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Introductory Paragraph (abstract)

 Understanding climate-driven impacts on the multivariate global wind-wave 

climate is paramount to effective offshore/coastal climate adaptation planning. 

However, the use of single-method ensembles and variations arising from 

different methodologies, has resulted in unquantified uncertainty amongst 

existing global wave climate projections. Here, assessing the first coherent, 

community-driven multi-method ensemble of global wave climate projections, we

show widespread ocean regions with robust changes in annual mean significant 

wave height (H́s) and mean wave period (T́ m) of 5-15% and shifts in mean wave 

direction (θ́m) of 5-15 degrees, under a high emission scenario. Approximately 

50% of the world’s coastline is at risk of wave climate change with ~40% 

revealing robust changes in at least two variables. Further, we find that 

uncertainty in current projections is dominated by climate model-driven 

uncertainty, and that single-method modelling studies are unable to capture up 

to ~50% of the total associated uncertainty. 

Main body   

   Wind-waves are dominant contributors to coastal  sea-level dynamics1,2 and

shoreline stability3-5, and can be major disruptors of coastal population6, marine

ecosystems7 and  offshore/coastal  infrastructures. Future  changes  to  the

multivariate global wind-wave climate (Hs, T m and θm) result from a combination

of  meteorologically-driven  changes  in  ocean  surface  wind  fields6,8 and

morphologically-driven changes nearshore (combined effects of changes in sea-

level9,  tides, reef structures10 with long-term changes in beach morphology11).

These changes might potentially exacerbate12,13, or even exceed in some coastal

regions1,14-16,  impacts  of  future projected sea-level  rise.  The impacts  could be

further exacerbated when considering directional changes in wave propagation (
θm)  which  is  a  major  driver  of  coastal  stability  at  all  time-scales5,9,13,17.

Establishing robust projections of global wave characteristics (by identifying and
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assessing regions with lack of climate signal and/or inter-member agreement)

(see Methods section 5)18 and quantifying the uncertainties introduced by the

complex modelling processes used for that purpose, is paramount to prevent

potentially costly maladaptation19,20. A problem, however, arises from the wide

range  of  wind-wave  methodologies  used  to  derive  wave  characteristics  from

surface  winds  or  pressure  fields,  which  increases  the  poorly-understood

uncertainty in existing projections21-23. Consequently, the 

the United Nations Intergovernmental  Panel  on Climate Change (herein IPCC)

Fifth Assessment Report  (AR5)24 assigned low confidence to wave projections

(with medium confidence for Southern Ocean Hs increase), owing to the limited

number of available model simulations and the uncertainty surrounding Global

Climate Model (GCM) downscaled surface winds. 

  Since then, a new generation of global wind-wave projection studies have been 

completed by several international modelling groups25-34 using atmospheric 

forcing fields obtained from the Coupled Model Intercomparison Project Phase 5 

(CMIP5) GCM simulations. While each of these independent studies has 

considered aspects of the uncertainty related to their own specific climate-

modelling process, they treated the uncertainty space very differently (such as 

emission scenarios and/or GCMs). Furthermore, no studies quantified the 

uncertainty introduced by their own particular wind-wave modelling method 

(WMM) to develop global wind-wave fields. This uncertainty stems from different 

configurations of statistical approaches (including transfer functions, training 

datasets and predictor corrections) and/or dynamical wind-wave models 

(including source-term parameterizations, sea-ice fields and numerical 

resolution) (Supplementary Table S1). 

   Consequently, these studies present contrasting projected changes in wind-

wave characteristics (in terms of magnitude and/or signal) across the world’s 

ocean21. Such limitations might have potentially hampered broad-scale 

assessments of future coastal risk and vulnerability1,22. These assessments have 

either used future Hs changes derived from a very limited number of GCM-forced

global wind-wave simulations surrounded by low confidence35,36, or have 

neglected any future wave changes37,38 on the basis of the unavailability of 

robust global data39 and the high uncertainty between existing studies40. 

   Here, we seek to minimize such limitations by performing a unique analysis of 

a coordinated multi-method ensemble of future global wave climate scenarios 

derived from ten independent state-of-the-art studies25-34; which have been 

undertaken under a pre-designed, community-driven framework41,42. Combined, 

these studies yield a large ensemble of 148 members of global wave-climate 

projections, from which we identify robust projected meteorologically-driven 

changes in Hs, T m and θm at global scale. Further, this multi-method ensemble of

wave projections enables us to quantify (and compare), for the first time, all 
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three dominant sources of uncertainty (emission scenarios, global climate 

models and wind-wave modelling methods); which has not been previously 

attempted owing to lack of multi-method ensembles.

   Two33,34 of the ten contributing studies employ different statistical approaches 

to derive global wave projections exploiting relationships between GCM-

simulated sea-level pressure (SLP) fields and wave parameters. The remaining 

contributions25-32 use different configurations of dynamical approaches, in which 

GCM-simulated high-temporal resolution near-surface winds are directly used to 

drive a global wind-wave model. Consult the Supplementary Information (Section

1.1, and Table S1) for the details of each contribution and respective acronyms.  

