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Contrasting Intraurban Signatures of Humid and
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a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
b Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California

(Manuscript received 15 September 2022, in final form 24 March 2023, accepted 12 May 2023)

ABSTRACT: Heatwaves in California manifest as both dry and humid events. While both forms have become more prev-
alent, recent studies have identified a shift toward more humid events. Understanding the complex interactions of each
heatwave type with the urban heat island is crucial for impacts but remains understudied. Here, we address this gap by con-
trasting how dry versus humid heatwaves shape the intraurban heat of the greater Los Angeles area. We used a consecu-
tive contrasting set of heatwaves from 2020 as a case study: a prolonged humid heatwave in August and an extremely dry
heatwave in September. We used MERRA-2 reanalysis data to compare mesoscale dynamics, followed by high-resolution
Weather Research and Forecasting modeling over urbanized Southern California. We employ moist thermodynamic varia-
bles to quantify heat stress and perform spatial clustering analysis to characterize the spatiotemporal intraurban variability.
We find that, despite temperatures being 108 6 38C hotter in the September heatwave, the wet-bulb temperature, closely
related to the risk of human heat stroke, was higher in August. While dry and humid heat display different spatial patterns,
three distinct spatial clusters emerge based on nonheatwave local climates. Both types of heatwaves diminish the intraur-
ban heat stress variability. Valley areas such as San Bernardino and Riverside experience the worst impacts, with up to
68 6 0.58C of additional heat stress during heatwave nights. Our results highlight the need to account for the disparity in
small-scale heatwave patterns across urban neighborhoods in designing policies for equitable climate action.

SIGNIFICANCE STATEMENT: Heatwaves are the leading cause of morbidity and mortality among all environ-
mental hazards. Moreover, their frequency and intensity are on the rise due to climate change. Southern California is
no stranger to extreme heat, but persistently humid heatwaves still test the adaptability limits of its residents. We find
that the set of two contrasting heatwaves that afflicted Los Angeles in the summer of 2020 forms the perfect testbed for
characterizing the impacts of humid versus dry heatwaves on urban environment. Because climate model forecasts and
long-term observational trends point to more humid heatwaves in the future for Southern California, our results under-
score the importance of including moist heat in extreme heat warning frameworks.

KEYWORDS: Heat islands; Heat wave; Numerical weather prediction/forecasting

1. Introduction

Extreme heat events are one of the deadliest and most rapidly
increasing weather hazards, and they also exert substantial ef-
fects on cognition and labor productivity (Vicedo-Cabrera
et al. 2021; Borg et al. 2021; Goodman et al. 2019; Dunne et al.
2013; Cedeño Laurent et al. 2018; Parsons et al. 2022). Heat-
waves (HW) are generally the result of heating from subsi-
dence and radiation due to anticyclonic circulation patterns in
a region of more than 1000 km2, exacerbated by stagnant air
in the boundary layer that prevents the dissipation of trapped
heat (Black et al. 2004; Zhao et al. 2018). Although there is

no standard temperature threshold that characterizes HWs,
they are often identified as locally anomalous high tempera-
tures or heat stress (based on historic percentiles) that persist
for three or more consecutive days (Robinson 2001). During
the last decade, HWs have increased in intensity, frequency,
and duration in many places due to climate change, and the
trend continues to increase (Meehl and Tebaldi 2004; Per-
kins-Kirkpatrick and Lewis 2020; Schwingshackl et al. 2021;
Brown 2020). This equates to an increase in empirically as-
sociated heat conditions with mortality and adverse health
outcomes such as exhaustion, cardiovascular events, or preg-
nancy complications (Mora et al. 2017; Vanos and Grundstein
2020). Intense humid heat, in particular, is causing the heat-
stress adaptability limit for humans to be approached ever
more closely (Raymond et al. 2020; Speizer et al. 2022;
Sherwood and Huber 2010). Yet, extreme heat tends to re-
ceive less attention than counterparts such as severe storms
(Orth et al. 2022).

