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Abstract

This paper presents a connectionist architecture for
deriving unknown role fillers in relational
expressions. First, a restricted solution to the binding
problem is presented which ensures systematicity in
principle, and allows for sufficient compositionality
so as to enable instantiation of shared variables in
conjunctive expressions where the same object may
fill a variety of roles in a variety of relations. Next, a
more detailed architecture is explicated (an extension
of McClelland’'s 1981 “Interactive Activation
Competition” architecture) which allows for
systematicity in practice while providing a training
procedure for relations. Finally, results of the
learning procedure for the Family Tree data set
(Hinton, 1990) are used to demonstrate robust
generalization in this domain.

1. Introduction

This paper outlines an architecture for connectionist
symbol processing. The task driving this architecture
is that of variable instantiation. This task
involves contexts with any number of objects playing
any number of roles in any number of relations.
Given a subset of the objects, the goal is to
simultaneously derive all of the unknown role fillers
(Stark, 1992). The focus is on learning relations in a
manner compatible with a principled binding strategy
(one that allows bindings to be propagated so as to
allow role fillers to be derived).

2. An Interactive Binding Strategy

While connectionist networks are good at representing
single distinct (or schematic) objects, they do not
perform as well when simultaneously representing
multiple objects, making it difficult to distinguish
which features belong to which objects, or which

The work reported in this paper was supported by a
grant from the Joint Council Initiative for Cognitive
Science (MRC G8920680). The author wishes to
thank Dr. Chris Thornton for helpful discussions at
various stages of this work.
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roles objects are playing in a relation. This is known
as the binding problem (Hinton, McClelland, &
Rumelhart, 1986; Smolensky, 1990).

The variable instantiation task serves 1o constrain
the nature of the binding problem. Rather than being
concerned with developing a universal binding scheme
to encode arbitrary structures (e.g. Smolensky, 1990;
Pollack, 1990), the primary concern here is with
providing a connectionist architecture that exhibits
systematicity (the ability to allow in principle any
object to appear in any role of any relation) without
having to a priori dedicate hardware to allow for all
possibilities (cf. Fodor & Pylyshyn, 1988).

Consider an object-representing network (Figure 1),
viewed as a vector of feature units and a connectivity
matrix. Here, the auto-associative network functions
as a content-addressable memory that will settle on an
appropriate object representation. Such a network can
realize a distributed representation of a single object,
or a single object schema; the features define a vector
space in which points correspond to specific objects or
possible schemas.

The problem of simultaneously representing
multiple distinct objects can be addressed by utilizing
multiple copies of the basic object-representing
network (Hinton, McClelland, & Rumelhart, 1986),
and arranging them in an interactive architecture. A
context involving two objects will be computed with
a context network consisting of two object-
representing subnetworks, with additional connections
between them governing their interaction. The
additional connections are derived from the roles the
objects are to play in a given relation in the context
network. Functioning as content-addressable
memories, the networks can cooperate in
simultaneously forming representations of distinct
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Representing Net
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objects in specific roles, constraining each other’s
auempts to settle into minima.

A two-object context network operates on a vector
made by concatenating two copies of the feature vector
associated with an object-representing network, and a
connection matrix divided into four equal submatnices.
The upper-left and lower-right submatrices (on the
main diagonal) are each copies of the object-
representing network’s connection matrix. The other
two submatrices, called binding matrices, each contain
constraints on one object given the other object.

Figure 2 shows a network for computing a context
with two objects (A and B) that are in role one and
role two of the relation R respectively. In this
network, the "within layer" connections for each
object are just exact copies of the basic connection
matrix shown in Figure 1. The other two submatrices
are the binding matrices. The lower-left binding
matrix contains connections representing constraints
on object A's feature vector given that it is in the first
role of relation R with object B in the second role
(denoted R(A|B)), and the upper-right binding matrix
contains connections representing constraints on
object B's feature vector given that it is in the second
role of relation R with object A in the first role
(denoted R(BJA)).

Contexts of arbitrary complexity can be created
using such binding matrices, for example as in Figure
3, where three distinct objects play roles in two
relations, with one object (B) playing different roles
in different relations. A generative, compositional
syntactic description can be used to describe each
context (see Figure titles); furthermore, any context
describable with this conjunctive, predicate-based
syntax has a corresponding network representation.

