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RECEIVED ON … 

C O N S P E C T U S   
Heterogeneous catalysis is at the heart of chemical industry. Being able to tune and design 

efficient catalysts for processes of interest is of an utmost importance, and for this, the 

molecular-level understanding of heterogeneous catalysts is the first step, and indeed a prime 

focus of the modern catalysis research. For a long time, a single most thermodynamically 

stable structure of the catalytic interface attained in reaction conditions had been envisioned as 

the reactive phase. However, some catalytic interfaces continue to undergo structural dynamics 

in the steady state, triggered by high temperatures, pressures, and binding and changing 

reagents. Among particularly dynamic interfaces are such widely-used catalysts as crystalline 

and amorphous surfaced supporting (sub-)nano metallic clusters. Recently, it became clear that 

this dynamic fluxionality causes the supported clusters to populate many distinct structural and 

stoichiometric states in catalytic conditions. Hence, the catalytic interface should be viewed as 

an evolving statistical ensemble of many (not one) structures. Every member in the ensemble 

contributes to the properties of the catalyst differently, and in proportion to its probability to be 

populated. This new notion flips the established paradigm and calls for new theory, modeling approaches, operando measurements, and updated 

design strategies.  

The statistical ensemble nature of surface-supported sub-nano cluster catalysts can be exemplified by oxide-supported and adsorbate-covered 

Pt, Pd, Cu, CuPd clusters, catalytic toward oxidative and non-oxidative dehydrogenation. They have access to a variety of 3D and quasi-2D 

shapes. The compositions of their thermal ensembles are dependent on the cluster size, leading to size-specific catalytic activities and the famous 

“every atom counts” phenomenon. The support and adsorbates affect catalyst structures, and state of the reacting species causes the ensemble to 

change in every reaction intermediate. The most stable member of the ensemble dominates the thermodynamic properties of the corresponding 

intermediate, whereas the kinetics can be determined by more active but less populated metastable catalyst states, and that suggests that many 

earlier studies might have overlooked the actual active sites. Both effects depend on the relative time-scales of catalyst restructuring and reaction 

dynamics. The catalyst may routinely operate off-equilibrium. Ensemble phenomena lead to surprising exceptions from established rules of 

catalysis, such as scaling relations, and Arrhenius behavior. Catalyst deactivation is also an ensemble property, and its extent of mitigation can be 

predicted through the new paradigm. These findings were enabled by advances in theory, such as global optimization and subsequent utilization 

of multiple local minima, and pathways sampling, as well as operando catalyst characterization. The fact that the per-site and per-species 

resolution is needed for the description and predicting of catalyst properties gives theory the central role in catalysis research, as most 

experiments provide ensemble-average information and cannot detect the crucial minority species that may be responsible for the catalytic 

activity.  
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Heterogeneous catalysis is the pivot of modern chemical industry, enabling the efficient 

production of over 90% of all commercial chemicals.1,2 Central to catalysis research has been the 

molecular-level insight into the catalytic processes, the state of the catalyst in reaction conditions, 

and the nature of the active site. This insight has been enabled by the development of 

experimental and theoretical characterization techniques. Surface science methods such as XPS, 

XAFS, XANES, STM, neutron diffraction, operating at low pressures, are used to characterize 

model catalysts, and inform about the elementary events possible at the interface. A subset of 

these techniques advanced to the operando regime, probing the state of the system in reaction 

conditions. On the theory side, electronic structure, kinetic modeling, and computational 

spectroscopy give highly specific mechanistic details. The challenge for theory has been to have 

a realistic enough model, and accurate enough electronic structure methods, for the results to be 

reliable. Despite the known limitations, theory provided useful and complementary insights, 

trends, and suggestions to experiment in catalyst discovery.3,4 Still, in some cases, the 

discrepancy between theory and experiment have been inconsolable, and not always easily 

blamed on the error of Density Functional Theory (DFT) prevalently used in catalysis research. 

Clearly our models are often insufficient. 

The molecular view of the catalytic interface has been largely inspired by what surface 

science could probe and theory could affordably model: a largely stationary surface, nano 

particle, or the global minimum (GM) of a supported cluster. This well-defined and stable 

structure of the interface has been presumed to be the active phase whose geometry would be 

largely maintained during the catalytic process. However, the real catalytic interface is subject to 

heat, illumination, electrochemical potential, pressure of reactants, products and solvent.5–8 Such 

conditions can bring a dynamic interfaces into motion, as was seen by operando measurements. 

