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Or read the riddle of earth's destinies?

(Pondered have Ifor years threescore and ten,
(But still am baffled by these mysteries
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COMPUTATIONAL STUDIES CHARACTERIZING THE INFORMATION ENCODED
IN PROTEIN STRUCTURES AND SEQUENCES

TIBA AYNECHI

ABSTRACT

Proteins are often responsible for human diseases. Furthermore, their function and

biological role is defined by their three dimensional structures. The field of therapeutic

design has undergone major leaps in the past two decades, 1) due to our increased

understanding of biological systems 2) the availability of large amount of sequence data,

and 3) the exponential growth of computing power coupled with advances structure based

drug design techniques.

Experimental structure determination is time consuming and not practical for

large-scale processing. Comparative modeling, which relies on sequence similarity, is

often used to identify relatives of unknown proteins. This thesis begins by examining the

role of distance constraints as an alternative metric for similarity when looking for fold

relatives. However we find that in the absence of clear definitions for similarity an

objective method can not be developed.

We then shift our focus to quantifying the information in distance constraints

using information theory. We use sets of exhaustive lattice walks to develop numerical

measures of the information content of sets of exact distance constraints applied to

specific conformational ensembles. We examine the effects of experimental uncertainties

by considering "noisy" constraints.

We extend the use of information theory and simplified models in the following

two chapters to quantitatively analyze the protocols involved in comparative modeling.

vii





We begin by deriving the ideal costs of sequence alignments and gap penalties based on

gap distributions using exhaustive sequence set with simplified alphabets. We show that

there are different gap penalties for different alphabet sizes and that there can be

dependencies on the length of the sequences being aligned. In addition we use two

dimensional lattice models to quantify the relative resolving power of some commonly

used force fields. We show that long-range intra-atomic interaction are the most

informative,

The last chapter of this thesis is an investigation of charge models in calculations

of free energies of binding. Through the use of a large test set, we show that optimization

of parameters, specifically those involved in calculating the non polar contributions to the

free energy, can significantly increase correlation of free energies with those obtained

from experiment.
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The focus of this dissertation is on the application of information theory

(Shannon, 1948) to molecular modeling. There are several reasons as to why this is a

timely subject and I will discuss some of these motivations in the paragraphs below.

In the era of genomics, proteomics, and many other 'omics', computation is

becoming an increasingly integral part of biology. The impetus for this trend is two-fold,

one being the availability of more powerful computing tools and two, the ever increasing

volume of available biological data. It is now clear that understanding the three

dimensional structure of proteins offers crucial insights into molecular interactions. The

formation of groups such as the Structural Genomics Consortium (Burley, 1999),

dedicated to large-scale structure determination, highlights the potential impact of the

knowledge embedded in protein structures.

From a drug design point of view, the goal is to be able to either predict or design

therapeutics for as many target proteins as possible, in the least amount of time possible.

Drug discovery is a multi-step process. It begins with the identification of a biomolecular

target with therapeutic value followed by numerous rounds of screening chemical

compounds in search of drug-like candidates that either interfere or bind the molecular

target.

The technological advances of the past two decades have opened the door to

Structure-based drug design in which the three-dimensional structure of the target protein

is used to guide the selection of compounds (Kuntz, 1992) (Jorgensen, 2004). To date,

there are many instances of drugs on the market or in clinical trials that were discovered

via the structure-based design approach (Malikayil and Hardy, 2003). Most commonly,

Scientists use atomic structures derived largely from either x-ray crystallography or NMR
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experiments as their design templates. However, these experimental methods are time º

consuming, difficult to perform, and not amenable to large scale automation. In light of - sº

the enormous amounts of genomic data that is available today, they seem impractical. º

Specifically, while to date there are close to 28,000 three-dimensional structures in the - º

Protein Data Bank (Berman, 2000), the number of sequences with no associated structure ..
is several orders of magnitude larger. The problem is also exacerbated by the fact some

fold families are over represented while others are yet to be observed (Govindarajan,

1996, 1999). As such, efforts are focusing on developing computational methods that will --- s
draw on the available structures in the Protein Data Bank as well our understanding of the º º º

laws of physics, towards the development of large-scale protein structure prediction == rºº
methods in silico (Sanchez, 1998).

º º
-

Methods in theoretical structure prediction can be divided in to two categories, 1) -º º
comparative and 2) ab intio modeling. In the former case, building a model requires that >

one identify a template, calculate an alignment between the template and the target, and º º
finally build and refine the model based on the template. This process is modular and <--> -
errors in any one step can not be corrected in subsequent steps (Sanchez and Sali, 1997). -> »a.

Sequence and structure similarity are highly correlated (Chothia and Lesk, 1986). This º
º

relationship is, however, only true in one direction, meaning similar sequences have sº
similar structures, but the reverse is not always the case. Homology-based methods &

exploit this relationship in determining structures to serve as templates for new structures. º
However, a major bottle neck of this approach is identifying appropriate templates for 299
sequences that fall in the so called similarity 'twilight zone' (Blake and Cohen, 2001)

where similarity among sequences falls below 30 percent. º
2

s
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Dynamic programming is the most popular algorithm for sequence alignment

(Needleman and Wunsch, 1970; Waterman and Vingron, 1994) and requires two types of

parameters, a substitution scoring matrix (Henikoff and Henikoff, 1992) (Dayhoff, 1978)

(Tomii and Kanehisa, 1996) and a penalty for introducing gaps, both of which are derived

via empirical optimization. The algorithm calculates the highest alignment score possible

and produces a single alignment with that score, with no further information on similar or

alternative alignments. Exploring all alignments for average size proteins is

computationally unfeasible due to combinatorial explosion. This results in sequence

Sequence or structure-Sequence alignments that do not always agree with structure

Structure alignments. Furthermore, depending on the scoring method used for aligning a

pair of structures one can arrive at varying solutions (Godzik, 1996) (Jaroszewski et al.,

2000). Advances in fold recognition and threading algorithms have certainly extended

the reach of comparative modeling, but nevertheless alignment errors still persist

(Venclovas et al., 2003). Another shortcoming of comparative modeling is prediction of

novel folds. In the absence of a template an appropriate model can not be built.

Protein conformation space is vast (Sullivan and Kuntz, 2001) and the prediction

of structure from sequence would require searching among numerous decoys. Ab initio

methods, attempt to understand the free energy landscape of protein space to produce a

minimum energy structure given a sequence. Molecular mechanics force fields are the

cornerstone of computer simulations for proteins; they make use of simplified potentials

and reduced representations to solve otherwise impossible problems (Lee et al., 2001). In

recent years, force fields (Cornell et al., 1995; Wang et al., 2001) have been widely used

to refine low resolution structures of proteins, however due to computational limitations





it has not yet been possible to extend the simulations to de novo prediction, other than for

very small peptides (Duan and Kollman, 1998). Atomic force fields are made up of a

potential energy function that takes into account various pairwise atomic interactions.

The functions are heavily parameterized using various charge models derived either

empirically or quantum mechanically (Bayly et al., 1993; Jorgensen et al., 1996; Li et al.,

1998). Although these methods have been successful in the past, full understanding of

their failures is not possible without their application to exhaustive and fully enumerated

Structure SetS.

In order to circumvent the sampling problems mentioned, many methods employ

models that significantly reduce protein complexity. These models fall into two

categories: lattice and off-lattice models. Due to their relative analytical and

computational simplicity lattice models have long been used to study the nature of

polymers and compact conformations (Chan and Dill, 1989). Energy functions are simple

to evaluate on these models and the conformational space can be searched exhaustively.

However, they are not without shortcomings, including their failure to accurately model

Secondary (Park and Levitt, 1995) structures; but it has been shown that their advantages

outweigh their inadequacies. Off-lattice models often simplify proteins by eliminating

side-chain degrees of freedom; however they are still too complex for exhaustive

simulations. To evaluate the energies of these simplified models, energy functions are

devised so as to be computationally efficient, yet still representative of the forces

responsible for protein structure. Potential functions can either be physics-based as in the

molecular dynamics force fields, or they can be empirically derived such as potentials of

mean force. While physics-based potentials are far more accurate they are

ºr

=





computationally expensive. Empirical score functions can be much more efficient,

however they are derived from protein databases and are biased toward the arrangement

of amino acids in known proteins, and hence disfavor the rarer structures.

The approaches above do not always produce structures with desired resolutions.

In the absence of an appropriate template comparative modeling methods are not useful

and as mentioned before, ab initio methods rely mainly on scoring functions whose forms

are derived from the laws of physics but are parameterized by small molecules or protein

databases. Although they are successful in narrowing the conformational search, they can

not produce structures with resolutions greater than 3A (Bonneau and Baker, 2001). The

incorporation of experimental data such as contact order and distance constraints from

cross linking can remedy some of the inaccuracies (Bonneau et al., 2002; Shakhnovich

and Gutin, 1990).

It is now apparent that biological sequences are molecular messages. As

mentioned earlier, the sequences of amino acids determine the structure of protein

molecules. However these structures are degenerate with many examples of different

Sequences leading to similar structures. In addition, there are molecules with no structural

similarity that perform the same biochemical functions. These examples highlight the

significance of questions regarding the information encoded in biological sequences and

lead us to further ask how best we can define and quantify such information.

From a structure prediction point of view, information content is viewed as that

which is required to map a sequence to a unique structure. This approach parallels that of

classical information theory in which the information content of a string is the bits of data

required to transmit the signal. In this thesis, we explore the property of molecules as

º





molecular messages and aim to draw inferences about the information encoded in them

using the basic tenants of information theory.

In chapter two, we begin to qualitatively assess the information value of distance

constraints in protein prediction. It is now possible to obtain experimentally derived

distance constraints for proteins using chemical cross linkers in conjunction with mass

spectrometry (Young, 2000). Such constraints can then be used to reduce the search

space for compatible protein structures. In addition, it is reasonable to assume that any

three-dimensional shape can be characterized by a unique set of constraints (Havel,

1983). So theoretically, in the absence of sequence similarity among proteins with known

structures, we may be able to identify structural homologues using distance constraints

alone. Through the use of a dynamic programming algorithm we investigate whether it is

possible to identify structures belonging to the same fold family as defined by the CATH

database (Orengo CA, 1997). In order to design a benchmark test set containing both

related and unrelated structures, one must rely on protein classification schemes of which

there are several, and none agree completely (Hadley, 1999). Furthermore, we could

never realize a complete test set containing all possible protein folds and hence any

conclusions would be inherently biased towards the members of the test set.

In chapter three, we switch from the empirical world of real proteins and

Structures to the more analytical realm of two-dimensional lattice models. We employ

information theory to deduce the information content of distance constraints in fully

enumerated lattice walks. We also further examine the effects of experimental

uncertainties by considering noisy constraints. Our findings are subsequently expressed

in terms of information per degree of freedom in the chain. This approach provides a





quantitative means for comparing various constraint sets and allows us to dissect the

results into a form that is independent of chain length.

As previously mentioned, sequence alignments remain a bottle neck in the

structure prediction process. In chapter four, our aim is to quantify the difficulty and the

information cost of performing sequence alignments using exhaustive sequence sets

generated with simplified alphabet models. There are two important parameters involved

in aligning two sequences, one is the scoring matrix and second is the choice of gap

penalties. At present both these parameters are derived empirically via optimization

methods. Using information theory allows us to present an analytical framework for

evaluating their proper values by utilizing gap distribution functions derived from

exhaustive sets.

In chapter five we shift our focus onto force fields often used in structure

minimization. As is the case in sequence alignment protocols, force field parameters and

terms are optimized empirically. Although in theory most energy potential functions are

evaluated as a sum of pairwise atomic interactions, the informational contributions of the

various interaction types are unclear. The simplified lattice models are used to generate

both extended and compact conformations. We then evaluate their energies based on

simple interaction schemes such as nearest-neighbor contact and long-range coulomb

type interactions. Analyzing the distributions of various energy levels using information

theory can determine the relative resolving power of these simplified force fields.

Although, an analytical analysis of simple model systems offer an in depth

understanding of the system's behavior, computational limitations still prevent us from

studying real protein system analytically. In chapter six, we move back to the empirical





optimization regime in order to improve the accuracy of free energy calculations. Most

molecular species are charged and consequently electrostatics play an essential role in

biological interactions (Honig and Nicholls, 1995). Inter-molecular interactions are

driven by favorable changes in free energy. Approximation methods such as the

Generalized Born Model (Still et al., 1990) and Poisson-Boltzmann (Sitkoff et al., 1994)

calculations have been developed in order to allow free energy calculations suitable for

high throughput processing. Our focus in the present study is to evaluate the accuracy of

eight different point charge models typically used for structure-based drug design

calculations through computation of hydration free energies. These models can easily be

assigned, in an automated fashion, to relatively large and diverse data sets. Our results

show that further optimization using an extended data set greatly improves the agreement

between theoretical experimental calculations.
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ABSTRACT †

In the absence of sufficient sequence similarity, it is not possible to identify homologs for s
º

proteins of unknown function and structure. It has been demonstrated that a three º

dimensional structure can be constructed using a set of distance constraints. It has also

been demonstrated that for a protein of length L., L/10 constraints are sufficient for

enriching threading methods. This chapter is a preliminary study of the use of distance

constraints for identifying fold relatives. We can identify fold relatives for certain

proteins in the absence of any sequence information, However due to the ambiguities in

the definition of similarity the development of a proper test set is a challenge that must be

overcome prior to further investigation.
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INTRODUCTION

The completion of the genome-wide sequencing projects of many organisms has

resulted in a large amount of data awaiting analysis. Specifically, structural genomics

hopes to be able to determine the structures of proteins coded by these sequences and

ultimately determine their function in order to investigate their biological implications

and aid in the development of therapeutic agents. At present, structure determination has

become the rate-limiting step in this effort, and as such there is a great need for methods

that facilitate fast, high throughput, and reliable structure determination.

The experimental techniques for structure determination, i.e. crystallography and

NMR are not suitable as fast, high throughput processes. In spite of scale-up efforts, the

time, effort, and limitations involved in protein preparation, size, and type make these

methods unfeasible. On the other hand, the current theoretical methods such as homology

modeling, threading, and ab initio prediction are data limited. Homology modeling relies

heavily on sequence similarity between a probe protein and proteins with experimentally

determined structures. Threading methods have a limited search space defined by the

number of experimentally observed unique protein structures. While both methods will

improve over time, they will fail in cases where a new fold may be involved. Ab initio

methods attempt to build models using first principles of folding and energetics, however

they are not yet reliable enough due to our limited understanding of the physical

principles involved.

Currently the Protein Data Bank (Berman, 2000) contains in excess of 27000

structures, representative of only 800 protein folds according to release 1.65 of SCOP

(Murzin, 1995). Although experimental structure determination serves as the gold
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standard for all other prediction methods, the current volume of data and the need for

efficiency dictate that experimental structure determination efforts focus on those

proteins that would most expand the data sets used in theoretical methods, i.e. those with

potentially novel folds. Target selection has become the most important strategic issue

faced by structural genomics, whose performance will be measured in part by the number

of structures determined and the fraction that contain novel folds (Burley, 1999). The aim

is to place most protein structures within a ‘modeling distance’ of at least one known

structure. However, due to the fact that many unrelated sequences share the same

structure, it is not possible to select novel targets using sequence comparison methods

alone. Reliable, rapid fold identification is thus a timely and important task of structural

genomics efforts.

It has been shown previously that any configuration of points in space can be

characterized by a number of distance constraints among those points (Kuntz, 1979).

Thus, in principle, given a set of constraints related to a conformation of points in space

and a set of sample conformations, one should be able to determine whether that

conformation belongs to the sample set or not. This approach has been extended to

protein folds. It has been shown that the determination of a set of constraint for a

particular protein fold improves the ability of threading protocols in identifying

structurally similar proteins (Young, 2000). We propose that the use of distance

information, when applied on a large scale, can serve as both a novel fold filter as well as

a sequence-independent fold prediction method.

º
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BACKGROUND

In order to gain a global and comprehensive view of proteins, it is necessary to compare

multiple structures and investigate their fold similarities and evolutionary relationships.

The task requires the comparison of large numbers of three-dimensional shapes,

currently on the order of 27,000 in the Protein Data Bank and categorizing them based on

a set of similarity criteria. What remains an unresolved issue is a definition for similarity.

In defining similarity, we are faced with two issues: determining a metric for similarity,

such as size, shape, sequence, function, etc.; and defining a spectrum for that metric that

spans from similar to dissimilar. While structure and substructure identity is a well

formulated mathematical problem, the definition of structural similarity contains some

genuine ambiguities that have resulted in the development of multiple classification

schemes each with their merits and shortcomings. The most widely used and

comprehensive databases dealing with structural similarity are SCOP, CATH, and FSSP,

which represent three unique methods; purely manual, a combination of manual and

automated, and fully automated respectively and use different classification

schemes.(Hadley, 1999).

SCOP, organizes proteins in a hierarchy, class being at the highest level followed

by fold, superfamily and family (Murzin, 1995) The process is carried out by the visual

inspection and comparison of protein structures. Proteins in the same class, share the

same type of secondary structures, for example all alpha, or all beta (Chothia, 1977). The

fold level implies similar packing and chain topologies, while those in the same

Superfamily have structural and functional features in common. The family level includes

those proteins with similar sequences.

2.
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CATH, another hierarchical scheme, uses a combination of manual and automated

methods. Proteins are grouped into class(C), based on the types of secondary structures,

architecture(A) based on the general arrangement and composition of SSEs, topology(T)

based on the connectivity, and homologous superfamily(H) based on evolutionary

relationships. The A level assignment is done via visual inspection. Domains sharing the

same CAT designation have the same fold whereas a shared H level implies an

evolutionary relationship (Orengo CA, 1997).

FSSP uses a fully automated method based on structure-structure alignment of

proteins. The method does not use the same hierarchical scheme as the previous two.

The metric for similarity is a Z-score, which is the number of standard deviations a given

structure-structure comparison score lies above the mean score for all comparisons.

Given a representative set of proteins, for each member FSSP creates a list of all matches

with a Z-score greater than 2. Matches below this score are considered to be dissimilar.

A fold tree may be constructed using Z-score cutoffs of 2, 3, 4, 5 10, and 15. However

these cut-offs do not distinguish between folds and superfamilies accurately (Holm,

1996).

The relationships established among proteins by these databases provide us with a

standard set of true positive and true negative fold relationships. As such, they form the

basis for identifying and classifying related proteins in the emerging genomes. Since

protein function is derived from its structure, in order to fully harness the information

contained within these genomes scientists must be able to determine the structures of the

newly found proteins and study their relationships to other proteins of known structure
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and function. The availability of so many genomes has made this a compelling problem

that has resulted in the emergence of structural genomics efforts.

The problem is often approached by seeking sequences that are similar to the

sequence of a protein with known structure. This strategy works well for closely related

sequences, but structural similarities can go undetected as the level of sequence similarity

falls below 25 percent, a level referred to as the “twilight zone" (Doolittle, 1986).

However, there are many proteins with similar structures where no obvious sequence

homology can be detected (Jaroszewski, 1998). As a result, molecular modeling of

proteins is confronted with the problem of finding homologous proteins. Methods

developed to identify such structural relationships in the absence of sequence similarity

are referred to as fold recognition or threading methods.

The current approaches to fold recognition differ in at least one of the following

components: the representation of the protein, the function used to evaluate fold/target

compatibility, the alignment algorithm, the ranking scheme, and methods to evaluate

significance. Secondary elements such as alpha helices, and beta sheets, can now be

recognized with an accuracy of more than 70% (Rost, 1993). However, their relative

Spatial relationship to each other as well the conformations of connecting loops cannot

yet be deciphered from the amino acid sequence. Many attempts have been have been

made to combine sequence information with predicted secondary structure (Geourjon,

2001), evolutionary information (Fischer, 2000), and 3D-1D profiles (Bowie, 1991), to

enhance the underlying sequence similarity, thus pushing the threshold of the twilight

zone. A Survey of several fold prediction methods reveals that none has a success rate of
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> 29% for recognizing proteins of the same superfamily, and that rate falls to 15% for

proteins of the same fold (Elofsson, 2000).

A few studies have shown that the employment of experimental data in sequence

based structure prediction methods can improve their performance. For example, Jin et al

have used constraints derived from epitope mapping data to screen large numbers of

computer-generated structural models (Jin et al., 1994). However, the generation of

functional epitopes is limited to small proteins of less than 30 KDa, Dandekar & Argos

include a term for adherence to experimental data, derived from either conserved

hydrophobic and catalytic residues, the distribution of cyteinyl S-S bond, or cross links

amongst side chains in the fitness function for their genetic algorithm (Dandekar and

Argos, 1997). This method too, is only applicable to proteins with less than 100 residues

and fewer than eight secondary structures due to computational expense. In addition,

both approaches are handicapped by their reliance on sequence as discussed earlier.

Recent advances in cross-linking chemistry and mass spectrometry have made it

possible to produce distance constraints at a relatively fast rate for proteins of relatively

large size and structural complexity (Young, 2000). With these advances in mind, our

aim was to develop a new approach to fold recognition, independent of sequence, and

neither limited by protein size nor complexity by utilizing distance constraints as the

principal component; hence circumventing the limitations imposed on previous methods.

This chapter is preliminary study of the issues involved in such a project.

METHODS

DEVELOPING A FOLD RECOGNITIONALGORITHM (DP) USING DISTANCE CONSTRAINTS
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Definitions:
1. Two proteins are said to have a common fold if their three-dimensional structures

share the same overall geometry as defined by CATH.
2. A Novel fold is one that does not have a representative in a given library.

Given a partial set of distance constraints for a protein structure, P(probe), and a set

of T(target) structures each with a corresponding set of restraints, we aim to establish

whether in the absence of the full set of restraints, i.e. the complete intra-residue distance

matrix, it is possible to determine which T has a common fold with P, if any. And if so,

what is the limit on the amount of information required for providing satisfactory

recognition. The metric of similarity is the pair-wise intra-residue distance, defined by

Co-Co separations in Space. Comparison of these distances will yield insight on the

degree of similarity between two structures. In doing so, we reduce P and T from three

dimensional shapes to one dimensional Strings of intra-molecular pair-wise distances

whose comparison is less complex and well studied. A two-step alignment protocol

# Seed Alignment
Set Pl

For probe, P
For i = 1 to length of protein

For j = 1 to length of protein
j = j + n
Create distance matrix, D.'. by calculating Co-Co., distance

i = i + n

For Target, T
k = 1

while k < length difference P and T
For i = k to length of protein

For j = k to length of protein
j = j + n
Create distance matrix, Drº, by calculating Co-Co.,

distance
Compare each matrix, Dr.K, with DP, keep one with least difference, call Dr

#Align Distance Matrices
Collapse DP into one-dimensional arrays, sp
For each Dt into one-dimensional arrays, st

Create Spt using formula 1 and dynamic programming
Obtain an equivalence score

Two proteins with highest equivalence score are the most similar
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(outlined in figure 1) is used to obtain a score for each P and T pair. The scores are then º,
o

ranked to highlight the best target, T. •
As an initial test of our premise, we used the coordinates of structures deposited in the º

-

PDB to generate Co-Co intra-residue distances for the members of our test sets. However, cº

to parallel the data made available by real experiments we will only use a subset of the

full set of restraints. The subset will be generated from residues with sequence separation

n. It has been shown that for a sequence of length L., L/10 distance constraints are

sufficient for improving the performance of threading algorithms (Young, 2000). Initial

studies are carried out using n = 5, 10, and 20 and probes proteins are always smaller than

target proteins. Our aim was to derive a lower bound for the amount of information

required for accurate fold recognition.

We generate an intra-residue distance matrix, D, for every structure in the library,

fig 2. Each distance matrix, D, is then collapsed into a one dimensional array, s. A

similarity matrix STP is created using arrays from a target and probe protein with the

application of formula 1 below (Gerstein, 1998). Dj is the difference between the Co

Co distances in the two proteins. M represents the maximum possible score for a pair of

distances and is set arbitrarily set to 20. do is the distance at which similarity fall to halfit

value, Sij = M/2 and is set to 2.24 reflect the intrinsic length scale of protein structural

similarity. This is about midway between the length of a C-C bond (1.54 Å) and the usual

distance between Ca atoms (3.8A).

S-ly
S) = Max max(S, , , – W, 4 S.)

max(S, , , – W. H. S.)
, M (1)Sij = —H

11 (Pl y
d0

W = O + (i-k)E

+Sij
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FIGURE 1: Similarity matrix S for two proteins is created from the intra-residue distance matrix of a
probe and a target protein

Similarity matrixCo-Co intra-residue
Probematrix for every protein

D1 D2 D3 D4
1 11 21

.d 41
-
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FIGURE 2: Behavior of the similarity score for various values of M and do
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2

In order to optimize the values for M and do we graph the behavior of Sij vs. Dº for º
various M and do values. While M simply shifts the scoring scale, do dictates how fast the º

&
score will drop for various Dij values. Ideally, we would like a score function with heavy .*

ºgradation in the range of protein similarity, 0-5A, in order to best differentiate among

various degrees of similarity. We observe that do = 2 achieves this purpose, since it falls

quickly for Dj in the range of 0-5. All other values plateau much later, resulting in only a

small difference in similarity scores for related and unrelated proteins, fig3.

We apply dynamic programming (DP) to the similarity matrix ST,p to align the

probe, P, and target, T (see text box algorithmic pseudo code). The alignment procedure

is a dynamic programming algorithm inspired by the Needleman-Wunsch alignment

protocol used in for sequences. The gap penalty used in the alignment is an affine gap

penalty and we used values commonly used in sequence alignments, i.e. gap opening of -

12 and gap extension of -2. Two proteins with the highest equivalence score should show

similar three-dimensional structures.

A percent similarity score, Sp, the percentage of the score achieved by aligning P

against itself is calculated for each (P, T) pair and a rank ordered list of Sp is generated

for each P. In all cases the self alignments received the highest raw score. In the ideal
-

case, the (P, T) pair producing the top ranking score would belong the same fold family. *.
O

TEST SETS
º

Analyses are performed on two independent test sets. The first set is compiled sº
using classifications derived from the CATH database. Proteins with the same CAT AQ

desi
- -

ºp.*18mate Satisfy our definition of a common fold since they share same type secondary

structure elements, SSE, (C) similar combinations of SSE’s (A) and similar arrangement * -
º

and connectivity (T). Fold list v2.3, a list of fold representatives, from CATH was used º
0.

cº
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to create a library of 110 domains, non sharing more than 20% sequence identity. The list

of domains can be found in table 1. In addition, we use the 68 benchmark set used by

Fischer et. al. (Fischer, 1996) in order to test our algorithm against an independent test

set, see table 2.

Furthermore, we used the program DSSP (Definition of Secondary Structure of

Proteins) (Kabsch and Sander, 1983) to compile a library of SSE's from the structures in

the 68 benchmark test set.

