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Abstract 

All agents must constantly learn from dynamic environments 
to optimize their behaviors. For instance, it is necessary in new 
environments to learn how to distribute attention – i.e., which 
stimuli are relevant, and thus should be selected for greater 
processing, and which are irrelevant, and should be suppressed. 
Despite this, many experiments implicitly assume that attentional 
control is a static process (by averaging performance over large 
blocks of trials). By developing and utilizing new statistical tools, 
here we demonstrate that the effect of flanking items on response 
times to a central item (often utilized as an index of attentional 
control) is systematically and continuously influenced through 
time by the statistics of the flanking items. We discuss the 
implications of this finding from the perspective of examining 
individual differences – where traditional data analysis 
approaches may confound the rate at which attentional filtering 
changes through time with the asymptotic ability to filter. 

     
Keywords: Learning; attention; statistical inference; Bayesian 

analysis 

Introduction 

In human, animal, and artificial cognitive architectures, 

learning to utilize available information for goal-directed 

behavior is a crucial ability. Critically, in nearly all 

theoretical models, learning is viewed as an inherently 

continuous process – with each new data point that is sampled 

resulting in some concomitant change in knowledge and 

behavior. One consequence of this is that, even in cases 

where huge amounts of data have already been sampled (and 

thus each new data point will change behavior by only a small 

amount), there remain very few behaviors that would be 

posited to be fully static or unchanging over time.  

Despite this theoretical foundation, in practice the standard 

analysis approach taken for tasks in the psychological 

literature implicitly assumes that behavior is in fact static 

over some period of time (if not the entirety of the task 

experience). This tendency is even seen in the study of 

learning – where it has traditionally been quite common to 

examine performance divided into arbitrary discrete 

timescales. That is, performance is typically divided into 

methodologically useful units, such as blocks of training or 

testing. Data within the block is analyzed under the 

assumption that the same process generated the data within 

the entirety of a given block. This generally takes the form of 

aggregating within-block performance using some function 

or algorithm in order to summarize performance, e.g., percent 

correct (Ahissar & Hochstein, 1997), logistic psychometric 

function (Schütt, Harmeling, Macke, & Wichmann, 2016), or 

Drift Diffusion Model (DDM) parameters (White, Brown, & 

Ratcliff, 2012; Wiecki, Sofer, & Frank, 2013). While such 

aggregation has some methodological and analytic utility, in 

terms of its simplification of the data and behavior, it imposes 

artificial structure upon learning processes that are 

theoretically independent of that structure. 

Not only is it the case that the effects of interest are almost 

certainly independent of block structures, but the learning 

that occurs within blocks may itself be theoretically 

informative. We have previously shown, by developing and 

employing a time-continuous data analytic approach for 

assessing visual perceptual learning task performance, that it 

is possible to differentiate between two distinct forms of 

learning generalization. The first type of generalization leads 

to immediate benefits (i.e., is present from the very first trial 

of a new task), while the second involves no immediate 

changes in performance on new tasks, but instead new tasks 

are learned more quickly. These distinct patterns have 

enormous theoretical importance, as they are generated via 

completely different mechanisms. Yet they are impossible to 

differentiate via traditional data analytic techniques that 

aggregate performance over large blocks of trials (Kattner, 

Cochrane, Cox, Gorman, & Green, 2017). 

Here we extend the general approach to modeling 

performance as a continuous-function of time to an area 

where the potential for learning effects are much more rarely 

considered – the study of attentional control over peripheral 

(i.e., non-target) processing. Indeed, the analytic techniques 

utilized in this domain nearly always implicitly assume that 

performance is static through time. For instance, such 

aggregation-based analyses are commonly utilized as 

individual difference metrics, to identify atypical populations 

(e.g., ADHD; Westerberg, Hirvikoski, Forssberg, & 

Klingberg, 2004), to characterize development (Rueda et al., 

2004), or to simply benchmark difficulties of a test (Edwards 

et al., 2006). This is despite the fact that it is unlikely to be 

the case that participants can enter a task with perfect 

knowledge regarding the spatial and temporal properties of 

the task-relevant (i.e., to-be-attended target) stimuli or the 

spatial and temporal properties of distractors (i.e., the to-be-

232



ignored stimuli). Here we examine the extent to which 

learning can be identified and modeled in one extremely 

common index of attentional control – flanker task 

performance.  

