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CORONAVIRUS

Plitidepsin has potent preclinical efficacy against
SARS-CoV-2 by targeting the host protein eEF1A
Kris M. White1,2*†, Romel Rosales1,2*, Soner Yildiz1,2, Thomas Kehrer1,2, Lisa Miorin1,2,
Elena Moreno1,2, Sonia Jangra1,2, Melissa B. Uccellini1,2, Raveen Rathnasinghe1,2, Lynda Coughlan3,
Carles Martinez-Romero1,2, Jyoti Batra4,5,6,7, Ajda Rojc4,5,6,7, Mehdi Bouhaddou4,5,6,7,
Jacqueline M. Fabius4,6, Kirsten Obernier4,5,6,7, Marion Dejosez8, María José Guillén9,
Alejandro Losada9, Pablo Avilés9, Michael Schotsaert1,2, Thomas Zwaka8, Marco Vignuzzi10,
Kevan M. Shokat4,6,7,11, Nevan J. Krogan1,4,5,6,7†, Adolfo García-Sastre1,2,12,13†

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins interact with the eukaryotic
translation machinery, and inhibitors of translation have potent antiviral effects. We found that the drug
plitidepsin (aplidin), which has limited clinical approval, possesses antiviral activity (90% inhibitory concentration
= 0.88 nM) that is more potent than remdesivir against SARS-CoV-2 in vitro by a factor of 27.5, with limited
toxicity in cell culture. Through the use of a drug-resistantmutant, we show that the antiviral activity of plitidepsin
against SARS-CoV-2 is mediated through inhibition of the known target eEF1A (eukaryotic translation elongation
factor 1A). We demonstrate the in vivo efficacy of plitidepsin treatment in two mouse models of SARS-CoV-2
infectionwith a reduction of viral replication in the lungs by two orders ofmagnitude using prophylactic treatment.
Our results indicate that plitidepsin is a promising therapeutic candidate for COVID-19.

O
ver the past 20 years, three novel corona-
viruses have been introduced into the
human population, causing substan-
tial morbidity and mortality. The severe
acute respiratory syndrome coronavirus

(SARS-CoV) and Middle East respiratory syn-
drome coronavirus (MERS-CoV) epidemics
were each limited in scope, but both are asso-
ciated with severe disease and high mortality
rates (1–3). The ongoing COVID-19 pandemic
caused by the SARS-CoV-2 virus is the result
of a zoonotic transmission event, similar to
previous coronavirus epidemics (4–7). Recent
studies have detected many SARS-like and
MERS-like coronaviruses in natural bat reser-
voirs and have shown them to be capable of
replication in human lung cells in vitro (8–10).

This suggests the presence of a large reservoir
of coronaviruses with pandemic potential.
Antiviral therapeutics are urgently needed to
combat SARS-CoV-2 in the current pandemic
and will be the first line of defense for the fu-
ture coronavirus epidemics that appear more
likely as the human population expands in
close contact with animal reservoirs.
COVID-19 is a viral-induced inflammatory

disease of the airways and lungs with multi-
organ involvement that can cause severe
respiratory and systemic issues. SARS-CoV-2
replication in the lungs leads to inflammatory,
innate, and adaptive immune responses that
cause substantial host tissue damage (3, 11).
COVID-19 can lead to end-stage lung disease
and systemic involvement with currently lim-
ited treatment options and poor prognoses.
The current standards of care include oxygen
therapy and ventilation, along with the anti-
viral remdesivir and the anti-inflammatory
dexamethasone. Remdesivir (12, 13) and dexa-
methasone (14) have each improved patient
outcomes in clinical trials and have been
approved for emergency use by regulatory
agencies, but remdesivir in particular has
shown limited efficacy (15) and dexametha-
sone is a steroid that does not directly inhibit
viral replication. This leaves a continued need
for the development or repurposing of anti-
viral drugs for the treatment of COVID-19.
Our previously published SARS-CoV-2 (16)