TABLE 1: Library of similar folds as designated by CATH
CATH CATH CATH

PDB Code Length Classification PDB code Length Classification PDB Code Length Classification
1f3z00.pdb 150 2.70.70 1bgfoo.pdb 124 1.10,532 1preC2.pdb 171 1.10.468
1gprCO.pdb 158 2.70.70 2phyO0.pdb 125 3,30,450 1waj04.pdb 175 1.20,185
2gproQ.pdb 154 2.70.70 1af500.pdb 126 3.10.28 1amiO3.pdb 175 3.30.499
1mupCo.pdb 157 2,40,128 1rie■ )0.pdb 127 2.102.10 1werQ1.pdb 176 1.10.506
2a2uA0.pdb 158 2.40,128 1ddfoo.pdb 127 1.10.533 1■ vkA0.pdb 176 3,40,300
1ew3A0.pdb 159 2,40,128 1agrE1.pdb 127 1.10, 196 1nfao().pdb 178 2.60.71
1obpao.pdb 158 2.40.128 1mscQ0.pdb 129 3.30.380 1ckmå1.pdb 179 3.90.63
1rbp00.pdb 174 2.40.128 1ordA4.pdb 130 3.90.100 1bp101.pdb 180 3.15.10
1np400.pdb 184 2.40.128 1|isoo.pdb 131 1.20.150 2whbB0.pdb 137 1.10.490
1bbpao.pdb 173 2,40,128 2tcto2.pdb 133 1.10.357 1hbrå0.pdb 141 1.10.490
1euoA0.pdb 157 2,40,128 1furA1.pdb 134 1.10.275
1jonoo.pdb 140 3.50.7 1cfeo,0.pdb 135 3.40.33
1srv\0.pdb 145 3.50.7 1a2601.pdb 136 1.20,142
1ass00.pdb 152 3.50.7 2nef00.pdb 136 3.30.62
4bp200.pdb 116 1.20.90 2end00.pdb 137 1.10,440
3p2pA0.pdb 119 1.20.90 1ckm/A3.pdb 137 4.10.87
1poado.pdb 118 1.20.90 1proH2.pdb 139 3.90.50
1ae700.pdb 119 1.20,90 1pjrø4.pdb 140 1, 10,486
1vipO0.pdb 121 1.20.90 1bucA3.pdb 141 1.20,140
1bk900.pdb 124 1.20.90 1rgsO2.pdb 142 3.50.12
1ppaOO.pdb 121 1.20.90 20ccD0.pdb 144 1.10.442
1pocO0.pdb 134 1.20.90 1at000.pdb 145 2,170,117
1b■ g00.pdb 126 2.80.10 2hhma1.pdb 146 3,30,540
1afcA0.pdb 127 2.80.10 1aohB0.pdb 147 2.70.45
1qq|A0.pdb 131 2.80,10 1defoo.pdb 147 3.90.45
1j|xA1.pdb 159 2.80.10 1tf4A2.pdb 147 2.60.43
111b90.pdb 151 2.80.10 1uxyO3.pdb 150 3.30,465
1ilr10.pdb 145 2.80.10 1srað0.pdb 151 1, 10.467

2wbcoopdb 183 2.80.10 1ulooo.pdb 152 2.60.35
1wba)0.pdb 171 2.80, 10 1gofol.pdb 153 2.60.50
1chmA1.pdb 155 3.40.350 1pvuao.pdb 154 3.40.210
1a1601.pdb 171 3,40.350 1acp00.pdb 154 1.20.70
2aak00.pdb 150 3.10.110 1pprM1.pdb 155 1,40.10
1ayzA0.pdb 153 3.10.110 1rhsO1.pdb 156 3.40.250
1u%aA0.pdb 159 3.10.110 1h■ cO0.pdb 157 3,40,390
2ucz00.pdb 164 3.10.110 1msk02.pdb 157 1.10.288
1rdl10.pdb 111 3.10.100 1hlm00.pdb 158 1.10,490

1hup00.pdb 141 3.10.100 1ra900.pdb 159 3.40,430
2msbA0.pdb 111 3.10.100 3daaA2.pdb 159 3.20.10
1rtm10.pdb 149 3.10.100 1npco2.pdb 161 1, 10.390
1b08A0.pdb 152 3.10.100 3pm.g44.pdb 161 3.30.530
ingoo pob 137 3.10.100 1apyA0.pdb 161 3.30.426
1■ to0.pdb 128 3.10.100 1dhz01.pdb 162 2,170.9

1by A0.pdb 123 3.10.100 1■ uia2.pdb 165 3.40.275
2a■ p00.pdb 128 3.10.100 1inpoS.pdb 166 3.40.191

*:::: 120 1.10.250 1clhoo.pdb 166 2.40.100
1º: 121 2,60.30 1a36A4.pdb 168 1.10.132º: 122 1.10.345 1dpeo1.pdb 169 3,90.76
1bu A. 123 3.30.373 1aihao.pdb 170 1.10,443—lºcºl.pdb 123 1.10,540 1anv02.pdb 170 3.90,148

Ex. 10kma1: Pdb code 1ckm, chain A, domain1
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2■ º

TABLE 2: 68 protein pairs from Fischer et al º
o

Combined 1/combined yRank rank -

PROBE TARGET N=10 N = 15 N=20 PAM250 Blossum 62 (B62+N10) (B62+N10) º
1aaj0 1paz0 28 20 70 78 1 1 1 s
1atn/A 1atrO 1 2 9 12 1 1 1 º
1bov/A 1|tsD 54 73 98 29 1 1 1

1cau/A 1cauB 1 5 20 88 4. 2.5 0.4 cº
1cpcL 1cola 22 18 6 50 1 1 1

1.dxtB 1hbgo 1 1 20 1 1 1 1 -
1eded 1cr|0 14 19 34 67 1 1 1
1ego0 1abaQ 1 48 2 4. 10 1 1 Mº■ t,
1■ c1A 2fb4H 1 1 27 79 1 1 1 *-*
1■ nb0 2pia0 24 29 26 39 3 13.5 0.074074074 L.
1gky0 2ak3A 31 13 2 27 6 18.5 0.054054054
1gky0 3adkO 1 1 38 8 1 1
1hbgo 1dktB 1 1 44 1 1 1
1 homo 1|fbO 37 95 109 78 2 19.5 0.051282051
1hrha 1rnho 16 6 46 1 1 1 1

1isuA 2hipA 1 86 54 85 1 1 1

1mdc0 1■ fc.0 1 51 1 65 1 1 1 -

1 mol/A 1 cewO 82 70 101 93 72 77 00129870.13 -
1mup0 1rbp0 1 11 10 99 44 1 1 -

1npx0 3grsO 1 1 6 43 1 1 1 º º
1 oncQ 7rsaO 22 36 41 1 1 1 1 º -

1paz0 2aza/A 64 24 54 57 47 55.5 O.O1801 8018 A
1sacA 2ayho 15 2 22 36 3 9 O.111111111 º
1shaA 2pnao 3 40 4. 67 1 1 1 *-
1tca0 1tah/A 5 10 14 29 3 4 0.25 **- º
1tenO 3hhrB 40 57 48 48 1 1 1 *== -

1 t■ ko 2rheo 16 21 98 79 9 12.5 O.08 -

1ubq0 1■ ziA 12 103 109 1 O2 19 15.5 0.064516129 º1ycoo 1c2rA 3 38 64 64 1 1 1 -------- -
1ycC0 2rntaC 20 13 54 71 3 11.5 0.086956522 --- -

256bA 1aep0 1 1 2 66 6 1 1 º |
2afna 1aozA 1 1 1 1 l 1 1 --– º
2ccyA 1bbha 1 1 1 63 1 1 1 º
2cmdC 6ldho 1 1 1 25 1 1 1 -

2cpp.O 2hpda 1 1 1 6 1 1 1 -

2Cyp0 1■ gaa 1 1 1 25 1 1 1 *-*— s
2íbjL 8fabB 1 15 33 2 1 1 1 --- &
2f&b0 5fd10 28 7 10 82 1 1 1 º D º2gbp0 2IMO 2 11 5 20 2 2 0.5 - -
2gmfA 1bgeB 13 65 18 52 29 21 O.O.47619048 * -

2gmfA 1rcbo 3 24 61 73 1 1 1 º-> cº
2hhma 1■ bpa 2 1 18 23 1 1 1

2hipA 1hipo 14 36 81 76 1 1 1 -> º2minB 1 mio C 1 1 4 3 1 1 1
-

2mnro 1 chrA 1 1 1 15 1 1 1 º,
2mnro 4en|O 1 7 4 9 7 1 1

2poro 20mfo 1 1 7 13 1 1 1 LIB
2rhe0 1 cido 2 43 79 69 62 32 O.O3125
2rheo 3cd40 75 77 8O 61 2O 47.5 0,02105.2632

2sarA 9rnto 1 49 8 90 7 1 1 º ■
2scpA 2saso 1 27 2 47 1 1 1 *
2sgaO 5ptp0 3 1 8 39 1 1 1

2sim0 1nsbA 1 1 2 17 10 1 1 y
2snv0 5ptpo 22 2O 41 46 8 15 0.066666667
2trkA 1dsbA 4 31 75 47 13 8.5 0.117647059

2trºA 19p1A 63 12 47 56 77 70 00142857.14 º
3chy0 2foxO 7 32 21 78 71 39 0.025641026 º
: 1galO 1 1 1 1 1 1 1aB 1p■ co 1 4 7 69 2 1 1

3hlaB 2rheo 29 59 99 84 22 25.5 0.039215686 º
. 1eaf() 1 5 19 1 1 1 1CpvQ 1 osao 84 84 89 1 1 1 1
4ígí0 1tie■ ) 25 9 36 26 15 2O 0.05 º
4ígíO 811 bo 19 11 40 1 1 1 1
4sbvA 2tbvA 7 4 7 1 1 1 1
5ptp0 1arbo 1 1 1 35 3 1 1
6xiao 3rubl 12 7 9 l 1 1 1

-
º

Fischerscore 0.4961 0.344 0.225204 0.176295 0.627 0.718154878 º
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RESULTS AND DISCUSSION

We begin by performing all against all comparisons of both non-related and

related folds in both our own library and the 68 benchmark. The results of our

comparisons show that you can indeed separate related and unrelated proteins using

distance constraints alone. Figures 4 and 5 show the distribution of similarity scores for

the positive matches (same fold family) in green and the non-related pairs in red. There

is no clear cutoff between the positive and negative matches; instead we observe an

overlapping transition. This overlap is often referred to as either a lack of sensitivity

(coverage) or selectivity (error per query (EPQ)) in fold recognition. Sensitivity refers to

the number of true matches that can go unrecognized; in this case those structures that

rank lower than an unrelated protein while selectivity is related to the number of false

positives, in our case unrelated proteins with high similarity scores. As a result, in the

absence of a priori knowledge about the proteins in question it is difficult to determine a

definitive similarity cutoff score. The results using the 68 benchmark show the same

trend. While close to sixty percent of the protein pairs are retrieved with a rank of ten or

better (table 2) the score distribution of the unrelated and related domains overlap. In

addition there are several cases in which the 'best match ranks almost at the bottom of the

list.
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FIGURE 3: Distribution of DP Alignment scores. The x-axis is the percent score of each probe-target
alignment obtained by dividing the raw alignment score by the alignment score of the probe to itself. Data
points depicted by ‘H’ show the alignment of non-homologous pairs, as defined by CATH, and those with a
** are homologous pairs. There are a total of 2609 non-homologous pairs and 137 homologous pairs,
excluding the self-matches

180

100H
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60 H

0.8
Alignment Score

0.9 1
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FIGURE 4: Distribution of alignment scores. A test set of 110 folds was used to generate a set of 2746
probe-target comparisons, excluding self-self pairs. Pairs are said to be incorrect if they are not in the same
fold family as defined by CATH. The distribution of the correct match scores(solid line) shows that similar
structures have an overall higher score than non-similar pairs (dotted line)
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To assess the difficulty of our test set, we performed standard sequence

alignments on the member of the set, to see whether we can identify fold relatives using

the more common scoring functions such as Blossumé2 and (Henikoff and Henikoff,

1992) PAM250 (Dayhoff, 1978). A coverage vs. EPQ plot (figure 6) shows that the

Blossumé2 matrix performs better than our algorithm, by approximately twenty percent,

while the PAM250 scoring matrix is worse by thirty percent.
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FIGURE 5: Coverage versus error plot for DP using 110 member fold library. The x-axis, coverage,
shows the fraction of all protein pairs with the same fold in the library with an alignment score above the
selected threshold (indicated by the numbers on the curve). The y-axis shows the number of non
homologous pairs above the threshold as a fraction of all protein-protein pairs. Coverage is a measure of
the sensitivity of the method and EPQ a measure of selectivity. As we find more homologous pairs
(increase in sensitivity, the number of pairs found in error increases as well, decrease in selectivity
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We also ran the DP algorithm with distance constraints on the secondary structure

element (SSE) test set. The set is composed of small helices and beta strands of the

68benchmark test set. As seen in table 3, there is a clear separation of scores among the

alpha helices and the beta strands meaning that distance constraints alone can distinguish

among these two different geometries.

- -
º -

*- -
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TABLE 3: Comparison of a beta strand from 2AK3A to a set of secondary structures derived from the º
68benchmark. The scores show a clear gap among the scores of similar beta strands and beta strand - alpha -

helix comparisons. Highlighted rows are alpha helix elements, while white rows are beta strand elements º

s
Raw Similarity .*

Probe Name Score Score º

2ak3A_0101 60 1
2fox_0104_0 59.95575 0.9992626
1aaj 0103_1 59.95522 0.9992537
1aaj 0203_0 59.88732 0.998.122
1gky 0104_0 59.86916 0.9978193
1gky_0303 2 59.81012 0.9968353
1paz_0202_1 59.7737 0.9962284
1paz_0203_0 59.76299 0.9960499
1aaj 0.101_0 59.72995 0.995.4992
1aaj 0102_1 59.69001 0.9948334 I
1paz_0101_0 59.6709 0.9945.15 º
1gky_0304_0 59.60995 0.9934991 ºt
1aaj 0202_1 59.59306 0.9932176 __º-

-
º

2fox_0101_0 59.40849 0.990.1415 º
º

1paz_0103_1 59.33673 0.9889455 º º
2fox_0103_0 59.25019 0.9875032 --
1gky 0103_0 59.24475 0.987.4125 ºf Tº 2
1paz 0102_1 55.46105 0.924.3508 ---- º
1gky_0500 2 43.94399 0.7323998 º º
2fox_0400 0 43.7066 0.7284.433 ---

1gky 0800 1 43.69803 0.7283004 º o. . . . .. *-*- s9 y_
- - -

º cº
2fox_0600 0 43.53544 0.7255906 º >
1gky_0200 3 43.48087 0.7246812 º-> º1gky_0900 7 43.47443 0.7245739
2fox_0200 8 43.4374 0.7239566 2 Sº,
1paz 0400 1 43.41235 0.7235392 *

1gky 0400 4 43.22084 0.7203474 L!
1gky 0700 2 43.16956 0.7194926 º

1paz_0300 1 43.06243 0.7177072 %
We also look specifically at an example where DP fails to point out the correct º

y

match (fig. 6). The probe is an all ■ protein (PDB: 1aaj) and its designated pair is another sº
sº

all ■ protein (PDB: 1paz). The algorithm can not recognize 1paz as the best scoring AQ

- - th - -
—resi Dººmatch for 1aaj, and ranks it as 78" best match. The closest match using intra-residue

-

distances is determined to be the o/B/o sandwich 2fox. The three major protein º-
º

- -
ºclassification schemes, SCOP, CATH, and FSSP place these two proteins in unrelated %

To
C
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fold families and the Blossumé2 matrix successfully find 1paz to be related to laaj. So

the question remains as to why a geometric metric such as intra-residue distances fails to

recognize this similarity.

FIGURE 6: Topology diagrams for a pair of related proteins 1aaj, lpaz and an unrelated pair
laaj,2fox. Although both 1aaj and 1paz are classified as an all [ sandwich the topology of the ■ strands in
laaj is much more similar to the ■ strands in 2fox, an O■ 3/O. sandwich

PDB ID FOLD RANK

Blossum PAM
DP

SCOP CATH FSSP 62 250

- -
2.60.40.120 Z-SCOre

1aaj,1paz All 3, sandwich 3 sandwich 9.7 28 1 78

o/3 3.40.50.3603
2fox layers, o/B/o.

-
1 93 70

3 layer oft/o. º:

2fox

When looking at the topology of these proteins (fig 6), it becomes clear that

although 1aaj and 1paz are both composed of ■ strands their topologies are different. The

B strands of 1aaj are connected in more of an even-odd order where as the order of the

*ands is continuous in 1paz. Interestingly, the B strands of 2fox show the same

*mating connection where the loops go from strand to helix to strand.

º
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All three of the previously mentioned classification schemes, namely SCOP,

CATH, and FSSP rely on the secondary structure make up of the protein as their main

metric of comparison. It is also worth noting that the Blossumé2 matrix too is derived by

aligning similar sequence blocks thus being inherently biased towards Secondary

structure similarity rather than topological similarity. While secondary structure

similarity is a certain necessity for identifying related folds, the current challenge in

structure prediction lies in identifying the topological arrangement of SSE's. The use of

geometric constraints in the form of experimentally derived bounds for intra-residue

distances can aide in determining these arrangements. However, development of

computational methods that can properly incorporate this data is not possible in the

absence of classification schemes that allow for spatial considerations in addition to

Secondary structure composition. As realized, it is currently not feasible to asses the

Success or failure of our method objectively due to the classification bias in our test sets.

Similarity must not be viewed as a discrete state but rather a continuum in which the

transition from similar to dissimilar is gradual. With the advent of large scale genomics

and our current understanding of the issues involved in assessing structural similarities, a

re-evaluation of current classification methodologies and the development of more

Sophisticated criteria seem not just appropriate but also timely. Such an effort however is

outside of the scope of this dissertation.

In light of the complications involved in defining protein fold similarity we

decided to shift to a more fundamental approach and measure the information content of

Protein structures. In the following chapters we will utilize reduced protein models to

*tinue our investigation of distance constraints by making a quantitative assessment of
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their information content using information theory as our theoretical backbone. Lattice *.
-

models have previously been used to study protein folding (Chan, 1989). They are º º

advantageous in that for a relatively small number of beads all conformations can be sº
º

enumerated. The exhaustive enumeration of all or a subset of conformations, such as 5. cº

compact structures, allows the development of precise measures of information content

and helps us gain insight into effective definitions of conformational “similarity.” In

using conformational constraints (i.e. Co-Co distances for fold recognition) an important

question arises concerning the limit of information contained within those constraints and

whether a limited number is sufficient for elucidating the fold of a protein. This

information will further help in assessing the utility of a restraint-based approach, since

distance constraints for new sequences must be determined experimentally; for a brief

outline of such the protocol refer to figures 7 (Young, 2000).

FIGURE 7: . Distance constraints derived from cross linking experiments. Sample experiment from top to
bottom, protein is subjected to cross linking agent. Monomers are separated from dimers. Proteolytic
digestion, followed by separation of cross linked from non cross linked peptides. The cross linked peptides
are analyzed by Mass Spec to determine which residues are x-linked, yielding a set of distance constraints
(Taken from Young, 2000)

FGF-2 BS.”

º
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ABSTRACT

For a completely enumerated set of conformers of a macromolecule or for

exhaustive lattice walks of model polymers it is straightforward to use Shannon

information theory to deduce the information content of the ensemble. It is also

practicable to develop numerical measures of the information content of sets of exact

distance constraints applied to specific conformational ensembles. We examine the

effects of experimental uncertainties by considering "noisy" constraints. The

introduction of noise requires additional assumptions about noise distribution and

conformational clustering protocols that make the problem of measuring information

content more complex. We make use of a standard concept in communication theory, the

"noise sphere", to link uncertainty in measurements to information loss. Most of our

numerical results are derived from two-dimensional lattice ensembles. Expressing results

in terms of information/degree of freedom removes almost all of the chain length

dependence. We also explore off-lattice polyalanine chains that yield surprisingly similar

results.
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INTRODUCTION

An important challenge for structural biology is to provide structural and

functional information on the same grand scale as the genome sequencing projects. While

there are many experimental procedures aimed at the determination of the structures of

proteins and nucleic acids, relatively little attention has been paid to measuring the

quality of any given method, and a framework for discussing the optimum utility of

diverse procedures is lacking. (See, however, (Brunger et al., 1993) for error analysis in

crystallography). Further, many experimental efforts combine direct structural data with

sequence alignments or molecular refinement techniques, adding to the difficulty of

analysis. In this paper, we introduce a protocol to quantify the information content of

structural data and we explore some of the many issues that arise in reducing such a

protocol to practice.

The process of determining the structure of a macromolecule is largely a matter of

specifying the conformational states of highest occupancy for a given physical

environment. While we speak of the "structure" of a molecule, we are normally referring

to the equilibrium properties of an ensemble of molecules that constitute a

thermodynamic state. Individual molecules undergo dynamic transitions among

conformations and only time-averaged properties of the ensemble can be measured

directly. For biomacromolecules, except at the highest resolution, the lengths of the

chemical bonds and the bond angles are taken to be constant. Conformations are

essentially established through direct or indirect specification of the dihedral angles as the

critical variables. In this paper, we explore how much information must be supplied to fix

these angles within a certain tolerance or uncertainty. More precisely, we are interested in
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the amount of information needed to discriminate among the different conformations

accessible to a macromolecular system in a well-characterized thermodynamic state.

We will make use of information theory (Shannon, 1948; Young, 1971) to link

the information content of a particular experiment or procedure (Havel et al., 1983;

Sibbald, 1995) to the conformational entropy of a molecular ensemble.

There have been attempts to deduce the entropy of a molecular assembly from the

variation of the atomic coordinates (Levy et al., 1984; Luo and Sharp, 2002; Potter and

Gilson, 2002; Schlitter, 1993). While this approach works exactly for ideal gases, it is

still unclear whether it yields a proper result for systems with conformational degrees of

freedom (Schafer et al., 2001; Schafer et al., 2000). A large number of studies on chain

entropy for polymer systems have been carried out (Dill et al., 1995; Flory, 1953; Pande

et al., 1994; Wang et al., 1999) using a variety of models. Clearly, if it were possible to

enumerate all (accessible) conformations and associated occupancies for a molecular

ensemble, the total conformational entropy would easily be obtained.

However, an enumeration approach has two major difficulties for proteins or

nucleic acids. First, the natural orthogonal variables are the dihedral angles. While such

data are available from multidimensional NMR coupling experiments, a full set has not

been reported. Instead, experiments typically yield a partial set of labeled (assigned)

intramolecular distances and coupling constants from NMR or a set of unlabeled

distances/phases from diffraction experiments. These data are strongly self-correlated so

that constraints are generally non-orthogonal and the information gained is not a simple

linear function of the number of constraints. Such correlations must be accounted for in

any assessment of the information content of an experiment. The second problem is that
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tive enumeration of the conformations of a macromolecule is not currently feasible

:cause of the large numbers involved and because any working definition of a

molecular "conformation" is integrally connected to assumptions about energy

which introduce additional complications.

We envision two general approaches for measuring information content using

:ar conformational constraints. First, correlated constraints can be mapped to an

nal space. For example, distances can be mapped to dihedral angles, although the

hip can be significantly error-prone. The second approach, explored in this

s to use model systems where exhaustive enumeration of conformational

es is feasible.

n previous work, Dill and co-workers and Wang et al., among others, used lattice

s to probe the statistical properties of ensembles of protein structures (Crippen,

ll et al., 1995; Dobson et al., 1998; Wang et al., 1999). Choy and Gregoret (Choy

han-Kay, 2001; Gregoret and Cohen, 1991) have also reported off-lattice models

ed States. We will use the Dill ensembles to examine the information content of

distance constraints and to explore the degradation of information as noise is

d (Berger et al., 1996). In addition to supplementing the work of (Gutin and

rich, 1994) on random constraint sets, we examine the dependence of

bn content on specific constraints.
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RY AND METHODOLOGY

ble Generation

menSiona//attice Wa■ ks

n this initial study, we primarily use two-dimensional square lattice structures.

Yf beads, each bead representing one "residue", are arranged in self-avoiding

:cording to the following rules. The elementary step, the distance between

ive beads, di.j4-1, is fixed at unit length. The move set is limited to a single step

■ onal moves disallowed. Beads cannot overlap. This set of walks is the same as

ustive ensembles of Chan and Dill (Chan and Dill, 1989) that count all

tions not related by translation, rigid rotation, or reflection. These latter

ns are readily accomplished without loss of generality by limiting the first move

ng the positive y axis and by restricting the first turn to the positive (x, y)

The N-terminus to C-terminus directionality of proteins is preserved in these

S. This directionality permits discrimination between "retro-inverso"

tional pairs (Chorev and Goodman, 1995) - two conformations that become

upon reflection and reversal of the bead numbering.

sembles of unconstrained self-avoiding lattice walks and a separate subset of

milton lattice walks were enumerated exhaustively up to N = 28 (N is number

n the chain) (Table 1) and N = 49 (Table 2) respectively. Enumerations of up to

ave been published by (Chan and Dill, 1991; Irback and Troein, 2002) for

ned walks. Square Hamilton walks of up to N = 36 have been enumerated by

Dill, 1989). Our values for W, the number of distinguishable walks, agree

in all cases.
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We studied longer self-avoiding chain ensembles (N = 49, 100) using stochastic

in. During stochastic generation, conformations with the first turn outside of the

(x,y) quadrant were terminated and removed. For these ensembles, simple

King from a point of chain overlap produces an over-representation of compact

mpared to the exhaustive results (Rosenbluth and Rosenbluth, 1955). Instead,

discard the run leading to failure and start a new walk from its beginning.

Self-avoiding square-lattice walks

N" W F's
2 | 0.000
3 2 1.000
4 5 2.322
5 13 3.700
6 36 5.170
7 98 6.615
8 272 8.087
9 740 9.531
1() 2034 10.990
11 5513 12.429
12 15037 13.876
13 406 17 15.310
14 | 10188 16.750
15 296.806 18. 179
16 802075 19.613
17 2155667 21,040
18 5808335 22,470
19 15582342 23.893
20 4.1889578 25.320
21 11221.2146 26.742
22 301.100754 28.166
23 805570061 29.585
24 2158326727 31.007
25 5768299665 32.425
26 15435169364 33.846
27 41214098278 35.262
28 110164686.454 36.681

"The number of beads in a chain of length N-1
The number of conformations (see text)

* Calculated as log2(W)
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!: Square Hamilton walks

N W FS
4 | 0.000
9 5 2.322
16 69 6.109
25 1081 10.078
36 57337 15.807
49 3383820 21.690

ally-constrained 3-D Polya/anine Ensembles with Excluded Volume

he program YARN (Gregoret and Cohen, 1991) was used to generate random 3

anine conformations that obey excluded volume constraints. In the default

ymbinations of () and U■ are chosen based on statistics from a reference set of

described by Gregoret and Cohen (Gregoret and Cohen, 1990). An ellipsoid

is the size of generated conformations to gyration radii consistent with

ºntally derived structures (Gregoret and Cohen, 1991).

and Information

iven a set of constraints, X, the information content of the constraint set can be

| in bits by its partitioning effect on the structural ensemble using Shannon's

on (Shannon, 1948):

I(X) = -2 [p, log2(p)] (1)

is the population of cluster k expressed as a fraction of the ensemble, Summed

clusters. These clusters are subsets of the population of conformers that are

lishable under a particular constraint.

direct connection with classical statistical mechanics is available if it is possible

y the conformations which belong to a specific thermodynamic microstate and if

| information is provided about the relative energy of each conformation (Wang
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999). For this paper, we will assume that all lattice conformations have the same

and hence the same occupancy. This assumption is equivalent to an "infinite

ture" limit.

The measured information content of a particular constraint set, X, can be

2d to the theoretical information content of the ensemble defined as:

P = log2(W) (2)

W is the ensemble size. I* is referred to as the "source" information (Shannon,

)ther terms we will use are: I" , defined as the maximum amount of information

be recovered using a given set of measurements and I", the information lost at

e of an experiment (see section IV for further discussion.)

Clature

We use the Cartesian (through-space) distance, d, between beads i,j as:

dj = ((x-x) + (y-y)*)” (3)

d]j will represent the (i,j)th element of the distance matrix, which can take on

values, and di■ will represent the specific value of this element in a particular

ation. The sequential separation, sij, is defined as:

sij=|i-j (4)

he city-block sequence distance, B, for two pairs of beads (i,j) and (i'j'), is

B = | i – i' |+|j–j" (5)

here are several measures of determining the difference, 6 (a,b), between a pair

mations, a and b. The most popular are the minimal root mean square difference

of the coordinates after rigid translation and rotation and the closely related

46



~■

ºSS■ ,
<!

—º



ion of the difference of the distance matrices (Levitt, 1976). We will also make

a new measure of distance uncertainty based on examination of the distance

ce matrix, A:

A (a,b) = (d)"-(d.)" (6)

and b refer to specific conformations and i, j are taken over all bead numbers, j >

fically, we focus on the maximum element in A defined as:

e"= max(A (a, b)) (7)

inition is motivated by the simplicity of some results when formulated this way

ults section.) We note that most of these measures are not proper metrics because

lot obey the triangle inequality.