Previous work 

Within the study of attentional control, certain domains have 

largely been understood as automatic and independent of the 

associations or statistics of the environment and thus 

reasonably impervious to learning (Treisman, 1985; Wolfe, 

1994). However, it has also been recognized that in order for 

a person to interact optimally with their environment, they 

must constantly weight the utility of the information available 

to them at all levels of processing. Indeed, dynamic allocation 

of attention is a core aspect of human ability to interact with 

the world. Flexibly adapting attention to the changing 

demands of the environment allows efficient and accurate 

goal-directed processing of the relevant information 

available. 

When searching for a target in the visual world, 

distracting items become increasingly easy to suppress as 

they become increasingly distinct from the target. In the 

opposite case, when responses between searched-for items 

and irrelevant items are opposing, a marked increase in 

response times (i.e., increase in effort needed) to the relevant 

items is observed. Remarkably, this occurs even when 

participants are given explicit instructions regarding where 

and when the relevant item will occur (as well as any 

irrelevant distracting items). One paradigm in this vein is the 

arrow flanker task, derived from Eriksen and Eriksen (1974). 

In this task participants simply press the right keyboard arrow 

when a central stimulus is a right-pointing arrow, and they 

press the left keyboard arrow when the central stimulus is a 

left-pointing arrow. Two other arrows appear on either side 

of the central arrow pointing in either the same or opposite 

direction of the central arrow. When the flanking arrows 

point in the same direction as the central arrow, response 

times tend to be faster and more accurate than when flankers 

point in the opposite direction as the central arrow. The 

differences between congruent-flanker response times and 

incongruent flanker-response times are largely understood as 

slowing that occurs due to processing of response-

incompatible stimuli, and the magnitude of this difference is 

often referred to as the "flanker effect." 

The flanker effect has been explored in many settings and 

interpreted in a wide variety of ways. These primarily involve 

appeals to a neuropsychological executive function or 

conflict-resolution mechanism (Fan, McCandliss, Sommer, 

Raz, & Posner, 2002; Machizawa & Driver, 2011). Through 

this lens the flanker effect has been correlated with such 

measures as age (Rueda et al., 2004) and cortical thickness 

(Westlye, Grydeland, Walhovd, & Fjell, 2011). In each of 

these paradigms, the flanker effect is interpreted as a stable 

ability within individuals; in effect, it is seen as a robust index 

of one's ability to control attention and rapidly suppress 

distracting information. Unfortunately, this perspective 

disregards another central aspect of humans' interaction with 

their environments: The necessity of learning how to weight 

information appropriately given past experience. While 

previous research has assumed that psychology tasks (e.g., 

flanker task) index a constant ability level, we instead posit 

that learning occurs to some extent (Lehle & Hübner, 2008). 

This learning in peripheral attention occurs despite the fact 

that participants are given explicit verbal instructions 

regarding the time, place, and attributes of the to-be-attended 

information. 

We first demonstrate experimentally, using biased task 

statistics, that block-level analyses show learning in adult 

humans’ performance on a flanker task. Next, we propose a 

novel analysis of flanker task response time in which 

performance is modeled as a function of experience (i.e., trial 

number). We note that participants were not informed of any 

learning component to the study. Our analyses show that, 

even this context, decomposition of performance into 

parameters of continuous learning reveals the dynamics of 

humans’ interactions with their environments. 

Method 

Participants and procedure 

Forty-seven undergraduate participants from the University 

of Wisconsin-Madison completed all tasks for course credit. 

One participant was excluded for missing data. The entire 

study consisted of three tasks – a flanker task, a Useful Field 

of View task (UFOV; Ball & Owsley, 1993), and a Multiple 

Object Tracking task (MOT; Pylyshyn & Storm, 1988). Here, 

for brevity, we will only consider performance on the flanker 

task. 

The flanker task was modeled after that utilized by Rueda 

et al (2004). Stimuli were colored fish with arrows overlaid 

on top pointing in either a leftward or rightward direction. 