Systematicity is realized because each object-
representing network is in principle capable of
representing any object or schema. Since each
variable has its own subspace (conlaining points
corresponding to possible bindings), crosstalk

l 1 1 |

o M
B .
J o nd RI(BIA)
E A Con Connections
T

Fam——
Q
B OW
J R1(A|B) R2(C(8)
E B Connections | - Connections
c
%

pu:
o
B Obyect
o R2(BIC)
E C Ci o ks
e

Figure 3: R1(A,B) A R2(B,C)
Context Network

37

problems are brought under control. When crosstalk
is desired (as in the case of a variable being bound to a
schema), superpositional representation still occurs
within a variable subspace. Object-representing
connection matrices (along the main diagonal of a
context) provide mappings within these subspaces,
while the binding matrices provide mappings between
variable subspaces.

Most of the work reported in this paper is devoted
to describing an advantageous vector representation of
objects and explicating procedures for determining the
contents of the binding matrices. That such
procedures exist can be seen by considering random
object vectors and a simple leaming procedure (such as
that in a Hopfield net). The object-representing
network can be trained by applying the Hopfield
learning procedure with a training set consisting of all
the object vectors. The binding matrices for each
relation can be leamed by applying the same learning
procedure on a network twice the size (as in Figure 2),
where the training set for each relation consists of
vectors obtained by concatenating the object vectors of
each pair of objects observed in the relation. When
learning the binding matrices, the connections in the
object-representing networks are “frozen”, that is, only
connections in the upper-right and lower-left quadrants
are leamed.

Binding is then a consiructive process in which a
context network is generated by creating a unit vector
which consists of n concatenated copies of the basic
object vector, where n is the number of objects (or
variables) in the context. The overall connection
matrix can then be constructed dynamically, using the
object-representing network’s matrix along the main
diagonal of the context matrix, and filling in the
binding matrices leamed for each of the relations, as in
Figure 3. Thus contexts involving any configuration
of objects in any conjunctive configuration of
relations can be modelled. It is this property of the
architecture that I refer to as compositional.

3. Interactive Representation of
Objects

This section looks at one aspect of the more detailed
architecture by considering structure within the object-
representing networks (Figure 1). The architecture
used to represent objects is based on McClelland's
(1981) “Interactive Activation Competition™ (IAC)
architecture, best known as the one underlying the
“Jets and Sharks” model. The IAC architecture
provides both a localist representation with an
instance subnetwork containing a unit for each object,
and a form of distributed representation whereby each
object is represented by a pattern of activation over the
remaining feature units. These units are further
divided into attribute subnetworks, each with unique
units for each value an attribute may take. Networks



using this architecture are able to represent objects and
exhibit a number of interesting properties, including
the ability to form schemas and function as a content-
addressable memory (the network is able to “fill in” an
object’s attribute values given a subset of them).

When considering the problem of leaming relations,
however, the right features and attributes need be
present. The binding scheme described in Section 2 is
dependent on features being explicitly represented if
they are important in deriving the nature of a
relationship. There is nothing inherent in the
architecture to guarantee that this condition is met.
While not claiming to have found a general solution,
itis suggested that certain specific attributes are useful
in representing and leaming relations.

In particular, attributes associated with the relations
themselves can be seen to be of use. If John loves
Mary, then John has the attribute of loving someone,
namely Mary. Likewise, Mary has the attribute of
being loved (by John). The IAC architecture offers a
simple way of modeling such attributes in the same
manner as any other attribute; for a given two-place
relation, two additional attribute subnetworks (one for
each role of the relation) may be incorporated in the
model, each with value units for each object that has
been observed in the given role of the given relation.
This is a form of conjunctive encoding (Hinton,
McClelland, & Rumelhart, 1986), since each unit
represents the conjunct of a relation, a role, and an
object. Thus part of an object’s distributed
representation will involve feamres which indicate that
object’s relationship to other objects in the domain.
The remainder of this paper will focus solely on these
relational attributes.

