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Segmental duplications or low-copy repeats (LCRs) are long segments of duplicated

DNA that cover more than 5% of the human genome and overlap more than 600 protein-coding

genes. Copy number and sequence variants in over 150 such duplicated genes (e.g. SMN1/2,

STRC, NCF1) are associated with risk for rare and complex human diseases. Paralogous sequence

variants (PSVs) are short differences between homologous sequences within duplicated loci. It

has been shown that many PSVs are not fixed in the population, which reduces their potential

to differentiate paralogous regions. Moreover, segmental duplications exhibit extensive copy

number variation, and are characterized by poor read mappability even for long-read data.

All these factors lead to diminished accuracy of existing bioinformatical tools for short- and
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long-read data in duplicated regions. This dissertation presents three novel computational

methods that solve classical bioinformatical problems (read mapping, variant calling and copy

number variation detection) in LCR regions. In contrast to existing tools, three proposed

methods examine PSV genotypes in order to distinguish sets of reliable and unreliable PSVs,

and use reliable PSVs to achieve higher accuracy than state-of-the-art methods in the field.

First, we describe a probabilistic method, DuploMap, designed to improve the accuracy

of long-read mapping within LCR regions. It iteratively genotypes PSVs and leverages reliable

PSVs to distinguish between candidate read locations. This allows for high accuracy variant

calling in segmental duplications using long reads. Next, we present the first toolkit for LCR

regions, Parascopy. Parascopy uses short-read whole-genome sequencing to estimate total copy

number as well as paralog-specific copy number for duplicated genes. Parascopy analyzes reads

mapped to different repeat copies and utilizes multiple samples to mitigate sequencing bias and

identify reliable PSVs. Accurate copy number estimation facilitates discovery of pathogenic

copy number changes in duplicated genes. A novel variant caller, ParascopyVC, builds upon

copy number variation detection and uses short-read data to call pooled and locus-specific

variants within segmental duplications. ParascopyVC uses population allele frequencies and

pooled genotypes to select informative PSVs. Finally, the tool uses informative PSVs to identify

additional locus-specific variants, enabling the discovery of novel disease-causing variants in

duplicated genes.
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chapter 1

General Introduction and Scope of the
Thesis

1.1 The human genome

The human genome is a collection of 23 pairs of chromosomes encoded as Deoxyri-

bonucleic acid (DNA) within cell nuclei. DNA consists of two strands made of multiple small

subunits called nucleotides: adenine (A), cytosine (C), guanine (G) and thymin (T). Each of

the nucleotides forms a base pair with a complement nucleotide (A with T; C with G) on the

opposite strand. Two strands of DNA are called sense (‘+’ strand) and antisense (‘-’ strand), and

strand sequences are reverse-complement to each other.

Human reference genome is a set consisting of multiple sequences over an alphabet

‘A,C,G,T’, where each sequence encodes a contiguous stretch of human DNA. Ideally, each

reference sequence would store a full chromosome, however, most modern human reference

genomes contain gaps within chromosome sequences (denoted by letter ‘N’ and other symbols),

and include short “contig” strings in addition to the chromosome sequences.

During the last decades, significant efforts have been undertaken to create a reference

human genome: the Genome Reference Consortium Human Build 37 (GRCh37) and 38 (GRCh38)
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were published in February 2009 and December 2013, respectively. The two most recent

reference genome patches GRCh38.p13 and GRCh38.p14 were published in February 2019

and May 2022, while a number of alternative human reference genomes emerged, such as

T2T-CHM13 assembly [1]. In total, human reference genomes contain ≈ 3.1 billion nucleotides.

Traditionally, human reference genomes are assembled using a single individual (or a small

group of individuals) and contain a haploid collection of chromosomes — each autosomal

chromosome appears in the reference genome once.

Most human cells contain a diploid set of chromosomes — 22 autosomal chromosomes

are present in pairs of homologous chromosomes, while sex chromosomes appear either as a

pair of X chromosomes, or as individual X and Y chromosomes. Each individual human genome

is different from the reference genome, and all pairs of homologous chromosomes differ from

each other. In general, an individual human genome has approximately 4–5 million sequence

variants [2]. Such variants represent short (one or several nucleotides) substitutions, insertions

and deletions compared to the reference genome sequence. Possible sequences of a variant

are called alleles. Variants with the same allele on both homologous chromosomes are called

homozygous and variants with different alleles are called heterozygous.

1.2 Segmental duplications and structural variations

The reference genome contains a large number of segmental duplications (also known

as low-copy repeats, LCRs) — long segments of DNA that appear in the genome multiple

times with high sequence similarity [3–5]. Copies of a segmental duplication are often called

repeat copies or homologous regions of the duplication. Typically, segmental duplications are

by definition longer than 1 kilobase (kb) and have sequence similarity over 90%. Segmental

duplications can appear on different chromosomes (interchromosomal), or on the same chro-

mosome (intrachromosomal). In some duplications, repeat copies follow each other with only
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Figure 1.1. Genome browser view of a complex set of segmental duplications. UCSC
genome browser [6] shows a 1 Mb locus (chr5:70,300,001-71,300,000) containing duplicated
genes SMN1, SERF1A, NAIP and GTF2H2, shown with blue lines. Each colored bar on the bottom
of the plot denotes a duplicated region longer than 1 kb. Color of the bar indicates sequence
similarity of the duplication: 90 to 98% shown with black and gray; 98 to 99% shown with
yellow; over 99% shown with orange.

a small stretch of non-duplicated DNA in between (tandem segmental duplications). Repeat

copies can appear on the same or on the opposite DNA strands.

Even though repeat copies of a segmental duplication can be completely identical, often

there exist at least several paralogous sequence variants (PSVs). Each PSV represents a small

difference between the sequences of the repeat copies, such as a short substitution, insertion or

deletion. Note, that in a duplication with more than two repeat copies, it is not guaranteed that

a PSV would have a separate allele for each repeat copy.

In addition to sequence variants, an individual human genome differs from the reference

genome by approximately 1.5% when considering structural variants (SVs) [7, 8]. Structural

variants include deletions, duplications, insertions, inversions and translocations, all of which
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can vary in size from 50 base pairs (bp) to over a million base pairs (megabase, Mb). Structural

variants of different types are commonly associated with segmental duplications [9], in particu-

lar, segmental duplications are prone to extensive copy number variations. Consequently, long

history of structural variation in a relatively short genomic region leads to complex duplication

structures, (See Figure 1.1 for an example).

1.3 Duplicated genes in the human genome

Human genome stores vast amounts of functional and hereditary information. The

main functional genomic units are genes, which vary in size from a few hundred base pairs to

few million base pairs. In total, the human genome contains over 20 thousands genes. Sequence

variants and structural variants in genes can have both beneficial and adverse effect on the

human health, potentially leading to genetic diseases.

Genes within duplicated regions raise additional interest due to several factors: (i) du-

plicated genes play a vital role in primate evolution [4]; (ii) structural variants, including partial

or full gene deletion and insertions, are more common in the duplicated genes; (iii) sequence

variants and structural variants within the duplicated genes are challenging to both detect and

to pinpoint to the correct repeat copy due to the repetitive nature of the LCR regions.

1.3.1 SMN1/2 duplicated locus

One of the most studied duplicated genes is SMN1. It is located in a 200 kb-long duplica-

tion with sequence similarity over 99.8%. The coding region of the SMN1 gene is approximately

29 kb long and contains nine exons, designated historically as exons 1, 2a, 2b and 3–8. The

second repeat copy of the duplication contains a protein-coding gene SMN2, which differs from

the SMN1 gene by just 24 PSVs — less than one PSV per kilobase. Moreover, previous studies

have shown that just 8 PSV sites are non-polymorphic in the human population [10].
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Sequence variants and copy number changes in the SMN1/2 genes are associated with

Spinal Muscular Atrophy (SMA) [10] — serious genetic neuromuscular disorder that results

in muscle atrophy with potentially lethal consequences. Paralog-specific copy number of the

duplication can modify the disease phenotype: an individual with two copies of the SMN1

paralog and one copy of the SMN2 is healthy, while an individual with one SMN1 copy and two

SMN2 copies is the disease carrier or is affected by the disease.

1.4 DNA sequencing technologies

DNA sequencing became possible with the development of the Sanger method in

1977 [11]. Sanger sequencing generates highly accurate reads with length up to 900 bp, but

has several downsides, mainly high sequencing cost and slow and labor-intensive sequencing

process. Between 1990 and 2003 twenty laboratories collaborated in order to sequence a single

human individual [12] at a cost of approximately 2.7 billion dollars.

In 2005, the 454 GS 20 Roche sequencing platform [13] became available and gave rise

to the Next-Generation Sequencing (NGS), also called “short-read sequencing”. A year later,

Solexa launched the Genome Analyzer sequencer, which first utilized Sequencing by Synthesis

technology. In 2007, Illumina acquired Solexa and its technology [14], and has developed a

number of new sequencing platforms since then. NGS technologies have several advantages

compared to the Sanger sequencing: (i) lower sequencing cost; (ii) ability to sequence the whole

genome with high coverage; (iii) capability to produce more data with the same amount of

input DNA.

In general, Next-Generation Sequencing reads are characterized by smaller read length

(≤ 300 bp) and slightly higher error rate (0.1%) compared to the Sanger sequencing. In addition,

many Illumina sequencers support Paired-End Sequencing: technology that allows to sequence

a DNA fragment from both sides and generate pairs of “linked” reads. For example, Illumina

HiSeq 2500 platform allows to sequence pairs of reads with length 2 × 250 bp and insert size
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(length of the fragment) up to 800 bp. Various library preparation techniques allow to increase

insert size to multiple kilobases.

In late 2000s, a range of new technologies appeared, together known as Third Generation

Sequencing or Single Molecule Sequencing (SMS) [14, 15]. Two most widely known Third

Generation Sequencing providers are Pacific Biosciences (PacBio) with the single molecule

real time (SMRT) platform [16] and Oxford Nanopore Technologies (ONT) [17] with MinION,

GridION and PromethION platforms. Third Generation Sequencing datasets can be charac-

terized by large read length (> 10 kb) [14] and high error rate (5–10%) [15, 18]. Recently,

Oxford Nanopore presented a protocol to generate ultra-long reads with lengths reaching

800 kb (N50 > 100 kb) [19], while Pacific Biosciences presented single molecule high-fidelity

(HiFi) technology [20] that generates 10–25 kb reads with error rate < 0.5%.

In 2017, 10X Genomics presented a technology [21–23] that can be characterized as both

the Second and the Third Generation Sequencing. The 10X Genomics’ Linked-Reads sequencing

technology places long DNA molecules (50–150 kb) into separate droplets. The molecules are

later split into smaller fragments, barcoded separately for each droplet, and sequenced using

Illumina sequencing technologies. Resulting linked-reads benefit from both high accuracy

Illumina protocols and long fragment information, and are often used for structural variation

detection [21, 22]. Nevertheless, 10X Genomics discontinued the Linked-Reads technology in

2020.

1.5 Challenges of modern bioinformatics

1.5.1 Read mapping

The Second and Third generation DNA sequencing technologies generate reads origi-

nating from random genomic locations. Depending on the library preparation protocol, the set

of genomic regions can be bounded (for example to cover only exons), but read locations are
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nevertheless unknown in advance. The problem of placing sequencing reads to their original

genomic locations is called read mapping or read alignment. Several factors increase read

mapping complexity: (i) sequencing reads are imperfect and each read sequence may contain

one or several substitutions, insertions or deletions compared to the true genomic sequence;

(ii) individual genomic sequence is different from the reference genome; (iii) a single read

may have several possible genomic locations, which share significant similarity or may be

identical; (iv) number of sequencing reads may reach and exceed a billion, therefore read

mapping algorithms need to be very time efficient.

Since 1970s there arose multiple efficient algorithms for finding a substring of length𝑚

in a longer string of length 𝑛: Knuth–Morris–Pratt [24] performs the search in 𝑂 (𝑛), while the

suffix tree [25] and the suffix array [26] algorithms require a preprocessing step (indexing), but

perform a faster search in 𝑂 (𝑚). Burrows-Wheeler transform [27] and FM-index [28] allow to

compress and index long strings in 𝑂 (𝑛), and are actively used in Bowtie [29], Bowtie2 [30]

and BWA [31, 32] read mapping tools. Note that all string-searching algorithms need to be

applied to the read subsequences (known as seeds) due to the presence of sequencing errors

and sequence variants.

In addition to finding an approximate read location, read mapping tools need to construct

an alignment between the reference sequence and the read sequence — placing the minimal

number of insertions, deletions and substitutions needed to match the two sequences. Several

algorithms solve this problem, namely Needleman–Wunsch [33], Smith–Waterman [34]; and

Pair Hidden Markov Models [35] (Pair-HMM), all requiring 𝑂 (𝑛𝑚) running time. In order

to tackle the quadratic complexity of the alignment algorithms, multiple optimizations were

developed, including parallel processing [30], striped Smith–Waterman algorithm [36] and

Wavefront algorithm [37].

Read mapping tools that work with the Third Generation sequencing data encounter

even more problems: higher error rate leads to fewer matches between the read and reference

sequences, while bigger read length makes it difficult for the tools to keep high processing
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speed. Nevertheless, the workflow of the most popular long-read mapping tool Minimap2 [38,

39] is reminiscent of the short-read workflows: first, Minimap2 finds matches between the

read seeds and the reference, then it chains sets of nearby matches, and, finally, completes the

alignment between the seeds in each chain.

1.5.2 Variant calling

The process of identifying sequence variants from the sequencing data is called variant

calling. Briefly, variant calling algorithms contain two important steps: variant discovery and

genotyping. During the variant discovery step, a variant caller analyses read mappings for one

or more samples, and finds genomic positions (sites) that have a significant number of reads

that support a non-reference allele. Input read alignments are sorted by the genomic coordinate

in advance and indexed, which allows for quick access to all reads overlapping a specific site.

Due to the low error rate, variant discovery for the Second Generation Sequencing data can

often be done by the simple count of the number of reads that support each non-reference

allele at each genomic position. Nevertheless, the true complexity of the process can be seen

in case of low-complexity variants, as well as long insertions or deletions, as the reads have

higher chance to have an error within the variant or to cover the variant only partially. The

variant discovery step becomes even more complex in the presence of high error rate or low

read depth.

During the variant genotyping step, variant callers assign most probable genotypes to

each variant. In a simple diploid case a variant with two alleles has three possible unphased

genotypes: 0/0, 0/1 and 1/1. Some variant calling tools perform an additional haplotyping step,

which produces phased genotypes (in this example 0|0, 0|1, 1|0 and 1|1) that link alleles of

the nearby variants, indicating that they lie either on the same chromosome or on different

homologous chromosomes. Note that the number of possible genotypes raises exponentially

with the number of alleles and the ploidy (number of homologous chromosomes). Variant
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callers assign genotypes based on the reads that overlap the variant, and employ a wide range

of computational and statistical techniques, including Multinomial distribution and Bayesian

approach in FreeBayes [40]; Pair-HMM in GATK [41] and Longshot [42]; and deep Neural

Networks in DeepVariant [43]. In addition to the read–variant observations, variant callers

incorporate external information, such as population frequencies of the known variants and

pedigree information.

1.5.3 Copy number variation detection

Similarly to variant callers, copy number variation (CNV) detection tools use existing

read mappings as input, and search for genomic sites that exhibit non-reference alleles. However,

in case of CNVs, genomic sites are longer (hundreds to millions base pairs), while CNV alleles

represent the number of times the sequence appears in an individual genome. In contrast to

variant calling tools, CNV-detection tools are rarely able to determine the variant allele (locus

copy number) for each homologous chromosome, and instead determine sum copy number

across the two homologous chromosomes together. In case of the low-copy repeats, two terms

can be defined: paralog-specific copy number — copy number value for each repeat copy

of the low-copy repeat; and aggregate copy number — sum copy number across all repeat

copies. CNV-detection tools can be split into three categories by the set of regions they analyse:

(i) whole-genome analysis as in CNVnator [44, 45] and QuicK-mer2 [46]; (ii) targeted analysis

as in GenomeSTRIP [47]; and (iii) single gene analysis as in SMNCopyNumberCaller [10].

All CNV-detection tools calculate background read depth at different GC-content values

across the whole genome or across a specific set of genomic loci. Then, the tools compare the

read depth distribution with the background read depth values in order to discover copy number

variations. Specifically, CNVnator [44] and GenomeSTRIP [47] use Gaussian distribution,

while QuicK-mer2 [46] uses an unnamed read depth distribution at unique genomic 𝑘-mers.
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SMNCopyNumberCaller [10] uses Gaussian mixture models to predict aggregate copy number

and then uses PSV-allelic read depth to predict SMN1/2 paralog-specific copy number.

1.6 Scope of the thesis

Despite the vast amount of bioinformatical algorithms and tools that focus on the

analysis of the whole-genome sequencing data, there is a lack of tools designed to withstand

the difficulties of the low-copy repeats. Segmental duplications are often deliberately removed

from the analysis; and, as a direct result, many duplicated genes remain understudied.

Chapter 2 introduces an algorithm, DuploMap, that takes an existing long-read map-

pings, and refines the alignments that overlap low-copy repeats. Specifically, DuploMap

iteratively genotypes PSVs and updates read locations. Refined long-read mappings are more

accurate that the original read mappings on the simulated data, and produce variant calls with

𝐹1 scores for the HG002 WGS dataset.

Chapter 3 presents a copy number variation detection tool Parascopy. Parascopy uses

short-read WGS data from multiple samples to first find aggregate copy number values, and

then searches for a set of reliable PSVs to estimate sample paralog-specific copy number across

various repeat copies. Parascopy produces more robust and accurate copy number estimates

compared to other CNV-detection methods.

Chapter 4 describes a variant caller ParascopyVC, which is designed to call variants

within low-copy repeats. ParascopyVC uses copy number estimates and obtained by Parascopy

and calls variant genotypes, pooled across all repeat copies. Next, ParascopyVC finds informa-

tive PSVs based on the pooled PSV genotypes and the population allele frequencies, and uses

them to call paralog-specific variants.

DuploMap, Parascopy and ParascopyVC are specifically designed for low-copy repeats.

In contrast to existing methods, they analyze reads mapped to various repeat copies simulta-

neously, and estimate PSV genotypes in order to identify subsets of reliable PSVs. All three
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methods do not require whole-genome remapping and use multiple parallel threads to produce

efficient, scalable and accurate solutions to classical bioinformatical problems within low-copy

repeats.

11



chapter 2

Long-Read Mapping in Segmental
Duplications

2.1 Introduction

High-throughput short-read sequencing technologies have transformed the study of

genetic variation and the discovery of disease-associated variants for human disorders. However,

the short read lengths (typically a few hundred bases) of short-read technologies such as

Illumina limit the comprehensive detection of genetic variation [48]. The human genome is

highly repetitive and contains several types of repetitive sequences including hundreds of

long segmental duplications (ranging in length from a few kilobases to hundreds of kilobases)

that have greater than 98% sequence similarity to other sequences [3, 49]. Some of these

duplicated sequences are perfectly identical to their paralogous sequences over several kilobases.

Duplications with length at least 10 kilobases and sequence identity of 98% or greater cover 3.0−

3.2% of the human genome and overlap more than 800 protein-coding genes. Variants in many

of these genes are implicated in rare Mendelian disorders as well as complex diseases [50]. Some

examples of such duplicated genes are PMS2 in Lynch syndrome [51], STRC in hearing loss [52],

and NCF1 [53] in autoimmune diseases. From the perspective of whole-genome sequencing,
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many of these segmental duplications are partially or completely inaccessible to short reads

since the vast majority of reads originating from such regions cannot be unambiguously

aligned to the genome [50, 54]. This limits the discovery of disease-associated mutations and

our understanding of the function of these genes.

In recent years, two single molecule sequencing (SMS) technologies that can generate

reads that are tens to hundreds of kilobases long have become widely available. The Pacific

Biosciences (PacBio) SMRT technology can generate reads that are, on average, 10-60 kilobases

long [55]. Another long read sequencing technology – Oxford Nanopore (ONT) MinION – can

generate long reads with lengths that can even exceed a megabase in length [19]. The availability

of these technologies has dramatically altered the ability to assemble bacterial and mammalian

genomes since the long read lengths can resolve long repeats present in genomes [56]. The

throughput and read lengths for these third-generation sequencing technologies continues

to improve, as a result, these technologies are increasingly being used to sequence human

genomes [57, 58]. The long read lengths of these technologies provide several advantages for

sequencing human genomes compared to short reads. These include the ability to de novo

assemble genomes with high contiguity [19, 59], reconstruct haplotypes directly from the

sequence reads [42, 60] and increased sensitivity for the detection of structural variants [57,

61].

A key advantage of long SMS reads is their ability to map unambiguously in repetitive

regions of the genome that include long segmental duplications with high sequence identity.

This can enable accurate variant calling in these regions [42, 62]. However, variant calling using

error-prone SMS reads is challenging and short-read variant calling tools do not work well

for SMS reads [42, 62]. To address the challenge of variant calling using SMS reads with high

error rates, several new methods [42, 43, 62, 63] have been developed. Some of these methods
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use deep learning based models [43, 63] to overcome the high error rate while others exploit

the long-range haplotype information present in SMS reads to enable haplotype-resolved

variant calling [42, 62]. Recent work has shown that these variant calling methods achieve

high precision and recall for single nucleotide variant (SNVs) calling in unique regions of the

human genome that is comparable to that using Illumina WGS [42]. More recently, Circular

consensus sequencing (CCS) can generate long reads with high accuracy (99.8%) using multiple

passes of the PacBio SMS technology over a single template molecule [59]. The high acccuracy

of these HiFi reads enables the accurate detection of both SNVs and short indels in human

genomes [59] and also improves the mappability of the genome (97.8% of non-gapped bases)

compared to short reads (94.8%).

Nevertheless, many segmental duplications are much longer than the average read

length of HiFi reads and remain difficult to map unambiguously [59]. Using simulated PacBio

reads, Edge and Bansal [42] found that long-read alignment tools such as Minimap2 [38] and

NGMLR [64] result in low recall for variant calling in segmental duplications. Long-read

alignment tools typically calculate alignment or similarity scores for each of the possible

mapping locations for a read and assign it a high mapping quality if the alignment score of the

best location exceeds that of the second best location using some threshold. Long repeated

sequences in the human genome result in multiple locations with high scores and pose problems

for long-read alignment tools. Recent work has shown that the accuracy of long-read mapping

in extra-long tandem repeats in the human genome – typically found in centromeres – can be

improved using specialized computational methods [65–67] that are designed to exploit the

sequence and structure of long repeats. For example, the Winnowmap algorithm [66] modifies

the sequence matching algorithm to avoid filtering out repeated 𝑘-mers that are common in

tandem repeats [66].

In long segmental duplications with high sequence identity, there is potential to im-

prove alignment accuracy by leveraging prior knowledge about the location and sequence of

the duplications. Paralogous sequence variants (PSVs) – differences in sequence between a
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segmental duplication and its homologous sequences – are the primary source of information

for assigning reads to their correct location in such regions. PSVs have previously been used to

distinguish paralogous repeat copies and estimate paralog-specific copy number using short

reads [68]. More recently, Vollger et al. [69] have developed a computational method for the

de novo assembly of segmental duplications that uses PSVs to separate paralog copies. The

high error rates of PacBio single-pass and ONT reads make the problem of distinguishing

paralogous repeat copies even more difficult. In this chapter, we describe a new probabilistic

method for accurate mapping of long reads in segmental duplications that explicitly leverages

PSVs to distinguish between repeat copies and assign reads with high confidence. Our method,

DuploMap, builds on existing long-read alignment tools and carefully analyzes reads that are

mapped to known segmental duplications in the genome. It performs local realignment around

PSVs to maximally utilize the information present in noisy SMS reads.