Nanoparticles and nanostructured surfaces have been observed to undergo restructuring.9–11 The 

interfaces supporting sub-nano clusters, or amorphous and understoichiometric surfaces are even 

more dynamic, because they have more unsaturated bonds.6,12–14 Even perfect surfaces have 

certain dynamicity due to different adsorbate configurations that go through constant 

interconversion.15 Clearly, this motion should thermally populate new local minima on the free 

energy surface of the catalyst, which could play a non-trivial role in catalysis. However, in most 

theoretical studies, the PES is not thoroughly sampled, and only the GM, or a few putative 

minima structure, was desired and used in mechanistic calculation. Our contribution consists of 
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the extension of the paradigm in catalysis modeling toward including those metastable catalyst 

states present in reaction conditions and describing the interface as a statistical ensemble of many 

states, not just one. On this basis, we arrived at a number of surprising findings that now change 

our thinking about catalysis when the interface is highly dynamic. We largely focus on surface-

supported clusters, though venture in extended amorphous surface, and describe how the 

paradigm applies also to more stationary interfaces. 

 

DYNAMIC CATALYSTS ARE ENSEMBLES OF MANY DISTINCT STATES 

Metallic clusters are held together by delocalized, non-directional chemical bonds, 

causing structural flexibility, and relatively flat and anharmonic potential energy surfaces (PESs). 

Geometries of clusters are easily influenced by atomic substitution, change of charge or the 

support, adsorption of molecules, etc. Most obviously, the structure can just relax upon adsorbate 

binding. This phenomenon was originally named “fluxionality” by Landman.16 We shows that 

clusters may also thermally cross small barriers separating the local minima, and the available 

minima and the barriers may change as a function of the bound adsorbates.17,18 Dozens if not 

hundreds of minima can be populated at catalytic temperatures (e.g. 300-700 K), and the 

resulting ensembles of states may dynamically evolve during the reaction.21 In our works, the 

term “fluxionality” began to be used in this broader sense.  

Evidence for this kind of fluxionality exists in experiment and simulations. The in situ 

time-resolved structural characterization by energy-dispersive X-ray absorption fine structure 

(DXAFS) was used to demonstrate the CO-induced disintegration of Rh clusters on Al2O3 under 

26.7 kPa of CO at 298 K, occurring on the time-scales of 0.8–3 s.19 For Au clusters deposited on 

CeO2, the PES is apparently flatter and rearrangement time-scales are shorter,13 so ab initio 

Molecular Dynamics (MD) was able to show significant restructuring involving CO adsorption-

induced dissociation of Au-CO entities to the support (Figure 1a).14 Isomerization without 

disintegration was also filmed: Pd4 clusters on graphene isomerize on the time-scales of seconds, 

leading to all accessible geometries to co-exist at finite temperature.20 The fluxional behavior of 

supported Pt and PtSn nanoclusters was demonstrated,17,21 using a combination of DFT MD and 

XAS (Figure 1b). Note that the relatively long time-scales involved in the fluxionality with 

barrier crossing generally limit the insight that MD can provide. The exhaustive sampling of the 

PES is necessary, and it gives a very rich picture of the states accessible to the catalytic interface. 
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For example, Pt clusters on -Al2O3 access to ~30 distinct minima in under 1 ns (Figure 1c).17 If 

this same Pt7/-Al2O3 cluster is covered with adsorbates, e.g. ethylene,22 or hydrogen and 

alkyls,15,22 as in reactions of dehydrogenation, cluster shapes again change beyond recognition.  

 

 

Figure 1. (a) Initial and final configuration from the MD trajectory of Au20/CeO2(111) showing 

edge Au dissociating with the CO adsorbate. (b) Time-elapsed rendering of DFT-MD trajectory 

of Pt15Sn5/γ-Al2O3 at 598 K showing the dynamic behavior of the cluster.  (c) 30 isomers of Pt7 

on -Al2O3 accessible at 700 K, with minimal energy paths forming the isomerization graph. 

The two lowest-energy isomers are shown in the inset, with the ethylene adsorption further 

favoring isomer #2. Reprinted with permissions from Refs. 14, 17, 22. Copyright 2015 Nature 

Publishing Group. Copyright 2018 American Chemical Society. Copyright 2003 Wiley Online 

Library. 

 

Although this Account extensively discusses catalytic clusters, structural fluxionality is 

characteristic of many amorphous interfaces, and some typical amorphous supports.23 In addition, 

perfect crystalline surfaces can transform into amorphous through heat or electrochemical 

treatment,24,25 suggesting the key role of surface dynamics in reaction conditions. For example, 

hexagonal boron nitride (h-BN) came as a surprise as an earth-abundant catalyst for oxidative 
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dehydrogenation of propane (ODHP).26 h-BN itself is inert, but in conditions of ODHP, its 

surface layer becomes partially oxidized amorphous BOx.
27 Global optimization found many 

low-lying local minima of varying stoichiometries of BOx on h-BN. Based on Boltzmann 

statistics, we constructed a “hot” phase diagram with respect to chemical potential of O and B, 

where every phase is an ensemble of many states populated at ODH temperature (Figure 2a,b).28 

With the temperature and partial pressures of reactants changing, the distribution of states 

changes accordingly, and the phase diagram become dynamic. We further found that some 

specific electronic states of B (involved in B-B bonds and having atomic charge between those in 

boron oxide and elemental boron) appear on the interface only at high T.28 We now have 

preliminary indications that those rare sites are catalytic.  