For an N-mer lattice walk, the full set of constraints for any conformation is

is £ such that:

£= {[d] j| 1s i < N, 1sj < N, ižj} and

M C .5

te the size of M as |M|.

2 of the information Content of a Constraint

he information content of a distance element, Idli,j, for a given ensemble is

d by partitioning the ensemble based on the distribution of distance values, dij,

(i,j) in the ensemble. The fraction of the ensemble having a particular distance

[d]ij, defines the value for pº The indexing length for k is determined by the

f accessible distance values for [d] j.

»r example, for a chain of length N = 3, the information encoded in Idli,3,

s determined as follows: The number of conformations in the ensemble, W, is
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he only allowed conformations are straight(s) and bent(b) which results in k = 2

= p = 0.5. For one-half the conformations di, 3 = 2 and for the other half di.3 =

ng Shannon's equation:

I ([d]1,3) = -2|0.5(log2(0.5))] = 1 bit

he information content of sets of distances is calculated in a similar manner.

members share the same distance values across all distance elements of the set.

is important to recognize that this protocol measures the amount of information

d with knowledge of the full set of distance values for each distance element,

an the (different) amount of information contained in knowing a specific value

ticular distance element. Further, while this formulation is useful for any lattice

t would need to be altered for systems where internal distances vary in a

us fashion. For example, in our studies of the polyalanine models, we will make

mptions that each structure generated represents a different conformation and that

ampling is done to provide reliable estimates of the distance distributions (see

Since we do not impose any force fields on the polyalanine ensembles, these

are not related to discrete local minima on an energy landscape.

noisy Systems

ur discussion so far has assumed that the constraint set is noise-free and exact.

this is not the general case. In order to study the effects of inexact

ments and the addition of noise to the system, we will use a simplified

cation model. It has the following components:
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nation source: the set of noise-free messages that can be communicated – in this

he set of fully enumerated conformations.

mission system: the set of constraints that select conformations for "broadcast".

ources in transmission can give rise to "noisy" or inexact constraints.

'tion system: reconstruction of the messages from the transmitted signal. The

uction process may use filters (prior knowledge about the messages) or

ing algorithms to recover the signal. Additional noise sources may be associated

reception process.

ation /OSS from noise

We consider a conformational ensemble to be a set of Windependent, distinct

is, {w}}, of equal probability. The information content of the ensemble is defined

W) (Shannon, 1948). As noise is introduced in the constraint sets some messages

e distinct in a noise free environment become indistinguishable. A set of

n probabilities, p(j), the probability of message i being received as message j,

S this behavior. We denote the information of the source and the received signal

PM respectively. In a noiseless case I’= I" whereas in the noisy case I" < 1 (see

ºn Entropy and Information for definitions) The missing amount of information is

1", the conditional entropy of the message knowing the received signal. The

information loss due to noise, averaged across the ensemble, is:

(1)= -X. p(j)} p (i)log, p,G) (8)

i) is the probability of transmitting a particular symbol w;.
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To derive numerical results in the lattice model system, we assume that each

ymbol is transmitted with equal probability p(i) = p(j) = 1/W. We use the "noise

here" model (Young, 1971) for the transmission loss, in which conformations w; that

e within a hyper-sphere of radius r centered about conformation w; are

distinguishable. Let u(r) be the number of conformations about wº, inclusive, within a

lius r. The model of the transmission error probability, for a particular r, can thus be

ressed as:

() if Ö(w, w,) > r
p,(i) =

- - -

1/u, if 6(wi, wi) s r (9)

er this model, Eq. 8 simplifies to:

(*)-45 los■ º).
W – (10)

an use the same approach to calculate the loss of information for noise in individual

ce constraints. The noise sphere will contain all conformations (up) whose di■ is

r of the diff of the reference conformation, i. The calculation uses each conformer

as the reference. I* is obtained from Eq. 10.

rmer distributions

To calculate how many conformers lie within a fixed interval, we will use the

s Of Sullivan and Kuntz (Sullivan and Kuntz, 2001). We assume a conformational

n which individual conformations are points and whose axes are the true

cal degrees of freedom. We are interested in two situations. In the first case, we

an ensemble that can, in principle, be generated exhaustively, although we may
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to stochastic enumeration for long chains. In the second case, we assume that we

t carry out exhaustive enumeration, but that we do have some prior knowledge

the conformer distribution, e.g. that conformations are distributed uniformly in the

ºrmational) space. In either case, we can develop a geometric model for the

Tmation space as an appropriately dimensioned hyper-sphere and define the

ited radial pair conformational density function, v(r), as the fraction of the

ble within a given radius, r, averaged over all conformations:

ating the conformation space as an hypersphere with volume,

v (r) = Cr" (12)

us to identify n as the marginal number of dimensions of the hyper-sphere and C

Istant that depends on the value of n. We solve for n as a function of r by equating

rithms:

log(v(r)) = log(C) + nlog(r) (13)

n as the slope in a plot of log(r) versus log(v(r)).

n our previous work (Sullivan and Kuntz, 2001), we studied protein and polymer

with Co. -RMSD as the measure of conformational distance. In this paper, we will

RMSD and e”, the maximal difference distance element, as defined earlier.

'he concept of the marginal or "effective" dimensionality of conformation space

larified with an example (Sullivan and Kuntz, 2001). Consider a conformation

aped as a long, solid, cylindrical rod. The marginal dimensionality depends on

I scale being explored. On average, for any point surrounded by a sphere of
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is r the sphere volume (i.e. the number of conformations if uniformly distributed)

ases as the cube (n = 3) of the probe radius for r much less than the diameter of the

but for large probe lengths, the number of conformers can only increase linearly (n =

This same behavior is seen in molecular dynamics simulations of proteins where the

inal dimensionality is equal to the total number of mechanical degrees of freedom

or very small displacement. Larger displacements are limited to only a few degrees

:dom and/or correlated degrees of freedom (Sullivan and Kuntz, 2001).

BLEM FORMULATION

Individual conformations of an N-mer bead can be characterized by their distance

es, each composed of a unique dij set for the corresponding Idli,j. Distance matrices

| enough information to resolve all conformers except those related by a global

on or handedness (Crippen and Havel, 1988). The problem we pose is to measure

Yrmation contained in arbitrary sets of exact and "noisy" distance constraints. We

:h this problem by:

Intifying the information content, I, of each [d]ij.

lsuring the reduction in information resulting from correlation among exact

ance elements.

mining various routes to useful sets of constraints, M, of size |M|.. that

iminate among all conformers.

idering the reduction in information content arising from noise in dij.

_TS

We begin by exploring the information content of a set of constraints consisting

ied distances between numbered (i.e. "labeled") beads for lattice walks that

2
---
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rve as models of molecular conformers. We start with the assumption that all these

stances are known exactly and are free from "assignment" errors. We will call such

instraints "exact labeled constraints".

We first calculate the number of 2-D self-avoiding conformers as a function of

|ain length (Table 1). In table 2 we calculate the number of conformers that form perfect

uares (see below). For convenience we also summarize these results in approximate

alytical functions (Table 3). Given the simple dependence on chain length, we can

lculate the (average) information content of adding a bead to the chain for different

■ tices and different chain constraints (Table 3). For comparison, we also include entries

duced from entropic considerations for globular proteins.

KaCt COnStraints

|formation Content associated with individua//abeled Constraints

Information content varies in a predictable way for distance elements. It is also

pendent on the particular lattice and move set under study (Table 3). For example, our

priori decision to fix di■ ti to unit length means that knowledge of this distance carries

partitioning information. In contrast, distance matrix elements with sequence

paration, s > 1, can assume multiple distance values and knowledge of these distances

rtitions the ensemble. Establishing the rules for lattice walks is analogous to defining

■ erence states in thermodynamics. Changes in entropy or information content based on

W constraints are calculated with respect to the appropriate reference state which can,

principle, be related to other reference states.
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TABLE 3: Information content for lattice walks

Lattice Constraints W(N)" Choices/residue Bits/residue

2D Square None 4N 4 2

No Reversal 3N 3 1.58

Self Avoiding 0.103 (2.691") 2.69 1.43

Square Hamilton self-avoiding 0.269 (1.399") 1.4 0.48

3D Cubic None 6" 6 2.58

No Reversal 5N 5 2.32

Self-avoiding (Chan and Dill, 1990) 0.293 (4.782") 4.78 2.26

Hamilton-walk (Pande et al., 1994) e-43+12 (1.86%) 1.86 0.90

Flory, mean field (Flory 1953) (*-1)* 1.84 0.88

3D Tetrahedral None 4 2

No Reversal 3 1.58

Self Avoiding (Wang et al. 1999) 1.72 0.78
Offlattice

Fit to extreme value distribution
Stochastic Chain: 1.2 - 2.0

Ocnastic Chains (Feldman and Hogue, 2002)

Protein Backbone Native -> Compact (Dill 1985) 1.7 0.76

Protein Backbone Native ->Unfolded (Cooper 1999) 7.5–20.5 2.9–4.4

+ Sidechain

": W(N) for N >> 1.

FIGURE 1: Information content, I, for each distance element [d], for N=15. Color coded as indicated

All conformations of a 15 bead chain were enumerated, and the information

Content of each [d]j, I([dº]), calculated according to Eq. 1, is shown in Fig. 1. As

°xpected, information content increases for [d]j off the diagonal (Chan and Dill, 1990).

This trend is seen more clearly in Fig. 2 which re-plots the information content for the
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exhaustive ensemble of N = 16 and the stochastic ensemble of N = 100 as a function of s.

There is a near-monotonic increase of information with Sequence separation that is

essentially independent of the chain length (Figs. 2, 3). For large N, the increase in

information with s is well approximated by a logarithmic function (Eq. 14) similar to the

Jacobson-Stockmayer equation (Jacobson and Stockmayer, 1950) which computes the

loss of entropy for loop closures as a function of loop size.

I([d]j) = 1.36×log2(sij)-0.92 (14)

Exhaustive enumerations of self-avoiding walks for N = 3 to N = 16, shows the

tendency for even sequence separations to be slightly more informative than odd

Sequence separations (Fig. 3a). This observation is consistent with even-odd oscillations

in other structural features on square lattices (Chan and Dill, 1989) and has no obvious

implication for protein structures.

FIGURE 2: Mean information content as a function of s for single distance elements for ensembles from
chains of N=16 (O)(exhaustive enumeration ) and N=100 (D) (stochastic enumeration of 10,000
conformations). The line fit is given by Eq. 14.

10 T T
|

;
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FIGURE 3: Information content by sequence separation. (a) Mean I■ d], as a function of sº, for single
distance elements [d], plotted for exhaustive ensembles of N = 4 to N = 16. (b) Independence of
information content on chain length or chain position for fixed slº = 5.
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Correlation Of Constraints

Although the single most informative distance element is the "end-to-end" sequence

separation (1, N for odd N; 1, N-1 for even N) (Fig. 3a), finding the most informative set

of distance elements is a more complex problem. The principal issue is the overlapping

information contained in the distance elements. We begin by examining pairs of distance

elements. A related problem has been considered in depth by Chan & Dill (Chan and

Dill, 1990), who calculated the entropic losses associated with pairs of pre-specified

Contacts for two and three dimensional lattices. In contrast, we examine the non

additivity (loss) of information for all pairs of distance elements. We develop a numerical

relationship that summarizes the average relative loss as a function of the separation of

the distance elements. We quantify the correlation by the relative pair-wise information

ºduction for two distance elements [d]j and [d]ij defined as:

{AI/I} = {[1([d].) + I([d]i■ ) |-| I([d], [d]i■ ) |} / [I ([d]j [d]ºj.) I (15)
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This measure is bounded by zero (no loss), if there is no correlation, and unity for

complete correlation. In Fig. 4(a-c) the relative loss of information is plotted as a

function of (i'j') for particular reference values of (i,j) for N = 16.

FIGURE 4: Relative information loss DI/I is plotted for all distance elements [d]..., assuming prior
knowledge [d], . Reference [d]i■ : (1,11) for (a) and (d); (1,16) for (b) and (e); (4,13) for (c) and (f). For
(a-c), the absolute information loss is plotted, equal to {[I(i,j)+I(i'j')]-[I(i,ji'j')]}/[I(i,ji'j')]. In (d-f), the
decimal logarithm of the information loss is plotted.
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As expected, the loss is greater between elements close to each other in the distance

matrix (Chan and Dill, 1990). Fig. 4(d-f) re-plots the information reduction

logarithmically for the same reference distance elements. As the contour lines appear to

lie more on the matrix diagonals than on circles about the reference point, we replot the

"s of the information loss as a function of the city-block sequence distance, B, for all

Pºirs of sequence distance elements for N = 14 (Fig. 5a). This simple equation explains
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much of the information loss behavior, with the correlation constant r = -0.882 for the

best-fit line. However, the individual sequence separations, s = s.j and s'= s.■ ., also

influence the information reduction, where proximal distances with larger s (and thus

inherently more information) are reduced relatively more than distances with smaller s.

Dividing B by the sum of the sequence separation (SSD), where SSD = s + s”, tightens the

correlation (Fig. 5b), bringing r” = -0.920. Most of the scatter is in the low information

loss (weak correlation) region of the plot. When considering only the points with AI/I >

0.001, rº = -0.972. While the scatter in information loss as a function of these simple

distance element transformations appears significant on a logarithmic scale, it is much

less significant on a linear scale. In Fig. 5(c,d), (1 - AI/I) vs. B shows that at worse, 90%

of the joint information is available at a city block separation of 4 and 95% of the

information is available (worst case) at a B of 6.

In summary, while we have no simple analytical statement of the information

correlation of pairs of Cartesian distances, information loss is dominated by the sequence

proximity (loop size) of the beads involved in the two distances, with the loss dropping

rapidly for "loops" whose ends are separated by more than 4 beads.
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FIGURE 5: Relative information loss, DI/I, for all pairs of distances, shown on a log10 scale, calculated by
Eqn. 14 as a function of transformations of the distance element distances. In (a), the x-axis is the block
element identity distance, B, equal to li-i'Hj-j|. In (b), the x-axis is B/SSD, where SSD = (sº-sº). (c)
plots (1-[[I/I]) versus B. (d) plots (1 – DI/I) versus B/SSD.
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Finding the Optima/Constraint Set

The optimal constraint set is defined as the smallest number of exact constraints that

partition all the conformers uniquely. Distance-distance correlation makes the problem a

difficult one. However, efficient procedures have been developed to construct any

Specific conformation on 2D and 3D lattices from distance data. Faulon et al show that

O(n) distances are sufficient for n sites (Faulon et al., 2002). In this paper we wish to

COrmpare arbitrary constraint sets using the Shannon information to quantify the constraint

Set quality. Specifically, we examine three constraint sets:

1. The globally optimal constraint set. For a pre-specified set size, |M|, the globally

optimal set of distance constraints, Mºlobal, is determined by measuring I(M) for all
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possible constraint combinations. Because of computational limitations, this º

*.
calculation is only possible for small N and small constraint set size |M|.

CO

2. The greedy algorithm constraint set. A less resource-intensive method is a "greedy" sº
º

~

algorithm. The constraint set, Mºrecay, is calculated by first finding the single most cº

informative distance constraint, Idlina, and then iteratively finding additional maximal

constraints. In the case of our lattice models [d]max is ■ ali, N or Idli, N-1 for odd and even

length chains respectively. Of course, this approach has the usual limitations of greedy

algorithms (Cormen et al., 2001). **-
-º--

3. The random constraint set. Finally, as a simple control, we measure the information º
* -º-º-

--- -
contained in sets of randomly selected distance constraints (Shakhnovich and Gutin, º

--- --

1990). ºf In
-

* --

Method 1: We calculate I(M) for all possible element combinations *º- º
--- º,

t!/(t-|M|)! º

*- to
where t is the number of all possible pairings for a bead of length N, equal to ((N-2)×(N- * º

º .* |
- - - - - - - -

1)/2). As noted repeatedly, I(M) is not additive as |M| increases (Fig. 6). One element º cº
tº- |

sets (Maloball = 1) are the most informative, per constraint, for all chain lengths. For large ->
-

%)
N and small |M|, the information content of distance constraints approaches simple LIB

->o

a-dditivity; e.g. I(M ||Malobal = 2) is 81% greater than I(M ||Melobal -1), for N=16. %, ■
º

º

Progressively more constraints yield less information per constraint. Combinatorial P
~º

exploration of optimum constraints up to Malobal = 5 is shown in Fig. 6. For reference, IS sº
º

for each chain length is also given. AQ■
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FIGURE 6: . Maximum information ■ ” for best sets of distance constraints for |Malobal = 1 to 5 as a
function of N. The line represents the maximum information per chain length based on the number of Self
avoiding lattice walks (Table 1). O: 1 distance, []: 2 distances, Ó : 3 distances, A: 4 distances, <!: 5
distances, – I’.

12

10

*

Method 2: The best set of constraints found with the greedy algorithm for the 12-mer

chain shows a similar trend (Fig. 7). Fig. 7a illustrates a problem: the relatively small

amount of information contained in the later choices makes the results very path

dependent. Fig. 7b shows the complex evolution of choices as the greedy algorithm

explores the distance matrix. Interestingly, much of the information content can be

realized with fewer constraints than the N-2 true degrees of freedom. For example, in a

\ 5-mer chain, 95% of I can be encoded through a set of 8 distance elements (Mgreed, =

8) (Fig. 8). The difference between the number of constraints needed to achieve the

maximum information and the number needed for a fixed percentage of the information

increases exponentially with chain length. To recover I” completely with the greedy

algº orithm requires significantly more than N-2 distance constraints. This discrepancy
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derives in large part from the imperfect search by such algorithms over all constraint

combinations.

FIGURE 7. Information content dependence on number of constraints. I(M.A.) was calculated using a
greedy algorithm for N=12. 17 distance constraints are required to obtain IM by this method. (a) I(Mºroca)
versus number of distances, M|. The continuous line serves only to guide the eye. Dashed line I(M,andom),
averaged over 100 random constraint sets per |M|, with standard deviation given by upper/lower bars. (b)
The greedy algorithm choices for |M|= 17 and N = 12 plotted by i,j identity.
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FIGURE 8: Distance constraints for percentage information. The minimum number of distance constraints
necessary to retain a given percentage, P, of the ensemble I”, conformational information, is plotted as a
function of chain length. A greedy algorithm was used to calculate the minimum number of distance
constraints. P = O: 100%, [] : 95%, Ö: 90%, A: 80%, 3: 70%.
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Method 3: Random selection of constraints performs much worse than the previous

Woº- strategies (Fig. 7a). Nearly twice as many randomly selected constraints are required

to achieve the same level of information as those selected by the greedy algorithm.
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There are practical issues raised by this analysis. Our calculations are limiting values

for the information per constraint. Real systems will be less efficient for many reasons.

First, only experiments that can report a range of distance values (e.g. fluorescence

labeling, diffraction) can return the maximum amount of information per measurement.

Second, only systems in which a significant fraction of all conformers are being sampled

can approach the limits shown. More typically, in an experiment on compact states (e.g.

native structures of proteins) with a method that is only sensitive to distances within a

narrow range (e.g. NMR NOEs) one would expect considerably less information per

measurement. Finally, we have been assuming that data are available to sufficient

precision to discriminate all distance values for any distance element; "noise" in distance

values will reduce the information even further. We explore these points more

quantitatively in a later section.

Information Content Of Un/abeled distance Constraints

One interesting difference between typical diffraction and NMR experiments on

proteins is the "unlabeled" nature of the diffraction data until the "chain tracing" and

"phasing" steps occur, while, in the NMR studies, assignment of the peaks can be carried

Out in a largely orthogonal manner to the calculation of tertiary structure. A simple

assessment of the information contained in the assignments is available from lattice

models of compact states as representatives of folded proteins. We ask what fraction of

the total number of conformers have the maximal number of contacts for a given chain

lensth. The ensemble of maximally compact structures contains the contacts that could

give rise to (unassigned) NOEs. Each structure contains the same number of contacts.

A&AGlitional information, beyond just the contact number, is needed to select an individual
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structure from this set and can be taken as the information to be gained via the

assignment procedure for well-folded structures. Values of the maximal number of

contacts are simply calculated for Square and rectangular Hamilton walks (see Chan &

Dill and below). For example, the number of square Hamilton walks is approximated by

Wshºw = 1.40” (Tables 2,3), so the additional information to find a unique structure

from this set can be estimated as log2(1.40) or 48 bits/bead (Cejtin et al., 2002; Pande et

al., 1994). Attempts have been made to do "real space" assignments from NMR data

(Grishaev and Llinas, 2002; Oshiro and Kuntz, 1993). This analysis indicates that any

procedural or time-saving advantages of such approaches will carry a cost associated with

the loss of Orthogonal assignment information.

Information loSS from uncertainties in distance Constraints

There are three major sources of uncertainty that affect distance measurements: 1)

upper/lower bounds on the distance measurements, 2) imprecise distance measurements,

and 3) misassignment of distances through incorrect labeling/assignment. Berger et al

(Berger et al., 1996, 1999) have studied this last category of error, which we will not

discuss here.

Uncertainty gives rise to information loss by preventing discrimination among

Clifferent conformations. This information loss can often be attributed to the transmission

Stage of information transfer (Cole, 1993) and is defined as:

I = (P - I'') (16)
&2&nd ■ imitations

Consider an upper bound on distances, Du, such that,

dij is Du
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and Du depends on the physical principles of the experiment and the experimental

conditions. For example, since the magnitude of an NOE is proportional to d", NOEs are

typically only determined for hydrogen atoms separated by 3 5 A. For our lattices,

assuming a one-bead to one-residue mapping, detecting an NOE would be equivalent to

knowing that two beads are in contact, i.e. separated by the lattice unity distance.

Fluorescence energy transfer and chemical cross-link data have longer distance limits.

Crystallographic structures have upper bounds set by the smallest diffraction angle that

can be observed and lower bounds related to the limit of resolution. We want to calculate

the dependence of the information content on the distance detection limit, Da.

If the particular experiment provides a monotonic relationship between "signal

intensity" and "distance", we can proceed in a straightforward manner to assign distances

greater than Du a lower bound of Du. For example, it is common practice in some

experiments and calculations to report atom pairs as either a 'contact' (dij < D.) or 'no

contact' (dij > Da). However, in NMR and FRET the measured signal is a product of

both a distance term and an angular correlation term which can drive the signal close to

zero regardless of the distance. To be logically consistent with the underlying physics we

Inust allow for this possibility and give all distances the same lower bound, Di, for such

experiments.

In the first case, where the distance magnitudes are unambiguous, I" increases

linearly for all values of D., (Fig. 9).
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FIGURE 9: I" with upper bounds on distances. For the unfilled symbols (O, DA: u = 1, 142, 2 units
respectively), I" is calculated from all interbead distances encoded as dj for diis u and as equal to u for dº
> u. For the filled symbols (-, A: u = 1.42, 2units repectively), as above, except distances longer than u
are treated as unknown. Solid line: No limit.

20 +

15 –

10 –*

I" for the most limiting contact/no-contact detection limit (D, -1) retains nearly half the

value of I’. However, the second case, where we are not allowed to use "negative" data,

the information content of the experiment is much less. I" equals zero for simple

contact/no contact decisions. Only for Du 2 2, i.e., "next-nearest neighbors", does such

an experiment yield information on the 2D lattice ensemble.

The dependence of I([d]ij) on D, varies with sequence separation (Fig. 10).

Information content decreases the most for large sequence separations and low values of

Du - In general, the most informative distance elements have sequence separations of

Du-42. For example, the most informative contact/no contact (Du =1) distance element

occurs at a sequence separation of three, and only yields 0.53 bits. Thus, the information
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content of knowing that a contact exists, which generally increases with sequence

separation (as contacts become more rare with increasing sequence separation) is offset

by the loss of the information potential of knowing the distances associated with longer

Sequence separations. The rarity of contacts at larger sequence separations means that

knowing two highly separated residues are in contact is very informative. This is seen in

Fig. 11 which plots the information content of knowing two beads (i,j) are in contact (dij

= 1) as a function of si■ .

FIGURE 10: Information content, I■ dº) by sequence separation with bounded distance detection. Mean
information content as a function of sequence separation for single distance constraints is plotted for N=15
with given distance detection limits, u. Distances are encoded as dº for dº sº u and as equal to u for d > u.
O: 1 unit, D: 1.42 units, KX: 2 units, A: 6 units, 3: No Limit
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FIGURE 11: Information content of contact/no contact determinations. Information content of knowing a º
contact exists (d = 1) is plotted averaged over distance identities of the given sequence separations. Values º
for even-value sequence distances are not given since these contacts are geometrically unfeasible. O: 10
mer, D: 16-mer, A: 49-mer. º
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Uncertainty due to ■ imitations in precision of measurements *º º
º k

An issue common to all experiments is the magnitude of the "noise" or imprecision º º

2
in the measurements. To explore the impact of random noise on the ability to distinguish -º-

Sº
- - - - -

L1
conformations from one another, we consider two limiting cases for fully enumerated

-
o

- - - - -

º
conformational ensembles from 2D lattices. First, we identify conformations most *

o
resistant to noise, defined as pairs of conformations which are maximally different and

- -ºº

Second, in the same ensemble, we find which conformational pairs are most similar. The >
AQ.

Conventional measures for conformational difference (see Methods section) are the RMS º

atom-position difference after superposition and the RMS of the distance-difference
*
º

*
68 o ºCS.
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matrix elements (Levitt, 1976). We will also use the largest element in distance

difference matrix, e”(see Methods).

a,bFIGURE 12:. Limiting conformations on 2D square lattices. Top pair (a) has the largest et" value (even
N) and the bottom pair (b) illustrates the lowest ea." pair (N 2 7).

-
º

The use of e^* yields unexpectedly simple comparisons among chains of different

* is normalized through division by the chain length, N. Thelengths, especially when e”

value e'" can assume has natural limits. The largest possible distance differences, over

all conformational pairs, is in element [d]1.N (Fig. 12a). The smallest possible non-zero

difference elements likewise occur near [d]1,N for cases where the bead displacement

between two conformations is nearly orthogonal to the inter-bead vector. For N 27, the

smallest e” over all pairs of d" and d” for the ensemble of 2D conformers is in the single

°onformational pair in Fig. 12b for which

AN(a,b) = ((N-3) +4)" - (N-3) (17)
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To provide an overview of the distribution of conformer-conformer differences we

plot, in Fig. 13, the fraction of distinguishable conformational pairs compared to all

conformational pairs, (1-v(r)), as a function of e”/N for the fully enumerated square

lattice walks of size up to N = 13.

FIGURE 13: Conformational distinguishability. The fraction of distinguishable conformational pairs
compared to the total number of conformational pairs, equal to 1-v■ r), (see text) is plotted as a function of
the relative noise, equal to r = e/N. O: 3-mer, A: 6-mer, P: 9-mer, K. 12-mer, O: 13-mer.

10° a

–210

e/N

In addition to these complete distributions, we also show the limiting values for the most

similar and most different pairs of conformers for 3 × N s 25. A related plot shows the

fraction of indistinguishable conformational pairs compared to all pairs (Fig. 14). Both

Plots show a remarkable independence from chain length.

º
rº

º
2

rº
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FIGURE 14: Conformational Indistinguishability. V(r) is plotted as a function of the relative uncertainty, r
= e/N. The limiting threshold noise levels for ensembles N = 7 to 23 are given by ensemble identity, N, and
are placed at x = {[(N-3)2 +4] 1/2 - (N-3)}/N, y = 2/[W*(W-1)] which are the limiting relative noise levels
and inverse of total number of conformational pairs, respectively. O: 3-mer, D: 6-mer, Ó : 9-mer, A: 12
mer, V: 15mer, 7-23: Limiting errors for 7-23mers.
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There are several features of Fig. 14 that are useful for our analysis. First, as noted

earlier, v(r) can be thought of as a cumulative distance distribution function for pairs of

conformations on specific lattices. It provides, when normalized, the fraction of the

ensemble within a specific error, or conformational distance, of a given conformation,

averaged over all ensemble members. It also provides a visualization of the impact of

noise on the ability to discriminate one conformer from all the others. Additionally, we

°an calculate the marginal dimensionality, n, from Fig. 14 by computing the slope of the

line passing through the points for limiting conformational pairs from the ensembles of

length N-1 and N+1. We find, for 2D square lattices, that the limiting marginal

º

tº-esº
º ---
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tº
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dimensionality is nearly equal to N-2, the true number of mechanical degrees of freedom

for these walks (Fig. 15).

