernel, then D(Φ(η)) ⊂ PO(e⃗)∨ is the intersection of η(PO(e⃗)∨) with

G(2,O(f⃗)) ⊂ P(∧2O(f⃗)). The Grassmann bundle G(2,O(f⃗)) ⊂ P(∧2O(f⃗)) has degree 5

and codimension 3 in each fiber over P1, so one expects this intersection to be a degree 5

cover of P1.

Let U ⊂ H be the open subvariety of sections η such that D(Φ(η)) is a smooth,

irreducible degree 5 cover of P1. Considering its Hilbert polynomial, one can show that

such a cover will have genus g. It turns out — essentially from the Casnati–Ekedahl

structure theorem and further work of Casnati [Cas96] — that all degree 5, genus g smooth

covers α : C → P1 with Eα ∼= O(e⃗) and Fα ∼= O(f⃗) arise in this way.

Precisely, there is a natural action of SL2⋉(Aut(e⃗)×Aut(f⃗)) on U . Since deg(f⃗) =

2 deg(e⃗), we have detO(e⃗)⊗2 ⊗ detO(f⃗)∨ ∼= OP1 , so SL2⋉(Aut(e⃗) × Aut(f⃗)) acts on a

copy of Gm ⊂ H0(P1, detO(e⃗)⊗2 ⊗ detO(f⃗)∨). As in the previous subsection, we will

consider the quotient in two steps. Let ρ : H†
5,g → H5,g be the parametrized Hurwitz space

and set Σ† := ρ−1(Σ) so Σ = [Σ†/ SL2].

Lemma 4.3.11. We have Σ† ∼= [(U ×Gm)/Aut(e⃗)× Aut(f⃗)]. Therefore,

Σ = [Σ†/ SL2] ∼= [(U ×Gm)/ SL2⋉(Aut(e⃗)× Aut(f⃗))].

Proof. The proof is very similar to Lemma 4.3.10. There is a map

[(U ×Gm)/Aut(e⃗)× Aut(f⃗)]→ Σ†

that comes from sending a section η ∈ U to the associated cover D(Φ(η)) → P1. The

categories Σ†(S) and [(U × Gm)/Aut(O(e⃗)) × Aut(O(f⃗))](S) are readily seen to be
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subcategories of Pent(P1 × S) and Pent′(P1 × S) respectively, defined in [CL21d, Section

3.3]; these two subcategories are seen to be equivalent under the equivalence given in [CL21d,

Theorem 3.8].

It follows from Lemma 4.3.11 that the e⃗, f⃗ splitting locus is irreducible of codimen-

sion

h1(P1, End(O(e⃗))) + h1(P1, End(O(f⃗)))− h1(P1,O(e⃗)⊗O(−g − 4)⊗ ∧2O(f⃗)) (4.3.4)

inside H5,g. In light of Proposition 4.2.9, our primary interest will be in strata where the

last term h1(P1,O(e⃗)⊗O(−g−4)⊗∧2O(f⃗)) ̸= 0, or equivalently e1+f1+f2−(g+4) ≤ −2.

4.4 The Tetragonal Locus

In this section, we study the stratification of H4,g by the pair splitting loci of the

CE bundles E and F . Given a degree 4, genus g cover α : C → P1, we let E = Eα and

F = Fα be the associated vector bundles as in Section 4.2.1. Since they are vector bundles

on P1, the bundles E and F split.

E = O(e1)⊕O(e2)⊕O(e3) e1 ≤ e2 ≤ e3

and

F = O(f1)⊕O(f2) f1 ≤ f2.

In this section, we use the roman font, E and F , to denote vector bundles of a fixed

splitting type. By slight abuse of notation, we sometimes write E = e⃗ to mean E ∼= O(e⃗).

When C is not hyperelliptic, the splitting type of E can be interpreted geometrically

as follows: under the canonical embedding, the fibers of α span a 2-plane. The union of
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these two planes is called the associated 3-fold scroll. The embedding C ⊂ PE∨ given

by the Casnati–Ekedahl theorem is constructed so that OPE∨(1)|C = ωα = ωC ⊗ α∗ω∨
P1 .

Let γ : PE∨ → P1 be the structure map. Then, the associated scroll is the image of

PE∨ → Pg−1 via the line bundle OPE∨(1)⊗ γ∗ωP1 on PE∨.

Meanwhile, the bundle F parametrizes the pencil of relative quadrics that define

C ⊂ PE∨. If X, Y, Z are relative coordinates on PE∨ corresponding to a splitting, then

the pencil is generated by

p = p1,1X
2 + p1,2XY + p2,2Y

2 + p1,3XZ + p2,3Y Z + p3,3Z
2 (4.4.1)

q = q1,1X
2 + q1,2XY + q2,2Y

2 + q1,3XZ + q2,3Y Z + q3,3, Z
2, (4.4.2)

where pi,j and qi,j are polynomials on P1 of degrees

deg(pi,j) = ei + ej − f1 and deg(qi,j) = ei + ej − f2.

For a stratum to be non-empty, e⃗ and f⃗ must satisfy certain constraints, which

we collect below. Considering the defining sequence (4.2.1) of Eα, we see that deg(E) =

− deg(α∗OC) = −χ(α∗OC) + 4 = g + 3. By [CE96, Theorem 4.4], one must have

detE ∼= detF , so

e1 + e2 + e3 = f1 + f2 = g + 3. (4.4.3)

For a cover to be irreducible, we must have 1 = h0(C,OC) = h0(P1, E∨) + 1. This implies

e1 ≥ 1. An upper bound on the largest part was given in [DP15, Proposition 2.6]:

e1 ≥ 1 and e3 ≤
g + 3

2
. (4.4.4)
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It is well-known (see e.g. [Sch86, p. 127]) that

e1 = 1 if and only if C is hyperelliptic, (4.4.5)

in which case α factors as C
h−→ P1 i−→ P1, where h : C → P1 is the hyperelliptic map and

i : P1 → P1 is a degree 2 cover.

We now turn to the geometry of the quadrics that cut out C. If p1,1 = 0 and

q1,1 = 0, then V (p, q) contains the section Y = Z = 0. Thus,

p1,1 and q1,1 cannot both be 0 ⇒ 2e1 ≥ f1. (4.4.6)

If q1,1 = q1,2 = q2,2 = 0, then the quadric q is divisible by Z. That is, V (q) is reducible, so

C, being irreducible, must lie in one component. Then fibers of C → P1 would then each

span a line under the canonical embedding, giving C a g24, which is impossible when g > 3.

q1,1, q1,2 and q2,2 cannot all be 0 ⇒ 2e2 ≥ f2. (4.4.7)

On the other hand, if q1,1 = q1,2 = q1,3 = 0, then V (q) is singular all along the section

Y = Z = 0. Therefore, in order for C to be smooth, no other quadric in the pencil can

vanish at any point along the section Y = Z = 0:

if q1,1 = q1,2 = q1,3 = 0, then p1,1 must be non-vanishing on P1. (4.4.8)

In terms of splitting types this implies,

if f2 > e1 + e3, then f1 = 2e1. (4.4.9)

Let us write Ψ := H4,g ∖ SuppR1π∗(F∨ ⊗ Sym2 E). By Proposition 4.2.9, we know
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that A∗(Ψ) is generated by tautological classes. The complement of Ψ is the union of

splitting loci which satisfy 2e1 − f2 ≤ −2. We will therefore need some results concerning

the Chow rings of locally closed strata Σe⃗(E) ∩ Σf⃗(F) for such e⃗, f⃗ , which we prove

in Section 4.4.2. In Sections 4.4.4, 4.4.5, 4.4.6, we specialize to the cases g = 7, 8, 9

respectively.

4.4.1 Strategy

Our basic strategy will be as follows:

1. Use conditions (4.4.3) – (4.4.9) to determine the allowed pairs of splitting types e⃗, f⃗ .

The partial order on splitting types of Section 4.3 induces a partial order on pairs of

splitting types by (e⃗ ′, f⃗ ′) ≤ (e⃗, f⃗) if e⃗ ′ ≤ e⃗ and f⃗ ′ ≤ f⃗ .

2. Starting with strata at the bottom of our ≤ order and working upwards, show that

for each stratum outside of Ψ, at least one of the following is satisfied:

(a) the stratum is contained in β−1(M3
g)

(b) its fundamental class in H4,g ∖ β−1(M3
g) is tautological (modulo classes sup-

ported on strata below it in the partial order) and the Chow ring of the locally

closed stratum is generated by the restrictions of CE classes.

(c) the push forward of its fundamental class toMg ∖M3
g is tautological and the

Chow ring of the locally closed stratum is generated by the restrictions of κ1, κ2.

Case (c) will only be needed in genus 9; thus, in genus 7 and 8, we will actually establish

that A∗(H4,g ∖ β−1(M3
g)) is generated by CE classes.

Remark 4.4.1. We note the “trade-off” between choices (b) and (c) above. If a class is

tautological on H4,g ∖ β−1(M3
g), then its push forward toMg ∖M3

g is tautological by

Theorem 4.2.4. On the other hand, κ1 and κ2 are CE classes, but need not generate all

CE classes. Therefore, in (b) if we prove the stronger statement about the fundamental
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class, we only need the weaker statement about the Chow ring; in (c) if we only prove the

weaker condition about the fundamental class, we need the stronger statement about the

Chow ring.

4.4.2 Chow rings of locally closed strata outside Ψ

In Lemma 4.3.10, each e⃗, f⃗ splitting locus Σ = Σe⃗(E) ∩ Σf⃗ (F) was described as a

quotient of the form [(U ×Gm)/G], where G := SL2⋉(Aut(e⃗)× Aut(f⃗)). The quotient

[(U ×Gm)/G] is a Gm bundle over [U/G], and U ⊂ H := H0(P1,O(f⃗)∨ ⊗ Sym2O(e⃗)) is

an open subvariety of affine space. Hence, there is a series of surjections

A∗(BG) ↠ A∗([U/G]) ↠ A∗(Σ), (4.4.10)

We gave generators for A∗(BG) in Lemma 4.3.3. To show that A∗(Σ) is generated by CE

classes, it will suffice to show that the images of these generators under (4.4.10) can be

written in terms of CE classes. Similarly, to show the stronger statement that A∗(Σ) is

generated by κ1 and κ2, we must show that the images of the generators of A∗(BG) under

(4.4.10) are all expressible in terms of κ1 and κ2. We first consider the case when e⃗ has a

repeated part.

Lemma 4.4.2. Let Σ be the e⃗, f⃗ splitting locus and suppose e1 < e2 = e3 and f1 < f2.

Then, A∗(Σ) is generated by the restrictions of CE classes.

Proof. Set G := SL2⋉(Aut(e⃗) × Aut(f⃗)) and let π : P → BG be the P1 bundle pulled

back from BSL2. Let L of rank 1 and R of rank 2 be the HN bundles for e⃗ so that we have

a filtration

0→ (π∗R)(e2)→ V(e⃗)→ (π∗L)(e1)→ 0. (4.4.11)

Similarly, let M and N be the rank 1 HN bundles for f⃗ so that we have a filtration

0→ (π∗N)(f2)→ V(f⃗)→ (π∗M)(f1)→ 0. (4.4.12)
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Let ri = ci(R), and ℓ = c1(L),m = c1(M) and n = c1(N). Let c2 be the second

Chern class pulled back from BSL2. By Lemma 4.3.3, the classes r1, r2, ℓ,m, n and c2

freely generate A∗(BG). Setting z = c1(OP(1)), and using the splitting principle with

(4.4.11). we obtain the identities

c1(V(e⃗)) = c1(R(e2)) + c1(L(e1)) = r1 + 2e2z + ℓ+ e1z = (r1 + ℓ) + (g + 3)z. (4.4.13)

Recalling that z2 = −c2 on P , and using the splittng principle we also have

c2(V(e⃗)) = (2e2ℓ+ (e1 + e2)r1)z − (2e1e2 + e22)c2 + ℓr1 + r2. (4.4.14)

Similarly, using the splitting principle on (4.4.12), we obtain the identities

c1(V(f⃗)) = c1(M(f1)) + c1(N(f2)) = m+ f1z + n+ f2z = (m+ n) + (g + 3)z, (4.4.15)

c2(V(f⃗)) = (f2m+ f1n)z − f2f1c2 +mn. (4.4.16)

By slight abuse of notation, let us denote the images of r1, r2, ℓ,m, n and c2 under

the map (4.4.10) by the same letters. (The pullback of c2 is the CE class c2, as both are

pulled back from BSL2.) These classes are generators for A∗(Σ). By (4.4.13), we have

a1 = r1 + ℓ. By (4.4.14), we have a′2 = e1r1 +2e2ℓ. We have e1 < 2e1, so the classes r1 and

ℓ are expressible in terms of a1 and a′2. Next, (4.4.14) shows a2 = r2 + r1ℓ− (2e1e2 + e22)c2,

so r2 is also expressible in terms of CE classes. Finally, b1 = m + n by (4.4.15) and

b′2 = f2m + f1n by (4.4.16), so m and n are expressible in terms of b1 and b′2 because

f1 < f2. Hence, the CE classes generate A∗(Σ).

Now we consider the case when all parts of e⃗ are distinct. The proof follows a

similar set up, but requires that we also make use of some relations among the generators

of A∗(BG) when pulled back to A∗([U/G]), i.e. that the first map v∗ in (4.4.10) has a
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kernel. The classes in the kernel come from considering the complement of U ⊂ H :=

H0(P1,O(f⃗)∨ ⊗ Sym2O(e⃗)), which corresponds equations whose vanishing locus in PE∨

fails to be a smooth, irreducible curve. The second map in (4.4.10) also has a kernel. By

Lemma 4.3.10, we have that Σ→ [U/G] is the Gm bundle associated to the line bundle

π∗(detV(e⃗)⊗ detV(f⃗)∨). Thus, by a theorem of Vistoli, the kernel of A∗([U/G])→ A∗(Σ)

is generated by c1(π∗(detV(e⃗)⊗ detV(f⃗)∨)) = a1 − b1.

Lemma 4.4.3. Let Σ be the e⃗, f⃗ splitting locus and suppose e1 < e2 < e3 and f1 < f2 and

2e1 < f2. Then the following are true:

1. If 2e1 = f1, then A
∗(Σ) is generated by the restrictions of CE classes.

2. If 2e1 = f1, and e1 + e2 < 2e2 = f2, then A
∗(Σ) is generated by κ1 and κ2.

3. (i) If 2e1 > f1, and e1 + e2 < e1 + e3 = 2e2 = f2, then A∗(Σ) is generated by

restrictions of CE classes.

(ii) Furthermore, if we also have g ≠ 9− f1, then A∗(Σ) is generated by κ1 and κ2.

Proof. Set G = SL2⋉(Aut(e⃗) × Aut(f⃗)) and let π : P → BG be the P1 bundle pulled

back from BSL2 as before. Let L, S, T be the rank 1 HN bundles on BG for e⃗, so that

V(e⃗) is filtered by (π∗L)(e1), (π
∗S)(e2), and (π∗T )(e3). Similarly, let M and N be the

rank 1 HN bundles on BG for f⃗ so that V(f⃗) is filtered by (π∗M)(f1) and (π∗N)(f2). Let

s = c1(S), t = c1(T ), ℓ = c1(L),m = c1(M) and n = c1(N). By Lemma 4.3.3, the classes

s, t, ℓ,m, n and c2 freely generate A∗(BG).

Using the splitting principle (and omitting π pullbacks) as in Lemma 4.4.2, we have

c1(V(e⃗)) = c1(L(e1)) + c1(S(e2)) + c1(T (e3)) = (ℓ+ s+ t) + (g + 3)z.

Recalling that z2 = −c2 on P , we also have

c2(V(e⃗)) = ((e2 + e3)ℓ+ (e1 + e3)t+ (e1 + e2)s)z − (e1e2 + e1e3 + e2e3)c2 + ℓ(t+ s) + ts
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Thus, we have

a1 = ℓ+ s+ t and a′2 = (e2 + e3)ℓ+ (e1 + e3)s+ (e1 + e2)t. (4.4.17)

Similarly, using the splitting principle, the Chern classes of V(f⃗) satisfy the same identities

as in (4.4.15) and (4.4.16), so

b1 = m+ n and b′2 = f2m+ f1n. (4.4.18)

Notice that A∗(BG) has 5 generators in codimension 1, but there are only 4

codimension 1 CE classes (namely a1, a
′
2, b1, b

′
2). Thus, to have any hope of the CE classes

generating A∗(Σ), the first map (4.4.10) must have some kernel in codimension 1. In each

of the cases below, we describe one, or two such relations.

(1) Assume that 2e1 = f1. Corresponding to our filtration of V(e⃗), there is a

quotient Sym2 V(e⃗)→ (π∗L)⊗2(2e1). Tensoring with V(f⃗)∨, we obtain a quotient

V(f⃗)∨ ⊗ Sym2 V(e⃗)→ V(f⃗)∨ ⊗ (π∗L)⊗2(2e1). (4.4.19)

Using our filtration of V(f⃗)∨, we see that the right hand term above is filtered by the line

bundles π∗(N∨ ⊗ L⊗2)(2e1 − f2) and π∗(M∨ ⊗ L⊗2)(2e1 − f1) = π∗(M∨ ⊗ L⊗2). Noting

that 2e1 − f2 < 0, cohomology and base change then shows that the push forward of the

right hand term of (4.4.19) is π∗(V(f⃗)∨ ⊗ (π∗L)⊗2(2e1)) ∼= M∨ ⊗ L⊗2. Applying π∗ to

(4.4.19), we therefore obtain a surjection

π∗(V(f⃗)∨ ⊗ Sym2 V(e⃗))→M∨ ⊗ L⊗2.

The total space of π∗(V(f⃗)∨ ⊗ Sym2 V(e⃗)) is simply [H0(P1,O(f⃗)∨ ⊗ Sym2O(e⃗))/G]. In

the notation of (4.4.1), the above surjection corresponds to projection onto the coefficient
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p1,1. Since 2e1 − f2 < 0, the coefficient q1,1 = 0. Thus by (4.4.6), we must have p1,1 ̸= 0.