 

 

Figure 2. Phase diagram of the BO layer on h-BN at temperatures of ODHP as a function of µ(B) 

and µ(O), based on (a) GMs, (b) thermal ensembles of states of each stoichiometry. (c) Snapshot 

from a supporting MD simulation showing high fluxionality of the BO layer. Reprinted with 

permission from Ref. 28. Copyright 2019 American Chemical Society. 

 

Another ample evidence for ensemble effects and the catalytic action of the less abundant 

but particularly active sites comes from the works of Scott and Peters.29 Organometallic 

complexes grafted on amorphous surfaces exist in diverse coordination microenvironments, each 

of slightly different activity. The team developed elaborate approaches to identify the most active 

sites in this context, and also realized that catalysis is likely governed by minority species in the 

ensemble.30  
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ENSEMBLES OF METASTABLE CATALYST STATES REDEFINE 

PROPERTIES OF THE INTERFACE  

It is essential to capture the full vastness of the configurational space of fluxional 

interfaces, because each populated local minimum can contribute uniquely to the activity and 

selectivity, and the effect of some metastable members of the ensemble may override the effect 

of the GM. These minima also affect other properties such as the binding configurations and IR 

spectra of the bound reactants, intermediates, or poisons.12,22,31 Hence, it is essential that 

reactivity is studied also on the ensemble level. The contributions of coexisting structures to 

properties can be assessed statistically, and every property can then be described as ensemble-

averages. At elevated temperatures, the contribution of GM becomes less significant, while the 

local minima gain influence. The denser the manifold of accessible states, the more the 

properties of ensembles are temperature-dependent. If we assume no kinetic hindrance to minima 

population and that the system can sufficiently equilibrate, we can apply simple Boltzmann 

statistics to calculate the probability of a minimum to be populated, Pi, as: 

𝑃𝑖 =
𝑍𝑒𝑙𝑒𝑐,𝑖𝑍𝑡𝑟𝑎𝑛𝑠,𝑖𝑍𝑣𝑖𝑏,𝑖𝑍𝑟𝑜𝑡,𝑖

∑ 𝑍𝑖𝑖
≈

𝑔𝑖𝑒
−𝛽𝐸𝑖

∑ 𝑔𝑖𝑒−𝛽𝐸𝑖𝑖

 

, where Zelec,i, Ztrans,i, Zvib,i, and Zrot,i are electronic, translational, vibrational, and rotational 

partition functions, respectively. Then, every minimum contributes to every property in 

proportionality to Pi. Hence, any observable property of a dynamic cluster-decorated interface 

would form a broadened distribution, and the maximum would shift as a function of T.  

A very simple example is the vertical electron detachment energy (VDE) calculated for 

the ensembles of Pt clusters in the gas phase.12 The global and local minima for these clusters 

were found using a Basin Hoping (BH) algorithm operating on a neural network (NN) trained to 

represent the DFT PES. Every obtained minimum was refined with DFT and duplicates were 

removed. The Boltzmann population probabilities were assigned to the minima. Entropy in the 

calculations was based on harmonic vibrational analysis and symmetry/degeneracy of the cluster 

forms, and the electronic entropy was ignored as the electronic excitations were beyond the 

thermal reach. The ensemble-average VDEs as a function of T are shown in Figure 3a, for Pt9 

and Pt13. It is apparent that the average signal shifts strongly with T, and the trend is different for 

the two cluster sizes. Clearly, the VDE measured by operando photoelectron spectroscopy at 
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higher T should not correspond to the VDE of the GM, and the computed spectrum would not 

reproduce the experiment unless based on the appropriate ensemble of states.  

 

 

Figure 3. (a) Ensemble-average VDE for gas-phase Pt9 and Pt13 as a function of temperature. (b) 

XANES of all thermally-accessible Cu5O5/UNCD isomers (A, B, and C) obtained from global 

optimization. The ensemble-average spectrum was calculated at 535 K. Reprinted with 

permission from Ref. 12. Copyright 2016 American Chemical Society. 

 

Ensemble effects can be electronic in origin. For example, recently, it has been shown 

that the conventional representation of static charge of a supported metal atom can be 

misleading.32 Instead, several well-defined charge states of Pt can coexist and dynamically 

interconvert in CO oxidation on Pt/CeO2(100).32  

XANES is often employed to characterized cluster catalysts, and we used our approach to 

elucidate how thermally-accessible non-GM isomers may contribute to the operando XANES 

spectra. Figure 3b shows calculated XANES spectra for UNCD-supported CuO clusters.33 The 

shown isomers are populated at 535 K. When a specific selectivity in cyclohexane 

dehydrogenation was observed. We found that the XANES spectrum is distinct for every isomer, 

due to differences in the geometry and binding with the support. The average XANES is then an 

ensemble property (Figure 3b), but it closely resembles the spectrum of the GM isomer A. We 

see that the operando signal can be heavily dominated by the most abundant species, which may 

not be the most catalytically relevant, as we show next.  
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EVOLVING ENSEMBLES AFFECT MECHANISMS OF CATALYZED 

