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ABSTRACT OF THE THESIS

A Correlation Thresholding Algorithm

for Learning Factor Analysis Models

by

Dale S. Kim

Master of Science in Statistics

University of California, Los Angeles, 2020

Professor Qing Zhou, Chair

We consider the problem of learning the structure of the factor analysis model. The tradi-

tional method of Exploratory Factor Analysis (EFA), despite its widespread application,

is often criticized for its ad-hoc use of rotation criteria for learning solutions. Additionally,

more recently developed penalized EFA methods partially address these issues, but remain

computationally intense. We propose a fast correlation thresholding algorithm, that is

theoretically motivated by graph theory, to simultaneously learn the structure of a factor

analysis model for an unknown number of factors. We derive the conditions for structural

identifiability and parameter uniqueness, as well as show asymptotic consistency for our

algorithm. Finally, we present a simulation study and real data example to test and

demonstrate its performance.

ii



The thesis of Dale S. Kim is approved.

Steven Paul Reise

Peter M. Bentler

Qing Zhou, Committee Chair

University of California, Los Angeles

2020

iii



Hallo o shet.

iv



Contents

1 Introduction 1

1.1 Model and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Review of Structure Learning in Factor Analysis . . . . . . . . . . . . . . 4

1.2.1 Exploratory Factor Analysis . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Penalized Exploratory Factor Analysis . . . . . . . . . . . . . . . 5

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Correlation Thresholding Algorithm 7

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 On the Thresholdability of θ . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Structural Identifiability via Thresholded Correlation Graphs . . . . . . . 15

2.5 Rotational Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Simulation Study 22

3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Real Data Example 28

4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



5 Concluding Remarks 30

vi



List of Figures

1.1 Factor Analysis Model Path Diagram . . . . . . . . . . . . . . . . . . . . 2

2.1 Example Factor Analysis Model and Correlation Graph . . . . . . . . . . 8

2.2 Overview of the CT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Illustration of Structural Identifiability Problem . . . . . . . . . . . . . . 16

3.1 Simulation Model Fit Outcomes . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Simulation Structural Outcomes . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Real Data Example Path Model Solutions . . . . . . . . . . . . . . . . . 29

vii



List of Tables

3.1 Sortable Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Number of Estimated Solutions . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Real Data Example Results . . . . . . . . . . . . . . . . . . . . . . . . . 29

viii



Chapter 1

Introduction

Factor analysis is a commonly used multivariate technique which conceptualizes a set

of observed variables as a function of a set of unobserved latent factors. It is generally

assumed that the number of latent factors is less than the number of observed variables,

hence serving as a dimension simplification procedure. Many social sciences use factor

analysis to relate observed variables to hypothetical constructs that cannot be directly

observed. These may include personality, emotional states, social status, or political power

[1].

1.1 Model and Notation

The factor analysis model is a causal model of the form:

X = ΛL+ ε, (1.1)

whereX =

[
X1 . . . Xp

]T
∈ Rp×1 is a vector of observed variables, L =

[
L1 . . . Ld

]T
∼

Nd(0,Φ) is a vector of latent variables or factors, ε =

[
ε1 . . . εp

]T
∼ Np(0,Ω) is a vector

of errors and Ω is diagonal, and Λ = [λij] ∈ Rp×d is a matrix of coefficients, or factor

loadings. For convenience, an additive mean vector µ is omitted from the model without

the loss of generality. The associated path model can be illustrated by Figure 1.1. We

assume that d < p, reflecting the fact that factor analysis is generally used as a dimension

simplification technique. Further, the only causal relations that are assumed exist are

1



Figure 1.1: A path diagram for a general factor analysis model. Single arrow edges denote a
causal relation. Non-arrow edges denote a correlation.

those from L to X. Thus we may say that L are the (causal) parents of X, and X are

the children of L. No causal relations are assumed among the L variables, and they are

only assumed to be correlated (oblique factor analysis) or uncorrelated (orthogonal factor

analysis). We are considering the more general case of oblique factor analysis models in

this study.

The model stated in Equation 1.1 implies a covariance structure Σ for X as follows:

Σ(θ) := Var(X) = Var(ΛL+ ε) = ΛΦΛT + Ω, (1.2)

letting θ = {Λ,Φ,Ω}. We can write Σ(θ) to make explicit that we are referring to Σ as a

function of the parameters Λ,Φ, andΩ.

At times, it will be easier to deal with observed variables which are unit variance

scaled. Let Dσ be the Cholesky factor of the diagonal of Σ (i.e., the diagonal matrix

of standard deviations). Then we define a unit variance scaled X as X̃ in the following

manner:

X̃ := D−1σ X = D−1σ (ΛL+ ε) = Λ̃L+ ε̃, (1.3)

where D−1σ Λ = Λ̃ and D−1σ ε = ε̃. Similarly, it follows that the population correlation
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matrix Σ̃ can be expressed as:

Σ̃(θ) := D−1σ ΣD−1σ

= D−1σ (ΛΦΛT + Ω)D−1σ

= Λ̃ΦΛ̃T + Ω̃,

(1.4)

where Ω̃ = D−1σ ΩD−1σ . Note that the factor analysis model for Σ and Σ̃ are often used

interchangeably, and the elements of Σ̃(θ) may be referred to as ρij.

For estimation, maximum likelihood is the most widely used method. The Gaussian

likelihood is particularly convenient since it can be directly parameterized in terms of the

covariance:

`(θ) =
n

2
log|Σ(θ)−1| − n

2
tr(Σ(θ)−1S), (1.5)

where S is the sample covariance matrix of the observed variables X. From here, the

maximum likelihood estimates are obtained by optimizing `(θ) with respect to θ. This

function can also be augmented with penalty terms to promote sparsity in Λ, which we

will briefly review in the next section.

The rest of this article is organized as follows. We first review traditional and recent

methods of learning factor analysis structures in Section 1.2. We then delineate some

common problems among current methods and provide the motivation of the current

research in Section 1.3. Then we describe our Correlation Threshold Algorithm and

develop theoretical justifications for its use in Section 2. We then test our Correlation

Threshold Algorithm against other methods with a simulation study in Section 3 and a

real data example in section 4. Finally, in Section 5, we provide some concluding remarks.