That is, U lies in the complement of the kernel of this projection. Put differently, writing

v : [U/G]→ BG for the map to the base, the line bundle v∗(M∨⊗L⊗2) has a non-vanishing

section on [U/G]. Hence, we have the relation

0 = v∗(2ℓ−m). (4.4.20)

We collect (4.4.17), (4.4.18) and (4.4.20) into a 5× 5 matrix equation in A1(Σ):



a1

a′2

b1

b′2

0


=



1 1 1 0 0

e2 + e3 e1 + e3 e1 + e2 0 0

0 0 0 1 1

0 0 0 f2 f1

2 0 0 −1 0





ℓ

s

t

m

n


.

The matrix of coefficients above has determinant 2(e3 − e2)(f2 − f1). Since e2 ̸= e3 and

f1 ̸= f2, the matrix is invertible, so the images of the classes ℓ, s, t,m, n are expressible

in terms of the CE classes a1, a
′
2, b1, a

′
2. The images of ℓ, s, t,m, n and c2 under (4.4.10)

generate A∗(Σ). Hence, A∗(Σ) is generated by CE classes.

(2) Suppose further that 2e1 = f1, and e1+e2 < 2e2 = f2. Because 2e1 < e1+e2 < f2,

both q1,1 and q1,2 are zero. By (4.4.7), q2,2 must be nonzero. Since 2e2 = f2, the coefficient

q2,2 is degree 0, so its non-vanishing is a codimension 1 condition. Using an argument

similar to the above, this gives rise to a non-vanishing global section of v∗(S⊗2 ⊗ N∨)

on [U/G]. Hence, we obtain the relation v∗(2s − n) = 0. As in (1) we still have the

relation v∗(2ℓ−m) = 0. Meanwhile, we also know of some relations among CE classes

that hold in A1(H4,g). First off, we have 0 = a1 − b1, which corresponds to Σ → [U/G]

being a Gm bundle associated to a line bundle with first Chern class a1 − b1. Second,

we have 0 = (8g + 20)a1 − 8a′2 − b′2, by [CL21a, Equation 5.7], corresponding to the
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fundamental class of ∆ := H0(P1,O(f⃗)∨ ⊗ Sym2O(e⃗))∖ U . (Our other relations above

2ℓ−m = 2s− n = 0 came from certain components of ∆). Finally, by [CL21a, Lemma

7.6], we have κ1 = (12g + 24)a1 − 12a′2. Using (4.4.17) and (4.4.18) to rewrite these in

terms of s, t, ℓ,m, n (and that e1 + e2 = e3 = f1 + f2 = g + 3), we lay out a 5× 5 matrix

summarizing these relations that hold in A1(Σ):



0

0

0

0

κ1


=



2 0 0 0 −1

0 0 2 −1 0

1 1 1 −1 −1

8e2 + 44 8e3 + 44 8e1 + 44 −f2 −f1

12e2 + 60 12e3 + 60 12e1 + 60 0 0





s

t

ℓ

m

n


. (4.4.21)

Taking into account f2 = 2e2 and f1 = 2e1, the determinant of the above matrix is equal

to 48(g + 5)(e2 − e1) ̸= 0, so κ1 is a generator for A1(Σ).

Next, we want to show that the entire ring A∗(Σ) is generated by κ1 and κ2. Because

A∗(Σ) is generated in codimension 1 and 2, it suffices to show that A2(Σ) is generated by

κ2, together with products of codimension 1 classes. This in turn follows if we can write

c2 in terms of products of codimension 1 classes and κ2. Such an identity in fact holds in

A2(H4,g), as implied by [CL21a, Example 7.8]. Precisely, combining [CL21a, Equations

(7.3) and (7.5)], we see

c2 = −24(2g3 − 32g2 + 138g − 12)κ2 + products of codimension 1 classes ∈ A2(H4,g).

(4.4.22)

(3) Now we assume that 2e1 > f1 and e1+e2 < e1+e3 = 2e2 = f2. Since e1+e2 < f2,

we have q1,1 = q1,2 = 0, so by (4.4.7), we must have q2,2 ̸= 0. Since deg(q2,2) = 2e2−f2 = 0,

this is also a codimension 1 condition. The coefficient q2,2 is corresponds to a non-zero

section of v∗(S⊗2 ⊗ N∨), so we obtain the relation v∗(2s − n) = 0 as in (2). Collecting
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(4.4.17), (4.4.18), and the relation v∗(2s− n) = 0 in a matrix equation, we have



a1

a′2

b1

b′2

0


=



1 1 1 0 0

e2 + e3 e1 + e3 e1 + e2 0 0

0 0 0 1 1

0 0 0 f2 f1

0 2 0 0 −1





ℓ

s

t

m

n


.

The determinant of the above matrix is −2(e3− e1)(f2− f1). Because e3 > e1 and f2 > f1,

this determinant does not vanish, and so the codimension 1 generators are expressible in

terms of CE classes. This completes the proof of (3)(i).

To show (3)(ii), we will need to produce more relations. Because 2e1 > f1, the

coefficient q1,1 is a polynomial of positive degree on P1, in particular it must vanish

somewhere. Thus, by (4.4.8), one of q1,1, q1,2, q1,3 must be nonzero. However, we know

q1,1 = q1,2 = 0, so we must have q1,3 ̸= 0. Again, deg(q1,3) = e1 + e3 − f2 = 0, so this is a

codimension 1 condition. This coefficient of q1,3 gives a non-zero section of v∗(L⊗T ⊗N∨),

on [U/G], so we obtain the relation v∗(ℓ+ t− n) = 0. Now, we can just replace the second

row of the matrix in (4.4.21) (the top row and bottom three are still valid relations), to

get an equation in A1(Σ):



0

0

0

0

κ1


=



2 0 0 0 −1

0 1 1 0 −1

1 1 1 −1 −1

8e2 + 44 8e3 + 44 8e1 + 44 −f2 −f1

12e2 + 60 12e3 + 60 12e1 + 60 0 0





s

t

ℓ

m

n


. (4.4.23)

The determinant of the above matrix is −12(f1 + g − 9)(e3 − e1), which is non-zero given

the hypotheses in the lemma. Thus κ1 generates A1(Σ). By (4.4.22), we see that the
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codimension 2 generator c2 is expressible in terms of κ2 and κ21. Hence, A
∗(Σ) is generated

by κ1 and κ2, as desired.

4.4.3 Genus 5 and 6

As a warm-up, we will explain how the argument works in genus 5 and 6, thus

giving new proofs of the results of Izadi [Iza95] and Penev-Vakil [PV15b], who proved that

the Chow ring is equal to the tautological ring in genus 5 and 6, respectively.

Using (4.4.3)–(4.4.9), we have the following allowed pairs of splitting types in genus

5. We label a stratum with a Ψi if it is contained within Ψ (see Proposition 4.2.9),

equivalently if 2e1 − f2 ≥ −1:

(Ψ0) E = (2, 3, 3), F = (4, 4).

(Ψ1) E = (2, 3, 3), F = (3, 5).

(Ψ2) E = (2, 2, 4), F = (3, 5).

(Z) E = (1, 3, 4), F = (2, 6).

Proposition 4.4.4. The Chow ring A∗(H4,5 ∖ β−1(M3
5)) is generated by tautological

classes. Hence, A∗(M5) is tautological.

Proof. By (4.4.5), the stratum Z consists of entirely hyperelliptic curves. Hence, H4,5 ∖

β−1(M3
5) is contained in H4,5 ∖ Z = Ψ0 ∪ Ψ1 ∪ Ψ2 = Ψ. In particular, by Proposition

4.2.9, we see A∗(H4,5 ∖ β−1(M3
5)) is generated by tautological classes. By Theorem 4.2.4,

it follows that A∗(M5 ∖M3
5) is generated by tautological classes. Classes supported on

M3
5 are known to be tautological (4.1.1), so we conclude that A∗(M5) is tautological.

The genus 6 case is similar. By (4.4.3)–(4.4.9), we have the following pairs of

splitting types:

(Ψ0) E = (3, 3, 3), F = (4, 5), generic stratum.
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(Ψ1) E = (2, 3, 4), F = (4, 5), codimension 1, with E unbalanced.

(Ψ2) E = (3, 3, 3), F = (3, 6), codimension 2, with F unbalanced.

(Σ3) E = (2, 3, 4), F = (3, 6), codimension 2, with E and F unbalanced.

(Z) E = (1, 4, 4), F = (2, 7), codimension 2.

We first identify the curves of lower gonality

Lemma 4.4.5. We have β−1(M3
6) = Z ∪Ψ2

Proof. By (4.4.5), we already know Z = β−1(M2
6), so must show that Ψ2 = β−1(M3

6∖M2
6).

We first show Ψ2 ⊆ β−1(M3
6 ∖M2

6). On Ψ2, we have PE∨ ∼= P1 × P2. Since deg(qi,j) = 0

and deg(pi,j) = 3 for all i, j, the projection onto the P2 factor realizes C as a degree 3 cover

of a conic in P2. To show the reverse inclusion, suppose σ : C → P1 is a trigonal curve

that also admits a degree 4 map α : C → P1. Then (α, σ) : C → P1× P1 is birational onto

its image, which is a curve of bidegree (3, 4). By the genus formula, the genus of the image

is 6, so (α, σ) : C → P1 × P1 is an embedding. Composing with the degree 2 Veronese on

the second factor, we obtain a map C ↪→ P1 × P1 ↪→ P1 × P2 which is an embedding of

C in a P2 bundle satisfying the properties of P in Theorem 4.2.6. By its uniqueness, we

see that PEα ∼= P1 × P2, i.e. Eα = (3, 3, 3). Meanwhile, the bundle Fα corresponds to the

quadrics vanishing on C ⊂ PE∨
α
∼= P1 × P2. The curve C lies on a quadric whose equation

is pulled back from the P2 factor. Writing this quadric in the form (4.4.2), we see that

deg(qi,j) = 0, so f2 = 6. Hence, Fα = (3, 6).

Proposition 4.4.6. The Chow ring A∗(H4,6 ∖ β−1(M3
6)) is generated by tautological

classes. Hence, A∗(M6) is tautological.

Proof. Working on the complement of β−1(M3
6) = Z ∪Ψ2, we observe that Σ3 is the (3, 6)

splitting locus for F , i.e. Σ3 = Σ(3,6)(F). Moreover,

codimΣ3 = 2 = h1(P1, End(O(3, 6))).
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Thus, by Lemma 4.3.7, the fundamental class of Σ3 ⊂ H4,6∖β−1(M3
6) is expressible in terms

of CE classes. By Lemma 4.4.3 (3) (i), we see A∗(Σ3) is generated by restrictions of CE

classes. Hence, using the push-pull formula, every class supported on Σ3 ⊂ H4,6∖β−1(M3
6)

is tautological.

Meanwhile, H4,6 ∖ (β−1(M3
6)∪Σ3) = Ψ0 ∪Ψ1 = Ψ is the open subset considered in

Proposition 4.2.9. Hence, A∗(H4,6 ∖ (β−1(M3
6) ∪ Σ3)) is generated by tautological classes.

By excision and the first paragraph of the proof, all of A∗(H4,6 ∖ β−1(M3
6)) is tautological.

By Theorem 4.2.4, A∗(M6 ∖M3
6) is generated by tautological classes. Combined with

(4.1.1), we obtain that A∗(M6) is tautological.

Remark 4.4.7. (1) We note that the stratum Σ3 consists of plane quintic curves. Indeed,

on Σ3, we have p1,1 = 0 and deg(q1,1) = 1 so the curve meets the line Y = Z = 0 in PE∨ in

one point, say ν ∈ C. The canonical line bundle on C is the restriction of OPE∨(1)⊗ ωP1 ,

which contracts the line Y = Z = 0 in the map PE∨ → P5. Thus, ν is contained in each of

the planes spanned by the image of a fiber of α under the canonical embedding. Hence, by

geometric Riemann–Roch, the g14 plus ν is a g25. The locus of genus 6 curves possessing a

g25 is codimension 3 inM6, but this stratum has codimension 2 in H4,6 because projection

from any point on a plane quintic gives a g14.

(2) It turns out Σ3 in genus 6 is the only case where Lemma 4.4.3 (3)(i) holds but

g = 9− f1. The fact that Σ3 →M6 has positive-dimensional fibers seems to provide some

geometric intuition for this exception where we fail to obtain the stronger statement in

(3)(ii).

4.4.4 Genus 7

Using (4.4.3) – (4.4.9), the allowed splitting types in genus 7 are as follows. We

label a stratum with a Ψi if it is contained within Ψ (see Proposition 4.2.9), equivalently

if 2e1 − f2 ≥ −1.

(Ψ0) E = (3, 3, 4), F = (5, 5): generic stratum; associated scroll is smooth.

216



(Ψ1) E = (3, 3, 4), F = (4, 6): associated scroll is smooth, F unbalanced.

(Σ2) E = (2, 4, 4), F = (4, 6): associated scroll is a cone over P1 × P1 (which is embedded

in a hyperplane in P6 via O(2, 1)). General bielliptics live in here as a proper closed

subvariety, described in [CDC02, Theorem 2.3].

(Σ3) E = (2, 3, 5), F = (4, 6): the associated scroll is a cone over the Hirzebruch surface

F2 (embedded via O(1) on P(O(1)⊕O(3)). The “special bielliptics” live in here as

a proper closed subvariety, described in [CDC02, Theorem 2.3].

(Z) E = (1, 4, 5), F = (2, 8): stratum of hyperelliptic curves (see (4.4.5)).

codimension closure order

0 Ψ0

1 Ψ1

2 Σ2 Z

3 Σ3

our ≤ order

Ψ0

Ψ1

Σ2

Σ3

Z

Figure 4.2. Two partial orders on the genus 7 strata

The table on the left of Figure 4.2 lists the codimensions of strata (computed with

(4.3.3)). It also indicates the partial order of which strata lie in the closure of others,

which can be seen by considering (4.3.2). This should be contrasted with the our partial

ordering ≤, which is pictured on the right.

Lemma 4.4.8. The Chow ring A∗(H4,7 ∖ β−1(M3
7)) is generated by CE classes. Hence,

all classes supported onM4
7 are tautological onM7.
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Proof. We implement Strategy 4.4.1, starting at the bottom of the partial ordering. By

(4.4.5), we have

Z = β−1(M2
7) = β−1(M3

7).

The second equality follows because a genus 7 curve cannot possess maps to P1 of degrees

3 and 4, otherwise it would map to P1 × P1 with image a curve of bidegree (3, 4), which

has genus 6.

Next, we claim that, modulo classes supported on Z, the fundamental class of Σ3

is expressible in terms of CE classes. To see this, observe that Σ3 = Σ(2,3,5)(E). Moreover,

codimΣ3 = 3 = h1(P1, End(O(2, 3, 5))).

Thus, the claim follows from Lemma 4.3.7. By Lemma 4.4.3 (1), we see A∗(Σ3) is generated

by the restrictions of CE classes, so by the push-pull formula, every class supported on on

Σ3 ⊂ H4,7 ∖ Z is expressible in terms of CE classes, i.e. is tautological.

Similarly, modulo classes supported on Z and Σ3, we claim that the fundamental

class of Σ2 is expressible in terms of CE classes. To see this, observe that Σ2 = Σ(2,4,4)(E)

and

codimΣ2 = 2 = h1(P1, End(O(2, 4, 4))).

Thus, the claim again follows from Lemma 4.3.7. By Lemma 4.4.3 (1), we see A∗(Σ2)

is generated by restrictions of CE classes. Using the push-pull formula, along with the

previous paragraph, we see that every class supported on Σ2∪Σ3 ⊂ H4,7∖Z is tautological.

By Proposition 4.2.9, we know A∗(Ψ) is generated by tautological classes. Putting

this together with the above, we find that A∗(Ψ ∪ Σ2 ∪ Σ3) = A∗(H4,7 ∖ β−1(M3
7)) is

generated by tautological classes. Applying Theorem 4.2.4, every class supported on

M4
7 ∖M3

7 is tautological in M7 ∖M3
7. classes supported on M3

7 are known to be

tautological (see (4.1.1)), so the result follows.
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4.4.5 Genus 8

Using (4.4.3) – (4.4.9), there are five allowed splitting types for the CE bundles,

which give rise to the following stratification of H4,8. Again, we label a stratum with a Ψi

if it is contained within Ψ, equivalently if 2e1 − f2 ≥ −1.

(Ψ0) E = (3, 4, 4), F = (5, 6): generic stratum; the associated scroll is smooth.

(Ψ1) E = (3, 4, 4), F = (4, 7): associated scroll is smooth, F unbalanced.

(Ψ2) E = (3, 3, 5), F = (5, 6): associated scroll is smooth, E unbalanced.

(Σ3) E = (2, 4, 5), F = (4, 7): associated scroll is a cone over F1. Bielliptic curves are a

proper closed subvariety here, see [CDC02, Theorem 2.3].

(Z) E = (1, 5, 5), F = (2, 9): stratum of hyperelliptic curves (see (4.4.5)).

The table on the left of Figure 4.3 lists the codimension of strata (see (4.3.3)) and

indicates which strata are in the closure of others, which can be seen by considering (4.3.2).

This should be contrasted with our partial ordering ≤, which is pictured on the right.

codimension closure order

0 Ψ0

1

2 Ψ2 Ψ1 Z

3 Σ3

our ≤ order

Ψ0

Ψ1 Ψ2

Σ3

Z

Figure 4.3. Two partial orders on the genus 8 strata

Lemma 4.4.9. The Chow ring A∗(H4,8 ∖ β−1(M3
8)) is generated by CE classes. Hence,

all classes supported onM4
8 are tautological onM8.
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Proof. The proof is very similar to Lemma 4.4.8. The lowest stratum is again the

hyperelliptic locus: Z = β−1(M2
8) = β−1(M3

8). Then, we notice that Σ3 is equal to

Σ(2,4,5)(E) and

codimΣ3 = 3 = h1(P1, End(O(2, 4, 5))).

Thus, by Lemma 4.3.7, the fundamental class of Σ3 inside H4,8 ∖ β−1(M3
8) is tautological.