   All the contributing studies25-34 have provided assessments of the performance 

of their GCM-forced wave simulations to represent the historical wave climate on 

an independent basis. Here, we compare the model-skill of each ensemble 

member, against the most recent and complete, calibrated dataset of satellite 

altimeter Hsmeasurements of Hs
43. In addition, we compare the model-skill 

against the well-validated44 ERA-Interim45 (ERAI) multivariate (Hs, T m, θm) wave 

reanalysis for the present-day time-slice (1979-2004) as a common reference 

dataset. The details of the two databases are described in the Methods (Section 

2). We present our model-skill comparisons using Taylor diagrams46 at both 

global- and regional-scale, providing spatial correlation (SC), normalized 

standard deviation (NSD) as well as centred-root-mean-square-difference 

(CRMSD) within a single diagram. To further support our model skill analysis, we 

provide global pairwise comparisons maps of the mean and variability biases for 

a subset with common forcing GCM-WMM (Supplementary Table S3, Section 5).

   Overall, both dynamical and statistical-based simulations exhibit good 

agreement relative to satellite measurements and ERAI. CRMSD values in 

annual/seasonal H́s are generally below 0.5 m, with NSD values below 0.5 m and 

SC values above 0.9 at global- and regional-scales, regardless of the reference 

dataset used here (Supplementary Figs. S1-S4, S6-S8). The agreement in annual 

mean 99th percentile significant wave height (Hs
99

) is relatively similar to that 

seen for H́s. However, we find relatively less model-skill in representing annual
Hs

99
 at regional-scale, particularly across the South Atlantic/Pacific and Southern 

Indian Ocean with NSD values up to ~1 m (Supplementary Fig. S5). The bias 

values in annual H́s and Hs
99

 relative to satellite data are usually under ~10-15% 

and ~15-17.5% over the global ocean, respectively (Supplementary Figs. S12-

S13). The ensemble mean of each study exhibits biases of less than ~5% in 

annual H́s anywhere, respectively. Comparison against the ERAI data in terms of 

annual/seasonal T́ m and θ́m exhibits good agreement, with the CRMSD values 

under 0.5 s and 0.75°, respectively, and SC values above 0.9 (Supplementary 

Figs. S6-S8), at both global and regional-scale (Supplementary Fig. S9). Further 
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discussion on the model-skill at seasonal, regional and inter-annual scales is 

provided in the Supplementary Information (Section 3 and 5).

   Cluster analysis of H́s by member (Methods, Section 3.1) over the present-day 

time-slice delineates groups of ensemble members defined by wave-modelling 

methodology, rather than the GCM-forcing (Fig. 1). These results supported by 

Fig. S12 show that WMM strongly dominates the variance in this community 

ensemble of historical wave simulations (which includes all GCM-forced wave 

simulated data available to date). Within each WMM cluster, we note close 

association of members with similar GCM-forcing (that is, GCMs with shared 

dynamical cores).

   Fig. 1 shows two well-defined statistically-derived clusters (1 and 5) explained 

by differences in the training datasets, transfer functions and/or predictor 

corrections, and three dynamically-based clusters (2-3 and 4) arising from 

differences in dynamical wave modelling configurations (e.g., model source-term

parameterizations). Note that clusters 1 (IHC) and 5 (ECCC (s)) share a common 

characteristics, in which their members have very high similarity, as a 

consequence of their statistical calibrations and predictor corrections33,47. This is 

also evident in our model-skill comparison (Supplementary Figs. S1-S3, S12). 

Consult Supplementary Information (Section 4) for the details on the distinctive 

qualities of each cluster and for discussion on within-cluster similarities.

  Projected future changes in the climatological mean wave fields over the globe 

by the end of the 21st century (2081-2100) are assessed for two representative 

concentration pathways: a medium (RCP4.5) and a high-emission scenario 

(RCP8.5). The RCP4.5 and RCP8.5 exhibit very similar spatial patterns of 

projected changes for all wave parameters but the RCP8.5 shows relatively 

larger changes (Fig. 2). Signals of projected changes in annual mean wave 

parameters (H́s, T́ m, and θ́m) shows robust change (Methods, Section 5) over 

~36%, 44% and 32% of global ocean, respectively (under RCP8.5) (Table S2).

   A robust projected decrease in annual H́s is seen across the North Atlantic 

Ocean and portions of the northern Pacific Ocean of up to ~10% under RCP8.5, 

expanding further across the eastern Indian and southern Atlantic Oceans in 

Austral summer. This is consistent with the relatively uniform decrease in 

projected surface wind speeds over the boreal extra-tropical storm belt48 partially

driven by a strongly reduced meridional temperature gradient due to the polar 

amplification of climate change49. The areas of robust projected increase are 

limited to the Southern Ocean and the tropical eastern Pacific - in line with the 

intensification and poleward shift of the austral westerly storm belt50 and 

increasing Southern Ocean swell propagation into the tropical areas23 

respectively. In the Austral winter, regions of robust projected increase expand 

further across the tropics. These findings are overall qualitatively consistent with 
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the Coordinated Ocean Wave Climate Project (COWCLIP) CMIP3 multi-model 

ensemble23,  and other relevant literature21. 

   Storm significant wave height Hs
99

 show similar annual/seasonal characteristics 

of change as for H́s, however, the fraction of global ocean showing robust 

changes is much smaller (Fig. 2, Supplementary Table S2) highlighting the high 

uncertainty in extreme wave climate projections. Although we present changes 

in projected changes in extreme Hs
99

, we draw attention to the ongoing challenge

of resolving storm wave conditions generated by intense tropical/extra-tropical 

storms in wave simulations forced directly with atmospheric surface fields (~1-

2°) from CMIP5 GCMs. High-resolution studies33,34 have highlighted the 

importance of increased wind forcing resolution (~0.25°) to adequately capture 

storm wave climate in tropical cyclone-affected areas, and the sensitivity of 

projected changes to resolution.