and pan-coronaviral (17) interactomes high-
lighted 332 host proteins that are likely to
play a role in the viral life cycle of SARS-CoV-2.
In that work we tested 47 existing drugs that
were known to modulate these identified host
proteins, with many of these drugs showing
substantial antiviral activity against SARS-
CoV-2 in cell culture (16). Of the inhibitors

tested, those that targeted the eukaryotic
translation machinery (eIF4H interacts with
SARS-CoV-2 Nsp9) demonstrated particularly
potent antiviral activities. Zotatafin (18), an
inhibitor of eIF4A (a partner of eIF4H), had a
90% inhibitory concentration (IC90) of 154 nM,
and ternatin-4 (19), an inhibitor of eEF1A that
has potential interactionswithmultiple corona-
virus proteins (17), had an IC90 of 15 nM against
SARS-CoV-2 in Vero E6 cells (16).

Plitidepsin is a potent inhibitor of SARS-CoV-2
in vitro

In an effort to further explore the therapeutic
potential of host eEF1A as a target for the
treatment of COVID-19, we evaluated the eEF1A
inhibitor plitidepsin (aplidin), which has lim-
ited clinical approval for the treatment ofmulti-
ple myeloma. Plitidepsin has also successfully
undergone a phase I/II clinical study for the
treatment of COVID-19 (20, 21) by the pharma-
ceutical company PharmaMar and is moving
forward into a phase II/III COVID-19 study.
We first tested plitidepsin inhibition of SARS-
CoV-2 replicationusing an immunofluorescence-
based antiviral screening assay in Vero E6 cells
(22). Plitidepsin inhibited SARS-CoV-2with an
IC90 of 1.76 nM (Fig. 1B), which was 9 times as
potent as ternatin-4 and 87.5 times as potent
as zotatafin in the same assay (16). We next
tested plitidepsin in the same antiviral assay
using a human cell line (hACE2-293T). The
anti–SARS-CoV-2 activity of plitidepsin was
evenmore potent in human cells, with an IC90
of 0.88 nM (Fig. 1D), which is more potent
than remdesivir tested in the same cell line
by a factor of 27.5 (Fig. 1C). The cytotoxicity
of plitidepsin was examined in parallel with
antiviral activity; at all concentrations in both
cell types, we observed a cytostatic impact on
cell proliferation (Fig. 1, B and D). We had
previously found the lack of a dose-response
curve in our cytotoxic assay to be suggestive
of a cytostatic, rather than cytotoxic, effect
on cells, but further work is required to con-
firm this hypothesis. Finally, we tested the
antiviral effect of plitidepsin in an established
model of human pneumocyte-like cells (23, 24).
We found that treatment with plitidepsin in-
hibited SARS-CoV-2 replication (Fig. 1E) with
an IC90 of 3.14 nM and a selectivity index of
40.4, which suggests that plitidepsin has potent
antiviral activity in primary human lung cells.
In an effort to better understand the mech-

anism of action through which plitidepsin in-
hibits SARS-CoV-2 infection, we performed a
time-of-addition assay in which plitidepsin or
remdesivir was added to hACE2-293T cells at
–2, 0, +2, or +4 hours relative to infection. In
this 8-hour single-cycle infection, we found
that 20 nM plitidepsin strongly inhibited nu-
cleocapsid protein expression evenwhen added
4 hours after infection (Fig. 1F). This is indica-
tive of a cytoplasmic replication-stage inhibitor,
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which is consistentwith the predicted antiviral
mechanism of a known translation inhibitor.
Remdesivir is part of the current standard of

care for the treatment of COVID-19 (25, 26).
We therefore assessed the dynamics between the
antiviral effects of plitidepsin and remdesivir
when used together in vitro. Our analysis
using the Synergyfinder (27) software suggests
that plitidepsin has an additive effect with
remdesivir (fig. S2) and would be a potential
candidate to be considered in a combined
therapy with the current standard of care.