By Lemma 4.4.3 (1), the Chow ring of the locally closed stratum A∗(Σ3) is generated

by the restrictions of CE classes. By the push-pull formula, every class supported on

Σ3 ⊂ H4,8 ∖ β−1(M3
8) is tautological.

Meanwhile, Proposition 4.2.9 shows that A∗(Ψ) = A∗(Ψ0∪Ψ1∪Ψ2) is generated by

tautological classes. Putting this together with the previous paragraph, all of A∗(H4,8 ∖

β−1(M3
8)) is generated by tautological classes.

4.4.6 Genus 9

Using (4.4.3) – (4.4.9), we find that the allowed splitting types in genus 9 are as

follows. Again, we label a stratum Ψi if 2e1 − f1 ≥ −1.

(Ψ0) E = (4, 4, 4), F = (6, 6): the general stratum, the associated scroll is P2 × P1.

(Ψ1) E = (4, 4, 4), F = (5, 7): codimension 1, with F unbalanced.

(Ψ2) E = (3, 4, 5), F = (6, 6): codimension 1, with E unbalanced.

(Ψ3) E = (3, 4, 5), F = (5, 7): codimension 2, both E and F unbalanced.

(Ψ4) E = (4, 4, 4), F = (4, 8): codimension 3, such curves have bidegree (4, 4) on P1 × P1.

(Ψ5) E = (3, 3, 6), F = (6, 6): codimension 4.

(Σ6) E = (3, 4, 5), F = (4, 8): codimension 3, such curves posess a g26 (Lemma 4.4.14).

(Σ7) E = (2, 5, 5), F = (4, 8): codimension 4, all such covers factor through a degree 2

cover of an elliptic curve (see Lemma 4.4.11).
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(Σ8) E = (2, 4, 6), F = (4, 8): codimension 4, the “special bielliptics” live here as a proper

closed locus of codimension 1 (see Figure 4.5).

(Z) E = (1, 5, 6), F = (2, 10): codimension 2, the hyperelliptic curves (see (4.4.5)).

In genus 9, it is less clear which strata lie in the closure of others. However, for our

purposes, all we need is our ≤ order, pictured in Figure 4.4 below.

Ψ0

Ψ2 Ψ1

Ψ5 Ψ3 Ψ4

Σ6

Σ7

Σ8

Z

Figure 4.4. Our ≤ order in genus 9

Note that Σ7 and Σ8 have the same dimension, so Σ8 is not contained in the closure

of Σ7 (see Example 4.3.5 for a baby case of this phenomenon).

Remark 4.4.10. The two “problem strata” mentioned in the introduction are Σ8 and

Σ6. Note that these are more “interesting” nodes in the diagram above: they live directly

below two different strata (i.e. there are two lines coming out the tops of these nodes).

The key to our argument is a good geometric understanding of Σ8,Σ7 and Σ6. (We

already know that Z consists of hyperelliptic curves, so it is not a concern.)
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We first describe the bielliptic locus, making use of the explicit description due to

Casnati–Del Centina [CDC02] for curves of genus 6 ≤ g ≤ 9. Let B9 ⊂ M9 denote the

locus of curves C which are double covers of an elliptic curve E. By the Castelnuovo–Severi

inequality, C → E is the unique degree 2 map of C to an elliptic curve. By Riemann–

Hurwitz, B9 is irreducible of dimension 16. Also by the Castelnuovo–Severi inequality,

every degree 4 map C → P1 from a bielliptic curve C factors through the map C → E.

That is, β−1(B9) ⊂ H4,9 consists of maps of the form C → E → P1. Hence, β−1(B9) ⊂ H4,9

is irreducible of dimension 17 and β−1(B9)→ B9 has 1-dimensional fibers. Recall that by

Riemann-Hurwitz, dimH4,9 = 21.

Lemma 4.4.11. Every curve in stratum Σ7 is bielliptic. Moreover, every degree 4 cover

that factors through an elliptic curve lives in the closure of Σ7, i.e. Σ7 = β−1(B9).

Proof. On Σ7, we have E = (2, 5, 5) and F = (4, 8). Thus, for degree reasons, we have

q1,2 = q1,3 = 0, so the conditions [CDC02, Theorem 2.3 (general case)] are automatically

satisfied. This says that Σ7 ⊂ β−1(B9). Meanwhile, Σ7 is irreducible of codimension 4,

hence dimension 17. Since β−1(B9) is closed and irreducible of dimension 17, we must

have Σ7 = β−1(B9).

Theorem 2.3 of [CDC02] shows that β−1(B9) meets precisely one other stratum, Σ8,

in codimension 1 inside Σ8. Casnati-Del Centina call the intersection Σ7 ∩ Σ8 the special

bielliptics (pictured in purple in Figure 4.5). The special bielliptics C
φ−→ E

σ−→ P1 are

characterized by the property that the branch locus of φ is linearly equivalent to σ∗OP1(8)

on E. Given a bielliptic curve C → E, one may always choose a map E → P1 so that the

composition C → E → P1 is special. Hence, β(Σ7) ⊂ β(Σ8).

Recall that (see Figure 4.4), the stratum Σ8 is closed in H4,9∖Z = H4,9∖β−1(M3
9).

Lemma 4.4.12. The push forward β∗(Σ8) is tautological onM9 ∖M3
9. Furthermore, the

push forward of any class supported on Σ8 ∪ Σ7 is tautological onM9 ∖M3
9.
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specialbielliptics E

EINE Mott

l

im

Figure 4.5. The map β contracts Σ7 and β(Σ7) ⊂ β(Σ8)

Proof. We first observe that Σ(2,∗,∗)(E) = Σ7 ∪ Σ8 and has pure codimension 4, which is

the expected codimension. By Lemma 4.3.8 (see also Example 4.3.9), the fundamental

class of Σ(2,∗,∗)(E) is tautological in H4,9 ∖Z = H4,9 ∖ β−1(M3
9). Hence, by Theorem 4.2.4,

we have

β∗[Σ(2,∗,∗)(E)] = β∗[Σ8] + β∗[Σ7]

is tautological on M9 ∖M3
9. But, by Lemma 4.4.11, Σ7 = β−1(B9) maps to M9 with

1-dimensional fibers (pictured in blue in Figure 4.5). Hence, β∗[Σ7] = 0, so β∗[Σ8] is

tautological onM9 ∖M3
9.

By Lemma 4.4.3 (2), we know that A∗(Σ8) is generated by the pullbacks of κ1 and

κ2. Hence, using the push-pull formula, the push forward of every class supported on Σ8

is tautological. Since we are working with rational coefficients, the pushforward map from

A∗(Σ8) to A
∗(β(Σ8)) is surjective. Hence, every class supported on β(Σ8) is tautological

onM9 ∖M3
9. The last sentence now follows because β(Σ8 ∪ Σ7) = β(Σ8).

Example 4.4.13 (Regarding the class of B9). To further explicate the second paragraph

of the above proof, we explain why the fundamental class of B9 ⊂M9∖M3
9 is tautological.
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(Once known to be tautological, this class actually must be 0 by a result of Looijenga

[Loo95].) Let S = Σ7 ∩ Σ8 ⊂ Σ8 be the locus of special bielliptics (pictured in purple in

Figure 4.5). We know that S maps finitely and surjectively onto B9. Thus, the fundamental

class of B9 ⊂M9 ∖M3
9 is a multiple of β∗[S]. By Lemma 4.4.3 (2), the class of S inside

A∗(Σ8) is a multiple of β∗κ1, so by the push-pull formula, β∗[S] is a multiple of κ1 · β∗[Σ8].

Continuing up the partial order, we turn next to Σ6.

Lemma 4.4.14. Every curve in Σ6 possesses a g26 which is birational onto its image.

Proof. On Σ6, we have 2e1 − f2 < 0 and 2e1 − f2 = 2. Therefore, C = V (p, q) meets

the line V (Y, Z) ⊂ PE∨ in 2 points (counted with multiplicity), say p + q. The line

V (Y, Z) ⊂ PE∨ is dual to the canonical quotient E → O(3). This line is sent to a line

with degree 1 under the map PE∨ → P8 that factors the canonical embedding (which is

given by OPE∨(1)⊗ γ∗ωP1).

PE
f qTL gY 2 O

c
P2

C 1138

P a

IP8 6pointsin
p3nC

Figure 4.6. Curves in Σ6 possess a g26

As pictured on the left of Figure 4.6, the line spanned by p, q meets each plane

spanned by the fibers of the g14. Taking a fiber of the g14 plus p and q, we obtain 6 points

whose span under the canonical is 3-dimensional. By Geometric Riemann–Roch, these six

points constitute a g26 (pictured on the right of Figure 4.6).

A g26 is either (1) birational onto its image (2) a double cover of a degree 3 plane

curve or (3) a degree 3 cover of a conic. A genus 9 curve cannot have maps to P1 of

degrees 3 and 4 (if so it would map birationally to a curve of bidegree (3, 4) on P1 × P1,
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which has genus 6), so we are not in case (3). Meanwhile, we have already established

that everything in case (2) is contained in Σ8 ∪ Σ7, which is disjoint from Σ6. Thus, we

must be in case (1).

Let PS ⊂M9 denote the locus of plane sextics, i.e. curves of genus 9 with a g26 that

is birational onto its image. Let ∆◦ ⊂ H0(P2,OP2(6)) be the locally closed subvariety of

degree 6 equations on P2 whose vanishing locus has exactly one double point. Such curves

have geometric genus 9 and ∆◦/GL3 maps surjectively onto PS ⊂M9. In particular, PS

is irreducible and

dimPS ≤ h0(P2,OP2(6))− 1− dimGL3 = 28− 1− 9 = 18. (4.4.24)

Lemma 4.4.15. The push forward β∗[Σ6] is tautological onM9 ∖M3
9. Hence, the push

forward of any class supported on Σ8 ∪ Σ7 ∪ Σ6 is tautological onM9 ∖M3
9.

Proof. If Σ6 →M9 has positive dimensional fibers, then β∗[Σ6] = 0, which is tautological.

So let us assume Σ6 → M9 is generically finite onto its image, in which case β∗[Σ6] is

a multiple of [β(Σ6)]. By 4.4.14, we have β(Σ6) ⊂ PS (where the closure of PS is taken

in M9 ∖M3
9). It follows that dimPS ≥ dimΣ6 = 18. By (4.4.24), we conclude that

dimPS = 18 and such curves possess finitely many g26’s. Now, both β(Σ6) and PS are

irreducible of dimension 18, so they must be equal. Therefore, we wish to show that [PS]

is tautological onM9 ∖M3
9. We know by Lemma 4.4.12 that all classes supported on B9

are tautological, so it suffices to work on the further openM9 ∖ (M3
9 ∪ B9).

Let ρ(g, r, d) := g − (r + 1)(g − d+ r) be the Brill–Noether number. In particular,

ρ(9, 2, 6) = −6, so the plane sextics are “expected” to occur in codimension 6 onM9. On

the openM9∖ (M3
9∪B9), the locus of curves that possess a g26 is PS, which has dimension

18 = dimM9 + ρ(9, 2, 6), so it is a Brill–Noether locus of the expected dimension. (Notice

we need to work on the complement ofM3
9 ∪ B9, as curves of gonality less than or equal
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to 3 possess a g26, but dimM3
9 = 19 is too large. In the end, this is not an issue because

we already know all classes supported on M3
9 are tautological.) Moreover, each curve

in PS possesses finitely many g26’s (this is where it is important we also work on the

complement of B9). We can therefore apply Faber’s argument as in [Fab99, p. 15-16] on

the openM9 ∖ (M3
9 ∪ B9) to see that [PS] is tautological in A∗(M9 ∖ (M3

9 ∪ B9)). Since

all classes supported on B9 have already been shown to be tautological, [PS] is tautological

in A∗(M9 ∖M3
9) too.

By Lemma 4.4.3 (3)(ii), we know that A∗(Σ6) is generated by the pullback of κ1

and κ2. The second claim now follows by the push-pull formula and Lemma 4.4.12.

We now complete the goal of this subsection.

Lemma 4.4.16. All classes supported onM4
9 are tautological onM9.

Proof. By Proposition 4.2.9, the Chow ring of Ψ = Ψ0 ∪ · · · ∪ Ψ5 is generated by CE

classes. Combining this with Theorem 4.2.4 and Lemma 4.4.15, we see that every class in

H4,9 ∖ β−1(M3
9) pushes forward to a tautological class onM9 ∖M3

9. Such push forwards

span all classes supported onM4
9 ∖M3

9 ⊂ M9 ∖M3
9. Finally, all classes supported on

M3
9 are known to be tautological (see (4.1.1)).

4.4.7 The end of our luck: bielliptics in genus 10 and beyond

We point out here one last coincidence in genus 10, which allows us to see that the

bielliptic locus onM10 is tautological. We then explain why these coincidences that drive

our technique do not continue into higher genus.

For g ≥ 10, the bielliptics completely fill the strata they occupy. Let h = ⌊g
2
⌋.

By [CDC02, Proposition 2.1] and the sentence following it, for g ≥ 10, we have

β−1(Bg) =


Σ(2,h,h+1)(E) ∩ Σ(4,g−1)(F) if g even

[Σ(2,h+1,h+1)(E) ∩ Σ(4,g−1)(F)] ∪ [Σ(2,h,h+2)(E) ∩ Σ(4,g−1)(F)] if g odd.

(4.4.25)
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Using similar techniques as in genus 7, 8, 9 we establish that the fundamental class of the

bielliptic locus B10 ⊂M10 is tautological.

Proof of Theorem 4.1.7. Using (4.4.3) – (4.4.9) in genus 10, one sees that F = (4, 9) occurs

only with E = (2, 5, 6). Let Σ be this splitting locus. By (4.4.25), we have Σ = β−1(B10).

Meanwhile, codimΣ = 4 is the expected codimension for Σ(4,9)(F), so by Lemma 4.3.7,

we see that [Σ] = [Σ(4,9)(F)] is tautological (modulo classes supported on β−1(M3
10)). By

Lemma 4.4.3 (1), we know A∗(Σ) is generated by restrictions of CE classes. By Theorem

4.2.4, the push forward of every class supported on Σ is tautological onM10 ∖M3
10. Since

we are working with rational coefficients, the push forward map on Chow groups from Σ

to β(Σ) is surjective. In particular, [β(Σ)] = [B10] is tautological. The vanishing of [B10]

then follows from a theorem of Looijenga [Loo95], which says that the tautological ring

vanishes in codimension d > g − 2.

The codimension of β−1(Bg) ⊂ H4,g is always 4. However, for g ≥ 11, neither

Σ(4,g−1)(F) nor Σ(2,∗,∗)(E) has expected codimension 4. Thus, there is no way to realize

the strata in (4.4.25) as splitting loci of the expected dimension. As an example, in genus

12, the bielliptics have E = (2, 6, 7) and F = (4, 11). In this case,

h1(P1, End(O(2, 6, 7))) = 7 and h1(P1, End(O(4, 11))) = 6,

so neither expected codimension is 4. In fact, in genus 12, we claim van Zelm’s result [vZ18]

that [B12] is non-tautological onM12 implies [β−1(B12)] is non-tautological on H4,12. By

Lemma 4.4.3 (1), we know that β−1(B12) is generated by the restrictions of CE classes.

Therefore, if [β−1(B12)] were tautological, using the push-pull formula and Theorem 4.2.4,

we would see that all classes supported on B12 were tautological, which is a contradiction.
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4.5 The Pentagonal Locus

In this section, we show that A∗(H5,g ∖ β−1(M4
g)) is generated by tautological

classes for g = 7, 8, 9. Given a degree 5, genus g cover α : C → P1, let E = Eα and

F = Fα be the associated vector bundles on P1 as in Section 4.2.1. Let γ : PE∨ → P1.

The line bundle OPE∨(1)⊗ γ∗ωP1 defines a map PE∨ → Pg−1 such that the composition

C ⊂ PE∨ → Pg−1 is the canonical embedding. The bundles E and F split

E = O(e1)⊕O(e2)⊕O(e3)⊕O(e4) e1 ≤ e2 ≤ e3 ≤ e4

and

F = O(f1)⊕O(f2)⊕O(f3)⊕O(f4)⊕O(f5) f1 ≤ f2 ≤ f3 ≤ f4 ≤ f5.

As in the degree 4 case, the splitting types of E and F give a stratification of H5,g. This

stratification was studied by Schreyer [Sch86] when g = 7, 8, and Sagraloff [Sag05] when

g = 9. (The translation between our notation and Schreyer’s is that ai = fi − 4; the

splitting type of E determines the type of Schreyer’s determinantal surface Y .)

The condition to be inside Ψ = H5,g ∖ Supp(R1π∗E ⊗ det E∨ ⊗ ∧2F) is that

e1 + f1 + f2 − (g + 4) ≥ −1 ⇐⇒ e1 + f1 + f2 ≥


10 if g = 7

11 if g = 8.

12 if g = 9.

(4.5.1)

Just as in the degree 4 case, there are several constraints on the splitting types. We collect

some of these constraints below. Using these constraints, we recover the stratifications

found by Schreyer [Sch86] in genus 7 and 8 and Sagraloff [Sag05] in genus 9.
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To begin, we know that deg(E) = g + 4 and detE⊗2 ∼= detF , so we have

e1 + e2 + e3 + e4 = g + 4, (4.5.2)

f1 + f2 + f3 + f4 + f5 = 2g + 8. (4.5.3)

By [DP15, Proposition 2.6], we have

g + 4

10
≤ e1 ≤

g + 4

4
and e4 ≤

2g + 8

5
. (4.5.4)

Because F is a subbundle of Sym2E,

f5 ≤ 2e4. (4.5.5)

Note that equations (4.5.2)–(4.5.5) always reduce us to a finite list of allowed splitting

types.