PSVs are defined using a reference genome and it has been shown that a subset of

PSVs correspond to polymorphisms in the human population [70, 71]. Using such unreliable

or uninformative PSVs for differentiating repeat copies can result in conflicting evidence in

support of different alignment locations resulting in reduced sensitivity and specificity of

read mapping. To identify and discard uninformative PSVs, DuploMap jointly performs read

mapping and PSV genotyping using an iterative algorithm. Only reliable PSVs are used to

assign reads to homologous repeat copies. We use simulated data to evaluate the improvement

in mappability using DuploMap on alignments generated using existing long-read mapping

tools. We also demonstrate the impact of DuploMap on read mappability and variant calling in

segmental duplication in the human genome using a number of real datasets generated using

the Pacific Biosciences and Oxford Nanopore technologies. DuploMap is open-source software

available at https://gitlab.com/tprodanov/duplomap.
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2.2 Materials and Methods

Given SMS reads aligned to a reference genome (using a long read aligner such as

Minimap2), our objective is to analyze reads that overlap segmental duplications (and their

homologous sequences), determine the most likely alignment location for each read and assign

a mapping quality to it [72]. We assume that standard alignment tools can correctly align reads

in the unique regions of the genome. Therefore, we do not examine reads that do not have a

primary alignment overlapping segmental duplications. DuploMap uses prior knowledge about

segmental duplications in the human genome to identify clusters of duplicated sequences and

pairwise PSVs.

2.2.1 Clustering segmental duplications and identifying PSVs

To identify segmental duplications and PSVs, we used a previously computed database

of segmental duplications for the human genome [3, 49]. The database was downloaded from

the UCSC table browser [6]. First, we filtered out all pairs of homologous sequences for which

the fraction of matching bases was less than 97% or the length of the alignment was less

than 5000 bases. Next, we constructed a graph on the segmental duplications where each

node was a genomic interval with homology to at least one other interval. This graph had

two types of edges: (i) similarity edges between pairs of homologous sequences from the

segmental duplication database and (ii) proximity edges between pairs of intervals that are

less than 500 bases from each other. The proximity edges were added since reads that overlap

intervals close to each other but not homologous have to be analyzed jointly since they affect

the PSV genotypes of both components. For the hg38 reference human genome, the segmental

duplication graph had 5,818 nodes and 26,301 edges (3,587 similarity and 22,714 proximity

edges). We removed 88 of the 256 clusters that did not contain any duplications longer than 10

kilobases and with sequence similarity at least 98%. Most of the remaining clusters were small
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(less than 3 nodes) but the largest connected component contained 3,301 nodes and 17,752

edges.

To identify PSVs, we used Minimap2 (options -ax asm20) to align each pair of homol-

ogous sequences. For a pair of aligned sequences 𝑆1, 𝑆2, we first searched for anchors: 𝑘-mers

shared between the homologous sequences and represented by 𝑘 consecutive matches in the

pairwise alignment. Each anchor sequence is required to be unique in a window around it (by

default, 𝑘 = 6 and window length = 20). This way we get a set of anchor starting positions

{𝑎(1)
𝑖
}, {𝑎(2)

𝑖
}. If the homologous sequences between two consecutive anchors are different:

𝑆1 [𝑎(1)𝑖 +𝑘 . . . 𝑎
(1)
𝑖+1 − 1] ≠ 𝑆2 [𝑎(2)𝑖 +𝑘 . . . 𝑎

(2)
𝑖+1 − 1], we define a pairwise PSV as a pair of intervals

(𝑎(1)
𝑖
+ 𝑘, 𝑎(1)

𝑖+1 − 1) and (𝑎(2)
𝑖
+ 𝑘, 𝑎(2)

𝑖+1 − 1). As a result of this, adjacent PSVs can be merged into

a single PSV. The substrings 𝑆1 [𝑎(1)𝑖 + 𝑘 . . . 𝑎
(1)
𝑖+1 − 1] and 𝑆2 [𝑎(2)𝑖 + 𝑘 . . . 𝑎

(2)
𝑖+1 − 1] define the two

alleles for the PSV. To avoid excessive number of PSVs in regions with low sequence similarity,

we did not consider regions within the pairwise alignments that had sequence similarity lower

than 95% and were longer than 300 bp. Finally, low-complexity PSVs were filtered out and only

high-complexity PSVs were retained for genotyping (see Section A.2.1 for details).

2.2.2 DuploMap algorithm

For each cluster in the segmental duplication graph, DuploMap identifies reads that

overlap segmental duplications in the cluster and analyzes the reads to determine the alignment

location and mapping quality of each read. Unlike existing mapping tools, which map each

read independently to the reference genome, DuploMap uses information from all reads jointly

to align reads overlapping segmental duplications. This is done by identifying uninformative

PSVs jointly with estimating the read alignment locations and mapping qualities. For a cluster

of duplications, DuploMap first retrieves all reads for which the primary alignment intersect

the genomic intervals contained in the cluster. Next, it performs the following steps on the set

of reads:
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1. For each read:

• Find the set of potential alignment locations,

• Use LCS-based filtering to discard some alignment locations,

• If the number of alignment locations after filtering is one, assign read to that location

with high confidence (mapping quality = 254),

• Determine the actual alignment for the read and each alignment location using

Minimap2.

2. For each PSV, estimate genotype likelihoods using reads aligned with high confidence

(mapping quality greater than a threshold), and identify reliable PSVs.

3. For each read with two or more potential alignment locations, calculate location likeli-

hoods using reliable PSVs and estimate mapping quality for best alignment location.

4. Repeat steps 2 and 3 until the read assignments do not change.

After we assign mapping locations and qualities for all reads for a given cluster of

segmental duplications, we perform additional post-processing to identify reads that shown

high rate of discordance with the genotypes of overlapping PSVs. Reads with high discordance

can be result of missing duplicated sequences in the reference genome or due to other reasons

such as structural variants. Reads that overlap at least five PSVs and show a high rate of

discordance are assigned a low mapping quality (see Section A.2.4 for details). Next, we describe

the individual steps (1, 2 and 3) of the algorithm in detail. The procedure for identifying the set

of potential alignment locations uses the segmental duplication database (step 1) is described

in the Section A.2.3.

2.2.3 Filtering alignment locations using longest common subsequences

For reads overlapping segmental duplications with high sequence identity, comparing

the alignment scores for different candidate locations is not very informative of the correct
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location, particularly for reads with high error rates. We developed a LCS-based strategy that

uses 𝑘-mers that are unique to a particular alignment location to filter out unlikely locations.

The motivation underlying this approach is that the correct alignment location should share

unique 𝑘-mers with the read, i.e. 𝑘-mers that are not present in other locations and the number

of such shared unique𝑘-mers should be significantly greater than other locations. This approach

allows us to quickly map reads that have some part located outside segmental duplications as

well as reads that intersect divergent region(s) within segmental duplications.

We use the LCSk++ algorithm [73] to find the longest common subsequence LCS𝑘 (𝑎, 𝑏)

of 𝑘-mers shared between a pair of sequences 𝑎 and 𝑏. Function 𝑁 (·) counts the number

of non-overlapping 𝑘-mers in a set. Suppose, a read 𝑟 has 𝑛 candidate locations {𝑙𝑖}𝑛𝑖=1. For

a pair of locations 𝑖 and 𝑗 we find three LCS sets: LCS(𝑟, 𝑙𝑖), LCS(𝑟, 𝑙 𝑗 ) and LCS(𝑙𝑖, 𝑙 𝑗 ). Let

𝐴𝑖 𝑗 = 𝑁
(
LCS(𝑟, 𝑙𝑖) \ LCS(𝑟, 𝑙 𝑗 )

)
be the 𝑘-mers that are present in the LCS between the read and

the 𝑖-th location, but not in the LCS between the read and the 𝑗-th location. Additionally, let

𝐵𝑖 𝑗 = 𝑁
(
𝑘-mers(𝑙𝑖) \ LCS(𝑙𝑖, 𝑙 𝑗 )

)
be the 𝑘-mers from the 𝑖-th location that are not in LCS(𝑙𝑖, 𝑙 𝑗 ).

We use the Fisher’s Exact Test to calculate the 𝑝-value of the contingency table


𝐵𝑖 𝑗 −𝐴𝑖 𝑗 𝐴𝑖 𝑗

𝐵 𝑗𝑖 −𝐴 𝑗𝑖 𝐴 𝑗𝑖 .


Without loss of generality, suppose that the read is more similar to the location 𝑖 than

to location 𝑗 . In this case, a low 𝑝-value of the test would confirm that the ratio of shared

read-location 𝑘-mers (𝐴𝑖 𝑗 ) to the number of unique 𝑘-mers for location 𝑖 (𝐵𝑖 𝑗 ) is significantly

higher than the corresponding ratio for location 𝑗 : 𝐴 𝑗𝑖/𝐵 𝑗𝑖 . We considered values for 𝑘 from 9

to 15, which showed similar results on simulated data (data not shown), and used 𝑘 = 11. Since

a single base difference can result in potentially 𝑘 unique 𝑘-mers, counts of non-overlapping

𝑘-mers in the LCS are used for computing the Fisher’s exact test.
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For a read with two or more alignment locations, we calculate the LCS-based 𝑝-value

for each pair of locations. We say that location 𝑖 dominates location 𝑗 if 𝐴𝑖 𝑗/𝐵𝑖 𝑗 > 𝐴 𝑗𝑖/𝐵 𝑗𝑖 and

the Fisher Exact Test 𝑝-value is less than a threshold (default = 0.0001). Then we select the

smallest non-empty subset of locations that dominate all other locations using a directed graph

(see Section A.2.3).

2.2.4 Read assignment using PSVs

For reads that have more than one possible alignment location after the LCS-based filter-

ing, we use a PSV-based approach to determine the most likely alignment location (Figure 2.1b).

For a long read 𝑟 and 𝑛 candidate alignment locations, we consider each pair of alignment

locations in turn. For a pair of locations 𝑖 and 𝑗 , we use all high-complexity PSVs shared

between these locations. For a PSV 𝑣 we calculate read-PSV alignment probabilities for the two

alleles of 𝑣 . To account for the uncertainty in base-to-base alignment of long error prone reads,

we use a small window around the PSV and average over all alignments using a pair-HMM [42].

We denote alignment probabilities 𝑠 (𝑖)𝑣 = 𝑃 (𝑟𝑣 | 𝑆 (𝑖)𝑣 ) and 𝑠 ( 𝑗)𝑣 = 𝑃 (𝑟𝑣 | 𝑆 ( 𝑗)𝑣 ), where 𝑟𝑣 is read

subsequence in a window around the PSV, 𝑆 (𝑖)𝑣 and 𝑆 ( 𝑗)𝑣 are the reference genome subsequences

in the same window around the PSV at locations 𝑖 and 𝑗 . We cap alignment probabilities

𝑠
(𝑖)
𝑣 ← max{𝑠, 𝑠 (𝑖)𝑣 } and 𝑠 ( 𝑗)𝑣 ← max{𝑠, 𝑠 ( 𝑗)𝑣 } to reduce impact of a single PSV on read mapping,

or a single read on a set of reliable PSVs (𝑠 = 10−3 by default). Using these probabilities we

calculate a likelihood for the true location of the read being 𝑖 (relative to 𝑗 ):

𝑃𝑖 𝑗 (𝑟 ) =
∏
𝑣∈𝑉

[
𝑃 (𝑣 is reliable) · 𝑠 (𝑖)𝑣 + (1 − 𝑃 (𝑣 is reliable))

]
.

Note that 𝑃 (𝑣 is reliable) is essentially the posterior probability of the reference geno-

type at both locations defined by a pairwise PSV. When the PSV is unreliable or uninformative,

we assume that the PSV should be used to differentiate between the two locations and hence use

a constant term (1) in the above equation. Initially, 𝑃 (𝑣 is reliable) is assigned using a constant
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Figure 2.1. Overview of the DuploMap method. (A) Filtering alignment locations using
longest-common subsequences (LCS) of k-mers. A read partially overlaps a segmental
duplication and has two possible alignment locations (copy 1 and copy 2). The read and its
possible locations are divided into 𝑘-mers that are shown with different colors. Arrows depict
𝑘-mers in the LCS between the read and the two copies. In the duplicated region, the read
shares four 𝑘-mers with ‘copy 1’ that are also shared with ‘copy 2’. Outside the duplicated
region, the read shares three 𝑘-mers (shown in green) with the 𝑘-mers of ‘copy 1’, but not with
the 𝑘-mers of ‘copy 2’. (B) Calculation of read-location probabilities using PSVs. The
read intersects two reliable PSVs that distinguish the two alignments locations. The probability
of each location being correct (relative to the other location) are calculated using the local
realignment probabilities between the read and the PSVs. (C) Identifying reliable PSVs using
assigned reads. Five reads are mapped to ‘copy 1’ and five reads are mapped to ‘copy 2’ with
high mapping quality. The genotype likelihoods for each PSV are calculated using these reads.
Only two of the four PSVs have the reference genotype as the most likely genotype for both
locations of each PSV and are considered reliable.

prior probability and in subsequent iterations it is estimated from the genotype likelihoods

using reads assigned with high mapping quality to each location.

For reads with more than two candidate alignment locations, we use the pairwise

likelihood to identify the “best” location 𝑏 such that 𝑃𝑏𝑖 (𝑟 ) ≥ 𝑃𝑖𝑏 (𝑟 ) for all other alignment

locations 𝑖 . We select the second best location 𝑠 = arg min𝑖
𝑃𝑏𝑖 (𝑟 )

𝑃𝑏𝑖 (𝑟 )+𝑃𝑖𝑏 (𝑟 ) and assign the mapping

21



quality as min
{
254,−10 · log10

(
𝑃𝑏𝑠 (𝑟 )

𝑃𝑏𝑠 (𝑟 )+𝑃𝑠𝑏 (𝑟 )

)}
. If no such location exists, we keep the original

alignment of the read and assign it a mapping quality of 0.

2.2.5 Identifying reliable PSVs using assigned reads

PSVs are defined using the reference genome sequence, however, since segmental

duplications are difficult to assemble, some PSVs may be assembly artifacts. It is also possible

that the analyzed genome has different alleles on homologous chromosomes for some of the

PSVs, i.e. the PSV sites overlap with variants. For a PSV 𝑣 , defined between two locations 𝑖

and 𝑗 , we select all reads 𝑅𝑖 and 𝑅 𝑗 that cover the PSV and are assigned to location 𝑖 and 𝑗

respectively with high confidence (mapping quality greater or equal to a threshold). We use

these reads to calculate the joint likelihoods of the genotype pair (𝐺𝑖𝑣 ,𝐺
𝑗
𝑣 ) for the two locations.

For each location, we consider three possible diploid genotypes defined by the two alleles of

the PSV. For location 𝑖 ( 𝑗 ), the ‘0’ allele corresponds to the reference sequence of the PSV at

location 𝑖 ( 𝑗 ) and the ‘1’ allele corresponds to the reference sequence of the PSV at location 𝑗

(𝑖). Hence the three possible genotypes for each location can be represented as {0/0, 0/1, 1/1}

and we can estimate the posterior probability of each genotype pair (𝑔𝑖, 𝑔 𝑗 ) as follows:

𝑃 (𝐺 (𝑖)𝑣 = 𝑔𝑖,𝐺
( 𝑗)
𝑣 = 𝑔 𝑗 | 𝑅𝑖, 𝑅 𝑗 ) =

∏
𝑟∈𝑅𝑖 𝑃 (𝑟 | 𝑔𝑖) ·

∏
𝑟∈𝑅 𝑗

𝑃 (𝑟 | 𝑔 𝑗 ) · 𝑝 (𝑔𝑖)𝑝 (𝑔 𝑗 )∑
𝑔′
𝑖
, 𝑔′

𝑗

∏
𝑟∈𝑅𝑖 𝑃 (𝑟 | 𝑔′𝑖) ·

∏
𝑟∈𝑅 𝑗

𝑃 (𝑟 | 𝑔′
𝑗
) · 𝑝 (𝑔′

𝑖
)𝑝 (𝑔′

𝑗
)

where 𝑝 (𝑔) is the prior probability of the genotype 𝑔. For most PSV sites, we expect

the reference genotype (0/0) to be the correct one. Therefore, we assign a high value for

𝑝 (0/0) and low probability for non- reference genotypes. For example 𝑝 (0/0) = 0.95, 𝑝 (0/1) =

𝑝 (0/0) · (1 − 𝑝 (0/0)) = 0.0475 and 𝑝 (1/1) = 1 − 𝑝 (0/0) − 𝑝 (1/1) = 0.0025. Experiments on

simulated data using values for 𝑝 (0/0) ranging from 0.9 to 0.99 gave similar results (data not

shown). Therefore, we use the prior value equal to 0.95 as default. 𝑃 (𝑟 | 𝑔) is a probability

of the read subsequence conditional on the genotype 𝑔, which is calculated using alignment
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probabilities:

𝑃 (𝑟 | 0/0) = 𝑠 (𝑖)𝑣 , 𝑃 (𝑟 | 0/1) = 1
2 ·

(
𝑠
(𝑖)
𝑣 + 𝑠 ( 𝑗)𝑣

)
, 𝑃 (𝑟 | 1/1) = 𝑠 ( 𝑗)𝑣 .

We define the probability 𝑃 (𝑣 is reliable) as the posterior probability of the genotype

being equal to the reference sequence at both locations, i.e. 𝑃 (𝐺 (𝑖)𝑣 = 0/0,𝐺 ( 𝑗)𝑣 = 0/0 | 𝑅𝑖, 𝑅 𝑗 ).

2.2.6 Measuring alignment accuracy

To assess the accuracy of read mapping in segmental duplications using simulated data,

we used two metrics: (i) recall: the fraction of correctly mapped reads out of all simulated

reads with true location overlapping Long-SegDups, and (ii) precision: the fraction of correctly

mapped reads out of all reads mapped to Long-SegDups. Long-SegDups refer to the subset of

segmental duplications in the genome with length > 5 kb and with sequence similarity at least

97%. A read is considered to be mapped to Long-SegDups if its primary alignment overlaps

Long-SegDups with mapping quality greater or equal than a certain threshold. We say that a

read is mapped correctly if it is mapped to Long-SegDups, its primary alignment covers the true

location by at least 25% (this allows partial alignments, nevertheless the vast majority of the

reads overlap the true location by more than 95% or less than 5%, see Figure A.6). Additionally,

the alignment should not go out of the true location by more than 100 bp in each direction

to remove reads aligned to an incorrect copy in a tandem repeat. Precision and recall values

for each mapping quality threshold were calculated by considering only reads with mapping

quality greater than or equal to the threshold.

2.2.7 Simulations

We used SimLoRD [74] (1.0.4, options -mp 1) to generate PacBio SMS reads (median

lengths of 8.5 kb, 20 kb and 50 kb) from the reference human genome (hs37d5) using the default

23



error rates of 0.11 for insertion, 0.04 for deletion, and 0.01 for substitution [74]. Reads were forced

to only have a single sequencing pass to resemble PacBio CLR reads as opposed to CCS or HiFi

reads. We aligned the SMS reads to the human reference (hs37d5) using the long-read alignment

tools BLASR (5.3.3, options --hitPolicy allbest --nproc 8), Minimap2 (2.17-r941,

options -t 8 -ax map-pb) and NGMLR (0.2.7, options -t 8 -x pacbio). To assess variant

calling accuracy, we simulated a diploid genome using the reference human genome sequence

with heterozygous SNVs (rate = 0.001) and homozygous SNVs (rate = 0.0005) [42].

We used NanoSim [75] (2.6.0) to generate Oxford Nanopore (ONT) SMS reads (mean

length of 8.4 kb) using a pre-trained model human_NA12878_DNA_FAB49712_guppy. We

aligned the simulated ONT reads to the hs37d5 human reference genome using Minimap2 with

options -t 8 -ax map-ont.

2.2.8 Whole-genome SMS datasets

We used whole-genome SMS datasets for five human individuals generated using

different sequencing technologies (PacBio CCS, PacBio CLR and Oxford Nanopore) by the

Genome in a Bottle (GIAB) consortium [76]. These datasets were downloaded from the GIAB

ftp server: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/ and were aligned to the hg38 reference

genome using the tool Minimap2. In addition, Oxford Nanopore reads for NA12878 were

obtained from the Nanopore WGS Consortium [19] and aligned to hg38 using minimap2. We

also used 10X Genomics datasets (aligned reads and variant calls) for HG001 and HG002 obtained

from the GIAB ftp server. We also downloaded a PacBio CLR dataset (SRX8173259) from the

SRA and aligned the reads to the mouse reference genome (mm10). Detailed information about

the individual datasets is provided in the Section A.2.8.
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2.2.9 Variant calling

Variants were called on the HG002 whole-genome PacBio CCS data using the tool

Longshot [42] (v0.4.1). Variant calling was done using four different thresholds for the mapping

quality (0, 10, 20 and 30). For each threshold, only reads with mapping quality greater than or

equal to the threshold were used (-q parameter). Only variants with PASS filter and quality

value at least 30 were used for analysis. High confidence variant call sets generated by the

GIAB consortium were used for assessing accuracy of variant calling [76, 77]. For the HG002

genome, SNVs were compared against the GRCh38 version of the GIAB high-confidence call

set (release v3.3.2 and v.4.1). The comparison of variant calls was limited to high-confidence

regions (provided in a bed file). Precision and Recall were calculated using RTGtools vcfeval [78,

79] (v3.11). Comparison of different sets of variant calls was also done using RTGtools vcfeval.

2.3 Results

2.3.1 Overview of method

DuploMap is a probabilistic method specifically designed to improve the sensitivity

and specificity of long-read alignments in segmental duplications in the genome. It starts

from an existing set of aligned reads (generated using a long read alignment tool such as

Minimap2) and updates the alignments and mapping qualities of reads that are mapped to

segmental duplications. It utilizes a pre-computed database of segmental duplications and

PSVs for this purpose. In the first step, DuploMap identifies the candidate alignment locations

for each read whose initial alignment overlaps segmental duplications and uses an efficient

filtering approach based on calculating the Longest Common Subsequence (LCS) to identify

the most likely alignment location. This LCS-based filtering approach can identify the correct

alignment location for reads that overlap a non-repetitive sequence (Figure 2.1a) and for reads

from segmental duplications with moderate sequence identity.
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For reads that overlap segmental duplications with very high sequence identity, Du-

ploMap aligns read sequences to possible alignment locations using Minimap2 and performs

local realignment in the neighborhood of PSVs that overlap a read. The local realignments are

used calculate read-location likelihoods and estimate the most likely location for each read

(Figure 2.1b). Since some PSVs may not correspond to fixed differences between homologous

sequences, DuploMap uses the reads assigned to each repeat copy (Figure 2.1c) to identify

reliable PSVs – PSVs for which the genotype at the homologous positions is consistent with the

reference genome. The read-location likelihoods are estimated using only reliable PSVs. Since

reliable PSVs are not known in advance, the read assignments and the set of reliable PSVs are

inferred using an iterative algorithm (see Methods).

Segmental duplications are defined as sequences with length at least 1 kb and sequence

similarity ≥ 90% [49]. However, not all such segmental duplications are challenging for long

read alignment. We used simulations to assess the mappability of SMS reads in duplicated

sequences as a function of length and sequence similarity (data not shown). Based on these

simulations, we constructed a subset of segmental duplications in the human genome with

length greater than 5 kb and with sequence similarity at least 97%. These regions cover 86 and

101 megabases of the hg19 and hg38 reference human genomes, respectively. DuploMap only

analyzes reads that overlap such segmental duplications (referred to as Long-SegDups in this

chapter).