FIGURE 15: The marginal dimensionality, n, is plotted as a function of the chain length, N. The marginal
dimensionality for N was calculated from the logarithmic slope between the two points for N-1 and N+1 in
Figure 14.

24 –

º
18

is

12

N

This value for the slope can also be derived directly from the formulas given in the

legend of Fig. 14, assuming N >> 1. Following this idea one step further, we can interpret

the slope at all points on Fig. 14 as the number of degrees of freedom that are "effective"

in producing the conformational differences associated with a particular (normalized)

displacement.

5ffect of uncertainty on compact lattice structures

The properties of the fully enumerated ensembles are dominated by extended

°onformers analogous to denatured states of proteins. To provide insight into arguably

º
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more biologically relevant ensembles such as the native and molten globule protein states

(Chan and Dill, 1989), we studied the subset of compact conformers by generating

perfect-square Hamilton walks where every lattice site is occupied. We exhaustively

enumerated square Hamilton walks up to N = 49 (Table 2).

The dependence of information content on bead sequence separation is

fundamentally different in square Hamilton walk ensembles compared to full

enumeration ensembles (Fig. 16; compare to Fig. 2,3).

WFIGURE 16: Mean information content for Hamilton square walks as a function of sequence separation for
single distance constraints (N=9, 16, 25, 49), a full enumeration ensemble (FE) (N=16) and a stochastic,
non-exhaustive ensemble of unconstrained conformations (FES) (N=49). O: 16-mer FE unit, D: 49-mer
FES, Ö: 9-mer HW, A: 16-mer HW, 3:25-mer HW, D : 49-mer HW.

;

In the latter case, as we saw, I([d]j) depends exclusively on sequence separation. For

Hamilton walks, I([d]ij) also depends on N, but it becomes nearly constant for sequence

separations greater than ~N”. This result agrees with the expectation that positional

°orrelation between beads i and j is constant for sequence separations greater than the

diagonal distance, which increases as ~N".

-->
D
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We also calculated v(r) as a function of e”/N for the Hamilton walk ensembles *.
º

C

(Fig. 17). The curves are surprisingly similar to the fully enumerated walks (Fig. 14), º

even though the Hamilton walk ensembles sample only a small subset of full enumeration sº
C

5.
conformational space and have additional degeneracy. For example, in the N=36 c

Hamilton walk ensemble, 3,608 pairs of conformations become indistinguishable with an

absolute uncertainty of 1.24 (equal to N5-1) or relative uncertainty of 0.0343.

FIGURE 17: Conformational indistinguishability for Hamilton walks. V(r) is plotted as a function of the
1elative noise, e/N, for the Hamilton walk constrained ensembles. See Fig. 14 O: 9-mer, []: 16-mer, Ó : 25
mer, A: 36-mer, V: 49-mer.
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The full enumeration ensembles, discussed previously, have limiting characteristics

largely governed by simple relationships among extended conformations. None of these

situations arises when the ensemble of interest is restricted to compact conformers. Thus

it is not clear at this point whether the similarity in (normalized) pair distributions arises

from some fundamental principle or from specific geometric constraints.
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We note that the pair distributions show multi-modal character (notice the small

break in the curve near e^*/N = 0.03 in Fig. 14), as we saw in our earlier work on non

lattice chains (Sullivan and Kuntz, 2001). Very similar v(r) distributions are obtained

using off-lattice polyalanine chains (Fig. 18). Note that the 30 residue chains with 58

dihedral degrees of freedom closely approximate the distribution from a stochastic

sampling of a 60 bead (58 degrees of freedom) 2D lattice walk.

FIGURE 18: Conformational indistinguishability for stochastic polyalanine ensembles (see text and Fig.
14) O: Yarn 30 Extended, []: Yarn 30 Compact, *: 2D Lattice Stochastic N =60, Numbered points 7-15:
Limiting Distances for N = 7-15 for 2D extended walks(see Fig. 14.) Yarn evalues are divided by 3.8N.
2D lattice e values are divided by N.
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Relating information ■ oss to noise

Extracting a relationship between information loss and noise requires a detailed

model of how noisy messages are misread. One such model uses the "noise sphere"

concept outlined in the Methods section. Briefly, a set of W distinct messages, (w;},

becomes Scrambled as noise is introduced and some messages become indistinguishable.

Note that this approach requires that after the noise has been introduced, every conformer

Still be a proper member of the set — distorted (off-lattice) geometries are not allowed. We

define a "noise-sphere" in which conformations w; that are within a hyper-sphere of

radius r centered about conformation w; are indistinguishable. The radius r can be

aSSOciated with any measure of "noise" and formulated with any explicit error

distribution function: we use either RMSD or e” and assume a uniform distribution of

noise.

This procedure can be used for entire conformations, but as noted in the methods section,

it is also directly applicable to information loss for individual constraints or sets of

Constraints. In Fig. 19 we show the fractional information loss for the ■ ali,N distance

element for 2D chains as a logarithmic function of the noise magnitude which we take as

the noise sphere radius. While there is some small dependence of normalized loss on the

chain length, the curves indicate a smooth relationship with half of the information lost

When the noise magnitude is equal to the lattice spacing.
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FIGURE 19: Relative information loss for [d].N., full enumeration ensemble, for N = 9(O), 11([]), 13(K»), º,
15(A). %
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* > *For 2D lattice walk ensembles, the relationship between information loss per degree * ºlº cº

of freedom and e” (derived via Eq. 10) is shown in Fig. 20a. The curves relating 2
º-

San
information loss and coordinate RMSD for the same ensembles are shown in Fig. 20b. Li

- -

Fig. 21 shows similar plots for Hamilton walks. At very low noise magnitudes, there is º,
º

no information loss, as expected for a set of discrete conformers. As the noise increases O

beyond a critical value, there is a region of barely perceptible loss as the most similar sº
sº

Conformers are merged. At some point, increasing error causes major information loss Aºi

b
- - - -

ºecause many conformations populate the average noise sphere. Finally at large noise
-

levels, there is a slow loss of information because only the most different conformers are o --*
left to merge. º,
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FIGURE 20: Information loss per degree of freedom for full enumeration, for N = 7(<!), 8(V), 9(P),
10(+), 11(X), 12(>k), 13(O), 14(1), 15(6). The factor (N-2.29) comes from I* = 1.43(N-2,29), a
recasting of the self-avoiding walk equation for W(N) in Table 3. (a) plotted against e. (b) plotted against
coordinate RMSD.
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FIGURE 21: Information loss per degree of freedom for compact two dimensional lattice structures for N
= 16(D), 25(Ö), 36(A). (a) plotted against e. (b) plotted against coordinate RMSD.
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To summarize this section: the noise sphere model allows a straightforward

treatment of the effect of noise on information content for individual distance elements,

Scts of distance constraints, and full enumeration conformational ensembles. Not

Surprisingly, the information loss/noise curves are the steepest when the noise magnitude
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º

º
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is near the lattice spacing. Most of the chain length dependence can be removed by

reporting information per residue which is sensibly constant at longer chain lengths.

Information per constraint

As a practical matter, experimentalists are interested in how much information can

be extracted from a necessarily limited set of measurements. This question has been

addressed at various levels of sophistication by many authors. For example, Gutin and

Shakhnovich have studied a model of polymer chains where the entropy loss on random

Cross-linking yields a leading term proportional to the number of cross-links per residue

(Shakhnovich and Gutin, 1990). Our analysis of exact constraints on fully enumerated

°onformers also yields some limiting answers. For a 2D self-avoiding walk on a square

"tice a single optimal measurement can provide - log-N bits (Fig. 2, 3) while N beads

**n be fixed on the lattice with N-2 constraints for any given conformer, or ~1.5

bits/constraint. Compact structures, such as the 2D Hamilton walks, can yield even more

information per constraint (Fig.11). If the optimal set of constraints is not available, more

measurements are needed. For example, for N =12, 17 constraints are needed to supply

14 bits or 0.8 bits/constraint (Fig. 7). If constraints are chosen randomly, many more

Would be required to supply the same information. Thus, for exact (noise free)

Constraints, one might expect ca. 0.5 bits/constraint over a random set of measurements.

Gutin and Shakhnovich give similar numerical results when converted into the same

units. They report 0.5-1.5 bits/constraint over the chain lengths we consider.

If we turn to constraints that contain random noise, the information content

decreases further. Using Fig. 19 we can estimate that noise levels of ca. 0.1 lattice units

for individual distance constraints cost less than 10% of the information per residue,

º'-

º º
lº

D
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while noise levels comparable to the lattice spacing would require doubling the number

of constraints to achieve the same information content as noise-free measurements. For

noise levels greater than the lattice spacing, the information content per residue

diminishes very rapidly. Fig. 19 suggests that at noise levels of twice the lattice length,

five times as many constraints would be needed compared to the exact constraints. These

numbers are, of course, very approximate guides. Presumably, an analogous estimate

would apply to non-lattice models of polymers as long as discrete conformers can be

enumerated. For polypeptide chains, the results of Troyer and Cohen (Troyer and Cohen,

1995) imply an absolute minimum separation of ca. 0.1 A per residue or a relative

Separation of 0.001 A per residue for a 100 residue protein. These limiting

"conformational radii" are quite comparable to those for the most similar conformers in

*Plattice walks of the same length derived from Eq. 17.

In summary, by considering the effects of noise on single distances, we are able to

make estimates of how much additional effort is required, in a best-case scenario, to

9Wºrcome the information loss due to random noise in measurements.

DISCUSSION

Developing a general and quantitative treatment of information content for

macromolecular ensembles raises both fundamental and practical issues. One serious

Concern is the need for enumeration of the conformations. Exhaustive enumeration will

always be limited by computational resources and is not applicable to off-lattice models

for the foreseeable future (Sullivan and Kuntz, 2001). Feldman and Hogue's more

9ptimistic view (Feldman and Hogue, 2002) is based on the extreme value distribution

function which may overestimate the number of structures at small RMSD. The real goal

lº
º
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for off-lattice structures is an analytic distribution function with sufficient accuracy to

derive thermodynamic properties. The relative simplicity of the v(r) vs. e curves offers

Some hope that such functions can be devised, although the multimodal character of the

curves indicates that direct stochastic sampling may not suffice to probe the most closely

related conformers.

The data for various lattice and off-lattice systems (Table 3) raises the question of

what reference state is most appropriate for comparisons among different models. The

most Obvious choice is an unconstrained ideal gas. This is roughly analogous to

measuring thermodynamic energies using E= mcº – it gives the right answers in a very

awkward form. The important point is that the choice of lattice and lattice move set (or

*y Other prior constraints) influences the information content of the resulting ensemble,

with Varying amounts of residual information (entropy) being associated with the set of

choices.

The application of noise theory requires the development of parametric noise

models and a set of choices for parameter values. There is currently little guidance from

Physical principles for choosing error metrics and clustering methods. We elected to use a

Very simple formulation of the problem based on the application of the noise sphere

model to fully enumerated lattice ensembles. We postpone a treatment of energetic

differences among conformers, although they could be put directly into Eq. 10 as

population weights. We assume the noise to be white noise which implies uniform

probability of "scrambling" for all conformers within the noise sphere. More realistic,

distance-dependent noise functions could also be readily incorporated. We chose

displacement measures pragmatically rather than attempting a full physical analysis. We

–5
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noted earlier that the noise sphere model is formally adapted to accept other displacement

metrics. More sophisticated entropic clustering models are available from information

theory (Guiasu, 1977). However, their computational complexity is extremely high, and

they are not practicable even for small 2D ensembles.

While our specific results for the information per constraint and information lost as

a function of noise are limited to the ensembles studied, the general features of these

Curves can provide useful insight into experimental design. It certainly should be possible

to extend these ideas to proteins and nucleic acid polymers. In situations where diverse

types of data are used and noise propagation is poorly understood, maximum-information

ºptimization using hypothetical models of transmission errors could help determine

which combinations of various measurements are most informative. This would be a first

*mpt toward improving the utility of measurements in such systems, a critical step if

"* are to improve the quality and speed of current structure determination methods

(Rabitz, 1989).

CONCLUSIONS

1. Information content of distance constraints increases as the log of the sequence

separation for all systems studied except square Hamilton walks where a limiting

value is reached as the sequence separation reaches NN.

2. While a single noise-free distance constraint, namely the end to end distance, can

Select individual conformers from an ensemble and construction methods exist

that use as few as N-2 distance constraints per conformer, the size of the set of

constraints needed to uniquely partition the entire ensemble is not known in a

general way. The problem is inherently complex (Chan and Dill, 1990) arising
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from correlations among distance elements that are largely local in sequence

space. We show that a simple greedy algorithm can supply an arbitrarily high

percentage of the total information (e.g. 95%) with many fewer than N-2

constraints. On a practical level, randomly selected exact constraints provide

much less information, which we estimate to be 0.5 bits/constraint, on the

average, for 2D lattice ensembles.

Using the "noise sphere" model, we show that noise reduces information content

in a surprisingly universal way for fully enumerated lattice walks and maximally

compact Hamilton square walks. It is not possible to use the same model for off

lattice ensembles without some method of estimating the total number of

conformations.

The slope of the information loss vs. noise curves can be directly related to the

number of active or "effective" degrees of freedom for the ensemble.

A complete quantitative treatment of information content is surprisingly difficult.

Many technical issues arise that involve additional assumptions which influence

the numerical results. These issues include: choice of potential functions,

clustering methods, and noise distribution functions among others. There is

currently little guidance from physical principles or experiment for this selection.

More work is needed to clarify the best way to extend these studies to off-lattice

ensembles.

º º
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ABSTRACT º

We are interested in applying the principles of information theory to structural biology CO
º

- - - - -
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calculations. In this paper, we explore the information content of an important .*
~

º
computational procedure: sequence alignment. Using a reference state developed from

exhaustive sequences, we measure alignment statistics and evaluate gap penalties based

on first principle considerations and gap distributions. We show that there are different

gap penalties for different alphabet sizes and that the gap penalties can depend on the

length of the sequences being aligned. In a companion paper we examine the information …--

º
content of molecular force fields. º
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INTRODUCTION

Structural biology uses many different experimental and computational

procedures to deduce the structure and function of biomacromolecules. A partial list

includes sequence analysis, crystallography, magnetic resonance, spectroscopy,

homology modeling, and molecular dynamics. Despite the quantitative nature of such

undertakings, there is no unifying model of information content and error analysis for the

field as a whole. While we do not discount the importance of several specialized forays

(Berger et al., 1999; Brunger, 1992; Carothers et al., 2004; Levitt and Gerstein, 1998;

Luzzati, 1952; Park and Levitt, 1996; Stroud and Fauman, 1995) there is a need to build

on these efforts to seek a broader approach that would permit evaluation and comparison

of the wide range of existing methods. Another concern is to understand the additivity of

information when different techniques are combined.

To examine these issues, consider the information content of a protein structure.

In the simplest form, it is related to the number of conformations the molecule can adopt.

Knowing this value for a specific protein would allow us to set an upper bound on the

difficulty of predicting the structure of the native state from, say, the amino acid

Sequence; the classic “protein folding” problem. Experiments and/or modeling, from this

point of view, generate constraints that reduce the allowed conformations. None of the

Current experimental or computational approaches offers a perfect solution to finding

Structures (Kuntz and Agard, 2003). Instead, our focus is the quality of the “best”

Structures consistent with the information and techniques available. In previous work

(Sullivan et al., 2003) we used information theory to quantify information derived from a

knowledge of internal distances. In these papers, we wish to extend our methods to two
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other aspects of computational biology that underpin methodologies for structure o
º

º

prediction: sequence analysis and “force fields”. This paper considers sequence
CO

alignment issues, while the companion paper deals with the information content of º
->

molecular force fields. cº

Aside from ab initio methods (Bonneau and Baker, 2001) theoretical structure

prediction is generally approached in two steps; 1) Given an amino acid sequence, find an

appropriate structural template (using homology modeling and/or threading), and 2)

refine the structural model to produce an energetically minimized or “best scoring”

conformation. The first step requires sequence alignment algorithms which rely heavily º

on the use of empirical parameters i.e. gap penalties and scoring matrices (Vingron and º

Waterman, 1994); consequently, it is difficult to either evaluate or improve their over-all ºn
performance except in the context of specific training sets. The second step, determining

the lowest energy conformation from among all possible three-dimensional structures of

a given sequence, requires an energy function capable of discrimination among native -
---

and decoy conformations. Force fields are considered in a second paper (Aynechi and 3
|-

º

Kuntz, 2005). º
In this paper we examine the fundamental linkage between sequences and

information theory from which we can derive the ideal costs of alignment procedures,

scoring matrices, and gap penalties.

METHODS
Overview

Our basic approach is to write out all possible occurrences of the set of interest

(i.e. Sequences) and then ask what the informational consequence of performing an
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operation that combines or clusters some of the objects would be. The information

required to select one object from a set of Wobjects is log, W. If during any stage of the

procedure some objects become indistinguishable from others, the set can be considered

to be “clustered” into W’ distinguishable subsets. Such clustering reduces the effective

number of objects and hence reduces the information required to select subsets from the

transformed set. It is important to note that the normal use of sequence alignment

procedures is to increase the information associated with a given probe sequence. In such

usage, One queries a database of sequences and assigns properties (structure, function) to

the probe sequence based on the statistically valid matches that are found. This

information “increase” arises as a single sequence is placed into a cluster smaller than the

full set of sequences from which it was indistinguishable before the alignment procedure.

However, as we shall see, there are circumstances where it is useful to consider alignment

from the other end of the telescope, as a clustering procedure in which a number of

Sequences are grouped. From this point of view, information is lost as a number of

Sequences that were distinct from one another are now considered as the same subset. In

this context, gap penalties are directly related to this information reduction.

Of course, it is not feasible to write out all possible protein or nucleic acid

Sequences. Our usual strategy will be to uncover general properties by making use of

model systems and simplified alphabets (Solis and Rackovsky, 2000). However, we are

also interested in obtaining results of practical interest whenever possible. To do so, we

must examine the relationship of model results to the properties of the “real” world of

Sequences and conformations. This relationship is not a formal part of information theory

and will involve additional assumptions or hypotheses, whose information content can be

--

ºj--

º
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evaluated, but whose truth must be established by other methods. For example, it is

straightforward to evaluate the informational consequences of the proposition that the

known sequences are a random subset of all possible sequences. But, information theory,

alone, cannot determine its validity.

Entropy and Information

Given a metric set, M, the information content of the set can be measured in bits

by its partitioning effect on the ensemble of structures and sequences using Shannon's

formulation (Shannon, 1948):

I(M) = -X [p, log2(p)] (1)

in which pk is the population of cluster k expressed as a fraction of the ensemble,

Summed over all clusters. These clusters are subsets of the population of conformers that

are indistinguishable under a particular constraint.

The information required to select an individual entity from Wis defined as:

P = log, (W) (2)

where W is the ensemble size. I* is referred to as the "source" information (Shannon,

1948).

Sequence Alignment

Overview

Sequences of proteins or nucleic acids of unknown structure and function are

Sources of information through association with other sequences where the

function/structure is already known. The most widely used associative process is

“alignment”. Alignment algorithms can be divided into two categories, global and local.

A global alignment (Needleman and Wunsch, 1970) looks for the best overall similarity

=
5
j
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among sequences while a local alignment (Smith and Waterman, 1981) searches for

similar subsequences among two proteins. Both of these algorithms make use of a variety

of scoring matrices and gap penalties (Altschul, 1998; Apostolico and Giancarlo, 1998;

Benner et al., 1993; Koretke et al., 1996; Lesk et al., 1986; Qian and Goldstein, 2002).

Sequence alignment problems are underdetermined, having multiple optimal Solutions

depending on the parameters used. Thus far there has not been a quantitative analysis of

the parameter dependence, one reason being the absence of a standard comparison metric.

With an information theoretic approach, we are able to formalize the effects of these

parameters. We consider the sets of sequences of length N, drawn from an alphabet of A

characters. Assume that the characters are used with equal frequency. Then each

sequence has equal weight and there are A" unique sequences. The information content of

the set is simply Nlog2A. Alignment procedures require the definition of a template of

length T ~ N. The template may contain gaps – that is the string for the template may

contain one or more positions that match any character. Alternatively, the template may

be considered continuous and the sequences with which it is being compared can contain

gaps. The critical question for clustering is how many sequences of an exhaustive list

match a specific template. Most generally, because there is nothing of special interest for

any given template, we are interested in the information content averaged over all

templates of a certain type. We begin with the case of gapless pair-wise alignments and

then move to multiple-gapped alignments. Our goal is to use both exhaustive and

stochastic data sets, along with simple alignment models, to provide insight into the

informational issues associated with sequence comparisons.
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Statistics from alignments are gathered under two scenarios. 1) For every

sequence in the data set, a single (first) occurrence of the template, T, is sufficient for

cluster assignment during sequence alignment, and 2) All possible occurrences of a

template are sought in each sequence of the data set (henceforth referred to as 'complete

alignments').

Gapless Alignments

For an A-letter alphabet, the total number of possible N-letter sequences is A^.

W = A^ (3)

In the simplest case, we consider those template sequences of length T whose elements

are found in contiguous positions in probe sequences of length N. Defining M = N-T, the

templates can be anchored in M+1 positions and A" choices will match, leading to an

estimate of (M+1)A" sequences if there are no duplicate sequences. Consequently, the

information required to distinguish among the ungapped clusters in an exhaustive set is:

W = (M + 1)A"
I* = Mlog. A + log (M + 1)

(4)

This formula counts exactly all occurrences of the template in complete (multiple

occurrence) alignments. For a two letter alphabet consisting of 0's and 1's the templates

are of the form 01, 001, 0001, ....

For single occurrence, ungapped alignments, we have an alternative approach

using the i) contiguous string, and ii) the standard formula for the probability of failure to

match, PE, given the probability of occurrence of the template, pr and the number of

independent attempts taking pre (1/A)' and prº- (1-p)" . The probability of a hit, pH,

is then (1 - pe) and the number of hits is A^*p/. (Equation 5). This formula normally

!º;
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underestimates when compared to exact counting. However, Equation 5 provides useful

values for I for the full range of M for single occurrence of templates (see results).

I"- Nlog24 +log, [1-(1-p)"] (5)
Gapped Alignments

For more general gap distributions, where all templates of length T = N – M are

aligned against a probe of length N, we need to consider the combinatorial arrangement

of gaps of varying length. For gaps of minimum length one, there will be

C (N, M) = N!/M!(N-M)!

ways to arrange the gaps in an N-long sequence. However, if we require the minimum

gap size, Gmin, to be greater than one, then the effective length of the sequence is reduced

to Neffective = N – M*Gmin + M. There are AM sequences for each arrangement.

W = C(N., M.).A" (6)
I* = Mlog, A + log,C(N.,M)

Results for Gun – 1 are exact for complete alignments (see results).

We have also found an alternative formulation leading to an exact solution of the

number of gapped matches for single occurrences of the template. The number of hits to

match a given template of length T where M = N – T, against an exhaustive set of

Sequences becomes:

M

W. =XXIC(N, M)” (A-1)"] (7)
l

This equation (developed empirically from the counting data) provides exact counts over

the complete range of N. T. When converting to bits of information the right-hand side of

Eq. 7, generally can not be reduced to a simpler form; however, when A P 2 and T ~95%

;
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of N, the second term sufficiently dominates so that the summation is no longer needed.

Under these circumstances, the information change is, to a good approximation:

I* = log,C(NM)*(A – 1)" (8)

Gap Penalties

The formulas above quantify the amount of information associated with

successful alignments when an exhaustive basis set of all possible sequences is available

and can be used to set bounds on gap penalty values (see results). Gap penalties have also

been derived by directly examining the length distributions of gaps in systems where

structural alignment is possible (Qian and Goldstein, 2001). To compare our exhaustive

reference state to these values, we can use our counting experiments to determine the

distribution of gap lengths for sets of sequences and templates of varying length. We then

calculate gap initiation (Y) and extension(YE) penalties based on the log of probabilities

following Qian and Goldstein (Qian and Goldstein, 2001):

| P. 2//= [O , -— | –
Y, - IOg, 1–exp(−1/2)
ye = −1/A

(9)

Here, Pg is the probability of opening a gap, and A is the half-decay of the exponential

representing the gap length distribution.

Search Algorithm Methods

First OCCurrence Alignments

For every sequence, S, in the set, given a template T. we look for the first

occurrence of the symbol in position one of the template. Looking forward, we then look

for the first instance of the symbol in the second position of the template and so forth,

until the last position in the T. If a symbol is not observed in S in order of appearance in

s
º5
º º

5
º
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T the search is terminated. Indices of each hit in the sequence are tabulated in order to

determine the length of the gap among instances of each symbol present in the template.

Multiple OCCurrence Alignments

Figure 1 shows how the occurrences of a template T are sought in a sequence, S,

consisting of an alphabet of size A. The final list contains all the occurrences of Tin S by

specifying the indices of the symbols in S. The positional indices for each occurrence are

used to determine the distribution of gap lengths.

FIGURE 1: Search algorithm for finding all occurrences of T is S.

for each symbol, o, in the alphabet
pos = [position indices of a in the sequence S]

to – post(0) (first symbol of the template, T)
for i = 0 to (length T–2):

for each s in ti
for each p in postGri)

ifs ‘p add {s,p} to till

Exhaust've vs. Incomplete Sequence Sets

Mapping

We turn to the question of how to compare results from the exhaustive list of sequences

with those generated from a (sub)set of observed sequences. There are several issues.

First, the set of observed sequences is not fixed but is continually updated with new

Sequences being added and old sequences being modified or even deleted. We are not

concerned with these dynamics. For our purposes we can take a “snapshot” of the

observed data. A second concern is that the observed sequences show unequal utilization

of the characters. Such variable weightings were part of Shannon’s initial formulation

and Eq. 1 yields a single correction term equal to 0.12 bits/amino acid based on the non

uniform composition of amino acids in real proteins (Strait and Dewey, 1996). Higher
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order terms dealing with joint probability of multiple characters can also be considered as

“corrections” to the simple assumption of equal frequencies (Cline et al., 2002).

Of more interest, and complexity, is whether there is a simple model that

describes the relationship of the observed sequences to the exhaustive set. Many

hypotheses can be put forward. We will consider two: 1) the observed sequences are a

random subset of the exhaustive sequences and 2) the observed sequences are an

“evolutionary” subset of the exhaustive sequences. Our question is how the basic

formulas for information content of sequence alignments, Eqs. 4–7, are changed for these

two hypotheses.

To examine the nature of alignment information for a random subset of the

exhaustive sequences we generated sets of 10,000-100,000 random sequences of lengths

N= 10, 20, 30 for A = 4. These were scanned with templates of various lengths and gap

lengths. The number of hits was recorded with each of the sequences as a starting point

and the probabilities of clustering were calculated. The information for each alignment

procedure was tabulated.

We also explored a simple evolutionary model based on the constraint that L of

the N positions in the exhaustive set did not vary. The resulting subset of sequences is

thus in exact correspondence to sequences from the exhaustive list for N” where N = N

L. The methods of equations 4-7 can then be applied.

Correlation of Sequence A■ ignment and Conformational Resolution

Of course, random and evolutionary models do not exhaust the list of sequence

“constraints”. Another important set of limits on the database of observed sequences is

that many of the sequences of nucleic acids and presumably most of the protein

---
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sequences arise from sequence subsets that provide stable 3-dimensional (tertiary)

structures for some range of physical variables. We do not attempt such a model in this

paper, but others have approached the problem (Helling et al., 2001; Lau and Dill, 1990).