Next, we introduce some notation. Every section in H := H0(E ⊗ detE∨ ⊗ ∧2F )

can be represented by a skew symmetric matrix

M =



0 L1,2 L1,3 L1,4 L1,5

−L1,2 0 L2,3 L2,4 L2,5

−L1,3 −L2,3 0 L3,4 L3,5

−L1,4 −L2,4 −L3,4 0 L4,5

−L1,5 −L2,5 −L3,5 −L4,5 0


, (4.5.6)

where Li,j ∈ H0(O(fi + fj)⊗O(e⃗)⊗O(−g− 4)). The equations defining D(Φ(η)) ⊂ PE∨
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are the 5 Pfaffian quadrics listed below:

Q1 = L2,5L3,4 − L2,4L3,5 + L2,3L4,5

Q2 = L1,5L3,4 − L1,4L3,5 + L1,3L4,5

Q3 = L1,5L2,4 − L1,4L2,5 + L1,2L4,5

Q4 = L1,5L2,3 − L1,3L2,5 + L1,2L3,5

Q5 = L1,4L2,3 − L1,3L2,4 + L1,2L3,4.

Corresponding to the splitting of E = O(e⃗), we can take coordinates X1, . . . , X4 on PE∨.

The Li,j are linear homogeneous polynomials in the Xk whose coefficients are elements of

H0(P1,O(fi + fj + ek − g − 4)). We write these as:

Li,j = ai,jX1 + bi,jX2 + ci,jX3 + di,jX4.

If L1,2 and L1,3 were identically zero, then Q5 would be reducible, which is impossible

because C is irreducible. Therefore, we must have

f1 + f3 + e4 ≥ g + 4 (4.5.7)

If X4 divides L1,2, L1,3, and L1,4, then Q5 is reducible. This will occur if a1,4, b1,4, c1,4 all

identically vanish. In order for a1,4, b1,4, and c1,4 to not all identically vanish, we must

have

f1 + f4 + e3 ≥ g + 4. (4.5.8)

Similarly, if X4 divides L1,2, L1,3 and L2,3, then X4 divides Q5 and Q5 is reducible. To

prevent this, we must have

f2 + f3 + e3 ≥ g + 4. (4.5.9)
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Note that the curve C cannot contain the section defined by X2 = X3 = X4 = 0. Otherwise,

it would be reducible. Therefore, at least one of the Qi must have a nonzero coefficient

of X2
1 . If the coefficient of X1 is zero in L1,2, . . . , L1,5 and L2,3, L2,4, and L2,5, then the

coefficient of X2
1 vanishes for all Qi. Therefore, we must have that

f2 + f5 + e1 ≥ g + 4. (4.5.10)

Similarly, we note that we must have

f3 + f4 + e1 ≥ g + 4. (4.5.11)

Indeed, if not, then the coefficient of X1 vanishes for all Li,j except possibly j = 5. It

follows that none of the quadrics have an X2
1 term in them, and thus they contain the

section X2 = X3 = X4 = 0, so C would be reducible.

If all a1,j = b1,j = 0, then the quadrics Q2, . . . , Q5 all vanish on V (X3, X4). The

remaining equation Q1 then cuts out a divisor on the surface V (X3, X4), so either C is

reducible or is entirely contained in V (X3, X4). But this is impossible because then in the

canonical embedding would send five points on C to a common line, which means C has a

g35. Projection from a point gives a g25, so C would have genus at most 6. To prevent this,

f1 + f5 + e2 ≥ g + 4. (4.5.12)

Another bad thing is if L1,2, L1,3, L2,3, L1,4, L2,4 are all zero on V (X3, X4). In this case, the

restriction of the quadrics to V (X3, X4) is Q1 = L2,5L3,4, Q2 = L1,5L3,4, Q3 = Q4 = Q5 = 0,

so V (Q1) and V (Q2) share 1-dimensional component inside V (X3, X4). To prevent this,

we need

f2 + f4 + e2 ≥ g + 4. (4.5.13)
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Next, we note some conditions that imply C has a special linear series. If a1,5 = 0

and a2,3 = 0, then the curve meets the line V (X2, X3, X4) along V (a2,5a3,4 − a3,5a2,4).

The degree of V (a2,5a3,4 − a3,5a2,4) is deg(a2,5) + deg(a3,4) = 2e1 − f1. If e1 = 2, the line

V (X2, X3, X4) is contracted in the map PE∨ → Pg−1. If 2e1 − f1 = 1, then C meets

V (X2, X3, X4) in a point p. Under the canonical, this point p lies in the span of the five

points in a fiber so p plus the g15 is a g26 on C. This yields the condition

if e1 = 2 and e1 + f1 + f5, e1 + f2 + f3 < g + 4 and 2e1 − f1 = 1, then C has a g26.

(4.5.14)

As another source of special linear series, Schreyer shows [Sch86, p. 136] that if

L1,2 = 0, then C lies on a certain determinantal surface, which is birational to a Hirzebruch

surface Fk := P(OP1 ⊕OP1(k)) for k = f2 − f1. Schreyer determines determines the class

of the image of C on this Hirzebruch surface in [Sch86, Theorem 5.7]. In the case k = 0,

we have F0
∼= P1 × P1 and projection onto the other factor determines another pencil on

C. Similarly, if k = 1, then F1 admits a map to P2 and we obtain a g2d. The degree d

of these special linear series is given by intersecting Schreyer’s class C ′ with the OFk
(1)

(which Schreyer calls A). This calculation is summarized nicely by Sagraloff in [Sag05, p.

65] (to translate our splitting types, fi = a5−i + 4):

if f2 − f1 = k and L1,2 = 0, then C possesses a g1+kf1
. (4.5.15)

The final condition we note concerns the situation when e1 + f2 + f4 − (g + 4) < 0.

In this case, a1,2 = a1,3 = a2,3 = a1,4 = a2,4 = 0. Restricting the five quadrics Q1, . . . , Q5

to the line Z = V (X2, X3, X4) we obtain

Q1|Z = a2,5a3,4X
2
1 , Q2|Z = a1,5a3,4X

2
1 , Q3|Z = Q4|Z = Q5|Z = 0.
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In particular, if a3,4 = 0, then C = D(Φ(η)) would contain the line Z, but such a curve

would be reducible. Therefore,

if e1 + f2 + f4 < g + 4, then a3,4 ̸= 0. (4.5.16)

4.5.1 Strategy

The strategy for the pentagonal locus is the same as, or even simpler than, the

strategy for the tetragonal locus.

1. Use conditions (4.5.2)–(4.5.13) to determine the allowed pairs of splitting types e⃗, f⃗ .

The partial order on splitting types of Section 4.3 induces a partial order on pairs of

splitting types by (e⃗ ′, f⃗ ′) ≤ (e⃗, f⃗) if e⃗ ′ ≤ e⃗ and f⃗ ′ ≤ f⃗ .

2. Starting with strata at the bottom of the partial ordering and working upwards,

show that for each stratum outside of Ψ at least one of the following is satisfied:

(a) the stratum is contained in β−1(M4
g).

(b) its fundamental class in H5,g ∖ β−1(M4
g) is tautological (modulo classes sup-

ported on strata below it in the partial order) and the Chow ring of the locally

closed stratum Σ′ := Σ∖β−1(M4
g) is generated by the restrictions of CE classes.

This will establish that A∗(H5,g ∖ β−1(M4
g)) is generated by CE classes when g = 7, 8, 9.

In Section 4.5.2, we show that the Chow rings of certain Σ′ are generated by restrictions of

CE classes. Then, in Sections 4.5.3, 4.5.4, 4.5.5, we treat the cases g = 7, 8, 9 respectively.

4.5.2 Chow rings of locally closed strata outside Ψ

In Lemma 4.3.11, we described each pair splitting locus as a quotient Σ = [(U ×

Gm)/G] where G = SL2⋉(Aut(e⃗)× Aut(f⃗)), and U ⊂ H := H0(E ⊗ detE∨ ⊗ ∧2F ) was

the open subvariety of sections η so that the Pfaffian locus D(Φ(η)) ⊆ PE∨ is a smooth,
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irreducible curve. Let U ′ ⊂ U be the further open where C = D(Φ(η)) does not possess a

g1d for d < 5, so Σ′ := Σ∖ β−1(M4
g) = [(U ′ ×Gm)/G]. We have a series of surjections

A∗(BG) ↠ A∗([U ′/G]) ↠ A∗(Σ′), (4.5.17)

The first map is induced by pullback from the structure map v : [U ′/G] → BG. It

will suffice to show that the images of generators on the left are expressible in terms of

CE classes. To see this, we will need to know about the relations that come from the

complement of U ′ ⊂ H.

We consider several different “shapes” of splitting types that occur for pentagonal

strata.

Lemma 4.5.1. Let e⃗ = (e1, e2, e3, e4) and f⃗ = (f1, f2, f3, f4, f5) satisfy the following

conditions:

1. e1 < e2 = e3 < e4,

2. f1 = f2 < f3 = f4 < f5,

3. e4 + f1 + f2 = g + 4,

4. e1 + f3 + f4 = g + 4,

5. −e1f1 + e2f1 − e2f3 + e4f3 + e1f5 − e4f5 ̸= 0.

Let Σ denote the corresponding stratum with splitting types e⃗ and f⃗ . Then A∗(Σ′) is

generated by the restrictions of CE classes.

Proof. Set G = SL2⋉(Aut(e⃗) × Aut(f⃗)) and let π : P → BG be the P1 bundle pulled

back from BSL2. The first part of the HN filtration for V(e⃗) is

0→ π∗L(e4)→ V(e⃗)→ Q1 → 0, (4.5.18)
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where L is rank 1. The next part is

0→ π∗R(e2)→ Q1 → π∗T (e1)→ 0, (4.5.19)

where R is rank 2 and T is rank 1. Similarly, we have the HN filtration for V(f⃗):

0→ π∗S(f5)→ V(f⃗)→ W1 → 0, (4.5.20)

and then

0→ π∗M(f3)→ W1 → π∗N(f1)→ 0. (4.5.21)

The bundle S is of rank 1, and M and N are of rank 2. We denote the Chern classes of

an HN bundle by the corresponding lowercase letter, with subscripts i = 1, 2 when the HN

bundle has rank 2. In particular, the right hand column vector in (4.5.22) below consists

of the first Chern classes of the HN bundles. From (4.5.18)–(4.5.21), an application of the

splitting principle gives the following expressions:


a1

a′2

b1

b′2

 =


1 1 1 0 0 0

e1 + 2e2 e1 + e2 + e4 2e2 + e4 0 0 0

0 0 0 1 1 1

0 0 0 2f3 + 2f1 f5 + f3 + 2f1 f5 + 2f3 + f1





ℓ

r1

t

s

m1

n1


.

(4.5.22)

Next, we show that the geometry of the curves in this stratum imposes some relations

among ℓ, r1, t, s,m1, n1. We will show that modulo these relations, the Chern classes of

the HN bundles are all expressible in terms of CE classes, finishing the proof. Note that

BG has six generators in codimension 1 (namely ℓ, r1, t, s,m1, n1) but there are only four

CE classes in codimension 1, so we will need to show A1(BG)→ A1([U ′/G]) has a kernel.
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The two sources of relations are from the conditions (4.5.15) and (4.5.16). From

(4.5.15), we see that if L1,2 = 0, then C possesses a g14. For degree reasons, we see that in

this stratum

L1,2 = d1,2X4.

Therefore, the vanishing of L1,2 is equivalent to the vanishing of d1,2. This is a codimension

1 condition because deg(d1,2) = f1 + f2 + e4 − (g + 4) = 0.

Corresponding to the filtration on V(f⃗), there is a quotient map

∧2V(f⃗)→ det(π∗N(f1)).

Tensoring by V(e⃗)⊗ detV(e⃗)∨, we obtain a surjection

∧2V(f⃗)⊗ V(e⃗)⊗ detV(e⃗)∨ → det(π∗N(f1))⊗ V(e⃗)⊗ detV(e⃗)∨.

From the isomorphism

detV(e⃗)∨ ∼= π∗(detR∨ ⊗ T∨ ⊗ L∨)(−g − 4),

we obtain a surjection

∧2V(f⃗)⊗V(e⃗)⊗detV(e⃗)∨ → V(e⃗)⊗π∗(detN⊗detR∨⊗detT∨⊗L∨)(2f1−g−4). (4.5.23)

Because 2f1 + ei − g − 4 < 0 for 1 ≤ i ≤ 3 and 2f1 + e4 − g − 4 = 0, cohomology and base

change implies that the push forward of (4.5.23) is given by

π∗(∧2V(f⃗)⊗ V(e⃗)⊗ detV(e⃗)∨)→ π∗(π
∗(detN ⊗ detR∨ ⊗ detT∨)(2f1 + e4 − g − 4))

∼= detN ⊗ detR∨ ⊗ detT∨.
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The left-hand side above is the total space of [H/G]. The above map corresponds to

projection of H onto the coefficient d1,2. Let v : [U
′/G]→ BG be the structure map, so

v∗ : A∗(BG)→ A∗([U ′/G]) is the first map in (4.5.17). Since d1,2 is non-vanishing on U ′,

the pullback v∗(detN ⊗ detR∨ ⊗ detT∨) admits a non-vanishing section on [U ′/G]. In

particular we obtain the relation

v∗(n1 − r1 − t) = 0. (4.5.24)

Next, we turn to the condition (4.5.16). We want to write down a similar map that

picks out the coefficient a3,4. From the filtration on V(e⃗), we have a surjection

V(e⃗)→ π∗T (e1).

By tensoring with detV(e⃗)∨, we obtain a surjection

V(e⃗)⊗ detV(e⃗)∨ → π∗(detR∨ ⊗ L∨)(e1 − g − 4).

Next, we note that we have a surjection ∧2V(f⃗)→ ∧2W1, and so we obtain a surjection

∧2V(f⃗)⊗ V(e⃗)⊗ detV(e⃗)∨ → ∧2W1 ⊗ π∗(detR∨ ⊗ L∨)(e1 − g − 4). (4.5.25)

There is a filtration of ∧2W1 with subquotients ∧2(π∗N(f1)), π
∗N(f1) ⊗ π∗M(f3) and

∧2(π∗M(f3)). Because 2f1+e1−g−4 < 0, f1+f3+e1−g−4 < 0, and 2f3+e1−g−4 = 0,

the π push forward of (4.5.25) is given by

π∗(∧2V(f⃗)⊗ V(e⃗)⊗ detV(e⃗)∨)→ detM ⊗ detR∨ ⊗ detL∨.
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This map corresponds to projecting onto a3,4. Since a3,4 ≠ 0 on U ′, we obtain the relation

v∗(m1 − r1 − ℓ) = 0. (4.5.26)

Augmenting matrix (4.5.22) by the relations (4.5.26) and (4.5.24), we obtain the matrix



0

0

a1

a′2

b1

b′2


=



0 −1 −1 0 0 1

−1 −1 0 0 1 0

1 1 1 0 0 0

e1 + 2e2 e1 + e2 + e4 2e2 + e4 0 0 0

0 0 0 1 1 1

0 0 0 2f3 + 2f1 f5 + f3 + 2f1 f5 + 2f3 + f1





ℓ

r1

t

s

m1

n1


.

(4.5.27)

The determinant of the above 6×6 matrix is the quantity in part (5) of the statement of the

lemma. By assumption, this determinant does not vanish, so the classes ℓ, r1, t, s,m1, n1

are expressible in terms of CE classes.

Besides products of codimension 1 generators, BG has four codimension 2 generators:

c2,m2, n2, r2. By definition, c2 is a CE class, so we just need to show that m2, n2, and

r2 are expressible in terms of CE classes. Using the splitting principle on (4.5.18) and

(4.5.19), we obtain the following expression for a2:

a2 = r2 + r1(ℓ+ t) + ℓt− (2e1e2 + e22 + e1e4 + 2e2e4)c2.

Therefore, r2 is expressible in terms of CE classes. Similarly, from (4.5.20) and (4.5.21),
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we have the following expressions for b2 and b′3:

b2 = s(m1 + n1) +m1n1 +m2 + n2 − (2f5f3 + f 2
3 + 2f5f1 + 4f3f1 + f 2

1 )c2,

b′3 = (f3 + 2f1)sm1 + (2f3 + f1)sn1 + (f5 + f3 + f1)m1n1 + (f5 + 2f1)m2 + (f5 + 2f3)n2

− (f5f
2
3 + 4f5f3f1 + 2f 2

3 f1 + f5f
2
1 + 2f3f

2
1 )c2.

Since f1 ̸= f3, we see that m2 and n2 are expressible in terms of CE classes.

Lemma 4.5.2. Let e⃗ = (e1, e2, e3, e4) and f⃗ = (f1, f2, f3, f4, f5) satisfy the following

conditions:

1. e1 < e2 < e3 = e4,

2. f1 < f2 = f3 < f4 = f5,

3. e1 + f2 + f5 = g + 4,

4. e3 + f1 + f2 = g + 4,

5. 2e2f1 − 2e3f1 − e1f2 − 3e2f2 + 4e3f2 + e1f4 + e2f4 − 2e3f4 ̸= 0.

Let Σ denote the corresponding stratum with splitting types e⃗ and f⃗ . Then A∗(Σ′) is

generated by the restrictions of CE classes.

Proof. Set G = SL2⋉(Aut(e⃗) × Aut(f⃗)) and let π : P → BG be the P1 bundle pulled

back from BSL2. The first part of the HN filtration for V(e⃗) is

0→ π∗R(e3)→ V(e⃗)→ π∗W1 → 0 (4.5.28)

and then

0→ π∗S(e2)→ W1 → π∗L(e1)→ 0, (4.5.29)
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where R is of rank 2 and S and L are of rank 1. Similarly, for V(f⃗) we have

0→ π∗M(f4)→ V(f⃗)→ W2 → 0 (4.5.30)

and

0→ π∗N(f2)→ W2 → T (f1)→ 0, (4.5.31)

where T is rank 1, and M and N are rank 2. As usual, we denote the Chern classes of

an HN bundle by the corresponding lowercase letter, with subscripts i = 1, 2 when the

HN bundle has rank 2. Using the splitting principle and the definitions of CE classes, we

obtain the following expressions:


a1

a′2

b1

b′2

 =


1 1 1 0 0 0

e2 + 2e3 e1 + e2 + e3 e1 + 2e3 0 0 0

0 0 0 1 1 1

0 0 0 2f4 + 2f2 f4 + 2f2 + f1 2f4 + f2 + f1





ℓ

r1

s

t

m1

n1


.