Consider an example domain with three individuals
(John, Mary, and Sally), with the five observed facts:
loves (John,Mary), loves(Sally,John),
hates (Mary,John), hates(John,Sally),
hates(Sally,Mary). The corresponding IAC
network (in both schematic and vector/matrix form) is
shown in Figure 4 (the connection matrix is a detail
of the object-representing matrix (Figure 1] duplicated
along the main diagonal in Figures 2 and 3).

While this approach allows the realization of simple
relational attributes, the limitations of conjunctive
coding are well known (Hinton, McClelland, &
Rumelhart, 1986; Fodor & Pylyshyn, 1988). As the
goal is to be able to compute with contexts of
arbitrary complexity, allowing for any configuration

lovers lovees

Figure 4a: Example Domain IAC Network
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of objects in any configuration of relations, a degree
of compositionality is required that cannot be attained
through conjunctive coding alone, if we are to be able
to represent not just, e.g., the person that John loves,
but also the person who hates the person who John
loves, or the mother of the person who hates the
person who John loves, etc,

4. Simple Binding

It is to overcome these limitations that the interactive
binding strategy was developed. We will first consider
a very simple binding procedure (i.e., a method of
deriving the connection weights in the binding
matrices) to demonstrate the basic principle using the
IAC architecture, This procedure does not require any
training procedure or learning of weights, as does the
full binding procedure presented in the next section.
This simple binding procedure can be seen in terms
of Hinton's (1990) discussion of “expanding
part/whole hierarchies”. An IAC network (the whole)
consists of a number of subnetworks, some of which
represent a specific attribute (a parr). While the whole
is able to represent objects using a distributed
representation (which includes all of the attributes),
the representation of objects within an attribute
network is wholly localist. The effect of the binding
procedure is to selectively “expand” some of these
“partial” subnetworks into a “whole”, enabling a full,
distributed representation of its value, which is
another unique object (or schema). Thus in a context
denoted by loves(X.Y), there will be two copies of the
IAC network, one representing X and one representing
Y. The binding procedure will provide a mapping
between the lovee attribute in the X network and the
entire ¥ network. This expansion is not strictly
hierarchical, as in Hinton’s discussion, since there
will be an additional mapping between the lover
subnetwork in the Y network and the entire X network
(i.e., each network is an expansion of a part of the
other network).
The first step in determining how to fill in the
binding matrices is to map them out in a similar
manner to the IAC object-representing network
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Figure 5 & 6: Binding Regions & SubRegions

connection matrices (Figure 4). This exposes that the
mapping between objects can be seen in terms of
mappings between aspects of the representations of
objects. Figure 5 shows how each binding matrix can
be divided into four “regions”: A (a mapping between
localist representations), B and C (mappings between
localist representations and distributed representations,
and vice versa), and D (a mapping between distributed
representations). A further level of structure exposes
the individual submappings in each of the regions,
involving specific attributes, as shown for the
example domain in Figure 6.

Next we consider which of these binding matrix
regions and subregions will receive non-zero weights.
To accomplish the part/whole expansion of the simple
binding procedure, only subregions in the B and C
regions will have non-zero weights. Specifically, two
subregions in each binding matrix (one in region B
and one in region C) will be eligible, corresponding
to the mappings involving the expanded attribute in
these regions. In the example domain (Figure 4), for
the context loves(X,Y), subregions B1 and C2 will
be eligible in the upper-right binding matrix (Figure
2), as will subregions B2 and C1 in the lower-left
binding matrix.

The issue of which specific connections within
these subregions will receive non-zero weights is
determined by a notion of co-reference (motivated in
part by Fodor and Pylyshyn’s own discussion of “the
role of labels in connectionist theories”, particularly
footnote 12). If we consider two basic sets, one of
units and one of labels, and define a reference function
that maps from units to labels (such that each unit
references a label), then a notion of co-reference can be
defined as a relation between units which is true iff
they reference the same label.