REACTIONS  

When a multitude of catalyst isomers coexist in catalytic conditions, any one or few of 

them can be most effective in catalyzing the reaction, despite the potentially lower population in 

the ensemble. For example, we showed this in a joint theory-experiment study on ethylene 

dehydrogenation on size-selected Pt clusters on -Al2O3 (Figure 4a). Pt7 and Pt8 exhibited 

markedly different activities, despite similar size, as well as the shapes and electronic structures 

of the GMs, as was measured by TPD/R. The size-dependent activity could only be explained 

when thermally-accessible ensembles of states were considered. Pt7/Al2O3 easily accesses 

isomers that are flatter on the support and draw more electrons from it. At 700 K, we predict the 

isomers of that flatter type to constitute more than 30% of the population. These more negatively 

charged isomers more efficiently activate ethylene toward dehydrogenation, and are responsible 

for the avalanche of dehydrogenation events at higher temperature and ethylene coverage. At the 

same time, for Pt8, GM is much more prevalent at all temperatures, while its higher energy 

isomers are less negatively charged, and thus, less efficient in ethylene activation. Hence, as a 

function of temperature, the behaviors of the Pt7 and Pt8 ensembles diverge, and Pt7 becomes 

more active due to the recruitment of more active isomers into the population. Note that while 

the “every atom counts” phenomenon in cluster catalysis has been known for a while,34 theory 

did not provide an explanation for it. We showed that (at least for dehydrogenation on Pt clusters) 

the number and nature of the metastable states in the catalyst ensemble recruited in reaction 

conditions can explain it. As another example, for reaction of dehydrogenation of methane on 

gas phase Pt13, it was theoretically shown that the second lowest-energy isomer has a 

significantly smaller barrier than the global minimum.35 Villa also showed that, depending on the 

isomer of supported PtSn, the barrier to O2 binding is markedly different (Figure 4b).36 
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Figure 4. The effect of evolving ensembles of catalyst states on the catalytic mechanism: (a) 

Ethylene dehydrogenation on size-selected Pt4,7,8/Al2O3 monitored via D2-TPD shows Pt7 having 

the highest activity; the effect was linked to the access of Pt7 to higher-energy active isomers, in 

contrast to Pt8. (b) Reaction paths for the dissociation of O2 on Pt10Sn10 as a function of 

nanoparticle disorder show different behaviors, from exothermic to endothermic. Reprinted with 

permission from Refs. 22, 36. Copyright 2017 American Chemical Society. Copyright 2014 

American Institute of Physics. 

 

The message is quite disheartening for surface science characterization, which measures 

an ensemble-average signal and thus mostly reports on the most abundant sites and may miss the 

weak signal from the important minority sites. New operando techniques with below-angstrom 

resolution to observe the atomic structures and improved time resolution to capture the dynamics 

are required to investigate the true nature of the active site. At the same time, theory begins to 

play an ever more significant role in catalyst characterization, since it has access to the per-site 

and per-state information about the system.  

Clusters may change not just shape but also number and types of adsorbates and effective 

chemical compositions in catalytic conditions. For example, partially oxidized clusters of Cu and 

Pd deposited on various supports appear to undergo partial reduction at elevated temperatures, as 

judged by in situ XANES.37,38 In collaboration with experiment, we showed that supported PdO 

clusters produce mainly benzene in ODH of cyclohexane, whereas CuO clusters produce 

cyclohexene with unprecedented rates.39 For the selectivity on CuO/UNCD clusters to emerge in 

calculations, it is essential to capture their significant restructuring upon adsorbate binding, and 

partial reduction at reaction temperatures. Cu5O3/UNCD ensemble appears to be more prone to 

yielding cyclohexene than the fully oxidized Cu5O5.
37  

Even when the catalyst itself is more stationary, and not prone to extreme dynamism, 

arrangements of adsorbed reactants, intermediates, and products can create diverse local 
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environments. Lateral interaction among different adsorbates can change the system state and 

lattice configuration. The same chemical reaction becomes subject to a wide range of 

microscopic events, leading to significant differences in activity, selectivity, and even reaction 

pathways, which makes surface catalysis a complex multi-adsorbate and multi-timescale reaction 

network. To address this, Xu and coworkers proposed a method combining explicit diffusion-

only kinetic Monte Carlo (KMC) with implicit KMC in the phenomenological kinetics (PK) 

form to account for lateral interactions among adsorbates in catalysis.40 For the model system of 

ammonia decomposition, lateral interaction between adsorbed N are found to significantly affect 

the shape of the volcano plot and its maximum position, suggesting the need to include lateral 

interactions into catalyst description and design. The number of adsorbates is another factor 

contributing to the state-diversity. The cluster expansion (CE) is a theoretical framework to treat 

multi-adsorbate systems, and Schneider and coworkers approximate ternary CE as a linear 

combination of three binary CEs by fitting to DFT database.41 The three-binary-to-single-ternary 

(TBST) approach shows good consistence with results by full ternary CE with the number of 

needed DFT data points greatly reduced. 