Plitidepsin antiviral activity against SARS-CoV-2
is mediated through the inhibition of eEF1A

Plitidepsin inhibits the activity of the host
factor eEF1A and is predicted to interact with
the same binding site as didemnin B, which
is structurally related to plitidepsin, and the
structurally unrelated ternatin-4. Exogenous
overexpression of an Ala399 → Val (A399V)
mutant of eEF1A confers resistance in cancer
cells to both didemnin B (28) and ternatin-4
(29) inhibition, and we predicted that it may
similarly affect plitidepsin. We examined
whether this A399Vmutation couldmitigate
the observed anti–SARS-CoV-2 activity of
plitidepsin. First, we transiently cotransfected
293T cells with expression plasmids for hACE2
and either wild-type eEF1A (eEF1A-WT) or
eEF1A-A399V, which were confirmed to be
expressed in ~30% of cells bymeans of immuno-

fluorescent staining for the Flag epitope
(fig. S1). We then measured the antiviral ac-
tivity of plitidepsin against SARS-CoV-2 in
these transfected 293T cells. Transfection with
eEF1A-A399V, but not eEF1A-WT, increased the
IC90 of plitidepsin by a factor of >10 (Fig. 2A).
No impact from the A399V mutant transfec-
tion was observed upon plitidepsin inhibition
of cell proliferation (Fig. 2D), consistent with
observations of ternatin-4 (29). The differential
effect of eEF1A-A399V transient transfection
between the antiviral and antiproliferative
impact of plitidepsin is consistentwith previous
findings that coronaviruses are considerably
more sensitive to translation perturbations
than the host cell (30, 31). We then generated
an eEF1A-A399V CRISPR knock-in 293T cell
line (293T-A399V) to further evaluate the role
of eEF1A inhibition in the antiviral activity of
plitidepsin. We found that this 293T-A399V
cell line was refractory to the SARS-CoV-2 anti-
viral activity of plitidepsin by a factor of >12 as
compared to the parental cell line (Fig. 2B) but
did not have a similar impact on remdesivir
inhibition (Fig. 2C). Furthermore, we found
that plitidepsin antiviral activity could be
almost fully restored through transient trans-
fection of the 293T-A399V cells withwild-type,
but not mutant, eEF1A (Fig. 2B). This 293T-
A399V cell line was also resistant to the anti-
proliferative activity of plitidepsin, and this
could only be partially rescued by transfec-

tion of the wild-type protein (Fig. 2E), again
similar to previous results with ternatin-4 (29).
Furthermore, small interfering RNA (siRNA)
silencing of eEF1A protein expression during
SARS-CoV-2 infection led to a large reduction
in viral N protein levels but had no impact on
the GAPDH control (Fig. 2F). Taken together,
this evidence indicates that the antiviral activity
of plitidepsin is mediated through eEF1A in-
hibition and confirms eEF1A as a druggable tar-
get for the inhibition of SARS-CoV-2 replication.
We next explored the impact of plitidepsin

treatment on viral RNA and protein produc-
tion over the course of SARS-CoV-2 infection.
We analyzed the SARS-CoV-2 genomic and
N subgenomic RNA content of Vero E6 cells
infected with SARS-CoV-2 at amultiplicity of
infection (MOI) of 1 at 4, 8, 12, and 24 hours
after infection in the presence or absence of
equivalent inhibitory doses of plitidepsin or
remdesivir. We found that plitidepsin signif-
icantly reduced genomic RNA content at 8 and
12 hours after infection and fell just short of
significance at the 24-hour time point, similar
to remdesivir treatment (Fig. 3A). Interestingly,
plitidepsin had a much greater impact on
the accumulation of the N subgenomic RNA.
Plitidepsin greatly reduced the subgenomicRNA
expression as early as 4 hours after infection
and maintained a significant impact through-
out the time course (Fig. 3B). Remdesivir had
no effect on N subgenomic RNA at 4 hours, but
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Fig. 1. Plitidepsin exhibits a strong antiviral activity in SARS-CoV-2 multiple
cell lines. (A to E) Vero E6 cells [(A) and (B)], hACE2-293T cells [(C) and (D)],
or pneumocyte-like cells (E) were treated with indicated doses of remdesivir [(A) and
(C)] or plitidepsin [(B), (D), and (E)]. IC50, IC90, 50% cytotoxic concentration (CC50),
and CC10 values are indicated above the curves. All cells were pretreated for 2 hours