(4.5.32)

There are 6 generators for A1(BG), but only 4 codimension 1 CE classes. Therefore,

we will need to study the kernel of A1(BG)→ A1([U ′/G]). Let Z = V (X2, X3, X4) ⊂ PE∨.

For degree reasons, when we restrict the quadrics to Z, we see that they all vanish except

for possibly Q1|Z , which takes the form

Q1|Z = (a2,5a3,4 − a2,4a3,5)X2
1 .

The coefficient of X2
1 is of degree 0 on P1. Note that if it vanishes, the curve becomes

reducible, so the vanishing of this coefficient should impose a codimension 1 relation. To

find this relation, we need to find a way of picking out the quadric Q1.
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Recall that the quadrics Qi cutting out the curve are obtained from the Pfaffians

of the skew-symmetric matrix (4.5.6). Using the canonical identification ∧4F ∼= F∨ ⊗

detF , these 5 Pfaffians correspond to a global section of the rank 5 vector bundle

OPE(2) ⊗ (detE)⊗2 ⊗ F∨ ⊗ detF on PE∨. Equivalently, this is a global section of

(Sym2E∨)⊗ (detE)⊗2 ⊗ F∨ ⊗ detF on P1. Working on π : P → BG, the Pfaffians thus

correspond to a section of Sym2 V(e⃗) ⊗ detV(e⃗)∨⊗2 ⊗ V(f⃗)∨ ⊗ detV(f⃗). From the HN

filtration on V(e⃗), there is a quotient

Sym2 V(e⃗)⊗ detV(e⃗)∨⊗2 ⊗ V(f⃗)∨ ⊗ detV(f⃗)→ π∗L⊗2(2e1)⊗ detV(e⃗)∨⊗2 ⊗ V(f⃗)∨ ⊗ detV(f⃗),

(4.5.33)

corresponding to the X2
1 parts of the Pfaffians. Note that we have

detV(e⃗)∨⊗2 ∼= π∗(detR∨⊗2 ⊗ S∨⊗2 ⊗ L∨⊗2)(−4e3 − 2e2 − 2e1)

and

detV(f⃗) = π∗(detM ⊗ detN ⊗ T )(f1 + 2f2 + 2f4).

By the assumptions on the splitting type f⃗ and cohomology and base change, the π push

forward of (4.5.33) is

π∗(Sym
2 V(e⃗)⊗ detV(e⃗)∨⊗2 ⊗ V(f⃗)∨ ⊗ detV(f⃗))→ detM ⊗ detN ⊗ detR∨⊗2 ⊗ S∨⊗2.

This quotient map corresponds to evaluating the coefficient of X2
1 in Q1. The line bundle

on the right thus admits a non-vanishing section when pulled back to [U ′/G]. This gives a

relation:

v∗(m1 + n1 − 2s− 2r1) = 0 ∈ A1([U ′/G]). (4.5.34)

We need one more codimension 1 relation. Note that if L1,2 and L1,3 are linearly

dependent then, after change of basis (within the O(f2)⊕O(f3) part of F ), we can assume
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L1,2 = 0. Then (4.5.15) shows that the resulting curve would have a g24, which is impossible.

Therefore, L1,2 and L1,3 must be linearly independent. Conditions (1), (2) and (4) imply

that the degrees of a1,2, a1,3, b1,2, b1,3 are negative, so L1,2 and L1,3 are dependent if and

only if

c1,2d1,3 − c1,3d1,2 = 0.

Below, we construct a morphism of vector bundles whose vanishing locus is the locus where

L1,2 and L1,3 become dependent. From the HN filtration, we have a series of surjections

∧2V(f⃗)→ ∧2W2 → π∗(N ⊗ T )(f1 + f2).

Tensoring with V(e⃗)⊗ detV(e⃗)∨ and pushing forward, we have

π∗(∧2V(f⃗)⊗ V(e⃗)⊗ detV(e⃗)∨)→ π∗(π
∗N ⊗ π∗T ⊗ V(e⃗)⊗ detV(e⃗)∨)(f1 + f2).

Because f1 + f2 − g − 4 + ei < 0 for i < 3 and f1 + f2 − g − 4 + e3 = 0, by cohomology

and base change, the above map is

π∗(∧2V(f⃗)⊗ V(e⃗)⊗ detV(e⃗)∨)→ detR∨ ⊗ S∨ ⊗ L∨ ⊗R⊗N ⊗ T.

This map corresponds to projection onto the tuple of coefficients (c1,2, d1,2, c1,3, d1,3). Note

that R⊗ detR∨ ∼= R∨, so we can identify the section we obtained from the above map as

a morphism

S ⊗ L⊗R→ N ⊗ T.

Taking the determinant of this morphism, we have

S⊗2 ⊗ L⊗2 ⊗ detR→ detN ⊗ T⊗2,
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and if this determinant morphism vanishes, then L1,2 and L1,3 are dependent. Therefore,

we obtain the relation

v∗(−n1 − 2t+ r1 + 2s+ 2ℓ) = 0. (4.5.35)

Augmenting matrix (4.5.32) by the relations (4.5.34) and (4.5.35), we the following matrix



0

0

a1

a′2

b1

b′2


=



0 −2 −2 0 1 1

2 1 2 −2 0 −1

1 1 1 0 0 0

e2 + 2e3 e1 + e2 + e3 e1 + 2e3 0 0 0

0 0 0 1 1 1

0 0 0 2f4 + 2f2 f4 + 2f2 + f1 2f4 + f2 + f1





ℓ

r1

s

t

m1

n1


.

(4.5.36)

The determinant of the above 6× 6 matrix is the quantity in part (5) of the statement of

the lemma, which does not vanish by assumption. Hence, ℓ, r1, s, t,m1, n1 ∈ A1([U ′/G])

are expressible in terms of CE classes.

In addition to the products of codimension 1 generators, A2(BG) has four codi-

mension 2 generators: c2, r2, n2,m2. By definition c2 is a CE class, so it remains to show

that r2, n2 and m2 are expressible in terms of CE classes. From the HN filtrations and the

splitting principle, we obtain the following expression for a2:

a2 = −(e1e2 + 2e1e3 + 2e2e3 + e23)c2 + ℓr1 + ℓs+ r1s+ r2,

from which it follows that r2 is expressible in terms of CE classes. Similarly, we obtain

the following expressions for b2 and b′3:
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b2 = −(f 2
4 + 4f4f2 + f 2

2 + 2f4f1 + 2f2f1)c2 + tm1 + tn1 +m1n1 +m2 + n2

b′3 = −(2f 2
4 f2 + 2f4f

2
2 + f 2

4 f1 + 4f4f2f1 + f 2
2 f1)c2 + (f4 + 2f2)tm1 + (2f4 + f2)tn1+

(f4 + f2 + f1)m1n1 + (2f2 + f1)m2 + (2f4 + f1)n2.

Because f2 ̸= f4, we see that m2 and n2 are expressible in terms of CE classes.

We consider one more pair of shapes of splitting types.

Lemma 4.5.3. Let e⃗ = (e1, e2, e3, e4) and f⃗ = (f1, f2, f3, f4, f5) satisfy the following

conditions:

1. e1 < e2 = e3 < e4,

2. f1 < f2 = f3 < f4 = f5,

3. e1 + f2 + f5 = g + 4,

4. e2 + f1 + f4 = g + 4,

5. −2e2f1 + 2e4f1 + e1f2 − 2e2f2 + e4f2 − e1f4 + 4e2f4 − 3e4f4 ̸= 0.

Let Σ be the e⃗, f⃗ splitting locus. Then A∗(Σ′) is generated by the restrictions of CE classes.

Proof. Set G = SL2⋉(Aut(e⃗) × Aut(f⃗)) and let π : P → BG be the P1 bundle pulled

back from BSL2. The HN filtration for V(f⃗) is given by

0→ π∗S(e4)→ V(e⃗)→ W1 → 0

and

0→ π∗R(e2)→ W1 → π∗L(e1)→ 0.
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The filtration for V(f⃗) is the same as in the previous Lemma 4.5.2. As a result, we have

the following expressions for the Casnati–Ekedahl classes in terms of the generators of the

Chow ring of this stratum:


a1

a′2

b1

b′2

 =


1 1 1 0 0 0

2e2 + e4 e1 + e2 + e4 e1 + 2e2 0 0 0

0 0 0 1 1 1

0 0 0 2f4 + 2f2 f4 + 2f2 + f1 2f4 + f2 + f1





ℓ

r1

s

t

m1

n1


.

(4.5.37)

As in the previous lemma, there are 6 codimension 1 generators for A∗(BG), but

only 4 codimension 1 CE classes. We will need to show A1(BG) → A1([U ′/G]) has a

kernel, meaning we have relations between the generators. The first relation is quite similar

to the first relation from the previous Lemma 4.5.2. Not all of the quadrics cutting out

the curve can vanish on Z = V (X2, X3, X4). We see that upon restriction to Z all of the

quadrics vanish, except for possibly Q1, which is given by

Q1|Z = (a2,5a3,4 − a2,4a3,5)X2
1 .

As in Lemma 4.5.2, there is a quotient map

Sym2 V(e⃗)⊗detV(e⃗)∨⊗2⊗V(f⃗)∨⊗detV(f⃗)→ π∗L⊗2(2e1)⊗detV(e⃗)∨⊗2⊗V(f⃗)∨⊗detV(f⃗),

which corresponds to the coefficients of X2
1 in the Pfaffians. Note that we have

detV(e⃗)∨⊗2 ∼= π∗(L∨⊗2 ⊗ S∨⊗2 ⊗R∨⊗2)(−2e1 − 2e4 − 4e2)
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and

detV(f⃗) = π∗(detM ⊗ detN ⊗ T )(f1 + 2f2 + 2f4).

From cohomology and base change and the filtration on V(f⃗), we see that the π push

forward of this map is

π∗(Sym
2 V(e⃗)⊗ detV(e⃗)∨⊗2 ⊗ V(f⃗)∨ ⊗ detV(f⃗))→ detM ⊗ detN ⊗ S∨⊗2 ⊗R∨⊗2.

This quotient map corresponds to the coefficient of X2
1 in Q1. The non-vanishing of this

coefficient means that the pullback along v : [U ′/G]→ BG of the line bundle on the right

has a non-vanishing section. This gives us the relation

v∗(m1 + n1 − 2r1 − 2s) = 0 ∈ A1([U ′/G]). (4.5.38)

The next relation comes from considering the equations for the curve when restricted

to V (X4). For degree reasons, L1,2 and L1,3 vanish when restricted to V (X4). Suppose that

L1,4 and L1,5 are dependent. Then, the quadrics Q2, . . . , Q5 all vanish along V (L1,4, X4) =

V (L1,5, X4). It follows that V (Q1, L1,4, X4) is contained in the curve. However, PE∨ has

dimension 4, so the locus V (Q1, L1,4, X4) has dimension at least 1. This means that C

would be contained in V (X4), which is impossible. Therefore, the restrictions of L1,4 and

L1,5 to V (X4) must be independent. Because e1 + f1 + f5 − g − 4 < 0, we have

L1,4|V (X4) = b1,4X2 + c1,4X3 and L1,5|V (X4) = b1,5X2 + c1,5X3.

Therefore, L1,4|V (X4) and L1,5|V (X4) are dependent if and only if

b1,4c1,5 − b1,5c1,4 = 0.
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As in Lemma 4.5.2, we construct a morphism of vector bundles whose vanishing

locus is the locus where L1,4|V (X4) and L1,5|V (X4) are dependent. From the HN filtration

and the corresponding filtration on ∧2V(f⃗), we have a surjection

∧2V(f⃗)→ K, (4.5.39)

where K is a vector bundle admitting a filtration

0→ π∗M(f4)⊗ π∗T (f1)→ K → ∧2W2 → 0.

Tensoring (4.5.39) with the map V(e⃗)⊗detV(e⃗)∨ → W1⊗detV(e⃗)∨, we obtain a surjection

∧2V(f⃗)⊗ V(e⃗)⊗ detV(e⃗)∨ → K ⊗W1 ⊗ detV(e⃗)∨. (4.5.40)

By cohomology and base change and the assumptions on the splitting types e⃗ and f⃗ , the

π push forward of (4.5.40) is given by

π∗(∧2V(f⃗)⊗ V(e⃗)⊗ detV(e⃗)∨)→ R⊗ detR∨ ⊗ L∨ ⊗ S∨ ⊗M ⊗ T.

This map corresponds to projection onto the tuple of coefficients (b1,4, c1,4, b1,5, c1,5). Since

R has rank 2, we have R⊗ detR∨ ∼= R∨. The section obtained from the above map can

be identified with a morphism

R⊗ L⊗ S →M ⊗ T.

The associated determinant morphism

detR⊗ L⊗2 ⊗ S⊗2 → detM ⊗ T⊗2

247



vanishes precisely when b1,4c1,5 − b1,5c1,4 = 0. Since this quantity is non-vanishing on

[U ′/G], we obtain the relation

v∗(2t+m1 − 2s− 2ℓ− r1) = 0. (4.5.41)

We augment the matrix (4.5.37) by the relations (4.5.38), (4.5.41) to obtain



0

0

a1

a′2

b1

b′2


=



0 −2 −2 0 1 1

−2 −1 −2 2 1 0

1 1 1 0 0 0

2e2 + e4 e1 + e2 + e4 e1 + 2e2 0 0 0

0 0 0 1 1 1

0 0 0 2f4 + 2f2 f4 + 2f2 + f1 2f4 + f2 + f1





ℓ

r1

s

t

m1

n1


.

(4.5.42)

The determinant of this matrix is the quantity in part (5) of the statement of the lemma.

It is non-vanishing by assumption, so on [U ′/G], the classes ℓ, r1, s, t,m1, n1 are expressible

in terms of the CE classes.

Besides products of codimension 1 classes, A∗(BG) has 4 codimension 2 generators:

c2, r2,m2, n2. Using the splitting principle and the HN filtrations, we obtain the following

expression for a2:

a2 = −(2e1e2 + e22 + e1e4 + 2e2e4)c2 + ℓr1 + ℓs+ r1s+ r2.

It follows that r2 is expressible in terms of CE classes. Similarly, we obtain the following
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expressions for b2 and b′3.

b2 = −(f 2
4 + 4f4f2 + f 2

2 + 2f4f1 + 2f2f1)c2 + tm1 + tn1 +m1n1 +m2 + n2

b′3 = −(2f 2
4 f2 + 2f4f

2
2 + f 2

4 f1 + 4f4f2f1 + f 2
2 f1)c2 + (f4 + 2f2)tm1 + (2f4 + f2)tn1+

(f4 + f2 + f1)m1n1 + (2f2 + f1)m2 + (2f4 + f1)n2.

Because f4 ̸= f2, both m2 and n2 are expressible in terms of CE classes.

4.5.3 Genus 7

Applying the constraints in (4.5.2) – (4.5.13), one obtains a stratification of H5,7

based on the allowable splitting types of E and F . This stratification was obtained by

Schreyer [Sch86, p. 133], and we translate it here into our notation. The claimed special

linear series (which are also listed in Schreyer’s table) can be seen from (4.5.14) and

(4.5.15).

Lemma 4.5.4 (Schreyer). Let g = 7. There are 5 allowed pairs of splitting types for the

bundles E and F . They give rise to the following stratification of H5,7:

(Ψ0) E = (2, 3, 3, 3), F = (4, 4, 4, 5, 5): the general stratum.

(Z1) E = (2, 2, 3, 4), F = (4, 4, 4, 5, 5): such curves possess a g14.

(Z2) E = (2, 3, 3, 3), F = (3, 4, 5, 5, 5): such curves possess a g26.

(Z3) E = (2, 2, 3, 4), F = (3, 4, 4, 5, 6): such curves possess a g26.

(Z4) E = (2, 3, 3, 3), F = (3, 3, 5, 5, 6): such curves possess a g13.

As our labeling suggests, by a happy coincidence, all strata outside of the “good

open” Ψ actually lie inside β−1(M4
7).

Corollary 4.5.5. The Chow ring of H5,7 ∖ β−1(M4
7) is generated by the restrictions of

tautological classes. Hence, all classes supported onM8 ∖M4
8 are tautological.
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Proof. It this case, we have Ψ = Ψ0. Applying Proposition 4.2.9, it suffices to show that

all other strata Zi are contained in β−1(M4
7). This follows immediately for Z1 and Z4.

Suppose that a 7 curve C possesses a g26. Degree 6 plane curves have arithmetic genus

10. If the g26 sends C birationally onto its image, then the image must have a double

point (or worse). Projection from such a point gives a g14 (or g1k for k < 4). Otherwise,

the g26 sends C with degree three onto a conic (so C has a g13) or with degree two onto a

cubic. Every cubic admits a degree 2 map to P1 (by projecting from a point) so composing

these two degree 2 maps, we see that C has a g14. Thus, Z2 and Z3 are also contained in

β−1(M4
7).

Combining Lemma 4.5.5 with Lemma 4.4.8 completes the proof of Theorem 4.1.1.

There is still some work to do in genus 8 and 9.

4.5.4 Genus 8

The constraints (4.5.2)–(4.5.13) from the beginning of the section give a stratifi-

cation of H5,8, which was first observed by Schreyer [Sch86, p. 133]. The claimed linear

series can be seen from (4.5.14) and (4.5.15). The codimensions of strata are determined

by (4.3.4).

Lemma 4.5.6 (Schreyer). Let g = 8. There are 7 allowed pairs of splitting types for the

bundles E and F . They give rise to the following stratification of H5,8:

(Ψ0) E = (3, 3, 3, 3), F = (4, 5, 5, 5, 5): the general stratum.

(Ψ1) E = (2, 3, 3, 4), F = (4, 5, 5, 5, 5): codimension 1.

(Σ2) E = (2, 3, 3, 4), F = (4, 4, 5, 5, 6): codimension 2.

(Z3) E = (3, 3, 3, 3), F = (4, 4, 5, 5, 6): such curves possess a g14.

(Z4) E = (2, 2, 4, 4), F = (4, 4, 4, 6, 6): such curves possess a g14.
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(Z5) E = (2, 3, 3, 4), F = (3, 4, 5, 6, 6): such curves possess a g26.