Because the ensemble of the catalyst states changes as a function of the adsorbate(s), in 

the limit of full thermodynamic equilibration, the free energy of every point along the reaction 

profile of a catalyzed reaction can be governed by a different catalyst state (state being a 

dynamic collection of many structures). The free energy and all ensemble-average properties of 

every intermediate would be defined mainly by the most stable and hence dominant species in 

the current equilibrium ensemble. On the other hand, every TS would be dominated by the most 

active and possibly less populated catalyst states, whose contribution to the rate would be pro-

rated by the probability of the species to exist. 

One straightforward consequence of the different stationary points on the reaction profile 

being controlled by different catalyst states is the breaking down of scaling relations. The scaling 

relationships are linear correlation between thermodynamic properties of chemically-related 

species (including TSs) across different extended surfaces used in catalysis.42 These relations 

result in volcano plots, wherein the most active catalyst binds the adsorbate neither too strongly 

to not react, nor too weakly to not bind, and then it shows up at the top of the volcano. These 

powerful relations allow describing catalytic systems by simple descriptors such as coordination 

number, the position of d-band center, and partial charge.42,43 However, they also impose 
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fundamental limitations on the catalyst maximal performance. Therefore, there has been some 

efforts to find a way to overcome these constraints.44,45 We showed that metal clusters, because 

of fluxionality6,16,46 and shape sensitivity to even chemically-related adsorbates or their different 

numbers, do not follow the scaling relationships, almost as a rule.47 In our considered example of 

oxygen reduction reaction (ORR) catalyzed by gaseous and graphene-supported Pt clusters, 

which is illustrated in Figure 5, the binding energies of molecular fragments, O, OH, and OOH, 

break the scaling relations because of the ever-changing cluster shapes.47 Similar breakdown of 

scaling relations through different mechanisms has been reported in other catalytic reactions.45,48 

 

 

Figure 5. GM structures of gas-phase and graphene-supported Pt clusters with and without O, 

OH, and OOH adsorbates (TOP), and the poor correlation between OH and O adsorption 

energies using PBE and PBE0 functionals, illustrating the breakdown of scaling relations for 

fluxional clusters. Adapted with permission from Ref. 47. Copyright 2019 American Chemical 

Society. 
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Another consequence of the ensemble representation has to do with the whole notion of 

the reaction mechanism. The mechanism may involve catalyst isomerization as part of the 

reaction coordinate. There could be several states of the catalyst of competing level of activity, 

which would produce a swarm of different reaction mechanisms that collectively yield 

experimental observables, such as rates and product distributions. Hence, a single reaction 

profile on a dynamic interface is likely to be completely misleading, as we began 

demonstrating.39   

The ensemble representation leads to a different view on reaction kinetics. Firstly, 

conventional Arrhenius picture needs to be reconsidered. As T increases, chemically-distinct 

states of the catalyst get recruited, and so the Arrhenius plot should be non-linear. A proposed 

simple modification to the Arrhenius equation using ensemble-average representation is to write 

the apparent activation free energy in terms of activation energies of every state weighted by 

Boltzmann populations: 

∆𝐺𝑒𝑛𝑠
‡ =∑𝑃𝑖∆𝐺𝑖

‡

𝑛

𝑖=1

  

Hence, the modified formula for the rate corresponding to the ensemble, 𝑟𝑒𝑛𝑠, can be written as 

𝑟𝑒𝑛𝑠 ∝ 𝑒−∆𝐺𝑒𝑛𝑠
‡ /𝑅𝑇 = 𝑒−∑ 𝑃𝑖∆𝐺𝑖

‡/𝑅𝑇𝑛
𝑖=1   

, which can be further simplified as 

𝑟𝑒𝑛𝑠 ∝∏(𝑒−𝑃𝑖∆𝐺𝑖
‡/𝑅𝑇)

𝑛

𝑖=1

=∏(𝑒−∆𝐺𝑖
‡/𝑅𝑇)𝑃𝑖

𝑛

𝑖=1

=∏𝑟𝑖
𝑃𝑖

𝑛

𝑖=1

  

The latter equation shows that the final rate of the reaction catalyzed by an ensemble of clusters 

is proportional to the product of rates of each individual cluster corrected by a Boltzmann factor.  