2.3.2 Evaluation of mapping accuracy using simulated reads

We simulated single-pass PacBio SMS reads using the SimLORD tool [74] with mean

length equal to 8.5 kb and aligned them to the reference human genome using the long read

alignment tool, Minimap2 [38]. Alignment tools report a mapping quality for each read which

represents the probability that the reported alignment for a read is correct [72]: a mapping

quality of 10 (20) corresponds to a probability of 0.9 (0.99). Analysis of the aligned reads
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showed that 74.9%, 69.0% and 63.1% of the reads that overlap Long-SegDups had mapping

quality ≥ 10, ≥ 20 and ≥ 30 respectively. Furthermore, for reads completely within segmental

duplications with ≥ 99.5% similarity, only 40.7% of reads had mapping quality greater or

equal to 10. Although reads that overlap regions that are completely identical between the

duplicated sequences cannot be mapped unambiguously, a significant fraction of the reads with

low mapping quality overlapped multiple PSVs (illustrated for the STRC gene in Figure A.1).

Specifically, 70.6% of the reads that had a mapping quality less than 10 overlapped five or more

PSVs. Next, we mapped the simulated reads using BLASR [80], a long read alignment tool

developed specifically for PacBio reads. BLASR aligned a greater fraction of reads (80.8%) with

mapping quality ≥ 20 compared to Minimap2 (68.4%) but was 28 times slower (Table A.1). This

increased mappability came at the cost of accuracy: 3.2% of reads with mapping quality ≥

20 were mapped to the incorrect location. The accuracy of another long read alignment tool,

NGMLR [64], was significantly worse compared to Minimap2 and BLASR at all mapping quality

thresholds (Figure A.3).

Next, we used DuploMap to post-process the alignments generated using each of the

long-read alignment tools separately. For a given mapping quality threshold, we used precision

(fraction of correctly aligned reads out of reads mapped to Long-SegDups) and recall (fraction

of correctly aligned reads out of all simulated reads in Long-SegDups) to assess the accuracy of

read mapping. DuploMap improved both the precision and recall of read mapping in segmental

duplications for all long-read mapping tools (Figure 2.2). For Minimap2, DuploMap improved

the recall from 0.743 to 0.906, at a mapping quality threshold of 10, while maintaining high

precision (0.9954, Figure 2.2 and Figure A.2a). The improvement in recall was greater for higher

mapping quality thresholds. Even if we consider all aligned reads (mapping quality threshold

of 0), re-alignment using DuploMap increased both the precision and recall by 1.2 percentage

points. DuploMap also improved both precision and recall for BLASR (Figure 2.2) and NGMLR

(Figure A.3). In particular, the precision increased considerably from 0.965 (0.967) to 0.994
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Figure 2.2. Accuracy of read mapping in segmental duplications using simulated long
read data. Each curve shows the precision and recall of different alignment methods as a func-
tion of mapping quality thresholds. Dashed lines correspond to the original alignments while
the solid lines show the alignments resulting from realignment using Duplomap. (A) Compari-
son of Minimap2 (MM2), BLASR, Minimap2+DuploMap, and BLASR+DuploMap on simulated
reads with mean length 8.5 kb. (B) Accuracy of Minimap2 (MM2) and Minimap2+DuploMap
on simulated reads with mean lengths 20 kb and 50 kb.

(0.995) while recall improved from 0.829 (0.806) to 0.907 (0.875) at a mapping quality threshold

of 10 (20) for BLASR.

Minimap2 uses a minimizer based approach for finding matches between reads and the

reference genome [38]. To improve speed, minimizers with a high frequency (top 0.02%) are
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discarded by default. We evaluated whether discarding a lower fraction (different values of the

parameter 𝑓 ) could improve accuracy of read mapping in segmental duplications. Using 𝑓 = 0

(use all minimizers) improved the recall slightly (0.743 to 0.763) but increased the memory usage

five-fold (Figure A.2b). Nevertheless, post-processing using DuploMap achieved a higher recall

(0.906) while maintaining a high precision (0.9954). We also evaluated Winnowmap [66], a long-

read alignment tool that uses a weighted sampling based method for selecting minimizers to

improve long-read mapping using Minimap2 in long tandem repeats. However, Winnowmap’s

recall and precision in Long-SegDups regions were lower than those for Minimap2 (Figure A.3).

Next, we evaluated the accuracy of mapping SMS reads in segmental duplications as a

function of read length. For this, we simulated PacBio single-pass reads of mean length 20 and

50 kilobases and aligned them to the reference genome using Minimap2. Not surprisingly, the

recall for reads (at a fixed mapping quality threshold) increased as the read length increased

(Figure 2.2b). Nevertheless, even for 50 kb long reads, recall was only 0.890 at a mapping quality

threshold of 10. Re-alignment using DuploMap increased the recall to 0.949 for 50 kb reads,

while keeping the precision high (0.985).

We also examined the impact of error rate and sequencing technology on read mapping

in segmental duplications. We simulated PacBio single-pass reads with mean length 8.2 kb and

high error rates (15%, 9% and 4% for insertion, deletion and substitution, respectively). At a

mapping quality threshold of 10 (20), Minimap2 mappings in Long-SegDups had a low recall

of 0.691 (0.645) with high precision of 0.997 (0.998). DuploMap improved the recall to 0.891

(0.853) while maintaining a high precision of 0.995 (0.997). We used the NanoSim tool [75] to

simulate Oxford Nanopore reads and aligned them to the reference genome using Minimap2

(see Materials and Methods). At a mapping quality threshold of 10 (20), post-processing using

DuploMap improved the recall from 0.755 (0.661) to 0.882 (0.837) and kept the precision high at

0.994 (0.996).

PSVs or paralogous sequence differences are defined using the reference genome se-

quence, however, some PSVs overlap with polymorphisms and should not be used to differentiate

29



between the paralogous sequences. To assess whether DuploMap can map reads accurately

in the presence of uninformative PSVs, we simulated PacBio reads from two-copy segmental

duplications with 0%, 15% and 30% of the PSV genotypes assigned to be non-reference on one

of the copies. DuploMap successfully identified uninformative PSVs and achieved high recall

and precision for read mapping even with a high fraction of uninformative PSVs (Table A.3).

2.3.3 Improvement in read mapping for diverse SMS technologies

To assess the impact of DuploMap on read mapping in segmental duplications using real

SMS data, we analyzed PacBio CCS whole-genome data for an individual, HG002 (NA24385),

from the GIAB project [76]. The HiFi reads were initially aligned using Minimap2 to the hg38

reference genome. Post-processing the reads using DuploMap increased the percentage of

reads with mapping quality ≥ 10 in segmental duplications from 65.7% to 80.6%, an increase

of 15 percentage points (Figure 2.3). DuploMap can change both the alignment location and

the mapping quality of reads overlapping segmental duplications. Comparison of the original

Minimap2 and the DuploMap alignments showed that 4.8% of reads that had initially very

low mapping quality (< 5) were aligned to a different location with mapping quality ≥ 30

(Figure 2.3). Similarly, DuploMap reduced the mapping quality of 1.9% of the reads – that

initially had mapping quality ≥ 30 – to less than 10. We observed similar improvements in

mappability for several human PacBio HiFi and CLR datasets (Table 2.1 and Figure A.4). The

increase in the percentage of reads aligned with a mapping quality greater than a threshold

was consistently greater for HiFi reads compared to CLR reads. This was due to the improved

ability to correctly allelotype PSVs using the HiFi reads: 1.7% local read-PSV alignments were

ambiguous for CCS reads compared to 15.6% for CLR reads from the HG002 genome.

Wenger et al. [59] demonstrated that relative to Illumina reads, PacBio HiFi reads

increased the fraction of the genome that is mappable, i.e. covered by at least a certain number

of reads with high mapping quality. Nevertheless, several disease-relevant genes such as SMN1
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Table 2.1. Improvement in mappability of reads using DuploMap on multiple SMS
whole-genome sequence datasets. The last four columns show the percentage of reads with
high mapping quality (≥ 10 and ≥ 20) that overlap Long-SegDups regions in the Minimap2
alignments and the difference between Minimap2 + DuploMap alignments and Minimap2 align-
ments. CLR = PacBio Contiguous Long Reads, CCS = PacBio Circular Consensus Sequencing,
ONT = Oxford Nanopore Technology, MM2 = Minimap2.

Genome Sequencing Median Reads Read MM2 (%) Δ MM2+Duplomap (%)
technology coverage analyzed length (N50) MQ ≥ 10 MQ ≥ 20 MQ ≥ 10 MQ ≥ 20

HG002 CLR 45 878k 11,318 59.4 52.9 +8.4 +10.7
HG003 CLR 20 416k 10,999 59.9 53.5 +9.8 +11.3
HG004 CLR 19 362k 10,946 65.1 58.3 +8.7 +10.5
HG002 CCS 29 300k 13,480 65.7 58.9 +14.9 +19.5
HG005 CCS 32 454k 10,436 64.2 56.6 +15.8 +20.7
HG001 CCS 29 381k 10,004 71.6 63.7 +15.0 +21.2
HG001 ONT 36 535k 13,788 63.5 55.7 +3.9 +7.8
HG002 ONT 58 464k 54,352 64.5 58.0 -1.5 +1.7

Figure 2.3. Comparison of mapping qualities and alignment locations for reads aligned
with Minimap2 (MM2) and Minimap2+DuploMap on the HG002 CCS dataset. Five
bar-lots corresponding to five bins of mapping quality using Minimap2 are shown. Each
bar-plot shows the percentage of reads – color-coded by mapping quality after realignment
using Duplomap — that had the same or different alignment location using Minimap2 and
Minimap2+Duplomap. One of the bars (30-254 bin) that corresponds to 52.4% of reads is clipped
for visual clarity.

were still only partially mappable using HiFi reads. We assessed the impact of realignment using

DuploMap on the mappable fraction of the human genome. To enable comparison between
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Figure 2.4. Improvement in mappability of Long-SegDups regions using DuploMap and
three long-read datasets for the HG002 genome. Each sub-plot shows the percentage
of the Long-SegDups regions (78.7 Mb on chromosomes 1-22) that is mappable at different
mapping quality thresholds using Minimap2 and Minimap2 + Duplomap alignments. A position
is considered mappable if the number of reads covering it is at least 50% of the median coverage
for the dataset.

datasets with different sequencing coverages, we defined a genomic position as mappable if the

number of reads covering it – with mapping quality greater than a threshold – is at least 50%

of the median coverage for the dataset. Relative to Minimap2, realignment using DuploMap

increased the fraction of the genome – limited to segmental duplications – that is mappable at

all mapping quality thresholds (Figure 2.4). For HiFi reads, at a mapping quality threshold of

10 (20), 80.32% (79.47%) of the Long-SegDups regions were mappable relative to 69.01% (62.26%)

using Minimap2. This also increased the mappability of 11 (16) of the 193 disease-associated

duplicated genes using HiFi reads (Table A.5).

Next, we analyzed a whole-genome human dataset generated using the Oxford Nanopore

technology [19, 77]. Similar to PacBio datasets, realignment using DuploMap increased the

fraction of reads with mapping quality greater than 10 (20) by 3.9 (7.8) percentage points

(Table 2.1). For the ONT dataset with ultra-long reads (mean read length of 54.4 kb), only a
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minor improvement in the number of reads with high mapping quality was observed (Table 2.1).

Nevertheless, at a mapping quality threshold of 10, an additional 1.9 Mb of DNA sequence is

mappable using DuploMap aligned reads compared to reads aligned using Minimap2 (Figure 2.4).

DuploMap can post-process long reads for any genome with a reference sequence

and a database of segmental duplications. We downloaded a mouse PacBio CLR dataset

(median coverage 25) and aligned it to the mm10 reference genome using Minimap2. For

running Duplomap, we created a PSV database for the mouse genome using a previously

computed database of segmental duplications [81]. Of the 147k reads aligned to long segmental

duplications with high sequence identity (mouse Long-SegDups regions, total length = 154 Mb),

77.1% (70.3%) were aligned with a mapping quality of 10 (20) or greater. Read re-mapping using

DuploMap increased the percentage of reads with mapping quality of 10 (20) or greater to 89.5%

(89.1%).

DuploMap is multi-threaded and can use multiple cores to process clusters of segmental

duplications in parallel. It required 2-5 hours (using 8 CPU cores) to process simulated and real

whole-genome PacBio datasets with 30× coverage (Tables A.1 and A.2). This additional run-time

was only 25-30% of the run-time of Minimap2 for generating the initial set of alignments. Since

DuploMap infers reliable PSVs jointly using reads mapped to a cluster of segmental duplications,

it needs to store all read alignments for a cluster in memory and hence the memory usage

increases with increasing coverage (see Table A.2).

2.3.4 Variant calling in segmental duplications using DuploMap alignments

DuploMap increases the fraction of the genome - limited to segmental duplications -

that is mappable using SMS reads. This is expected to improve the sensitivity of variant calling

in such regions. To assess this, we used the variant calling tool Longshot [42] on simulated

PacBio reads (30× coverage). SNVs were called using Longshot for four different mapping

quality thresholds (0, 10, 20 and 30), i.e. reads with mapping quality below the threshold were
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not used for variant calling. We found that the recall for variants called in Long-SegDups

using reads re-aligned with DuploMap was greater than that obtained using Minimap2-aligned

reads at all mapping quality thresholds (Figure A.5). At a mapping quality threshold of 10, the

recall increased from 0.833 to 0.945 while the precision was virtually unchanged (≥ 0.999 for

both sets of alignments). The recall for Minimap2 was highest (0.898) when using all aligned

reads (ignoring mapping quality) but resulted in significantly lower precision 0.904. For both

Minimap2 and DuploMap, the best precision-recall tradeoff was observed at a mapping quality

threshold of 10. For segmental duplications with 99.9% or greater identity, variants called using

Minimap2+DuploMap alignments (mapping quality threshold of 10) had a recall 0.716 and

precision equal to 0.998, compared to 0.253 and 0.994 respectively for variants obtained using

Minimap2 alignments.

Next, we assessed the impact of the improved read mapping on variant calling using

whole-genome PacBio HiFi data for HG002 (29× coverage). A recently developed variant calling

tool, DeepVariant, has been shown to achieve very high precision and recall for PacBio HiFi

reads [59]. Since a subset of the HG002 HiFi dataset was used for training the DeepVariant

model [59], we used Longshot [42] for variant calling. Longshot has been shown to achieve

high accuracy (𝐹1 score of 0.9985) for SNV calling on CCS reads [82]. Across chromosomes

1-22, Longshot called 3,727,419 SNVs using the reads realigned with DuploMap (mapping

quality threshold of 10), 18,291 more than using the Minimap2 aligned reads. We used the high-

confidence benchmark variant calls from the GIAB consortium (v3.3.2) that cover approximately

2.35 Gb of the GRCh38 version of the reference genome (excluding the X and Y chromosomes) to

assess the accuracy of the SNV calls. The precision and recall of SNV calling using the Minimap2-

aligned reads and the DuploMap-aligned reads was identical: 0.9963 and 0.990 respectively

(see Table A.4). This was not surprising since the GIAB high-confidence benchmark variant

calls (v3.3) were primarily generated using short read datasets and exclude the vast majority of

repetitive regions in the genome.
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The GIAB consortium recently released high-confidence benchmark variant calls (v4.1)

for the HG002 genome that cover an additional 6% of the genome compared to the v3.3.2

calls. These benchmark variant calls incorporate information from 10X Genomics linked-read

and PacBio HiFi read datasets and include variant calls in some segmental duplications. The

precision and recall in the v4.1 regions for DuploMap and Minimap2 alignments were similar,

although, SNV calls from DuploMap aligned reads had a higher 𝐹1 score (0.9905) compared

to Minimap2 (Table A.4). In the subset of the v4.1 regions that overlap Long-SegDups regions,

DuploMap based calls had a higher recall compared to Minimap2 but lower precision at all

mapping quality thresholds (Figure 2.5). Manual inspection of some of the false positives called

using DuploMap aligned reads suggested that these may correspond to missing true positives

in the GIAB v4.1 callset (see Figure A.9). Hence, the true precision may be higher. Nevertheless,

the 𝐹1 score of the DuploMap-based calls was consistently higher that the 𝐹1 score of the calls

using Minimap2 alignments. In addition, the improvement in the 𝐹1 score was not dependent

on the variant quality threshold used for Longshot (Table A.4). Visual inspection of the SNVs

calls that were called only using the DuploMap alignments and matched the v4.1 benchmark

calls showed that the vast majority of these SNVs were not called using Minimap2 alignments

due to low mapping quality of the reads (see Figure A.7 for an example). We also identified a

number of false positive variants called using the Minimap2 alignments that were corrected by

variant calls using DuploMap alignments (see Figure A.8 for an example).

Next, we directly compared the SNVs calls made on the HG002 CCS dataset using

Minimap2 aligned reads and reads re-aligned using DuploMap. We utilized 10X Genomics

linked-read variant calls for the same individual as an independent source for comparison.

In Long-SegDups regions on chromosomes 1-22, 83,648 DuploMap-derived SNVs were shared

with 10X calls compared to 72,830 for Minimap2. 14,713 SNVs called exclusively using the

DuploMap alignments were supported by 10X calls. The vast majority of these SNVs were

located outside GIAB 4.1 high confidence regions and had low mappability using Minimap2

alignments (see Figure A.10 for an example of such a region that overlaps the medically-relevant
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Figure 2.5. Comparison of variant calling accuracy for HG002 CCS reads using Min-
imap2 and Minimap2+DuploMap. SNVs were called using Longshot for different mapping
quality thresholds. Precision, recall and 𝐹1 values were calculated by comparison to the
GIAB v4.1 benchmark calls in the Long-SegDups regions that overlapped with the GIAB high-
confidence regions.

gene GTF2I [83]). We also identified 211 calls in GIAB high-confidence regions that were shared

between the DuploMap calls and 10X calls but were absent in the GIAB v4.1 benchmark calls.

Visual inspection of these calls suggested that for many of them, the GIAB benchmark callset is

either missing a variant or has the incorrect genotype (see Figure A.9 for an example). Further,

36,021 SNVs were located outside the GIAB v4.1 high-confidence regions and were shared

between all three callsets (10X, Minimap2 and DuploMap). These variants are likely to be true

positives that are located outside GIAB v4.1 high-confidence regions.

2.3.5 Uninformative PSVs and variant calling using short reads

In addition to aligning reads that overlap segmental duplications, DuploMap also

estimates genotypes for PSVs to identify unreliable or uniformative PSVs. Uninformative

PSVs are likely to be the result of true variants in segmental duplications and therefore, should

also be called as variants using long-read variant calling. Analysis of Longshot variant calls for

the HG002 CCS dataset showed that 42.5% of the SNVs called using the DuploMap alignments in
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Long-SegDups regions intersected PSV sites such that the variant allele matched the PSV allele

at the homologous site. Such non-reference PSVs were not specific to DuploMap alignments;

43.4% of the SNVs called using Minimap2 alignments also intersected PSVs. In both cases,

approximately 76% of the variants overlapping PSVs are present in the dbSNP database (build

151) [84].

Next, to assess the impact of uninformative PSVs on short read variant calling, we

analyzed PacBio CCS read data for the HG001 (NA12878) genome for which pedigree-derived

variant calls have been generated by the Platinum Genomes (PG) Project using whole-genome

Illumina sequence data [85]. We focused our analysis of PSVs on two-copy segmental duplica-

tions. Of the 14,800 PSVs in two-copy duplications - with high confidence genotypes (QUAL

≥ 60) estimated by DuploMap - 16.5% had a genotype of (0/0, 0/1) and 6.0% had a genotype

of (0/0, 1/1). A genotype of (0/0, 1/1) for a PSV implies that the genomic sequence at both

homologous positions (on both alleles) is identical and hence the PSV cannot differentiate

between reads from the two homologous sequences. Such PSVs are expected to cause incorrect

read mapping and lead to incorrect variant calls since short read mapping tools rely on PSVs to

place reads with high confidence in segmental duplications. For example, if a true variant is

present in the region flanking the PSV position with a non-reference genotype, short reads

covering the variant and the PSV can be mismapped to the homologous location resulting in a

false variant call (see Figure A.11 for an illustration).

To search for false variants resulting from uninformative PSVs, we identified variants in

the Platinum Genomes variant calls [85] for HG001 that were located near PSVs. Of the 2,769

variants that were located near uninformative PSVs in the PG calls, we identified 76 variants

such that the variant was missing in the CCS variant calls but another variant was present at

the homologous position with the same alternate allele. One such example of a false variant

due to a uninformative PSV was located at the PMS2 locus (Figure 2.6). The short-read PG calls

report a SNV at chr7:6,752,118 (hg38 reference genome, rs1060836) that was also reported in

gnomAD database of human variants [86] with an average allele frequency of 0.16 but with
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Figure 2.6. Illustration of how unreliable PSVs adversely impact short-read variant
calling in segmental duplications. An Integrated Genomics Viewer (IGV) view of a dupli-
cated region on chromosome 7 that overlaps the PMS2 gene is shown. A PSV is located at
chr7:5972749 (allele = with the homologous position at chr7:6752042. Variant calling on PacBio
CCS reads (aligned with DuploMap) identifies two variants, a homozygous variant at the PSV
site (chr7:5972749:CA:TG) and a heterozygous SNV located nearby (chr7:5972674:C:G). Both of
these variants are supported by 10X Genomics variant calls but are absent from short-read vari-
ant calls for the same individual (Platinum Genomes VCF track). In addition, short-read variant
calling results in a false SNV (chr7:6752118:G:C) at the position homologous to chr7:5972674 -
a result of short read mismapping due to the unreliable PSV.

7-fold lower homozygotes than expected – indicative of a false variant. This SNV was absent

from long read variant calls but a SNV located at chr7:5,972,674 – the position homologous

to chr7:6,752,118 – was present in the DuploMap based calls and also in the 10X Genomics

variant calls. This SNV was located less than 75 bases from an uninformative PSV chr7:5,972,749

that was actually called as a variant with the variant allele being the same as the allele at the

homologous site (Figure 2.6).

2.4 Discussion

In this chapter, we presented DuploMap, a method designed specifically for re-aligning

SMS reads that are mapped to segmental duplications by existing long-read alignment tools in
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order to improve accuracy. A unique feature of DuploMap is that it jointly analyzes reads over-

lapping segmental duplications and explicitly leverages paralogous sequence variants or PSVs

for mapping. Using whole-genome human data generated using multiple SMS technologies,

we demonstrate that DuploMap significantly improves the mappability of reads overlapping

long segmental duplications in the human genome. DuploMap is not a stand-alone long read

alignment tool but complements existing tools such as Minimap2 that tend to be conservative

in aligning reads in segmental duplications.

The development of DuploMap is motivated by the goal of using long read sequencing

technologies for variant calling in long segmental duplications that are problematic for short-

read sequencing. The Genome in a Bottle Consortium has developed high-confidence small

variant call sets for reference human genomes [76, 77, 87]. Their first call sets were based

on short read sequencing and hence exclude almost all segmental duplications. The GIAB

consortium is expanding the small variant calls to repeats including segmental duplications

using the PacBio CCS and 10X Genomics linked read data-types. Accurate and sensitive read

mapping of long reads is a pre-requisite for accurate and sensitive variant calling in long repeats

in the human genome. Variant calling using the DuploMap aligned reads identified 14,713

variants in segmental duplications that were shared with 10X Genomics variant calls but were

not called using Minimap2 aligned reads. This indicates that DuploMap can prove useful for

variant calling in segmental duplications using PacBio CCS reads.