Because of its geography and subtropical location, South-
ern California has regularly experienced intense extreme heat
during the observed record and has seen an increase in HW
metrics such as duration, frequency, and severity over the
past few decades, particularly in densely populated urban
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regions (Gershunov et al. 2021; Hulley et al. 2020; Tamrazian
et al. 2008). The region is typified by a semiarid Mediterra-
nean climate with warm, dry summer days and comfortable
nights. In the twentieth century, most of its HWs were dry,
with the most notable feature being high daytime maximum
temperatures (Gershunov et al. 2009). However, Southern
California is witnessing a shift toward more humid heatwaves
with higher minimum temperatures at night under observed
warming (Hulley et al. 2020; Gershunov et al. 2009; Gershunov
and Guirguis 2012). This increase in humidity has been hypothe-
sized to be connected, at least in part, with increasing upwind
sea surface temperatures (Pierce et al. 2006; Gershunov et al.
2009). The exposed population has also grown dramatically,
approximately quadrupling since 1950. Therefore, Southern
California is a valuable testbed for studying the mechanisms
that lead to dry versus humid HW.

Here, we examine a case study of two HWs that affected the
Southern California region in the summer of 2020. The first
event, referred to hereafter as the August HW, extended from
15 to 28 August 2020. It was characterized by hot and humid
conditions that persisted for nearly two weeks. It was followed
by a short but more intense 3-day period (5–7 September) ac-
companied by extremely dry conditions. We first characterize
both HWs using the Modern-Era Retrospective Analysis for
Research and Applications, version 2 (MERRA-2), reanalysis
dataset and contrast the summer 2020 case study relative to
the historical extreme heat climatology of the region (section 2).
We then use the Weather Research and Forecasting Model to
simulate the HW and take a closer look at its impact on the ur-
ban area of metropolitan Los Angeles (section 3).

The first goal of this study is to compare and contrast the
dry and humid HWs in our summer 2020 case study over Los
Angeles. Previous literature has shown that HW impacts dif-
fer according to their relative humidity: humid events lead to
increased concerns about health, productivity, and energy de-
mand (Laaidi et al. 2012; Vant-Hull et al. 2018; Stone et al.
2021; Dunne et al. 2013), while dry events can stress terrestrial
and aquatic ecosystems, lead to crop failures, and increase the
probability of wildfires (Raymond et al. 2019; Lesk et al. 2021;
Gutierrez et al. 2021). In this paper, we characterize a HW’s
“impact” as the additional heat stress that it caused for urban
inhabitants of the region, compared to the non-HW days of
2020. This is quantified using a suite of heat stress indices
(Buzan et al. 2015) that consider air temperature, specific
humidity, and solar radiation (section 4a).

Our second goal is to study the intraurban variability of
heatwave impacts. The Los Angeles metropolitan region is
one of the largest urban agglomerations (area 5 12 560 km2

according to the U.S. Census Bureau, comprising a population
of ;18 million) with diverse urban morphologies, including
expansive suburbs with varying vegetation densities, large indus-
trial zones, and several commercial centers with high-rise build-
ings. Additionally, there are wide climatological variations in
urbanized parts of Los Angeles, ranging from coastal neigh-
borhoods that rarely exceed 258C to inland valleys with sum-
mer daytime temperatures around 388C. Not only does this
yield a heterogeneous urban heat island (UHI) as in other cities
(Shreevastava et al. 2019a; Sobstyl et al. 2018; Zhou et al. 2017),

but this UHI can interact differently with the same synoptic HW
forcing, yielding spatially and temporally variable intraurban
heat islets (Shreevastava et al. 2019b, 2021). We explore the pat-
terns in spatial variability of heat stress within urban neighbor-
hoods by applying a spatial clustering algorithm (section 4b).
Through the lens of this case study, our objective is to under-
stand more broadly how HW temperature and humidity anoma-
lies vary across a heterogeneous landscape, and how these
patterns may differ under different regional circulation regimes.