The full flanker task was divided into 5 blocks. Each flanker 

block included feedback regarding response time and 

incorrectness. Participants first completed a block of 50 no-

flanker trials, second a 250-trial block of either 20%-

congruent or 80%-congruent flanker trials (randomly-chosen, 

with the remaining trials being incongruent), third a 250-trial 

block of 50%-congruent flanker trials, fourth the biased block 

that they did not already complete (i.e., 250 trials of either 

20%-congruent or 80%-congruent), and fifth a 50-trial block 

with no flankers. In all cases the participants’ task was the 

same – to indicate the direction of the center fish/arrow as 

quickly and accurately as possible. Our key questions were 

whether we would see: (1) differences in performance at a 

broad scale – in terms of different patterns of response times 

to the congruent and incongruent trials in the different blocks; 

and (2) at a continuous time-scale – indicating how such 

shifts are learned through time.     

We note that the other two tasks (UFOV and MOT) were 

completed between the biased blocks of flanker tasks in order 
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to reduce monotony and obscure the biasing of the task 

statistics. For example, by including MOT after the 50% 

congruent condition and before the 80% congruent condition, 

we intended that participants would have less carry-over of 

learning from the 50% congruent condition to the 80% 

congruent condition.  

Analysis 

We conducted two Bayesian analyses. The first involved 

fitting a hierarchical linear model to each block’s data. This 

was designed to test whether, in environments with different 

statistics, people alter their processing of non-relevant 

information. The second fit time-evolving weighting 

parameters to the flanker effect for each plot. This model was 

able to distinguish which component(s) of learning differ 

between conditions, as well as demonstrating a novel 

estimate of continuously changing attentional allocation. 

 

By-block analysis 

As an initial demonstration that participants learn to alter 

their attention in response to changing environmental 

statistics, a Bayesian multilevel linear model was fit. This 

model tested the effects of condition compatibility 

proportion, trial flanker compatibility, and the interaction 

between these two variables. Block k’s free parameters for 

subject s, β(s)
0k, …, β(s)

3k was drawn from a participant-level 

distribution, which in turn was drawn from a parent 

distribution shared by all participants. 

  

τA ~ G(.001, .001) 

 βi ~ N(0, 100) 

τ(s)
i ~ G(.001, .001) 

β(1)
i, …, β(S)

i |  βi ~ N(βi, τA) 

β(s)
i1, …, β(s)

ik |  β(s)
i ~ N(β(s)

i, τ(s)
i) 

log RT ~ N(β(s)
0k  + β(s)

1k *congruence 

+β(s)
2k*percent_congruent 

+β(s)
3k*congruence*percent_congruent, τA) 

where τA is a precision parameter for the data distribution and 

τ(s)
i is a precision parameter shared across blocks per subject. 

This model considered only the last 200 trials in each block 

in order to characterize asymptotic performance. The 

predicted outcome of this model was that response times to 

congruent and incongruent trials would be different from one 

another (as has been seen in all previous research, with 

congruent RTs being faster than incongruent RTs), but with 

these differences themselves differing across varying levels 

of task statistics, meaning that participants had in fact shifted 

their behavior based upon the task statistics (i.e., had 

learned). This response time difference should be evident 

when controlling for trial congruence as well as individual 

differences in overall response times. This result would 

provide evidence that the following analysis, on the time 

course of learning, would be justified. 

 

By-trial analysis 

After testing for block-wise differences between conditions 

in the magnitude of the flanker effect, we defined a generative 

process that we hypothesized would give rise to continuous 

changes in the flanker effect. Fitting parameter estimates to 

this process would provide hierarchical estimates of the inter-

individual and intra-individual variations in the adaptation of 

attention to environmental statistics.  

This analysis assumed two interacting processes. First, that 

each individual has a stable, domain-general speed-of-

processing (SoP) ability that indexes how fast that person can 

perceive, attend to, and react to their environments (Conway, 

Cowan, Bunting, Therriault, & Minkoff, 2002). In the flanker 

task, this would be akin to the response time to the central 

stimulus when disregarding any effect of the peripheral 

stimuli. Second, there is a flanker-congruence related offset 

to the baseline response time. Here that offset is modeled as 

an additive shift to the baseline on a log scale, which 

translates to a multiplicative shift in raw response times. 