Re/ationship to standard alignment efforts

To conclude this section, we return to the difference between our approach and

the standard use of sequence alignment procedures. As noted above, the normal use of

alignment is to increase the “information” associated with a given probe sequence, by

associating it with one or more sequences of known properties. This information increase

corresponds to a shift in the reference state from that we have used (the information lost

as sequences are clustered) to the information gained as a single sequence is placed into a

cluster smaller than the full set of sequences, from which it was indistinguishable before

the alignment procedure. A successful alignment decreases the uncertainty below that of

the entire ensemble.

Iºan – f – I" (10)

This is a measure of the information gained by aligning sequences.

RESULTS
We have studied two alignment models, treating “ungapped” or gapped templates.

We have both analytic formulas and statistical results for the information. In addition, we

have collected statistics on gap frequencies and the probability distribution of gap

lengths. As noted earlier, Eq. 4 and Eq. 5 describe the ungapped data exactly for multiple

hits (Table 1) and within an average of 3% for single occurrences (Table 2) respectively.
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Ce
TABLE 1: Gapless alignments for exhaustive sequence sets – Multiple Occurrences as described by Eq. 4. º

º
º

Alphabet Template Sequence Number of Hits

Size (A) Length Length M AM (M+1)A" (Actual Count) Cº.
2 3. 20 17 131072 2359296 2.359296

2 20 16 65536 11141.12 11141-12 &
2 5 20 15 32768 524288 524288 º
2 6 20 14 16384 245760 245760 º
2 7 20 13 8.192 114688 11.4688 º
2 8 20 12 4096 53248 53248
2 9 20 11 2048 24576 24576 c
2 10 20 10 1024 11264 11264
2 11 20 9 512 5120 5120
2 12 20 8 256 2304 2304
2 13 20 7 128 1024 1024
2 14 20 6 64 448 448
2 15 20 5 32 192 192
2 16 20 4 16 80 80
2 17 20 3 8 32 32
2 18 20 2 4 12 12
2 19 20 1 2 4 4
2 20 20 0 1 1 1

3 3 12 9 19683 1968.30 1968.30
3 4 12 8 6561 59049 59049
3 5 12 7 21.87 17496 17496

3 6 12 6 729 5103 5103 --
3 7 12 5 243 1458 1458

3 8 12 4 81 405 405 º
3 9 12 3 27 108 108 º

3 10 12 2 9 27 27 _º
3 11 12 1 3 6 6 **
3 12 12 0 1 1 1

---

º
---

TABLE 2: Gapless alignments for exhaustive sequence sets – 1st Occurrence as described by Eq. 5. ---

Eq. 5: Number % - -

Alphabet Template Sequence Number of of Hits Difference º ºº
Size (A) Length Pi Length" M Pl," Hits (actual) Al # Hits º,

º
2 3. 0.125 20 17 9.10E-01 95.3790 101.9920 19.96 6.48 -- C
2 4. 0.0625 20 16 6.66E-01 698541 782497. 19.58 10.73

2 5 0.03125 20 15 3.98E-01 417637 458495. 18.81 8.91 ■ o2 6 0.015625 20 14 2.10E-01 220618 234280 17.84 5.83 -

2 7 0.007813 20 13 1.04E-01 109042 1.12896 16.78 3.41 --- c
2 8 0.003906 20 12 4.96E-02 52018 53008 15.69 1.87 º &
2 9 0.001953 20 11 2.32E-02 .24314 24552 14.58 0.97 - º º
2 10 0.000977 20 10 1.07E-02 11209 11263 13.46 0.48 ** sº
2 11 0.000488 20 9 4.87E-03 5109 5120 12.32 0.22 --- ~

2 12 0.000244 20 8 2.20E-03 2302 2304 11.17 0.10 º cº
2 13 0.0001.22 20 7 9.76E-04 1024 1024 10.00 0.04 º
2 14 6.1E-05 20 6 4.27E-04 448 448 8.81 0.02
2 15 3.05E-05 20 5 1.83E-04 192 192 7.58 0.01 --

2 16 1.53E-05 20 4 7.63E-05 80 80 6.32 0.00 2 -
2 17 7.63E-06 20 3 3.05E-05 32 32 5.00 0.00 - ■ !/?
2 18 3.81E-06 20 2 1,14E-05 12 12 3.58 0.00 *-
2 19 1.91 E-06 20 1 3.81E-06 4 4 2.00 0.00
2 20 9.54E-07 20 0 9.54E-07 1 1 0.00 0.00 L!

-

3 3 0.037037 12 9 3.14E-01 167064. 176957 17.43 5.59 •o
3 4 0.012346 12 8 1.06E-01 56215 57835 15.82 2.80 º
3 5 0.004115 12 7 3.25E-02 17246 17442 14.09 1.12 º
3 6 0.001372 12 6 9.56E-03 5082 5102 12.32 0.39 º
3 7 0.000457 12 5 2.74E-03 1456 1458 10.51 0.11
3 8 0.000152 12 4. 7.62E-04 405 405 8.66 0.03
3 9 5.08E-05 12 3 2.03E-04 108 108 6.75 0.01

3 10 1.69E-05 12 2 5.08E-05 27 27 4.75 0.00 º
3 11 5.65E-06 12 1 1,13E-05 6 6 2.58 0.00 3.
3 12 1.88E-06 12 0 1.88E-06 1 1 0.00 0.00 º

Sample Sze-A" cº
* Pue 1-Pe º

Tables 3 and 4 show that Eq. 4 and Eq. 5, respectively, provide an exact numerical result

for complete alignments.
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TABLE 3: Gapped alignments for exhaustive sequence sets – multiple occurrences as described by Eq. 6.
Number of

Alphabet Template Sequence Hits Eq. 6:
Size(A) Length Length" M (actual) Al C(N,T) (A)" c(NT)(A)"

2 3 20 17 1494.22080 27.15 1140 131072 1494.22080
2 4 20 16 317521920 28.24 4845 65536 3.17521920
2 5 20 15 508035072 28.92 15504 32768 508035072

3 3 12 9 4330260 22.05 220 19683 4330260
3 4 12 8 3247695 21.63 495 6561 3247695
3 5 12 7 1732104 20.72 792 21.87 1732104

• Sample Size = AN

One of our primary concerns is the implication of these results for gap penalties.

We can get estimates of these penalties by examining the equations directly, or we can

calculate the distribution of gap lengths. Equations 4-7 contain terms sensitive to M (the

total length of all gaps), as well as terms that depend on the size of the alphabet, A, the

length of the template, T, and the length of the sequence, N. These formulations do not

yield cleanly separable gap initiation and gap extension terms. However, they are

generally consistent with a gap extension “penalty” that costs information at the rate of

log2A per unit of gap length. The full loss (initiation + extension) at M =l is log2(A*N).

For N=100, such a penalty would be equivalent to -6.0 for A = 4 and —7.6 for A = 20 in

the units normally used for sequence alignment programs (i.e. ln A). These values are

model-dependent. We also note that, for equivalent coding, the nucleic acid model, A =

4. Would have an N of 300, yielding a penalty term of -7.1. These results are in

reasonable agreement with the range of empirical gap initiation penalties reported by

Qian and Goldstein, see fig. 2 (Qian and Goldstein, 2002).

We can glean additional insight into gap penalties by examining the probability

distribution of gap lengths (Qian and Goldstein, 2001). We gathered these data either

from short exhaustive binary sequences or from samples of longer sequences with larger

alphabets. There are two ways that we can count gap frequencies and gap lengths (see

methods). First, for the equations given above, we have used a “first occurrence” model
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-
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in which the gap length data are taking from the initial successful match of a template to e.
º

a sequence.
Cº.

TABLE 4: Gapped alignments for exhaustive sequence sets – 1st Occurrence model as described by Eq. 7.
-

sº
º

Number º
Alphabet Template Sequence of Hits º cº

Size(A) Length Length" M_(actual) Failures Al C(N,T)(A-1)"
2 3 20 17 104.8365 1140 20.00 1140
2 4 20 16 10472.25 4845 20.00 4845
2 5 20 15 1042380 15504 19.99 15504
2 6 20 14 1026876 38.760 19.97 38.760
2 7 20 13 9881 16 77520 19.91 77520
2 8 20 12 910596 125970 19.80 125970
2 9 20 11 784626 167960 19.58 167960
2 10 20 10 616666 184756 19.23 184756
2 11 20 9 431910 167960 18.72 167960
2 12 20 8 263950 125970 18.01 125970
2 13 20 7 137980 77520 17.07 77520
2 14 20 6 60460 38.760 15.88 38.760
2 15 20 5 21700 15504 14.41 15504
2 16 20 4 61.96 4845 12.60 4845 --

2 17 20 3 1351 1140 10.40 1140 -
2 18 20 2 211 190 7.72 190 º

2 19 20 1 21 20 4.39 20 º
= -

3 3 12 9 435185 112640 16.78 112640
3 4 12 8 322545 1267.20 16.95 1267.20 --
3 5 12 7 195825 101376 16.63 101376 sº
3 6 12 6 94449 59.136 15.85 591.36 n
3 7 12 5 35313 25344 14.63 25344 --

3 8 12 4 9969 7920 12.95 7920 º
3 9 12 3 2049 1760 10.78 1760 -
3 10 12 2 289 264 8.04 264 --- º
3 11 12 1 25 24 4.58 24 º

• Sample Size = A^ º
- *o

º

FIGURE 2: Distribution of gap initiation and extension penalties. Medium hashed bars designate gap -- o
-

Initiation. Solid bars: gap extension. Dense hash bars: gap initiation + gap extension *- º º~-
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Alternatively, we can identify all matches of a template with a specific sequence,

and for each match, tabulate the gap length information. We call this model a “multiple

occurrence” model. It might be closer to the empirical data reported by Qian and

Goldstein (Qian and Goldstein, 2001).

Our basic findings are: 1) Most of the gap length distributions can be

approximated by an exponential, but those arising from larger alphabets and longer

templates clearly have more complex character. The distributions can be numerically fit

as multiple exponentials similar to those found by Qian and Goldstein for sequence

alignments of proteins of known structures. They can also be fit with polynomial

functions. It is not obvious whether these expanded functions carry any physical

significance. 2) For the first occurrence model, the exponential decay increases strongly

with alphabet size and slowly with sequence length (Table 5).

However, for the “multiple-occurrence” model, the exponential decay is

independent of alphabet size, although it still increases with N and decreases with T

(Table 6). 3) If we use the single exponential approximation and the treatment of Qian

and Goldstein (see Eq. 9 above), we get the range of gap penalties shown in figure 2. Our

values are consistently on the low end of the empirical range.

To make the comparison with the values in the literature (Qian and Goldstein,

2002) more useful, we must consider two additional issues: first, how does the set of

observed sequences relate to the exhaustive reference state we have been using. Second,
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TABLE 5: Gap distributions and gap penalties for the 1" occurrence model º
º

N Alphabet Template Total # Total # Pg A (-) Y. (-) Y. ºŠlë—Heath—Gees—his gap—I UT) ºrgap-E

10 2 2 1004 1013 1,043 1.425 0.676 0.702 Cº.
10 2 3 1398 968 1,219 1.352 0.632 0.739

10 2 4 1528 848 1.695 1.209 0.552 0.827 -
&
--

20 2 1048536 1048555 1.000 1.443 0.693 0.693 **
20 2 3 1572291 104.8365 1.001 1.442 0.693 0.693 -

20 2 4 2092512 1047225 1.004 1.441 0.692 0.694 º
50 2 2 1009981 1000000 0.997 1.444 0.694 0.692
50 2 3 1514903 1000000 0.996 1.445 0.694 0.692
50 2 4 202011.6 1000000 0.999 1.443 0.694 0.693
50 2 5 2524.154 1000000 0.997 1.444 0.694 0.692

100 2 2 99.9853 1000000 1,000 1.442 0.693 0.693
100 2 3 1501.252 1000000 1.000 1.443 0.693 0.693
100 2 4 2000332 1000000 0.999 1.443 0.693 0.693
100 2 5 2501670 1000000 0.998 1.444 0.693 0.693

20 4 4 28163173 774544 0.170 2.928 1.215 0.341
20 4. 5 54233834 585323 0.228 2.589 1.112 0.386
20 4 6 1.08E+08 383398 0.316 2.264 1.004 0.442
20 4 7 2.16E-108 214460 0.447 1972 0.897 0.507

50 4 4 2998161 999517 0.111 3.477 1.386 0.288 ---
50 4 5 3740043 997.900 0.112 3.471 1.384 0.288
50 4 6 4461340 99.2992 0.112 3.460 1.381 0.289 º
50 4 7 5126973 980.293 0.114 3.439 1.374 0.291 º

100 4 4 29997.27 1000000 0.111 3.472 1.385 0.288 º
100 4. 5 3750300 1000000 0.111 3.473 1.386 0.288
100 4 6 4500088 999998 0.111 3.472 1.386 0.288 --
100 4 7 5248.490 999998 0.111 3.474 1.386 0.288 º
100 20 2 1826955 96311 1 0.003 19.056 2.958 0.052
100 20 3 2500674 88.1617 0.003 17.958 2.894 0.056 º
100 20 4 2792228 74.1973 0.004 16.435 2.804 0.061

100 20 5 2637250 564,189 0.005 14.822 2.703 0.067 - ->
100 20 6 2133962 383374 0.006 13.287 2.597 0.075 º ºº º

º º

TABLE 6: Gap distributions and gap penalties for the multiple occurrence model To
º ºAIFF■ EETrampara-Tatari■ -Tatar; º

-
(–) (–) º wº

N Size Length Gaps Hits Pg A Ygap—I Ygap-E º º
--

- -
>

20 2 3 2.99E-08 1.49E+08 0.031 5.974 1.944 0.167 3
20 2 4 9.53E+08 3.18E+08 0.058 4.298 1.737 0.233 º cº
20 2 5 2.03E 4-09 5.08E+08 0.096 3.330 1.592 0.300 |

20 3 3 843551.36 42177568 0.028 6.301 1990 0.159 º *)/2/2,
20 3 4 1.79E-08 59655795 0.052 4,542 1.783 0.220 º
20 3 5 2.54E-108 63554.348 0.085 3.528 1,637 0.283

20 3 7 2.12E-108 35334238 0.217 2.222 1.414 0.450 L. B.
20 4 3 35598.996 17799498 0.031 5.976 1.945 0.167 º
20 4 4 56714217 18904739 0.052 4,545 1.784 0.220 º |
20 4 5 60481940 15120485 0.085 3.529 1,637 0.283 º
20 4 7 28234680 4705780 0.187 2,367 1.456 0.423 º,

º
50 2 3 4.95E4-09 2.47E+09 0.004 15.899 2.774 0.063 y ~
50 2 4 4.36E410 1.45E4-10 0.008 11.713 2.529 0.085 º
50 2 5 2.65E+11 6.62E110 0.012 9.488 2.362 0.105 sº ■
50 3 3 1.45E4-09 7.26E408 0.004 15.902 2.774 0.063 º
50 3 4 8.54E-109 2.85E+09 0.008 11.717 2,529 0.085 AQI"50 3 5 3.49E+10 8.72E+09 0.012 9,292 2.342 0.108

50 3 7 3.2E+11 4.57E+10 0.023 6.661 2.087 0.150 º2001/
50 4 3 6.12E-108 3.06E4-08 0.004 16.223 2.794 0.062 -

50 4 4. 2.7E+09 8.99E+08 0.008 11.715 2.529 0.085 -
50 4 5 8.26E409 2,07E409 0.012 9.291 2.342 0.108
50 4 7 3.65E+10 6.08E4-09 0.023 6.659 2.087 0.150 -

*e [ºº
º

º
0

º
º

105 - *N ■





how do the results depend on the type of gap model chosen? We can imagine that the

experimental sequences map onto the exhaustive sequences via random selection or via

evolutionary selection. A random model is easily constructed. Within the expected

statistical variation, the numerically-derived probabilities are equal to those from the

formulas. Evolutionary models for the observed sequences can also be constructed. Two

such models would be: 1) use of a full alphabet for a subset of the sequence positions

with the other positions fixed; 2) restricted alphabets at all sequence positions. In the

former case, we would expect the equations to apply directly, but with a reduced chain

length. In the second example, we can approximate the effects by using a reduced

alphabet. We obtained numerical data on the fixed position model, using fully variable

15mers embedded in 20mers with the first 5 positions invariant. The (exhaustive) results

(figure 3) for first occurrence gapped hits closely correspond to the exhaustive 15mer

data, suggesting that Equations 6 and 7 are good approximations for sequences generated

by evolutionary relationships. However, when we compute the full occurrence gap length

distributions for the same data set, the situation is more complicated. The distribution

functions are intermediate between the 15mer and 20mer data, with the distributions

closer to the 20mer results (Figure 4).
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FIGURE 3 : Average number of gapped hits for all possible 5mer templates in 32 related 20mer Cº.º
evolutionary subsets using the single occurrence model. Average hits for the 15mer and 20mer exhaustive º
sets are shown on the axis ends.
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The other question raised above is what type of gap simulation best captures

“normal” alignment procedures, as, for example, in the Needleman-Wuntsch algorithm.

The essential issue is that the “real world” data are drawn from a highly heterogeneous

sequence set. The sequences and templates are of variable lengths, and the alphabets,

while nominally of 4 or 20 letters, have unequal utilization of the letters in a

sequence/structure dependent manner. Furthermore, the results depend on whether “first

occurrence” or “multiple occurrence” statistics are used. While our “penalties” cannot be

used directly for any empirical data set, two practical suggestions are that gap penalties

should differ for nucleic acid vs. amino acid sequence alignments, and that it would be

useful to generate sequence-length dependent penalty corrections.

DISCUSSION

Most scoring matrices are heavily parameterized. It is common practice to

develop reliable test sets of either sequence or structure alignments in order to derive

empirical statistics for parameterization. Although many of these functions work well

when applied to known sequences and structures they often fall short when dealing with

novel targets. The protein databank (PDB) is the largest available test set, however it has

not yet been possible to verify any of the empirical methods developed to date using the

PDB in its entirety. And even if it were feasible to test the entire PDB, we do not

understand the scope of the PDB as subset of the entire protein universe. Our approach in

this paper has been to use simple, exhaustive models whenever possible. This approach

sheds light on current practices and provides guidelines for the development of future

methodologies by benchmarking the information content of the available data.

108





Score matrices are valued for their discriminating power when faced with choices

among similar sequences. Their resolution is determined by both sensitivity and

selectivity thresholds. For sequence alignments, the choices of gap penalties as well as

the scoring matrix are critical components. The root question is whether there is a “best”

set of gap penalties. As mentioned above, the empirical gap penalties currently in use are

obtained from training sets on homologous proteins. By analyzing exhaustive sequence

sets, we have derived formulas for sequence clustering under a variety of gap types.

These formulas suggest length and alphabet size dependencies that are not directly

included in current methods. We also have examined gap occurrence probabilities,

finding that they (approximately) follow a geometric distribution. As noted in the results

Section, the differing approaches to calculating gap penalties yield a range of answers.

Most of our results are at the low end of reported range of gap penalties. One reasonable

explanation is that the set of known sequences is heavily weighted to higher than random

similarity because of Some combination of evolutionary and structural constraints (e.g.

reduced gap probabilities inside secondary structure elements). It is an open question

whether our values will lead to better alignments in a biased data set. However, it is likely

that including specific length and alphabet size dependencies in empirical studies would

be helpful.

Although our exhaustive results are limited (N = 20; A = 2), we observe the same

general behavior and trends for numerically sampled sequences using four-letter as well

as 20-letter alphabets. The move from simple to more complete models will shift the

reference states but not the general trend. Such quantitative assessments are critical for

improving the effectiveness of scoring functions used in various alignment protocols.
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.

In this paper, we explore the information content of molecular force field calculations. Cº.

&
We make use of exhaustive lattice models of molecular conformations and reduced .*

-

calphabet sequences to determine the relative resolving power of pair-wise interaction

based force fields. We find that sequence-specific interactions that operate over longer

distances offer greater amounts of information than nearest neighbor or non-sequence

specific interactions. In a companion paper we explored the information content of

sequence alignments and gap penalties. We find that the general trends in both papers can ºbe extended to real proteins and nucleic acids.
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INTRODUCTION

Predicting the three-dimensional structure of macromolecules from their

sequences remains a fundamental problem of great interest in biology and a most

challenging theoretical puzzle; and to date, most attention has been focused on proteins.

Current protein folding hypotheses assume that the native structure is the conformational

set of lowest free energy when compared to all other accessible conformational

ensembles. To test this assumption, the free energy of all conformations must be

calculated, an intractable undertaking at present. A first step to solve this problem is to

develop a “force field”, typically based on atomic interactions, which can, in principle, be

evaluated, for all conformers. Force fields are developed from experimental geometries

and energies of small molecules, often with the help of high-level quantum mechanical

calculations (Kollman, 1993). The accuracy and validity of force fields is tested by

comparison against experiments. But only in the simplest cases of very small systems can

conformational space be explored exhaustively (Kuntz and Agard, 2003). Our aim here is

to present a framework for understanding the discriminatory power of various force fields

using information theory. We emphasize, however, information theory, alone, cannot be

used to verify the physical correctness of force field terms.

In a companion paper (Aynechi and Kuntz, 2005) we use information theory to

quantify the information gained during sequence alignment procedures and show how to

extract gap penalty values based on actual gap distributions rather than empirical

optimization. In this work, we wish to extend our methods towards the understanding of

force fields.
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Determining the lowest energy conformation from among all possible three

dimensional structures of a given sequence requires an energy function capable of

discriminating among native and decoy conformations. Many force fields and scoring

functions have been developed for this purpose (Bahar and Jernigan, 1997; Halgren,

1995; Jones et al., 1992; Park and Levitt, 1996; Sippl. 1995; Tenette et al., 1996). Some

are physics-based, concentrating on pair-wise or higher order atomic interactions while

others, such as potentials of mean force, incorporate properties of the ensemble.

Alternatively, one can define an empirical score function using training data and then

apply these functions to sequences/structures to test their efficacy.

However, there is no agreed measure for evaluating the above methods nor is

there consensus on what these methods should accomplish. It has been shown that most

statistically derived potentials are inadequate in the representation of real world proteins

(Park et al., 1997; Thomas and Dill, 1996). In addition, because the structures in the

Protein Databank (Berman, 2000) represent only a fraction of the protein conformational

space, the question of whether parameter-based methods, or those relying on potentials of

mean force, will fail when a new structure lies outside the training data remains

unanswered. Physics-based methods avoid this particular extrapolation problem, but, as

noted above, can fall short due to the computational costs of conformational sampling

and the complexity of comprehensive atomic interaction models (Feldman and Hogue,

2002; Sullivan and Kuntz, 2004). The utility of simplified models depends on the level of

resolution required (Huber and Torda, 1998). Thus efficient use and development of

future and current methodologies require an in-depth understanding of their behavior and

dependencies. As previously demonstrated (Aynechi and Kuntz, 2005; Sullivan et al.,
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2003), exhaustive 2D lattice models (Chan and Dill, 1989) and information theory

(Young, 1971) allow us to move from an empirical regime towards an analytical

formulation. We can then quantitatively measure the discriminating power of various

scoring functions and force fields, develop metrics for performance analysis and draw

inferences that cross over to real proteins.

In this paper we will examine various force fields for their ability to distinguish

among conformations given a set of all possible conformations and all possible

Sequences.

METHODS

Overview

Our basic approach is to write out all possible occurrences of the set of interest

(conformations, sequences, etc.) and then ask what the informational consequence of

performing an operation that combines or clusters some of the objects. In particular, we

will score a set of conformations using various force fields and cluster the conformations

based on the degeneracy of their scores (energies). The information content of the

original set of W objects is log2 W. An “object” in this context will be a specific

conformer with a specific sequence. Any clustering will reduce the effective number of

objects and hence reduce the information content of the transformed set. Of course, it is

not feasible to write out all possible protein or nucleic acid sequences or all possible

macromolecular conformations. Instead, we will make use of walks on two-dimensional

lattices and simplified alphabets (Chan and Dill, 1989; Dill et al., 1995; Solis and

Rackovsky, 2002). However, we are also interested in obtaining results of practical

interest whenever possible. Also, we must add the caution that information theory is
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analogous to statistical mechanics: it provides formal consequences of initial *
º

assumptions, but the truth of those assumptions has to be established from additional cº

context. For example, the information content of an electrostatic theory in which like s
charges attract is indistinguishable from the information content of a theory in which like > c

charges rebel, but only one of these models describes our experiential universe.

Entropy and Information

As before (Aynechi and Kuntz, 2005) the information content of an ensemble

recovered by a constraint set M in bits is defined to be the Shannon entropy (Shannon,
º

1948): --
--

I(M) = -2\pi log2(p)] (1) º

in which pk is the population of cluster k expressed as a fraction of the ensemble, º
-

summed over all clusters. The population clusters become indistinguishable when the º
-

º

constraints are imposed on the ensemble W. so

The theoretical information content of the ensemble of size, W, is defined as: s
º

P = log, (W) (2) cº

I’is referred to as the "source" information (Shannon, 1948). "Dºº,
~

L!!
Protein Mode/s º

-

We will employ the two-dimensional lattice models of Chan and Dill (Chan and º,
º

Dill, 1989) and focus our discussion on protein-like conformation space. We will extend y ººº
our results to nucleic acids only at the level of the alphabet size and will not consider sº

Aºi

nucleic acid conformers, per se. We will use the Cartesian (through-space) distance, d, 22%3A
between beads i, j is defined as:

-

d = ((x-x) + (y-y’)” (3) *
%

*

o -
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Chains of beads, each bead representing one "residue", are arranged in self

avoiding walks according to the following rules. The elementary step, the distance

between consecutive beads, dily, is fixed at unit length. The move set is limited to a

single step with diagonal moves disallowed. Beads cannot overlap (the excluded volume

constraint). This set of walks is the same as the exhaustive ensembles of Chan and Dill

(Chan and Dill, 1989) that count all conformations not related by translation, rigid

rotation, or reflection. The N-terminus to C-terminus directionality of proteins is

preserved in these ensembles.

We will explore two types of conformational sets: exhaustive, which contains all

conformers allowed by the rules (Table 1), above, and compact, the set in which all

vertices of an i X j = N two-dimensional lattice must be occupied (Table 2). All

conformations of up to length 26 have been enumerated. We also generate semi-compact

structures by fitting the Nmer to the next smallest perfect-square lattice (Table 2).

Compact lattices were obtained in an efficient manner by modifying the generation

program to terminate whenever the i or j limits were exceeded.

TABLE 1: HP sequences and self avoiding 2-dimensional walks on a square lattice

HP sequences and self-avoiding 2-dimensional lattice walks on a square lattice
Chain Length (N) # HP # Fully # Structures Total pairwise Source (bits)

sequences Enumerated Generated (W)
generated Structures

4 16 5 5 80 6,322
5 32 13 13 416 8,700
6 64 36 36 2,304 11.170
7 128 98 98 12,544 13.615
8 256 272 272 69,632 16.087

10 1,024 2,034 2,034 2,082,816 20.990
12 4,096 15,037 15,037 61,591,552 25,876

16 10,000" 802,075 10,000" 10,000" 13.288
25 10,000” 5,768,299,665 10,000- 10,000" 13.288

*: stochastically generated
": Random sequence/structure pairs
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TABLE 2: Compact and semi-compact hamilton walks

Chain Length (N) Lattice # HP sequences # Compact Total pairwise sº (bits)
dimensions Structure (W)

9 3 x 3 512 5 2,560 11.322
12 3 x 4 4,096 31 126,976 16.954
16 4 x 4 65,536 69 4,521,984 22.109
24 5 x 5 10,000" 5,398 53,980,000 25.686
25 5 x 5 10,000" 1,081 10,810,000 23.366
26 6 x 6 10,000" 10,000° 10,000 13.288

stochastically generated

Simplified Potentials
HP interaction model

The sequence space of proteins grows exponentially as 20° if the natural amino

acids are used. In order to exhaustively explore sequence space, the HP model (Lau and

Dill, 1989) of residues is used to generate all possible sequences of length N (Table 1).