Notation throughout this article will be as follows. Let A ⊆ {1, . . . , n} and B ⊆

{1, . . . , p} be index sets. The complement of A will be denoted as Ac. For a matrix

M ∈ Rn×p, we will define MAB to be the submatrix of M consisting of the rows indexed

by A and columns indexed by B. Similarly for a vector V ∈ Rn×1, we will define VA to be

the subvector of V consisting of the entries indexed by A. We will use 0 or blank entries
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to represent a rectangular matrix or vector of zeroes, whose dimension can be inferred

from context and In will denote the n× n identity matrix.

1.2 Review of Structure Learning in Factor Analysis

Structure learning in the context of factor analysis typically refers to constraints imposed

on Λ. We are interested in sparse structures, where many entries of Λ are zero. Sparse

structures are favorable in that they allow a clean interpretation of the model so it is clear

as to which latent variables relate to each observed variable.

For example, the most favored type of sparsity is row sparsity. If there is only one

entry per row, then every observed variable has only one parent. We will call Λ a simple

structure if it possesses this attribute, and may be called a “perfect simple structure” by

other authors [2]. It is so called since mutually exclusive sets of the observed variables

perfectly serve as the set of causal indications for any given latent factor.

1.2.1 Exploratory Factor Analysis

Currently, the main methods of learning a sparse structure on Λ fall under the umbrella of

Exploratory Factor Analysis (EFA). In practice, it is an algorithm which works as follows:

1. Given d as an input, set Φ = Id and estimate an unconstrained Λ and diagonal Ω.

2. Use a rotation criterion to find Φ.

3. (Optional) Set small elements of Λ to zero if less than some threshold τ .

4. (Optional) Use a model selection procedure to choose among several choices of d.

Arguably, the biggest criticism of structure learning with EFA is the lack of rotational

uniqueness (the premise of Step 2 in EFA). This refers to the fact that if Λ is unconstrained,

there are many pairs (Λ,Φ) for which Σ(θ) = ΛΦΛT + Ω (this is further detailed in Section

2.5).
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To alleviate this problem, additional constraints called “rotation criteria“ can be

imposed to identify the parameters. One common example of such a rotation constraint

is minimizing the following:

f(Λ) = (1− κ)

p∑
i=1

d∑
j=1

d∑
l 6=j

λ2ijλ
2
il + κ

d∑
j=1

p∑
i=1

p∑
k 6=i

λ2ijλ
2
kj, κ ∈ [0, 1], (1.6)

which is known as the Crawford-Ferguson family of rotation criteria [3]. We can see that

the term
∑d

j=1

∑d
l 6=j λ

2
ijλ

2
il ≥ 0, where equality holds if and only if there is at most one

non-zero element in the ith row of Λ. The term
∑p

i=1

∑p
k 6=i λ

2
ijλ

2
kj behaves the same way

except it acts upon the jth column of Λ. Thus, Equation 1.6 is a weighted penalty on

the row and column sparsities of Λ, which is parameterized by κ. The most common

parameterization choice is κ = 1/p, which is also known as varimax rotation [4].

Regardless of rotation criterion, the fact remains that different criteria may yield

different solutions. Further, Step 3 of the EFA algorithm is another source of subjectivity.

Even though a rotation criterion may minimize certain magnitudes of the entries of Λ,

rotation alone is insufficient to produce entries that are exactly zero. Hence, one must

choose an arbitrary threshold τ by which to set low magnitude entries of Λ to zero.

1.2.2 Penalized Exploratory Factor Analysis

As a potential solution to the subjectivity problems in EFA, penalized methods also

have been developed. Instead of rotating factor coefficients, penalized EFA can achieve

sparse solutions directly in estimation. While penalized estimation additionally requires

tuning parameters, these can be selected in an objective manner, for example by using

the Bayesian Information Criterion (BIC) or cross-validation (CV) [5].

These methods maximize a penalized likelihood (or optimize other loss functions) of

the form:

`p(θ) = `(θ)− p(Λ), (1.7)

where p(·) is some penalty function. One example is the LASSO penalty [6], which has
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been adapted to EFA [7, 8] as follows:

pκ(Λ) = κ‖Λ‖1 = κ

p∑
j=1

d∑
k=1

|λjk|, (1.8)

for a regularization parameter κ. Another common example is the minimax-concave

penalty (MCP; [9]), which has been utilized in penalized EFA as well [10, 11]:

pκ,γ(Λ) = κ

p∑
j=1

d∑
k=1

∫ |λjk|
0

(
1− x

κγ

)
+

dx, (1.9)

where κ, γ are regularization parameters. In both cases, the regularization parameters are

chosen by some model selection procedure (BIC, CV).

1.3 Motivation

The problems with current methods can be categorized into two main issues: identification

of sparsities in Λ and the learning the number of latent variables, d. For identifying

sparsities, EFA relies on methods of rotation and choosing thresholds for establishing

structure. These have been criticized for their ad-hoc and subjective nature. Partially

addressing this, penalized EFA methods utilize a penalty function to promote sparsity in

a more principled manner. However, penalty functions generally also lack a theoretical

basis from the model, and additionally requires a computationally intense search over the

tuning parameters.

For learning d, neither EFA nor penalized EFA have intrinsic methods to estimate

this parameter, and require it as an input. Many data based guidelines of proposing d

have been suggested, but suffer from poor performance, lack of objectivity, or both (for a

recent review see [12]). Addressing these issues, we propose a correlation thresholding

algorithm to learn the structure of Λ and the number of latent variable simultaneously.

Our method is fast and simple, utilizing graph theory to provide a motivating framework.
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Chapter 2

The Correlation Thresholding Algorithm

2.1 Overview

To begin, we review several terms and definitions from graph theory. We define a graph

G as an ordered pair (V,E), explicitly denoted as G(V,E). V is a set of vertices and

E ⊆ V × V is a set of edges. For convenience, we will use V = X to mean that the

elements of the vertex set V represent the index set of the random vector X. We also

restrict our attention to undirected graphs, where (i, j) ∈ E if and only if (j, i) ∈ E. A

clique of G(V,E) is a subset of vertices C ⊆ V such that all pairs of distinct vertices in C

are in the edge set E. Finally, a maximal clique is a clique that cannot be extended by

including more vertices from V .