Approaches to flanker analysis that equate congruent-flanker 

trials with no-flanker trials would parameterize this relation 

as simply an additive component to the baseline. However, in 

order to remain sensitive to the possibility of the shift adding 

to the response time in the incongruent-flanker condition 

while subtracting from the response time in the congruent-

flanker condition (i.e., speeding), here the shift is 

parameterized as symmetrically adding or subtracting to a 

central baseline log SoP response time ability. That is, we 

maintain the possibility that participants use congruent 

flankers to speed up their response times (noting though that 

the high-level pattern of results with respect to learning 

should not be strongly dependent on this choice). 

Typical individual-differences flanker analyses utilized in 

the field assume that the congruency-related shift (whether 

solely positive or not) is stable across the course of the flanker 

task. Indeed, in order to remain valid, the shift must even be 

constant across several repetitions the task by a single person.  

Here that assumption is relaxed. Rather than assume a 

constant additive shift due to flanker type, the additive shift 

is assumed to be learned. That is, participants update their 

attention to flanking items (i.e., their additive shift) 

throughout the task in response to the utility of attending to 

peripheral items. Here the additive shift is parameterized as 

exponential decay as a function of trial number, (a+b*c-t). 

Exponential learning functions are extremely common in 

many fields, and provide concise characterizations of the time 

course of learning (Heathcote, Brown, & Mewhort, 2000).  
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Thus, the generative process assumes the response time on 

a given trial is the following:  

 

βA ~ N(-1,.1)       τA ~ G(100, .1) 

βasym ~ N(.1, .01)  βscale ~ N(.01, .1) 

βrate ~ N(1.1,.1) 

 

β(1)
SoP , …, β(s)

SoP ~| βSoP  N(βA, τA) 

β(1)
asym , …, β(s)

asym | βasym ~ N(βasym, τA)T(0,2) 

β(1)
scale , …, β(s)

scale | βscale ~ N(βscale, τA) T(0,2) 

β(1)
rate , …, β(s)

rate | βrate ~ N(βrate, τA) T(-2,2) 

 

β(s)
asym(1), …, β(s)

asym (k) | β(s)
asym ~ N(β(s)

asym, τA) 

β(s)
scale(1), …, β(s)

scale(k) | β(s)
scale~ N(β(s)

scale, τA) 

β(s)
rate(1), …, β(s)

rate (k) | β(s)
rate~ N(β(s)

rate, τA) 

log RT ~ N(β(s)
SoP + congruence*( β(s)

asym(k) + β(s)
scale(k)* 

β(s)
rate(k)

-trial),  τA ) 

where T(a,b) truncates a distribution to the range (a,b). 

Each of the three learning parameters of interest (flanker 

offset asymptote, scaling and exponent terms) were estimated 

as normal distributions for each block, with the mean of this 

normal being drawn from participant-level asymptote 

(truncated at 0 and 2), scaling (truncated at -2 and 2), and 

exponent (rate; truncated at 0 and 2) normal distributions. 

Truncations were imposed at values beyond which model 

behavior would be qualitatively very different than the 

theoretical generative model. In particular, the entire 

peripheral attention term should evaluate to less than 1 in 

every instance in order to be a sensible fit to the data-

generation process (i.e., the difference between incongruent-

flanker trials and congruent-flanker trials is never more than 

2 in log-RT space). 

All other prior distributions were non-truncated, with 

normal priors for all mu distributions and gamma priors for 

all gamma distributions and precision distributions. Given the 

primary interest in comparing between-block within-subjects 

variation as a function of block statistics, all variation of 

interest should be caused by the data and not by prior 

specification. 

Results 

Bayesian analysis using JAGS implemented in R (Plummer, 

2003) was used for parameter approximation. Four chains 

were burned in for 20,000 samples, then 200,000 samples 

were drawn for further analysis.  

All response time measures were first trimmed to exclude 

values above 2 seconds and below .05 seconds (120 trials 

total rejected), as response times outside these bounds are 

clearly not arising from the processes of interest in this study. 