2. Characterizing the Southern California HWs of 2020

Southern California is situated at the interface between two
regimes that influence the humidity of high-heat days in oppo-
site ways. In Fig. 1, we show the relative humidity climatology
for the top 1% of highest heat stress (computed as wet-bulb
temperature) days of California in comparison with the rest
of the continental United States, evaluated for the 1980–2020
period. In the Pacific Northwest and the Central Valley of
California, the most intense heat stress is experienced as a re-
sult of drier, hot conditions, whereas in the interior of the
Southwest it is driven by higher humidity (Fig. 1a). This re-
sults in a larger range of relative humidities on hot days in
California than anywhere else in the United States (Fig. 1b).
These patterns are associated with large-scale high pressure
systems (causing downslope winds, warm-air advection, and/
or high solar radiation due to absence of cloud), and with
moisture from the North American monsoon (Raymond et al.
2017). In the eastern United States (east of 1008W), tempera-
ture and moisture are more closely related, and relative hu-
midity anomalies during the HWs are small (Fig. 1a).

California HWs can be dominated by either of the two gen-
eral mechanisms noted above, and this is the case for both the
Central Valley and coastal areas, although in different pro-
portions (Gershunov et al. 2009; Lee and Grotjahn 2016).
This results in two types of heatwaves: typically daytime ac-
centuated (characteristically dry), and nighttime accentuated
(characteristically humid) HWs (Gershunov and Guirguis
2012). Although dry HWs have seen interdecadal variations,
nighttime accentuated humid events have steadily increased
in intensity since 1950 (Hulley et al. 2020). The trends are at-
tributable to urbanization, general atmospheric warming, and
an anomalous moisture source off the coast of Baja California
associated with sea surface warming (Pierce et al. 2006;
Hulley et al. 2020). Further changes are projected to be stron-
gest along the coasts, where the majority of the population is
located (Gershunov and Guirguis 2012).

The contrasting HW mechanisms were neatly illustrated
within a span of a few weeks in summer 2020. In mid-August,
an anticyclone developed over the western United States and
remained nearly stationary for about two weeks. A southwest–
northeast-tilted ridge and a strong surface low off the Cali-
fornia coast led to a southeasterly onshore flow over greater
Los Angeles, simultaneously precluding the typical north-
westerly flow and cold upwelling currents that bring cooler
air into the region (Fig. S1 in the online supplemental material).
This caused positive anomalies of both temperature and mois-
ture, particularly because of the unusually large meridional
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gradient of sea surface temperature along the Baja California
coast. The August HW exhibits characteristics of downslope
warming from the mountains north and east of Los Angeles
combined with an anomalous coastal influence due to the
southerly wind component. This is typical of seasonal mon-
soon winds in the region as shown in Fig. S1. Furthermore, it
closely matches previous depictions of humid heat-related
winds in this region (see Hulley et al. 2020, Fig. 5b).

Several weeks later, a shorter but more intense anticyclone
centered over Oregon with 500-hPa geopotential height
anomalies of 150 m drove north or easterly (offshore) flow in
Southern California (Fig. S1). Importantly, these low-level
wind conditions, channeled and enhanced by topography and
thermal gradients, can be highly localized and not well cap-
tured by larger-scale representations. The stronger winds, es-
pecially near the surface, led to extreme heat and aridity via
adiabatic warming and a minimization of typical oceanic cool-
ing (from 5 to 7 September). Afternoon temperatures broke

the Los Angeles County daily maximum air temperature
record, reaching 49.58C in the San Fernando Valley (https://
earthobservatory.nasa.gov/images/147256/california-heatwave-fits-
a-trend). These conditions also sparked and fanned the flames
of the Bobcat fire in the San Gabriel Mountains that border the
urbanized area, with the ultimate destruction of 170 structures
(Safford et al. 2022). We find that both of these HWs brought
temperatures above the 90th percentile of the August–September
climatology, computed using a 7-day moving window based
on 40 years of MERRA-2 data, from 1980 to 2019 (Fig. S2 in
the online supplemental material).