We now give a simple example to demonstrate how we will use graph theory to

analyze factor analysis models. Consider the following parameters:

Λ̃ =



λ̃11

λ̃21

λ̃31 λ̃32

λ̃42

λ̃52


, Φ =

1

1

 , Ω̃ =



ω̃1

ω̃2

ω̃3

ω̃4

ω̃5


. (2.1)

This model is illustrated in Figure 2.1 (left). Note that these matrices imply the following
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Figure 2.1: On the left we have a graphical representation of the model described in Equation
2.1. On the right we have the associated correlation graph.

correlation matrix:

Σ̃(θ) = Λ̃ΦΛ̃T + Ω̃ =



λ̃211 + ω̃1 λ̃11λ̃21 λ̃11λ̃31

λ̃11λ̃21 λ̃221 + ω̃2 λ̃21λ̃31

λ̃11λ̃31 λ̃21λ̃31 λ̃231 + λ̃232 + ω̃3 λ̃32λ̃42 λ̃32λ̃52

λ̃32λ̃42 λ̃242 + ω̃4 λ̃42λ̃52

λ̃32λ̃52 λ̃42λ̃52 λ̃252 + ω̃5


. (2.2)

From here, let us convert Σ̃(θ) to a graph in the following manner. Let the vertex

set represent the observed variables X and its edge set be determined by the non-zero

lower-triangular entries of Σ̃(θ). That is:

V = {1, . . . , 5}

E = {(i, j) : |ρij| > 0},
(2.3)

for (i, j) ∈ {1, . . . 5}2. Then the graph G(V,E) is depicted in 2.1 (right). The key

observation here is that the number of latent variables in the factor model correspond

to the number of maximal cliques in the graph. Moreover, the children of each latent

variable are correspondingly the members of these maximal cliques. In this way, we can

gain insight to the unknown structure of Λ by converting a thresholded correlation matrix

into a graph.
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Extending this logic to the oblique case (Φ 6= Id), it is clear that the edge detection

procedure is not as simple as thresholding for non-zero correlations. Generally, we begin

with a saturated correlation matrix (no sparsities), since variables that do not share

parents will be correlated by virtue of their parents being correlated. However, in most

practical settings, the correlation of pairs that do not share parents will have a lower

magnitude than those pairs whose parents are shared. To see why this could be the case,

consider Equation 2.2 again if Φ 6= Id:


λ̃211+ω̃

2
1 λ̃11λ̃21 λ̃11λ̃31+λ̃11λ̃32φ12 λ̃11λ̃42φ12 λ̃11λ̃52φ12

λ̃11λ̃21 λ̃221+ω̃
2
2 λ̃21λ̃31+λ̃21λ̃32φ12 λ̃21λ̃42φ12 λ̃21λ̃45φ12

λ̃11λ̃31+λ̃11λ̃32φ12 λ̃21λ̃31+λ̃21λ̃32φ12 λ̃231+λ̃
2
32+ω̃

2
3 λ̃31λ̃42φ12+λ̃32λ̃42 λ̃31λ̃52φ12+λ̃32λ̃52

λ̃11λ̃42φ12 λ̃21λ̃42φ12 λ̃31λ̃42φ12+λ̃32λ̃42 λ̃242+ω̃
2
4 λ̃42λ̃52

λ̃11λ̃52φ12 λ̃21λ̃45φ12 λ̃31λ̃52φ12+λ̃32λ̃52 λ̃42λ̃52 λ̃252+ω̃
2
5

 . (2.4)

Here we can see that Φ has a shrinking effect on the correlations between variables that

do not share parents (bolded for emphasis). Suppose that there existed some threshold by

which these correlations (bold) were below, and correlations among variables that shared

parents (not bold) were above. Then this threshold could identify and eliminate pairs

of variables that did not share parents, yielding a structurally informative graph as in

Figure 2.1 (right). Finding such a threshold and using the thresholded correlation graph

to learn the factor analysis structure is the premise of our algorithm.

We formalize the thresholded correlation graph as follows. Let the parent set of Xi

be π(Xi) := {j : λij 6= 0, j ∈ {1, . . . , d}}. Then, define the edge set of pairs who share

parents as:

E := {(i, j) : π(Xi) ∩ π(Xj) 6= ∅}, (2.5)

for all (i, j) ∈ {1, . . . , p}2. Subsequently, we will also work with the complement of E,

which for clarity is:

Ec = {(i, j) : π(Xi) ∩ π(Xj) = ∅}. (2.6)

9



We would like to find some threshold that is able to separate the E and Ec sets by the

magnitude of the correlations. We will define this notion as “thresholdable.” Specifically,

a set of parameters θ is called thresholdable if and only if there exists a threshold τ0 such

that:

max{|ρkl| : (k, l) ∈ Ec} < τ0 < min{|ρij| : (i, j) ∈ E}. (2.7)

That is, if θ is thresholdable, then we can correctly sort the index pairs of X into the E

and Ec sets using τ0. This allows us to move forward with the graphical logic under the

graph G(X,E) as shown in the previous example with orthogonal factors (i.e., Figure 2.1).

Further, we can also define an estimator of E for a candidate τk as:

Ê(τk) := {(i, j) : |rij| > τk}. (2.8)

where rij denotes the sample correlation.

Putting these ideas together, the core task of the algorithm is to search for a suitable

τ0. This can be done by searching over a set of candidate set τk ∈ [0, 1] and analyzing

their respective threholded correlation graphs G(X, Ê(τk)). The aforementioned graphical

concepts can then be leveraged to learn the number of latent variables and the structure

of Λ. This essentially yields a set of candidate models for which we can utilize model

selection procedures (e.g., BIC) to select a final model.