In addition, all trials with incorrect responses were excluded 

(8.9%); further analysis of this incorrect-trial data may be 

relevant to the core questions of this study, but analysis of 

this variable was outside the scope of the current paper (see 

Limitations section below). After this trimming, the 

remaining 25,064 response times were log-transformed to 

better approximate normality. Given this, log-transformed 

response times varied from -2.99 to 0.66 (m= -.99, sd= .237). 

Convergence 

Bayesian analysis appeared to converge in both models. 

Visual inspection of trace plots, autocorrelation plots, and 

Gelman-Rubin plots indicated convergence for the majority 

of estimated parameters. Five parameters in the by-trial 

analysis, all of which were block-level estimates of the rate 

parameter (i.e., β(s)
rate (k)), presented clearly problematic traces 

and autocorrelations. We excluded the five participants with 

problematic rate parameter traces from the following by-trial 

analyses, leaving data from 41 participants. 

 

Figure 1. Mean response times, separated by flanker 

congruence and proportion congruent flankers. Error bars 

denote 95% confidence intervals across all trials for all 

participants. 

By-block fits 

Point estimates of the parameters of interest (i.e., the means 

of the level-one regression predictors) each provide support 

for the hypothesis that attention changes with environmental 

statistics. The 95% credible intervals of these parameters 

follow the same pattern. This is the case for the effects of 

flanker congruence (mean= -.081, lower= -.100 , upper = -

.062), proportion congruence (mean= -.052, lower= -.114, 

upper = .009), and the interaction between the two (mean= -

.046, lower= -.091 , upper = -.002). For each of these 

parameters, the vast majority of the mass of the distribution 

is on one side of zero.  It is evident in Figure 1 that this pattern 

supports the hypothesized effects; in situations where the 

participant sees mostly facilitative non-targets, they are faster 

in responding to congruent-flanker trials while also being 

slower on incongruent-flanker trials in these situations. In 

essence, when most of the flankers are congruent, there is an 

advantage in reducing the extent to which these flankers are 

filtered.  This produces faster RTs on congruent trials, but 

then causes disproportionate slowing on incongruent trials.  

Meanwhile, in conditions where most of the trials are 

incongruent, there is virtue in strongly filtering all flankers.  

Note a lesser facilitatory effect is then seen for the congruent 
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trials, but the magnitude of the drop-off in RT on incongruent 

trials is reduced.    

Although we explore this in greater detail below, the data 

already indicates that such behavioral shifts must be learned 

over many trials. For instance, when subsets of the 50-50 

condition are analyzed – either short runs in which four 

congruent trials were followed by an incongruent trial, or four 

incongruent trials were followed by a congruent trial 

(effectively creating miniature “80-20” or “20-80” 

conditions) the change in response time from the fourth to the 

fifth trials is no different than the overall differences between 

congruent and incongruent trials in the 50-50 condition (both 

|t|<1.1). This suggests that the large-scale differences seen 

across the different blocks are the result of a longer-term 

learning process. The following by-trial analysis further 

tested the time course of learning. 

 

Figure 2. Mean by-trial half-flanker effect (i.e., the 

additive component of the flanker effect, which would have 

a subtractive component mirrored across y=0). Separated by 

block type (percent of congruent trials).  

By-trial fits 

Means of evaluated fits are shown in Figure 2. The three main 

parameters were asymptote, which indicated the flanker 

effect size after learning, scale, which indicated the 

magnitude and direction of learning, and rate, which 

indicated the relative speed of learning. We conducted 

preliminary frequentist nonparametric comparisons of fit 

parameters in the extreme conditions via within-subjects 

Wilcoxon signed-rank tests that compared the 20% congruent 

to the 80% congruent conditions. The difference between the 

rate parameters in 20%-congruent condition (median = 

1.0517) and 80%-congruent condition (median = 1.0502) was 

0.0015, V = 536, p = 0.176. The difference between the 

asymptote parameters in 20%-congruent condition (median = 

0.109) and 80%-congruent condition (median = 0.129) was 

0.019, V = 301, p = 0.095. The difference between the scale 

parameters in 20%-congruent condition (median = 0.051) and 

80%-congruent condition (median = 0.041) was 0.010, V = 

771, p<.001. These analyses provide preliminary evidence 

for reliable differences in learning scale, but not the other 

parameters, between conditions. Scale determines magnitude 

as well as direction of learning, making it a reasonable 

parameter to expect to differ between conditions if we believe 

that people truly are learning to behave differently. 