 

ENSEMBLES OF CATALYST STATES AND DEACTIVATION  

Catalysts deactivation in realistic catalysis conditions also needs a full ensemble-based 

description. Surface-supported nanoclusters deactivate mainly via sintering (merging to form 

larger particles with lower surface energies), and poisoning (e.g. coking). Sintering can happen 

via particle migration and coalescence, or Ostwald ripening that involves single atoms 

dissociating from a cluster, migrating on the support, and associating with other clusters while 

statistically favoring the larger ones. Ostwald ripening is the more prevalent mechanism for the 
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clusters that we studied. In simulations of Ostwald ripening, we considered Boltzmann 

ensembles of all cluster-isomers of every accessible composition and size up to 4-5 atoms.49–51 

Beyond that size, cluster energies were extrapolated based on the number and kind of atoms in 

the cluster. The cluster dissociation energies, and the PESs for the monomers on the support (as a 

grid) were pre-computed using DFT. The simulations then followed a Monte Carlo scheme, and 

involved cluster dissociation, association, atom migration, and atom evaporation and 

redeposition. One illustrating example is supported PtPd clusters. It was seen in the experiment 

that these clusters as the 50/50 Pt/Pd ratio sinter less than pure Pt or Pd clusters (Figure 5a).52–54 

We simulated Ostwald ripening on rutile at different temperatures and starting Pt/Pd ratios 

(Figure 5b). We found that indeed, mixed PtPd clusters sinter less quickly.50 The analysis 

showed no particular structural or electronic differences between clusters of different Pt/Pd ratios 

(Figure 5c). We eventually correlated the sintering inhibition with the configurational entropy, 

accessible to these clusters, which is the highest at the 50/50 ratio. In other words, within every 

accessible geometry, these clusters have more ways to arrange the Pt and Pd atoms, thereby 

lowering the free energy, and that is yet again an ensemble property that cannot be captured at 

the level of a single structure. 

We found a striking impact of the metastable states on the poisoning of cluster catalysts. 

We predicted that alloying supported Pt clusters with B should help mitigating both coking (by 

stopping alkane dehydrogenation at the olefin), and sintering.55 This was experimentally 

confirmed: size-selected Pt clusters on -Al2O3 were borated post-deposition by adding diborane 

and heating.31 These model catalysts showed significantly tempered ethylene dehydrogenation 

activity, and no deactivation after several catalytic cycles, in stark contrast to pure Pt 

counterparts (Figure 6d,e).31 Boron does this by forming strong B-O bonds between the cluster 

and the surface, cutting down the net charge transfer from support to clusters from 1.2~1.4 e to 

0.3~1.0 e, thus reducing the binding energies of ethylene and products of deeper 

dehydrogenation including carbon itself (Figure 6f). Furthermore, theory showed that the higher-

energy cluster isomers in the PtB ensemble are increasingly worse at activating ethylene and 

binding carbon. So as T increases, PtB/-Al2O3 coke less, whereas pure Pt/-Al2O3 clusters coke 

more. In fact, at low T (in the limit of GM being the only populated species), Pt7B/alumina 

should coke more than Pt7/alumina, in disagreement with the experiment (Figure 5f). We clearly 

needed an ensemble in order to capture the experimentally observed phenomenon. 
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Figure 6. (a) Experimental STEM shows mixed PtPd particles to resist sintering more than pure 

Pt or Pd particles. (b) Monte Carlo simulations of Ostwald ripening based on ensembles of 

cluster isomers for every size and stoichiometry show the highest survival of mixed PtPd clusters 

at 300K and 700K, in agreement with experiment. (c) The two lowest-energy isomers for 

tetraatomic PtPd clusters, showing no apparent differences. The stability against sintering was 

explained by increased configurational entropy. (d) Experimental C2H4 TPD on Pt7/-Al2O3 and 

Pt7B/-Al2O3: after the 1st-5th ethylene dehydrogenation, ethylene binding sites go away on pure 

Pt7, but stay intact on Pt7B, as seen from the 6th TPD. Lowering of the ethylene binding energy 

upon cluster boration is also seen form the position of the TPD peak. (e) CO TPD on Pt7/Al2O3 

and Pt7B/-Al2O3 after the same 1st-6th ethylene TPD, showing the disappearance of the Pt sites 

(due to coking and sintering) for pure Pt7, and preservation of the Pt sites for Pt7B. (f) 

Theoretical assessment of coking on Pt7/Al2O3 and Pt7B/-Al2O3: the low-T ensembles suggest 

higher coking propensity for Pt7, but at rising T the ensembles show opposing trends, with Pt7 

coking more and Pt7B coking less, in agreement with the experiment, due to the enrichment of 

the ensemble with the isomers having lower affinity to C. Adapted or reprinted with permission 

from Refs. 50, 54, 31. Copyright 2013 Wiley Online Library. Copyright 2014 and 2017 

American Chemical Society. 
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All our subsequent works that involved alloying Pt for selectivity control have involved 

ensemble representation. One well-known dopant for Pt in the bulk and in nanoparticle is Sn, 

known to reduce coking. We showed in a joint theory-experiment study that the effect of Sn is 

robust also in small clusters, and furthermore, the anti-coking mechanism is different from that 

induced by boration.56,57 In contrast to PtB, PtSn clusters supported on amorphous silica and -

alumina have the unchanged or even increased affinity for ethylene from that of pure Pt clusters. 