2.2 The Algorithm

We now apply the framework from the previous section to construct the Correlation

Thresholding (CT) Algorithm. Given the sample correlation matrix R = (rij) ∈ Rp×p:

10



Algorithm 1: The Correlation Thresholding Algorithm
input :The sample correlation matrix R
output :Parameter estimates θ̂

1 Create a sequence of k = 1, . . . ,m threshold levels τk ∈ [0, 1];
2 for k = 1, . . . ,m do
3 Calculate Ê(τk) and analyze G(X, Ê(τk)) for a set of maximal cliques:

Ck = {C1, . . . C|Ck|} ;
4 Set d = |Ck|;
5 forall (i, j) ∈ {1, . . . , p} × {1, . . . , d} do
6 if Xi ∈ Cj then
7 Set λij as unconstrained;
8 else
9 Set λij = 0;

10 end
11 end
12 Estimate the model constraints for Λ learned in Step 5 to obtain θ̂k;
13 end
14 Select one of the k structures via a model selection procedure (e.g., BIC) ;

An overview of the procedure is displayed in Figure 2.2. The idea behind the CT Algorithm

is as follows. Suppose we are dealing with the population correlation matrix R = Σ̃(θ).

Then if τ0 ∈ τk, among other identifiability conditions (described below), the correct

structure of Λ will be represented in one of the Ê(τk) (Step 3). Then, given that the

correct model is among the final set of candidate models, a consistent model selection

criterion will be able to recover it (Step 14). In the following sections, we describe the

precise conditions under which this can be achieved, as well as establishing statistical

consistency for the algorithm.

2.3 On the Thresholdability of θ

One of the more fundamental assumptions of the CT Algorithm is the thresholdability of

θ. In this section, we examine this assumption in more detail. Specifically, a necessary

and sufficient condition for thresholdability is as follows:

Theorem 1 Let (Xi, Xj, Xk, Xl) be a quadruplet of variables such that (Xi, Xj) share

11



Figure 2.2: Overview of the CT Algorithm.

parents and (Xk, Xl) do not. Then, a set of parameters θ is thresholdable if and only if:

max
(k,l)
|Λ̃kEΦEF Λ̃T

lF | < min
(i,j)
|Λ̃iAΦABΛ̃T

jB + Λ̃iCΦCBΛ̃T
jB + Λ̃iAΦACΛ̃T

jC + Λ̃iCΦCCΛ̃T
jC |, (2.9)

where A = π(Xi)\π(Xj), B = π(Xj)\π(Xi), C = π(Xi) ∩ π(Xj), E = π(Xk), and

F = π(Xl), and i 6= j and k 6= l.

Proof. First it will be convenient to partition the parent variables of any pair (Xi, Xj)

as π(Xi) ∪ π(Xj) = {LA, LB, LC}, where:

A = π(Xi)\π(Xj)

B = π(Xj)\π(Xi)

C = π(Xi) ∩ π(Xj).

(2.10)
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Then we may re-cast Equation 1.1 for any pair (X̃i, X̃j) as follows:

X̃i

X̃j

 =

Λ̃iA 0 Λ̃iC

0 Λ̃jB Λ̃jC



LA

LB

LC

+

ε̃i
ε̃j

 . (2.11)

We then obtain the correlation of between Xi and Xj from this form as follows:

Var


X̃i

X̃j


 =

Λ̃iA 0 Λ̃iC

0 Λ̃jB Λ̃jC




ΦAA ΦAB ΦAC

ΦBA ΦBB ΦBC

ΦCA ΦCB ΦCC




Λ̃T
iA 0

0 Λ̃T
jB

Λ̃T
iC Λ̃T

jC

+

ω̃i 0

0 ω̃j

 ,
(2.12)

for which we multiply through and take the off-diagonal to be:

ρij = Λ̃iAΦABΛ̃T
jB + Λ̃iCΦCBΛ̃T

jB + Λ̃iAΦACΛ̃T
jC + Λ̃iCΦCCΛ̃T

jC . (2.13)

Writing ρij in this way yields a useful decomposition with respect to the structure of the

factor analysis model. Specifically, this can be thought of as the correlation between Xi

and Xj due to their non-shared parents being correlated (ΦAB), their non-shared parents

being correlated with their shared parents (ΦAC ,ΦCB) and simply having shared parents

(ΦCC). Thus, if Xi and Xj have no shared parents, then the index set C is empty. This

reduces Equation 2.13 to:

ρij = Λ̃iAΦABΛ̃T
jB. (2.14)

The result of Theorem 1 follows by characterizing the definition of thresholdability

(Equation 2.7) directly in terms of θ. That is, if for all (Xi, Xj) that share parents and for

13



all (Xk, Xl) that do not share parents, θ is thresholdable if and only if:

max
(k,l)
|Λ̃kEΦEF Λ̃T

lF | < min
(i,j)
|Λ̃iAΦABΛ̃T

jB + Λ̃iCΦCBΛ̃T
jB + Λ̃iAΦACΛ̃T

jC + Λ̃iCΦCCΛ̃T
jC |. (2.15)

�

The application of Theorem 1 can be illustrated by inspecting a specific example.

Consider the commonly used simple structure factor analysis model. Recall that simple

structures have only one non-zero entry per row of Λ. This implies that each observed

variable has only one latent variable parent, and therefore the right-hand side of Equation

2.9 reduces to the ΦCC term, since ΦAB, ΦCB, and ΦAC do not exist and ΦCC = 1. Hence,

in the case of simple structure models, the thresholdability condition is met if and only if:

max
(k,l)
|λ̃keλ̃lfφef | < min

(i,j)
|λ̃icλ̃Tjc|, (2.16)

where π(Xi) = π(Xj) = C, π(Xk) = E, and π(Xl) = F . From here, we can ascertain

that if the non-zero entries of Λ̃ and the off-diagonal entries of Φ are equal or relatively

homogenous, then the model is thresholdable.

More generally speaking, it can be seen that thresholdability holds as Φ tends toward

Id, and/or as the non-zero entries of Λ̃ tends toward 1. Both of these conditions are

desirable properties of factor analytic designs. First, it has been suggested that latent

variable models should be designed such that the latent factors be distinguishable from

one another, or that they are not too highly correlated [13]. If the latent factors are

too highly correlated, then a factor solution with less dimensions may be better suited.