   The extended influence of the increasing propagation of swells from the 

Southern Ocean region into the tropics is shown by the robust projected increase

in T́ m (~44% of the global ocean region) and the projected shift in θ́m over ~32%

of the global ocean (clockwise over the tropical Pacific and tropical Atlantic, and 

anti-clockwise elsewhere). Consult the Supplementary Information (Figs. S21-

S22) for further discussion on the projected future seasonal changes. The results 

described are mechanistically linked to well-documented large-scale atmospheric

wind circulation changes48,49 and modes of natural climate variability23.

   Beyond evaluating the robustness of the projected changes (Fig. 2), we assess 

the importance of the changes relative to the magnitude of the present-time 

inter-annual variability (see Supplementary Fig. S20). For RCP4.5, and we 

speculate the same for lower pathways51, most robust projected changes in wave

parameters fall within the range of present natural variability (<100%). Under 

the high-emission RCP8.5 however, nearly all robust changes exceed the 

simulated present-day inter-annual variability (some regions >150%).

  Fig. 3 identifies robust projected changes in offshore multivariate wave 

conditions (Hs, T m and θm) in the vicinity of the world’s coastlines (Methods 

Section 6), which are considered dominant physical drivers of coastal 

change5,6,13,52 and have served as a proxy for broad-scale assessments of coastal 

risk and vulnerability26,35,36,53. We find ~50% of the world’s coasts (excluding sea-

ice areas and enclosed-basins) exhibit robust projected changes in the adjacent 

offshore wave climate in at least one variable (H́s, T́ m or θ́m). Whilst there are 

regions where robust projections are limited to a single variable (e.g., θ́m 

changes off the southern and eastern coasts of Africa), there are several coastal 

sections (~40% of the global coastline) where robust changes in offshore H́s, T́ m 

and/or θ́m coincide (e.g., New Zealand, Southern Australia and the western 

coasts of Central and South America). This is also the case for the highly 

populated North American Atlantic coast (a well-documented hotspot of 
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accelerated sea-level rise54, where we find a robust decrease in H́s and T́ m. 

Future projected changes in θ́m (a key driver of sustained coastal erosion55) are 

robust in the vicinity of 21% of the word’s coastlines with magnitudes ranging 

between ~±17°. We exclude sea-ice affected regions from our analysis. 

However, these areas must be acknowledge as locations of potential high future 

wave climate change, owing to altered wind and fetch conditions with changing 

sea-ice extent29,56.

   Our community-ensemble of global wave-climate projections has a range of 

uncertainty stemming from several different sources (RCPs, GCMs and WMMs), 

which have remained largely unquantified in previous, standalone studies. We 

applied Ward’s ANOVA-based clustering (Methods, Section 3.2) to a designed 

subset of projection scenarios (Table S3) spanning 2 RCP emissions scenarios, 10

GCM models and 8 WMMs, providing an overall analysis of similarity amongst the

projected changes (Fig. 4). We find that projected relative changes in H́s largely 

cluster by GCM-forcing (i.e., the atmospheric forcing from which the wave field 

originates). There are only a few cases, where RCP/WMM-related uncertainties 

dominate the dissimilarity between projections (e.g. MIROC5, BCC-CSM1.1 or 

CNRM-CM5-forced members). See the Supplementary Information (Section 6.3) 

for further discussion on the distinctive qualities of each cluster (Section 6.3).

  To further quantify the dominant drivers of uncertainty among these global 

wave climate projections and their relative contribution to the total projection 

uncertainty, we applied a three-factor ANOVA-based variance decomposition to 

three opportunity subsets (Table S4) containing all three sources of uncertainty. 

See the Methods (Section 4) for a description of the selection of the subsets used

and the ANOVA methodology. The findings show that no single source of 

uncertainty is negligible, and that the full projection uncertainty is not solely 

attributable to the different sources of uncertainty, but also depends on their 

interactions. For all subsets available (Fig. 5, Supplementary Figs. S27-S28) we 

find a dominating influence of GCM uncertainty across most of the global ocean, 

accounting for ~30% to more than 50% of the total uncertainty associated with 

projected future changes in the climatological mean H́s. These results are 

consistent with our cluster analysis (cf. Fig. 4). 

   Scenario-driven uncertainty dominates over the North Atlantic, western North

Pacific and Southern Ocean (~40% to more than 50% of the full uncertainty) but

is exceeded by other uncertainty contributors elsewhere. Choice of WMMs is a

significant  contributor  to  the  full  uncertainty,  particularly  across  the

tropics/subtropics (~25-50%), and the interactions between uncertainty sources

account for ~20-~30% of the total uncertainty across most of the world’s oceans

(dominated by GCM-WMM interactions, Fig. 5e). These findings show that all the

three sources of  uncertainty must be adequately sampled to capture the full

uncertainty in the projected change signal. It also demonstrates that previous
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studies relying on a single methodology have not captured up to ~40-50% of the

total uncertainty space (that is, the sum of all the fractions related to WMM). 

   Our global-scale study does not resolve the uncertainty in projections of wave

fields  introduced  with  atmospheric  downscaling  techniques.  Although  the

regional  downscaling  step  has  been  widely  used  in  wave  climate  projection

studies, and is a topic of intensive research57, the several different downscaling

techniques introduce an additional source of uncertainty which (at present) is not

possible to sample at the global-ocean scale. 

