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Membrane 
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Transport phenomena in an ion-exchange membrane containing both H+ and K+ are 

described using multicomponent diffusion equations (Stefan-Maxwell).  A model is 

developed for transport through a Nafion 112 membrane in a hydrogen-pump setup.  The 

model results are analyzed to quantify the impact of cation contamination on cell potential.  It 

is shown that limiting current densities can result due to a decrease in proton concentration 

caused by the build-up of contaminant ions.  An average cation concentration of 30 to 40 % is 

required for appreciable effects to be noticed under typical steady-state operating conditions. 
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1. Introduction 

Proton-exchange membranes are the current electrolyte of choice for polymer-

electrolyte fuel cells (PEFCs).  They have the key properties of being conductive to protons 

but not allowing gas permeation and have good durability and mechanical properties.  

However, these polymers can be susceptible to various contaminate ions.  Examples of such 

ions include those arising from environmental conditions (e.g., potassium and sodium from 

various salts)[1, 2] or cell operation (e.g., dissolved platinum catalysts or iron from the bipolar 

plates)[3, 4].  While the latter has been investigated in various capacities, the former has not 

received much attention.[1, 2, 5]   

The most complete theoretical study of the cation-contaminant effect in a PEFC 

environment was conducted by Kienitz et al.,[5] using a dilute-solution approach for the 

modeling.  In this paper, we use a more rigorous model based on the Stefan-Maxwell 

multicomponent equations to study the impact of potassium ions on the steady-state 

performance of a hydrogen pump, where there is humidified hydrogen on the anode side of 

the membrane and humidified nitrogen on the cathode side.  The simplified example of a 

hydrogen pump allows one to focus on the cation-contaminant impact without interference 

from other fuel-cell inefficiencies such as the concentration overpotentials, the sluggish 

oxygen-reduction-reaction kinetics, as well as water-management issues.  By examining the 

limiting currents that result due solely to proton conduction and concentration, one can gain 

insight into how the overall cell performance would be affected.  It should be noted that in 

this paper the membrane is treated as a separator.  While the impact of contaminant ions of 

the dispersed ionomer in the catalyst layers can be related to the discussion below, additional 

factors such as the need for gas permeation and the thinness of ionomeric films make a 

detailed modeling study of the catalyst layer beyond the scope of this paper.    
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2. Theory 

Governing Equations— For the problem, there are eight unknowns that must be solved for: 

the mole fractions for proton, potassium cation, water, and membrane, +H
x , +K

x , OH2
x , and 

−M
x , respectively, the flux densities, +H

N , +K
N , OH2

N , and the potential in the membrane, 

Φ2.  The flux of membrane, −M
N , is set to zero, as is appropriate in a steady state.  Eight 

equations are thus required. 

As mentioned in the introduction, concentrated solution theory is used for the system 

under consideration.  For an isothermal system composed of two cations, water, and 

membrane, there are three independent Stefan-Maxwell equations[6-8] 

2 2

2
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H H
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x x x x x
c RTµ

+ + − + + + + +

+ +
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c RTµ

+ + − + +

+ − +

 − − −
 ∇ = + +
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respectively, where D ij are binary interaction coefficients between species i and j (which 

contain the macroscopic transport properties of ionic conductivity, electro-osmotic 

coefficient, proton transference number, and water permeability) and the other variables are as 

defined in the nomenclature.  In the above equations, one needs to express the electrochemical 

potential of the four species.  To do this, one defines the membrane potential with respect to a 

hypothetical hydrogen reference electrode,  

+ 2H
Fµ∇ = ∇Φ  (4) 
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Note that a problem may arise in this particular system composed of two cations if the proton 

concentration goes to zero, in which case one would have to use another definition for the 

potential.  Gradients of electrochemical potentials of the other ionic species are deduced from 

equation 4, 

( ) ( )( )+ +

+ +

2 2K H
HM KM 2K

K H

x x
RT b y y F

x x
µ +

 ∇ ∇
∇ = − + ∇ −∇ + ∇Φ  

 
 (5) 