3. Data and methods

a. WRF Model

Our primary dataset for this study is the model output from
the Weather Research and Forecasting (WRF) modeling

FIG. 1. (a) RH of the top-1% heat-stress days, as an anomaly from the annual-mean RH.
Regions in brown experience their most intense heat stress as a result of hot and dry conditions,
whereas for those in green it is driven by anomalous humidity. (b) Range of RH (difference
between maxima and minima) for the same region. Data are from MERRA-2. The inset shows
Southern California where maximum variability in humidity for extreme heat days occurs.
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framework. WRF is a fully compressible and nonhydrostatic
mesoscale numerical weather prediction model that includes
an urban canopy model that allows for a sophisticated represen-
tation of land–atmosphere feedbacks in urban areas (Vahmani
and Ban-Weiss 2016; Chen et al. 2011). A brief description of
the boundary conditions, spatial domain, and selected physics
parameterizations is presented below, and for research reproduc-
ibility the namelist files are included as Text S1 in the online
supplemental material.

Simulations are carried out on three nested grids, centered
in the Los Angeles metropolitan area, with horizontal grid
resolutions of 9, 3, and 1 km, respectively (Fig. 2a). The land
cover–land use (LULC) is characterized using MODIS (prod-
uct MCD12Q1; Fig. 2b). The model was run for a 45-day pe-
riod from 1 August 2020 to 15 September 2020, including the
two HWs (17 days of heatwave in total), and the remaining
non-HW days serve as control (Fig. 4a). The first two simu-
lated days are discarded as model spinup time.

As forcing of the atmospheric boundary condition, NCEP
Final Analysis (FNL) operational global analysis and forecast
data (spatial resolution 0.258, temporal resolution 6 h) were
used to drive the model. The physical parameterization schemes
used in the current study include the Monin–Obukhov scheme
for the model surface layer, the Yonsei University (YSU)
scheme for the planetary boundary layer (PBL), the Kain–
Fritsch cumulus scheme, the Lin scheme for microphysics, the
Rapid Radiative Transfer Model for longwave radiation, and
the Dudhia scheme for shortwave radiation. For the urban pa-
rameterization, the atmosphere model is coupled to the Noah
LSM including the single-layer urban canopy model (UCM).

b. Model validation and limitations

The model output for domain 3 is validated against ob-
served data by comparing near-surface (at 2-m height) air
temperature (NSAT) as well as land surface temperature
(LST). The NSAT is validated first using the National Centers
for Environmental Information (NCEI) ground observation
network for 21 sites (https://www.ncei.noaa.gov/). Note that
the NCEI air observation towers are all located at regional
airports. Therefore, although it captures the diurnal thermal

variability of the regions very well, it cannot be treated as a
true representative of a mixed-use urban area WRF grid cell.

Most of the locations (14 of 21) have a bias (calculated as
NSATNCEI 2 NSATWRF) under 28C, and the stations in
southern Los Angeles (LA) have the lowest average bias with
values less than 18C as well as low RMSE values indicating
very good agreement of observations with the WRF simula-
tions (Fig. 3). The stations in the inland valleys, such as River-
side, Ontario, and San Bernardino on the eastern side as well
as Van Nuys and San Fernando on the western side, have a
positive bias (;28C) as well as relatively high RMSE values
(;4.58C). This indicates that the nighttime temperatures in
those regions were underestimated by WRF. On the other
hand, a negative bias is observed in the case of some coastal
stations such as Santa Monica and Los Angeles Airport
(LAX), wherein the observed daytime maximum air tempera-
tures are cooler than that simulated by WRF. This is an influ-
ence of sea breezes and sharp temperature gradients that may
not be very well captured by WRF at a 1-km spatial resolution.
As a result, the RMSE values for Santa Monica are also the
highest (5.38C, Fig. 3). The complete time series and air tempera-
ture distributions for each NCEI station are given in Table S4
and Fig. S4 in the online supplemental material.

Figure S2 in the online supplemental material further illus-
trates the WRF differences in wind direction and strength
from ERA5-Land but shows that it successfully differentiates
the stronger general northerly winds of the September HW
from the predominant south/easterly flow of the August HW.
The surface temperature WRF output is validated using the
standard LST product from the Ecosystem Spaceborne Thermal
Radiometer Experiment on the Space Station (ECOSTRESS;
Fig. S3 in the online supplemental material). A similar pattern
of underestimation of the valley temperatures and an over-
estimation of the coastal Santa Monica/Malibu area can be
seen here as well. Fully investigating the origins of these
model biases and accounting for them in future analyses
will be important for applying our methods and conclusions
to other heatwaves in the study domain and in other re-
gions globally with similar meteorological and geographical
characteristics.