(Z6) E = (3, 3, 3, 3), F = (3, 3, 6, 6, 6): such curves possess a g13.

This time there is a stratum, Σ2, which lives outside Ψ and not inside β−1(M4
8).

Nevertheless, using arguments similar to Lemmas 4.4.8 and 4.4.9, we have the following.

Lemma 4.5.7. The Chow ring A∗(H5,8 ∖ β−1(M4
8)) is generated by CE classes. Hence,

all classes supported onM8 ∖M4
8 are tautological.

Proof. By a similar argument to the proof of Corollary 4.5.5, every genus 8 curve possessing

a g26 also possesses a g1k for k ≤ 4. In particular, we see that Z = Z3 ∪ Z4 ∪ Z5 ∪ Z6 is

contained in β−1(M4
8). Next, on H5,8 ∖ Z, we have Σ2 = Σ(4,4,5,5,6)(F). Hence, we have

codimΣ2 = 2 = h1(P1, End(O(4, 4, 5, 5, 6))).

Thus, by Lemma 4.3.6, the fundamental class of Σ2 inside H5,8 ∖ β−1(M4
8) is tautological.

By Lemma 4.5.1, A∗(Σ′
2) is generated by tautological classes. It then follows from the

push-pull formula that every class supported on Σ′
2 ⊂ H5,8 ∖ β−1(M4

8) is tautological. By

Proposition 4.5.1, we know A∗(Ψ) = A∗(Ψ0 ∪Ψ1) is generated by tautological classes. It

follows that all of A∗(H5,8 ∖ β−1(M4
8)) is generated by tautological classes.

Combining Lemma 4.5.7 with Lemma 4.4.9 completes the proof of Theorem 4.1.2.

The rest of the paper will deal with the case g = 9.

4.5.5 Genus 9

There is a similar stratificaion in genus 9, which was given by Sagraloff [Sag05].

Below, we translate Sagraloff’s notation into ours. The stratification can be obtained from

the conditions (4.5.2)–(4.5.13), and the claimed linear series can be seen from (4.5.14) and

(4.5.15). The codimensions of strata are determined by (4.3.4).
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Lemma 4.5.8 (Sagraloff). Let g = 9. There are 7 allowed pairs of splitting types for the

bundles E and F . They give rise to the following stratification of H5,9:

(Ψ0) E = (3, 3, 3, 4), F = (5, 5, 5, 5, 6): the general stratum.

(Ψ1) E = (3, 3, 3, 4), F = (4, 5, 5, 6, 6): codimension 2.

(Σ2) E = (2, 3, 4, 4), F = (4, 5, 5, 6, 6): codimension 2.

(Σ3) E = (2, 3, 3, 5), F = (4, 5, 5, 6, 6): codimension 4.

(Z4) E = (3, 3, 3, 4), F = (4, 4, 6, 6, 6): such curves possess a g14.

(Z5) E = (2, 3, 4, 4), F = (4, 4, 5, 6, 7): such curves possess a g14.

(Z6) E = (2, 3, 4, 4), F = (3, 4, 6, 6, 7): such curves possess a g26.

Lemma 4.5.9. The Chow ring A∗(H5,9 ∖ β−1(M4
9)) is generated by tautological classes.

Hence, all classes supported onM5
9 are tautological.

Proof. First, we see that Z = Z4 ∪ Z5 ∪ Z6 is contained in β−1(M4
9). Then, note that on

H5,9 ∖ Z, we have that Σ3 = Σ(2,3,3,5)(E). Moreover, we see that

codimΣ3 = 4 = h1(P1, End(O(2, 3, 3, 5))).

By Lemma 4.3.6, it follows that the fundamental class of Σ3 is tautological. By Lemma

4.5.3, we see A∗(Σ′
3) is generated by tautological classes, so by the push-pull formula, every

class supported on Σ′
3 ⊂ H5,9 ∖ β−1(M4

9) is tautological.

Similarly, on H5,9 ∖ β−1(M4
9), we have Σ2 = Σ(2,3,4,4)(E), and

codimΣ2 = 2 = h1(P1, End(O(2, 3, 4, 4))).

Applying Lemma 4.3.6, the fundamental class of Σ2 is tautological. Applying Lemma

4.5.2, we see that every class supported on Σ′
2 ⊂ H5,9 ∖ β−1(M4

9) is expressible in terms
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of tautological classes. By Proposition 4.5.1, A∗(Ψ0 ∪ Ψ1) is generated by tautological

classes. Therefore, A∗(H5,9 ∖ β−1(M4
9)) is generated by tautological classes.

4.6 The General Genus 9 Curve

Mukai [Muk10] completely characterized canonical curves of genus 9 without a

g15 as linear sections of a symplectic Grassmannian. We briefly recall his construction

here. Let V be a six-dimensional vector space equipped with a symplectic form σ. The

symplectic Grassmannian Sp(3, V ) ⊂ G(3, V ) parametrizes three-dimensional symplectic

subspaces U ⊂ V , i.e. subspaces such that σ|U = 0. The Grassmannian G(3, V ) embeds in

P(∧3V ) ∼= P19 via the Plücker embedding. Contracting with the symplectic form gives a

map

σ♯ : ∧3V → V,

and the symplectic Grassmannian is the intersection of G(3, V ) with P(kerσ♯) ⊂ P(∧3V ).

Note that the subspace P(kerσ♯) ⊂ P(∧3V ) corresponds to subspace of symmetric matrices

in Mukai’s description of the Plücker embedding [Muk10, p. 1544].

Recall that we use the subspace convention for Grassmannians and projective spaces.

For example, given a globally generated rank 3 vector bundle E on C, the evaluation map

H0(E)→ E determines a map C → G(3, H0(E)∨) by considering the dual E∨ → H0(E)∨.

Similarly, the canonical embedding sends a curve C ↪→ P(H0(ωC)
∨). The following is an

amalgamation of Mukai’s Theorems A, B, and C of [Muk10].

Theorem 4.6.1. Suppose C is a smooth curve of genus 9 with no g15. Then there is a

unique rank 3 vector bundle E on C with the following properties:

1. detE ∼= ωC.

2. h0(C,E) = 6.
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3. E is globally generated and for every 3-dimensional subspace U ⊂ H0(E), the

evaluation homomorphism U ⊗OC → E is injective or everywhere of rank 2.

The bundle E induces a morphism C → G(3, H0(E)∨) whose image is contained in the

symplectic Grassmannian Sp(3, H0(E)∨) ⊂ G(3, H0(E)∨). The curve C in its canonical

embedding is obtained by intersecting Sp(3, H0(E)∨) ⊂ P(kerσ♯) ∼= P13 with an eight

dimensional linear subspace P8 ⊂ P13. Such a linear space is unique up to the action of

PSp6, the subgroup of PGL6 fixing the one dimensional space spanned by a symplectic

form.

Moreover, a canonical curve C of genus 9 is the intersection P8 ∩ Sp(3, 6) if and

only if C has no g15.

Let ∆ ⊂ G(9, 14) = G(8, 13) be the locus of linear subspaces whose intersection

with Sp(3, 6) ⊂ P(kerσ♯) = P13 is not a smooth genus 9 curve. The above theorem provides

a morphism

ϕ : [G(9, 14)∖∆/PSp6]→M9 ∖M5
9. (4.6.1)

We wish to show that ϕ is an isomorphism. The basic idea of our proof is modeled

after [PV15b, Theorem 5.7]. In particular, we make use of the following standard lemma,

whose proof we include for completeness.

Lemma 4.6.2. Let f : X → Y be a separated morphism of connected smooth Deligne–

Mumford stacks that are of finite type over a field. Suppose that

1. the characteristic of the ground field is zero,

2. f induces an isomorphism on stabilizer groups of geometric points, and

3. f induces a bijection on geometric points.

Then f is an isomorphism.
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Proof. Let a : Y → Y be a connected, smooth cover by a smooth scheme Y . Let

X := X ×Y Y be the fiber product, so we have a diagram

X Y

X Y .
b

g

a

f

Suppose x : Spec k → X is a geometric point. The stabilizer group Gx of x is equal to the

fiber product of stabilizer groups Gb(x)×Gf(b(x))
Gg(x). But Y is a scheme, so Gg(x) is trivial.

Hence, Gx = ker(Gb(x) → Gf(b(x)), which is trivial by hypothesis. By [Con07, Theorem

2.2.5], it follows that X is an algebraic space. Further, the map f ′ : X → Y is quasi-finite

and separated so by [Sta21, Tag 03XX], we know X is a scheme. Because f induces an

isomorphism on stabilizer groups of geometric points, the map f ′ : X → Y is a bijection

on geometric points. Because a is smooth and X is smooth and connected, we know X

is also smooth and connected. Working in characteristic zero, the map f ′ is generically

smooth, hence birational. Now, Zariski’s Main Theorem shows that f ′ : X → Y is an

isomorphism.

Lemma 4.6.3. Suppose the characteristic of the ground field is zero. The map ϕ induces

an isomorphism on stabilizer groups of geometric points.

Proof. In characteristic zero, finite group schemes are smooth, so it suffices to show

the map induces a bijection on the finite stabilizer groups. Suppose x : Spec k →

[G(9, 14)∖∆/PSp6] is a geometric point. Such a point is the data of (V, σ,W ) where V

is a six-dimensional vector space, σ is a symplectic form remembered up to scaling and

W ⊂ kerσ♯ ⊂ ∧3V is a 9 dimensional subspace. The stabilizer group of x is the subgroup

of elements γ ∈ PSp6 ⊂ PGL6 that send W ⊂ kerσ♯ ⊂ ∧3V into itself. The image ϕ(x) is

the genus 9 curve

C := PW ∩ Sp(3, V ) ⊂ P(kerσ♯) ⊂ P(∧3V ).

The automorphism group of ϕ(x) is the automorphism group of C.
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To see that ϕ induces an injection on these stabilizer groups, suppose γ ∈ PSp6

induces the identity on C. Let E∨ → V be the restriction of the tautological sequence

on Sp(3, V ) to C. By [Muk10, Section 4], the bundle E is the unique rank 3 bundle of

Mukai’s Theorem 4.6.1 and E∨ → V is dual to the evaluation map H0(E) → E. Let

γ̃ ∈ GSp6 ⊂ GL6 be a lift of γ. Since γ induces the identity on C ⊂ Sp(3, V ), there must

exist an automorphism ϵ of E on C so that the diagram below commutes

E∨ V

E∨ V.

ϵ∨ γ̃ (4.6.2)

Above, the horizontal maps are the same (restricted from the tautological sequence on

Sp(3, V )) In [Muk10, Proposition 3.5(3)], Mukai showed that the only automorphisms of

E are scalars, so ϵ is a scalar. For (4.6.2) to commute, the map γ̃ must be the dual of the

effect of ϵ on global sections. Hence, γ̃ is also a scalar, so γ is the identity.

To see that ϕ induces a surjection on stabilizer groups, suppose we have an

automorphism i : C → C. We need to find an element γ ∈ PSp6(S) that induces i on

C ⊂ P(kerσ♯) ⊂ P(∧3V ). Let E on C be the restriction of the tautological bundle on

Sp(3, V ), which is the Mukai bundle. The tautological surjection V → E induces an

isomorphism V ∼= H0(E). The pullback i∗E has the properties of Theorem 4.6.1, so

Mukai’s uniqueness tells us i∗E ∼= E, and moreover, this isomorphism is unique up to

scaling [Muk10, Proposition 3.5(3)]. Now i∗ gives rise to an automorphism

γ∨ : V ∨ ∼= H0(E)
i∗−→ H0(i∗E) ∼= H0(E) ∼= V ∨,

which is well-defined up to scaling, and preserves the symplectic form up to scaling. By

construction, the dual of this element, γ ∈ PSp6 induces the automorphism i : C → C.

Lemma 4.6.4. The quotient [G(9, 14)∖∆/PSp6] is separated.

256



Proof. By Mukai [Muk10, Lemma 4.1], if the intersection P8 ∩ Sp(3, 6) is smooth of the

expected dimension 1, then it is a genus 9 curve. Thus, ∆ is the locus of linear spaces

whose intersection with Sp(3, 6) has a point with tangent space of dimension 2 or more.

Considering the incidence correspondence

{(p,Λ) ∈ Sp(3, 6)×G(9, 14) : dim(PΛ ∩ TpSp(3, 6)) ≥ 2},

one sees that ∆ is an irreducible divisor. Let L = O(∆) be the corresponding ample line

bundle on G(9, 14).

Let V be a 6-dimensional vector space equipped with a symplectic form σ. The

group G := PSp6 acts on G(9, 14) = G(9, kerσ♯) via the 14-dimensional representation

kerσ♯. Let X = G(9, 14)∖∆. We claim that the orbit of every point in X is closed in X.

Indeed suppose x′ is in the closure of the orbit of x ∈ X. The orbit of x corresponds to a

constant family of a curve [C] ∈ M9 ∖M5
9. If x

′ ∈ X is in the closure of the orbit of x,

the intersection of the corresponding linear space with Sp(3, 6) is a smooth curve C ′ in

the closure of the constant family of C, so C ′ = C. By Mukai’s Theorem 4.6.1, x′ is in the

orbit of x. Because the orbits are closed, X is contained in the stable locus of the action

of G on G(9, 14) with respect to L (see [MFK94, Definition 1.7(c)]).

By Lemma 4.6.3, the stabilizers of G acting on X are all finite. Therefore, [Edi13,

Theorem 4.18] shows that the action of G on X is proper. By [Edi13, Proposition 4.17]

the quotient stack [X/G] is separated.

Corollary 4.6.5. Assume the characteristic of the ground field is 0. The map ϕ in (4.6.1)

is an isomorphism.

Proof. Mukai’s Theorem 4.6.1 says that ϕ induces a bijection on geometric points. By

Lemma 4.6.4, the source of ϕ is separated, and hence the map ϕ is separated. By Lemma

4.6.3, we know ϕ induces an isomorphism on stabilizer groups of geometric points. Thus,

ϕ is an isomorphism by Lemma 4.6.2.
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Remark 4.6.6. In positive characteristic, the only way ϕ can fail to be an isomorphism is

if ϕ induces a purely inseparable extension of function fields. However, even if ϕ is a purely

inseparable extension of degree d, the maps ϕ∗ and 1
d
ϕ∗ are mutually inverse. Therefore,

we still have an isomorphism of Chow rings A∗([G(9, 14)∖∆/PSp6])
∼= A∗(M9 ∖M5

9),

which is actually all we need for our purposes.

Our task is now to compute generators for the Chow ring of [G(9, 14)∖∆/PSp6]

and show that they are tautological. First, note that there is an exact sequence

1→ µ2 → Sp6 → PSp6 → 0.

It follows that

[G(9, 14)∖∆/ Sp6]→ [G(9, 14)∖∆/PSp6]

is a µ2-banded gerbe. Hence, the two stacks have isomorphic Chow rings (with Q-

coefficients), so we may work with the Sp6 quotient instead. The stack [G(9, 14)∖∆/ Sp6]

is an open substack of a Grassmann bundle over BSp6. Therefore, its Chow ring is generated

by the Chern classes of the tautological subbundle S of the Grassmann bundle together

with the (pullbacks of) generators of the Chow ring of BSp6. Totaro [Tot99, Section 15]

computed the Chow ring of BSp2n.

Proposition 4.6.7 (Totaro). The Chow ring A∗(BSp2n) is isomorphic to Z[c2, c4, . . . , c2n]

where c2i are the classes of the standard representation (induced via Sp2n ↪→ SL2n).

As a result, we obtain generators for the Chow ring ofM9 ∖M5
9.

Lemma 4.6.8. The Chow ring ofM9 ∖M5
9 is generated by the Chern classes of S and

the Chern classes c2(V), c4(V), c6(V), where V is the standard representation of Sp6.

First, we deal with the Chern classes ci(S). Let f : C →M9∖M5
9 be the universal

curve.
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Lemma 4.6.9. The Chern classes of S are tautological.

Proof. By Mukai’s theorem, the projectivization of dual of the tautological subbundle PS∨

is identified with projectivization of the Hodge bundle P(f∗ωf ). Therefore, S ∼= (f∗ωf )
∨⊗L

where L is some line bundle onM9∖M5
9. By a theorem of Harer [Har85] in characteristic 0

and Moriwaki [Mor01] in characteristic p, Pic(Mg) and hence Pic(M9 ∖M5
9) is generated

by c1(f∗ωf). It follows from the splitting principle that the Chern classes of S are

tautological.

Next we deal with the Chern classes ci(V). Writing f : C → M9 ∖M5
9 for the

universal curve, let I2(C) be defined by the exact sequence

0→ I2(C)→ Sym2(f∗ωf )→ f∗(ω
⊗2
f )→ 0.

The bundle I2(C) is a rank 21 bundle parametrizing the quadrics vanishing on the curve

under its canonical embedding. By Petri’s theorem, a nontrigonal canonical curve of genus

9 is exactly the common zero locus of these 21 quadrics.

Lemma 4.6.10. The bundle I2(C) is isomorphic to Sym2 V.

Proof. Because a canonical curve of genus 9 with no g15 is a linear section of the symplec-

tic Grassmannian, we see that we can identify the space of quadrics vanishing on the

canonical curve with the restriction to P8 of the space of quadrics defining the symplectic

Grassmannian Sp(3, V ) ⊂ P(kerσ♯) ∼= P13. The symplectic Grassmannian is the zero locus

of 21 quadrics in P13, see [Muk10, Equation 0.1]. That is, I2(C) is the corresponding

21-dimensional representation of Sp6. Following Mukai’s notation on p. 1544, let V

be a six-dimensional vector space with a symplectic form and choose a decomposition

V ∼= U0 ⊕ U∞ for two symplectic subspaces U0, U∞. Then we identify the representations

in [Muk10, Equation 0.1] as follows. The first equation (representing 6 quadrics) lives in a

space of symmetric 3× 3 matrices Sym3 k corresponding to Sym2 U0, the second equation

259



(representing another 6 quadrics) lives in Sym3 k
∼= Sym2 U∞ and the third equation

(representing 9 quadrics) lives in a space of 3× 3 matrices, Mat3 ∼= U0 ⊗ U∞. Together,

we recognize (Sym2 U0)⊕ (Sym2 U∞)⊕ (U0 ⊗ U∞) as Sym2 V , which is also isomorphic to

the adjoint representation of Sp6.