This enables a definition of a rule of co-reference:
Only co-referencing units may be inter-connected at
bind time. Figure 7 shows all of the potential
connections in each binding matrix for the example
domain. The co-reference rule combined with the
subregional breakdown of the binding matrices allows
a definition of the simple binding procedure:

Simple Binding Procedure: To bind two
objects in a relation R, use iwo copies of the object-
representation network (forming a context network).
Positively connect co-referencing units between the
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instance subnetwork of the first object network and
the attribute subnetwork representing the first role of
relation R in the second object network. Likewise,
positively connect co-referencing units between the
instance subnetwork of the second object network and
the attribute subnetwork representing the second role
of relation R in the first object network.

Given a complete description of a domain, contexts
of arbitrary complexity (limited only by resources)
may be constructed using repeated application of this
binding procedure (as in Figure 3). Given information
about at least one object in the context, and
appropriate network dynamics, the context network
will settle in a state whereby all unclamped object-
representing subnetworks will represent “solution”
objects (or schemas) appropriate for the context. If
the set of observed domain facts is complete, the
solutions will be the same as would have been derived
by traditional means (e.g., by Prolog).

5. Training and Generalization

The simple binding procedure, while demonstrating
iie basic power of the interactive strategy to perform
-ariable instantiation within conjunctively specified
contexts, requires complete domain information in
order to derive solutions. Although the strategy
allows for each object network to represent any object
in principle, the simple binding procedure will not
result in object networks settling on representations of
objects that have not been observed in a specified role
of a relation. This section outlines a procedure for
learning binding matrix connection weights and
allowing a greater degree of generalization.

The procedure is simple, and follows that outlined
near the end of Section 2. The binding matrices are
learned using a two-network context (as in Figure 2).
A pair of binding matrices are learned for each
relation, using as a training set a set of vectors
obtained by concatenating the vector representations
for each pair of objects observed to be in the relation.
Only co-referencing connections are learned (see
Figure 7), and the object-representing connections are
“frozen” (so as to allow object networks to settle on
any object, not just ones observed in the given role of
the given relation). Any leamning rule may potentially
be used.
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Generalization is achieved by applying a special
‘“generalization” rule to each resultant matrix. The
effect of this rule is to “combine” all of the learned
connections in each subregion (Figure 6) into a single
value, thus forming a correlation matrix which
represents a generalized version of the binding weights
for arelation. Any of a variety of generalization rules
may be used, such as taking the mean.

When the binding procedure is invoked, it will
supply the weights for each of the potential
connections in each of the binding matrices by finding
a uniform value for each connection using a
normalization formula applied to the values in the
appropriate correlation matrix. Thus every eligible
connection in a given subregion will have the same
weight after binding, even if the leaming rule derived
different weights for each connection.

Analysis of binding matrices in terms of subregions
allows each inter-attribute mapping to be considered
separately. As attribute values are mapped at run
time, the inherent content-addressable properties of the
IAC architecture allow each individual object-
representing subnetwork to settle on an object
representation that is consistent with the other object
representations being derived in the context network.

The co-reference rule provides a means of raising the
power of learned mappings by considering not just
whether an object in one role is likely to have a
specific value for an attribute given that an object in
another role has a given attribute value, but whether
two objects are likely to have the same value for any
of their attributes. The correlation matrix subregions
can be interpreted in terms of rules governing the
objects in the relation. Region A contains a single
reflexive rule, while regions B and C encode
symmetry rules. Thus in the example domain these
regions will encode the rule

loves (0,,0;) -> hates(05,07).
More complex rules involving third parties are handled
in each of the D subregions; e.g. subregion D3
(Figure 6) in the lower-left correlation matrix in the
example domain encodes the rule

loves (X, 0O;) -> hates(X, 0;)
(which is always true in the example domain when 0,
and O, are bound in the relation loves, as the rule
asserts that if the lover [0;] is loved by someone
[X], that person [X] hates the lovee [03]).

6. Experimental Results

An implementation of this architecture (described in
the Appendix) has been used as the basis for an
experimental study of various aspects of the
architecture, using the “Family Tree” domain of
Hinton (1990) (and others, e.g. Quinlan, 1990; Melz
& Holyoak, 1991). This domain of kinship relations
consists of twenty-four individuals and twelve
relations, organized in two isomorphic “family trees”.

There are a total of 112 “facts” in this domain (when
considered as triples). The current architecture is well
suited to handle this domain because the kinship
relations are all definable in terms of other relations.