Second, higher magnitudes of the non-zero entries of Λ̃ reflect better measurement of the

latent variable. That is, observed variables serve as proxies for the latent variables, hence

stronger regression coefficients provide more information [14].
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2.4 Structural Identifiability via Thresholded Correlation Graphs

In this section we study the conditions under which the structure for Λ can be recovered

from the thresholded correlation graph. To demonstrate the problem of structural

identifiability, consider Figure 2.3. Assuming each displayed models are thresholdable,

all these structures will yield the same thresholded correlation graph. Specifically, the

maximal cliques that are yielded by them are {1, 2, 3} and {3, 4, 5}, despite all having

different structures. This can be seen by noting that some latent variables do not yield

maximal cliques in G(X,E), or yield the same maximal clique as another latent variable.

For example, in Figure 2.3b, both L2 and L3 yield the clique {3, 4, 5}. Thus, L2 and L3

cannot be distinguished from each other through maximal cliques alone. Similarly, in

Figure 2.3c, L3 yields the clique {4, 5}, but it is not maximal since L2 yields {3, 4, 5}. In

this case, L2 cannot be identified as latent variable, since its clique is subsumed by the one

yielded by L3. Hence, we must consider the problem of multiple structures corresponding

to the same thresholded correlation graph.

Clearly, to identify distinct structures from maximal cliques, there must be a bijective

correspondence between the structures of each latent variable and the set of maximal

cliques. If such a correspondence holds for a given Λ, we will call Λ (or θ) maximal clique

identifiable. We propose one such mapping as follows. Let the child set of a latent variable

be denoted ch(Lk) = {i : λik 6= 0, i ∈ {1, . . . , p}}. Then, a sufficient condition maximal

clique identifiability is as follows:

ch(Lk)/
⋃
k 6=l

ch(Ll) = Uk, (2.17)

where Uk 6= ∅ and indexes the unique children variables for Lk for all k ∈ {1, . . . , d}. If

this condition holds for Λ (or θ), we will say that the unique child condition holds for Λ.

It essentially means that all latent parents have at least one unique child variable.

Theorem 2 If θ is thresholdable and the unique child condition holds in Λ, then the set

of latent variable children {ch(Lk) : k ∈ {1, . . . , d}} has a bijective correspondence to the

set of maximal cliques in G(X,E).
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(a) (b) (c)

Figure 2.3: Three structures that yield the same thresholded correlation graph.

Proof. First, let us consider an alternative definition of E:

E = {(i, j) : λik 6= 0, λjk 6= 0, k ∈ {1, . . . , d}}. (2.18)

This simply re-writes Equation 2.5 in terms of the structure of Λ. Then by the definition

of ch(·), each ch(Lk) forms a clique in G(X,E). We can denote such a clique formed this

way as Ck. Thus, we can consider E as a mapping E : {ch(Lk)} → {Ck}.

Under the unique child condition, there is a unique Uk ⊆ ch(Lk), implying Uk ⊆ Ck

by definition of E. Thus, the correspondence of each Uk to each ch(Lk) and Ck makes

E a one-to-one mapping. Trivially, E is also an onto mapping, as {Ck} consists only of

maximal cliques generated by E, which are the only maximal cliques considered by the

CT Algorithm. Taken together, we have a bijective correspondence between {ch(Lk)} and

{Ck}. �

2.5 Rotational Uniqueness

An important consideration with factor analysis models is the uniqueness of θ. For the

CT Algorithm, we show that the unique child condition guarantees a type of uniqueness

for θ. To demonstrate, when Λ is unconstrained (e.g., EFA), there may be many (Λ,Φ)

pairs that exist such that Σ(θ) = ΛΦΛT + Ω. Let M ∈ {Invertible Rd×d} be a so-called
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rotation matrix. Then:

Σ(θ) = ΛΦΛT + Ω

= ΛMM−1ΦM−TMTΛT + Ω

= ΛMΦMΛT
M + Ω,

(2.19)

letting ΛM = ΛM and ΦM = M−1ΦM−T . Hence there are multiple pairs (Λ,Φ) that can

construct the same Σ(θ) matrix. Following this, we formally define the rotational unique-

ness as follows. Let valid rotation matrices be denoted as M ∈ M = {Invertible Rd×d :

Σ(θ) = ΛMΦMΛT
M + Ω}:

1. IfM = Id, then (Λ,Φ) is said to be globally rotationally unique.

2. If M ⊆ {Signature Matrix ∈ Rd×d}, then (Λ,Φ) is said to be locally rotationally

unique,

where signature matrices are diagonal matrices whose diagonal elements are ±1.

Corollary 1 If the unique child condition holds in Λ, then (Λ,Φ) is locally rotationally

unique.

Proof. To begin, we list two sufficient conditions for Λ that yield local rotational

uniqueness for our model. Adapting these conditions from [15], we have:

Condition 1: Λ has at least d− 1 fixed zeroes in each column.

Condition 2: rank(Λ[j]) = d− 1 for all j ∈ {1, . . . d},

where Λ[j] is defined as the submatrix of Λ, which consists of the rows of Λ which have

fixed zeroes in the jth column, and consists of the columns of Λ except for the jth. An
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example of Λ[j] is as follows:

Λ =



λ11 0 0

λ21 λ22 0

λ31 0 0

0 λ42 0

0 λ52 λ53

0 λ62 0

0 0 λ73

0 0 λ83

λ91 0 λ93



, Λ[1] =



λ42 0

λ52 λ53

λ62 0

0 λ73

0 λ83


, Λ[2] =



λ11 0

λ31 0

0 λ73

0 λ83

λ91 λ93


, Λ[3] =



λ11 0

λ21 λ22

λ31 0

0 λ42

0 λ62


.

(2.20)

These conditions can be seen to be satisfied by the unique child condition as follows.

For all j, k ∈ {1, . . . , d}, and i ∈ {1, . . . , p} we can re-cast Uj as:

Uj = {i : λij 6= 0, λik = 0, k 6= j}, (2.21)

and let the index of non-unique variables be:

U = {i : i /∈ ∪dj=1Uj}. (2.22)

Let us permute the rows of Λ according to an order that satisfies (U1, . . . , Ud, U). Denoting

a permutation matrix that yields such a row ordering as P , we have:

PΛ =



ΛU11

. . .

ΛUdd

ΛU1 · · · ΛUd


. (2.23)

That is, we can permute the rows of Λ such that its upper part is block-diagonal with d

blocks. Then, by definition of a block-diagonal matrix, there must be at least d− 1 zeroes
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in each column, satisfying Condition 1. It is easily seen that PΛ also satisfies Condition 2,

as any (PΛ)[j] will also have its upper part be block-diagonal, and thus full rank (d− 1).