The residues are typed as H (nonpolar) and P(polar). For every sequence, all possible

conformations are generated on the two-dimensional lattice and the interaction energy is

calculated for each structure according to some interaction rule set. For example, residues

can be said to interact if their geometric distance, dj, within the lattice is one unit length

or less, and they do not occupy adjacent positions in the chain. The energy of a structure

is lowered by an amount g if the interacting residues are both of the type H. In the

original Dill formulation, HP and PP interactions do not lower the energy of the

conformations. The interaction energy, eith, is:

k

€1m – X. & ; k is # of interacting HH pairs (4)
|

The partitioning power of the interaction energy will be determined in bits using

Shannon's entropy. In our implementations we assume that all energy differences are

resolvable, In effect, we are measuring the diversity of the energy landscape, that is the

distribution of conformer-sequence pairs that have specific energies. We do not get
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formal entropies from this characterization because we are not examining the conformer

distribution at specific temperatures. Nor do we have to be concerned about the

interconvertibility of conformers and sequences. Extension to other interaction rules and

larger alphabets is straightforward.

Solvation Model

Interactions among solvent and protein can be difficult to model with any realism.

We employ a simple procedure that again uses all possible conformations of Nmer chains

on the two-dimensional lattice (Table 1). Residues are classified as buried, exposed, or

partially buried. On a two-dimensional lattice, each vertex has a coordination number z =

4. A buried residue is one whose three surrounding vertices (other than its immediate

predecessor in the chain) in the lattice are occupied by other residues. An exposed residue

is surrounded by three unoccupied vertices and a partially buried residue has one or two

of the vertices filled. The same sequence/structure pairs used above are used here as

well. However, in addition to the HH contact score a solvation score is also added to each

residue's energy contribution. For every filled coordination site a contribution & is added.

A fully buried residue would incur an additional term equaling 33, while an exposed

residue would have no added term. Again, we will assume that each energy level is fully

resolvable, and we count the number of objects in each energy level.

ElectroStatic Interactions

Electrostatic interactions within molecules play an important role in defining their

properties (Honig and Nicholls, 1995). Pair-wise attractive and repulsive interactions

between atoms are governed by Coulomb's law whose energy, e, depends on charge and

Cartesian distance, e - qiq; /d). In our simplified model, we allow residues to have unit
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positive (+) or negative (-) charges. All possible +/- sequences of length N are

Subsequently generated and for each one the coulomb energy, E., of all possible two

dimensional conformations is calculated. We assume the residues to be spherical point

charges laid on a two dimensional lattice yielding the familiar 1/r dependence on

separation. Alternative two dimensional representations use disc charges, yielding ln d

dependence (Dill, 2004; Dill and Bromberg, 2003). Thus we will take the coulomb

energy of each conformation as:

(5)

We again use Shannon's equations for entropy to quantify the partitioning power of

electrostatic interactions. For a more realistic model one could define sequences where

the sum of +/- residues is a percentage of the total residues.

GO Type Potentials

Go-type potentials were proposed by Go and Taketomi (Taketomi et al., 1975) (Go

and Taketomi, 1978) to elucidate the effects of long and short range interactions during

protein folding. In their work, interactions that involve bond lengths and angles are called

“short range” and often associated with secondary structure formation, while long range

interactions are defined as residues nearest neighbors in space. Protein structures were

stabilized by specific long and short range interactions of varying weights during Monte

Carlo simulations. It was concluded that native state stability is achieved through long

range interactions while folding rates were affected by the short range interactions. We

investigate whether knowledge of long range interactions, as defined by the Go potential,

-
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alone is sufficient for discriminating among various conformations when averaged over

the ensemble of structures. All possible W compact and semi-compact conformations of

Nmer chains were generated (Table 2). We suppose residues i and j to be interacting if j >

i+1 in the chain and they occupy nearest neighbor vertices on the lattice. The energy of

the interacting units is assumed to be identical with a value of -8. We define the potential

for every structure in the ensemble as the number of interacting pairs in units of 8. The

energies of all other conformations are evaluated based on the potential for a target

structure. Conformations are scored as follows: Given a target structure with a set of

interacting pairs, Sr., the energy of the conformation is lowered by 8 for every interacting

pair present in both the target structure and the conformer being evaluated. Thus the total

score of any structure is:

E = Xe.
* , k = total # of shared pairs (6)

All conformations are scored as above, averaged over W target structures. The resolving

power is determined by the partitioning effect of the resulting scores on the conformer

Set.

RESULTS

Folded states of real proteins are characterized by their free energy differences.

We examine the energy distributions of simplified force fields applied to sets of two

dimensional conformations threaded onto sets of sequences. Using Shannon's entropy for

the energy distributions, we measure each force field's classifying power. To do so,

exhaustive and stochastic sets of fully enumerated and compact conformers are generated

as described in the methods section. Our models assume that all distances and sequences
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are known exactly and are free from errors. In general, the most informative force fields

are those whose energy functions produce the least degenerate set of values for a given

set of conformer/sequence pairs. Our results indicate that force fields with terms that

include long-range inter-atomic distances yield much more information than force fields

which just make use of pair-wise contact potentials.

HP Interactions

Self-avoiding 2D conformations of N bead chains were enumerated (Table 1) and

threaded with all possible HP sequences (see methods). Each conformer/sequence pair

was subsequently scored according to Eq. 4 and the Shannon entropy was calculated

using Eq. Error! Reference source not found. Figure 1 shows that there is a steady

increase in the amount information retrieved (") as N becomes larger.

FIGURE 1: Information of HP and solvent contacts. =: HP contacts, A: Solvent with weigh scale 0.5, v.
Solvent with weigh scale 1.0, * : Solvent with weight scale 0.2. Inset; o; I Filled symbols: exhaustive
Set, open symbols stochastic sample.
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The information increase for the fully enumerated sets is approximated by:

I(HP,) = 0.61 x log, N – 0.99 (5)
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With increasing N the conformation space becomes exponentially larger, creating more

energy states. However, the rise in information with increasing N is much slower than the

rise in the bits of information required to fully classify the ensemble, referred to as Pº".

Recall that for an ensemble of size W. Pºº – log, W and W grows exponentially with N.

For 2-D lattice models W = 0.103*2.691" (Sullivan et al., 2003). Consequently, the

percentage of the total information retrieved diminishes as the number of conformers

grows (see Fig. 1 inset), making simple HP contact potentials less informative for chains

whose lengths near the size of real proteins.

The properties of the fully enumerated ensembles are dominated by the extended

structures, analogous to the denatured state of proteins. In order to better resemble native

and molten globule states (Chan and Dill, 1989), we also study subsets consisting of

compact and semi-compact conformers only. Compact conformers are generated as

perfect-square Hamilton walks where every lattice site is occupied. For semi-compact

structures, the lattice is restricted to the smallest square which fits a chain of length N

(Table 2). The percentage of information recovered is higher in the compact and semi

compact structures, ~10-15% compared to ~5% for the fully enumerated. The HP

potential quantifies the number of HH contacts. Since the beads in compact and semi

compact (depending on the tightness of the lattice fit) are limited to a square, there is a

higher occurrence of HH contacts leading to finer partitioning of the ensemble by the

potential. However, pair-wise contact potentials offer only a small amount of the

information required to discriminate amongst individual conformers.
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SO/Vent Interactions

Protein interactions of interest to biochemistry do not occur in a vacuum, but in a

matrix of interactions with some form of solvent which influences their energetics. Atom

Solvent interactions have been modeled both explicitly (Kollman et al., 2000; Levy and

Gallicchio, 1998) and in more simplified models (continuum models) (Bashford and

Case, 2000). Although, it has been shown that solvation terms improve theoretical

calculations (Kollman et al., 2000), there has never been a quantitative analysis of their

contribution.

In order to explore the information value of solvent interactions, we assume that

each conformer is immersed in a uniform solvent. We determine the burial state of each

residue within a conformer by counting the number empty lattice vertices around it. For

two-dimensional lattice walks, the coordination number z = 4, resulting in at most 3

additional solvent/bead interactions per residue.

For the fully enumerated sets there is a ~2.5 fold increase in the amount of

recovered information (Figure 1). We also experiment with varying the weight scale for

the solvent score. The amount of information is larger for weight scales that increase the

score separation among conformers of varying salvation states. This occurs due the fact

that the many of the scores resulting from the solvation scoring are a subset of the non

Solvated scores. On the other hand, the scores resulting from 0.2 and 1.0 offer either finer

partitioning or enlarge the superset of scores by adding larger values. The separation of

the Solvation curves (Figure 1) for varying weight scales becomes larger with increasing

N. Larger more diverse conformer sets reduce the degeneracy of the score set leading to

better enrichment and information recovery.
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As expected, the compact structures show only marginal rises in information

when the energy score includes a solvation score (Figure 2). By design, the compact

structures minimize the number of exposed residues by maximally filling all lattice

vertices. The only exposed residues are those placed on the four lattice edges. We

observe a consistent but small rise in information with increasing N. More information is

recovered in the semi-compact structures which may be physically relevant to protein

globular states. The smaller the ratio of N to the lattice dimensions the larger the

enrichment.

FIGURE 2: Information of force fields for compact structures. *: I*, *: Solvent with weight 0.2, L.
Coulomb interactions,e: HP contacts, *: Go-type potential

22–

20 —

Chain Length (N)

Electrostatic Interactions

Biological processes are often governed by long-range electrostatic interactions

(Honig and Nicholls, 1995). These distance dependent energies are modeled by Eq. 5

(methods section). While the HP force fields mimic short distance interactions, the

distance dependent function can be used to illustrate the discrimination power of long

range (large Space separations) pair-wise interactions.
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For a set of two-dimensional conformers, we assign every lattice point as either a

positive or negative charge. All possible +/- combinations are explored for a given set of

conformers. The energy of each lattice and subsequent entropy per set are evaluated

according to equations 5 and 1 respectively. For exhaustive sets of fully enumerated

conformers we observe that, on average, close to 80% of the maximum information is

retrieved. Furthermore, electrostatic screening among residues, modeled by a I/r'

potential, offers nearly the same amount of information (Figure 3). It is also worth

mentioning that the information connected with various terms in common force fields is

not additive. Instead it is only as informative as its most discriminating descriptor. In the

case where both a coulomb energy function and a solvent potential function are used,

there is no significant additional information to that supplied by the latter term (Figure 3).

For compact structures, the amount of recovered information is slightly more than 50%.

Comparison of the performance of the pair-wise energy function on compact versus the

fully enumerated set seems to indicate that extended structures are better described by

long-range electrostatic terms than compact structures. Because the coulombic energy

term is a sum over all residue pairs in the lattice, this function will fail to discriminate

among compact conformers with the same sequence elements placed in different chain

positions. In effect, the constraint for compactness reduces the effective number of

conformers to one and highlights the energy differences among sequences.

--

zºo.

128



-----

---



FIGURE 3: Information from coulombic pair-wise interactions. *: I*, Dº: Coulomb energy + solvent, #:
1/r coulomb energy, & 1/r dialectric screening, ". HP contacts

—D—C
s_s-s-s-" -—-

0–H T T I H I-H I I-I-H I
2 4 6 8 10 12 14 16 18 20 22 24 26

Chain Length (N)

Go-type Potentia/
The force fields, above, utilize two different descriptors for each

conformer/sequence pair: 1) A geometric descriptor, i.e. Cartesian coordinates and 2) A

bead descriptor, i.e. residue type, charge. Consequently, two pairs of residues occupying

the same chain position and lattice points can yield different energy contributions. In

dealing with a Go-type potential we only consider geometric descriptors, in particular

pairs of interacting residues, not adjacent in chain position but occupying neighboring

lattice vertices (Eq. 6). For every target conformer (see methods) we consider all possible

interactable pairs, the equivalent of nonspecific interactions. Although all compact

conformations adhere to the square shape, the chain trace on the lattice is different and as

a result most conformers share few similar contacts. As a results partitions can be either

highly populated or sparse; to be part of a partition, each of members must exhibits the

same degree of dissimilarity to the target structure as others, resemblance to the other

cluster members is neither necessary nor required. Figure 2 shows that for compact

conformers Go-type potentials offer only a small amount of information; similar to the
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HP contact and solvent potential. This is consistent with the absence of unique clusters

containing similar structures. Given a target structure, the Go potential is capable of

identifying "a" similar structure or structures, based on the relative energies. However it

can not effectively describe an ensemble by differentiating among its members.

DISCUSSION

Score matrices and force fields, used in sequence and structure alignments

respectively, are valued for their discriminating power when faced with choices among

similar sequences or conformers. Their resolution is determined by both sensitivity and

selectivity thresholds. By using information theory we are able to quantify the resolving

power of several basic force fields in bits. Although our metric cannot comment on the

correctness of the physical assumptions, such measures could indicate whether there is

enough information in the FF to serve a particular purpose. Depending on the particular

task at hand, one might ask that a force field discriminate well between “open” and

“closed” conformations or that it distinguish among closed states. Our data show that

contact-based interactions (i.e. solvent/solute, HP, and Go-type potentials) have much

lower resolving power than interactions over larger distances, such as coulomb forces,

even when the number of parameters is small. Further, distance-dependent potentials

retain this advantage as the number of parameters (e.g. specific amino acid interactions)

increases. However, Subdividing the energy landscape more finely yields higher

resolution of energies, which in turn, dictates a more elaborate treatment of entropy if one

is to calculate accurate free energies. Another issue is how orthogonal are the terms

included in force fields. For example, we see that adding solvation terms and/or distance

dependent terms greatly expands the information content compared to simple square well
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representations. We have certainly over-estimated the coulombic contributions in our

simple model by treating every residue as ionic, but the principle remains clear that any

distance dependence expands the resolving power of the force field.

Conclusions on the relative resolving power of force fields, the information

content of various interactions, and the additivity of information appear extendible to real

proteins. The move from simple to exact models will shift the reference states but not the

general trend. Such quantitative assessments are critical for improving the effectiveness

of current force fields and score functions used in various alignment protocols.
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ABSRACT º
º:

Calculation of binding free energies is essential to understanding molecular recognition º
&

and binding. Current theoretical methods such as Poisson-Boltzmann (PB) and ºº
º

Generalized Born (GB) rely on the use charge parameters that are obtained either using

empirical or quantum mechanical methods. Using a large test set of 500 compounds to

evaluate the accuracy of eight commonly used charge models.using both PB and GB

methods. We show that the results from the faster GB method are highly correlated with

PB results. In addition we show that estimations of Solvation free energy can be improved

by optimizing the constants used in the non-polar solvent accessible surface area (SASA)

calculations.
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INTRODUCTION

The quantification of how a solute will partition into two different phases, A and

B, is widely used in drug design.(Leo et al., 1971; Lipinski et al., 2001) Notable

examples include using n-octanol to water partitioning (logPoetanol water) as a surrogate for

cell membrane permeability and gas to water partitioning (logPeas water) to estimate

desolvation penalties associated with protein-ligand binding. The two quantities are

related, from the perspective of continuum models of solvation, in that they quantify

partitioning between phases with low (gas-1, octanol-17) and high (water-80) dielectric

constants. Experimental logPeas water measurements, often expressed as free energies of

hydration (AGºyd = -2.31ogPeas wate), have been compiled by several research groups for

both neutral and charged species (see Table S1 supporting information).(Abraham et al.,

1990; Chambers et al., 1996; Gerber, 1998; Li et al., 1999; Marcus, 1994) These

experimental data make computation of AGhyd an attractive thermodynamic property for

validating continuum simulation methods and can be used to guide the choice of

parameters employed in such calculations.

Historically, the most accurate AGhyd calculations have employed free energy

perturbation (FEP) or thermodynamic integration (TI) simulations incorporating explicit

models of water.(Jorgensen, 1989; Kollman, 1993) This was first done in 1985 by

Jorgensen and Ravimohan(Jorgensen and Ravimohan, 1985) who used FEP methods to

compute the relative free energy of hydration (AAGhyd) for ethane and methanol in

excellent agreement with experiment using Monte Carlo simulations. The FEP and TI

methods yield AAGºyd (or AGhyd) directly without the need for partitioning the free energy

into separate components, as in other more approximate approaches described below,
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however the simulations can be tedious to setup, computationally prohibitive for high

throughput structure-based design, and absolute free energies of hydration can be difficult

to obtain. Although numerous alternative and diverse techniques for computation of

absolute AGºyd have been devised, REF REF REF continuum theories which treat solvent

as a bulk macroscopic quantity(Cramer and Truhlar, 1999) are of particular interest given

the direct connection with recently reported protein-ligand binding calculation methods

as described below. In particular, Poisson-Boltzmann (PB)(Sitkoff et al., 1994) and

Generalized Born (GB)(Still et al., 1990) are two widely used continuum methods which

may be used to evaluate the polarization energy associated with bringing any species

from the gas-phase to the bulk solvent phase. PB and GB calculation results are typically

augmented by a solvent accessible Surface Area term (SA) to account for non-polar

contributions to the total free energy of hydration.

The recently reported Molecular Mechanics Poisson-Boltzmann Surface Area

(MM-PBSA) and Molecular Mechanics Generalized Born Surface Area (MM-GBSA)

methods(Kollman et al., 2000; Massova and Kollman, 2000; Srinivasan et al., 1998) use

continuum methods to compute a AGhyd-like term as a measure of the change in

desolvation (AAGhyd) for the receptor-ligand binding event.(Donini and Kollman, 2000;

Huo et al., 2002; Kuhn and Kollman, 2000a; Masukawa et al., 2003; Suenaga et al., 2003;

Wang et al., 2001a; Wang et al., 2001b) In MM-PBSA and MM-GBSA

analysis,(Kollman et al., 2000; Massova and Kollman, 2000; Srinivasan et al., 1998) the

resulting PBSA or GBSA continuum energy terms for a given species (complex, receptor,

or ligand) are formally equivalent to an absolute AGºyd if, as is commonly done, dielectric

Constants of 1 (gas-phase) and 80 (water-phase) are specified. Unfortunately,
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experimental free energies of hydration are not available for proteins, most drugs, or

protein-drug complexes which would allow for a direct comparison with the

computational results. A reasonable alternative is to verify that the calculation methods

and parameters yield good results for small organic molecules, for which experimental

absolute free energies of hydration are available,(Abraham et al., 1994; Abraham et al.,

1990; Marcus, 1991, 1994) prior to using such methods for estimating AAGºyd for

protein-ligand binding.

The focus of the present study is to evaluate the accuracy of eight different point

charge models typically used for structure-based drug design calculations through

computation of hydration free energies. Here, we have evaluated point charge models

based on ab initio, Semiempirical, and empirical calculations. The results revealed a

Surprising lack of correlation of non-polar energy contributions with experiment and led

us to pursue an optimization protocol which employed atom-based SA's in an attempt to

improve the overall AGhyd for both neutral and charged molecules. It should be noted that

a comprehensive study which compares the performance of various GB implementations

to PB reference calculations has recently been reported by Feig et al.(Feig et al., 2004) In

this report, we instead focus on evaluating which commonly used partial charge models

yield GBSA and PBSA absolute hydration free energies in agreement with experiment.

Two earlier studies that directly compared continuum AGHyd results with

experiment include the original GBSA report by Still et al.(Still et al., 1990) and the

Sitkoff et al.(Sitkoff et al., 1994) PARSE (Parameters for Solvation Energy) study

designed for use with PBSA methods. Both studies reported excellent continuum results

for AGhya versus experiment however the number of molecules tested were relatively
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small (between 20-67 molecules).(Sitkoff et al., 1994; Still et al., 1990) The Still GBSA

and Sitkoff PBSA studies employed OPLS(Jorgensen and Tirado-Rives, 1988) and

PARSE(Sitkoff et al., 1994) atomic partial charge models respectively which yielded

calculated AGhyd results in good agreement with experiment for the compounds tested.

However, OPLS and PARSE partial charge models are primarily based on "functional

groups" assignment which can be difficult to assign to molecules typically found in

databases used for structure-based drug design and high throughput virtual screening

calculations. Here, we have focused on evaluating partial charge models that could be

easily be assigned, in an automated fashion, to relatively large and diverse data sets. In

the present work, we have compared experimental versus calculated AGhyd for more than

500 compounds (460 neutral compounds, 42 polyatomic ions, and 11 monoatomic ions).

To our knowledge this is the largest number of reference compounds employed for

continuum model calculations.

The aim of this work is: (1) to use GBSA and PBSA methods to compute absolute

free energies of hydration (AGhyd) for comparison with experiment in order to evaluate

the accuracy of eight different partial charge models and (2) to optimize non-polar

contributions to AGhyd using atom-based solvent accessible surface areas for each charge

model and theoretical method tested. Notwithstanding the inherent theoretical

differences between GB and PB methods, it is our view that parameter set validation is

critical since the use of different atomic partial charge models, atomic radii, and nonpolar

SA parameters will lead to different calculated AGºyd results.
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COMPUTATIONAL METHODS

Free Energies of Hydration (AGhyd).

As in prior continuum studies,(Sitkoff et al., 1994; Still et al., 1990) the free

energy of hydration is partitioned into two terms, polar and nonpolar, according to eq 1.

AGºd = Groh T Gºron, (1)hyd

Polar energies (Gpolar) for PB calculations were obtained using a grid-based finite

difference solution to the Poisson-Boltzmann equation with zero salt concentration (eq 2),

where p(r) is the charge distribution of the molecule and &(r) is the dielectric constant.

Solution of the PB equation for systems described by a classical force field yields the

electrostatic potential at every grid point and Gpolar is then evaluated as a sum over all

atoms (eq 3) where the partial atomic charge for atom i is multiplied by the difference in

the computed grid-point potential (); for the transfer from gas-phase (8 = 1) to water (8 =

80).

Ve(r)V(p(r) + 47.p(r) = 0 (2)

Gron,
-
; X. q; (Ø" —■ º ) (3)

For GB calculations, Gpolar contributions were obtained using eq 4-5. Here, e is the

dielectric constant (80 for water-phase), rij is the interatomic distance, and O. are the Born

radii which are computed according to the pairwise descreening algorithm of Hawkins et

al.(Hawkins et al., 1995, 1996)

N N .. 2

Goa, F-1 º
-

º X. º —1 e■
-

º: (4)6. /T.i–1 j=1 ./ GB & JT 0,j=
j+1
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2 2 -ºj/(40%) 0.5f, a (rj +aje """) (5)

Nonpolar contributions (Gnonpolar) to AGhyd were estimated using either total

molecular SA (eq 6) or atomic-based SA (eq 7). Prior MM-PBSA and MM-GBSA

binding energy protocols typically employed molecular SA (eq 6) with y = 0.00542, and

■ = 0.92 as recommended by Kollman and coworkers.(Kollman et al., 2000; Massova

and Kollman, 2000) An alternative procedure, which was pursued in the present work, is

to compute atom-based SA and optimize each SA constant using multiple linear

regression to improve agreement with experiment (eq 7). Using atom-based SA

contributions to estimate free energies of solvation was first proposed by Eisenberg and

McLachlan,(Eisenberg and McLachlan, 1986) and Scheraga and coworkers.(Ooi et al.,

1987)

°nomou,
-

(yºSA) + /3 (6)

4G, a (exptl)
-

Goa,
=

°own,
-

X. c, SA, (7)

For a given set of calculations, PBSA or GBSA, the same structures, partial

charges, and atomic radii were employed. Any differences in the final calculation results

in this report will therefore be only a function of the two different continuum theories.

Computation details

The atomic radii used in the calculations were assigned using the mbondi

(modified bondi)(Tsui and Case, 2000a, b) scheme as in AMBER7.(2002a) In the

mbondi scheme, hydrogen atoms connected to carbon, sulfur, nitrogen, or oxygen (types

HC, HS, HN, or HO respectively) have unique radii (Table 1). Dielectric constants for

all calculations (PB and GB) were set to 1 representing gas-phase and 80 representing
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water-phase. PB calculations were performed using the program Delphi+(Rocchia et al.,

2001; Rocchia et al., 2002) with the following parameters:, boundary conditions = 4,

internal dielectric constant = 1.0, external dielectric constant = 80.0, scale = 4 grids/A.

Other Delphi parameters were assigned automatically using default values. Generalized

Born calculations were performed using an in-house version of the Hawkins et

al.(Hawkins et al., 1995, 1996) pairwise de-screening model with scaling parameters (Sx

values Table 1) adopted from Tsui and Case.(Tsui and Case, 2000a)

The DMS program was used for all the SA calculations.(2003) In addition to the

total SA value for a compound, the DMS program reports individual atom-based SA

estimates that were used to derive atom-based constants (eq 7) for the non-polar

component of the free energy of hydration.

Molecular structures and experimenta/data

Bordner et al.(Bordner et al., 2002) have generously made available 410 neutral

molecular structures along with the corresponding experimental logPeaswater partition

coefficients from the tabulated work of Abraham and coworkers(Abraham et al., 1990)

(converted to free energies at 25 °C using AGhyd = -2.31ogPeas water). However, the

Bordner set did not contain compounds with polar hydrogens connected to sulfur (HS,

Table 1) or charged species . We augmented the 410 neutral set with 50 additional

neutral compounds (including compounds containing HS), as well as 42 charged (+ 1)

polyatomic compounds and 11 ionic monoatomic species (see Table S1 supporting

information). These 103 additional compounds were constructed using the MOE

program.(2002b)
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TABLE 1: Atom type, atomic radii, GB scaling factor, and total number of each atom type in the total
dataset."

Type mbondi radii Sx value No. atoms

HC 1305 0.85% 4215
HN 1.30" 0.85" 98
HO 0.80" 0.85" 93
HS 0.80" 0.85" 13
C 1.70" 0.72% 2678
N 1.55° 0.79" 128
O 1.50° 0.85" 299
F 1.50° 0.88% 53
P 1.85 0.86" 6
S 1.80 0.96% 26
Cl 1.70 0.80s default 114
Br 1.85 0.80° defaul 27
I 1.98 0.80° default 12

Li+ 1.82° 0.80° deau l
Na+ 2.27° 0.80° defaul 1
K+ 2.75° 0.80s deaul l

Mg. 1.73 ° 0.80° default |Caº" 1.70° 0.72 l
Fe?" 1.50 c 0.80° defaul l
Zn” 1.39 c 0.80 e default l

"See supporting information Table S1 for a listing of all compounds.

Partia/Charge Models

Eight charge models were evaluated in this study: Gasteiger-Marsili

(Gast),(Gasteiger and Marsili, 1980) MMFF94,(Halgren, 1996) AM1 BCC,(Jakalian et

al., 2000; Jakalian et al., 2002) AM1CM2,(Li et al., 1998) PM3CM2,(Li et al., 1998)

Merz-Singh-Kollman (MSK),(Besler et al., 1990) Restrained Electrostatic Potential

(RESP),(Bayly et al., 1993; Cornell et al., 1993) and Chelp G.(Breneman and Wiberg,

1990) While the preceding list is not exhaustive, it does include methods currently

implemented in several molecular modeling packages which allow for the rapid

calculation of atomic partial charges. Here, Gast and MMFF94 charges were assigned

using the program MOE.(2002b) AM1 BCC charges were determined using the

ANTECHAMBER module in AMBER7(2002a) from MOPAC(Stewart et al., 1999)

calculations. AM1CM2 and PM3CM2 partial charges(Li et al., 1998) were computed

using the program AMSOL(Hawkins et al., 1999) with the SM5.42R(Li et al., 1999)

water solvent model specified. MSK, RESP, and ChelpG charges were computed at the

144



·

■ _O
º50S
■ )
–º.
■

|-|-º_º_■ _%
Vae.



HF/6-31G*//HF/6-31G+ level of theory using the program Gaussian.98.(Frisch et al.,

1998) The ANTECHAMBER module in AMBER7 was used for the two-stage RESP

fittings. It should be noted that different software programs may yield slight variations in

molecular charge distributions due to differences in implementation of a particular partial

charge model. Only the above named program implementations were evaluated in this

report.