Generalization was tested by deriving 400 training
sets, such that each set contained between 60% and
100% of the facts in the domain. For each training
set, the training procedure was executed, and 172 two-
object contexts were constructed, each with one object
known (68 contexts in which the object in the first
role was known, and 104 contexts in which the second
role object was known). After settling, the objects in
the missing role were derived by examining the
activation of units in the instance subnetwork of the
unclamped object network (see the Appendix and
Stark, 1992). Perfect performance was indicated by
the proper set of 224 objects (112 in each role) being
determined by the settled context networks.

Figure 8 show the results of the basic test. The X
axis represents the percentage of the domain facts
present in each training set, and the Y axis represents
the percentage of unknown objects that were derived
correctly. The diagonal line indicates expected
performance if no generalization took place (i.e., X =
Y). In the graph, training sets with the same number
of missing facts are grouped together, and their max,
min, and mean plotted.

Hinton (1990) reports variable results with 4% of
the facts missing, as did Quinlan (1991). The current
system performs perfectly on training sets with nearly
20% of the facts missing, and can still retrieve over
90% of missing role fillers in cases where 40% of the
facts are missing from the training set. The current
experiment, involving 400 different data sets, shows
the importance of exactly which facts are missing (as
can be seen in the variance between the max and min
figures for each test set group).

Other experiments show that the effect is quite
robust, demonstrating considerable parameter
insensitivity and tolerance to “lesions” in the binding
matrices. In addition, contexts with up to a dozen
objects have been tested and found to perform well,
especially when a high percentage of the domain facts
are known.

The fact that relational correlations are stored
independently of specific objects, coupled with the
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Figure 8: Basic Generalization Test Results



dynamic nature of the binding procedure driven by the
co-reference rule, enables a more powerful type of
generalization: a set of relations once learned may be
applied to a new set of objects without retraining
provided the regularities governing the relations
remain the same, thus achieving effects similar to
those reported by Melz & Holyoak (1991).

7. Discussion

This system, and particularly its approach to the
binding problem, differs from other similar ones
primarily in its goals. Rather than focussing on a
universal encoding scheme (such as, e.g. Smolensky,
1990; Pollack, 1990), the emphasis is placed on
leaming relations and propagating bindings in order to
perform variable instantiation in contexts describable
by a generative predicate-based syntax.

While Ajjanagadde and Shastri's (1991) temporal
binding system does focus on propagation of bindings
in a variable instantiation task, and indeed offers
provably correct inference in this domain, it does not
offer a training procedure, does not address the issue of
shared variables (compositionality), and is limited to
localist or quasi-localist representation of objects.
Hinton, McClelland, and Rumelhart (1986) suggest
the possibility of solving the binding problem by
making “multiple copies”, but express concern about
the implementation of copies. Temporal binding may
indeed provide an implementation mechanism for my
scheme, which is dependant on some form of “copies”
of a basic network, but the current work focuses not
on how copies are made, but rather examines when
they are needed and how they should interact.

The current system has a number of important
limitations. These include a treatment only of two-
place predicates, and the ability to perform only first
order bindings; it would be useful to be able to
determine what relation two objects are in, given their
roles. Perhaps the most important limitation is the
lack of hidden units. This lack is partially motivated
by an interest in seeing how far one could go in
solving problems such as the Family Tree without
using hidden units. An extended architecture that
exploits hidden units has been developed and will be
the subject of future experimentation.

Appendix (Implementation)

Unit activation function:
Uj = max (0, tanh(3 UjWy))
I

Learning Rule:
UiAa U
Wy = p(UglUy = (—Ilrﬂ
Generalization Rule:

Cr = mean(Wjj > 0) (for each subregion r).

41

Normalization Rule:
Wiy=01C,

Constant weights in each IAC network were set to
0.1 and -0.1. The network was allowed 20 cycles to
settle.

The localist competition subnetwork in each object
network was assumed to be a “K-winner-take-all”
network, where K was equal to the number of objects
in the solution (this was assumed to be information
supplied to the system). The weights for each localist
subnetwork were set according to the formula

w2 9:3
=3
After settling, the K units with the highest
activations (above zero) were taken as solution. No
units with zero activation were considered solutions.
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