FIG. 2. (a) The nested domain set up used to run the WRF simulation of the 2020 Southern California heatwave. The
domain grid resolutions are 9, 3, and 1 km (from domains 1 to 3 respectively). (b) Domain 3 is centered over the metropoli-
tan urban area of Los Angeles. MODIS’s LULC is used for spatial characterization. Urban LULC is shown in dark red.
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c. Heat stress metrics

We first explore the spatially averaged diurnal time series
of excess heat stress for each of the HWs (section 4a). Note
that because there is no single standard metric to assess heat
stress, we evaluated heat stress in three layers of increasing
complexity by employing different thermal comfort indices.
First, we consider only the NSAT (estimated at about 2 m
above the ground) as a measure of sensible heat. This is a
standard model output variable from WRF. Next, we use
the wet-bulb temperature (WBT), which is a moist thermo-
dynamic quantity that correlates with heat stress for humans by
accounting for the impact of humidity, relative humidity (RH)
in this case, which alters the ability to cope with extreme heat
by sweating (Sherwood and Huber 2010; Buzan and Huber
2020). We compute this using NCAR Command Language
(https://www.ncl.ucar.edu/Document/Functions/Built-in/wrf_
wetbulb.shtml) diagnostic package (Stipanuk 1973). The

thermal gradients in NSAT and WBT, as well as excess heat
stress (characterized as DNSAT and DWBT and calculated as
the difference between HW and corresponding non-HW days),
are shown for urban LA in Fig. 6, which is discussed in more
detail below. Last, we incorporate the influence of direct solar
radiation (SR) by investigating the environmental stress index
(ESI).1 ESI was developed as an alternative to the wet-bulb
globe temperature (WBGT) and was thoroughly validated to
show that it is highly correlated with WBGT (Moran et al. 2001).

d. Spatial clustering

We also inquire how the HWs impact the different neigh-
borhoods within the urban Los Angeles region (section 4b).
To characterize the spatial patterns of the HW impacts, we

FIG. 3. The NSAT from WRF is validated against the NCEI in situ observation network.
Each symbol represents the location of the validation station. The symbol color indicates
the (top) average RMSE and (bottom) average NSAT bias values. The bias is calculated as
NSATNCEI 2 NSATWRF. Positive bias indicates underestimation of temperatures by WRF.

1 ESI 5 0.63 3 NSAT 2 0.03 3 RH 1 0.002 3 SR 1 0.0054 3
(NSAT3RH)2 [0.073/(0.11 SR)].
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first identified sets of LA neighborhoods that have similar local
geography and urban morphology (map provided in Fig. S5 in the
online supplemental material). Then we applied a hierarchical
clustering algorithm on the diurnal time series of DNSAT and
DWBT. We applied agglomerative clustering, which is a bottom-
up approach, where the different LA neighborhoods were
grouped together based on the diurnal pattern of response to the
HWs. We use the built-in stats function heatmap (https://www.
rdocumentation.org/packages/stats/versions/3.6.2/topics/heatmap)
in the R software package to implement clustering.

4. Results and discussion

a. August versus September HW from heat stress perspective

1) NSAT

To evaluate the time-dependent impact of HWs on air tem-
peratures, we first perform a spatial average of NSAT over all

urban areas (Fig. 2b) to obtain a single time series. We then
compute the average temperature for each hour of the day,
grouped by August HW, September HW, and non-HW days
(Fig. 4a). This is illustrated in Fig. 5a, where the solid lines
(in red) correspond to the spatiotemporal mean diurnal trend
of air temperature for each of the HWs, and the dashed line
shows the diurnal trend for non-HW scenario. Here, the
shaded regions represent one standard deviation of spatio-
temporal variability for each HW. We then take the differ-
ence between the HW and the non-HW scenario to compute
the amplification in air temperature caused by each HW. We
refer to this variable as DNSAT (Fig. 5d). Spatial hetero-
geneity within NSAT and DNSAT is shown in Fig. 6 (top
four plots) for the September HW and is discussed in detail in
section 4b.