The selectivity arises from the Sn and Pt mixing within the cluster, and forming strong covalent 

bonds, quenching all unpaired spins, and eliminating the adjacent Pt sites, both of which are 

required for ethylene activation. Hence, ethylene desorbs. The effect is persistent across all 

thermally accessible isomers in the catalyst ensemble. We also identified Si and Ge as two highly 

promising dopants, which should surpass the effects of both B and Sn on the selectivity and 

coking resistance of Pt clusters.58,59 The mechanism for Si and Ge is electronic spin-based, 

similar to that of Sn. Again, the entire ensemble of states was simulated and analyzed to confirm 

that no accessible isomer could break the desired trend.  

 

COMPUTATIONAL AND EXPERIMENTAL METHODS OF 

CHARACTERIZATION OF DYNAMIC CATALYSTS – CURRENT STATUS 

AND REQUIRED UPDATES  

Accessing the ensembles of states on dynamic catalytic interfaces requires computational 

methods to address the problem at several different levels. To locate the GM and local minima 

on the PES, global optimization techniques are needed. The most popular ones include Genetic 

Algorithm,60–63 Particle Swarm Optimization,64,65 Basin Hopping.66–68 Many of these techniques 

have been developed in our laboratory,12,69 including the very first Genetic Algorithm for 

clusters.63 One possible advance needed here is to increase the efficiency of these algorithms in 

finding the local minima, since by definition they target the GM discovery, and do not 

necessarily the characterization of the full PES. Sampling in trained potentials is also welcome, 

since the computational cost associated with global optimization is very high. 

Another complication is finding the lowest-energy pathways for catalyst isomerization, 

especially in presence of adsorbates and/or during a reaction step. We need to identify catalyst 

structures that are likely to be connected by a direct isomerization pathway. Geometric similarity 

may be used as a criterion.6 Next, matching the atoms from one structure to another can be 
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highly non-trivial. It is not unique, and the associated computed barriers will be different.6 The 

multitude of adsorbate configurations drastically increases the number of possible pathways. 

Certainly, such studies are possible but extremely costly. One way forward could be fitting a 

simplified potential for the entire system (surface, cluster, adsorbates), including the regions of 

TSs, to enable quick qualitative estimates of the barriers, and the kinetic accessibility of all 

isomers in the network. We are working on this development.  

The global optimization can be performed on DFT, ab initio, empirical, and 

semiempirical PES. Force field and NN fitting of an approximate PES can be incorporated to 

further reduce the computational cost.12,69 The accuracy of these methods goes against the 

efficiency of the sampling, and so, more efficient electronic structure methods are highly desired.  

Currently DFT offers a balance between accuracy and computational cost and has been applied 

to many systems. However, due to its lack of cancelation of Coulomb self-interaction and single-

reference nature, DFT cannot yield meaningful results when treating strongly correlated systems 

such as late transition metal and rare earth oxides.70–72 DFT+U provides a way to treat such 

systems with DFT-level cost through addition of Hubbard U term to a set of atomic-like 

orbitals.73 However, the U is often fitted to a chosen property, via linear response approach, or to 

a solution obtained with another imperfect Hamiltonian, and may depend on the chemical 

composition or the pseudopotentials employed. High-level electronic structure methods 

including Green’s function,74 and screened Coulomb potential75 have been developed to treat 

strongly correlated systems. However, for catalytic interfaces involving large supercell and 

coverage, those are unaffordable. Hybrid-DFT with stochastic exchange may offer a practical 

way to handle large systems with improved accuracy and efficiency compared to DFT, but they 

are still single reference.76 Dispersion interactions can significantly contribute to nearly all 

covalent and noncovalent interactions, including H-bonds, metal coordination, adsorbate 

configuration, and reaction energetics.77 Efforts have been made to provide affordable method 

for the accurate evaluation of dispersion. Domain-based local pair-natural orbital approximation 

greatly accelerates coupled cluster calculations, reducing 7-order scaling with system size to 

near-linear.78 Dispersion correction methods developed by Grimme focus on improving the 

thermodynamic results at little additional computational cost.79 

On the experimental side, the operando spectroscopy is very promising for catalyst 

characterization.80,81 Measurements of activity and selectivity in situ becomes possible. In 
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agreement with the recent theoretical investigations, it has been shown by operando studies that 

the dynamic structural transformations of catalyst in reaction conditions can strongly affect the 

catalyst performance.38,82,83 In order to develop catalysts with enhanced performance the correct 

determination of reaction kinetics of the system is of great importance.82,84–86 To address critical 

mechanistic questions, XAS has become an important tool. XAS has the capability to resolve the 

electronic structural features of operating catalysts. Furthermore, the combination of small-angle 

X-ray scattering (SAXS) and XANES spectroscopy in situ studies probe different length-scales, 

and can be combined with simulations and machine learning.87–89 In samples where the signal of 

the cluster may be overwhelmed by bulk contribution, more surface-sensitive techniques such as 

in situ IR and surface enhanced Raman spectroscopy (SERS) are needed. These operando 

techniques would benefit the field of catalysis if they would gain the ability to detect important 

minority species at the catalytic interface, rather than giving an ensemble-average information. 