( )+

+

2H M
KM 2M

H M

x x
RT b y F

x x
µ

−

−

−

 ∇ ∇
∇ = + + ∇ − ∇Φ  

 
 (6) 

and  

OH

OH
OH

2

2

2 x

x
RT

∇
=∇µ  (7) 

for potassium, membrane, and water, respectively.  In the above derivations, pressure 

gradients are assumed to be of minimal importance.  The following activity coefficients are 

considered [13] 

2
KM HMexp( )

b
f y

RT
=  (8) 

and  

2
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b
f y

RT
=  (9) 
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+
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=
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H
HM xx

x
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K
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x
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+

+ +

=
+
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Expression for these activity coefficients are derived by considering that the membrane 

behaves as a regular mixture of HM and KM.  b is a constant taken equal to −151 J/mol [10].  

As there are three unknown flux densities, one needs three material balances, which are of the 

form 

0i∇⋅ =N  (12) 

with i = H+, K+, and H2O.  The two remaining governing equations are the sum of the mole 

fractions,   

1
MOHKH 2

=+++ −++ xxxx  (13) 

and electroneutrality,  

−++ =+
MKH

xxx  (14) 

To account for membrane swelling, two equations are added to the set of eight 

governing equations to be solved.  Since the concentration of membrane can vary across the 

system but the thickness is constant, one solves for the thickness by using the equations[9] 

0
l

x

∂
=

∂
 (15) 

and  

M
c

x

η
−

∂
=

∂
 (16) 

where η is the total number of moles of membrane M− per cross sectional area. 

 If one uses the Onsager reciprocal relations, D ij = D ji, then there are six binary 

interaction parameters that must be determined for the above Stefan-Maxwell equations (1 

through 3).  These parameters were solved for using the data of Okada and coworkers[10] and 

a nonlinear regression analysis on four macroscopic transport properties, namely the ionic 

conductivity, the proton transference number, the water electro-osmotic coefficient and the 

water permeability [11].  From this analysis, ++ K,H
D  is set to a large arbitrary value (1·106 
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m2/s) based on fitting the experimental data the best.  For the other D ij ’s, a linear dependence 

of ( )ijDln  with the proton fraction in the membrane yHM is assumed 

( )† †
HM HMexp ( )ij ij ijm y y= −D D  (17) 

where †
HMy  is either equal to 0 or 1 whether †ijD  refers to the membrane in K+ or H+ form, 

respectively.  The values of the mij and †
ijD  coefficients are given in Table I.   

Boundary conditions. To study the contaminant-ion effect, a hydrogen-pump setup 

is simulated where a membrane with a defined concentration of contaminating ion is placed in 

between two platinum electrodes that are in equilibrium with a water reservoir.  In this 

analysis, for simplification, it is assumed that there is a set concentration of potassium ions, 

which cannot leave or enter the membrane system (they have a zero flux).  As a boundary 

condition, the K+ concentration is set at one electrode and a zero K+ flux is set at the other 

one.  Alternatively, an integral equation can be used where the total K+ concentration is set ; 

both approaches yield the same results.  At both electrodes, the equilibrium relationship 

between H2O in the membrane and H2O in contact with the membrane is used.  For liquid or 

dilute solutions conditions (thus assuming that water activity is close to unity), an empirical 

polynomial relationship between the water content in the membrane λ and the fraction of 

protons yHM was deduced from the experimental data reported by Okada et al.[10] 

227.13526.13087.105846.89578.3 HM
2

HM
3

HM
4

HM

M

OH2 ++−+−==
−

yyyy
x

x
λ  (18) 

To solve for the membrane thickness, two boundary conditions are for equations 11 

and 12: η is set to 0 at one side of the membrane and at the other side, it is related to the 

membrane thickness using the relationship 

2
HM

3

form H dry, 
lV

l +

≈η  (19) 
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where an isotropic expansion / contraction of the membrane has been assumed, 
form H dry,

 +l  is 

the thickness of a dry membrane in the proton form, and HM V  is the partial molar volume of 

HM, and is given in Table I. 