Here, we can see that, according to WRF, both HWs had
the strongest impact during the night, and these anomalies are
significantly higher for the September HW (DNSAT ; 158C),

FIG. 4. (a) The time series of spatially averaged NSAT over urban areas for the 45-day period simulated in WRF.
The two HWs are highlighted in red. (b) Time series of spatially averaged WBT, shown in a format similar to that of
the two HWs shown in red. (c) Scatterplot between air temperature (8C) and specific humidity (g kg21) for each hour
of the simulation. The instances corresponding to the August and September HW are colored orange and red, respec-
tively. The non-HW times are shown in blue. (d) Scatterplot between air temperature (8C) and specific humidity
(g kg21), with the color corresponding to WBT for each time step (every hour of the 45-day simulation). A similar
figure with RH on the x axis is included as Fig. S6 in the online supplemental material.
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highest in the San Fernando Valley (Fig. 5d and top four plots
of Fig. 6). In these WRF simulations, DNSAT decreased
steadily after sunrise, but the temperatures were still more
than 108C higher than usual throughout the day, resulting in a
maximum NSAT ; 408 6 58C during the afternoon hours
(Fig. 6, top four plots). The August HW showed a similar diurnal
pattern with the highest amplification of DNSAT ; 108 6 28C
around dawn and the lowest DNSAT ; 58 6 28C during the
late afternoon hours. As discussed in the methods section, this
WRF output exhibits a strong positive nighttime bias for tem-
perature, inverting the true diurnal cycle of anomalies, which is
flat or peaks in the afternoon. The WBT anomalies are consis-
tent with reanalysis and observation data during the daytime;
the nighttime WRF’s temperature anomalies are overestimated
by roughly a factor of about 2 (Figs. S8 and S9 in the online
supplemental material).

2) WET-BULB TEMPERATURE

The relationship between WBT and NSAT is shown as a
scatterplot between specific humidity and NSAT (Figs. 4c,d).
The August HW (shown in orange) had the highest humidity
during the season accompanied by NSAT in the range of
258–408C, and the September HW (shown in red) represents
a warmer NSAT (nearly 308C during the night) but a lower
humidity case. These offsetting qualities result in similar
WBT (Fig. 4d). Note that, for the same WBT values, higher

temperatures can produce greater discomfort and per-
ceived heat exhaustion in people (Vecellio et al. 2022), es-
pecially if we account for the impact of direct solar radiation
(quantified as ESI and discussed in detail in the following
subsection).

We then perform the same spatiotemporal averaging for
WBT over urban areas as previously described to obtain the
diurnal trend of WBT (Fig. 5b). We then calculate the excess
heat stress (denoted as DWBT 5 WBTHW 2 WBTnonHW),
which indicates how much the heat stress was amplified
by HW compared to the remainder of the summer of 2020
(Fig. 5e). Here, as well, WRF suggests that the impact of
both HWs was most prominent during the night and espe-
cially during the early morning hours. While this is accu-
rately captured in case of the August HW, the September
HW nighttime bias in NSAT results in overestimation of
DWBT during September HW night as well. WRF and ob-
servations agree that among the two HWs, the August HW
had a higher heat stress than the September HW with a
maximum difference during the early morning hours (Figs.
S8 and S9 in the online supplemental material). Coupled
with the fact that the August HW persisted for 10 days, it
produced prolonged exposure to high heat stress, despite a
lower NSAT}a major concern for human health (Baldwin
et al. 2019). The spatial heterogeneity in WBT and DWBT
is shown in Fig. 6 for August HW and will be discussed in
detail in section 4b.

FIG. 5. The average diurnal trends of (a) NSAT, (b) WBT, and (c) ESI (8C) for the conditions of August HW (in red), September HW
(in brown), and non-HW (gray with dashed line). Also shown is the average diurnal trend of excess heat characterized by (d) DNSAT,
(e) DWBT, and (f) DESI (calculated as the difference between the diurnal trend for HW days and non-HW days) for the August HW in
red and the September HW in brown. The solid line indicates the mean (computed as spatial mean over urban areas and then hour-specific
averaged over the identified HW or non-HW days), and the colored ribbon corresponds to61 standard deviation for each of the variables.
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FIG. 6. (left) HW composite thermal maps made by averaging the temperatures for HW nights (from 0200 to 0500 LT)
and HW days (from 1200 to 1500 LT), as labeled, for the HW days shown in red in Fig. 4. (right) Excess tempera-
ture maps (DNSAT and DWBT) computed as a difference between the composite HW and non-HW temperatures
for both daytime and nighttime, as labeled The top four plots show the average daytime and nighttime NSAT for
the September HW as well as the DNSAT when compared with the non-HW scenarios. The bottom four plots show
the WBT maps during the day and at night for August HW as well as the excess heat stress (DWBT) for the same.
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3) ESI