Molecular geometries

For each compound, the partial charges obtained using the eight different methods

were mapped back to one set of standard geometries. Using one set of conformations

allows for a direct comparison of the accuracy of the partial charge models and removes

the possibility that different geometries would affect the results. Here, the standard

geometries were defined as that obtained from a gas-phase geometry optimization using

the MMFF94 force-field as implemented in the MOE program. Other geometries could

have been used although this was not explored in the present work. Given that the data

Set contains mostly rigid compounds the effect of including multiple conformations on

the computed free energies of hydration was not investigated; averaging over multiple

conformations in the previous Bordner study(Bordner et al., 2002) changed the computed

free energies by only a trivial amount.

RESULTS AND DISCUSSION

Charge Model Evaluation

Free energies of hydration were computed for comparison with experiment for

460 neutral and 42 charged compounds employing one of eight different partial charge

models (Gast, MMFF94, AM1BCC, AM1CM2, PM3CM2, MSK, RESP, and ChelpG).
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Table 2 lists the correlation coefficients (rº) and average unsigned errors (AUE) between *.
experiment and calculated AGºyd obtained from both PBSA and GBSA calculations. In º *

Table 2 the Gnonpolar term is computed from molecular SA (eq 6) using the standard MM-
--

ºsº
PBSA and MM-GBSA constants (Y = 0.00542, 3 = 0.92). It should be noted that in every 5. cº

case the correlations between the experimental and theoretical free energies in Table 2

are due to solely to the GPolar term; molecular SAS show no correlation with experiment

(Figure 1).

FIGURE 1: Experimental free energies of hydration versus total molecular solvent accessible surface area.
The best fit line to the 27 linear and branched alkanes (O) yields a correlation coefficient r = 0.85, slope Y
= 0.00538, and intercept ■ = 0.92. Other compounds are represented as filled squares (m).
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TABLE 2: Correlation coefficients (r’) and average unsigned errors (AUE) for experimental" vs. calculated"
(PBSA or GBSA) free energies of hydration (AGhyd). Nonpolar contributions obtained using molecular
solvent accessible surface areas with standard constants. Energies in kcal/mol

Neutral molecules, N = 460 Charged (+ 1) molecules, N = 42
Part I Part II

Charge Model rº PBSA AUE rº GBSA AUE r” PBSA AUE r* GBSA AUE
Gast 0.53 3.20 0.49 3.36 0.68 7.52 0.67 8.15
MMFF94 0.29 3.26 0.26 3.41 0.73 7.44 0.72 8.27
AM1 BCC 0.74 1.36 0.70 1.38 0.56 8.28 0.53 9.64
AM1CM2 0.71 3.09 0.67 2.81 0.39 | 1.67 0.34 13.63
PM3CM2 0.69 2.79 0.64 2.61 0.62 10.84 0.62 11.90
MSK 0.77 1.54 0.72 1.63 0.74 6.42 0.72 7.30
RESP 0.77 1.47 0.72 1.51 0.75 6.34 0.73 7.20
Chelp G 0.73 1.61 0.69 1.67 0.74 6.36 0.72 7.28
*See supporting information Table S1 for experimental references. "Calculated values obtained using eq 1. Gºa.
from either PB or GB calculations. “Gºonrola - (SAwal"0.00542)+0.92.

The correlation coefficients for neutral compounds in Table 2 (Part I) track with

the eight different charge schemes in roughly the following order; ab initio (MSK, RESP,

ChelpG) > semiempirical (AM1BCC, AM1CM2, PM3CM2) > empirical (Gast, MFF94).

Ab initio charges yield PBSA and GBSA r values from 0.69 to 0.77, semiempiricle rº

from 0.64 to 0.74, and empirical r from 0.26 to 0.53. Average unsigned errors (AUE)

follow the rº trends; ab initio charges yield smaller errors (147 to 1.67 kcal/mol), than do

semiempiricle (1.36 to 3.09 kcal/mol), or empirical (3.20 to 3.41 kcal/mol).

Surprisingly the three semiempirical methods yield poorer agreement with

experiment than do the two empirical methods for charged (+1) molecules (Table 2, Part

II). Ab initio charges yield the strongest correlations with r values from 0.72 to 0.75,

semiempiricle r from 0.34 to 0.62, and empirical r from 0.72 to 0.73. As was the case

for neutral compounds the AUE errors also track with the correlation coefficients. Again

ab initio partial charges yield the lowest errors (6.34 to 7.30 kcal/mol) but for the charged

Species, semiempiricle yield the largest errors (8.28 to 13.63 kcal/mol). Empirical AUES

are in the middle (7.44 to 8.27 kcal/mol).

Thus, using MSK, RESP, and ChelpG partial charges for neutral and charged

Species consistently yield the strongest correlations and lowest average unsigned errors
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with experimental free energies of hydration regardless of which continuum method was

employed for the computation (Table 2). The r values for these three ab initio methods

cluster around 0.75 for both neutral and charged species (Figure 2). Using

semiempicircle charges with continuum methods for computation of AGºyd appear to

yield good agreement with experiment only for neutral compounds.

In an attempt to increase r’ correlations with experiment for poorly performing

charge methods and reduce average AUEs across the board for neutral and charged

Species, we investigated optimizing nonpolar energy terms using atom-based solvent

accessible surface areas (SA) instead of molecular surface areas (eq 7) as described

below.

FIGURE 2: Comparison of correlation coefficients (rº values) for calculated versus experimental free
energies of hydration from PBSA and GBSA calculations. For each partial charge model two r values are
plotted representing results for 460 neutral compounds (filled symbols) and 42 charged compounds (open
symbols) compounds (Table 2). The overall correlation between the total PBSA and GBSA results is r” =
0.94.
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PBSA VS. GBSA

The PBSA and GBSA results are highly correlated and independent of the charge

model used for the calculations (Table 2, Figure 2). The strong agreement between

PBSA and GBSA r values (obtained from computed versus experimental results) suggest

that a given partial charge model will influence the final free energies much more than

which continuum method (PBSA or GBSA) is used for the calculations. Correlation

coefficients between PB and GB polar energies are always very strong, r >0.94, and

independent of which partial charge model or data set (neutral or charged compounds)

was employed in the calculations. These trends continue to provide support for using

GBSA methods as a reasonable alternative to the more computationally demanding

PBSA calculations for free energy calculations

G nonpolar from Molecular SA

The constants (Y = 0.00542, 3 = 0.92) typically used(Donini and Kollman, 2000;

Huo et al., 2002; Kuhn and Kollman, 2000a: Masukawa et al., 2003; Rizzo et al., 2004;

Suenaga et al., 2003; Wang et al., 2001a; Wang et al., 2001b) in MM-PBSA and MM

GBSA calculations to convert SA (■ ’) to Gnonpolar (kcal/mol) are based on fitting

molecular SA results to experimental AGºyd for small straight-chain alkanes.(Sitkoff et

al., 1994) The rational for this procedure exploits the fact that alkanes have low dipole

moments and nonpolar contributions will therefore dominate AGºyd. Figure 1 shows the

molecular SA for the 460 neutral molecules studied here versus experimental AGºyd along

With the best fit regression line using only the 27 linear and branched alkanes. The

constants obtained from this linear regression fit (Figure 1, open circles, r* = 0.85, m

9.00538, b=0.92) are essentially identical to the standard constants () = 0.00542, 3
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0.92).(Donini and Kollman, 2000; Huo et al., 2002; Kuhn and Kollman, 2000a:

Masukawa et al., 2003; Rizzo et al., 2004; Suenaga et al., 2003; Wang et al., 2001a;

Wang et al., 2001b) However, as a group, molecular SAS have no correlation with

experiment (Figure 1, filled squares). Although the results will be charge model

dependent, in general, Gpolar contributions are linearly correlated with AGhyd. This is

illustrated in Figure 3 for RESP charged neutral compounds in which the polar energies

(Gpolar r = 0.77, filled squares) were computed using PB calculations. Given that AGhyd

is estimated from the linear sum of two terms (eq 1), the sum of Gpolar and Gnonpolar and

both terms individually should be linear with experiment if there is to be agreement.

However, using standard constants (eq 6, Y = 0.00542, [3 = 0.92) to compute nonpolar

contributions yield no correlation (Gnonpolar r” = 0.00, open circles) and will therefore not

contribute to any improvement or diminishment in the total correlation coefficient with

experiment (AGhyd r” = 0.77). In short, converting molecular-based SA to Gnonpolar

energies (eq 6) for use in computing absolute free energies of hydration yields no

advantage over using Gpolar energies alone; correlations listed in Table 2 are due solely to

the GPolar term.
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FIGURE 3: Correlation of individual components with experimental free energies of hydration for neutral
compounds (N=460) using RESP derived partial charges. Polar (=) energies Grola, from PB calculations.
Nonpolar (O) energies from molecular solvent accessible surface area calculations Gnonpolar =
(SAou"O.00542)+0.92
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The lack of correlation between Gnonpolar with AGhyd is troublesome, especially

given that molecule-based SA Gnonpolar energies are routinely added to Goolar to estimate

AGhyd (or alternatively AAGhyd for protein-ligand binding). (Donini and Kollman, 2000;

Huo et al., 2002; Kuhn and Kollman, 2000a; Masukawa et al., 2003; Rizzo et al., 2004;

Suenaga et al., 2003; Wang et al., 2001a; Wang et al., 2001b) In an attempt to improve

agreement with experiment we explored a procedure to re-compute Gnonpolar which

includes calculation of atom-based SA and makes use of multiple linear regression fitting

to determine an optimal coefficient for each SA type.(Eisenberg and McLachlan, 1986;

Ooi et al., 1987) For a given compound, the total solvent accessible surface area should

**quivalent to the sum of each atom-based solvent accessible surface area (SA =XSA).

Atomic SA for each mbondi type (Table 1) were obtained from calculations using the

DMS program.(2003) We optimized C, coefficients for each mbondi type (HC, HN, HO,
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HS, C, N, O, F, P, S, Cl, Br) using continuum results (Gpolar from GB or PB) for each of

the eight charge models using eq 7. After the fittings, new Gnonpolar contributions were

recomputed using the atom-based constants (C's) so that computed AGhyd could be

compared with experiment.

Initially, fits were pursued using only the 460 neutral compounds. However,

using these SA constants to compute AGºyd for the 42 charged (+1) species lead to poor

agreement with experiment. Our initial tests lead us to conclude that including neutral

(N=460) and charged (N=42) compounds together in the fitting procedure would yield

the best overall agreement with experiment. Therefore, this protocol was adopted for

Subsequent parameter optimizations.

In most cases, utilizing optimized SA; constants to estimate nonpolar terms

improves agreement with AGºyd experiment (Table 3 versus 2). However, substantial

improvement in AUE and correlations for charged species are coupled to diminishment in

r for neutral compounds that have utilized semiempirical partial charges (AM1BCC,

AM1CM2, PM3CM2). This diminishment is not surprising given that the semiempirical

models originally performed quite poorly for charged compounds (Table 2, Part II, r” =

0.34–0.62). Optimization of the SA constants using all data (neutral and charged)

attempts to corrects for differences between experiment and theory in an average sense.
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TABLE 3: Correlation coefficients (r’) and average unsigned errors (AUE) for experimental" vs. calculated"
(PBSA or GBSA) free energies of hydration (AGhyd). Nonpolar contributions obtained using atomic
solvent accessible surface areas with optimized constants from both neutral and charged species. Energies
in kcal/mol.

Neutral molecules, N = 460 Charged (+ 1) molecules, N = 42
Part I Part II

Charge Model rº PBSA fit AUE r" GBSA fit AUE r” PBSA fit AUE r* GBSA fit AUE
Gast 0.67 1.43 0.56 1.62 0.69 8.60 0.69 8.99
MMFF94 0.36 1.91 0.28 2.07 0.70 8.24 0.68 8.60
AM1 BCC 0.68 1.26 0.58 1.49 0.61 6.71 0.60 6.83
AM1CM2 0.62 1.71 0.54 1.83 0.55 7.35 0.58 7.55
PM3CM2 0.61 1.66 0.52 1.83 0.68 7.24 0.71 7.47
MSK 0.81 0.99 0.69 1.32 0.79 4.46 0.77 4.68
RESP 0.80 1.02 0.69 1.33 0.80 4.45 0.78 4.69
Chelp G 0.81 0.99 0.70 1.30 0.79 4.46 0.77 4.67
*See supporting information for experimental references. "Calculated values obtained using eq 1. Grea, from either
PB or GB calculations. “Gnonpolar =X-SA"C, optimized using neutral (N=460) and charged (N=42) compounds.

Figures 4 and 5 highlight favorable cases where atom-based constants can be

useful even in cases where a particular charge model leads to good agreement with

experiment. Ab initio charges (MSK, RESP, ChelpG) appear to yield Gpolar energies in

strong correlation with experiment for neutral and charged compounds in all cases.

However, using molecule-based constants (grey crosses) to compute Gnonpolar can lead to a

systematic overestimate (absolute error) of the hydration free energies for species with ab

initio charges in the experimental range from -11 to −2 kcal/mol for neutrals and –90 to

–60 kcal/mol for charged species. As an example, for neutrals, Figure 4 show that using

C, constants optimized from PBSA-RESP fits leads to an improvement r from 0.77

(AGhyd std, grey crosses) to 0.80 (AGhyd fit, black squares) and the AUE error with

experiment drops from 1.47 to 1.02 kcal/mol (Figure 4). More dramatic results are

observed for charged species; PBSA correlations increases from 0.75 (AGhyd std, grey

crosses) to 0.80 (AGºyd fit, black squares) and the AUE error with experiment drops

dramatically from 6.34 to 4.45 kcal/mol (Figure 5).
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FIGURE 4: Predicted free energies of hydration (AGhya calcd) vs experiment (AGhya exptl) from PBSA *..
calculations with RESP charges for neutral compounds (N=460). Nonpolar energies from molecular SA's º
using standard constants (X) or atom-based SA's using fitted constants (m). º
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FIGURE 5: Predicted free energies of hydration (AGhya calcd) vs experiment (AGhya exptl) from PBSA
calculations with RESP charges for charged compounds (N=42). Nonpolar energies from molecular SA's
using standard constants (X) or atom-based SA's using fitted constants (m).
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The primary motivation for using atom-based SA; instead of molecule-based SA AQ:

procedures is to reduce errors with respect to experiment in three ways: (1) remedy gross º

deficiencies a particular charge model may have (rº and AUE), (2) fine tune already
-

reasonable agreement with experiment (primarily AUE), or (3) account for minor º
o

2.
º
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differences between PB and GB results. And, on a case-by-case basis atom-based

constants (Figures 4-5, black squares) can correct for systematic errors.

Optimized SA Coefficients

Tables 5 and 6 list "sets" of optimized SA constants (C) obtained from multiple

linear regressions using PB and GB Grola results for all eight charge models employed in

the calculations. For a new calculation that employes a particular charge model atom

based C, values can be used to estimate Gnonpolar energies that should lead to improved

AGhyd calculations. Despite the fact that Goolar results from both continuum methods

show strong correlation (Table 2 and 3), for completeness, separate fits were performed

for PB (Table 5) or GB (Table 6) derived Gpolar energies.

TABLE 4: Optimized atomic SA coeffecients (Ci values)" obtained using Poisson-Boltzmann (PB) derived
Gpolar energies.

Type Gast MMFF94 AM1 BCC AM 1CM2 PM3CM2 MSK RESP Chelp G
Hc 0.00093 -0.00002 0.00355 0.00962 0.00827 0.00679 0.00687 0.00649
Ho –0.00434 –0. 11172 0.25999 (). 12379 0.11210 0.374.14 0.36422 0.36037
Hs 0.28952 0.23307 0.33.731 -0.53475 -0.45896 0.05493 0.06772 0.09424
Hn –0.04.103 –0.02779 -0.01.058 -0.01094 -0.01857 -0.00574 -0.00436 –0.008 13
Hp -0.12342 0.00990 0.02589 0.47729 0.38605 -0.02415 -0.00164 -0.01025
C –0.01634 -0.01610 0.02001 0.04395 0.03708 0.01765 0.01468 –0.00278
N –0.00798 -0.01.032 0.07251 0.05061 0.08398 0.04518 0.04440 0.051.56
O 0.00759 0.04621 0.02409 0.09277 0.08863 0.03592 0.03292 0.04.072
F 0.02036 0.02024 0.02256 0.02661 0.01954 0.01755 0.01643 0.01873
P 2.12323 0.36337 0.98863 –2.44577 -2.59507 0.92016 0.6.1608 0.791.76
S 0.01477 0.02908 0.05082 (). 15426 0.13041 0.04414 0.04.145 0.03315
Cl 0.00336 0.00302 0.00384 0.00330 0.00662 0.00560 000527 0.00657
Br –0.00532 –0.00455 0.00139 -0.00410 0.00415 0.00681 0.00550 0.00479
I -0.006.35 -0.00609 0.014.95 –0.01134 -0.00775 0.00656 0.00562 –0.00116

“Gnonpolar =X.S.A.”C, optimized using neutral (N=460) and charged (N=42) compounds.
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TABLE 5: Optimized atomic SA coeffecients (Civalues)" obtained using Generalized Born (GB) derived 2.
Gpolar energies. º

Type Gast MMFF94 AM 1 BCC AM 1CM2 PM3CM2 MSK RESP Chelp G º º

Hc –0.00049 -0.00146 0.00129 0.00719 0.00588 0.00489 0.00484 0.00436 º
Ho 0.02765 -0.07826 0.25937 0.13669 0.12418 0.36583 0.35732 0.35663 º
HS 0.29006 0.23719 0.30314 -0.48392 -0.40299 0.07870 0.094.15 0.13314 5.
Hn –0.04816 -0.02950 –0.02299 –0.02.113 –0.02386 -0.01374 -0.01.218 -0.01520 cº
Hp -0.07575 0.0619 | 0.079.13 0.54968 0.46106 0.01841 0.03414 0.02993
C -0.01537 -0.01529 0.01715 0.03967 0.03379 0.02 164 0.01859 0.00328
N 0.01.065 0.00709 0.10707 0.07294 0.10361 0.06938 0.068.10 0.07333
O 0.01 100 0.04920 0.02952 0.09624 0.09423 0.04269 0.03965 0.04760
F 0.02353 0.02559 0.02941 0.02826 0.02085 0.02082 0.01948 0.02374
P 1.50762 -0.30940 0.71401 -1.75879 –2.78.904 0.47251 0.25635 0.40528
S 0.01889 0.03237 0.0543.7 0.15530 0.1318.5 0.04452 0.04.13.1 0.031.65
Cl 0.00536 0.00489 0.00662 0.005 15 0.009 13 0.00878 0.00784 0.00787
Br –0.00329 -0.00275 0.00466 –0.001.30 0.007 10 0.01492 0.01301 0.00786
I –0.00419 -0.00384 0.02054 –0.00733 –0.00400 0.01865 0.01703 0.00294

“Gnonpolar =X-SA"C, optimized using neutral (N=460) and charged (N=42) compounds.

TABLE 6: Residuals" for monoatomic ions with experiment.

PBSA residuals GBSA residuals

Ion AGhyd expt." std constants' fit C," std constants fit Cl
F and FT -107 0.92 0.67% 7.77 720°

Cl and Clº –78 16.96 17.90° 22.24 22.87° º
Br and Brº –72 15.07 15.98° 19.5 19.41% *
I and IT –63 18.19 19.08° 22.04 21.29% *
Li" -111 –22.45 0.0 -17.87 0.0 o
Na" –87 -16.54 0.0 —13.64 0.0

K" –71 -13.42 0.0 -11.47 0.0 o
Mg” –437 –59.13 0.0 –38.77 0.0 º
Ca” -360 24.57 0.0 45.69 0.0 sº
Fe?" -440 -3.86 0.0 23.54 0.0 sº
Zn” –467 1.15 0.0 35.93 0.0 >

cº

"Residuals = AGhyd exptl – AGhya calcd, calculated values obtained using eq 1. "See supporting information
Table S1 for experimental references. ‘Groupola = (SA*0.00542+0.92). "Gºa. =XSA,”C. “Constants for San
ions F, Cl, Br, and I from RESP fits, Tables 4 and 5. *-

- -
L. E

As averaged over the entire dataset of 502 molecules, the magnitude and sign for o
º3.

each Ci value can give some indication as to the error with experiment (and direction) o º
- - - - -

associated with a particular charge model for a given atom (mbondi) type. However, &
sº

caution should be exercised when trying to ascribe too much physical significance to any º

Aºi

given SA coefficient. For some atom types listed in Table 1, HS (N=13), P (N=6), and I wº

(N=12), a lack of experimental data could potentially lead to SA optimizations that are
-

- -
2e

underdetermined. Nevertheless, given that related charge methods such as *
º
º

o -

º
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AM1CM2/PM3CM2 or MSK/RESP often yield similar fitted SA constants (Table 5 and

6), the multiple linear regression results appear to be robust. As an example, phosphorus

(mbondi type P) coefficients from GB fits for AM1CM2 and PM3CM2 charged

compounds are relatively large in magnitude compared with other types (Tables 5 and 6).

Here, the negative coeffecient are always in the range –1.8 to -2.8. The large negative

sign indicates that on average GPolar terms computed using AM1CM2 and PM3CM2

charges underestimate the experimental AGºyd values. Nonpolar contributions computed

using atom-based SA will yield a favorable free energy to correct for this

underestimation given that SA is always a positive value and, in this case, the C for P

atoms are negative. On the other hand, the GB C, coefficients for atom types P for ab

initio-based methods (MSK, RESP, and ChelpG) are positive and in the much smaller at

about 0.26 to 0.47. The variation in the optimized coefficients in Table 4-5 are a direct

result of the differences that are obtained from the different partial charge methods used

for computation of Gpolar. Because of this fact, these optimized constants can be viewed

as a SA-based correction factor to account for errors in any particular charge model in an

aVerage sense.

Monoatomic ions

We have also pursued free energy of hydration calculations for 11 monatomic

ions using the same PBSA and GBSA protocols for comparison with experiment (Tables

7) Monoatomic ions are a unique case given that only a "single" atom is present and

therefore not charge-model dependant; only the formal charge and radius needs to be

Specified. In general, nonpolar contributions to the total AGhyd for monatomics ions

Would be negligible given the large polarization energy (–63 to -467 kcal/mol, Table 6)
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compared to the Small solvent accessible surface area. The solvent accessible surface

area for a monatomic species is simply SA = 41(r. 14) where 1.4 Å represents the

Standard probe radius for water and r is the radii. A number of prior studies have

concluded that for monatomics, different radii should be used for anions versus cations if

using a simple Born model of ion hydration. REF Our goal was to evaluate the

recommended mbondi values for ions by testing agreement with experiment. It should be

noted that atom types F, Cl, Br, and I may exist as single ions or as part of a polyatomic

Species (neutral or charged). In this report we have considered only one type of radius

for both bound and unbound elements.

TABLE 7: Optimized atomic SA coeffecients (Ci values)" for single ions.

Ion PB GB

Li' –0.16017 -0.12495
Na" –0.08693 –0.06984
K" –0.05223 –0.04323
Mg” –0.46716 –0.30181
Ca” 0.21647 0.391.31
Fe?" –0.02233 0.23696
Zn” 0.02654 0.38 155

“Gnonpolar = X-SA"C.

Free energy of hydration results for the 11 monoatomics are presented in Table 6.

The experimental and difference in the computed values with experiment (residuals =

AGhyd exptl – AGºyd calcd) are shown for PBSA and GBSA results using both standard

and fitted SA constants. As emphasized above, SA contributions to hydration free

energies for monoatomic species are assumed to be small. For this reason, the fitted

Constants for Li, Na, K, Mg, Ca, Fe, and Zn, are in effect a correction factor that (1)

accounts for deficiencies in the implicit hydration model, (2) non-optimal radii, or (3)

differences in polarization energies between PB and GB calculations.
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It should be noted that all PB calculations in this work originally employed a grid

spacing of 0.5 Å (scale = 2 grids/A) as was reported in numerous prior MM-PBSA

studies.(Chong et al., 1999; Gouda et al., 2003; Huo et al., 2002; Kuhn and Kollman,

2000a, b, Massova and Kollman, 1999, 2000; Masukawa et al., 2003; Wang et al., 2001b)

However, poor AGºyd results for monoatomic ions computed using PB results obtained

with 2 grids/A prompted us to redo all the calculations reported here using a much finer

grid spacing of 0.25 Å (scale = 4 grids/A). Figure 6 highlights the fact that the PB results

are highly dependent on the grid spacing resolution used. Such convergence behavior of

PB was also noted in the original MM-PBSA/GBSA study.(Srinivasan et al., 1998) The

GB method used here does not use a grid and therefore the results will not affected by

grid-based convergence issues as in PB; GB GPolar results show good accord with

experimental AGhyd (Figure 6) for the monoatomic ions. Given that current

computational limits prohibit the use of PB grids much finer than ~ 0.5A (scale = 2

grids/A) for protein-ligand binding calculations, the lack of convergence for small highly

charged species noted here remains an issue.

---
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FIGURE 6: Polar energies (DGpolar) for monoatomic ions vs experiment (LGhyd exptl). GB and PB
calculations using either 2.0 or 4.0 grids/A are shown for mono, di, and tri-valent species.

200 i T i i i i

£ >kGB
.2 0- E. PB 2.0 grids/A

-

.# O PB 4.0 grids/A
5 200- - = +1 T*: q = +
-

# -400- -

2- - - 22 -600– q = +
-F

>
5
* -800 – -

jº - O -

<! q = +3
-1200 I i i i i i

-1200 -1000 -800 -600 -400 -200 O 200

AGºd exptl (kcal/mol)

It should be emphasized that PB results obtained using a given grid spacing might

lead to reasonable cancellation of errors for relative AAGhyd calculations. If absolute

agreement with experiment is important, an alternative approach would be to employ

optimized atom-based SA coefficients as reported in this work (Tables 4,5, and 7) to

correct for low-resolution PB results in order to yield AGhyd values in better absolute

agreement with experiment.

CONCLUSIONS

Absolute free energies of hydration have been estimated using continuum PBSA

and GBSA methods for comparison with experiment (Table S1 supporting information)

for 460 neutral compounds, 42 polyatomic ions, and 11 monoatomic ions. A systematic

evaluation of eight different models have revealed that continuum results which employ

partial charge based on one of three ab initio methods (MSK, RESP, and ChelpG)

consistently lead to better agreement with experiment for neutral and charged species
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(Table 2, Figure 2). Use of semiempirical (AM1BCC, AM1CM2, PM3CM2) and

empirical (Gast, MFF94) charge schemes yielded mixed results dependant on whether the

compounds were charged or neutral.

The results presented here clearly show that correlations with experimental AGhyd

are independant of which implicit solvation model (PBSA or GBSA) is employed in the

calculations. In all cases, the Hawkins pair-wise GB results are strongly correlated (r' =

0.94) with the much more expensive Delphi PB calculations provided that identical

coordinates, radii, and atomic charges are used (Figure 2). It should be noted that

calculations for monoatomic ions revealed that the PB results are highly dependant on the

grid spacing used in the computations (Figure 3) and should therefore be closely

monitored if absolute free energies of hydration be required.

Examination of polar and non-polar energy components revealed that AGnonpolar

energies derived from molecule-based SA's with standard conversion constants have no

correlation with experimental results (Figure 3). The problem stems from the erroneous

assumption that all exposed atoms will contribute equally to the non-polar energy term.

To remedy this fact, re-optimization of SA's constants on an atom-type basis was pursued

through multiple linear regression fittings to the difference in experimental free energies

and polar energy terms obtained from continuum calculations. For completeness these

optimizations were performed for all eight charge models and both continuum methods

(Tables 4, 5, and 7). Use of atom-based SA; instead of molecule-based SA constants

reduces both relative (rº) and absolute unsigned errors (AUE) with experiment with

respect to experiment by eliminating any gross deficiencies a particular charge model

may have (Tables 2 vs 3). In particular, AUE errors for charged species were

- -

º
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substantially reduced (Tables 3 and 6). On a case-by-case basis use of atom-based

constants (Figures 4-5, black squares) correct for systematic errors. In the case of

monatomic ions atom-based constants may be primarily viewed as correcting for

deficiencies in the implicit model or to correct for non-optimal radii. As noted above,

convergence of PB for monatomic ions can be problematic.