and the drugs were maintained in the media throughout the experiment. SARS-CoV-2
infection and cell viability were measured at 48 hours. (F) The antiviral activities of
plitidepsin and remdesivir were evaluated in pretreatment and post-infection time
points in hACE2-293T cells. In all panels, data are means ± SD of three independent
experiments performed in biological triplicate. DMSO, dimethyl sulfoxide.
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did show a reduction at all other time points
tested. We thenmeasured the viral N protein
levels in the presence and absence of plitidepsin
or remdesivir treatment. Similar to RNA levels,
plitidepsin had a more potent and sustained
inhibition of the expression the N protein
over the time course of infection relative to
remdesivir (Fig. 3, C and D). This specific
inhibition of N subgenomic RNA expression,
particularly early in infection, is likely a re-
sult of the inhibition of viral translation by
plitidepsin. Itwas previously shown that corona-
viruses are highly sensitive to translation inhib-
itors (30, 31) and that negative-sense genome
accumulation is more greatly affected than
the positive sense (32). The current model of
coronavirus discontinuous transcription (33)
has been guided by evidence that subgenomic
RNA formation occurs during negative strand
synthesis (34). Therefore, a translation inhib-
itor that has a greater impact on negative-
sense RNA production would also be expected
to specifically reduce subgenomic RNA forma-
tion and accumulation, as we observed with
plitidepsin. Furthermore, consistent with an
impact of plitidepsin in protein translation,
N protein levels were more greatly reduced
in plitidepsin-treated cells than in remdesivir-
treated cells at 24 hours after infection, when
levels of N RNAwere equivalent between these
two treatments.

Plitidepsin shows in vivo antiviral efficacy in
mouse models of SARS-CoV-2 infection

Plitidepsin has been clinically developed
for the treatment of multiple myeloma with a

well-established safety profile and pharmaco-
kinetics (35–38). Initially, plitidepsinunderwent
a large clinical development program inwhich
cancer patients were treated with plitidepsin
as a single agent in several phase I and II clin-
ical trials. Results gathered from these clinical
studies demonstrated that the probability of
having cardiac adverse events, a concern in
COVID-19patients,wasnot significantly affected
by plitidepsin treatment (39–41), although these
events were found in other chemically related
compounds that display a different mechanism
of action (42, 43). It is worth highlighting that
plitidepsin had a good safety profile in a phase I
clinical trial (44), which administered a total of
11.4 mg spaced over 5 days of treatment. The
dose level used in the COVID-19 proof-of-
concept phase I study (21) had a maximum
total of 7.5 mg spaced over 3 days.
On the basis of these clinical safety data and

good pharmacokinetics (fig. S3A), we deter-
mined that a concentration of plitidepsin an
order of magnitude greater than the demon-
strated in vitro IC90 could be safely achieved
in the lungs of mice using a single daily dose.
Therefore, we tested the in vivo efficacy of
plitidepsin in two different established ani-
mal models of SARS-CoV-2 infection. First, we
used a human ACE2-expressing adenovirus
to transduce the naturally resistant wild-type
BALB/cmice and sensitize them to SARS-CoV-2
infection (Fig. 4A) (45). Five days after adeno-
virus transduction, mice were infected with
1 × 104 plaque-forming units (pfu) of SARS-
CoV-2. As a proof-of-principle experiment, we
performed prophylactic dosingwith 0.3mg/kg

or 1 mg/kg plitidepsin 2 hours before infec-
tion with SARS-CoV-2. The 0.3 mg/kg group
received continued dosing once per day for
2 more days, whereas the 1 mg/kg group re-
ceived only that single dose (Fig. 4B). SARS-
CoV-2 lung titers were quantified from two
independent experiments for the plitidepsin
groups and compared to vehicle and remdesivir
controls (Fig. 4C). There was a reduction of
nearly 2 log units in SARS-CoV-2 viral titers
in the lungs of the 0.3mg/kg plitidepsin group
relative to the vehicle control group, whereas
there was a reduction of 1.5 log units observed
from the single dose of 1 mg/kg plitidepsin.
Note that we used a very high concentration
of remdesivir in these assays (50 mg/kg) be-
cause of the known high concentration of
esterases present in mouse serum that de-
grade remdesivir (46).
We thenperformed a study in theK18-hACE2