Corollary 4.6.11. The Chern classes c2(V), c4(V), c6(V) are all tautological.

Proof. By the previous Lemma, there is an exact sequence

0→ Sym2 V → Sym2(f∗ωf )→ f∗(ω
⊗2
f )→ 0.

By the splitting principle and Grothendieck–Riemann–Roch, the Chern classes of Sym2 f∗ωf

and f∗(ω
⊗2
f ) are tautological. Hence, the Chern classes of Sym2 V are tautological. By the

splitting principle and the fact that the odd Chern classes of V vanish, we have

c(Sym2 V) = 1+8c2(V)+[22c2(V)2+14c4(V)]+[28c2(V)3+54c2(V)c4(V)+38c6(V)]+ . . . .

It follows that c2(V), c4(V), c6(V) are tautological.

By Lemmas 4.6.8 and 4.6.9 and Corollary 4.6.11, we conclude that A∗(M9 ∖M5
9)

is tautological. Combining this with Lemma 4.5.9 completes the proof of Theorem 4.1.4.
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Chapter 5

The Chow rings of moduli spaces of

elliptic surfaces over P1
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5.1 Introduction

Given a smooth stack X that is the solution to a moduli problem, there are often

natural algebraic cycles called tautological classes in A∗(X), the Chow ring of X with

rational coefficients. For example, when X =Mg, the moduli space of smooth curves

of genus g, there is the tautological subring R∗(Mg) ⊂ A∗(Mg) generated by the κ-

classes. Faber [Fab99] gave a series of conjectures on the structure of R∗(Mg), which

assert that R∗(Mg) behaves like the algebraic cohomology ring of a smooth projective

variety of dimension g − 2, even thoughMg is neither projective nor of dimension g − 2.

Looijenga [Loo95] proved that Ri(Mg) = 0 for i > g− 2 and that Rg−2(Mg) ∼= Q, settling

one of Faber’s conjectures. Looijenga’s theorem gives a new proof of Diaz’s result [Dia84]

that the maximal dimension of a complete subvariety of Mg is g − 2. Faber further

conjectured that R∗(Mg) should be a Gorenstein ring with socle in codimension g − 2,

meaning that the intersection product is a perfect pairing

Ri(Mg)×Rg−2−i(Mg)→ Rg−2(Mg) ∼= Q.

Faber [Fab99] and Faber–Zagier proved this conjecture for g ≤ 23 by producing relations in

the tautological ring and showing computationally that the resulting quotient is Gorenstein.

Recently, there has been significant interest in the tautological rings R∗(FΛ) of the

moduli spaces FΛ of lattice polarized K3 surfaces [MP13,MOP17,PY20,BLMM17,BL19].

In [MOP17], the tautological rings are defined as the subrings of A∗(FΛ) generated by the

fundamental classes of Noether–Lefschetz loci together with push forwards of κ-classes

from all Noether-Lefschetz loci. There are natural analogues of Faber’s conjectures for

R∗(FΛ).
1

Conjecture 5.1.1 (Oprea–Pandharipande). Let d = dimFΛ.

1We learned about these analogues from a lecture given by Rahul Pandharipande in the algebraic
geometry seminar at UCSD and from a course on K3 surfaces given by Dragos Oprea.
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1. For i > d− 2, Ri(FΛ) = 0.

2. There is an isomorphism Rd−2(FΛ) ∼= Q.

The primary evidence for part (1) of this conjecture is a theorem of Petersen [Pet19,

Theorem 2.2], which says that the image RH2∗(FΛ) of R
∗(FΛ) in cohomology under the

cycle class map vanishes above cohomology degree 2(d − 2). If Conjecture 5.1.1 holds,

then one can further ask for the analogue of Faber’s Gorenstein conjecture: is there a

perfect pairing

Ri(FΛ)×Rd−2−i(FΛ)→ Rd−2(FΛ) ∼= Q?

In this paper, we study the Chow rings of moduli spaces EN of elliptic surfaces Y

fibered over P1 with section s : P1 → Y and fundamental invariant N (see Section 2 for

definitions). The main result is that natural analogues of Faber’s vanishing and Gorenstein

conjectures hold for the entire Chow ring A∗(EN) for each N ≥ 2.

Theorem 5.1.2. Let N ≥ 2 be an integer.

1. The Chow ring has the form

A∗(EN) = Q[a1, c2]/IN

where a1 ∈ A1(EN), c2 ∈ A2(EN), and IN is the ideal generated by the two relations

from Proposition 5.3.4.

2. The Poincaré polynomial collecting dimensions of the Chow groups is given by

pN(t) =
∑

dimAi(EN)t
i

= 1 + t+ 2t2 + 2t3 + 3t4 + 3t5 + 4t6 + 4t7 + 5t8+

+ 4t9 + 4t10 + 3t11 + 3t12 + 2t13 + 2t14 + t15 + t16.
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3. The Chow ring A∗(EN) is Gorenstein with socle in codimension 16.

We also have similar partial results for Poincaré polynomial for the cohomology

ring when N = 2 that will appear in future work.

A notable property is that the dimensions of the Chow groups are independent of N .

In particular, the Chow groups Ai(EN ) are only nonzero in codimension 0 ≤ i ≤ 16, despite

the fact that the dimensions of the moduli spaces EN go to infinity with N . Moreover,

the ring structure depends in a simple and explicit way on N coming from the relations in

Proposition 5.3.4. As a consequence of Theorem 5.1.2, we obtain an analogue of Diaz’s

theorem [Dia84] on the maximal dimension of a complete subvariety ofMg. In our case,

the bound is independent of N .

Corollary 5.1.3. Let N ≥ 2 be an integer. The maximal dimension of a complete

subvariety of EN is 16.

When N = 2, the corresponding elliptic surfaces are K3 surfaces polarized by a

hyperbolic lattice U with intersection matrix

0 1

1 0

 .
We show that the generators a1 and c2 of A

∗(E2) have natural interpretations as tautological

classes in R∗(FU), where FU is the moduli space of U -polarized K3 surfaces.

Theorem 5.1.4. Under the identification of A∗(E2) with A
∗(FU ), the classes a1 and c2 lie

in R∗(FU). Therefore, A∗(FU) = R∗(FU) is a Gorenstein ring with socle in codimension

16. In particular, Conjecture 5.1.1 is true for Λ = U , the hyperbolic lattice.

The paper is structured as follows. In Section 5.2, we collect the necessary back-

ground on elliptic surfaces, the closely related notion of Weierstrass fibrations, and their

moduli. In Section 5.3, we prove Theorem 5.1.2 and Corollary 5.1.3. In Section 5.4, we
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explore the case N = 2 and prove Theorem 5.1.4. We also compute relations among the

codimension 1 κ-classes.

Notations and Conventions

1. Schemes are over a fixed algebraically closed field k of characteristic not 2 or 3. All

stacks are fibered over the category of schemes over k.

2. We denote the Chow ring of a space X with rational coefficients by A∗(X).

3. We use the subspace (classical) convention for projective bundles.

5.2 Elliptic Surfaces and Weierstrass Fibrations

In this section, we collect the necessary background information on elliptic surfaces

and Weierstrass fibrations following Miranda [Mir81]. The main objects of interest in this

paper will be moduli spaces of minimal elliptic surfaces over P1 with section.

Definition 5.2.1. A minimal elliptic surface over P1 with section consists of the following

data:

1. a smooth projective surface Y ,

2. a proper morphism π : Y → P1 whose general fiber is a smooth connected curve of

genus 1 and such that none of the fibers contain any (−1)-curves,

3. a section s : P1 → Y of π.

Remark 5.2.2. Note that the minimality condition is different from the usual one given

in the birational geometry of surfaces. There can be (−1)-curves on the surface Y , but

they must not lie in the fibers of p.

We will study moduli spaces of minimal elliptic surfaces by studying the closely

related notion of Weierstrass fibrations.
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Definition 5.2.3. A Weierstrass fibration over P1 consists of the following data:

1. a projective surface X,

2. a flat proper morphism p : X → P1 such that every fiber is an irreducible curve of

arithmetic genus 1 and the general fiber is smooth,

3. a section s : P1 → X of p whose image does not intersect the singular points of any

fiber.

Weierstrass fibrations X → P1 have a natural invariant associated to them that

governs aspects of the geometry of X and the associated moduli spaces.

Definition 5.2.4. Let p : X → P1 be a Weierstrass fibration.

1. The fundamental line bundle associated to p : X → P1 is the line bundle

L = (R1p∗OX)∨.

2. The fundamental invariant associated to p : X → P1 is the integer

N = degL.

Because L is a line bundle on P1, it is of the form O(N) where N is the fundamental

invariant. By [Mir81, Corollary 2.4], the fundamental invariant is always nonnegative.

There is a one-to-one correspondence between minimal elliptic surfaces with section

and Weierstrass fibrations with at worst rational double points as singularities. Given

a minimal elliptic surface π : Y → P1, we obtain a Weierstrass fibration with at worst

rational double points p : X → P1 by contracting any rational components in the fibers

that do not meet the section. Conversely, given a Weierstrass fibration p : X → P1 with

at worst rational double points as singularities, resolving the singularities and blowing
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down (−1)-curves in the fibers yields a minimal elliptic surface π : Y → P1. We say that

Y contracts to X and X resolves to Y . Weierstrass fibrations have a representation as

divisors on a P2-bundle over P1, which Miranda [Mir81] used to construct coarse moduli

spaces for Weierstrass fibrations, and hence elliptic surfaces, using Geometric Invariant

Theory.

Lemma 5.2.5 ((Corollary 2.5 of [Mir81])). Let π : Y → P1 be a minimal elliptic surface

with section contracting to a Weierstrass fibration p : X → P1 with fundamental invariant

N . Then X is isomorphic to the closed subscheme of P(O ⊕O(2N)⊕O(3N)) defined by

y2z = x3 + Axz2 +Bz3.

where A ∈ H0(P1,O(4N)) and B ∈ H0(P1,O(6N)). Moreover,

1. 4A3 + 27B2 is not identically zero. If it vanishes at q ∈ P1, the fiber of X over q is

singular.

2. For every q ∈ P1, vq(A) ≤ 3 or vq(B) ≤ 5, where vq is the order of vanishing at q.

Set V4N := H0(P1,O(4N)) and V6N := H0(P1,O(6N)). Let TN ⊂ V4N⊕V6N denote

the open subspace satisfying conditions (1) and (2) from Lemma 5.2.5. The following

is [Mir81, Corollary 2.8].

Corollary 5.2.6. The set of isomorphism classes of minimal elliptic surfaces π : Y → P1

with degR1p∗OX = −N and with fixed section (equivalently, Weierstrass fibrations with

only rational double points) is in 1− 1 correspondence with the set of orbits of SL2×Gm

on TN .

In order to give the set of orbits a geometric structure, Miranda analyzes the

stability of the action of SL2×Gm on TN .

Proposition 5.2.7. Let (A,B) ∈ V4N ⊕ V6N be a pair of forms.
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1. The point corresponding to (A,B) is not semistable if and only if there is a point

q ∈ P1 such that

vq(A) > 2N and vq(B) > 3N.

2. The point corresponding to (A,B) is not stable if and only if there is a point q ∈ P1

such that

vq(A) ≥ 2N and vq(B) ≥ 3N.

From Lemma 5.2.5 and Proposition 5.2.7, we see that as long as N ≥ 2, points in

TN are stable, and thus EN := TN// SL2×Gm is a coarse moduli space for Weierstrass

fibrations with fundamental invariant N . In particular, the natural morphism

EN := [TN/ SL2×Gm]→ EN

from the quotient stack to the GIT quotient is a coarse moduli space morphism.

In Section 4, it will be useful for us to work on a stackWN of Weierstrass fibrations

with fundamental invariant N , not just the coarse moduli space constructed by Miranda.

This stack is not the stack EN defined above, but it is closely related as we will now explain.

The stack WN was recently defined in work of Park–Schmitt [PS21], and we will briefly

recall their construction.

Definition 5.2.8. Let S be a scheme. A family of Weierstrass fibrations over S is given

by the data

X p−→ P γ−→ S,P s−→ X

where

1. γ is a smooth, proper morphism locally of finite type, with geometric fibers isomorphic

to P1,

2. p is a proper map with section s,
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3. the fibers (Xt → Pt,Pt → Xt) on geometric points t ∈ S are Weierstrass fibrations.

Park–Schmitt [PS21] define W to be the moduli stack whose objects over S are

families of Weierstrass fibrations over S with morphisms over T → S given by fiber diagrams.

The stack WN is the open and closed substack parametrizing Weierstrass fibrations with

fundamental invariant N . Finally, we consider the open substacks Wmin,N ⊂ WN of

Weierstrass fibrations satisfying the two conditions from Lemma 5.2.5. These stacks

parametrize the Weierstrass fibrations with fundamental invariant N that resolve to

minimal elliptic surfaces. By [PS21, Theorem 1.2], the stacksWmin,N are smooth, separated

Deligne-Mumford stacks for N ≥ 2, and by [PS21, Theorem 1.4], EN is a coarse moduli

space for Wmin,N

We now have three spaces of interest: EN , Wmin,N and EN . We want to compare

their Chow rings.

Proposition 5.2.9. The Chow rings of EN , Wmin,N and EN are isomorphic.

Proof. The space EN is a coarse moduli space for both stacks EN and Wmin,n. Therefore,

since we are using rational coefficients, all three Chow rings are isomorphic by a result of

Vistoli [Vis89b, Proposition 6.1].

Remark 5.2.10. The difference between the stacks Wmin,N and EN is that EN is a

µ2-banded gerbe over Wmin,N . The gerbe structure arises from the map BSL2 → BPGL2.

5.3 Computing the Chow ring

By Proposition 5.2.9, it suffices to compute A∗(EN ) in order to prove Theorem 5.1.2.

Let ∆N ⊂ V4N ⊕ V6N denote the complement of TN . We have the excision exact sequence

A∗([∆N/ SL2×Gm])→ A∗([V4N ⊕ V6N/ SL2×Gm])→ A∗(EN)→ 0. (5.3.1)

We want to study the image of A∗([∆N/ SL2×Gm]) in A
∗([V4N ⊕ V6N/ SL2×Gm]).
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We begin with background information on the stack [V4N ⊕ V6N/ SL2×Gm]. The

stack BSL2 is the classifying stack for rank 2 vector bundles with trivial first Chern class.

Let V denote the universal rank 2 vector bundle with trivial first Chern class over BSL2.

Set c2 := c2(V). Similarly, the stack BGm is the classifying stack for line bundles. LetM

denote the universal line bundle over BGm. Set a1 := c1(M). By abuse of notation, we will

not distinguish between V ,M, c2, and a1 and their pullbacks to the product BSL2×BGm

under the natural projection maps. We will interpret the stack BSL2×BGm as the stack

of line bundles of relative degree N on P1-bundles as in [Lar21b] as follows. Consider the

universal P1-bundle

γ : P(V)→ BSL2×BGm .

Fix N ≥ 0 and set L := γ∗M(N), the universal relative degree N line bundle on P(V).

Lemma 5.3.1.

1. The stack [V4N ⊕V6N/ SL2×Gm] is the total space of the vector bundle γ∗(L⊗4⊕L⊗6)

on BSL2×BGm.

2. There is an isomorphism of graded rings

A∗([V4N ⊕ V6N/ SL2×Gm]) ∼= Q[a1, c2],

with a1 in degree 1 and c2 in degree 2.

Proof. Part (1) follows from cohomology and base change. Indeed, the fibers of γ∗(L⊗4 ⊕

L⊗6) are canonically identified with V4N ⊕ V6N , and the higher cohomology vanishes. For

part (2), we note that by part (1) and the homotopy property for Chow rings, there is an

isomorphism

A∗([V4N ⊕ V6N/ SL2×Gm]) ∼= A∗(BSL2×BGm).
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A standard calculation in equivariant intersection theory [Tot99, Section 15] shows that

A∗(BSL2×BGm) ∼= Q[a1, c2]

as graded rings.

5.3.1 Computing the ideal of relations

By Lemma 5.3.1, the exact sequence (5.3.1) can be rewritten as

A∗([∆N/ SL2×Gm])→ Q[a1, c2]→ A∗(EN)→ 0. (5.3.2)

It follows that A∗(EN), and hence A∗(EN), is a quotient of Q[a1, c2] by the ideal IN

generated by the image of A∗([∆N/ SL2×Gm]).

Lemma 5.2.5 tells us exactly when a pair (A,B) ∈ V4N ⊕ V6N is contained in

∆N . We write ∆N = ∆1
N ∪∆2

N , where ∆1
N parametrizes the pairs of forms (A,B) such

that 4A3 + 27B2 is identically zero (corresponding to Lemma 5.2.5 part (1)), and ∆2
N

parametrizing pairs of forms (A,B) such that vq(A) ≥ 4 or vq(B) ≥ 6 for some point

p ∈ P1 (corresponding to Lemma 5.2.5 part (2)). First, we will determine the relations

obtained from excising the pairs (A,B) ∈ ∆2
N . To do so, we need to introduce bundles of

principal parts. We will follow the treatment in [EH16].

Let b : Y → Z be a smooth proper morphism. Let ∆Y/Z ⊂ Y ×Z Y be the relative

diagonal. With p1 and p2 the projection maps, we obtain the following commutative

diagram:

∆Y/Z

Y ×Z Y Y

Y Z.

p2

p1

b

b
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Definition 5.3.2. Let F be a vector bundle on Y and let I∆Y/Z
denote the ideal sheaf of

the diagonal in Y ×Z Y . The bundle of relative mth order principal parts Pm
b (V) is defined

as

Pm
b (F) = p2∗(p

∗
1F ⊗OY×ZY /Im+1

∆Y/Z
).

The following explains all the basic properties of bundles of principal parts that we

need.

Proposition 5.3.3 ((Theorem 11.2 in [EH16])). With notation as above,

1. There is an isomorphism b∗b∗F
∼−→ p2∗p

∗
1F .