Until this is accessible, the role of theory remains really singular.  

 

CONCLUSIONS AND OUTLOOK 

To summarize, in the limit of full thermodynamic equilibration of a highly-dynamic 

interface along the entire reaction profile, the properties and energies of every intermediate and 

every TS are dominated by a different state or states of the catalyst. Intermediates would be 

mainly defined by the most thermodynamically stable and hence dominating species in the 

ensemble. TSs would be defined by less prevalent but more active states of the catalyst. The 

ensemble would generally change as a function of the bound intermediate (including changes in 

structure, and adsorbates nature and number). From this perspective, basing all intermediate 

geometries on the starting geometry of the interface could make the constructed reaction profile 

problematic, and it is critical to perform the separate sampling in all intermediates of a reaction. 

Each well on the reaction profile should be characterized with an ensemble of metastable state 

that is independent from the ensemble of the previous well. Catalyst isomerization steps thus 

should be part of the catalytic process. For the less stable but more active species to be the active 

sites, the catalyst needs to be able to reach those species through isomerization. In addition, the 

reaction profile might be not one, but many, all with slightly different mechanisms and rates, and 

operating as a swarm. This picture is much more complicated than what can be found in majority 
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of the catalysis literature, where the catalyst is not undergoing any major changes beyond 

relaxation, and there is only one reaction profile. 

We showed that all major properties of supported cluster catalysts, including activity, 

selectivity, stability against sintering and poisoning, and operando spectra are affected by the 

presence, or even dominance of the metastable states. Some intriguing results of this include 

routine breaking of scaling relations, and a non-Arrhenius behavior.  

One open question is that of the relative time-scales. Do the catalytic systems really have 

the time to undergo this constant reorganization that would allow them to operate on the 

minimum free energy reaction path, as an equilibrium ensemble? For example, in enzymatic 

catalysis, the full equilibration all along the free energy surface is standardly assumed and treated 

through extensive sampling combined with free energy perturbation (FEP).90,91 Or does the 

reaction instead proceed along a series of metastable states, keeping some memory of the initial 

state of the catalyst that it was when the reagent bound to it? This picture would be closer to the 

modeling approaches that dominates the catalysis literature now, but in our studies, we’ve seen 

that such modeling leads to selectivities and cluster size- and composition-dependencies of 

activity that do not agree with the experiment. The partial equilibration of the catalyst along the 

reaction profile, where the current ensembles are neither fully equilibrated, nor correspond to the 

GM of the initial state, would be truly difficult for theory.  

It is also interesting to know the degree to which the importance of ensembles changes as 

we consider larger catalytic particles. While we do not have the full answer for this question, it 

can be reasonably hypothesized that larger particles would retain the structure in the bulk but 

undergo dynamic surface reconstruction and exhibit varying coverages around different active 

site, forming ensembles in these ways.  

Another key question is that of the possible dynamic coupling between the catalyzed 

reaction and catalyst reorganization. Are there reaction steps that involve not just the movement 

of light reacting atoms but also catalyst isomerization? While we do not yet have a complete and 

general answer, we have made several initial observations. For adsorbate-free supported Pt 

clusters, the isomerization is quite fast, but not faster than the catalyzed reactions of 

dehydrogenation. The reaction dynamics is then decoupled from the cluster dynamics: facile 

cluster isomerization can be induced by a reaction step, but it is delayed and occurs as an 

independent step. The picture might change, when the reacting atoms and cluster atoms are 
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closer in masses. Similarly, can the binding of a reagent, which can have a large kinetic energy 

and be vibrationally excited at high T, trigger catalyst isomerization? This coupling could in fact 

facilitate the catalyst equilibration toward the most stable ensemble with the bound reagents. We 

began investigating this aspect of cluster catalysis through dynamics simulations, paying 

particular attention to kinetic energy exchange between the catalyst and the reagent. So far, the 

results are again system dependent. Also, reagent scattering, non-reactive adsorption, and 

reactive adsorption all affect the catalyst dynamics differently.  

We hope to construct a unified theory of dynamics in catalysis and have made out first 

strides in this direction. We see that some catalysis rules are routinely broken on such dynamic 

interfaces. We develop tools that we need to access the nature and mechanisms of such interfaces. 

However, we still have a long way to go to a truly generalized theory, as the emerging picture is 

breathtakingly complex. 
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