mouse model (Fig. 5A), which supports a
robust SARS-CoV-2 infection (45, 47), in which
the 0.3 mg/kg dosage of plitidepsin was as-
sessed for ability to reduce viral titers and
inflammation in the lung. K18-hACE2 mice
were treated with one daily dose of plitidepsin
for 3 days starting 2 hours before infection
with SARS-CoV-2 (Fig. 5B). We found a re-
duction of 2 log units in viral lung titers at
day 3, similar to two daily 50 mg/kg doses of
remdesivir (Fig. 5C). Histopathology analy-
sis (Fig. 5D) also showed a reduction of lung
inflammation in plitidepsin-treated mice (histo-
pathology score of 1/16) over vehicle-treated
(histopathology score of 5.4/16) and remdesivir-
treated (histopathology score of 2.3/16) mice
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Fig. 2. Antiviral mechanism
of action of plitidepsin
is mediated through inhibi-
tion of eEF1A. (A) Plitidepsin
inhibition of SARS-CoV-2
replication in 293T cells trans-
fected with eEF1A-WT or
eEF1A-A399V expression vec-
tors. Plitidepsin inhibition is
reduced by expression of the
A399Vmutation, whereas virus
replication in wild-type and
eEF2A-transfected mutations
remain susceptible to treat-
ment with plitidepsin. (B and
C) Plitidepsin (B) and
remdesivir (C) inhibition of
SARS-CoV-2 replication in a
CRISPR 293T cell line carrying
an A399V mutation in eEF1A.
Viral replication in wild-type
eEF1A preserves susceptibility
to plitidepsin inhibition, whereas the presence of the eEF1A A399V mutation rendered the SARS-CoV-2 infection resistant to the eEF1A inhibitor. Remdesivir
inhibition of SARS-CoV-2 viral replication was not affected by the A399V mutation. (D and E) Plitidepsin inhibition of cell proliferation, as measured by (4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay, is not affected by transfection of the A399Vmutant (D) but is reduced by the 293T-A399V CRISPR cell line (E). (F) siRNA silencing
of eEF1A greatly reduces N protein levels. In all panels, data are means ± SD of three independent experiments performed in biological triplicate. ****P < 0.0001.

RESEARCH | RESEARCH ARTICLE



at day 3 after infection (Fig. 5E). There was no
peribronchiolar inflammation noted in the
plitidepsin-treated group. Taken together, these
experiments show that plitidepsin treatment
can reduce the replication of SARS-CoV-2 by two
orders of magnitude and reduce lung inflam-
mation in vivo, and has compelling potential for
clinical efficacy for the treatment of COVID-19.

Discussion

The ongoing SARS-CoV-2 pandemic has
created the immediate need for antiviral ther-
apeutics that can be moved into the clinic
within months rather than years. This led
us to screen clinically approved drugs with
established bioavailability, pharmacokinetics,
and safety profiles. Our previous study of the
SARS-CoV-2 interactome (16) led us to eEF1A
as a druggable target with the potential for
potent inhibition of SARS-CoV-2 in vitro.
eEF1A has been previously described to be
an important host factor for the replication
of many viral pathogens (48–50), including
influenza virus (51) and respiratory syncytial
virus (52). Specifically, it has been found to
be involved in transmissible gastroenteritis
coronavirus replication (53) and was detected
in SARS-CoV virions (54). Therefore, inhibi-
tion of eEF1A as a strategy for the treatment
of viral infectionmay extend to other human
coronaviruses and beyond to unrelated viral
pathogens. This potential for broad-spectrum
antiviral activitymakes plitidepsin an intriguing
candidate for further exploration as a treatment
for viral infections with no clinically approved
therapeutics. It is also important to note that
a host-targeted antiviral such as plitidepsin
offers protection from naturally occurring viral
mutants, to which viral-targeted therapeutics
and vaccines are more susceptible. In fact,
plitidepsin was found tomaintain nanomolar
potency against the B.1.1.7 variant (55) recently
discovered in the United Kingdom (56, 57).
In our animal experiments, we did detect