Levy et al. have recently reported a novel non-polar method which represent

solvent-solute van der Waals interactions more explicitly than does molecule-based SA to

AGhyd to. However their calculation are more difficult and the parameters can not be

applied universally, but rather require individual calculations for molecules. Our

approach is an in between solution which recognize the inadequacy of a universal SA

constant and show that by optimizing the constants to individual atom types rather than

molecules we can get enrichment in the correlation between experimental and

computational methods with out any added time cost.

This is important in larges scale drug discovery efforts and such improvements

are expected to be important for protein-ligand binding calculations which include AGhyd

like terms (e.g. MM-GBSA and MM-PBSA methods) and could help to facilitate the

discovery and design of novel chemotherapeutic compounds.

In this report we have emphasized two distinct types of errors, For neutral species error

estimates for experimental values are approximately 0.5 kcal/mol but for ions are 5

kcal/mol. REF Cramer/Trulhar papers

2.
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32

TableS1.
ExperimentalFreeEnergiesof
Hydration(AGhyd)
in
kcal/mol"

33

34

codeMolnameCASNo.AGhyd35 1

methane74-82–81.9936 2
ethane74-84–01.8337 3

propane74-98-61.9638 4
n-butane106–97–82.0739 5

2-methylpropane75–28-52.3240 6

n-pentane109–66-02.3241 7

2-methylbutane78-78-42.3842 8

2,2-dimethylpropane463–82-12.5143 9

n-hexane110–54–32.4844 10
2-methylpentane107–83–52.5145 11

3-methylpentane96-14-02.5146 12

2,2-dimethylbutane75–83-22.5147 13

2,3-dimethylbutane79-29-82.3448 14
n-heptane142–82-52.6749 15

2-methylhexane591–76–42.9350 16
3-methylhexane589–34–42.7151 17

2,2-dimethylpentane590–35–22.8852 18

2,3-dimethylpentane565-59-32.5253 19

2,4-dimethylpentane108-08-72.8354 20

3,3-dimethylpentane562–49–22.5655 21
n-OCtane111-65–92.8856 22

3-methylheptane589–81-12.9757 23

2,2,4-trimethylpentane540-84-12.8958 24

2,3,4-trimethylpentane565–75-32.5659 25
n-nonane111–84-23.1360 26

2,2,5-trimethylhexane3522-94-92.9361 27n-decane124–18–53.1662 28
cyclopropane75-19-40.7563
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29
cyclopentane287-92-31.20

methylcyclopentane n-propylcyclopentane n-pentylcyclopentane cyclohexane methylcyclohexane cis-1,2-dimethylcyclohexane trans-1,4-dimethylcyclohexane
ethene propene but-1-ene pent-1-ene (Z)-2-pentene 3-methyl-1-butene 2-methylbut-2-ene hex-1-ene 2-methylpent-1-ene 1-heptene (E)-2-heptene 1-octene 1-nonene buta-1,3-diene 2-methylbuta-1,3-diene 2,3-dimethylbuta-1,3-diene penta-1,4-diene hexa-1,5-diene cyclopentene cyclohexene 1-methylcyclohexene cyclohepta-1,3,5-triene propyne 1-butyne 1-pentyne 1-hexyne 1-heptyne -

-

96-37-7 2040-96-2 374.1-00-2 110–82-7 108-87–2 1/4/2207 4/7/2207 74-85-1 115-07-1 106–98-9 109-67-1 627–20–3 563-45–1 513–35-9 592–41-6 27236–46-0 592–76-7 14686-13-6 111-66-0 124-11-8 106-99-0 78–79-5 513-81-5 591-93-5 592–42–7 142–29-0 110–83–8 591–49-1 544–25–2 74-99-7 107-00-6 627-19-0 693-02-7 628–71-7

1.59 2.13 2.55 1.23 1.70 1.58 2.11 1.28 1.32 1.38 1.68 1.31 1.83 1.31 1.58 1.47 1.66 1.68 1.92 2.06 0.61 0.68 0.40 0.93 1.01 0.56 0.37 0.67 –0.99 -0.48 –0.16 0.01 0.29 0.60
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64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

1-octyne tetrafluoromethane chloromethane dichloromethane trichloromethane tetrachloromethane chloroethane 1,1-dichloroethane 1,2-dichloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1,2,2-tetrachloroethane 1,1,1,2-tetrachloroethane pentachloroethane 1-chloropropane 2-chloropropane 1,2-dichloropropane 1,3-dichloropropane 1-chlorobutane 2-chlorobutane 2-chloro-2-methylpropane 1,4-dichlorobutane 1-chloropentane 1-chlorohexane 1-chloroheptane 1,1-dichloroethene (Z)-1,2-dichloroethene (E)-1,2-dichloroethene trichloroethene tetrachloroethene 3-chloropropene bromomethane dibromomethane tribromomethane

629-05-0 75-73–0 74-87–3 75-09-2 67-66–3 56–23–5 75-00-3 75-34-3 107-06-2 71-55-6 79-00-5 79-34-5 630–20–6 76-01-7 540–54–5 75-29-6 78–87-5 142–28-9 109-69-3 78–86-4 507–20-0 110-56-5 543–59-9 544-10-5 629-06-1 75-35-4 156-59-2 156-60-5 79-01-6 127-18-4 107-05-1 74-83-9 74-95-3 75-25-2

0.7198
bromoethane74-96-4 3.1299

1,2-dibromoethane106–93-4 -0.55100
1-bromopropane106–94-5 -1.31101

2-bromopropane75–26–3 -1.08102
1-bromobutane109-65-9 0.08103

1-bromo-2-methylpropane78–77-3 -0.63104
2-bromo-2-methylpropane507–19–7 –0.84105

1-bromopentane110-53-2 -1.79106
1-bromohexane111-25-1 –0.19107

1-bromoheptane629-04-9 -1.99108
1-bromooctane111-83-1 –2.47109iodomethane74-88-4 -1.28110iodoethane75-03-6 -1.39111

iodopropane107–08-4 –0.331121-iodobutane542–69–8 –0.25113
1-iodopentane628–17–1 -1.27114

1-iodohexane638–45–9 -1.89115
1-iodoheptane4282-40-0 –0.16116halothane151-67-7 0.00117teflurane124–72–1 1.09118diethylether60-29–7 –2.32119di-n-propylether111-43–3 –0.07120diisopropylether108-20-3 0.00121di-n-butylether142–96–1 0.29122

methoxyflurane76–38-0 0.25123isoflurane266.75-46-7 -1.17124
tetrahydrofuran109-99-9 -0.78125

2-methyltetrahydrofuran96-47-9 -0.44126

2,5-dimethyltetrahydrofuran1003–38-9 0.10127
tetrahydropyran142–68-7 -0.571281,4-dioxane123-91-1 –0.82129

isobutraldehyde78-84-2 -1.96130
formaldehyde50-00-0 –2.13131

acetaldehyde75-07-0 170 ---- sººº cººC.

–0.74 –2.33 -0.56 -0.48 -0.40 -0.03 0.84 –0.10 0.18 0.34 0.52 –0.89 –0.74 -0.53 –0.25 -0.14 0.08 0.27 –0.11 0.50 -1.59 -1.16 -0.53 –0.83 -1.12 0.10 –3.47 –3.30 –2.92 –3.12 –5.06 –2.86 –2.75 –3.50
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132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

propionaldehyde butyraldehyde pentanal hexanal heptanal octanal nonanal (E)-2-butenal (E)-2-hexenal (E)-2-octenal propanone butanone pentan-2-one pentan-3-one 3-methylbutan-2-one hexan-2-one 4-methylpentan-2-one heptan-2-one heptan-4-one octan-2-one nonan-2-one nonan-5-one decan-2-one undecan-2-one cyclopentanone cyclohexanone methylformate ethylformate n-propylformate isopropylformate isobutylformate isoamylformate methylacetate ethylacetate

123-38-6 123-72–8 110-62-3 66-25-1 111–71–7 124-13-0 124-19-6 4.170–30–3 6728–26–3 2548–87–0 67-64-1 78-93-3 107–87-9 96–22–0 563-80-4 591–78-6 108–10–1 110–43–0 123–19–3 111-13-7 821–55-6 502–56-7 693-54-9 112-12-9 120-92-3 108-94-1 107–31–3 109–94-4 110–74-7 625–55–8 542–55-2 110–45–2 79-20-9 141-78-6

-3.43 -3.18 —3.03 –2.81 -2.67 –2.29 –2.07 –4.22 –3.68 –3.43 –3.80 –3.71 –3.52 –3.41 –3.24 –3.28 –3.05 –3.04 –2.92 –2.88 –2.49 -2.64 –2.34 –2.15 –4.70 –4.91 –2.78 –2.56 –2.48 –2.02 –2.22 –2.13 –3.13 –2.94 171

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

n-propylacetate isopropylacetate n-butylacetate isobutylacetate n-pentylacetate isoamylacetate n-hexylacetate methylpropanoate ethylpropanoate n-propylpropanoate n-pentylpropanoate methylbutanoate ethylbutanoate n-propylbutyrate methylpentanoate ethylpentanoate methylhexanoate ethylhexanoate isobutylisobutanoate propanenitrile butanenitrile pentanenitrile ammonia methylamine ethylamine n-propylamine n-butylamine n-pentylamine n-hexylamine n-heptylamine n-octylamine cyclohexylamine dimethylamine diethylamine

109-60-4 108-21-4 123-86-4 110-19-0 628–63-7 123-92-2 1.42-92-7 554-12-1 105-37-3 106-36–5 624-54-4 623–42-7 105-54-4 105-66–8 624–24-8 539–82–2 106-70-7 123-66-0 97-85–8 107-12-0 109–74-0 110-59–8 7664–41-7 74-89-5 75-04-7 107-10-8 109–73-9 110-58-7 111-26-2 111-68–2 111-86-4 108-91-8 124-40–3 109-89-7

-2.79 -2.64 -2.64 –2.36 –2.51 –2.21 –2.26 –2.93 -2.68 –2.44 –2.11 –2.83 –2.49 –2.28 –2.56 –2.49 –2.49 –2.23 -1.69 –3.84 –3.64 –3.52 –4.29 –4.55 –4.50 –4.39 –4.24 –4.09 –3.95 –3.79 –3.65 –4.59 –4.29 –4,07
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201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

di-n-propylamine diisopropylamine di-n-butylamine trimethylamine triethylamine nitromethane nitroethane 1-nitropropane 2-nitropropane 1-nitrobutane 1-nitropentane n-butylacetamide N,N-dimethylformamide
aceticacid propanoicacid butanoicacid pentanoicacid

3-methylbutanoic
acid hexanoicacid Water methanol ethanol propan-1-ol propan-2-ol butan-1-ol 2-methylpropan-1-ol butan-2-ol 2-methylpropan-2-ol pentan-1-ol pentan-2-ol pentan-3-ol 2-methylbutan-1-ol 3-methylbutan-1-ol 2-methylbutan-2-ol

142-84-7–3.65235hexan-1-ol 108-18-9–3.22236hexan-3-ol 111-92-2–3.24237
2-methylpentan-2-ol 75-50-3–3.20238

4-methylpentan-2-ol 121-44-8–3.22239
2-methylpentan-3-ol 75-52-5–4.02240heptan-1-ol 79-24-3–3.71241octan-1-ol 108-03-2-3.34242nonan-1-ol 79-46-9–3.13243decan-1-ol 627-05-4–3.09244

cyclopentanol 628-05-7–2.82245cyclohexanol 1119-49-9–9.31246cycloheptanol 68-12-2–7.81247
prop-2-en-1-ol 64–19–7–6.69248

2-methoxyethanol 79-09-4–6.46249
2-ethoxyethanol 107-92-6–6.35250

2-propoxyethanol 109–52-4–6.16251
2-butoxyethanol 503–74–2–6.09252

2,2,2-trifluoroethanol 142-62-1–6.21253
hexafluropropene 7732-18-5–6.32254ethanethiol 67–56-1–5.10255

n-propanethiol 64–17–5–5.00256n-butanethiol 71-23-8–4.85257diethylsulfide 67–63–0–4.74258di-n-propylsulfide 71-36-3–4.72259di-isopropylsulfide 78–83-1–4.50260diethyldisulfide 78-92-2–4.62262triethylphosphate 75–65–0–4.47263
N-methylpiperidine 71-41-0–4.57264

N-acetlpyrrolidine 6032–29–7–4.39265morpholine 584-02-1–4.35266
N-methylmorpholine 137-32-6–4.42267benzene 123-51-3–4.42268toluene 75-85-4–4.43269ethylbenzene
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111-27-3–4.40 623-37-0–4.06 590–36–3–3.92 108-11-2–3.73 565-67-3–3.88 111-70-6-4.21 111-87-5–4.09 143-08-8–3.88 112–30–1–3.64 96-41-3–5.49 108-93–0–5.46 502–41-0–5.48 107-18-6–5.03 109-86-4–6.76 110–80-5–6.69 2807-30-9–6.40 111–76-2–6.25 75-89-8–4.31 116-15-4–3.76 75-08-1-1.14 107-03-9-1.06 109–79-5–0.99 352–93-2-1.46 111-47-7-1.28 625–80-9-1.21 110–81-6-1.64 78-40-0–7.54 626–67-5–3.88 4030-18-6–9.80 110-91-8–7.17 109-02-4–6.32 71-43-2–0.86 108-88-3–0.89 100-41-4-0.79 ºsº
º.sº–=
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270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

o-xylene m-xylene p-xylene n-propylbenzene isopropylbenzene 1,2,3-trimethylbenzene 1,2,4-trimethylbenzene 1,3,5-trimethylbenzene 2-ethyltoluene 4-ethyltoluene n-butylbenzene isobutylbenzene sec-butylbenzene tert-butylbenzene 4-isopropyltoluene n-pentylbenzene n-hexylbenzene styrene alpha-methylstyrene biphenyl naphthalene 1-methylnapthalene 1,3-dimethylnapthalene 1,4-dimethylnaphtalene 2,3-dimethylnapthalene 2,6-dimethylnaphtalene 1-ethylnapthalene indane acenaphthene fluorene fluorobenzene benzotrifluoride chlorobenzene 1,2-dichlorobenzene

95-47-6 108–38–3 106–42-3 103–65-1 98-82–8 526–73-8 95-63-6 108–67-8 611-14-3 622–96–8 104-51-8 538-93-2 135-98-8 98-06-6 99-87-6 538-68–1 1077–16-3 100–42-5 98-83-9 92-52-4 91-20-3 90-12-0 575-41-7 571-58-4 581–40–8 581–42-0 1127–76-0 496-11-7 83–32–9 86–73–7 462-06-6 98-08-8 108-90-7 95-50-1

-0.90 –0.83 –0.80 -0.53 –0.30 -1.21 –0.86 –0.90 -1.04 -0.95 -0.40 0.16 -0.45 -0.44 -0.68 –0.23 –0.04 -1.24 -1.24 -2.66 –2.40 –2.44 –2.47 –2.82 -2.78 -2.63 –2.40 -1.46 -3.15 -3.35 –0.80 –0.25 -1.12 -1.36 173
304 305 306 307 308 309 310 3.11 312 3.13 3.14 315 316 317 3.18 3.19 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

1,3-dichlorobenzene 1,4-dichlorobenzene 1,2,3-trichlorobenzene 1,2,4-trichlorobenzene 1,3,5-trichlorobenzene 1,2,3,4-tetrachlorobenzene 1,2,3,5-tetrachlorobenzene 1,2,4,5-tetrachlorobenzene 2-chlorotoluene bromobenzene 4-bromotoluene iodobenzene anisole ethylphenylether benzaldehyde 4-methylbenzaldehyde acetophenone 4-methylacetophenone methylbenzoate ethylbenzoate benzonitrile o-toluidine p-toluidine 2,6-dimethylaniline 2-chloroaniline 3-chloroaniline 4-chloroaniline 2-methoxyaniline 3-methoxyaniline 4-methoxyaniline 2-nitroaniline 3-nitroaniline 4-nitroaniline 1-naphthylamine

541-73-1 106–46-7 87-61-6 120-82-1 108-70–3 634-66-2 634-90-2 95-94-3 95-49-8 108-86-1 106-38–7 591-50-4 100–66–3 103-73-1 100-52-7 104-87–0 98-86–2 122-00-9 93-58-3 43-89-0 100–47–0 95-53-4 106–49–0 87-62-7 95-51-2 108–42-9 106–47-8 90-04-0 536–90–3 104-94-9 88–74-4 99-09-2 100-01-6 134–32-7 o-

-0.98 -1.01 -1.24 -1.12 –0.78 -1.34 -1.62 -1.34 -1.14 -1.46 -1.39 -1.74 –2.45 –2.22 –4.02 –4.27 –4.58 –4.70 –3.92 –3.64 –4.21 –5.53 –5.57 –5.21 –4.91 —5.82 –5.90 –6.12 –7.29 –7.48 –7.37 –8.84 10.27 –7.28



- *- - - - -

------"



338
2-naphthylamine91-59-8–7.473722-nitrophenol88–75-5–4.58 339

N-methylaniline100-61-8–4.693733-nitrophenol554–84-7–9.62 340
N,N-dimethylaniline121-69–7–3.453744-nitrophenol100-02-7-10.64 341nitrobenzene98-95-3–4.123751-naphthol90-15-3–7.67 3422-nitrotoluene88–72–2–3.583762-naphthol135-19-3–8.11 3433-nitrotoluene99-08-1–3.45377benzylalcohol100–51–6–6.62 344benzamide55–21-0-11.00378

2-phenylethanol60-12-8–6.79 345phenol108-95-2–6.61379
3-phenylpropanol122–97–4–6.92 346o-cresol95-48–7—5.87380thiophenol108-98-5–2.55 347p-cresol106-44-5–6.13381phenylmethylsulfide100-68–5–2.73 348

2,3-dimethylphenol526-75-0–6.16382pyridine110–86-1–4.69 349
2,4-dimethylphenol105-67-9–6.01383
2-methylpyridine109-06-8–4.63 350

2,5-dimethylphenol95-87–4–5.91384
3-methylpyridine108-99-6–4.77 351

2,6-dimethylphenol576-26-1–5.26385
4-methylpyridine108-89–4–4.93 352

3,4-dimethylphenol95-65–8–6.50386
2,3-dimethylpyridine583–61–9–4.82 353

3,5-dimethylphenol108–68-9–6.27387
2,4-dimethylpyridine108–47–4–4.86 3543-ethylphenol620-17-7–6.25388

2,5-dimethylpyridine589-93-5–4.72 355
4-ethylphenol123-07-9–6.13389
2,6-dimethylpyridine108–48–5–4.59 356

4-n-propylphenol645–56-7–5.90390
3,4-dimethylpyridine583–58-4–5.22 357

4-tert-butylphenol98-54-4–5.91391
3,5-dimethylpyridine591–22–0–4.84 358

2-fluorophenol367–12–4–5.29392
2-ethylpyridine100–71-0–4.33 359

4-fluorophenol371-41-5–6.19393
3-ethylpyridine536-78-7–4.59 360

2-chlorophenol95-57-8–4.55394
4-ethylpyridine536-75-4–4.73 361

3-chlorophenol108–43–0–6.62395
2-chloropyridine109-09-1–4.39 362

4-chlorophenol106–48-9–7.03396
3-chloropyridine626–60-8–4.01 363

4-chloro-3-methylphenol59–50-7–6.79397
3-cyanopyridine100-54-9–6.75 364

4-bromophenol106-41-2–7.13398
4-cyanopyridine100–48–1–6.02 3652-iodophenol533–58-4–6.20399

3-formylpyridine500-22-1–7.10 366
2-methoxyphenol90-05-1–5.57400
4-formylpyridine872-85-5–7.00 367

3-methoxyphenol150–19–6–7.66401
3-acetylpyridine350-03-8–8.26 368

3-hydroxybenzaldhyde100–83-4–9.50402
4-acetylpyridine1122-54-9–7.62 369

4-hydroxybenzaldhyde123-08-0–8.83403quinoline91-22-5–5.72 370
3-cyanophenol873-62–1–9.65404
2-methylpyrazine109-08-0–5.51 371

4-cyanophenol767-00-0-10.17405
2-ethylpyrazine13925-00-3–5.45
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406
2-isobutylpyrazine29.460-92-2–5,04516

N-methylacetamide79-16-3
-
10.00 407thiophene110-02-1-1.42517

2-methoxyethanamine109-85–3–6.55 408
2-methylthiophene554-14-3-1.38518hydrazine302-01-2–9.30 409dimethylether115-10-6-1.91519methanethiol74–93–1-1.24 410methylethylether540–67–0–2.10520

hydrogen-sulfide6/4/7783–0.70 411
methyl-tert-butylether1634-04-4–2.21521
dimethyl-disulfide624-92-0-1.83 412

3,3-dimethylbutan-2-one75-97-8–3.11522
fluoromethane593–53–3–0.22 413

2,4-dimethylpentan-3-one565–80-0–2.74523
1,1-difluoroethane75-37-6-0.11 414methylcyclopropylketone765–43–5–4.61524

chloroethylene75-01-4-0.59 415methylcyclohexylketone823-76-7–3.90525
p-dibromobenzene106-37-6–2.30 416methyltrimethylacetate598–98-1–2.40526

diiodomethane75-11-6–2.49 417methylcyclopropylcarboxylate2868-37-3–4.10527
2-iodopropane75-30-9-0.46 418methylcyclohexylcarboxylate4630–82–4–3.30528

bromotrifluoromethane75–63–81.79 419dimethylsulfide75–18–3-1.61529
chlorofluoromethane593–70-4-0.77 420methylethylsulfide624–89-5-1.50530

chlorodifluoromethane75-45-6-0.50 421dimethylsulfoxide67–68–5-10.10531
1-bromo-2-chloroethane107-04-0-1.95 422

4-methoxyacetophenone100-06-1–4.40532

1-chloro-2,2,2-trifluoroethane
75–88-70.06 424anthracene120-12-7–3.95533

1,1,2-trichloro-1,2,2-trifluoroethane
76-13-11.77 425phenanthrene85-01-8–3.88534

1,1,1-trifluoropropan-2-ol374-01-6–4.16 426pyrene129-00-0–4.52535
1-H-imidazole288-32–4–9.63 500

2-methylpropene115-11-71.165361-H-pyrrole109–97–7–4.78 502
1,2-ethanediol107–21–1–9.30537
1-methyl-pyrrole96–54–8–2.89 503m-cresol108–39–4–5.49538

1-methyl-imidazole616–47–7-8.41 504
methyl-propyl-ether557–17–5-1.661000HC2-–73.00 505

methyl-isopropyl-ether598–53-8–2.011001CH3OH2+-87.00 506
1,2-dimethoxyethane110–71–4–4.841002(CH3)2OH+–70.00 507

methyl-octanoate111-11-5–2.041003CH3CH2OH2+–81.00 509azetidine503–29-7–5.561004
CH3C(OH)CH3+–64.00 510pyrrolidine123-75–1–5.481005H3O+-105.00 511piperazine110–85-0–7.401006CH3O-–98.00 512

N-methylpiperazine109-01-3–7.771007CH3CO2--77.00 513piperidine110–89–4–5.111008CH3COCH2-–81.00 514aniline62–53–3–5.491009C6H5O-–75.00 515ethanamide60-35-5–9.711010C6H5CH2-–59.00

175

º27º-ººsº*.
-
º§3ºC-s**.-º§3°ºfEcsn°,sºCSºnºsº



------------------

----------

■■



1012 1014 1015 1017 1018 1019 1020 1021 1022 1023 1025 1027 1028 1029 1030 1031 1033 1034 1035 1036 1037 1038 1039 1040
HO2 CH3NH3+ HC(OH)NH2+ CH3C(OH)NH2+ (CH3)2NH2+ (CH3)3NH+ imidazoleH+ C5H5NH+ C6H5NH3+ NH4+ CH2CN NO2– NO3 N3– CH3SH2+ (CH3)2SH+ CH3S CH3CH2S n-C3H7S C6H5S F

CHF2COO
Cl

CHCl2COO

-101.00 –73.00 –78.00 –70.00 –66.00 –59.00 –64.00 –58.00 –68.00 –81.00 -75.00 -73.00 –66.00 –74.00 –74.00 –61.00 –76.00 –74.00 –76.00 –65.00 -107.00 –70.00 –78.00 –66.00 176
1041 1042 1044 1045 1046 104.7 1048 1049 1051 1052 1053 1054 1055 1059 1060 106.1 1062 1065
Br I PH4+ CH3PH3+ (CH3)2PH2+ (CH3)3PH+ H2PO4 HCO2– H3S-H Li+ Na+ K+ (CH3)4N+ Mg++ Ca++ Fe++ Zn-H OCN

–72.00 –63.00 -73.00 –63.00 –57.00 –53.00 –68.00 –94.00 -87.00 -111.00 -87.00 –71.00 –38.00 437.00 -360.00 -440.00 –467.00 -87.00

“Codes1–426fromreference(Abraham
etal.,1990),codes500–534 fromreference(Chambers

etal.,1996),codes535–538fromreference (Gerber,1998),codes1000–1048fromreference(Lietal.,1999), codes1049–1051fromreference(Chambers
etal.,1996),codes 1052–1065fromreference(Marcus,1994).Energies

in
kcal/mol.
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Chapter Seven: Concluding Remarks
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This thesis offers a brief glimpse of the challenges in protein structure prediction

using computational methods. Chapter two deals with the issues faced in comparative

modeling in the absence of sequence similarity and highlights the need for improved

protein classification systems. In chapters three, four, and five we take a more

fundamental approach and introduce a framework for understanding protein structures

and the protocols of comparison in a quantitative form. Chapter six, is an effort to

improve the parameterizations used in calculating the free energies of binding; a key step

in structure base drug design.

Our efforts above were limited not just by sheer computing power, but also by the

available knowledge on proteins, specifically their interactions and relationships to one

another. Homology detection offers great potential in classifying the large numbers of

unknown sequences that have become available from genomics projects. However, as

mentioned earlier, the finite number of observed folds and the lack of high enough

similarity has lead to the emergence of orphan proteins whose relatives can not be

identified computationally. Despite past efforts in utilizing geometric constraints to

narrow the search area for suitable sequence/structure pairs these methods have yet to

reach their full potential. To date, constraints have been used in conjunction with other

methods all which have relied on sequence similarity. Our alternative approach to use

restraints as the primary metric were hampered by the lack of clear guidelines and

definitions for structure similarity.

Our knowledge of the protein universe is derived mainly from experimental data.

The nature of much of this data is however often not understood. In particular, there are

no analytical methods for quantifying the information they offer nor for assessing the

178 -
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inherent errors contained within them. In addition, proteins amenable to experimental

study represent only a subset of the entire universe. As a result, it is difficult to draw

conclusions about the properties of the entire protein universe.

We applied the basic tenets of information theory to reduced representations such

as two-dimensional lattice models and limited alphabets to study exhaustive sets whose

properties can be transferred on to the protein universe. Currently, exhaustive studies are

limited to short chain length of no more than twenty residues, however we see that

stochastic sets of longer length exhibit similar behavior and as such it is reasonable to

assume that conclusions from these models can be extended to world of real proteins and

sequences as well.

The end-game of structure-prediction as a discipline is to be able to target proteins

responsible for human disease by designing ligands that inhibit their activity through

intermolecular interactions. The field of computational chemistry at present is born out

of a marriage of computing power and the increased availability of protein structure data.

As of today, it is not yet possible to represent protein interactions in their entirety in

computer simulations; hence the use of approximation methods, or once again reduced

representations, in calculations of free energies of binding. We have compiled a rather

large test set of molecules to use in optimizing the input parameters of these algorithms in

order to increase their correlation with experimental results.

Computers are playing larger and larger roles in biology. Their purpose and utility

appears circular in that with greater computing power we are able to study more complex

systems and subsequently enhance our knowledge base, and yet as we increase our

y
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understanding of the laws of molecular recognition, we can design more efficient and

reliable algorithms for simulation. The work presented here is a step towards these goals
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