  Our CMIP5-based coordinated ensemble of wave-climate projections samples 

over RCP, GCM and WMMs, thus allowing a much improved sampling of the 

uncertainty space relative to the COWCLIP CMIP3-based ensemble of 

opportunity23, or any previous study to date21. In addition to resolving the largely 

unquantified contribution of all three dominant sources of uncertainty, this study 

attests to the importance of considering conceptually distinct wind-wave 

methodologies. We note that, some of the uncertainty seen amongst dynamical 

simulations in terms of Hs biases could be potentially reduced by further model 

calibration58,59 and improved wind-wave model physics (e.g., removing 

dependence on spectral model approximations, such as for nonlinear wave-wave

interactions60 and model limiters for spectral propagation velocities, applied to 

improve computational efficiency and accuracy61,62). While, at the moment, it is 

not possible to isolate these components, we advocate that future dynamical 

wave studies attempt to reduce the overall Hs historical bias. Regarding model 

skill, wind forcing correction could lead to improved wave model simulations59. 

The results also stress the need to better understand how different global wave 

reanalysis and hindcasts (used to develop historical trends of wave climate 

change1,63) differ. 

 Our results provide a new perspective on the robustness of multivariate global-

scale wave projections which builds far beyond the restricted range of future 

wave-climate scenarios published in individual studies to date. These 

coordinated ensemble projections show signals of wave climate change will not 

exceed the magnitude of the natural climate variability if the goal of the Paris 

Agreement 2° C degree target is kept. Under a high-emission scenario (RCP8.5), 

~48% of the world’s coast is at risk of wave climate change, owing to changes in

offshore forcing H́s, T́ m and/or θ́m (with ~40% exhibiting robust changes in at 

least two of these wave variables). The magnitude of the future projected 

changes found for any of these wave variables (~5-15%) is capable of inducing 

significant changes in coastal wave-driven processes and their associated 

hazards52. 

  Broad-scale assessments of coastal impacts of climate change are beginning to 

consider changes to wave climate1,35,36,53 however, these studies are yet to 

consider directional shifts in wave propagation, which have been shown to be a 
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dominant driver of shoreline stability5,13. Whilst our results have far-reaching 

implications from many perspectives, they only address meteorologically-driven 

changes in wind-wave characteristics, which have been the predominant focus of

wind-wave climate projection studies to date. Some localised-scale studies 

suggest the morphologically-driven component of wave climate change might 

lead to a greater change in the coastal zone than these meteorologically-driven 

changes11. Concentrated community effort is now required to quantify 

morphologically-driven wave climate change as a contributor to global coastal 

water-level changes, as we look towards improved coastal vulnerability 

assessments from the climate community64.
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List of Figure captions

Fig. 1 - Hierarchical clustering of annual mean significant wave height (
H́s) for the present-day climate (1979-2004). a, Cluster tree diagram

(dendrogram) resulting from Euclidean distance-based Ward’s minimum variance

(Methods, Section 3) clustering using global pairwise annual H́s (Methods). The

vertical axis represents the distance or dissimilarity between clusters (and

cluster members) presented in log-scale for clarity. In the horizontal axis, the

members are labelled by model forcing (GCM) and wind-wave modelling method

(WMM) (coloured accordingly). The multi-model ensemble mean from each WMM

is also included with its respective colour. Full multi-member ensemble averages

(weighted ensemble mean by WMM, ENSEMBLE-WM, and uniformly weighted

ensemble mean, ENSEMBLE) are coloured blue (Methods, Section 3.1). Grey

shading denotes five well-defined key clusters. b, Within each dashed line

section, maps showing the of each cluster in terms of absolute value (top row)

and relative percentage difference to the satellite database (bottom row) are

shown for annual H́s (Methods, Section 3.1). The numbers at the bottom left of

each panel are the number of cluster members used to calculate the cluster

mean.

Fig. 2 - Simulated wave climatological mean fields for the present-day

(1979-2004) and projected changes in the climatological wave values by

the future period 2081-2100 under RCP4.5 and RCP8.5. a, The weighted

multi-member mean of the 1979-2004 mean of annual mean significant wave

height H́s, (December-February DJF and June-August JJA H́s within dashed box

with same colorbar as for annual H́s), 99th percentile significant wave height, Hs
99

,

mean wave period, T́ m, and mean wave direction, θ́m. b-c, The weighted multi-
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member mean of projected changes in the climatological mean of the respective

wave parameter by the period 2081-2100 relative to the period 1979-2004 under

RCP4.5 and RCP8.5, respectively. The changes are expressed in percent of the

present-day climatological values. Changes in θ́m (clockwise) are absolute

changes with vector direction denoting θ́m for the present-day climatological

mean field. Hatching indicates areas of robust change (Methods, Section 5).

Seasonal changes for each wave parameter are provided in Supplementary Figs.

S21-S22.

Fig. 3 - Robust projected changes in offshore significant wave height (H́s

), period (T́ m) and direction (θ́m) by 2080-2100 (under RCP8.5) in the

vicinity of the world’s coastlines. Sections exhibiting robust weighted multi-

member mean changes under RCP8.5 are coloured according to the qualitative

colourbar (bottom), which also shows the percentage of affected coastline where

changes are robust (Methods, Section 5) for each wave characteristic(s). Regions

exhibiting a simultaneous robust increase in offshore H́s and robust decrease in

offshore T́ m (or vice versa) are extremely limited. Vectors represent robust

projected changes in offshore θ́m with their angle (° North) representing wave

direction over the historical time-slice (1979-2004) and their color representing

the magnitude of the future changes (according to the quantitative colourbar,

right side). The percentage of affected free-ice coastline with robust changes in

offshore θ́m is estimated at ~21% (Supplementary Table S2). Coastlines without

black outline represent sea-ice areas and enclosed seas excluded from analysis

(Methods, Section 6).