DuploMap is a robust method that works for multiple long read sequencing technologies

(PacBio and ONT), can handle reads with high and low error rates, and can post-process reads

aligned with different long-read alignment tools. DuploMap’s approach of jointly modeling PSV

genotypes and read alignments can potentially be used to improve the mapping of linked-reads

in segmental duplications [88–90]. Although we have focused on variant calling, the ability

to map long reads to segmental duplications with high sensitivity can benefit other uses of

long read sequencing. Oxford Nanopore sequencing enables the detection of DNA methylation

directly from the raw base signal [91, 92]. Miga et al. [67] have used a unique 𝑘-mer based

39



mapping strategy to improve read mapping to generate base-level DNA methylation maps for

the centromere of the X chromosome. DuploMap based alignment can enable the analysis of

the methylation levels of duplicated genes that cannot be measured using short-read based

methylation assays.

Analysis of PacBio CCS reads for a human genome showed that a significant number

of PSVs overlap with variants and hence are uninformative for read mapping in segmental

duplications. PSVs are defined based on the reference human genome sequence and a common

variant in the human population can be incorrectly considered as a PSV if the variant allele is

represented in the reference. In addition, gene conversion is well known to result in overlap

between PSVs and variants [93, 94]. We also demonstrated that uninformative PSVs can cause

incorrect mapping of short reads to homologous sequences resulting in both false positive and

false negative variant calls. This problem can be alleviated by using information about reliable

PSVs derived from analysis of long read datasets to inform short read mapping and variant

calling in segmental duplications.

DuploMap has several limitations. First, the memory usage for DuploMap scales linearly

with increasing number of reads since it stores information about all reads that overlap a single

cluster of duplications. This can be reduced by writing some of the mapping information to

disk or limiting the re-alignment to segmental duplications with low copy number. Second,

DuploMap is not a stand-alone aligner and starts from alignments provided by existing long-

read alignment tools. If a read is not aligned or aligned to a location that is not homologous to

its correct location, DuploMap cannot find the correct alignment. Third, DuploMap does not

currently account for missing sequences or copy number changes. Segmental duplications are

well known to be hotspots of copy number variation and large structural variants in the human

genome [68, 95]. Copy number information about duplicated sequences can be estimated using

tools such as QuicK-mer2 [46] and used to potentially improve long read mapping in segmental

duplications.
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Finally, DuploMap is a reference-based method that relies on segmental duplications

identified from a reference genome. Segmental duplications are problematic not only for read

mapping but also for de novo assembly using long reads. The problem of distinguishing reads

originating from different paralogs without a reference genome is even more challenging

but can allow for assembling segmental duplications that may be collapsed or incorrectly

represented in the reference genome. Several novel methods have been designed to specifically

assemble segmental duplications that leverage long reads, particularly accurate HiFi reads [69,

96]. The SDip method has been shown to assemble diploid contigs for many duplicated genes

such as SMN1 [96]. As these methods develop further and more complete benchmarks for

reference human genomes become available, it would be useful to compare the performance of

reference-based and haplotype-aware assembly based methods for segmental duplications.

2.5 Data availability

All datasets analyzed in this chapter have been generated previously and are publicly

available (links provided in the Section A.2.8). DuploMap is implemented in the Rust program-

ming language and is freely available for download at https://gitlab.com/tprodanov/duplomap.

DuploMap can be used to map reads in individual clusters of segmental duplications or across

the entire genome. It is also available via conda (conda install -c bioconda duplomap).

The repository also contains links to pre-computed PSV databases and BED files with Long-

SegDups for the hg19 and hg38 versions of the human genome.
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chapter 3

Paralog-Specific Copy Number for
Duplicated Genes

3.1 Introduction

Whole-genome sequencing (WGS) has the potential to profile all genetic variants

simultaneously in a genome, however, the presence of repetitive sequences in the human

genome hinders the ability to achieve this potential. Segmental duplications or low-copy repeats

(LCRs) are long segments of repetitive DNA that constitute 5-8% of the human genome [3,

5]. More than 900 genes are known to overlap these segmental duplications and mutations

in several such genes are associated with rare and complex human diseases [50]. Genes that

overlap segmental duplication or have high sequence homology to other loci in the genome are

problematic for short-read sequencing technologies since the reads derived from such genes

have ambiguity in their alignment and are difficult to correctly position in the genome [48, 50,

52]. As a result, variants such as SNVs and short indels are difficult to identify in these genes

using short reads [54].

Low copy repeats are also highly susceptible to copy number changes including deletions

and duplications as well as reciprocal crossover (gene conversion) events that can change
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paralog-specific copy number. Many of these copy number changes are known to be disease

associated [97–101]. For example, copy number of the SMN1/2 gene can modify phenotype

for spinal muscular atrophy (SMA) and copy number changes at the STRC locus are known to

cause hearing loss [99]. In spite of their relevance for human disease, most duplicated genes

are excluded from standard WGS analysis pipelines since the presence of paralogous sequences

with high sequence identity and extensive copy number variation makes it difficult to analyze

these loci accurately.

To enable the detection of clinically relevant copy number variants in disease-associated

duplicated genes, specialized diagnostic assays have been developed that utilize Quantitative

real-time PCR (qPCR), paralog ratio tests [102, 103] (PRT) and multiplex ligation-dependent

probe amplification [104] (MLPA). Both qPCR and PRT utilize PCR product specificity to

distinguish paralogous copies of a gene. However, these methods are labor-intensive and

require the design and testing of multiple primers for each locus. Therefore, these methods

cannot scale easily for copy number analysis of the hundreds of duplicated genes in the human

genome. Array-based methods such as CGH can scale for multiple genes but cannot provide

paralog-specific copy number which can be important for disease mapping. For example, at the

SMN1 locus (the two genes SMN1 and SMN2 only differ by 5 nucleotides), individuals with two

copies of SMN1 and one copy of SMN2 are healthy while individuals with one copy of SMN1

can be affected [105].

Analysis of read depth using WGS data mapped to a reference genome is a widely used

approach for identifying copy number changes in the human genome. Over the last decade,

a number of statistical methods have been developed for identifying CNVs from WGS and

targeted sequencing experiments [44, 45, 47, 106–108]. The vast majority of these methods

calculate read-depth in non-overlapping windows of a fixed length across the genome and

detect changes in the depth of coverage along chromosomes to identify CNVs. CNV detection

from WGS has been shown to be more sensitive than array-CGH based CNV detection [109].

However, CNV detection methods for WGS data are designed to analyze genomic regions
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independently and either exclude genomic regions with low mappability from consideration

or randomly place reads with low mapping quality [44] to avoid false positives. Therefore,

such methods tend to have low accuracy for detecting copy number variation in LCRs. One

exception is the GenomeSTRiP method that can detect CNVs in both unique and duplicated

sequences [47].

Alkan et al. [110] developed a short read mapping algorithm, mrsFAST, that can identify

multiple mapping locations for reads and used it to predict copy number in duplicated regions of

the human genome. Building on this approach, Sudmant et al. [68] leveraged SUNs — paralogous

sequence variants that uniquely tag a repeat copy — to estimate total copy number as well as

paralog specific copy number for all duplicated genes in the human genmome. Analysis of

WGS data from the initial phases of the 1000 Genomes project showed that almost half (49%) of

duplicated genes are copy number invariable while the remaining set of duplicated genes show

extensive copy number variation with many copies not represented in the reference human

genome [68]. Recently, Shen et al. [46] have developed a computational tool QuicK-mer2 that

leverages a similar approach to estimate paralog-specific copy number.

Since WGS is now widely used in the clinical setting for disease diagnostics, there

is strong interest in developing computational tools that can detect both copy number and

sequence variation in disease-relevant duplicated genes with high accuracy [50]. Several

methods — designed specifically for individual genes such as SMN1, STRC, PMS2 — have been

developed for this purpose [10, 52, 111]. For example, the SMNCopyNumberCaller tool [10] is

designed to estimate the copy number of SMN1, SMN2 and a partially deleted version of SMN2

from WGS data. Similarly, a workflow for detecting variants in the duplicated region of PMS2

has also been developed [112]. Although these tools are valuable for analyzing duplicated

genes, they leverage prior knowledge about individual genes and are not directly applicable to

other duplicated genes.

Copy number analysis for duplicated genes requires joint analysis of reads that are

mapped to homologous repeat copies [10, 47]. In this chapter, we describe a probabilistic
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method, Parascopy, for estimating total (and paralog-specific) copy number of low copy repeats

(LCRs) in the human genome. Our method leverages a homology database that stores positional

information about similar sequences in the human genome as well as the positions at which

the paralogous sequences differ (PSVs or paralogous sequence variants). It uses the homology

database to extract relevant reads from existing alignments of WGS data. To avoid pitfalls

associated with using polymorphic PSVs for differentiating repeat copies, Parascopy jointly

estimates paralog-specific copy number and reference allele frequencies for each PSV using

WGS data for multiple samples. This also identifies common profiles of copy number variation

that can be used to analyze individual WGS datasets. We benchmark Parascopy’s accuracy

using experimental copy number datasets, Mendelian trio consistency analysis and concordance

analysis on replicate WGS datasets.

3.2 Results

3.2.1 Overview of method

Our method, Parascopy, is designed to estimate the aggregate copy number (Aggre-

gateCN) and paralog-specific copy number (ParalogCN) of low-copy repeats or LCRs in the

human genome (Figure 3.1a). Even though a large fraction of short reads cannot be mapped

unambiguously due to the repetitive nature of such loci, it is feasible to analyze read depth

jointly across the different copies of a low-copy repeat and estimate the aggregate number

of copies. For a LCR 𝑅, Parascopy uses a homology table to quickly identify all other regions

in the genome that share high sequence similarity or homology with 𝑅. The homology table

— similar to a segmental duplication database — stores all pairs of sequences in the genome

(with a minimum length and minimum similarity score) and is precomputed using standard

alignment tools (see Methods).
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Figure 3.1. Estimation of aggregate and paralog-specific copy number for low-copy
repeats using Parascopy. a Workflow of the method using aligned WGS reads for multiple
samples as input to infer aggregate and paralog-specific copy number profiles across a genomic
region. b Illustration of the iterative Hidden Markov Model (HMM) approach for estimating
aggregate copy number (AggregateCN) profiles using normalized read depth for multiple
samples. Read depth values are shown for six samples (A-F) at the SMN1/2 locus (aggregated
across SMN1 and SMN2). The HMM identifies a partial deletion in samples D and E in the
first iteration. Joint update of the HMM parameters results in detection of a common deletion
event in the 3 of the 6 samples. c Illustration of the Expectation Maximization (EM) algorithm
for estimating paralog-specific copy number (ParalogCN) and paralogous sequence variant
(PSV) reliability. PSV reliability is measured using 𝑓 -values that correspond to the population
frequency of the reference allele for each PSV at each paralogous position.

Subsequently, reads from regions homologous to 𝑅 are re-mapped to 𝑅 and the aggre-

gated reads are used to tabulate read depth in non-overlapping windows. A Hidden Markov

Model (HMM) is used to segment 𝑅 into regions of fixed copy number based on the read depth

profiles and background read depth distributions. To account for variation in read depth across

different genomic regions, the background read depth distributions are estimated for each

sample and GC-content value using non-duplicated genomic regions (see Methods). The initial

state distribution and transition probabilities of the HMM are estimated jointly across multiple
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samples enabling high sensitivity for the detection of copy number variants that are present in

multiple samples (Figure 3.1b).

Once the aggregrate copy number profile has been estimated for each sample, Parascopy

estimates the number of copies of each paralog present in the genome (ParalogCN) by analyzing

allelic read depth at positions that differ between the homologous sequences, i.e. paralogous

sequence variants or PSVs. Since some PSVs are not fixed in the population and correspond

to variants, Parascopy jointly models frequency of the reference allele at each homologous

position for each PSV and the ParalogCN for samples with AggregateCN equal to the reference.

It considers all possible combinations of ParalogCN for each individual sample and uses an EM

algorithm to infer maximum likelihood estimates for both sets of variables (Figure 3.1c).

3.2.2 Parascopy estimates copy number accurately and identifies reliable
PSVs at the SMN1/2 locus

The SMN1/2 locus on chromosome 5 harbors the SMN1 gene and its paralog SMN2

in a tandem duplication of length ≈ 100 kilobases and very high sequence identity (99.9%).

Mutations — point mutations and copy number changes — in the SMN1 and SMN2 genes

cause a rare childhood disorder called spinal muscular atrophy (SMA) and SMN1 is one of

the most-studied duplicated genes in the genome. We estimated copy number for all 2504

samples with WGS data from phase 3 of the 1000 Genomes Project (1kGP) [2] using Parascopy

(samples for each continental group were analyzed separately). Analysis of the Parascopy copy

number profiles across the 1kGP samples identified a known deletion event that spans exon

7-8 (Figure 3.2a) and confirmed the extensive variation in AggregateCN (2-6) across human

populations [10].

Vijzelaar et al. [113] used multiplex ligation-dependent probe amplification (MLPA)

to estimate AggregateCN of each exon of the SMN1/2 gene for 1109 1kGP samples. For the

exon 7-8 region, the copy number values for 79 of the 1109 samples were consistent with
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Figure 3.2. Estimation of aggregate and paralog-specific copy number for the SMN1/2
locus using Parascopy. a Output from the Hidden Markov Model estimation of aggregate
copy number (AggregateCN) profiles for 503 European ancestry samples from 1kGP. The
common deletion event at the 3’ end of the SMN1/2 gene is shown using blue and red arrows.
b Comparison of the Parascopy AggregateCN estimates with MLPA based estimates for exons 1-
6 and exons 7-8 (with deletion). Labels represent the number of samples with the corresponding
copy number estimates. c Distribution of the frequencies of the reference alleles (𝑓 -values)
for 43 paralogous sequence variants (PSVs; 23 within SMN1/2) across four different 1kGP
continental populations. The 8 PSVs used for estimating paralog-specific copy number by
SMNCopyNumberCaller are highlighted in red.

the presence of the common deletion. The AggregateCN estimates from Parascopy were

perfectly concordant with MLPA values [113] for both exons 1-6 and 7-8 (Figure 3.2b). We also

compared Parascopy’s accuracy for copy number estimation with three other existing methods:

SMNCopyNumberCaller [10] — a method designed specifically to estimate copy number for

SMN1/2; QuicK-mer2 [46] — an alignment-free approach to estimate ParalogCN using 𝑘-

mers unique to paralogous sequences; and CNVnator [44] — a CNV detection algorithm that

statistically analyzes read depth from WGS data. Both SMNCopyNumberCaller and QuicK-mer2

showed high accuracy for AggregateCN of exons 1-6 but CNVnator had a much lower accuracy
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Table 3.1. Accuracy of aggregate copy number estimation for three different meth-
ods across 10 duplicated genes in the human genome. For each method, accuracy is
the percentage of samples with identical WGS-based and experimental copy number values.
Percentage of copy number estimates with high quality is shown in parentheses when it is
below 100%. The third column in the table shows the mean and standard deviation (SD) of the
experimental values. The reference copy number is 4 for all loci except for SRGAP2 (8) and
AMY1 (6). For the AMY1 locus, accuracy is estimated by computing mean absolute error (𝛿)
due to high variance in copy number.

Duplicated Sample Copy number CNVnator QuicK-mer2 Parascopygene size mean ± SD
SMN1/2 1109 3.7 ± 0.6 68.5 (99.9) 99.5 100.0∗
C4A/B 45 3.8 ± 0.6 86.7 75.6 100.0∗
FCGR3A/B 51 4.1 ± 0.5 94.1∗ 94.1∗ 94.1∗
PMS2/CL 140 4.0 ± 0.0 67.7 (92.9) 97.9 100.0∗
HYDIN/2 5 4.4 ± 0.9 100.0∗ 100.0∗ 100.0∗
APOBEC3A/B 179 3.6 ± 0.6 94.4 96.1 96.9∗ (90.5)
RHD/RHCE 40 3.6 ± 0.8 97.5∗ 97.5∗ 97.5∗
NPY4R/2 18 4.8 ± 0.8 66.7 77.8∗ 77.8∗
SRGAP2 40 7.8 ± 0.7 82.5 62.5 100.0∗
AMY1A/B/C (𝛿) 225 7.3 ± 2.6 0.887 (99.1) 1.119 0.723∗ (96.0)

∗ Highest accuracy for each gene.

equal to 68.5% (Table 3.1). For the exon 7-8 region, only SMNCopyNumberCaller showed high

accuracy (sensitivity = 1.00 and specificity = 0.999). while both CNVnator (sensitivity = 0.823 and

specificity = 0.849) and QuicK-mer2 (sensitivity = 0.709 and specificity = 0.382) had significantly

lower accuracy (Table B.1). We also compared ParalogCN estimates from Parascopy with those

from SMNCopyNumberCaller, QuicK-mer2 and CNVnator. While SMNCopyNumberCaller’s

estimates on 855 non-African samples were identical to Parascopy, QuicK-mer2 and CNVnator

showed higher mean absolute difference of 0.53 and 0.23 respectively.

Unlike previous methods, Parascopy estimates the population frequency of the reference

allele for each PSV (𝑓 -values), and only uses reliable PSVs — PSVs with 𝑓 ≥ 0.95 for all

homologous positions — to estimate ParalogCN . Estimates of PSV 𝑓 -values across the different

populations showed that 10-19 of the 43 PSVs within and in the vicinity of SMN1 were reliable

for 4 of the 5 continental populations in the 1kGP while none of the PSVs were reliable in
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the African population samples (Figure 3.2c). This was consistent with the observations of

Chen et al. [10] about the lower concordance between ParalogCN values at individual PSV

sites. Notably, the set of PSVs identified as reliable by Parascopy included all 8 PSVs used for

estimating ParalogCN by SMNCopyNumberCaller [10].

3.2.3 Parascopy outperforms existing methods for copy number estimation

Next, we benchmarked the accuracy of Parascopy on additional duplicated genes with

experimentally determined copy number data. For this, we compiled previously published

datasets with experimental copy number data for more than 1100 samples (from the 1kGP)

across nine different genes apart from SMN1/2. First, we compared the accuracy of Aggre-

gateCN estimates obtained from Parascopy with CNVnator and QuicK-mer2 (Table 3.1). Across

the 9 genes, AggregateCN estimates from Parascopy were either more accurate than both

methods (SRGAP2, C4A/B, PMS2, AMY1) or equally accurate (FCGR3A/B, HYDIN, APOBEC3A/B,

RHD/RHCE, NPY4R/2). For the AMY1 locus, which has a high variation in total copy number

(2–18) in human populations, Parascopy’s mean absolute error was 0.72 compared to 0.89

and 1.12 for CNVnator and QuicK-mer2 respectively (Figure B.2). For the APOBEC3A/B locus,

Parascopy’s assigned low quality (< 20) to copy number values for 9.5% of samples due to

the small length of the gene. The lowest accuracy (77.8% on 18 samples) for Parascopy was

observed for the NPY4R/2 locus. Visual inspection of read depth profiles at this locus for the 18

samples indicated that Parascopy’s estimates are likely to be correct for all samples and were

perfectly concordant with QuicK-mer2 estimates (Figure B.1).

Next, we assessed the accuracy of paralog-specific copy number estimation for the

three methods across 4 of the 9 genes that had experimental paralog-specific copy number data

(Table 3.2). Parascopy’s average accuracy (87.58%) was greater than both CNVnator (76.97%)

and QuicK-mer2 (66.06%). Estimation of ParalogCN depends on PSVs that can differentiate the
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Table 3.2. Accuracy of paralog-specific copy number estimates for three different
methods using experimental copy number observations for 4 duplicated genes in the
human genome. The last column shows the number of reliable paralogous sequence variants
(PSVs; 1kGP European samples) and the total number of PSVs within the duplicated gene or
locus.

Duplicated Sample CNVnator QuicK-mer2 Parascopy Reliable
gene size PSVs
SRGAP2 40 67.5 72.5 97.2∗† 1461 / 1940
C4A/B 45 51.1 48.9 66.7∗ 7 / 50
FCGR3A/B 40 97.5∗ 47.5 97.5∗ 120 / 179
RHCE/RHD 40 95.0 97.5∗ 92.5 897 / 1027

∗ Highest accuracy for each gene.
† Paralog-specific copy number estimates have low qualities in 4 samples.

repeat copies and all methods had low accuracy for the C4/B locus which had a low number of

reliable PSVs (7/50).

Finally, we compared the performance of the different methods for identifying the

boundaries of copy number changes within a gene. For this, we analyzed the PMS2/PMS2CL

locus where 4 of 150 1kGP samples were reported to harbor a partial deletion covering two exons

(exons 13 and 14) using LR-PCR sequencing and MLPA [112]. Analysis of the AggregateCN

profiles estimated by Parascopy’s HMM showed that a partial deletion was correctly identified

in 4/4 samples albeit with low quality (< 20) in 2 of the 4 samples (Figure B.3). Parascopy did

not identify the deletion event in any of the remaining samples (sensitivity = 1.0 and specificity

= 1.0). In contrast, QuicK-mer’s copy number profiles showed no evidence of the deletion

(sensitivity = 0.0 and specificity = 1.0) while CNVnator detected a copy number change in 3/4

samples (sensitivity = 0.75 and specificity = 0.691).

3.2.4 Accuracy of Parascopy copy number estimates across a set of
genome-wide low-copy repeats

Next, we evaluated Parascopy’s accuracy and robustness for estimating copy number

across a larger set of duplicated coding loci in the human genome. For this purpose, we
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compiled a catalog of 167 low-copy repeat loci — overlapping over 220 protein-coding genes

(380 including homologous regions) — using previous analysis of sequence homology of coding

regions in the human genome [50] and copy number estimates for genes overlapping segmental

duplications [68] (see Methods). These 167 low-copy repeat loci span 12.6 Mb of DNA sequence

(including homologous regions) and 65.0 (14.7)% of these loci correspond to two (three) copy

duplications.

First, to assess the robustness of the copy number estimates to variation in sequencing

bias, we analyzed each of the 167 repeat loci in a set of 90 individuals of Han Chinese ancestry

for which WGS data was generated independently by Lan et al. [114] using a PCR-based

library preparation protocol. 83 of these 90 individuals also had WGS data available from

the 1kGP generated using a PCR-free library preparation protocol. In comparison with the

PCR-free data, the PCR-based WGS data exhibited significant greater biases in the distribution

of read depth as a function of GC-content (Figures B.4 and B.5). We ran Parascopy, CNVnator

and QuicK-mer2 on the two datasets independently and compared the concordance between

pairs of replicate samples (across the 167 repeat loci) for each method. Parascopy reported

AggregateCN estimates (with quality ≥ 20) for 94.5% of the pairs and 98.7% of the AggregateCN

pairs were concordant. In comparison, QuicK-mer2 provided AggregateCN values for 100% of

the pairs with a concordance rate of 74.9% (Table 3.3). CNVnator’s concordance (86.9% with

a completeness of 97.0%) was also significantly lower than Parascopy. Notably, Parascopy’s

concordance without any quality value filter (96.4%) was still 11.4 perecentage points greater

than that for CNVnator. These results also showed that Parascopy AggregateCN values with

quality < 20 are less reliable.

Parascopy does not estimate ParalogCN values for loci that have high reference copy

number or a low fraction of reliable PSVs (see Methods). As a result, the concordance analysis

was limited to the 122 loci that had ParalogCN for one or more samples across both replicates.