2. The quotient map p∗1F → p∗1F ⊗OY×ZY /Im+1
∆Y/Z

pushes forward to a map

b∗b∗F ∼= p2∗p
∗
1F → Pm

b (F),

which, fiber by fiber, associates to a global section δ of F a section δ′ whose value at

z ∈ Z is the restriction of δ to an mth order neighborhood of z in the fiber b−1b(z).

3. P 0
b (F) = F . For m > 1, the filtration of the fibers Pm

b (F)y by order of vanishing at

y gives a filtration of Pm
b (F) by subbundles that are kernels of the natural surjections

Pm
b (F)→ P k

b (F) for k < m. The graded pieces of the filtration are identified by the

exact sequences

0→ F ⊗ Symm(ΩY/Z)→ Pm
b (F)→ Pm−1

b (F)→ 0.

By (2) of Proposition 5.3.3, there is a morphism

ψ : γ∗γ∗(L⊗4 ⊕ L⊗6)→ P 3
γ (L⊗4)⊕ P 5

γ (L⊗6)

which, along points in the P1 fibers, sends A (respectively, B) to a third (respectively, fifth)
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order neighborhood. The kernel of this map therefore parametrizes the triples (A,B, q)

such that vq(A) ≥ 4 and vq(B) ≥ 6. Looking fiber-by-fiber, one sees that the map ψ

is surjective. Therefore, the kernel K of ψ is a vector bundle. We obtain the following

commutative diagram where ϕ, ϕ′ and ϕ′′ are vector bundle morphisms.

K γ∗γ∗(L⊗4 ⊕ L⊗6) γ∗(L⊗4 ⊕ L⊗6)

P(V) BSL2×BGm .

i

ϕ′′

γ′

ϕ′ ϕ

γ

(5.3.3)

By construction, K maps properly and surjectively onto [∆2
N/ SL2×Gm] under the identi-

fication of γ∗(L⊗4 ⊕ L⊗6) with [V4N ⊕ V6N/ SL2×Gm] from Lemma 5.3.1. Consequently,

the images of the push forward maps

γ′∗i∗ : A∗(K)→ A∗(γ∗(L⊗4 ⊕ L⊗6)) = A∗([V4N ⊕ V6N/ SL2×Gm])

and

A∗([∆
2
N/ SL2×Gm])→ A∗([V4N ⊕ V6N/ SL2×Gm])

are the same.

Proposition 5.3.4. Let z denote the hyperplane class of P(V). The image of the push

forward map γ′∗i∗ : A
∗(K)→ A∗(γ∗(L⊗4 ⊕ L⊗6)) is the ideal generated by the two classes

1. ϕ∗γ∗(ctop(P
3
γ (L⊗4)⊕ P 5

γ (L⊗6))), and

2. ϕ∗γ∗(ctop(P
3
γ (L⊗4)⊕ P 5

γ (L⊗6)) · z).

Proof. Let α ∈ A∗(K). Then because K is a vector bundle over P(V), we see that

α = ϕ′′∗(β) for some class β ∈ A∗(P(V)), so we have

α = ϕ′′∗(β) = i∗ϕ′∗(β).
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Pushing forward, we obtain

γ′∗i∗α = γ′∗i∗i
∗ϕ′∗(β) = γ′∗([K] · ϕ′∗β).

Because K is the kernel of the vector bundle morphism

ψ : γ∗γ∗(L⊗4 ⊕ L⊗6)→ P 3
γ (L⊗4)⊕ P 5

γ (L⊗6),

the fundamental class [K] is given by ϕ′∗(ctop(P
3
γ (L⊗4)⊕ P 5

γ (L⊗6))). Because the square

in the commutative diagram (5.3.3) is Cartesian, γ′∗ϕ
′∗ = ϕ∗γ∗, so

γ′∗i∗α = ϕ∗γ∗(ctop(P
3
γ (L⊗4)⊕ P 5

γ (L⊗6)) · β).

Because P(V) is a projective bundle, β can be written as

β = γ∗β1 + γ∗β2z,

where β1 and β2 are classes in A∗(BSL2×BGm). The statement of the proposition

follows.

Lemma 5.3.5. The codimension of ∆1
N in V4N ⊕ V6N is 8N + 1.

Proof. Let t be an affine coordinate on P1. Then we can factor A(t) and B(t) into linear

factors as

A(t) = a

4N∏
i=1

(t− ci) and B(t) = b

6N∏
i=1

(t− di).

Because 4A3 + 27B2 is identically zero, we have the equation

4a3
4N∏
i=1

(t− ci)3 = −27b2
6N∏
i=1

(t− di)2.
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By comparing the orders of vanishing of each side, we see that A(t) = aG(t)2 and

B(t) = bG(t)3, where G is a polynomial of degree 2N and 4a3 + 27b2 = 0. It follows that

the codimension of ∆1
N is given by

dim(V4N ⊕ V6N)− dimV2N = 10N + 2− 2N − 1 = 8N + 1.

We can now complete the proof of Theorem 5.1.2.

Proof of Theorem 5.1.2. By a calculation in Macaulay2 [GS], the graded ring Q[a1, c2]/IN

vanishes in degree 17 and higher, where IN is the ideal generated by the relations from

Proposition 5.3.4. We have the excision exact sequence

A∗([∆
1
N/ SL2×Gm])→ Q[a1, c2]/IN → A∗(EN)→ 0.

By Lemma 5.3.5, the image of

A∗([∆
1
N/ SL2×Gm])→ Q[a1, c2]/IN

lies in codimension 17 or higher, so it is identically zero. Therefore,

Q[a1, c2]/IN ∼= A∗(EN).

This completes the proof of Theorem 5.1.2 part (1). Parts (2) and (3) are consequences of

part (1) together with a computation in Macaulay2 [GS] that computes the Hilbert Series

of the ring Q[a1, c2]/IN and verifies that the intersection pairing is perfect.

Proof of Corollary 5.1.3. Miranda’s construction of EN by geometric invariant theory

[Mir81] shows that EN is a quasi-projective variety. It thus admits an ample line bundle
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L. If S is a complete subvariety of dimension d, then, because L is ample,

c1(L)
d · S > 0.

Hence, c1(L)
d is numerically nonzero. By Theorem 5.1.2, it follows that d ≤ 16.

5.4 The Tautological Ring

5.4.1 Stacks of lattice polarized K3 surfaces

Let Λ ⊂ U⊕3 ⊕ E8(−1)⊕2 be a fixed rank r primitive sublattice with signature

(1, r − 1), and let v1, . . . , vr be an integral basis of Λ. A Λ-polarization on a K3 surface X

is a primitive embedding

j : Λ ↪→ Pic(X)

such that

1. The lattices H2(X,Z) and U⊕3⊕E8(−1)⊕2 are isomorphic via an isometry restricting

to the identity on Λ, where we view Λ as sitting inside H2(X,Z) via Λ ↪→ Pic(X) ↪→

H2(X,Z).

2. The image of j contains the class of a quasi-polarization.

Beauville [Bea04] constructed moduli stacks FΛ of Λ-polarized K3 surfaces, and showed

that they are smooth Deligne–Mumford stacks of dimension 20− r. Using the surjectivity

of the period map, one can construct coarse moduli spaces FΛ for FΛ [Dol96].

We think of the stacks FΛ as parametrizing families of K3 surfaces

π : X → S

together with r line bundles H1, . . . , Hr on X corresponding to the basis v1, . . . , vr of Λ,

well-defined up to pullbacks from Pic(S). Technically, these bundles exist only étale locally,
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as they are defined as sections of the sheaf PicX/S, which is the étale sheafification of the

presheaf on the category of schemes over S

T 7→ Pic(XT )/Pic(T ).

We will generally suppress this detail, but we will remark when it is important. There are

forgetful morphisms

FΛ′ ↪→ FΛ

for any lattice Λ ⊂ Λ′. We call the subvarieties FΛ′ Noether-Lefschetz loci of FΛ.

5.4.2 The tautological ring of FΛ

The stack FΛ comes equipped with a universal K3 surface

πΛ : XΛ → FΛ.

and universal bundles H1, . . .Hr, well-defined up to pullbacks from FΛ. Let TπΛ denote

the relative tangent bundle. Following [MOP17], we define the κ-classes

κΛa1,...,ar,b := πΛ∗
(
c1(H1)

a1 · · · c1(Hr)
ar · c2(TπΛ)b

)
.

Definition 5.4.1. The tautological ring R∗(FΛ) is the subring of A∗(FΛ) generated by

pushforwards from the Noether–Lefschetz loci of all κ-classes.

By [Bor99] or [FR20], the Hodge class λ := c1(πΛ∗ωπΛ) lies in the tautological ring

R∗(FΛ) for all Λ, as it is supported on Noether–Lefschetz divisors.
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5.4.3 Moduli of elliptic K3 surfaces and Weierstrass fibrations

Let p : X → P1 be a minimal elliptic surface over P1 with fundamental invariant

2. Then X is a K3 surface, and the class of the fiber f and section σ form a primitively

embedded lattice U ⊂ Pic(X) equivalent to a hyperbolic lattice, whose image contains a

quasi-polarization σ + 2f . Conversely, given a K3 surface X, a primitive embedding of

a hyperbolic lattice U ↪→ Pic(X) whose image contains a quasi-polarization allows one

to define a morphism p : X → P1 with section s : P1 → X with fundamental invariant

2 [CD07, Theorem 2.3]. Because of this, we call the stack FU the stack parametrizing

elliptic K3 surfaces with section. By [OO21, Theorem 7.9], the coarse moduli space FU

is isomorphic to E2. By the discussion in subsection 5.4.1, FU comes equipped with a

universal K3 surface and two universal line bundles

πU : XU → FU , O(f)→ XU , O(σ)→ XU .

The intersection matrix of O(σ) and O(f) is

 O(σ)2 O(σ) · O(f)

O(σ) · O(f) O(f)2

 =

−2 1

1 0

 ,
which can be obtained by a change of basis from the usual intersection matrix for a

hyperbolic lattice U : 0 1

1 0

 .
We prefer to take O(f) and O(σ) as our basis because of their geometric meaning. Recall

that the stack Wmin parametrizes families of Weierstrass fibrations resolving to minimal
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elliptic surfaces. We will construct a morphism

G : FU →Wmin,

which is a relative version of the morphism sending an elliptic K3 surface to its associated

Weierstrass fibration. Let π : X → S be a family of U -polarized K3 surfaces, equipped

with bundles O(f) and O(σ) on X, up to an étale cover of S. The surjection

π∗π∗O(f)→ O(f)

defines a morphism

p : X → P(π∗O(f)∨)

over S. The relative effective Cartier divisor associated to O(σ) allows us to define a

section s of p. The surjection

p∗p∗O(3σ)→ O(3σ)

defines a morphism i : X → P(p∗O(3σ)∨). Let Y denote the image of X under i. Then Y

is a family of Weierstrass fibrations over S. This construction defines the morphism

G : FU →Wmin.

Remark 5.4.2. We note that in constructing Y , we chose line bundles O(f) and O(σ).

Technically, we could only do so étale locally. The projective bundle P(π∗O(f)∨) → S

will only descend to a smooth proper morphism, locally of finite type, with geometric

fibers isomorphic to P1: it will not necessarily be the projectivization of a vector bundle

on S. Second, even once we pass to an étale cover, O(f) and O(σ) are only defined up

to pullbacks from Pic(S). If we made different choices for O(f) and O(σ) the resulting

Weierstrass fibration would be canonically isomorphic to the original one because for any
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vector bundle E and line bundle L, P(E ⊗ L) is canonically isomorphic to P(E).

Consider the following Cartesian diagram, which defines the stack F̃U .

F̃U E2

FU Wmin

G′

G

The vertical morphisms are µ2-banded gerbes. In fact, we can explicitly describe the

functor of points for F̃U . A morphism from a scheme S to F̃U is a family

(π : X → S,O(f),O(σ),N )

where (π : X → S,O(f),O(σ)) is a family of U -polarized K3 surfaces and N is a line

bundle on S such that

N⊗2 ∼= detπ∗O(f).

Recall that E2 has a universal rank 2 vector bundle with trivial first Chern class V and a

universal line bundleM. By construction of the map G and its base change G′, we have

that

G′∗V = π∗O(f)∨ ⊗N ,

where N is the universal square root of detπ∗O(f). We will abuse notation and denote

the universal K3 surface on FU and F̃U both by π.

Lemma 5.4.3. The class c2(π∗O(f)∨ ⊗N ) on F̃U is the pullback of a tautological class

on FU .
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Proof. Note that

c2(π∗O(f)∨ ⊗N ) = c1(N )2 + c1(π∗O(f)∨)c1(N ) + c2(π∗O(f)∨)

=
1

4
c1(detπ∗O(f))2 −

1

2
c1(π∗O(f))c1(detπ∗O(f)) + c2(π∗O(f))

= −1

4
c1(π∗O(f))2 + c2(π∗O(f)).

It thus suffices to show that the Chern classes of π∗O(f) are tautological. By Grothendieck–

Riemann–Roch, we have

ch(π!O(f)) = π∗(ch(O(f)) · td(Tπ)).

By definition, the classes on the right hand side are tautological. We note that

π!O(f) = π∗O(f)

because π is a relative K3 surface. By comparing degree 1 parts of both sides, we see

that c1(π∗O(f)) is tautological. By comparing degree 2 parts, we see that c2(π∗O(f)) is

tautological.

Proof of Theorem 5.1.4. Each of the stacks E2, Wmin, FU , and F̃U has the same coarse

moduli space E2. They thus all have isomorphic Chow rings, and proper push forward

A∗(Z) → A∗(E2) is an isomorphism of Chow groups, where Z is any of the four stacks

above [Vis89b, Proposition 6.1]. By Theorem 5.1.2, A1(E2) is generated by the push

forward of a1. By [Pet19, Theorem 2.1] or the proof of [vdGK05, Corollary 4.2], the

tautological class λ is nonvanishing on FU . It follows that A1(FU) is generated by λ, so

A1(FU) = R1(FU). By Theorem 5.1.2, A2(E2) is generated by the push forwards of a21

and c2. By Lemma 5.4.3, the class c2 pulls back to a class in A2(F̃U) that is the pullback

of a tautological class from A2(FU ). It follows that A2(FU ) = R2(FU ), as the images of a21

282



and c2 in A2(E2) can both be obtained by pushing forward tautological classes from FU .

Therefore, A∗(FU) = R∗(FU). The fact that A∗(FU) = R∗(FU) is Gorenstein with socle

in codimension 16 follows from Theorem 5.1.2.

5.4.4 Codimension one classes

By Theorems 5.1.2 and 5.1.4, A1(FU) is of rank one and the Hodge class λ is a

generator. It is natural to ask how to represent κ-classes explicitly in terms of the Hodge

class λ.

Proposition 5.4.4. The following four linear combinations of κ-classes are independent

of the choice of universal line bundles. Moreover, they are all multiples of the Hodge class

λ.

κ3,0,0 +
1

4
κ1,0,1 =

7

2
λ, 3κ2,1,0 −

1

4
κ1,0,1 +

1

4
κ0,1,1 =

1

2
λ,

3κ1,2,0 −
1

4
κ0,1,1 = −3λ, κ0,3,0 = 0.

where κi,j,k := π∗
(
c1(O(σ))i · c1(O(f))j · c2(Tπ)k

)
.

Proof. A direct computation shows the above four κ combinations are invariant under

f 7→ f + π∗(l) and σ 7→ σ + π∗(l′) for any l, l′ ∈ A1(FU).

By Theorem 5.1.2, we know A1(FU) is of rank one, so it is sufficient to check the

identities by computing their intersection numbers with a suitable test curve:

ι : C → FU .

To construct the curve, we use the resolved version of the STU model in [KMPS10]. The

STU model is a smooth Calabi-Yau 3-fold, endowed with a map:

πSTU : XSTU → P1.
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It arises as an anti-canonical section of a toric 4-fold Y . The fan datum for Y can be

found in [KMPS10, Section 1.3]. We use their notation. There are 10 primitive rays

{ρi; 1 ≤ i ≤ 10}, and the corresponding divisors are denoted as Di ∈ Pic(Y ). The

anti-canonical class is:

−KY =
10∑
i=1

Di.

The general fiber of πSTU is a smooth elliptic K3 surface, but there are 528 singular

fibers [KMPS10, Proposition 1], each of which has exactly one ordinary double point

singularity. Let ϵ : C → P1 be a double cover branched along the 528 points corresponding

to the singular fibers. The pullback of XSTU by ϵ has double point singularities, and by

resolving them we obtain the resolved STU model:

π̃STU : X̃STU → C.

All fibers of π̃STU are smooth elliptic K3 surfaces. Moreover the toric divisors D5, D3 ∈

Pic(Y ) restrict to the universal section and fiber for π̃STU . The family π̃STU defines a

curve in the moduli space FU :

ι : C → FU .

The intersection number ι∗(λ) is computed in [KMPS10, Proposition 2]:

ι∗(λ) = 4E4(q)E6(q)[0] = 4,

where E4 and E6 are Eisenstein series, and we take the coefficient of q0.

For the κ-classes, it suffices to perform the computation over the non-resolved STU

model. Since the tautological classes we consider are all invariant, we may assume the
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universal line bundles on FU pull back to the toric divisors D5, D3. For κ3,0,0, we have:

ι∗(κ3,0,0) = 2 · πSTU∗

(
D3

5 ·
10∑
i=1

Di

)
,

where the factor of 2 comes from the double cover ϵ. Using toric geometry, all monomials

of the form Di ·Dj ·Dk ·Dl can be explicitly determined. We obtain:

ι∗(κ3,0,0) = 16.

Other intersection numbers can be computed analogously. We record the final answers:

ι∗(κ3,0,0) = 16 ι∗(κ1,0,1) = −8 ι∗(κ2,1,0) = −4

ι∗(κ0,1,1) = 48 ι∗(κ1,2,0) = 0 ι∗(κ0,3,0) = 0.

The four identities in the proposition then follow immediately.
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This chapter, in full, has been submitted for publication. It is coauthored with

Kong, Bochao. The dissertation author was co-primary investigator and author of this

paper.
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