�

2.6 Consistency

In this section, we establish the consistency of the CT Algorithm. The crucial part of the

argument depends on the consistency of the algorithm’s structural learning aspect. Since

the structure of the model is determined by the graph G(X,E), structural consistency

will follow if Ê(τ0)
P→ E. To determine this, we study the finite sample error bounds for

the event Ê(τ0) = E.

Theorem 3 Let X ∼ Np(0,Σ(θ)) be a random vector. Assume all correlations between

all pairs (Xi, Xj) are bounded such that |ρij| ≤M < 1, for all (i, j) ∈ {1, . . . , p}2. Then,

the following inequality holds:

P(Ê(τ0) 6= E) ≤ C2p(p− 1)(n− 2)

(
4− γ2

4 + γ2

)n−4
, (2.24)

where 0 < C2 <∞ only depends on M and γ is defined as:

γ :=
min(|ρij| ∈ E)−max(|ρij| ∈ Ec)

2
. (2.25)

Proof. Our goal is to give a bound for the event Ê(τ0) 6= E. For clarity, let us first

consider the event Ê(τ0) = E, which by definition, holds if and only if:

( ⋂
(i,j)∈E

|rij| > τ0

)
∩
( ⋂

(i,j)/∈E

|rij| < τ0

)
. (2.26)

Then by De Morgan’s laws, we can say Ê(τ0) 6= E if and only if:

( ⋃
(i,j)∈E

|rij| ≤ τ0

)
∪
( ⋃

(i,j)/∈E

|rij| ≥ τ0

)
, (2.27)

which is to say that Ê(τ0) 6= E holds if and only if any rij is on the opposite side of τ0 as
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their population analog ρij. From here, the strategy is to derive bounds for P(|rij| ≤ τ0)

if |ρij| > τ0, and P(|rij| ≥ τ0) if |ρij| < τ0, for all (i, j). To determine these bounds, we

make use of a concentration inequality for P(|rij − ρij| ≥ ε) from Lemma 1 of [16]. We

re-state this as follows:

Lemma 1 Assuming Xi and Xj are Gaussian random variables and |ρij| ≤M < 1 for

all (i, j), then for any 0 < ε ≤ 2, the quantity |rij − ρij| ≥ ε is bounded as follows:

P(|rij − ρij| ≥ ε) ≤ C1(n− 2)

(
4− ε2

4 + ε2

)n−4
, (2.28)

where 0 < C1 <∞ only depends on M .

For our purposes, we set ε = γ, which will be the best choice of ε to uniformly bound

all P(|rij| ≤ τ0) if |ρij| > τ0 and P(|rij| ≥ τ0) if |ρij| < τ0. The uniformity of the bound

follows by seeing that γ ≤
∣∣|ρij| − τ0∣∣ for all (i, j). That is, there is no ρij that is closer

to τ0 than the length of γ. It is the best choice in that we would like ε to be as large as

possible for fastest decay. This is achieved by selecting the mid-point of min(|ρij| ∈ E)

and max(|ρij| ∈ Ec).

We begin with the scenario where |ρij| < τ . Given the left-hand side of Equation

2.28 and setting ε = γ, we have:

P(|rij − ρij| ≥ γ) ≥ P(|rij| − |ρij| ≥ γ)

≥ P(|rij| − |ρij| ≥ τ0 − |ρij|)

= P(|rij| ≥ τ0).

(2.29)

Hence, P(|rij| ≤ τ0) is bounded from above by the right-hand side of Equation 2.28 if

|ρij| < τ . We can use the same strategy if |ρij| > τ :

P(|rij − ρij| ≥ γ) ≥ P(|ρij| − |rij| ≥ γ)

≥ P(|ρij| − |rij| ≥ |ρij| − τ0)

= P(−|rij| ≥ −τ0)

= P(|rij| ≤ τ0).

(2.30)
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Since these two events have the same upper bound, let us combine them by defining:

Bij = B(rij, τ0) :=


|rij| ≥ τ0 if |ρij| < τ

|rij| ≤ τ0 if |ρij| > τ,

(2.31)

Noting that Ê(τ0) 6= E(τ0) holds if and only if
⋃

(i,j)Bij holds, what remains is to find a

bound of the latter event. This can be done as follows:

P
( ⋃

(i,j)

Bij

)
≤
∑
(i,j)

P (Bij)

≤ p(p− 1)

2
max
(i,j)

P(Bij)

⇒ P(Ê(τ0) 6= E(τ0)) ≤ C2p(p− 1)(n− 2)

(
4− γ2

4 + γ2

)n−4
,

(2.32)

where 0 < C2 <∞ only depends on M . The final result follows by recognizing that all

Bij are uniformly bounded as in Lemma 1. �

The immediate corollary of Theorem 3, is that limn→∞ P(Ê(τ0) 6= E(τ0)) = 0, from

which structural consistency can easily be seen. Overall parameter consistency of the CT

Algorithm follows under two additional considerations. First, we must have τ0 ∈ τk which

can be obtained if τk constructed to be large and dispersed enough. Second, a consistent

parameter estimation and/or model selection procedure need to be used in the algorithm.

A straightforward choice would be to use maximum likelihood estimation in conjunction

with BIC model selection. Then, asymptotically, the CT Algorithm will produce the

correct model structure with consistent parameter estimates.

Some additional observations regarding the bound on P(Ê(τ0) 6= E(τ0)) are as follows.

The bound is independent of d, thus consistency holds regardless of the number of latent

variables. Second, the term (4 − γ2)/(4 + γ2) decays at an exponential rate with n.