a slight body weight loss of mice that were
treated with plitidepsin daily, whereas mice
that received a single 1 mg/kg dose did not
lose any weight while still exhibiting reduc-
tions in viral lung titers (fig. S3B). It is unclear
whether this observed toxicity ismouse-specific,
and although toxicity is a concern with any
host-targeted antiviral, the safety profile of
plitidepsin is well established in humans. Fur-
thermore, the dose of plitidepsin being used in
an ongoing COVID-19 clinical trial is substan-
tially lower than used in these experiments
and it has been well tolerated in patients with
minimal side effects. Interestingly, the most
well-established and effective steroid for the
treatment of COVID-19, dexamethasone (14),
is also a commonly used treatment for multi-
ple myeloma (58). This has led to plitidepsin
already having an established safety profile
with concurrent dexamethasone treatment
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Fig. 4. Plitidepsin treatment significantly reduces SARS-CoV-2 infection in BALB/c mice expressing
human ACE2. (A) Schematic of adenovirus expression of human ACE2 model of SARS-CoV-2 infection.
BALB/c mice were transduced with human ACE2 expressing adenovirus. Mice were sensitized intranasally with
2.5 × 108 pfu. (B) Mice were intranasally infected with 104 pfu of SARS-CoV-2 and subcutaneously treated with either
0.3 mg/kg plitidepsin once daily for 3 days, a single dose of 1 mg/kg plitidepsin, or 50 mg/kg remdesivir once
daily for 3 days. (C) SARS-CoV-2 lung titers in the plitidepsin-treated group relative to vehicle and remdesivir
controls. Virus titers were determined in whole lung homogenates by median tissue culture infectious dose (TCID50)
at day 3 after infection. The limit of detection for viral titers is indicated with a dotted line. Vehicle and remdesivir,
N = 10; plitidepsin 1 mg/kg and 0.3 mg/kg, N = 8. ***P < 0.001, ****P < 0.0001.

Fig. 3. Plitidepsin treatment causes a specific reduction in subgenomic RNA expression. (A to D) Vero
E6 cells were infected with SARS-CoV-2 at an MOI of 1 in the presence or absence of 3 nM plitidepsin or 5 mM
remdesivir and samples were taken at the indicated time points. The levels of genomic RNA (A) and subgenomic
N RNA (B) were analyzed with specific reverse transcription quantitative polymerase chain reactions (RT-qPCR).
(C) Cell lysates were collected at the indicated times and subjected to Western blotting. (D) Each protein band was
quantified by ImageJ and normalized to GAPDH levels. Data are means ± SD of three independent experiments
performed in biological triplicate. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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(59, 60) and should allow for clinicians to
treat with both drugs if warranted. This study
establishes plitidepsin as a host-targeted
anti–SARS-CoV-2 agent with in vivo efficacy.
Our data and the initial positive results from
PharmaMar’s clinical trial suggest that plitidep-
sin should be strongly considered for expanded
clinical trials for the treatment of COVID-19.
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Fig. 5. Plitidepsin shows in vivo antiviral efficacy in the K18-hACE2 mouse
model. (A) Schematic of the K18-hACE2 model of SARS-CoV-2 infection. (B) Mice
were intranasally infected with 104 pfu of SARS-CoV-2 and subcutaneously treated
with 0.3 mg/kg plitidepsin once daily for 3 days or with 50 mg/kg remdesivir
twice daily for 3 days. (C) SARS-CoV-2 lung titers in the plitidepsin-treated group
relative to vehicle and remdesivir controls. Virus titers were determined in whole lung
homogenates by TCID50 at day 3 after infection. Five mice were used in each
group, except for the remdesivir control, which had 3. *P < 0.05, **P < 0.01.
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(E) Pathological severity scores in infected mice. To evaluate comprehensive
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ical changes outlined in the supplementary materials.
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