Fig. 4 - Hierarchical clustering of projected relative changes in annual

mean significant wave height (H́s) (2081-2100 relative to 1979-2004). a,

Cluster tree diagram resulting from Euclidean distance-based Ward’s minimum

variance clustering using global pairwise projected change annual H́s (Methods,

Section 3). The vertical axis represents the distance or dissimilarity between

clusters (and cluster members) presented in log-scale for clarity. In the

horizontal axis, the members are labelled by GCM forcing, WMM and RCP

scenario (RCP4.5 simulations are italicized) respectively, and coloured by GCM,

accordingly. The multi-model ensemble mean from each study group is also

included. Full multi-member ensemble averages (weighted ensemble mean

weighted by WMM, ENSEMBLE-WM, uniformly weighted ensemble mean,

ENSEMBLE, and ensemble mean weighted by forcing, ENSEMBLE-WF) are

coloured blue (Methods, Section 3.2). Grey shading denotes five well-defined key

clusters. b, Within each dashed line section, maps showing the mean of each

cluster’s projected relative change in annual H́s (m) is shown (Methods, Section
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3.2). The numbers at the bottom left of each panel are the number of cluster

members used to calculate the cluster mean.

Fig. 5 - Relative contribution of different sources of uncertainty to the

projected future changes in the mean of annual/seasonal significant

wave height (H́s). a-d, Fraction of the total uncertainty (variance) in the

projected H́s changes (2081-2100 relative to 1979-2004) attributable to a) global

climate models (GCMs), b) wind-wave modelling methods (WMMs), c)

representative concentration pathways (RCPs) and d) sum of all interaction

terms. e) Spatially-averaged contribution of each uncertainty source and their

pairwise and triple interactions to the total ensemble uncertainty. Results are

derived from the ensemble subset 2 which consist of 6 GCMs, 2 RCPs and 3

WMMs for a total of N = 36 simulations (Supplementary Table S4). Similar results

are found for subset 1 and 3 and are presented in Supplementary Fig. S16-S17.

The variance partitioning is based on a three-factor ANOVA model complemented

with a subsampling scheme (Methods, Section 6). Note that plotting artifacts

such as horizontal lines reflect the effects of the spatial-domain partitioning

applied in the statistical methodologies.

Methods. 

1. Data contribution 

   We use a community-derived ensemble compiled from ten CMIP5-based global 

wind-wave climate projection studies25-34, completed under a pre-designed 

framework41,42. Annual and seasonal means of significant wave height (Hs), mean

wave period (T m), mean wave direction (θm) as well as 10th/99th percentiles of 

annual/seasonal Hs are obtained from the ten individual studies. Consult 

Supplementary Information for a detailed description of the datasets considered 

and framework. 

  Our analysis assesses projected relative changes between the representative 

present-day (1979-2004) and future (2081-2100) time-slices. These time periods 

align with the CMIP5 GCM archives of high-temporal resolution atmospheric fields

used to develop wind-wave projections; and correspond to the common period 

across nine of the ten contributing datasets (see Supplementary Section 1.1 

Table S1). Contributed datasets are considered under two different greenhouse-

gas representative concentration pathways: RCP4.5 and RCP8.5 describing 

medium-stabilizing and high-radiative forcing scenarios - reaching +4.5 W/m2 

and +8.5 W/m2 (relative to pre-industrial 1850-conditions) respectively. Sea-ice 

regions were excluded from analysis to support inter-comparison between the 

different contributions.

2. Skill of GCM-forced wave climate simulations
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   As previously mentioned, all contributing studies25-34 have provided 

assessments of the skill of their GCM-forced global wind-wave simulations to 

represent the historical wave climate on an independent basis. Here we use two 

historical wave datasets (a recently compiled dataset of altimeter measurement 

records and a well-known global wave reanalysis) exclusively as a common point

of reference for our model ensemble inter-comparison. The two datasets are 

briefly described below.

2.1 Historical satellite altimeter measurements

   We compare the GCM-forced wave simulations with the most recent (and 

complete) database43 of satellite Hs measurements. This database combines 13 

radar altimeters which have been extensively calibrated against the National 

Oceanographic Data Center (NODC) buoy data, and cross-validated against an 

independent compiled buoy dataset supplied by the ECMWF43,65. The dataset 

contains Hs on a 2° grid resolution (at global scale) over a period of 33 years 

(1985-2018). After control analysis, we found partial years over 1985-1989 

(when only GEOSAT data is available) and no data available for 1991 which limits

the data to 1992-2018, providing a common time-slice duration for comparison 

of 26 years. 

  In the comparison of the GCM-forced global wave simulations with the altimeter

measurements, the time-slice mismatch is ignored66. Since the GCM atmospheric

forcing (and the spectral wave models) were not subject to any data assimilation,

they are considered as representative of the historical wave climate regardless 

of the time period66. Note that GCM simulations (and their natural internal 

climate variability and its associated large-scale modes) are not in temporal 

phase with the satellite database. We assume that any differences between 

GCMs and altimeter measurements are attributable to model and observation 

biases and not from the non-stationarity of the wind-wave climate23.