This allows the number of variables p to grow at up to a polynomial rate with n while

maintaining consistency.
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Chapter 3

Simulation Study

3.1 Method

We generated data sets from a Gaussian distribution. The mean vector was set to µ = 0

for all conditions, and the covariance matrix Σ was parameterized by θ which varied

by condition. Λ followed a simple structure (one non-zero entry per row). The number

of latent variables (d) was set to 2, 3, 4 and 5, with the number of children per latent

variable set to 5. The non-zero entries of Λ were drawn from a uniform distribution,

λij ∼ Uniform(0.6, 0.8). Additionally, the off-diagonal entries of Φ were drawn from a

uniform distribution, with φij ∼ αUniform(0.6, 0.8). The scaling parameter α controlled

the frequency of which θ was thresholdable, and was set to 1, 0.75, 0.5, 0.25, and 0. As

we empirically show later, α = 0.5, 0.25, 0 corresponded to thresholdable conditions, while

α = 1, 0.75 corresponded to non-thresholdable conditions, generally. For the cutoffs τk, 40

equidistant points from 0 to 1 were used, and the sample size was set to n = 1000. Overall,

this design resulted in 4× 5 = 20 conditions, for which we conducted 100 replications per

condition. Finally, we generated two data sets per replication, one for training purposes

and one for testing purposes.

We tested the performance of the CT Algorithm with the other methods of factor

analysis structure learning. These methods were the MLE with known structure (baseline),

EFA, EFA-LASSO, and EFA-MCP. Note that the three EFA methods all require d as an

input. To make a comparison as fair as possible, we implemented a modified version of the

CT Algorithm for these methods. That is, the CT Algorithm was replicated except for
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Step 4. For this step, instead of placing constraints on the entries of Λ, an EFA procedure

was carried out instead, with d = |C|. The algorithm continues as written thereafter,

including the model selection procedure. Essentially, the CT Algorithm was used to give

the EFA methods a set of d to work with and select from, while using their own procedures

for structure learning.

The simulations were written in the R language (3.6.1) [17]. The lavaan package

[18] was used in the estimation phases of the CT Algorithm, and was used to estimate

the baseline MLE solution. For EFA, the psych package [19] was used to obtain MLE

solutions for unconstrained Λ solutions. And finally, the LASSO and MCP variants of

EFA were estimated with the fanc package [10, 11].

3.2 Outcomes

We collected five outcomes pertaining to the performance of true model recovery. In terms

of model fit, we calculated BIC and testing log-likelihood differences from the baseline

estimation procedure. For outcomes related to model structure, we collected Structural

Hamming Distance (SHD) and the learned dimension (d̂) of the latent variable vector.

In addition to model recovery performance, note that we varied the extent of which

θ was thresholdable with a scaling parameter α. Therefore we calculated whether it was

possible for Σ̃(θ) and R to be fully and correctly sorted by τ0, which we termed Σ̃(θ)

sortable and R sortable, respectively. That is, for every generated θ we determined if

there existed a τ0 to correctly sort the entries of Σ̃(θ), and if that persisted after sampling

variation for sorting the entries of R. In addition, we also calculated the maximum

proportion of ρij and rij that could be correctly sorted. These measures were termed ρ

sortable and r sortable, respectively. We used a direct application of Theorem 1 to make

these calculations.

Finally, we were interested in comparing the general computational efficiency of each

method. To be agnostic towards the numerical idiosyncrasies between software packages,

we simply counted the number of solutions each method estimated. For the CT Algorithm,

this is simply the number of unique structures obtained by the sequence of τk. For EFA,
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this translates to the number of unique d obtained by the sequence of τk. For EFA-LASSO

and EFA-MCP, this is the number of tuning parameter combinations to search over, per

unique d in the sequence of τk. The number of tuning parameters were left at the package

defaults, which was 30 values of κ for EFA-LASSO (Equation 1.8) and 270 combinations

of (κ, γ) for EFA-MCP (Equation 1.9).

3.3 Results

The results of the model fit outcomes are displayed in Figure 3.1 and the results of

the structural outcomes are displayed in Figure 3.2. For BIC, the performance of the

EFA methods ranked from best to worst as EFA-MCP, EFA-LASSO, and EFA, and was

generally stable across α and the number of latent variables. However, the performance

of the CT Algorithm varied across levels of α. When α = 0.5, 0.25, 0, the CT Algorithm

performed just as well as EFA-MCP, which was on par with the known structure MLE

performance. For α = 0.75, performance dropped slightly behind EFA-MCP but remained

better than EFA-LASSO. When α = 1 it began to perform worse than EFA-LASSO, but

never worse than EFA.

For the testing log-likelihood, the performance of the EFA methods ranked from

EFA-MCP, EFA, and EFA-LASSO, from best to worst. This rank order was generally

stable across α and number of latent variables. Notable, there was a general drop in

performance among all EFA methods at α = 1. For the CT Algorithm, it performed the

best along with EFA-MCP for α = 0.5, 0.25, 0, across all number of latent variables. Once

again, it displayed a slight performance drop at α = 0.75, and performed the worst at

α = 0, along with EFA-LASSO.

For SHD, the results were similar to the pattern exhibited by BIC. The performance

of EFA methods ordered from best to worst was EFA-MCP, EFA-LASSO, and EFA. This

was stable across α and the number of latent variables. Once again, the performance of

the CT Algorithm varied across levels of α. When α = 0.5, 0.25, 0, the CT Algorithm

performed on par with the known structure MLE performance, similar to EFA-MCP. For

α = 0.75, performance dropped slightly behind EFA-MCP, but better than EFA-LASSO.
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Figure 3.1: Averages for the model fit outcomes of the simulation study are displayed. All values
had the known structure MLE subtracted for standardization. Hence, a value of zero corresponds
to no difference vs. the known structure MLE method.

When α = 1 it began to perform worse than EFA-LASSO, but not worse than EFA.

For the learned dimension, all methods performed nearly perfectly for α = 0.5, 0.25, 0,

across all numbers of latent variables. When α = 0.75, both EFA and the CT Algorithm

begin to perform slightly worse than EFA-MCP and EFA-LASSO, both of which maintain

nearly perfect recovery rates. When α = 1, generally all methods begin to drop in

performance, with the CT Algorithm and EFA performing the worst.

The results of the sortability statistics are displayed in Table 3.1. In general, sortability

decreases as both α and d increase. Specifically, when α = 1, 0.75, the quantities Σ̃(θ), ρ, R,

and r all were almost never fully sortable. Conversely, they were almost always sortable

when α = 0.5, 0.25, 0. These results directly corroborate the results of the model fit and

structure outcomes. That is, as the more sortable the correlations are, the better the CT

Algorithm performs. As might be expected, the CT Algorithm performs perfectly if R is

sortable.