The ESI and WBT are strongly positively correlated and
the spread around the correlation is explained by the degree
of influence of humidity and solar radiation in each metric.
For a given WBT, the ESI increases in proportion to solar
radiation, because WBT does not account for solar radiation,
whereas, relative to ESI, WBT is more sensitive to the in-
fluence of humidity (Fig. S7 in the online supplemental
material). We perform spatiotemporal averaging to obtain a
diurnal time series for ESI (Fig. 5c) and compute a HW
anomaly of it (DESI; Fig. 5f). The diurnal trend of DESI
mimics that of DWBT for both the HW with a stronger ampli-
fication during the nighttime, but September HW ranks higher
than August HW here as the ESI weights humidity less. The
most distinct difference between the two HWs is observed dur-
ing the midday and afternoon hours, where the September HW
maintained a higher DESI peak than the August HW by nearly
48C because of higher temperatures. Although WBT is sufficient
to characterize the heat stress experienced by most urban inhabi-
tants who can stay indoors or seek shade during heatwave days,
as ESI also accounts for the effect of direct solar radiation, it is
particularly relevant for people who work outdoors in a low-
shade Southern California environment.

b. Intraurban spatial heterogeneity of heatwave impact

For the clustering analysis, we only focus on the diurnal
trend of excess air temperature (DNSAT) and excess heat
stress (DWBT). We identified three distinct contiguous re-
gions that have different response patterns to HWs (Fig. 7a).
The emergent spatial clusters are 1) Southern LA and Orange
County, which are cooler and more influenced by the avail-
ability of coastal moisture; 2) San Fernando, San Gabriel, San
Bernardino, and Riverside Valley regions, which are drier
and hotter; and 3) the central region of LA from Santa Mon-
ica to about 30 km east of downtown LA, which falls in be-
tween the two extremes.

We first discuss the spatially clustered air temperature trends
for HW versus non-HW scenarios (Figs. 8a–d). The spatial

heterogeneity in air temperatures across the 3 regions is most
prominent during the daytime, with southern LA showing
cooler temperatures than the valley regions by up to 58C
(Figs. 8a,b). These relative regional differences were captured
overall well by WRF. Note however that temperatures in
the coastal regions near Santa Monica were overestimated
(section 3b) due to the influence of a mild sea breeze; in ob-
servations, the Santa Monica coastal region would be likely be
grouped with the Southern LA spatial cluster. WRF indicates
that all regions experience temperatures up to 58C warmer
during the August HW and nearly 128C warmer during the
September HW during the daytime, thereby maintaining
or slightly enhancing the non-HW spatial thermal gradients
This is seen as well in ERA5-Land (Fig. S8 in the online
supplemental material). The nighttime air temperatures are
more spatially homogeneous. From the model output, we
note that the nighttime signature of heatwaves (characterized
by DNSAT in Figs. 8c,d) was observed most strongly in the ur-
banized inland valleys. Note that the model output had a posi-
tive bias of nearly 48C in the valley regions due to a systematic
underestimation of nighttime temperatures. However, the
DNSAT variable focusses on the difference between the HW
and non-HW days and as a result remains unaffected by the
bias. We find that the valley regions still have strong DNSAT
during nighttime (Figs. S8 and S9 in the online supplemental
material).