Finally, the current density is set, which translates into a proton flux given by 

Faraday’s law,  

F

i
N =+H  (20) 

 To determine the cell potential for the given current density, kinetic equations are used 

at each electrode, with an arbitrary reference potential of 0 V being set at the anode in the 

solid phase (Φ1).  In this fashion, the cell potential is given as the cathode minus the anode (0 

V) solid-phase potentials.  The electrochemical reaction at each electrode is 

−+ +⇔ 2e2HH2  (21) 

for which the kinetics are expressed using a Butler-Volmer equation 

( ) ( )
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H
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a

a

RT

F

P

P
iaLi e  (22) 

where aLe is taken to be 300 cm2Pt/cm2, αa = αc = 1, and i0 = 0.3 A/cm2 [12], and the reference 

conditions are 1 bar of hydrogen and a membrane fully in its proton form.  In the above 

expression, HMa is given by HM HMf y .  In using equation 22, the two-step kinetic pathway is 

not used [14], which may deviate the results at very low hydrogen concentrations slightly.  

The membrane being simulated is an 1100 equivalent-weight and the governing equations are 

solved numerically using BAND(j)[6] and a 25 node discretization.  The hydrogen partial 

pressures on both electrodes are set to 1 bar. 

 

3. Results and Discussion 
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As a first result, the limiting current density as a function of average K+ contamination 

is examined, as shown in Figure 1.  This limiting current density is due to the H+ 

concentration becoming zero at the cathode layer and is the maximum current density that can 

be sustained through the membrane.  From the figure, one can deduce that at low to medium 

cation contaminant there should not be substantial impact on performance.  However, as the 

average concentration of K+ increases, this effect becomes limiting in the cell.  This is 

especially true if one considers that typical PEFC operating conditions are around 1.5 A/cm2.  

In fact, such a current density could not be achieved in a membrane with a swollen thickness 

of 60 µm (e.g., liquid-equilibrated Nafion 112) where more than half of the H+ is substituted 

with K+, unless the potassium ions had a way to move out of the membrane.  The impact of 

thickness is relatively dramatic as seen in Figure 1, with the result that a very thin membrane 

can contain a significant amount of cation contamination without demonstrating appreciable 

changes in performance.  Finally, although not shown, the impact of activity coefficients on 

the curves is minimal.     

While Figure 1 displays the limiting current density, it is also of interest to examine 

the approach to this maximum value.  Figure 2 gives the cell potential and normalized 

potential loss as a function of average relative K+ fraction KMy  for various current densities.  

The cell potential is for the hydrogen-pump setup.  The divergence from the pure proton-form 

value, which is shown in Figure 2(b), can be interpreted as the minimum potential loss in a 

PEFC.  An actual PEFC will have other losses associated with it due to oxygen dilution and 

diffusion, slow oxygen-reduction-reaction kinetics, drying out of the membrane at the anode 

side if not humidified enough, etc. besides just the ohmic and H+ activity effects shown in 

Figure 2.  In the figure, the cell potential gradually increases until an average K+ fraction that 

is on the order of 70 to 80 % or so of its maximum value of KMy .  Beyond this value, the 

potential increases sharply as it should do as the limiting current is approached.  In other 
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words, Figure 1 is a plot of the points at which the potential goes toward infinity.  Figure 2 

allows one to get a feel for how important contamination will be in a PEFC in terms of 

operating potential loss due to ohmic and H+ activity effects.  This potential loss, however, 

does not take into account any ohmic effect that would arise from membrane drying out at the 

anode, as discussed below.  For reference, at 75 % of the maximum value of KMy , the 

potential loss is on the order of 5 to 30 mV, depending on the current density.  This range also 

indicates that the curves will not simply collapse on one another and that the proportional loss 

(i.e., referenced to the same percentage of the maximumKMy  value) increases with current 

density due to the coupled phenomena inside the membrane.  While it is evident that some 

small contamination is allowable, anything greater than 35 % or so could represent substantial 

losses at appreciable current densities.   

The curves in Figure 2 are somewhat a function of the value of the exponent on the 

proton activity in equation 19.  While the curves will show a similar shape for different 

values, the curves become more slanted and increase faster as the exponent is increased (not 

shown), which is not surprising since one is multiplying fractional values together.  The exact 

value of this exponent is not necessarily known; however, it should be noted that it could be 

as high as four for oxygen reduction in a PEFC from overall stoichiometry.  Thus, the 

maximum amount of contamination may be lower than that interpreted from Figure 2, 

although the limiting current densities will remain the same, since they are insensitive to the 

exponent value.    