  To allow for intercomparison, the wave parameters obtained from each of the 

contributions25-34 were collocated onto the satellite-database global grid 

preserving the original data. Taylor diagrams46 were used to compare the skill of 

the GCM-forced wave simulations to represent the present Hs climate at both 

global and regional-scale (Supplementary Figs. S1-S3 and Figs. S4-S5 

respectively). We clarify that our Taylor diagrams present a spatial pattern 

correlation of a temporal average (and not a spatio-temporal correlation). In 

addition to Taylor diagrams, we present global pairwise comparisons maps of the

mean and variability Hs biases for a subset from the full ensemble with common 

GCM-WMM (Supplementary Table S3), allowing us to identify the spatial 

variations of the biases (Supplementary Figs. S12-S13, S16-S17, respectively).

2.2 ERA-Interim wave reanalysis
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   In addition to the univariate satellite data45 we compare model-skill over the

present-day  wave  climate  (1979-2004),  by  comparing  the  present-day  GCM-

forced global wave simulations with the wind-wave parameters obtained from

the  observationally  constrained  ECMWF  ERA-Interim45 (ERAI)  global  wave

reanalysis. The ERAI is a consistent spatially and temporally complete dataset45,

which has been widely used1,25,67 and extensively validated44 being considered

appropriate for multi-year analysis and modeling of long-term processes44. The

ERAI  database  provides  6-hourly  values  of  Hs,  T m and  θm on  a  1°  global

resolution, allowing us to compare all wave variables of interest at global-scale.

The ERAI is therefore used as a well-known reference database, allowing us to

compare all contributing simulations under the same reference. 

   We note that, despite its relatively good model-skill against buoy and altimetry 

measurements44, the ERAI still exhibits some biases in the Hs upper percentiles 

(95th and above), where it underestimates altimetry measurements of Hs by 

~10-15%44.

   The original 6-hourly multivariate ERAI dataset was used to calculate a 

standard set of statistics as performed for the contributing studies25-34 (see 

Supplementary Information, Section 2). To allow for intercomparison, the surface

wave parameters derived from each of the contributing studies25-34 were 

bilinearly interpolated onto the ERAI grid. Taylor diagrams46 were adopted as a 

representation of the skill of the GCM-forced wave simulations to reproduce the 

present multivariate wave climate (Hs, T m and θm) at both global and regional-

scale (Supplementary Figs. S6-S8 and Fig. S9, respectively). The global pairwise 

comparison maps of mean and variability bias using the ERAI dataset are 

presented in Supplementary (Figs. S14-S14 and Figs. S18-S19).

3. Cluster methodology 

   We applied an agglomerative-hierarchical clustering analysis, with the 

similarity criterion defined by Ward’s ANOVA-based minimum variance 

algorithm68. The clustering method was used without

imposing any restrictions on the number and size, or a priori assumptions, of 

clusters. Initial cluster distances were derived using a multi-dimensional 

approach, where the pair-wise Euclidean distance (D¿ amongst ensemble 

members are calculated at every grid location rather than spatially-averaged, 

hence clustering members with high similarity in terms of spatial pattern and 

magnitude:

  Di , j ,k=√∑
k=1

w

(x i ,k−x j ,k )
2  (1)
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where x i ,k and x j ,k are the magnitudes of the relative projected change in the 

annual mean significant wave height from the GCMs i and j respectively, at grid 

point k , with w equal to the number of ocean grid points. Note that for the 

clustering of present-day wave simulations we have used absolute values rather 

than relative changes. The usage of annual mean significant wave height (H́s) as 

our clustering variable is based on the fact that H́s is the only parameter 

available from all the contributions and our main objective is to analyse the total 

community ensemble of wave simulations. Note that, statistical-method-derived 

members33,34 from ECCC (s) and IHC did not provide wave period and/or 

directions (Supplementary Table S1). We also carried out a multivariate 

clustering based on annual H́s, T́ m and θ́m (not shown) using our dynamical 

subset of simulations, which showed qualitatively similar results to the H́s-based 

clustering, in both the present-day simulations and projected relative changes. 

Further description of the clustering method application to the present-day 

climate and the projected relative changes is provided below.

3.1 Application to present-day simulations

   Annual H́s from each GCM-forced global wave simulation over the present-day 

time-slice (1979 to 2004) was used in the clustering method (Eq. 1). We included

all existing ensemble models as well as the mean of each individual contributing 

study ensemble, a uniformly weighted ensemble mean (i.e., attributing equal 

weight to individual member) and an ensemble mean weighted by WMM. The 

latter consisted of reducing the full ensemble to n-members with each single 

member representing the mean from a specific WMM (when suitable). For 

example the 30-model IHC ensemble was reduced to one member, representing 

its ensemble mean. The relative differences (%) between the average of all the 

members within each main cluster and the satellite data was calculated 

separately for each parameter, simply to highlight the key qualities of each 

cluster (Fig. 1 and Supplementary Fig. S10). The relative difference was also 

calculated using ERAI (Supplementary Fig. S11). Note that the clustering analysis

(Fig. 1) is fully independent from the comparison with the satellite or the ERAI 

datasets as described in Section 3. 

   We applied the clustering analysis to annual and seasonal H́s values combined,

and the results were consistent with those obtained using annual mean values. 

We also applied the clustering procedure to the other wave parameters 

(individually), and obtained consistent findings. In all cases, the present-day 

simulations are strongly dependent on the WMM adopted by each study group to

develop future wave fields as shown in Fig. 1.

3.2 Application to projected future changes
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   To identify and resolve similarities in the projected future change the 

clustering procedure (Eq. 1) was applied to the projected relative changes in 

annual H́s between the present-day (1979-2004) and future (2081-2100) time-

slices as estimated by each of the GCM-forced global wave simulations:

ΔH j ,k=
H́ j , k

Future
−H́ j ,k

Present−day

H́ j ,k
Present−day                                                         (2)

where ΔH j ,k is the projected change by GCM j at each grid node k .