In terms of heat stress (Figs. 8e–h), the main distinction in
the diurnal thermal cycle of WBT across the 3 regions can be
seen in the non-HW scenario, especially at night. Despite the
higher air temperatures (during the daytime), the valley re-
gions display a similar or lower level of heat stress due to dry
conditions, whereas cooler southern LA usually has a higher
heat stress despite its lower temperatures due to greater hu-
midity from the coastal winds that advect the “marine layer”
onshore (Figs. 8e,f). This influence of more-humid conditions
is especially noticeable at night. With less nighttime radia-
tional cooling, the diurnal range of WBT for each region as
well as the WBT difference across the 3 clusters reduces due
to the August HW in particular. The impact of this DWBT is

FIG. 7. (a) Dendrogram heat map plot showing the emerging hierarchical clusters of different neighborhoods. The
colors represent a unitless scaled DWBT relative to the other locations and range from 0 to 1. The time of day is
shown along the x axis, and the name of the LA neighborhood is shown on the y axis. The location of these neighbor-
hoods on the LA map is shown in Fig. S5 in the online supplemental material. (b) Map of the three main spatial clus-
ters within the greater Los Angeles urbanized area.
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most evident in the valley regions, where it is significantly
higher than in Southern LA. WRF is able to capture the dif-
ferent aspects of the August HW signature well (Fig. S8 in the
online supplemental material). However, it misses the fact
that the dry September HW did not meaningfully impede
nighttime cooling and therefore saw little deviation from
the non-HW diurnal cycle (Figs. S8 and S9 in the online
supplemental material). Challenges in representing urban
land cover, local downslope warming, and coastal air infiltration

may also be in play}a complex array of factors that affects other
regions as well, such as the Pacific Northwest (White et al. 2023).

5. Summary

Our examination of two contrasting heatwaves in Southern
California highlights the importance of subtle differences in
meteorological forcings for shaping the character of heatwaves,
including interactions with UHIs in complex geographical terrain.

FIG. 8. The diurnal trends of NSAT, WBT, as well as DNSAT and DWBT (computed in the same way as in Fig. 5)
for the three spatial clusters: (left) August HW; (right) September HW. The solid line indicates the mean (computed
as spatial mean over urban areas and then hour-specific averaged over the identified HW or non-HW days), and the
colored ribbon corresponds to61 standard deviation for each of the variables.
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As the region’s summertime climate is usually characterized by
hot and dry conditions (such as those heightened by Santa Ana
winds), we demonstrate here that the persistent hot and humid
HW such as August 2020 can yield higher humid heat in both
coastal and inland areas. This result highlights the potential dis-
crepancy between the popular conception of an extreme-weather
threat (in this case, from extreme heat characterized simply by air
temperature) and the human-health-centric manifestations of ex-
treme heat (characterized by wet-bulb temperature and environ-
mental stress index).

We find that the impact of HWs is more accurately assessed
by focusing on the anomalies of each heat stress metric, char-
acterized as DWBT. In the two cases considered, both dry and
humid HWs add to the heat stress in each neighborhood by
28–68C. But they also serve as a synoptic scale forcing that
serves, especially in the case of the August event, to homoge-
nize heat stress gradient over urban areas of the LA region
spatially and diurnally, relative to non-HW local gradients.
The spatial and temporal portraits of the two HWs we have
created would be valuable to extend to other observed and
projected HWs in this region, to assess the fine-scale patterns
of the anticipated more humid nighttime events.

Our results illustrate how several dimensions of HW analysis
and several sources of information with complementary strengths
are needed to fully understand which subregions suffer the most
disproportionate impacts of a regionwide HW and why. HW
anomalies, urban microclimate, and particular meteorological
forcings, as well as the usage of both temperature and heat stress
metrics, are necessary to capture HW effects on acclimated indi-
viduals within different urban neighborhoods. Last, model out-
puts such as WRF have limitations in definitive analyses on
urban microclimates and more intensive in situ heat stress obser-
vations will be crucial in future studies. Our work may also re-
flect on other coastal Mediterranean and semiarid climates, and
onWRF/reanalysis/observation UHI comparisons more broadly.
More work needs to be done to understand precisely how these
competing metrics can best identify the vulnerable people or sys-
tems at greatest risk of heat-related impacts across the diverse
geographies of metropolitan Los Angeles to aid in fine-tuning in-
frastructure investment and emergency response plans at the
neighborhood level.
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