Across these loci, Parascopy’s ParalogCN had a concordance rate of 99.8% (99.5%) for a quality

threshold of 20 (0). Notably, the mean absolute difference between replicates was 0.003. In
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Table 3.3. Concordance of aggregate (AggregateCN) and paralog-specific (ParalogCN)
copy number estimates across 167 duplicated loci between two replicate WGS datasets
for 83 Han Chinese samples.

Data type Metric CNVnator QuicK-mer2 Parascopy
Q ≥ 0 Q ≥ 20 Q ≥ 0 Q ≥ 20

AggregateCN Available estimates (%) 100.0 97.0 100.0 100.0 94.5
(167 loci) Concordance (%) 85.0 86.9 74.9 96.4 98.7

Mean absolute difference 0.185 0.157 0.292 0.041 0.014

ParalogCN Available estimates (%) 100.0 97.0 100.0 72.8 70.1
(167 loci) Concordance (%) 83.4 85.5 81.1 99.5 99.8

Mean absolute difference 0.282 0.240 0.299 0.007 0.003

ParalogCN Available estimates (%) 100.0 97.8 100.0 99.7 96.0
(122 loci) Concordance (%) 91.4 93.3 85.4 99.5 99.8

Mean absolute difference 0.129 0.101 0.186 0.007 0.003

Q ≥ 0 — use all copy number estimates; Q ≥ 20 — use only high quality copy number estimates.
QuicK-mer2 does not have a quality measures, therefore all copy number estimates were used.
122 loci — a subset of loci where Parascopy estimates ParalogCN for at least one sample in both
datasets.

comparison, QuicK-mer2 and CNVnator ParalogCN estimates were available for all loci and

had a concordance rate of 81.1% and 85.5% respectively (Table 3.3). For the smaller set of 122

duplicated loci with ParalogCN estimates from Parascopy, QuicK-mer2 and CNVnator average

concordance values were 85.4% and 93.3% respectively, higher than those for all loci. At the

SMN1 locus, the PSV 𝑓 -values, estimated by Parascopy, were highly concordant between the

two datasets (𝑟 2 > 0.92) and the same set of 20 PSVs were identified as reliable in both datasets

(Figure B.6).

Next, we used trio analysis to assess if the ParalogCN values estimated by Parascopy

are consistent with Mendelian rules of inheritance. For this, we utilized 602 trios with WGS

data from the expanded 1kGP dataset [115]. To account the uncertainty in the locus-specific

ParalogCN values for a trio, we used a probabilistic method to calculate a probability that the

trio ParalogCN values are concordant with Mendelian inheritance (see Methods). We analyzed

trio concordance for 137 of the 167 loci, for which Parascopy could estimate high quality

ParalogCN values. On average, 99.5% trios were concordant per loci, with 126 loci having at
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least 99% concordant trios. The concordance rate for the subset of locus-trio pairs for which

the predicted ParalogCN for the child was greater than 2, was 95.5% (4776/5093).

Parascopy can estimate copy number values for individual samples by utilizing the

model parameters (HMM parameters and PSV 𝑓 -values) inferred from an independent set of

samples (see Methods). To assess the accuracy of Parascopy for individual samples, we analyzed

210 samples from two populations in the 1kGP (IBS and CHB) and compared the AggregateCN

values for each sample obtained by individual estimation (using the model parameters from the

other population) with multi-sample estimation (all samples from each population analyzed

jointly). Parascopy AggregateCN estimates were perfectly concordant (Table B.2) for 165 of

the 167 loci. The two remaining loci (PRAMEF1 and RHPN2) had a mean AggregateCN > 7 and

did not have high quality estimates available for comparison. Similarly, ParalogCN estimates

showed very high concordance equal to 98.9%.

The accuracy of copy number estimation is expected to improve with increasing read

depth. The mean read depth for the 1kGP samples was 33×. To assess the accuracy of Parascopy

at lower values of sequence coverage, we sub-sampled WGS data for 107 samples from the IBS

population in the 1kGP to one-third and two-thirds of the original read depth, analyzed them

using model parameters from a different continental population and compared copy number

estimates with those obtained using the full coverage (see Methods). As expected, the percentage

of high-quality AggregateCN estimates reduced with decreasing read depth: 94% at two-thirds

and 88.3% at one-third coverage (Table B.2). Nevertheless, the high-quality AggregateCN and

ParalogCN estimates had high concordance equal to 99.9% and 98.4% respectively at one-third

coverage.

Parascopy is multi-threaded and can process multiple loci in parallel. Analyzing 503

European genomes from the 1kGP took 17 hours using 16 cores and required less than 12 Gb

of memory. For a single genome with 30×WGS, Parascopy took 16 minutes to analyze 167

duplicated gene loci using 16 threads and required less than 5 Gb of memory. In comparison,

CNVnator (QuicK-mer2) took 28 (36) minutes to analyze a single genome using 16 threads
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and required 12 (40) Gb of memory. We note that a direct comparison of run-time between

Parascopy, CNVnator and QuicK-mer2 is difficult since CNVnator and QuicK-mer2 are genome-

wide methods while Parascopy is a targeted copy number estimation method. Nevertheless,

the low memory requirements and run-time for Parascopy allow it to scale up for analyzing

thousands of samples efficienctly.

3.2.5 Analysis of copy number changes and PSVs across 2504 individuals

To explore the diversity of copy number at low copy repeat loci across populations

and genes, we estimated copy number at the 167 repeat loci for all 2504 individuals from five

continental populations sequenced in the 1kGP. For 151 of the 167 loci, AggregateCN values

could be estimated with high confidence (quality ≥ 20) for at least 95% of the samples. High

average copy number was the main reason for the low quality of the AggregateCN estimates at

some loci. The mean AggregateCN was 4.39 (6.42) for the 151 (16) loci with ≥ 95% (< 95%) of the

samples with high confidence AggregateCN values. Similarly, for 26 of the 167 loci, ParalogCN

estimates were not estimated either due to a low number of reliable PSVs (e.g. CFC1) or due to

the lack of a sufficient number of individuals with reference copy number (see Methods).

Not surprisingly, the most frequent copy number value for the vast majority (88.4%)

of loci was equal to the reference copy number. Several disease-associated genes had a low

variance in aggregate copy number (e.g. HYDIN ) while other genes such as SMN1/2 and NEB

had a large variance in the copy number. Among 164 loci, 84 loci had 99% or greater of samples

with AggregateCN equal to the reference (Figure 3.3b). For 15 loci, the AggregateCN for more

than half of the samples was greater than the reference — likely due to a missing copy in the

reference genome (hg38) used for analysis. Notably, the most frequent copy number for the

OTOA gene locus (OTOA + OTOAP1) with a reference copy number of 4 was 6 (Figure 3.4a). To

investigate this further, we leveraged the recent highly complete human genome assembly from

the T2T consortium for the CHM13 cell line [1]. Alignment of the OTOA duplicated sequence
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Figure 3.3. Distribution of the percentage of reliable paralogous sequence variants
(PSVs) and aggregate copy number (AggregateCN) profiles across duplicated genes.
a Percentage of reliable PSVs (𝑓 ≥ 0.95) across 83 disease-associated genes and four continental
populations from 1kGP. b Distribution of AggregateCN for 167 duplicated loci across all
populations. Dark/white dots show reference copy number for each locus. Rare events (< 1%
samples) are not shown.

to this assembly revealed the presence an additional copy that is not present in the current

human reference genome and has sequence similarity ≥ 99.5% to the two other copies. We

added this additional copy to the reference genome and re-analyzed the 1kGP samples using

Parascopy. The AggregateCN estimates were not affected by the presence of the additional copy

(concordance = 100%) demonstrating the robustness of Parascopy’s AggregateCN estimates in

the presence of missing repeat copies. In addition, we were able to estimate ParalogCN values

and identify reliable PSVs using the sequence information from the additional copy. Analysis of
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Figure 3.4. Distribution of aggregate (AggregateCN) and paralog-specific (ParalogCN)
copy number values across 2504 samples from 1kGP for four disease-associated genes.
The reference copy number is shown in red and marked with an asterisk. For the OTOA and
STRC loci (panels a and b), the ParalogCN distribution for each AggregateCN bin is also shown.
a For the OTOA gene, the most frequent AggregateCN is 6 while the reference copy number is
4, indicating the presence of a missing repeat copy in the reference genome. b 1.5% samples
exhibit heterozygous deletion of the STRC gene while no samples have a homozygous deletion.
c For the NEB gene, AggregateCN varies between 2-8 across 1kGP samples while previously
reported pathogenic alleles at this locus had copy number ≥ 9. d A duplication event that
includes both GBA and GBAP1 is frequent in African populations (9.4% of individuals have
AggregateCN of 6-10) and almost absent in non-African populations. For completeness, the
panel includes samples with AggregateCN quality less than 20.

the ParalogCN values across the 1kGP data showed that OTOAP1 locus is the most polymorphic

in terms of copy number. For example, out of 540 samples with AggregateCN = 5, more than

93% samples were missing one copy of OTOAP1.

Next, we analyzed the frequency and distribution of copy number changes in individual

disease-associated genes and their relationship with known pathogenic variants. For the STRC

gene, approximately 1.5% of individuals across all continental populations were carriers of

a heterozygous deletion of STRC while no individual had a bi-allelic deletion (Figure 3.4b).
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Bi-allelic deletions in this gene are known to cause hearing loss [52, 116]. At the GBA locus —

variants inGBA are associated with Gaucher disease[117] — we observed that 9.4% of individuals

from African populations had an AggregateCN of 6 or more while only 2 individuals (0.1%)

from non-African populations had such high copy number (Figure 3.4d). GBA and GBAP1

(pseudo-gene) are located in homologous repeats separated by 10 kb on chromosome 1. Further

analysis of copy number revealed that the increased copy number is a result of a duplication

that includes the last two exons of GBA, part of GBAP1 and the entire region between the

two repeats (Figure B.7). For the NEB gene locus that harbors an intragenic repeat with three

copies, the aggregate copy number varied from a minimum of 2 (one sample) to a maximum of

8 (population allele frequency of 0.12%, Figure 3.4c). Previous analysis of NEB copy number in

60 controls using a custom CGH microarray [118] had indicated that copy number gains of 2-4

copies could be pathogenic for nemaline myopathy. Our results on a much larger number of

population samples indicate that copy number gains of 2 copies are observed at a low frequency

and are unlikely to be pathogenic. Furthermore, the observed frequency of 1-copy gains and

losses (3.1% and 5.4%) were consistent with those observed using CGH data (3.9% and 5.4%).

The fraction of reliable PSVs varied significantly across genes with some well-studied

disease genes such as C4A and PMS2 having a very low fraction of reliable PSVs while > 90%

of the PSVs were reliable for genes such as VWF and ABCC6 (Figure 3.3a). The fraction of

reliable PSVs was highly correlated across populations (𝑟 2 = 90%, on average sets of reliable

PSVs overlap by more than 95%) except for a few genes such as SMN1 for which no reliable

PSVs were identified for the African population. A high fraction of unreliable PSVs (𝑓 < 0.95)

makes it challenging to estimate ParalogCN . Comparison of Parascopy’s ParalogCN estimates

with those estimated by QuicK-mer2 for several disease-associated genes (Figure B.8) showed

that while the AggregateCN estimates were highly concordant between the two methods, the

concordance of the ParalogCN estimates was low for genes with a high frequency of unreliable

PSVs. For example, the correlation coefficient 𝑟 2 between the ParalogCN values for Parascopy

and QuicK-mer2 (using 503 European samples) was 0.70 for the FCGR3A gene (67% reliable
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PSVs) but it was only 0.29 for the SMN1 gene (15% reliable PSVs). Additionally, Figure B.8

shows that when the fraction of reliable PSVs is low, QuicK-mer2 tends to generate ambiguous

ParalogCN values: 49% of SMN1 ParalogCN values obtained using QuicK-mer2 are closer to a

half-integer than to any integer.

A high frequency of unreliable PSVs is expected to adversely impact not only ParalogCN

estimation but also short read mapping and variant calling since short-read mapping tools

rely on PSVs to distinguish between different repeat copies. We used simulations to assess the

impact of the frequency of reliable PSVs on variant calling accuracy at the SMN1/2 locus. When

all PSVs were reliable, state-of-the-art variant calling tools — GATK HaplotypeCaller [119] and

FreeBayes [40] — achieved a recall of 0.52 and 0.55 respectively with a high precision (> 0.96) for

variant calling. However, when we incorporated unreliable PSVs (identified from the analysis

of 1kGP data, see Methods) in the simulated reads, the precision reduced significantly to 0.56

and 0.59 and the recall decreased to 0.25 and 0.29 for the two methods.

3.3 Discussion

In this chapter, we described a new computational method (and software tool), Paras-

copy, specifically designed for estimation of copy number for low-copy repeats in the human

genome using WGS data. Parascopy leverages WGS data from multiple individuals to automat-

ically account for sequencing biases and estimate aggregate and paralog-specific copy number

profiles across specified region(s). Unlike some existing methods that require re-mapping or

k-mer analysis of the entire WGS data, Parascopy uses a targeted approach that extracts and

analyzes only reads relevant for each repeat loci from existing alignments. This allows it to

efficiently estimate copy number for individual repeat loci across thousands of samples. We

benchmarked Parascopy’s accuracy using experimental copy number data for a number of

genes and concordance analysis on replicate samples and it proved to be significantly more

accurate than two existing methods — one designed for estimation of paralog-specific copy
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number (QuicK-mer2) and the second for genome wide copy number variant analysis (CN-

Vnator). Parascopy’s estimates of aggregate and paralog-specific copy number are robust to

variation in sequencing biases and read depth as well as missing repeat copies in the reference

genome.

A number of computational methods have been developed for detecting copy number

variants from WGS data by modeling read depth [44, 47, 106, 120]. Most of the methods are

designed for analysis of unique regions of the genome and do not focus on repetitive regions of

the genome. Parascopy has been developed to fill this gap and uses a two-step approach where

it first estimates aggregate copy number (by aggregating reads mapped to homologous regions)

and then estimates paralog-specific copy number by careful modeling of PSVs. A similar

approach has been used by the SMNCopyNumberCaller method [10] — a method designed for

analysis of a single duplicated gene. However, Parascopy’s general framework works for any

low-copy repeat in the human genome and does not make assumptions about which PSVs can

be used to distinguish the paralogous repeat copies. Instead, Parascopy explicitly models and

estimates population allele frequencies for each PSV using WGS data for multiple samples and

is the first method to do so. Analysis of WGS data at the SMN1/2 locus demonstrated the ability

of Parascopy to correctly identify reliable PSVs and also showed that using a fixed set of PSVs

for estimating ParalogCN can potentially result in incorrect estimates.

Analysis of PSV allele frequencies using 1000 Genomes data showed that reliable PSVs

were highly consistent across populations, however, the frequency of reliable PSVs varied

significantly across genes. Information about reliable PSVs is not only useful for estimating

paralog-specific copy number but is also relevant for read mapping and variant calling in LCRs.

We have previously shown that post-processing of long read alignments using a probabilistic

model that models genotypes for PSVs improves read mapping in LCRs [121]. It is well

documented that short-read variant calling in LCR regions exhibits a higher rate of false

negatives (due to low mappability) and false positives compared to unique regions of the

61



genome [122]. Knowledge about reliable PSVs has the potential to improve short-read mapping

and variant calling accuracy in such regions.

Parascopy has several limitations and avenues for further improvement. Parascopy’s

accuracy is lower for short regions and for regions with very high copy number (> 7). Nev-

ertheless, Parascopy was able to estimate aggregate copy number with greater accuracy for

the AMY1 locus than existing methods. In addition, it cannot estimate ParalogCN for loci with

high reference copy number (difficult to model large number of possible paralog-specific copy

number values) or loci with a very low fraction of reliable PSVs. Parascopy currently works for

only WGS data, however, information about allele-specific read depth at PSVs can potentially be

used to infer copy number from targeted sequencing assays. Parascopy can estimate copy num-

ber for individual genomes using pre-computed model parameters, however, sample-specific

sequencing biases may reduce the accuracy of copy number estimation. Parascopy assumes

that the paralog-specific copy number for each sample is constant across the analyzed region.

However, gene conversion events and hybrid alleles resulting from non-allelic homologous

recombination are commonly observed at LCR loci [93, 123] and can result in non-uniform

paralog-specific copy number. An HMM based approach can be used to model and detect such

events and we plan to explore this in future work.

Unlike variants in unique regions of the genome, small sequence and copy number

variants in duplicated genes are rarely analyzed in large-scale human genetic studies. Over the

last few years, a number of large-scale WGS datasets for rare and common human diseases

have become available [124, 125] and several others are expected to be available soon [126].

We expect Parascopy to be a valuable tool for analyzing such large-scale WGS datasets to

identify novel genotype-phenotype associations. In addition, copy number profiles from such

datasets will be useful for prioritizing pathogenic copy number changes in duplicated genes

in the human genome. Finally, Parascopy can be useful for assessing the completeness and

correctness of de novo assemblies at LCRs which can be challenging to assemble correctly even

using long reads.
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3.4 Methods

Given short sequence reads from WGS aligned to a reference genome for one or more

samples, Parascopy jointly analyzes reads aligned to a genomic region 𝑅 and its homologous

sequences to estimate aggregate copy number (AggregateCN) — number of copies of 𝑅 and its

paralogs — as well as paralog-specific copy number (ParalogCN) — number of copies of each

paralog. The estimation is performed jointly across all samples in two steps: (i) AggregateCN

profiles are estimated first using read depth in fixed length windows and (ii) ParalogCN values

are estimated using allele-specific read counts at PSVs and AggregateCN profiles. The workflow

of the method is presented in Figure 3.1a. Before copy number estimation, background read

depth distributions are estimated for each sample using reads mapped to unique regions of the

genome.

3.4.1 Construction of homology table

Parascopy uses a precomputed table of homologous regions in the genome (homology

table) to identify the paralogous regions for a given genomic region. This homology table stores

pairwise duplications in a BED format that allows for indexing and fast retrieval of all duplica-

tions overlapping a given genomic region. For each duplication, we store a sequence alignment,

length, sequence similarity and other characteristics, which allow for convenient filtering of

duplications. Duplications with more than two copies are identified from overlapping pairwise

duplications, and PSVs are extracted from the sequence alignments. The homology table is

constructed by self-alignment of the reference human genome to itself using BWA [31] (see

Section B.2.1). The table is designed to store primarily low-copy repeats; therefore, sequences

with too many (> 10) pairwise alignments — that typically correspond to interspersed repeats

— are discarded and the regions appropriately flagged in the table.
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3.4.2 Normalization of read depth

To infer copy number from read depth, we use information from the observed read

depth in a large number of non-repetitive regions of the genome (assumed to have a copy

number of 2) for each sample. Briefly, read depth is calculated for windows of fixed length

(default 100 bp) selected from unique regions of the genome by assigning mapped reads to

the window that contains the center of the first read in each read-pair. Windows that have a

high fraction (≥ 10%) of (i) low mapping quality reads (< 10), (ii) reads not mapped in proper

pairs, or (iii) soft-clipped reads — are marked as irregular and not used for normalization.

We considered several distributions to model the read depth distribution and found that the

Negative Binomial (NB) distribution provided a better fit for the read depth distribution for

PCR-based WGS data compared to the Poisson distribution (see Figure B.4 for an example).

Therefore, we use the NB distribution to model the variation in read depth across windows

in unique regions of the genome. To account for variation in read depth due to GC-content,

we use separate NB parameters for each GC-content value (see Section B.2.2). This procedure

is performed independently for each sample and only needs to be done once for each sample

independent of the number of repeat loci.

We utilize a set of genomic windows used by the SMNCopyNumberCaller tool [10] for

estimating background read depth. We split the set of regions into short windows of length

100 bp. To increase the number of windows with extreme GC-content (≤ 35% or ≥ 55%), we

select such windows in a 5-kb neighborhood of the original set of genomic regions. Finally, we

discard all windows with a distance less than 500 bp to any duplication in the homology table.

This procedure yields approximately 90,000 windows for both hg19 and hg38 versions of the

human genome.
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3.4.3 Identifying homologous regions and calculating aggregate read depth

For a given region 𝑅, we find all pairwise homologies overlapping 𝑅 from the homology

table. To reduce complexity, we skip short duplications (< 500 bp). The homologous segments

are used to split 𝑅 into subregions or segments of constant reference copy number. Note that the

reference copy number of a two-copy duplication is equal to 4 as the human genome is diploid.

Next, for each sample, we extract reads aligned to the homologous regions and re-map these

reads to the region 𝑅. This re-mapping is efficiently done using the precomputed alignments

between 𝑅 and its homologous sequences that are stored in the homology table. Each subregion

of constant reference copy number is divided into non-overlapping windows of fixed length

and aggregate read depth is computed for each window using the reads from the region 𝑅 and

the reads re-mapped to 𝑅. The read assigning procedure is same as for the background read

depth analysis. For each window we calculate the fraction of reads with soft-clipping and the

fraction of reads not mapped in a proper pair and filter out windows (and one flanking window

on either side) if they are irregular in more than 10% of the samples.

For some loci, two subregions with the same reference copy number are interrupted by

a short region with a different reference copy number (for example by an interspersed repeat).

We group such subregions (if they are separated by less than 2000 bp) into region groups and all

subsequent analysis is performed independently for each region group.

3.4.4 Estimating aggregate copy number profiles jointly for multiple samples

To estimate the aggregate copy number (AggregateCN) profiles, we construct a Hidden

Markov Model (HMM) [127] for each region group. For a single sample 𝑠 , the aggregate

read depth values in the windows across the region represent the observed values and the

AggregateCN value for each window forms a set of hidden states. For each window, we consider

𝐾 possible AggregateCN values where 𝐾 is selected based on the reference copy number for

the region and observed aggregate read depth for all samples (see Section B.2.4.1).
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To reduce the number of parameters, we define all transition probabilities based on two

parameters for each consecutive pair of windows: 𝑎↗𝑤 , 𝑎↘𝑤 ∈
[
0, 1

10
]
. We define a jump from

AggregateCN 𝑖 to a larger AggregateCN 𝑗 as 𝑎𝑖 𝑗𝑤 = 𝑎
𝑗−𝑖
↗𝑤 and to a smaller AggregateCN 𝑘 as

𝑎𝑖𝑘𝑤 = 𝑎𝑖−𝑘↘𝑤 . The transition probability 𝑎𝑖𝑖𝑤 therefore equals 1 −∑ 𝑗≠𝑖 𝑎𝑖 𝑗𝑤 . By default, both 𝑎↗𝑤

and 𝑎↘𝑤 are set to 10−5 on the first iteration, and the initial state distribution is set to 𝜋¬ref =
1
|𝑆 |

for all non-reference copy number states and 𝜋ref = 1 − 𝐾
|𝑆 | for the reference copy number.

Let 𝑜 (𝑠)𝑤 be the aggregate read depth for sample 𝑠 in window𝑤 and let 𝑛(𝑠)𝑤 and 𝑝 (𝑠)𝑤 be

the parameters of the Negative Binomial (NB) distribution corresponding to the GC-content of

window𝑤 (estimated separately for each sample). The emission probability for copy number 𝑐

(hidden state) and window𝑤 is defined as: 𝑏 (𝑠)𝑤 (𝑐) = 𝑃 NB
(
𝑜
(𝑠)
𝑤 ; 𝑛(𝑠)𝑤 · 𝑐/2, 𝑝 (𝑠)𝑤

)
.