   To resolve the relative importance of the three different sources of uncertainty 

(i.e. RCP scenarios, GCMs, and WMMs), we use a subset from the full community 

ensemble where each member shares common GCM forcing with at least two 

other members obtained from different WMMs (consult the Supplementary Table 

S2). In the clustering of projected relative changes (Eq. 1), we also included the 

mean of each study contribution, the uniformly weighted ensemble mean 

(Section 3.1), the ensemble mean weighted by GCM (section 5) and the 

ensemble mean weighted by WMM (for each RCP). Five key clusters were 

identified based on the clustering results as an indication of ensemble members 

with considerable dissimilarity in the projected change values. The mean of all 

members within each main cluster (when available) was calculated for each 

wave parameter (Fig. 1 and Supplementary Fig. S25), providing a robust 

indication of spatial and magnitude dissimilarities over the global ocean. 

   For completeness, we also applied the cluster analysis to the entire community

ensemble of global wind-wave projections, yielding consistent dissimilarities and 

respective associations between all the available wave simulations (albeit less 

clear owing to the large size of the ensemble) (Fig. S26). 

4. ANOVA methodology

4.1 Approach and selection of subsets

   Uncertainty in the projected future wave climate changes (2081-2100 relative 

to 1979-2004) within our community-based multi-member ensemble arises from 

three different sources: choice of emission scenarios (RCPs), global climate 

models (GCMs), and wind-wave modelling methods (WMMs). The latter refers to 

the different statistical and dynamical wave modelling approaches used to 

simulate the global wind-wave fields (representing different configurations of 

statistical methods - such as transfer functions, training data sets and/or 

predictor corrections, and/or dynamical wave models including the source-term 

packages, sea-ice forcing and numerical model resolution). In contrast with other

climatic variables (e.g., temperature or precipitation), dynamically-derived 

ensembles of wave projections are typically only available for 20-year period, 

constrained by the availability of high-temporal resolution GCM-simulated 
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atmospheric surface winds21,42 (Supplementary Table S2). This constrains testing 

the projection uncertainty against the natural (temporal) variability. 

  Hence, we decompose the total ensemble uncertainty in the projected changes 

in the long-term (20-year) mean of annual/seasonal H́s into contributions from 

the different sources of uncertainty (RCPs, GCMs and WMMs) and the 

interactions between them. The fraction of the uncertainty attributable to each 

source (at each grid node) is determined using a three-factor ANOVA69-based 

variance partition method (Section 4.3). The method was applied separately to 

three opportunity subsets obtained from the full ensemble, with each subset 

containing all three sources of uncertainty (Supplementary Table S3). No other 

subsets with the same number of factors exist in this community ensemble. Note

that the forcing GCMs within subsets 2 and 3 represent a broad cross-section of 

the CMIP5 ensemble49, particularly that with availability of high-temporal 

resolution surface wind fields, in terms of model components70 and various GCM 

characteristics such as spatial resolution70.

4.2 Subsampling scheme

  The  ANOVA-based  variance  decomposition  using  different  sample  sizes  of

variance  sources  result  in  biased  variance  estimators71 (cf.  Fig.  4  and

Supplementary  Fig.  S27-S28  with  Supplementary  Fig.  S29).  To  reduce  such

biases  in  the  estimates  of  variance  for  quantification  of  the  uncertainty

contribution, we complemented the ANOVA based variance decomposition with a

subsampling methodology previously proposed71. In each subsampling iteration i,
we  select  two  out  of  n-climate  models  and  two  out  of  m-wave  models,

representing a total of C2
nC2

m
 subsamples, with n and m denoting the number of

GCMs and WMMs within each subset respectively. For each subsample iteration i,
we end up with two global climate models, two emission scenarios and two wind-

wave-modelling  approaches,  which  we  used  for  variance  decomposition  as

described below.

4.3 Three-factor ANOVA model based variance decomposition

   Letting Y jkl
i

 be our response variable, representing the projected change in H́s 

from the jth GCM, kth RCP and lth WMM, we define our three-factor ANOVA-based 

partition model71 without replication following71,72:

                       Y jkl
i

=μi
+α j

i
+βk

i
+γ l

i
+(αβ)jk

i
+(αγ ) jl

i
+(βγ )kl

i
+δ jkl

i                        (3)

where μi is the grand-mean projected change of the subsample i. The terms α j
i
,

βk
i
, and γ l

i
 represent the variance arising solely from the factors GCMs, WMMs, 

and RCPs (respectively), with j, k  and l denoting samples of the different factors 
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( j = 1,2; k  = 1,2; and l = 1,2) for each subset of simulations by a combination of

two GCMs and two WMMs for two RCPs. The three terms (αβ) jk
i

, ¿, and (βγ )kl
i
 

represent the interactions between the specified pair of factors (i.e. 2-factor 

interaction terms). The term δ jkl
i

 represents the variance arising from the 3-factor

interactions (αβγ )jkl
i

, and the internal variability. Note that here the natural 

internal variability is negligible as we are analysing differences between two 

climatological mean values, that is involving very little temporal variance. There 

are no replications for estimating the internal variability. Therefore, we cannot 

and did not test the statistical significance of variance arising solely from each 

factor against the natural variability, and thus did not require any assumptions 

for the residuals of model. The results derived from each subsample i are the 

unbiased estimates of fraction of the total uncertainty attributable to each 

source71,73 with the variance fraction η2 for each factor derived as:

ηGCM
2 =

1
I ∑i=1

I SSαi

SST i

,   (4)

ηWMM
2 =

1
I ∑i=1

I SSβi

SST i

, (5)

ηRCP
2 =

1
I ∑i=1

I SSγ i

SST i

, (6)

ηGCM−WMM
2 =

1
I ∑i=1

I SSαγ i

SST i

, (7)

ηGCM−RCP
2 =

1
I ∑i=1

I SSαγ i

SST i

, (8)

ηRCP−WMM
2 =

1
I ∑i=1

I SSβγ i

SST i

, (9)

ηRCP−GCM−WMM
2 =

1
I ∑i=1

I SSδi

SST i

  

(10)

   Values of 0 and 1 for the variance fraction ηx
2
 correspond 0% and 100% 

contribution of factor x to the total ensemble variance (uncertainty), 

respectively. The average variance fractions are presented in Fig. 5 for each 

factor and for the sum of all the interaction terms, to compare the relative 

magnitude of each source of uncertainty. An assessment of the significance of 

the projected changes relative to the magnitude of the natural internal variability

is provided in Supplementary Fig. S20, based on one realisation available for 

each member (Supplementary Table S1).
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5. Analysis of projected change

   Projected changes in all wave variables (except θ́m) between the present and 

future time-slices were calculated as percentage changes, for each member 

(from each contribution) directly forced by GCM-simulated surface wind or 

pressure fields. The LBNL31 and KU32 data were derived using downscaled forcing 

via high-resolution atmospheric models driven by particular SST conditions 

(Supplementary Section 1.1) and therefore were not included in this analysis. 

   Projected changes in θ́m were calculated as absolute values and shown as 

clockwise (anticlockwise) rotation in degrees relative to the present-day climate 

mean. Projected changes were calculated under RCP4.5/RCP8.5. A weighted 

multi-member ensemble mean of projected changes was then calculated. Fifty 

statistical wave projections are available from IHC and ECCC (s) combined (for 

both scenarios), whilst the dynamical projections consist of 23 (RCP4.5) and 25 

(RCP8.5) projected change scenarios, as per Table S1. The projected relative 

change strongly depend on GCM forcing (atmospheric wind or pressure fields 

from which the wave field originates from) (Fig. 4 and 5), therefore a weighted 

multi-member ensemble mean was calculated by applying a weighting factor to 

each member:

x́k=

∑
i=1

n

(∆i ,k ×W i ,k)

∑
i=1

n

(W i ,k)

   

(11)

where  ∆ i ,k is  the  projected  change  for  a  given  wave  parameter  k  by  the

ensemble member i and W i is the weighting factor for the ensemble member i

for that same parameter (determined as the number of ensemble members with

that same forcing GCM amongst all members  n). For all wave parameters, the

global map of mean projected change was derived as then-member ensemble

weighted mean difference between projected and present wave-climate fields

from Eq. (11).

5.1 Robustness measure

   We use a methodology18 identified by the IPCC AR5 WG174 as being a suitable,

effective method to identify regions of robustness. In contrast to other criteria,

this  robustness  criteria18 does  not  ignore  the  existence  of  internal  climate

variability, and clearly identifies regions with a lack of member agreement and/or

lack of climate signal (by assessing the level of consensus on the significance of

change as well as the signal of change)18,75. 
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   We assessed the significance of change projected by each of the ensemble

members individually, with a two-tailed Welch’s  t-test that allows for different

variances  between  over  the  present  and  future  time-slices.  The  test  was

conducted at 5% significance level. To define areas of robust projected changes

we  first  identified  areas  (grid  points)  where  50%  or  more  of  the  ensemble

members  projected  a  significant  change.  Within  these  areas,  we  further

identified the areas where 90% or more of the ensemble members exhibiting a

significant change agreed on the sign of the projected changes; these are the

areas of robust changes projected by the ensemble, and are hatched in Fig. 2.

Note that we employed a higher threshold (90%) than the default 80%18,75 for

members’ agreement on the sign of the projected changes. The key conclusions

are similar if other IPCC-referenced methods were used to measure robustness74.

   As a complement to the robustness criteria18 we further confirmed that, within

all  regions  with  robust  projected  changes,  the  ensemble  mean  of  projected

changes is  statistically significantly  different from zero (i.e.  stands out of the

inter-member variability) according to the result of one-sample student t-test at

5% significance level.

6. Percentage of coastline with robust changes in offshore forcing wave

conditions

   In this analysis, we consider all the available offshore deepwater (>~200 m) 

grid points, distributed along the global coast every ~100 km. The coast is taken 

from the Global Self-consistent Hierarchical High-resolution Geography 

database76. We limit our analysis to offshore changes owing to the limited ability 

of the CMIP5 GCMs to adequately capture fetch-limited, near-coastal wind fields 

and land-sea interactions (e.g., orographic and katabatic effects) given their 

coarse spatial resolution. Nevertheless, we note that our GCM-forced wave 

simulations exhibit good agreement against near-coast buoys30,53, even within 

semi-enclosed seas (e.g. Mediterranean)53  and in extreme wave conditions77. The

model skill reported for near-coast buoys is comparable to that against offshore 

buoys and to high-resolution coastal wave hindcasts78. Sections of coast without 

available wave model outputs were not considered which included sea-ice areas 

and enclosed seas.

Data Availability
The data that support the findings of this study are available from the 

corresponding author upon request, or via the COWCLIP data access portal: 

https://cowclip.org/data-access/.
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