While Figures 1 and 2 demonstrate the practical limitations and effects of K+ 

contamination, it is also of interest to examine the potential and H+ profiles.  Figure 3 shows 

these profiles for the case of 50 % average K+ fractional contamination and for two different 

current densities.  From the proton-fraction curves, it is clear as to how the limiting current 

arises by the proton concentration going to zero at the cathode even though the average 
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concentration is much higher.  The two current densities are chosen to be one that is far and 

one that is close to the limiting current density (see Figure 2).  It is clear that, as one 

approaches the limiting current density, the profile becomes more nonlinear.  Unlike the 

proton-fraction profiles, the potential profiles remain mainly linear as the current density is 

increased.  This means that the cross-coefficients have minimal impact and that the 

conductivity does not vary abruptly.  

Finally, the net water flux per proton flux (i.e., proportional to the current density) in 

the membrane, β, is plotted as a function of KMy  for various current densities in figure 4. A 

value of 2.92 is observed regardless of the current density value for a pure proton membrane, 

which is close to that observed in the literature for the electro-osmtic coefficient for a liquid-

equilibrated membrane [10, 15].  In this simulation, the water back-flux is not significant 

since both sides of the membrane are in contact with a unit water-activity reservoir and water 

is not being generated as it would in a PEFC.     

When the average potassium ion fraction is increased, β increases as well and 

eventually reaches a maximum for a KMy  value that depends on the current density, after 

which it decreases until a limiting current density is attained.  The maximum values for β 

range from 3.14 for the lowest current density (0.01 A/cm2) to 3.23 (1.5 A/cm2) for the 

highest.  A value as low as 2.8 is observed for β at a value of KMy  close to unity at the 

lowest current density.  

This is significantly different from the value of electro-osmotic coefficient of nearly 5 

reported for a membrane in potassium form [10], which is explained by the fact that the water 

flux in the system is associated with proton and not potassium-ion movement.  Overall, the β 

values do not vary by more that 11 % in the range of current densities investigated, which 
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should not be really problematic with regard to water management (e.g. drying of the anode 

and flooding of the cathode). 

Overall, the simulations show that around 30 to 40 % contamination has no substantial 

impact on performance for a variety of current densities depending on the membrane 

thickness.  This result implies that cation contamination is probably not a major concern for 

typically operating fuel cells.  However, there are some caveats to the analysis presented 

above.  These include the assumptions of fully humidified gas streams, isothermal conditions 

(room temperature), no transfer of K+ out of the membrane, and also the use of a Nafion 1100 

equivalent-weight membrane.  Finally, the results presented are for steady-state operation and 

are not indicative of the approach to steady state and any transient effects which may occur 

due to the dynamic movement of the contaminant cation. 

 

4. Summary 

Concentrated solution theory, based on the Stefan-Maxwell multicomponent transport 

equations, was successfully applied to describe the transport phenomena in an ion-exchange 

membrane containing two cations, namely, H+ and K+.  A generic mathematical model of the 

transport phenomena in the membrane was developed, and specific boundary conditions were 

provided for case of a hydrogen-pump setup to understand the effect of the contaminant 

cation on performance.  The model was used to calculate limiting current densities in terms of 

average K+ fraction, and shows that the maximum allowable fraction before appreciable 

effects on polarization is around 30 to 40 % for an 1100 equivalent-weight Nafion, although it 

depends on the membrane thickness and operating current density, with less impact on thinner 

membranes and at lower current densities. 
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6. List of Symbols 

Nomenclature 

ia  activity of component i 

aLe catalyst surface area per geometric area, mPt
2/m2 

b constant used in the expression of the activity coefficient of a regular solution,  

 J/mol 

ci molar concentration, mol/m3 

cT total molar concentration of species, mol/m3 

D ij diffusion coefficient for interaction between species i and j, m2/s 

†
ijD  diffusion coefficient for interaction between species i and j in a membrane with a  

 single cation, m2/s 

if  activity coefficient of component i in a regular mixture 

F Faraday’s constant, 96487 C/mol 

i current density, A/m2 

0i   exchange current density for hydrogen oxidation/reduction, A/m2 

l membrane thickness, m 

form H dry, +l  membrane thickness of a dry membrane in the H+ form, m 

mij slope of ln(Dij) = f(yHM) 