For each sample, we use the Forward-Backward algorithm [128] to obtain 𝛾 (𝑠)𝑐,𝑤 — the

probability that sample 𝑠 has copy number 𝑐 in window𝑤 . Next, HMM parameters — emission

and transition probabilities as well as the initial state distribution — are updated iteratively

using 𝛾 (𝑠)𝑐,𝑤 . The emission probabilities are updated using a scale parameter𝑚𝑤 for each window

𝑤 that models window-specific biases in sequencing read depth that are not captured by GC-

content based modeling [107]. In the first iteration,𝑚𝑤 is initialized to 1 for all windows. This

parameter scales the expected read depth for each window (equally for all samples) to be higher

or lower than the default value and is estimated using a maximum likelihood procedure and

the 𝛾 (𝑠)𝑐,𝑤 estimates (see Section B.2.4.3 and Figure B.5).

To update initial and transition probabilities, we use a procedure similar to Baum-Welch

algorithm [127] (see Section B.2.4.4). The intuition underlying these updates is that the initial

state probabilities correspond to population frequencies of the aggregate copy number values at

the start of the region, while shared deletion or duplication events result in increased transition

probabilities between the states of adjacent windows where the events happen. This iterative

procedure — Forward-Backward algorithm for each sample followed by joint update of the

HMM parameters — is run until the log-likelihood of the data (summed over all samples)
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converges (see Section B.2.4.5). Finally, we run the Viterbi algorithm [129] to find most probable

AggregateCN profile for each sample.

3.4.5 Estimating paralog-specific copy number using PSVs

Once the AggregateCN profiles are estimated for each sample, we estimate paralog-

specific copy number (ParalogCN) values using the allele-specific read counts at PSV sites across

the region 𝑅. For a region with reference copy number 𝑐𝑟 and a sample 𝑠 with AggregateCN

𝑐𝑠 , the paralog-specific copy number is defined as an integer tuple of length 𝑐𝑟/2 that sums

up to 𝑐𝑠 . Each tuple element represents the copy number of a specific copy of the duplication

and order of the copies is the same for all samples. Note that there are
(3/2 · 𝑐𝑟 − 1

𝑐𝑟

)
possible

paralog-specific copy number tuples for each sample. We assume that the ParalogCN does not

change in a region with constant AggregateCN .

PSVs are defined based on the reference genome assembly and only those PSVs for

which the allele on a specific paralog of a duplication is invariant in the population are useful

for estimating ParalogCN . Since some PSVs are known to correspond to polymorphisms, we

model the frequency of the reference allele at a PSV site 𝑣 and paralog 𝑘 as 𝑓𝑣𝑘 where 𝑓𝑣𝑘 ∈ [0, 1].

We call a PSV 𝑣 reliable if all its 𝑓 -values are close to 1: min𝑐𝑟 /2
𝑘=1 𝑓𝑣𝑘 ≥ 0.95. Such PSVs can be

used as markers of each paralog and are useful for estimating ParalogCN .

Given sequence data from multiple samples, we want to estimate two sets of variables:

(i) ParalogCN for each sample, and (ii) PSV frequency matrix 𝑓 where 𝑓𝑣𝑘 is the frequency of the

reference allele for PSV 𝑣 on the 𝑘-th copy. We use an Expectation-Maximization (EM) algorithm

to solve this problem where sample ParalogCN values are hidden variables and the matrix 𝑓

is an unknown parameter (see Section B.2.5.1 for details). In order to reduce computational

complexity, we apply the EM algorithm only to those samples for which AggregateCN is equal to

the reference copy number 𝑐𝑟 (minimum of 50 samples). Once the PSV 𝑓 -values are determined,

we calculate the ParalogCN for all samples individually. For this, we run the E-step of the

67



EM algorithm using only reliable PSVs. Parascopy does not estimate ParalogCN for loci with

very high AggregateCN or reference copy number (> 8) and for loci with very high number of

possible ParalogCN tuples (> 500) to limit run-time.

3.4.6 Estimating copy number values for a single individual

Parascopy is designed to estimate AggregateCN and ParalogCN profiles using data for

multiple samples, therefore, analyzing a single sample or a small number of samples may not

produce very accurate results, particularly for ParalogCN . To enable the analysis of individual

samples, we can use model parameters estimated from a population of samples, e.g. 1000

Genomes Project. Model parameters include initial and transition probabilities of the aggregate

copy number HMM, as well as a set of window-specific scale parameters {𝑚𝑤 } and PSV

frequency matrix 𝑓 . This allows us to quickly analyze individual samples using precomputed

model parameters for multiple duplicated loci.

3.4.7 Genome-wide set of duplicated gene loci

To obtain a set of duplicated gene loci, we started with a set of 1168 duplicated genes

that were reported previously [50] as having at least one exon that is difficult to map using

short reads due to high sequence similarity to one or more other loci. From these, we removed

124 genes that are known to vary extensively in copy number [68] and 88 genes that are missing

from the GENCODE annotation v37 [130]. Additionally, we discarded 257 genes that did not

overlap any duplication longer than 2 kilobases in the homology table. The remaining genes

were merged into 564 loci, which were then manually filtered in order to remove high copy

number regions and regions with complex duplication structures. For some loci, we included

additional flanking sequence to provide more useful information for copy number detection.

The final set of duplicated gene loci set contained 167 regions, with all homologous regions

covering 12.6 Mb.
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3.4.8 Analysis of 1000 Genomes samples at 167 repeat loci using Parascopy

We used high-coverage (30×) whole-genome sequence data for 2,504 samples from the

1000 Genomes Project (1kGP) generated by the New York Genome Center [2]. All samples

were sequenced using a PCR-free library preparation protocol and cram files aligned to the

reference human genome hg38 were used for analysis. The 2,504 samples were divided into 5

groups based according to their continental population and each group of samples was analyzed

together in a single run of Parascopy. To assess copy number concordance in trios, we analyzed

WGS data from additional 698 related samples from the 1kGP resource. The 698 samples were

analyzed independently of the 2,504 samples in a single run of Parascopy.

3.4.9 Copy number benchmarking using experimental data

For a given duplicated locus, Parascopy outputs integer AggregateCN and ParalogCN

estimates for various subregions of the locus. In contrast, QuicK-mer2 and CNVnator output

fractional ParalogCN values for various subregions throughout the whole genome and do not

output AggregateCN directly. In order to facilitate a direct comparison, we extract Parascopy,

QuicK-mer2 and CNVnator copy number estimates that overlap single positions within multiple

copies of 167 duplicated loci. As CNVnator does not output ParalogCN estimates in the absence

of deletions and duplications, we treat missing CNVnator values as ParalogCN = 2. Next, for

each locus, we sum fractional ParalogCN values and round the sum to the nearest integer

to obtain AggregateCN estimate; additionally, we round every fractional ParalogCN value to

obtain integer ParalogCN estimates.

Throughout the chapter, we consider Parascopy copy number values to have high quality

if their Phred-score is at least 20. Likewise, we convert CNVnator 𝐸-values into Phred-scores

and say that the AggregateCN and ParalogCN estimates have high quality if the scores are ≥ 20

across all copies. We assume that all QuicK-mer2 copy number estimates have high quality, as

the method does not output any quality measures.
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To measure copy number estimation accuracy, we compare Parascopy, QuicK-mer2 and

CNVnator AggregateCN and ParalogCN values derived from WGS data against corresponding

copy number estimates based on experimental observations (Tables 3.1, 3.2 & B.1) for the same

locus and the same individuals. If the experimental copy number observation is a fractional

number, we round it to the nearest integer. Copy number estimate is correct if it matches

completely with the experimental observation for the same sample. In Tables 3.1 and 3.2,

QuicK-mer2 AggregateCN and ParalogCN values were aggregated across the duplicated genes,

and median copy number value was selected. This procedure improved QuicK-mer2 accuracy;

however, we did not perform it for all 167 duplicated loci, as it requires a careful case-by-case

approach, especially in complex duplications.

SMNCopyNumberCaller [10] v1.1.1, QuicK-mer2 [46] build 2021 and CNVnator [44]

v0.4.1 were run on the WGS datasets using default parameters. Additionally, QuicK-mer2

copy number estimates for 2457 1kGP samples were downloaded from https://github.com/

KiddLab/kmer 1KG.

3.4.10 Assessing consistency of copy number estimates

To evaluate Parascopy, QuicK-mer2 and CNVnator robustness, we compareAggregateCN

and ParalogCN estimates obtained for the same individuals based on two independent WGS

datasets for 83 Han Chinese samples: PCR-free IGSR [115] dataset and PCR-based BGI [114]

dataset. Copy number estimates were selected based on a set of positions within 167 duplicated

loci in both datasets; in this way each sample is associated with 167 pairs of AggregateCN and

ParalogCN values. A pair of copy number estimates is considered available, if the corresponding

copy number estimates have high quality in both datasets. Accordingly, a pair of copy number

estimates is concordant, if it is available and the corresponding copy number estimates match

completely.
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To assess robustness of Parascopy copy number estimates to variation in read depth

and model parameters, we create two sets of Parascopy model parameters using 503 and 504

samples from the European and East-Asian continental populations, respectively. We analyze

the same set of samples (103 Han Chinese samples and 107 Iberian samples) using both sets

of model parameters and evaluate the concordance of resulting AggregateCN and ParalogCN

values. Additionally, we subsample the 107 Iberian samples to one-third and two-third coverage,

analyze subsampled datasets using East-Asian model parameters, and compare resulting copy

number estimates against those obtained using full-coverage dataset and European model

parameters.

3.4.11 Paralog-specific copy number validation using trios

In order to assess the accuracy of paralog-specific copy number estimates using Paras-

copy, we analyzed 602 trios with WGS data from the extended 1kGP [115]. The child in each

trio was analyzed independently from the two parents to avoid any bias (except for 9 trios

that consisted entirely of IGSR relatives). To assess consistency of ParalogCN values in trios,

we modeled the population frequencies of paralog-specific copy number for a single chro-

mosome using the observed diploid observations (see Section B.2.8). For each trio with high

quality (≥ 20) ParalogCN estimates, we calculated the probability of observing the child’s

ParalogCN given the ParalogCN estimates of both parents. A trio was considered discordant if

this probability was less than 0.01.

3.4.12 Measuring the effect of unreliable PSVs on variant calling

In order to evaluate the consequences of unreliable PSVs (𝑓 < 0.95) on variant calling,

we used the NEAT short-read simulation tool [131] v3.0 to generate a baseline set of single

nucleotide variants (SNVs, ≈ 1 SNV per 1 kb) and high-coverage (30×) WGS data with and

without unreliable PSVs. To introduce unreliable PSVs we randomly replaced PSV reference
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alleles with alleles from another copy of the duplication according to the frequencies of PSV

reference alleles (𝑓 -values) in SMN1/2 locus in 503 European samples from the 1kGP. This

procedure yielded 31 homozygous and 33 heterozygous SNVs corresponding to unreliable PSVs.

Next, we called variants in both copies of the duplication (total length 111 kb) using GATK

HaplotypeCaller [119] v4.2.2 and FreeBayes [40] v1.3.5 and compared results with baseline

sets of SNVs using RTG tools [78, 79] v3.12.1.

3.4.13 Data Availability

The analyses presented in this chapter are based on the high-coverage whole genome

sequencing data of 1000 Genomes Project samples that was generated at the New York Genome

Center with funds provided by NHGRI Grant 3UM1HG008901-03S1. This sequencing data is

available via ENA Study PRJEB31736 and PRJEB36890. The whole-genome sequence data for

90 Han Chinese samples is available from ENA Study PRJEB11005. For this dataset, we used

aligned reads downloaded from https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data collections/

han chinese high coverage for analysis.

3.4.14 Code Availability

Parascopy is implemented in the Python programming language and is freely avail-

able for download at https://github.com/tprodanov/parascopy. It is also available via conda

(conda install -c bioconda parascopy). Parascopy requires BAM/CRAM files for one

or more samples, a reference genome sequence and a homology table (provided for human

reference genomes hg19 and hg38) as input.
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chapter 4

Variant Calling in Segmental
Duplications

4.1 Introduction

Segmental duplications — also known as low copy repeats — constitute ∼5% of the

human genome and overlap more than 900 protein coding genes [49]. Genes that have been

recently duplicated or have high sequence homology to other loci are problematic for NGS

since short reads derived from such genes have ambiguity in their alignment and are difficult

to correctly position in the genome. Short Illumina reads that originate from duplicated genes

with high sequence homology align to multiple locations in the genome and are assigned

low mapping quality scores [31, 38]. Such reads are typically discarded during variant calling

by existing state-of-the-art variant calling tools such as GATK and FreeBayes to avoid false

positive variant calls [40, 119]. A recent analysis of sequence homology for coding regions

in the human genome identified 7,691 exons in 1,168 genes which have partial or complete

sequence homology (> 98%) to one or more loci [50]. ∼1,500 of these exons are problematic for

variant detection even using Sanger sequencing [50].
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Paralogous sequence variants (PSVs) refer to nucleotide differences (single base changes

or small insertion/deletions) between duplicated loci in the genome [132]. Although PSVs can be

used to place reads in duplicated genes, some PSVs are polymorphic and correspond to variants

in the population rather than to the fixed differences between the duplicated copies [68, 100].

Proximally located duplicated genes frequently exchange short DNA segments via intra-locus

gene conversion (IGC) [93] which can introduce polymorphic variants at PSV sites. Therefore,

relying on PSVs to map reads can lead to incorrect read mapping within duplicated genes,

which in turn can lead to inaccurate variant calls. Consequently, it is important to determine

PSV genotypes before using PSV sites for read placement in duplicated genes.

193 of the 1,168 genes with high sequence homology are associated with rare Mendelian

disorders, inherited cancers and complex diseases. For example, mutations in PKD1 account

for 85% of cases of autosomal dominant polycystic kidney disease (ADPKD1), one of the most

frequent monogenic disorders with a prevalence of 1 per 1,000 individuals [133, 134]. The

American College of Medical Genetics (ACMG) recommends carrier screening for many genes

(e.g. PMS2, STRC, SMN1, CYP21A2) that are duplicated [135]. To enable mutation detection in

these genes, specialized and labor intensive diagnostic assays have been developed that typically

utilize long-range PCR in combination with Sanger sequencing [52, 136, 137]. Information

about variants in duplicated genes is present in NGS read data but current state-of-the-art

variant calling methods [119, 138] that rely on read mapping qualities are not well-suited for

extracting this information [139].

We describe a probabilistic variant calling method for duplicated genes that jointly

analyzes reads aligned to a duplicated gene and its repeat copies and does not rely on read

mapping quality. This method can detect variants in regions that are not uniquely mappable

even with Sanger reads. Identifying such variants with positional ambiguity is useful since

if the variant is predicted to impact gene function (e.g., loss-of-function variant), the correct

location of the variant can be determined using targeted approaches. Our method complements
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existing variant calling tools for NGS and enable the detection of variants in more than 600

duplicated genes in the human genome.

4.2 Results

4.2.1 Overview of method

ParascopyVC is a variant calling method for short-read whole-genome sequence (WGS)

data that is designed specifically for low-copy repeats. Unlike standard variant calling methods

such as GATK [41] and Freebayes [40], it performs variant calling and genotyping jointly across

repeat copies for a duplicated region and utilizes reads with low mapping quality — even those

with multiple equally likely mappings — for variant calling. ParascopyVC performs variant

calling uses a two-step approach: (i) pooled variant calling and (ii) paralog-specific genotyping.

First, reads aligned to a duplicated region 𝑅 and its repeat copies are extracted from existing

alignments and re-mapped to the duplicated region 𝑅. “Pooled variant calling” is performed on

the re-mapped reads using a state-of-the-art variant calling method, Freebayes (see Figure 4.1).

Aggregate copy number for the region 𝑅 is estimated using the Parascopy copy number

tool [140] and used as ploidy for the variant calling. During the second step, ParascopyVC

attempts to estimate paralog-specific genotypes for each variant identified from the pooled

variant calling. For this purpose, paralog-specific copy number and population reference allele

frequencies, estimated using Parascopy, are used to identify informative Paralogous sequence

variants (PSVs) that can differentiate the repeat copies for variant calling. A likelihood model

is used to estimate paralog-specific genotypes for each variant using paired-end reads that

overlap informative PSVs (Figure 4.1). Note that paralog-specific genotypes cannot be estimated

for all variants and hence some variants have “positional ambiguity”. Nevertheless, knowledge

about such variants is useful for downstream analysis and is reported in the pooled variant call

output file.
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Figure 4.1. Approach for variant detection and genotyping in duplicated genes. Reads
aligned to repeat copies ‘A’ and ‘B’ are shown in blue and yellow, respectively. Gray reads do
not overlap any paralogous sequence variants (PSVs), and cannot be mapped unambiguously.
Five variant sites were identified from the pooled reads: two PSVs and three single nucleotide
variants (SNVs). Using genotype information from population WGS data, we can infer that
variant 𝑣2 is a non-polymorphic PSV site. Therefore, 𝑣2 paralog-specific genotypes are𝑔(𝐴)𝑣2 = 0/0
and 𝑔(𝐵)𝑣2 = 1/1. We can infer paralog-specific genotypes of SNVs 𝑣1 and 𝑣3 based on the reads
that overlap both the variants and the informative PSV 𝑣2. Pooled genotype of the PSV 𝑣4 is
not consistent with the reference, therefore the PSV 𝑣4 is not informative and we cannot infer
paralog-specific genotype of the nearby SNV 𝑣5. Three reads — denoted by the red dashed
border — originated from the copy ‘A’, but exhibit the copy ‘B’ allele at the 𝑣4 site, and, as a
result, are incorrectly mapped to the copy ‘B’.

4.2.2 Evaluating the accuracy of paralog-specific variant calling on simulated
data

To evaluate the accuracy of locus-specific variant calling, we generated two WGS

variant call sets SIM-R and SIM-U. Both simulated call sets contain diploid artificial variants,
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however, while the SIM-R dataset does not contain any variants overlapping PSV sites, SIM-

U dataset contains polymorphic PSV sites according to the PSV allele frequencies in the

European population. For both simulated call sets, we generated four sequencing datasets (see

Section 4.3.7) for a total of eight simulated WGS datasets. Finally, artificial reads were mapped

to the GRCh38 reference genome using BWA-MEM [31, 32] and sequence variants were called

using two state-of-the-art variant callers: FreeBayes [40] and GATK HaplotypeCaller [41].

In order to evaluate locus-specific variant calling within and in the vicinity of the dupli-

cated genes, we utilized 167 low-copy repeat loci, compiled in Prodanov & Bansal (2022) [140].

Considering all repeat copies, the 167 loci span 12.6 Mb and cover 380 protein-coding genes.

For each of the 167 duplicated loci, we obtained aggregate and paralog-specific copy num-

ber estimates using Parascopy [140] and called paralog-specific and pooled variants using

ParascopyVC.

Considering the simulated sequencing datasets with 150 bp paired-reads and 30× cover-

age, benchmarking regions for the SIM-R and SIM-U datasets (see Section 4.3.8) cover 9.86 Mb

and 9.28 Mb, respectively, and the corresponding benchmarking variant call sets contain 9,257

and 19,502 ground truth variants. On the SIM-R dataset (no polymorphic PSV sites), GATK, Free-

Bayes and ParascopyVC show similar recall (quality threhsold = 20): 0.8719, 0.8483 and 0.8814,

respectively, as well as very high precision > 0.996 (see Figure 4.2). Note, that even though

ParascopyVC uses FreeBayes to call pooled variants, ParascopyVC recall for paralog-specific

variants is 3.3% higher than that of FreeBayes.

Nevertheless, once the genome contains polymorphic PSV sites, standard variant calling

accuracy falls drastically. On the SIM-U dataset GATK obtains 𝐹1 score of 0.7654 (recall =

0.7082, precision = 0.8327), FreeBayes shows a slightly higher 𝐹1 score of 0.7889 (recall = 0.6961,

precision = 0.9103). In contrast, ParascopyVC achieves 𝐹1 score of 0.8937 with > 10% higher

recall (0.8099) and almost perfect precision (0.9969) (see Figure 4.2). Across the benchmarking

regions ParascopyVC incorrectly calls only 48 variants, while FreeBayes and GATK incorrectly

identify 1295 and 2738 variants, respectively.
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Figure 4.2. Precision and recall of paralog-specific variant calling on two simulated
WGS samples. Precision and recall are shown for three variant callers: GATK (blue), FreeBayes
(red) and ParascopyVC (yellow); and for two simulated variant sets: SIM-R (no polymorphic
PSVs) and SIM-U (some polymorphic PSVs). (a) Precision-recall curves for two simulated
variant sets, artificially sequenced using 150 bp paired reads with 30× coverage. Dots show
precision-recall values at the quality threshold = 20. (b) Two rows show recall, precision,
and 𝐹1 scores for two simulated variant sets SIM-R and SIM-U. Four columns show artificial
sequencing datasets with various sequencing features (left to right): 150 bp paired reads with
30× and 60× coverage; 100 bp paired reads with 30× coverage; and 150 bp mate pair reads
with 30× coverage. The total length of the benchmarking regions and the number of baseline
variants are shown on the top of each barplot.

To measure the effect of read depth, read length and fragment size, we compared called

variants across six more sequencing datasets (three for SIM-R and for SIM-U). Raised read depth
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(30× → 60×) improves recall by 1.5–2.7% on the SIM-U dataset, and by 3.0–3.5% on the SIM-R

dataset at the expense of diminished precision (-1.5%) for FreeBayes and GATK (see Figure 4.2b,

second column). Variant calling on shorter simulated reads (100 bp instead of 150 bp) produces

similar precision compared to variants obtained using 150 bp reads (see Figure 4.2b, third

column). However, variant calling recall drops significantly, with the decrease ranging from

3.3% (ParascopyVC on SIM-U) to 6.9% (FreeBayes, GATK on SIM-U). Finally, we simulated

mate-pair reads with larger mean fragment size (2500 bp instead of 500 bp). Variant calling

using mate-pair reads produced higher recall than using regular paired-reads by approximately

2% for all variant callers (see Figure 4.2b, fourth column). Additionally, variant calling precision

improved by 1.7% and 2.8% for FreeBayes and GATK on SIM-U dataset, and did not improve

in other cases, as the precision was already high in the initial sequencing datasets. Note, that

ParascopyVC produces higher precision, recall and 𝐹1 scores than FreeBayes and GATK across

all simulated sequencing datasets on the SIM-U variant call set. Additionally, ParascopyVC

produces higher or equal precision, recall and 𝐹1 scores on the SIM-R variant call set.

4.2.3 Evaluating the accuracy of locus-specific variant calling on seven WGS
datasets

The Genome in a Bottle Consortium (GIAB) compiled seven high-confidence variant

call sets [76, 87] for individuals HG001–HG007, obtained by careful aggregation of variant

call sets based on multiple variant calling tools and multiple sequencing technologies. We

used available Illumina WGS data for each of the seven individuals and called variants using

FreeBayes and GATK.

Benchmarking regions for the HG002 WGS dataset cover 5.96 Mb (see Section 4.3.8)

and contain 7,645 ground truth variants. At a quality threshold = 20 GATK correctly calls 6,490

variants (recall = 0.8489), while also calling 802 false variants (precision = 0.8900), achieving a

combined 𝐹1 score of 0.8690. At the same quality threshold FreeBayes calls 6,470 true variants
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Figure 4.3. Precision and recall of paralog-specific variant calling on the GIAB bench-
mark datasets. Precision and recall are shown for three variant callers: GATK (blue), FreeBayes
(red) and ParascopyVC (yellow). (a) The lines show variant calling precision-recall curves for
the HG002 WGS dataset. Labels show specific quality thresholds (0, 20, 50 & 100). This chapter
uses quality = 20 as the default threshold. (b) Seven barplots show recall, precision and 𝐹1 score
for seven GIAB benchmark datasets. The total length of the benchmarking regions and the
number of baseline variants are shown on the top of each barplot.