We next tested three frequentist multilevel models using R 

packages lme4 and pbkrtest, one for linear changes in each of 

the three exponential parameters due to changes in 

congruency statistics. 

 

lmer(param~propCongruent+(propCongruent|subject)) 

 

Each model used the proportion of congruent trials in a 

block to predict the fit parameter value, while controlling for 

participant-level random effects. The rate parameter was not 

reliably predicted by task statistics, F(1,44.7)=.817, p>.35. 

The asymptote likewise fell short of conventional statistical 

significance, F(1,43.1)=3.97, p=.053. In contrast, but in 

concurrence with the Wilcoxon test reported above, the scale 

parameter was linearly predicted by varying flanker-

congruence proportions, F(1,44.0)=26.91, p<.001. 

Limitations 

These analyses have certain weaknesses and shortcomings.  

For example, the apparent nonmonotonicity of fits with 

regard to task statistics could be an artifact of block order 

effects that indicates learning to learn. In addition, this work, 

meant as a preliminary demonstration, utilizes a simplistic 

measure of flanker performance. Response times for a given 

trial are assumed to be additively shifted from a baseline (in 

a log-transformed scale), while trials with incorrect responses 

are omitted. Further work should explore continuous 

learning-related changes via models that capture both 

response time and accuracy (as in Drift Diffusion Models - 

DDMs), as these are more meaningful decompositions of 

performance than the only-correct log-transformed RTs 

reported here. Doing so may require longer learning blocks, 

as DDMs with relatively high numbers of parameters are 

unlikely to recover reliable estimates of learning parameters 

given a mere 250 learning trials per condition. While 

hierarchical modelling would somewhat alleviate these 

concerns by providing stability (i.e., lower-level parameters 

could only be estimated from the distributions of higher-level 

parameters), we refrained from testing these models with 

high numbers of free parameters here. One direction for 

future work could be to apply hierarchical DDM parameters 

with covariates (Wiecki et al., 2013) to the problem of trial-

by-trial learning by specifying a functional form (e.g., 

exponential decay). Many other additional parameters could 

be fit as well, such as changing SoP values or asymmetric 

flanker effects (e.g., additive effects due to incongruent trials 

being larger than subtractive effects due to congruent trials).  
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Discussion 

Here we demonstrate that bottom-up attention is reliably 

influenced by environmental statistics. That is, the degree of 

filtering demonstrated by a participant is a function of some 

amount of learning – rather than fully reflecting a static 

ability. We provide evidence for a quantitative dissociation 

between the dynamics of learning and the stable individual 

differences that interact to give rise to the overall pattern of 

behavior in the flanker task. The scale (indicating size and/or 

direction) of learning is clearly changed by environmental 

statistics. The asymptote appears to be changed as well, 

although our data indicates that this change is not linear or 

even monotonic (see Figure 2). While many questions remain 

to be examined regarding learning in attentional tasks, this 

first step provides impetus to further address how to best 

quantitatively decompose behavior in single tasks into 

separate processes, including a learning process. 

The key implication of this work is thus that individual 

differences approaches to attention, and cognition more 

generally, would benefit from integrating analyses sensitive 

to the effects of learning. Performance differences between 

individuals due to learning may be mechanistically distinct 

from individual differences arising from, for example, stable 

differences in distractor suppression. Furthermore, such 

considerations may shed light on other areas of the field – for 

instance, in examining test-retest reliabilities.  Indeed, the 

test-retest reliability of flanker tasks has typically not been 

found to be high.  However, this may be due to failing to 

account for learning from test to test. By implementing 

experimental paradigms and analytical methods capable of 

identifying the relative contributions of these processes, 

further light may be shed on the mechanistic underpinnings 

of a wide array of typical processing (e.g., fluid intelligence) 

as well as atypical (e.g., ADHD, anxiety). 
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