For computational efficiency, the average number estimated solutions used is displayed

in Table 3.2. In all practicality, the number of solutions depended on the method used.

EFA used the lowest amount of solutions, with an overall average of 5.74. The CT

algorithm used 9.98 on average, while the EFA-LASSO and EFA-MCP were orders of

magnitude higher, using 172.31 and 1550.75 average solutions respectively.
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Figure 3.2: Averages for all structural outcomes of the simulation study are displayed.

3.4 Discussion

Unsurprisingly, much of the performance of the CT Algorithm depends on the thresh-

oldability of θ. When thresholdability is met, the performance of the CT Algorithm

performs just as well with the known structure MLE. Moreover, in terms of the number of

solutions estimated, it is orders of magnitude more efficient than the competing method

of EFA-MCP. While the CT Algorithm is robust to small violations of thresholdability

(i.e., α = 0.75), its performance suffers against large violations of thresholdability (i.e.,

α = 1). However, α need not be too small in order to make θ thresholdable. As we have

empirically shown, at α = 0.75 thresholdability is not violated very often.
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d Sortable α = 1.00 α = 0.75 α = 0.50 α = 0.25 α = 0

2

Σ̃(θ) 0.450 1.000 1.000 1.000 1.000
ρ 0.884 1.000 1.000 1.000 1.000
R 0.230 0.920 1.000 1.000 1.000
r 0.792 0.996 1.000 1.000 1.000

3

Σ̃(θ) 0.080 0.980 1.000 1.000 1.000
ρ 0.841 1.000 1.000 1.000 1.000
R 0.040 0.720 1.000 1.000 1.000
r 0.708 0.986 1.000 1.000 1.000

4

Σ̃(θ) 0 1.000 1.000 1.000 1.000
ρ 0.817 1.000 1.000 1.000 1.000
R 0 0.400 0.990 1.000 1.000
r 0.647 0.976 1.000 1.000 1.000

5

Σ̃(θ) 0.010 0.980 1.000 1.000 1.000
ρ 0.802 1.000 1.000 1.000 1.000
R 0 0.180 1.000 1.000 1.000
r 0.631 0.975 1.000 1.000 1.000

Table 3.1: The average sortable statistics for Σ̃(θ), ρ, R, and r. Note that some of these
numbers may not reflect exactly 1 or 0 due to rounding.

d α CT Algorithm EFA EFA-LA EFA-MCP

2

1.00 10.40 4.58 137.4 1236.6
0.75 10.54 4.34 130.2 1171.8
0.50 9.87 4.18 125.4 1128.6
0.25 9.24 4.20 126.0 1134.0
0 7.61 4.10 123.0 1107.0

3

1.00 9.91 6.05 181.5 1633.5
0.75 11.12 5.96 178.8 1609.2
0.50 10.57 5.70 171.0 1539.0
0.25 9.88 5.42 162.6 1463.4
0 8.89 5.09 152.7 1374.3

4

1.00 8.40 5.95 178.5 1606.5
0.75 11.07 6.67 200.1 1800.9
0.50 11.17 6.56 196.8 1771.2
0.25 10.27 6.34 190.2 1711.8
0 9.70 6.04 181.2 1630.8

5

1.00 7.79 5.80 174.0 1566.0
0.75 11.03 7.05 211.5 1903.5
0.50 11.47 7.20 216.0 1944.0
0.25 10.41 6.98 209.4 1884.6
0 10.35 6.66 199.8 1798.2

Table 3.2: Average number of solutions estimated by each method.
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Chapter 4

Real Data Example

4.1 Method

We examined a widely used factor analysis dataset comprised of intelligence test scores

of middle school students [20]. The data consist of 9 variables designed to measure 3

factors of intelligence. These were a spatial factor (visual perception tasks), a verbal

factor (paragraph comprehension, sentence completion, and word meaning), and a speed

factor (speed tests of addition, counting groups of dots, and discrimination of straight and

curved capitals). As in the simulation study, we applied the MLE (of the hypothesized

structure), the CT Algorithm, EFA, EFA-LASSO, and EFA-MCP methods. Again, for a

fair comparison, we implemented modified CT algorithms for each of the EFA methods as

we did in the simulation study. We compared the learned dimension of the latent variable

vector, the number of parmaters, BIC, and the CV log-likelihood (10 fold).

4.2 Results

The results are displayed in Table 4.1 and the structures are displayed in Figure 4.1. In

terms of both BIC and CV log-likelihood, the results are similar across the CT Algorithm,

EFA-LASSO, and EFA-MCP methods, all three being the best methods. The hypothesized

MLE structure performed slightly behind these methods and EFA performed the worst.

All methods slightly differed in the structure learned. The CT Algorithm and EFA-

MCP learned four latent variables, while EFA-LASSO learned three and EFA learned
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Figure 4.1: Path models for each method in real data example.

Method d̂ Parameters BIC CV Likelihood (10 Fold)
Hypothesis 3 21 7604.37 -3765.41

CT Algorithm 4 30 7602.52 -3749.60
EFA 2 28 7818.52 -3823.14

EFA-LASSO 4 30 7600.58 -3751.82
EFA-MCP 4 26 7581.61 -3751.37

Table 4.1: Results of real data example.

two. Notably, aside from EFA, the methods all suggested some additional structure

for the 9th item (speed test of capital discrimination). EFA-MCP suggested an extra

latent variable toward this item and the 8th item (speed of counting dots), EFA-LASSO

suggested extra paths from the spatial and verbal factors toward this item, and the CT

Algorithm suggested both.
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Chapter 5

Concluding Remarks

The CT Algorithm is graphical method for learning factor analysis structures. In this arti-

cle, we motivated the algorithm using thresholded correlation graphs, and established the

conditions for structural identifiability, parameter uniqueness, and asymptotic consistency.

In our simulation study, the CT Algorithm performs very well when the assumption of

thresholdability is met, and also showed that this assumption may be quite plausible in

practice. Further, the computational efficiency of the CT Algorithm is unrivaled relative

to the EFA-LASSO and EFA-MCP methods, as it checks 10 and 100 times less models,

respectively. Overall, the CT Algorithm may be a promising method of learning factor

analysis models.
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