Ni flux density of species i, mol/m2.s 

p pressure, Pa 

R universal gas constant, 8.3143 J/mol⋅K 

T absolute temperature, K 

iV  partial molar volume of component i, m3/mol 

x distance in the membrane from the interface between the membrane and the  
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 aqueous solution, m 

xi mole fraction of species i 

yi number of moles of species i (i = H+ or K+) divided by the total number of moles  

 of cations in the membrane 

iy  Average yi in the membrane 

 

Greek 

,  a cα α  charge transfer coefficients 

β net water flux per cation flux in the membrane 

Φ electric potential, V 

η number of moles of membrane per surface area of membrane, mol/m2 

λ number of moles of water per mole of membrane 

µi (electro)chemical potential of species or component i, J/mol 

 

Superscript/Subscript 

†  variable related to a single-cation membrane 

1 solid or electron-conducting phase 

2 membrane or ion-conducting phase 

C diffusion coefficient for interaction between species i and j calculated from a  

 membrane in the C+ form (with C+ = H+ or K+), m2/s 

ref reference electrode conditions 
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Captions 

Table I: Values of 0
ijD  and iV for the potassium- and proton-membrane forms and mij (slope 

of ln(D ij) = f(yHM)) regressed from the data of Okada et al.[10] at T = 25°C and p = 1 atm. 

 

Figure 1  Limiting current density as a function of the average relative fraction of potassium 

cations and average swollen membrane thickness for a 1100 equivalent weight 

membrane.  

 

Figure 2 Cell potential (a) and normalized potential loss (b) as a function of the average 

relative fraction of potassium cations in a Nafion 112 membrane for various 

current densities. 

 

Figure 3 Electrolyte potential (bottom curves) and relative fraction of protons (top curves) 

as a function of membrane position at two different current densities for a Nafion 

112 membrane with an average relative fraction of potassium cations of 50 %.   

 

Figure 4 Water flux parameter β as a function of the average potassium ion fraction in the 

membrane for various current densities. The dashed line represents β values for the 

corresponding limiting current densities. 

 

Table I: Values of 0
ijD  for the potassium- and proton-membrane forms and mij (slope of 

ln(D ij) = f(yHM)) regressed from the data of Okada et al.[10] at T = 25°C and p = 1 atm. 
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OH,H 2
+m  0.22  

-M,H+m  −2.2  

OH,K 2
+m  4.5  

-M,K +m  −2.3  

2H O,M−m  0.54  

 K-form H-form 

2

†

C ,H O+D  (cm2/s) 9.96x10−6 6.28x10−5 
†

C ,M-+D  (cm2/s) 1.28x10−6 5.95x10−6 

2

†
CH O,M

( )-D  (cm2/s) 5.80x10−6 9.96x10−6 

iV  (cm3/mol) 533 553 
 

2H O,M−m  is expressed as ( ) ( )
2 2 2

† †

H O,M H O,M H O,MH K
ln lnm − − −= −D D . No mij is defined for H+,K+ since + +H ,K

D  is set 

to a very high constant value. Values of mij ’s for the four remaining ,i jD ’s were refined by a least-square 

nonlinear regression of four measured transport properties reported in [10]. See reference [11] for a more in-
depth explanation of the regression.   
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Figure 1  Limiting current density as a function of the average relative fraction of potassium 

cations and average swollen membrane thickness for a 1100 equivalent weight 

membrane.  
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Figure 2 Cell potential (a) and normalized potential loss (b) as a function of the average 

relative fraction of potassium cations in a Nafion 112 membrane for various 

current densities. 
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Figure 3 Electrolyte potential (bottom curves) and relative fraction of protons (top curves) 

as a function of membrane position at two different current densities for a Nafion 

112 membrane with an average relative fraction of potassium cations of 50 %.   
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Figure 4 Water flux parameter β as a function of the average potassium ion fraction in the 

membrane for various current densities. The dashed line represents β values for the 

corresponding limiting current densities. 