(recall = 0.8463) and 346 false variants (precision = 0.9479), achieving a higher 𝐹1 score of 0.8942.

In contrast, ParascopyVC correctly calls 6,981 variants (recall = 0.9131) and incorrectly calls

only 53 variants (precision = 0.9923), resulting in a high 𝐹1 score of 0.9511 (see Figure 4.3a).

Even at a quality threshold = 0 (comparing all called variants irrespective of their quality),
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ParascopyVC has higher precision (0.9678, recall = 0.9438) than the highest GATK precision

(quality = 78, precision = 0.9002, recall = 0.6607), while FreeBayes achieves this precision only

at quality = 87 (precision = 0.9678, recall = 0.7349).

Benchmarking regions for the remaining six GIAB variant call sets (HG001, HG003–

HG007) cover on average 5.93 Mb of the LCR regions and contain on average 8,296 baseline

variants (see Figure 4.3b). On all six datasets ParascopyVC shows higher precision and recall

than both FreeBayes and GATK. Across all six datasets ParascopyVC precision does not fall

below 0.9849, while the top precision another variant caller reaches is 0.9481 — approximately

3.7% smaller. On average, ParascopyVC achieves 𝐹1 score = 0.9512 with standard deviation

= 0.0061, while the variant callers FreeBayes and GATK reach 𝐹1 scores 0.8949 ± 0.0100 and

0.8685 ± 0.0117, respectively.

4.2.4 ParascopyVC provides accurately finds pooled variant genotypes

In contrast to other variant calling tools, ParascopyVC finds variants pooled across

multiple repeat copies. This may be beneficial in cases when repeat copies are almost indistin-

guishable from each other, and, as a result, paralog-specific genotypes cannot be identified. We

grouped pooled benchmarking regions (see Section 4.3.9) by the aggregate copy number (4, 6

and 8), and compared ground truth variants with ParascopyVC pooled variant calls.

In total, benchmarking regions for the simulated SIM-R dataset cover 4.83 Mb and 76,668

baseline variants. Even though ParascopyVC precision remains very high (≥ 0.9985) at all copy

number values, recall drops as the copy number raises: 0.9847, 0.9119 and 0.7214 in case of the

aggregate copy numbers 4, 6 and 8, respectively. Benchmarking regions for the SIM-U dataset

cover 4.83 Mb and 74,683 baseline variants. The number of baseline variants is smaller for the

SIM-U dataset for the following reason: all PSVs in the SIM-R dataset are represented by pooled

variants, however, some homozygous unreliable PSVs in the SIM-U dataset will be absent from

the list of pooled variants. ParascopyVC shows high equally high precision (≥ 0.9989) even in
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Figure 4.4. Accuracy of ParascopyVC pooled variant calling on seven WGS datasets.
Seven barplots show recall and precision of ParascopyVC at separate aggregate copy number
values: 4 (green), 6 (orange) and 8 (pink).

the presence of unreliable PSVs, coupled with diminished recall: 0.9746, 0.8443 and 0.5938 at

copy numbers 4, 6 and 8, respectively.

Pooled variant calling finds more variants compared to paralog-specific variant calling.

In two-copy duplications ParascopyVC identified 7,705 true positive non-PSV variants with

variant quality ≥ 20 on the SIM-U dataset. At the same time, only 5,063 of these variants

(72.7%) were identified by ParascopyVC as paralog-specific variant calls on any of the repeat

copies with variant quality ≥ 20. Similarly, only 1,323 (487) variants were identified as both

pooled and paralog-specific calls out of the total 2,779 (1,797) true positive pooled variants in

three-copy (four-copy) duplications.

ParascopyVC shows much high precision (> 0.995) and recall (≥ 0.97) on the HG002

WGS dataset at all aggregate copy number values (see Figure 4.4), where benchmarking regions

cover 2.37 Mb and 36.180 high-confidence pooled variants in total. Across all seven GIAB

WGS datasets, benchmarking regions cover on average 2.47 Mb and 37900 high-confidence

variants. Across all aggregate copy numbers and all WGS datasets, ParascopyVC shows very
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high precision (mean 0.9940 ± standard deviation 0.0036). As expected, recall drops with rising

aggregate copy number: 0.9876± 0.0022 at two-copy duplications, 0.9743± 0.0057 at three-copy

duplications and 0.9407 ± 0.0380 at four-copy duplications.

4.3 Methods

ParascopyVC variant calling runs on top of existing copy number analysis performed

by Parascopy [140] for a single or multiple samples within a set of duplicated loci. Parascopy

output includes (i) reads pooled from various repeat copies; (ii) reference allele frequencies

(𝑓 -values) for paralogous sequence variants (PSVs); and (iii) aggregate and paralog-specific

copy number estimates. ParascopyVC utilizes a modified FreeBayes [40] variant calling tool to

call polyploid sequence variants based reads pooled from all repeat copies. As input, FreeBayes

is provided with pooled reads for a single or multiple samples and a ploidy map that stores

aggregate copy number for each sample and for various subregions of the duplicated locus.

FreeBayes is modified solely to output more information: in addition to identifying potential

variants, modified FreeBayes outputs detailed read-variant observations: read name hash (see

Section C.1.1), observed allele, and average base quality of the nucleotides in the observed

allele in the read.

Next, each sample is analyzed independently (see Figure 4.1). First, ParascopyVC finds

most probable pooled genotypes for all PSVs and variants and selects a set of PSVs with

paralog-specific genotypes that are consistent with the sample paralog-specific copy number.

Resulting set of PSVs can be used to pinpoint read pairs to a specific repeat copy or to a subset

of repeat copies. Finally, ParascopyVC uses read-variant observations to find PSV and variant

paralog-specific genotypes when possible.
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4.3.1 Pooled and paralog-specific genotypes

In a duplicated region with 𝑛 repeat copies, paralog-specific copy number of a sample 𝑠

is a tuple
(
𝑐𝑠𝑖

)𝑛
𝑖=1, 𝑐𝑠𝑖 ∈ N≥0. Each element of the tuple 𝑐𝑠𝑖 stands for the number of times the

corresponding repeat copy 𝑖 appears in the genome sequence of the sample 𝑠 . Due to partial

and full repeat copy deletions and duplications, copy number 𝑐𝑠𝑖 can be both lower and higher

than the reference paralog-specific copy number 𝑐 (ref)
𝑖

= 2. Aggregate copy number represents

the sum copy number across all repeat copies: 𝑐𝑠 =
∑𝑛
𝑖=1 𝑐𝑠𝑖 , while the reference aggregate copy

number is 𝑐 (ref) = 2𝑛.

Duplicated regions harbor both sequence variants and paralogous sequence variants

(PSVs). We examine variants jointly across all repeat copies; as a result, both variants and PSVs

are characterized by a set of 𝑛 genomic positions (one in each duplicated copy) and an allele set

𝐴. In the reference genome, variant 𝑣 exhibits allele 𝑎(ref)
𝑣𝑖

on 𝑖-th repeat copy of the duplication.

Note, that it is possible that various repeat copies of a duplication lie on opposite strands; in

such cases we consider reverse-complement sequences of ‘minus’-strand repeat copies.

Pooled genotype 𝑔𝑣𝑠 of a variant 𝑣 is a multiset of 𝑐𝑠 alleles — such genotype collects

variant alleles over all repeat copies without any specific order and can contain the same allele

many times. A paralog-specific genotype 𝑔𝑣𝑠 is a tuple of 𝑛 allele multisets, where the 𝑖-th

multiset contains 𝑐𝑠𝑖 alleles. As an example, consider a two-duplication and a sample 𝑠 with

aggregate copy number 𝑐𝑠 = 5 and paralog-specific copy number 𝑐𝑠 = (3, 2). One possible

pooled genotype of a variant 𝑣 with two alleles 𝐴𝑣 = {0, 1} would be 𝑔𝑣𝑠 = 0/0/0/1/1 and one

possible paralog-specific genotype would be 𝑔𝑣𝑠 = (0/0/0, 1/1). Each paralog-specific genotype

is associated with a single pooled genotype, obtained by combining all multisets 𝑔𝑣𝑠𝑖 . Note that

a pooled genotype can be associated with multiple paralog-specific genotypes.

We say that a paralog-specific genotype 𝑔𝑣𝑠 is reference-compatible, if, for all 𝑖 , multiset

𝑔𝑣𝑠𝑖 consists of the reference allele 𝑎(ref)
𝑣𝑖

taken 𝑐𝑠𝑖 times. Consequently, we say that a pooled

genotype 𝑔𝑣𝑠 is reference-compatible if it is associated with a reference-compatible paralog-
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specific genotype. Assuming that all repeat copies are present in a sample (𝑐𝑠𝑖 > 0 ∀𝑖), a

reference-compatible pooled genotype would contains at least two different alleles in case of

paralogous sequence variants (PSVs); and exactly one allele in case of variants that do not

overlap PSVs.

It is possible that sample paralog-specific copy number is not fully known: for example

in a three-copy duplication sample aggregate copy number was identified as 𝑐𝑠 = 6 and paralog-

specific copy number as 𝑐𝑠 = (2, ?, ?). In such cases we virtually combine repeat copies with

unknown paralog-specific copy numbers into a new, extended repeat copy. It is possible that

several paralog-specific and several pooled genotypes are reference-compatible if a PSV 𝑣 has

different reference alleles within a single extended repeat copy.

4.3.2 Calculating pooled genotype probabilities

ParascopyVC starts by calculating pooled genotype probabilities 𝑃 (𝑔𝑣𝑠 | 𝑋 ) based on

the allelic read depth 𝑋𝑣𝑠 . ParascopyVC uses multinomial distribution (MN) consistent with

FreeBayes polyploid genotype likelihood calculation [40]. In order to improve genotyping

accuracy, the method discards allele obsevations with base qualities less than 10 and all partial

allele observations. As longer alleles are less likely to be completely covered by a read, we scale

allele probabilities in the multinomial distribution by the factor |𝑟 | − |𝑎𝑖 | − 1, where |𝑟 | is the

average read length and |𝑎𝑖 | is the length of the 𝑖-th allele. Probability of observing allelic read

depth 𝑋𝑣𝑠 given the pooled genotype 𝑔𝑣𝑠 can be calculated in the following way:

𝑃 (𝑋 | 𝑔𝑣𝑠) = 𝑃MN

(
𝑋𝑣𝑠 ; 𝔭(𝑎1, 𝑔𝑣𝑠), . . . ,𝔭(𝑎 |𝐴𝑣 |, 𝑔𝑣𝑠)

)
,

where 𝔭(𝑎, 𝑔) =
(
|𝑟 | − |𝑎 | − 1

)
·max {𝑒 · 𝑐𝑠, 𝜇 (𝑎 ∈ 𝑔)}∑

𝑎′∈𝐴𝑣

(
|𝑟 | − |𝑎′| − 1

)
·max {𝑒 · 𝑐𝑠, 𝜇 (𝑎′ ∈ 𝑔)}

and where 𝑒 is the error rate, 𝑐𝑠 is the aggregate copy number of the sample 𝑠 , 𝐴𝑣 is the full

set of alleles, and 𝜇 (𝑧 ∈ 𝑍 ) is the number of occurences (multiplicity) of an element 𝑧 in the
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multiset 𝑍 . Finally, we use Bayes’ theorem to get the pooled genotype probability

𝑃 (𝑔𝑣𝑠 | 𝑋𝑣𝑠) =
𝑝 (𝑔𝑣𝑠) · 𝑃 (𝑋𝑣𝑠 | 𝑔𝑣𝑠)∑
𝑔′∈𝐺𝑣𝑠

𝑝 (𝑔′) · 𝑃 (𝑋𝑣𝑠 | 𝑔′)
.

Note that the set of pooled genotypes 𝐺𝑣𝑠 depends on the set of alleles 𝐴𝑣 and aggregate copy

number 𝑐𝑠 . Additionally, we select equal pooled genotype priors 𝑝 (𝑔) = 1 / |𝐺𝑣𝑠 |.

To reduce the number of false positive variants, we measure the size of the strand bias

effect on each allele [141]. To do that, we analyze 2 × 2 contingency table with the number of

forward and reverse reads that support the allele in question against the forward and reverse

reads that support any other allele. If Fisher’s exact test [142] 𝑝-value is less than 0.01 for one

of the alleles, we mark the variant as the potential false-positive.

4.3.3 Selecting informative paralogous sequence variants

Paralogous sequence variants (PSVs) are short differences between the sequences of

the repeat copies in the reference genome. For each PSV 𝑣 , Parascopy [140] defines a vector

𝑓𝑣 , where 𝑓𝑣𝑖 is the population frequency of the reference allele 𝑎(ref)
𝑣𝑖

on the repeat copy 𝑖 .

Additionally, Parascopy names a PSV 𝑣 reliable if all its 𝑓 -values are over 0.95. We say that

a PSV is informative, if its reference-compatible paralog-specific genotypes have sufficiently

high probabilities. In such cases a read containing an allele 𝑎 is expected to originate on one of

the repeat copies that harbor the allele 𝑎. Additionally, we discard a PSV if one of its alleles

appears in the reference sequences of all extended repeat copies.

Due to high frequencies of the reference alleles 𝑓𝑣 , most reliable PSVs are informative.

Nevertheless, some unreliable PSVs may be informative too: suppose a PSV 𝑣 in a two-copy

duplication has alleles 𝑎(ref)
𝑣1 = ‘0’ and 𝑎(ref)

𝑣2 = ‘1’ and the reference allele frequencies are 𝑓𝑣1 = 0.99

and 𝑓𝑣2 = 0.60. Suppose the sample 𝑠 is estimated to have paralog-specific copy number

𝑐𝑠 = (2, 2) and pooled PSV genotype 𝑔𝑣𝑠 = 0/0/1/1. Then, based on PSV 𝑓 -values, it is
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possible to calculate various paralog-specific genotype likelihoods, which would show that the

paralog-specific genotype (0/0, 1/1) is much more likely than other paralog-specific genotypes,

for example (0/1, 0/1). Therefore, in this example, PSV 𝑣 is informative and can be used to

differentiate between repeat copies as the most probable paralog-specific genotype is reference-

compatible.

We calculate PSV paralog-specific genotype probabilities based on based on PSV 𝑓 -

values and pooled genotype probabilities 𝑃 (𝑔𝑣𝑠 | 𝑋𝑣𝑠) in the following way:

𝑃 (𝑔𝑣𝑠 | 𝑋𝑣𝑠 ; 𝑓𝑣 ) =
𝑃 (𝑔𝑣𝑠 | 𝑋𝑣𝑠) · 𝑃 (𝑔𝑣𝑠 ; 𝑓𝑣 )∑

𝑔′∈𝐺𝑣𝑠
𝑃 (𝑔′ | 𝑋𝑣𝑠) ·

∑
𝑔′∈𝐺 (𝑔′) 𝑃 (𝑔′; 𝑓𝑣 )

.

where𝐺𝑣𝑠 is the full set of pooled genotypes and𝐺 (𝑔) is the full set of paralog-specific genotypes

associated with the pooled genotype 𝑔. Finally, we calculate the probability of the paralog-

specific genotype as

𝑃 (𝑔𝑣𝑠 ; 𝑓𝑣 ) =
𝑛∏
𝑖=1

𝑓
𝜇

(
𝑎
(ref)
𝑣𝑖
∈𝑔𝑣𝑠𝑖

)
𝑣𝑖

× (1 − 𝑓𝑣𝑖)
𝑐𝑠𝑖−𝜇

(
𝑎
(ref)
𝑣𝑖
∈𝑔𝑣𝑠𝑖

)
.

In other words, probability of the paralog-specific genotype𝑔 is a product of either 𝑓𝑣𝑖 or (1− 𝑓𝑣𝑖)

depending on the match between the genotype alleles and the reference alleles of the PSV 𝑣 .

Finally, we say that the PSV 𝑣 is informative if the sum probability of all reference-compatible

paralog-specific genotypes exceeds 99%.

4.3.4 Discarding conflicting PSVs

In rare cases, a PSV is predicted to have a reference-compatible genotype and is deemed

informative, but in reality possesses a reference-incompatible genotype. For example, a PSV

with relatively high frequencies 𝑓𝑣 and the pooled genotype 𝑔𝑣𝑠 = 0/0/1/1 would be predicted

a paralog-specific genotype 𝑔𝑣𝑠 = (0/0, 1/1), however, the true genotype may be (1/1, 0/0).

88



To find and to discard such PSVs, we search for pairs of closeby PSVs that are covered

by the same read pair with conflicting read-allele observations. To reduce the running time, we

only consider a pair of PSVs if there are less than 10 other informative PSVs between them.

For each pair of PSVs we run a one-tailed Binomial test, where the number of trials is the total

number of read pairs that cover both PSVs, a success represents a read pair with conflicting

allele observations and the probability of a success is 2𝑒 − 𝑒2, where 𝑒 denotes the error rate.

We say that the two PSVs are in conflict, if the test 𝑝-value falls below 10−3.

We construct an undirected graph of conflicts, where each node represent an informative

PSV, and two PSVs are connected if and only if they are in conflict. Next, we aim to keep a subset

of PSVs 𝑉 such that the remaining graph contains no edges and
∑
𝑣∈𝑉 𝑓𝑣 is maximal, where 𝑓𝑣

is the minimal frequency 𝑓 of the PSV 𝑣 across all repeat copies. Unfortunately, this problem

definition is equivalent to the weighted maximum clique problem, which is NP-complete [143].

Because of that, we employ the following greedy heuristic: we iteratively remove the PSV 𝑣

with the maximal remaining number of edges multiplied by
√︃

1 − 𝑓𝑣 , until the graph is edgeless.

4.3.5 Finding likely paralog-specific genotypes for single nucleotide variants

In contrast to paralogous sequence variants, population frequencies of various variant

alleles are unknown. Therefore, we utilize read pairs that overlap both a variant and one or more

informative PSVs to identify the likelihood of various variant paralog-specific genotypes. For

each read pair we estimate possible read location and probabilities (see Section C.1.2 for details).

First, we say that an individual read mate is mapped uniquely if its original mapping quality is

over 50 and if it overlaps non-duplicated region in the genome by at least 15 bp. Second, for

all individual read mates that are not mapped uniquely, we observe all read–informative PSV

interactions and calculate the probabilities 𝑝𝑟 (𝑖) for various possible read 𝑟 locations. For each

informative PSV, probabilities of the read locations that are inconsistent with the observed

allele are multiplied by the error rate 𝑒 (𝑒 = 0.01 by default), while probabilities of all consistent
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locations are multiplied by 1 − 𝑒 . On the next step, read mate 𝑟 ′ location probabilities are

taken into account: 𝑝𝑟 (𝑖) ← 𝑝𝑟 (𝑖) · max{𝑝𝑟 ′ (𝑖), 10−5}; paired read location probabilities are

multiplied by each other, while non-matching paired read locations are penalized. Finally, all

location probabilities are normalized by the paralog-specific copy number and other location

probabilities:

𝑝𝑟 (𝑖) ←
𝑐𝑠𝑖 · 𝑝𝑟 (𝑖)∑𝑛
𝑗=1 𝑐𝑠 𝑗 · 𝑝𝑟 ( 𝑗)

.

For each potential variant, called using FreeBayes [40], we calculate its pooled genotype

probabilities using allelic read depth according to the multinomial distribution. Similarly

to PSVs, we discard allele observations with low base qualities (< 10). In order to reduce

computational complexity, we discard all unlikely pooled genotypes (probability < 10−5), and

store the sum probability of the discarded genotypes, which will be used later to calculate pooled

and paralog-specific genotype qualities. Additionally, we do not use the probabilties of the

remaining pooled genotypes in the subsequent calculations, as it would break the independence

of the paralog-specific genotype likelihood calculation.

Next, for each variant and all applicable paralog-specific genotypes, we calculate paralog-

specific genotype priors 𝑝 (𝑔𝑣𝑠) in the following way: each repeat copy genotype𝑔𝑣𝑠𝑖 is penalized

by the mutation rate (10−3) if non-reference allele is present (homozygous and heterozygous

genotypes are penalized equally). For example, possible pooled genotypes 0/0/0/0 and 0/0/1/1

produce 4 possible paralog-specific genotypes: (0/0, 0/0), (0/0, 1/1), (1/1, 0/0) and (0/1, 0/1)

with the priors approximately equal to 1, 10−3, 10−3 and 10−6, respectively. Paralog-specific

genotype priors for variants that overlap PSVs are calculated according to the PSV 𝑓 -values as

described above: 𝑝 (𝑔𝑣𝑠) = 𝑃 (𝑔𝑣𝑠 ; 𝑓𝑣 ).

Finally, paralog-specific genotype probabilities are updated according to the read lo-

cation probabilities and read–variant allelic observations. Assuming that the read 𝑟 supports

variant allele 𝑎𝑟 and has probability 𝑝𝑟 (𝑖) to originate on the repeat copy 𝑖 , probability of the
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paralog-specific genotype can be described in the following way:

𝑃 (𝑔𝑣𝑠 | 𝑟 ) = 𝑝 (𝑔𝑣𝑠)
𝑛∑︁
𝑖=1

𝑝𝑟 (𝑖)
𝑐𝑠𝑖

(
(1 − 𝑒) · 𝜇 (𝑎𝑟 ∈ 𝑔𝑣𝑠𝑖) + 𝑒 ·

[
𝑐𝑠𝑖 − 𝜇 (𝑎𝑟 ∈ 𝑔𝑣𝑠𝑖)

] )
.

Finally, the full paralog-specific genotype probabilities are calculated across all reads 𝑅𝑣𝑠 that

overlap the variant 𝑣 in the sample 𝑠:

𝑃 (𝑔𝑣𝑠 | 𝑅𝑣𝑠) =
∏
𝑟∈𝑅𝑣𝑠 𝑃 (𝑔𝑣𝑠 | 𝑟 )∑

𝑔′
∏
𝑟∈𝑅𝑣𝑠 𝑃 (𝑔′ | 𝑟 )

.

4.3.6 Output files and quality scores

ParascopyVC generates two output variant call format (VCF) files: pooled and paralog-

specific. In a pooled VCF file, reference allele of a variant or PSV is the corresponding reference

sequence in the first repeat copy of the duplication. In case of PSVs, the reference alleles

from all other repeat copies are stored as alternative alleles. For each sample, ParascopyVC

provides the most probable pooled genotype 𝑔𝑣𝑠 and its Phred quality score, calculated as

𝑄 (𝑔𝑣𝑠) = −10 · log10
(
1 − 𝑃 (𝑔𝑣𝑠)

)
.

In a paralog-specifc VCF file, ParascopyVC outputs variants once for each repeat copy.

For each sample and each repeat copy 𝑖 , ParascopyVC finds the most probable marginal paralog-

specific genotype 𝑔(𝑖)𝑣𝑠 , where 𝑃 (𝑔(𝑖)𝑣𝑠 ) =
∑
𝑔′ s.t. 𝑔′

𝑖
=𝑔
(𝑖 )
𝑣𝑠
𝑃 (𝑔′). Phred quality scores for the marginal

paralog-specific genotypes are calculated in a similar manner to the pooled genotype qualities:

𝑄 (𝑔(𝑖)𝑣𝑠 ) = −10 · log10
(
1 − 𝑃 (𝑔(𝑖)𝑣𝑠 )

)
.

Each variant in a variant call VCF is characterized by its variant quality, which is a

different metric compared to the genotype qualities. Traditionally, variant quality encodes

a probability that the variant genotype contains a non-reference allele for at least one of

the samples. In a pooled output VCF file, ParascopyVC sets PSV qualities to a high constant

value based on the following two cases: (i) if a pooled PSV genotype is reference-compatible,
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then it contains a non-reference allele compared to the first repeat copy; (ii) if a pooled PSV

genotype is not reference-compatible, then it contains a non-reference allele in one of the

marginal paralog-specific genotypes. For all variants that do not overlap PSVs, ParascopyVC

uses underlying FreeBayes quality scores as the variant qualities in the pooled VCF file.

In the paralog-specific output VCF file, ParascopyVC uses the same formula to calculate

variant qualities for both variants and PSVs: 𝑄 (𝑖) (𝑣) = −10
∑
𝑠∈𝑆 log10 𝑃

(
𝑔
(𝑖) (ref)
𝑣𝑠

)
, where𝑔(𝑖) (ref)

𝑣𝑠

is the reference paralog-specific genotype on the repeat copy 𝑖 (consisting entirely of the

reference allele 𝑎(ref)
𝑣𝑖

). In other words, ParascopyVC calculates the Phred quality score of the

probability that all samples exhibit the reference paralog-specific genotype on the repeat copy

𝑖 .

4.3.7 Simulated WGS datasets

To assess the accuracy of the ParascopyVC variant calling, we generated two artificial

variant sets, with and without unreliable PSVs, which we will call SIM-R and SIM-U, respectively.

In case of the SIM-R variant set, we simulated a diploid genome by adding artificial sequence

variants such that each genomic coordinate is mutated with probability 0.001 (approximately

one variant per kilobase). Rates of different variant types (80% substitutions, 10% insertions

and 10% deletions; 61.5% heterozygous variants) were selected to be similar to the variant

rates in the Genome in a Bottle (GIAB) high-confidence variant calls for the HG002 individual

(85.5% substitutions, 7.25% insertions and 7.25% deletions; 61.5% heterozyous variants) [76, 87].

All artificial variants overlapping PSVs were discarded. The final baseline variant set SIM-R

contains 2.74 · 106 sequence variants on the chromosomes 1–22.

In case of the SIM-U variant set, we generated heterozygous and homozygous variants

overlapping PSVs according to the frequencies of the reference PSV alleles (𝑓𝑣 ) in the 503

European ancestry samples from the 1000 Genomes Project (1kGP) [2], calculated by Parascopy

92



v1.7 [140]. Next, we combined the resulting variant set with the SIM-R variant set to obtain a

bigger set of 2.75 · 106 variants.

For each simulated variant set, we generated four artificial sequencing datasets using

ART Illumina [144] read simulator tool v2016-06-05. As a default sequencing dataset, we

generated 150 bp reads modeling Illumina HiSeq 2500 protocol at 30× read depth. Paired-

end simulation was performed with 500 bp mean fragment size and 20 bp standard deviation

(-l 150 -ss HS25 -f 30 -m 500 -s 20). Additionally, we generated three sequencing

datasets, each altering one sequencing feature compared to the default sequencing dataset: (i)

60× read depth instead of 30×; (ii) 100 bp reads instead of 150 bp; (iii) mate-pair simulation

with 2500 bp mean insert size and 50 bp standard deviation (-mp -m 2500 -s 50). Finally, we

mapped artificial reads to the reference genome using BWA-MEM v0.7.17 [31, 32].

4.3.8 Evaluating paralog-specific variant calling

In addition to eight simulated datasets (four sequencing datasets for two variant sets SIM-

R & SIM-U), we utilize seven sets of high-confidence variant calls (HG001–HG007) constructed

by the GIAB Consortium [76, 87]. For each dataset, we mapped the corresponding Illumina

reads to the GRCh38 reference genome using BWA-MEM. As WGS datasets HG005, HG006

and HG007 have very high coverage (≥ 100×), these datasets were subsampled by randomly

selecting read pairs with probabilities 0.1, 0.3 and 0.3, respectively. Subsampling was performed

using Samtools v1.14 [145].

For each of the 15 benchmark datasets, we calculated aggregate and paralog-specific

copy number profiles using Parascopy v1.7 [140] and PSV reference allele frequencies 𝑓𝑣 :

(i) equal to 0.9999 for the simulated dataset SIM-R; (ii) obtained from the 503 European ancestry

samples from 1kGP for the datasets HG001–HG004 and SIM-U; (iii) and obtained from the

504 East-Asian ancestry samples from 1kGP for the datasets HG005–HG007. Based on these

copy number profiles, we called pooled and paralog-specific variants using ParascopyVC v1.8.
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We limited copy number analysis and variant calling to 167 low-copy repeat loci, selected in

Prodanov & Bansal (2022) [140].

As ParascopyVC analysis is limited to the duplicated loci and to the loci with known

aggregate or paralog-specific copy number values, ParascopyVC provides a set of paralog-

specific or pooled regions, where the corresponding variants are called. In case of the simulated

WGS datasets, we used these all paralog-specific genomic regions on chromosomes 1–22, where

reference copy number ranges between 4 and 8. On the other hand, each GIAB WGS benchmark

variant call set is limited to a set of high-confidence benchmarking regions. Consequently, we

overlapped the high-confidence regions with the ParascopyVC paralog-specific regions and

selected regions where aggregate copy number matches the reference copy number and is

bounded between 4 and 8. Additionally, as all benchmark variant calls are diploid, we discard

all subregions with paralog-specific copy number other than two. In case of the GIAB WGS

datasets, we discarded Parascopy paralog-specific regions with non-PASS filters, as they do not

provide confident copy number estimates.

Finally, we calculated precision and recall using RTG tools v3.12.1 [78, 79] for 15

datasets and three variant calling tools: FreeBayes v1.3.5 [40], GATK HaplotypeCaller

v4.2.2 [41] and ParascopyVC v1.7.8.

4.3.9 Evaluating pooled variant calling

In contrast to FreeBayes and GATK, ParascopyVC calculates pooled variant genotypes

in addition to paralog-specific variant genotypes. In order to obtain ground truth pooled

variant calls, we merged benchmark variant calls appearing on various repeat copies. If one

of the repeat copies is not covered by the high-confidence benchmarking regions, we remove

the pooled region from the observation. Similarly to paralog-specific regions, we select a

set of pooled regions that overlap the high-confidence benchmarking regions for the dataset

and where aggregate copy number matches the reference copy number. Finally, we evaluate
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ParascopyVC accuracy separately for different aggregate copy number values (4, 6 and 8) using

RTG tools.
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Supplementary Material for Chapter 2

A.1 Supplementary Figures and Tables
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Figure A.1. Illustration of sub-optimalmapping of long reads in segmental duplications.
Reads mapped using the Minimap2 aligner to a 35 kb region from a segmental duplication
on chromosome 15 (covering the STRC gene) are shown. Reads are shown as horizontal bars
(color-coded by mapping quality) while PSVs are shown as vertical lines. Several reads overlap
multiple PSVs (e.g. read ‘2’ overlaps 6 PSVs) but are still assigned low mapping quality. Other
reads overlap no PSVs (e.g. read ‘1’) and hence cannot be mapped uniquely.
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Figure A.2. Accuracy of read mapping using Minimap2 and Minimap2+DuploMap
on simulated long read data in segmental duplications. Reads of median length 8.5 kb
were used for simulations. (a) Accuracy of Minimap2 and Minimap2 + DuploMap alignments.
(b) MM2 accuracy with different values of parameter 𝑓 (discarding top 𝑓 of the repetitive
minimizers, 2 · 10−4 by default).
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Figure A.3. Improvement in accuracy of read mapping in segmental duplications using
DuploMap in combination with the NGMLR and Winnowmap alignment tools. Each
precision-recall curve is plotted using different mapping quality thresholds.
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Table A.1. Running time andmemory usage of long read alignment tools andDuploMap
on simulated SMS reads. Running time shows the elapsed real time for each aligner using 8
cores. Mapping speed shows the average number of reads analyzed per second (by a single
core). Note that DuploMap analyses only a subset of reads that intersect segmental duplications.
Only the subset of reads that intersect segmental duplications were mapped using BLASR and
Minimap2 with 𝑓 = 0 due to their long running time. All tools were run on a CentOS 6.6 system
with Intel Xeon CPU E5-2670 @ 2.60 GHz, with jobs managed by a Torque/PBS system.

Sequencing Length Aligner Running time Mapping speed Memory usage
technology (kb) (hh:mm) (reads / second) (Gb)
PacBio CLR 8.5 Minimap2 3:54 105.1 13.33
PacBio CLR 8.5 NGMLR 35:18 11.2 10.55
PacBio CLR 8.5 BLASR - 3.6 29.29
PacBio CLR 8.5 Minimap2, 𝑓 = 0 - 15.6 67.68
PacBio CLR 8.5 DuploMap 1:39 10.7 20.16
PacBio CLR 20 Minimap2 3:57 44.9 15.11
PacBio CLR 20 DuploMap 1:27 4.9 17.58
PacBio CLR 50 Minimap2 2:57 19.4 15.38
PacBio CLR 50 DuploMap 1:30 2.1 16.95
ONT 8.4 Minimap2 4:37 91.4 10.90
ONT 8.4 DuploMap 1:24 11.3 15.38

Table A.2. Running time and memory usage of DuploMap on real data. Running time
represents elapsed real time using 8 cores

Genome Sequencing Median Running time Memory usage
technology coverage (hh:mm) (Gb)

HG001 ONT 36 4:57 38.29
HG001 PacBio CCS 29 4:09 29.54
HG002 PacBio CLR 45 8:31 61.88
HG002 PacBio CCS 29 6:29 25.79
HG002 ONT 58 14:28 55.91
HG003 PacBio CLR 20 3:54 32.35
HG004 PacBio CLR 19 3:24 29.13
HG005 PacBio CCS 32 5:51 30.58
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Table A.3. Simulations with non-reference PSVs. Two-copy segmental duplications in the
human genome (hg19) were used for assessing the impact of unreliable PSVs (non-reference)
on the accuracy of DuploMap. Of the 52,276 high-complexity PSVs in two-copy segmental
duplications, we modified the genome sequence for one of the two copies for 0, 15 and 30% of
the PSVs. Reads were simulated using the modified genome and mapped using DuploMap. The
percentage of PSV positions (total count = 104,552) with high quality genotypes (all filters pass
and quality score ≥ 60) is shown in column 2. The precision and recall for reads mapped with
mapping quality ≥ 30 is also shown.

Non-ref PSV positions Incorrect Precision Recall
PSVs (%) genotyped (%) genotypes (%) (%) (%)

0 86.6 0.000 99.91 86.85
15 85.0 0.001 99.90 86.54
30 81.3 0.000 99.91 86.17
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Figure A.4. Comparison of mapping qualities and alignment locations for reads aligned
with Minimap2 and Minimap2 + DuploMap on multiple long-read datasets. Column
contain reads with corresponding mapping quality in the MM2 alignments. Two bars in each
subplot represent reads that have same or different alignments in MM2 and MM2 + DuploMap.
Bar height represents percentage of reads in the corresponding category out of all analyzed
reads in the dataset, and color shows alignment mapping quality after MM2 + DuploMap. Some
bars are clipped, in that cases total bar height is shown at the top of the bar.
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Figure A.5. Precision and recall of variant calling in segmental duplications using
simulated reads aligned with Minimap2 and Minimap2 + DuploMap. Three columns
show different subsets of variants: within all Long-SegDups regions; within Long-SegDups
regions with sequence similarity between 99.0% and 99.9%; and within Long-SegDups regions
with sequence similarity between 99.9% and 100%.
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Figure A.6. Overlap percentage between true location and alignment locations in
Minimap2 mapping of long simulated reads.
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Table A.4. Comparison of variant calling accuracy for HG002 CCS reads aligned with
Minimap2 (MM2) and DuploMap. SNVs were called using Longshot (mapping quality
threshold of 10). ‘v3’ refers to the high-confidence regions of the genome in the GIAB v3.3.2
call set for each genome and ‘v4’ refers to the expanded high-confidence regions in the GIAB
v4.1 callset for HG002. ‘SD’ or Long-SegDups refers to the genomic regions in which reads were
realigned using DuploMap.

Alignment Genome Variant Number of Precision Recall F1
method subset quality variants
MM2 v3 30 3,010,414 0.9963 0.9900 0.9931
MM2 + DuploMap v3 30 3,010,534 0.9963 0.9900 0.9932
MM2 v4 30 3,319,220 0.9973 0.9837 0.9904
MM2 + DuploMap v4 30 3,320,654 0.9972 0.9840 0.9905
MM2 v4 ∩ SD 30 36,044 0.9680 0.8738 0.9185
MM2 + DuploMap v4 ∩ SD 30 37,548 0.9592 0.9020 0.9297
MM2 v4 ∩ SD 60 35,902 0.9701 0.8723 0.9186
MM2 + DuploMap v4 ∩ SD 60 37,421 0.9611 0.9007 0.9299
MM2 v4 ∩ SD 90 35,582 0.9727 0.8668 0.9167
MM2 + DuploMap v4 ∩ SD 90 37,192 0.9634 0.8974 0.9292
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Table A.5. Mappability of 17 disease-associated genes with Minimap2 and Minimap2 +
DuploMap for HG002 PacBio CCS dataset. MM2 coverage columns show percentage of
bases covered by at least 15 reads (half the median coverage) with high mapping quality (≥ 10
and ≥ 20) in Minimap2 alignments in all exons of the corresponding gene. Last two columns
show difference between percentage of covered bases in Minimap2 + DuploMap and Minimap2
alignments.

Gene Chromosome Sum exon MM2 coverage (%) Δ MM2 + D coverage (%)
length MQ ≥ 10 MQ ≥ 20 MQ ≥ 10 MQ ≥ 20

NAIP 5 7,704 20.6 9.7 +79.4 +90.3
C4B 6 5,427 36.8 28.6 +63.2 +71.4
SMN1 5 2,234 0.0 0.0 +59.1 +59.1
GTF2I 7 5,889 55.0 52.6 +45.0 +47.4
C4A 6 5,427 57.9 53.6 +42.1 +46.4
GTF2IRD2 7 5,394 48.3 22.0 +18.7 +45.0
PPIP5K1 15 6,575 90.3 81.6 +9.7 +18.4
CATSPER2 15 4,538 95.2 95.2 +4.8 +4.8
PDPK1 16 8,106 95.3 93.7 +4.7 +6.3
SMN2 5 2,671 62.9 57.1 +4.5 +10.3
NEB 2 26,310 99.5 98.0 +0.5 +2.0
OTOA 16 4,180 100.0 96.3 +0.0 +3.7
CFC1 2 1,669 100.0 0.0 +0.0 +100.0
OCLN 5 6,549 100.0 94.1 +0.0 +5.9
PMS2 7 5,150 97.9 85.4 +0.0 +12.5
NCF1 7 2,022 100.0 93.0 +0.0 +7.0
CR1 1 9,953 86.4 85.4 -1.0 +0.0
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Figure A.7. Example of a variant outside the GIAB high-confidence region identified
using Minimap2 + DuploMap alignments of PacBio CCS reads. Pileups of 10X Genomics
linked-reads and PacBio CCS reads for the individual HG002 (aligned with Minimap2 and
Minimap2 + DuploMap) in a window around the position chr1:120,245,942 (hg38) are shown.
Each row shows a single position, and each column represents a single read. First digit of
mapping quality is shown on top (0-6) and is highlighted in red for reads with mapping quality
less than 10. The variant lies within 333 kb duplication with sequence similarity 99.2%. The
variant is present in the GIAB and 10X Genomics calls with genotype equal to 1/1. However, all
CCS reads mapped using Minimap2 have low MAPQ and hence no variant is called. Minimap2
+ DuploMap alignments have high mapping quality at this locus enabling Longshot to identify
the variant with the correct genotype.
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Figure A.8. Example of how the improved mappability of DuploMap reduces false
negatives in variant calling using PacBio CCS reads. Pileups of 10X Genomics linked-
reads and PacBio CCS reads for the individual HG002 (aligned with Minimap2 and Minimap2
+ DuploMap) in a window around the position chr15:32,540,315 (hg38) are shown. Each row
shows a single position, and each column represents a single read. First digit of mapping quality
is shown on top (0-6) and is highlighted in red for reads with mapping quality less than 10. The
variant lies within a 218 kb duplication with sequence similarity 99.5%. The variant is present
in the GIAB benchmark variant calls and the 10X Genomics calls with genotype equal to 0/1.
However, all CCS reads mapped using Minimap2 that have high mapping quality have the
alternative allele ‘A’ resulting in a homozygous variant call (genotype = 1/1). After realignment
using DuploMap, all reads have high mapping quality and the variant is called using Longshot
with the correct genotype (0/1).
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Figure A.9. Example of a potential false negative call in the GIAB benchmark variant
call set identified using DuploMap alignments. Pileups of 10X Genomics linked-reads
and PacBio CCS reads for the individual HG002 (aligned with Minimap2 and DuploMap) in
a window around the position chr1:143,457,471 (hg38) are shown. Each row shows a single
position, and each column represents a single read. First digit of mapping quality is shown on
top (0-6). The position lies within a 220 kb long segmental duplication with sequence similarity
99.6%. The variant lies in high-confidence GIAB regions, but is absent in the GIAB benchmark
variant calls. Nevertheless, the variantt is present in the 10X Genomics calls. However, all CCS
reads mapped using Minimap2 have reference allele ‘C’ and hence the variant is not called.
After realignment using DuploMap, the number of reads covering this position increases from
13 to 21 and includes 8 reads that support alternative allele ‘T’. Using Longshot, a variant is
called at this position that matches the 10X variant call.
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Figure A.10. Example of a medically-relevant gene (GTF2I ) with additional variants
called using DuploMap alignments. An Integrated Genomics Viewer (IGV) [146] view of a
30 kb region (chr7:74729600-74760692, hg38 reference) within the GTF2I gene that overlaps a
segmental duplication is shown. The region is not well covered using Minimap2 alignments
(reads with mapping quality ≥ 10) but shows improved coverage using Minimap2+Duplomap
alignments. Variants called using the Minimap2, Minimap2+Duplomap alignments, and 10X
reads are also shown. 25 SNVs are called using Minimap2+DuploMap alignments that are
identical to the 10X variant calls. Only 9 SNVs are called using the Minimap2 alignments. The
region is partially covered in the GIAB v4.1 benchmark variant calls with only 7 variant calls.
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Figure A.11. Illustration of how incorrect short readmapping due to unreliable PSVs can
lead to false positive and false negative variant calls. A two-copy segmental duplication
is shown with two PSVs that distinguish ‘copy 1’ and ‘copy 2’. The sequenced genome carries
a variant (A allele) on one of the haplotypes of ‘copy 2’. One of the two PSVs is actually a
variant in the sequenced genome with the ‘T’ allele instead of the ‘C’ allele in ‘copy 2’. Hence,
reads with the ‘A’ allele that originate from ‘copy 2’ are mismapped to ‘copy 1’ resulting in a
false positive variant call at the homologous position in ‘copy 1’ with the alternate allele being
identical to the PSV allele.
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A.2 Supplementary Methods

A.2.1 Filtering PSVs

To identify low-complexity PSVs we count the number of unique 𝑘-mers (with 𝑘 = 3) in

a window around the PSV. PSVs for which the number of 𝑘-mers divided by the maximal number

of𝑘-mers for the window of the same size is less than 60% for substitutions and 80% for indels are

filtered out. We also filter out PSVs for which it is difficult to distinguish between the two alleles

due to high sequencing error rates. For a read 𝑟 that covers a PSV 𝑣 , we calculate the alignment

probabilities for each of the two alleles of the PSV 𝑠
(𝑖)
𝑣 = 𝑃 (𝑟𝑣 | 𝑆 (𝑖)𝑣 ) and 𝑠 ( 𝑗)𝑣 = 𝑃 (𝑟𝑣 | 𝑆 (𝑖)𝑣 ). We

say that the read has an ambiguous alignment for the PSV if max{𝑠 (𝑖)𝑣 , 𝑠 ( 𝑗)𝑣 }/min{𝑠 (𝑖)𝑣 , 𝑠 ( 𝑗)𝑣 } < 4.

After the first iteration of the DuploMap algorithm, we remove all PSVs for which 30% or more

reads have an ambiguous alignment. This filtering removes PSVs that were not identified as

low-complexity but still have noisy local realignment probabilities. It is possible that the PSV

in the sequenced genome has a sequence different from the two known alleles 𝑆 (𝑖)𝑣 and 𝑆 ( 𝑗)𝑣 .

This step can also filter out such PSVs.

A.2.2 Identifying candidate alignment locations for a read

In the PSV database, we store each pair of homologous sequences as a collection of pairs

of windows (𝑤 (1), 𝑤 (2)), where each window is approximately 100 bp in length. The windows

are constructed from the pairwise alignment such that window𝑤 (1) in one of the sequences is

aligned to the window𝑤 (2) in the other. For an aligned read 𝑟 , we consider windows
{
𝑤
(1)
𝑖

}𝑛
𝑖=1

that intersect its primary alignment. Using the database, we can identify all windows
{
𝑤
(2)
𝑖

}𝑛
𝑖=1

that are homologous to the windows of the primary alignment of the read. Without loss of

generality, suppose that all pairs of windows are on same strand in the genome. We reorder

the indices so that windows
{
𝑤
(2)
𝑖

}𝑛
𝑖=1

are sorted by their genomic positions. Additionally, we
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define a function 𝑝𝑜𝑠1
(
𝑤 (2)

)
that returns a genomic position of the window𝑤 (1) . To identify

possible alignment locations we search for pairs of indices 𝑖 ≤ 𝑗 such that

1. windows𝑤 (2)
𝑖

and𝑤 (2)
𝑗

have the same order in the read: 𝑝𝑜𝑠1
(
𝑤
(2)
𝑖

)
≤ 𝑝𝑜𝑠1

(
𝑤
(2)
𝑗

)
,

2. location is not too short: 𝑗 ≥ 𝑖 +𝑚, where𝑚 is half of the number of non-overlapping

windows in the initial alignment,

3. location generated from windows 𝑤 (2)
𝑖

and 𝑤 (2)
𝑗

is not more than 20% longer than the

biggest of the read length and the initial alignment size,

4. no other pair of indices 𝑖′ ≤ 𝑖, 𝑗 ′ ≥ 𝑗 produces a possible alignment location.

For an existing primary alignment with start 𝑥𝑙 , end 𝑥𝑟 and soft clipping 𝑦𝑙 and 𝑦𝑟 we

generate an alignment location by adding padding of size max
{
0, 𝑦𝑙 + 𝑝𝑜𝑠1

(
𝑤
(2)
𝑖

)
− 𝑥𝑙

}
to the

left of the window𝑤
(2)
𝑖

. Similarly, we add padding of size max
{
0, 𝑦𝑟 + 𝑥𝑟 − 𝑝𝑜𝑠1

(
𝑤
(2)
𝑗

)}
to the

right of the window𝑤
(2)
𝑗

.

A.2.3 LCS-based filtering of alignment locations

We filter possible alignment locations using longest common subsequences (LCS) be-

tween the 𝑘-mers of the read and the 𝑘-mers of each candidate alignment location (𝑘 = 11, by

default). The LCSk++ algorithm [73] is used to find the LCS. If one or more of the alignment

locations for a read is located near a gap or missing sequence in the reference genome, the LCS

score may not reflect the alignment of the full sequence of the read. To avoid this behavior,

we compute the LCS scores for a pair of locations using a truncated read sequence. The read

is truncated using the location of the last (or first) 𝑘-mer that is shared between the read and

both locations.

To select a smallest non-empty subset of alignment locations that dominate all other

locations we construct a directed graph, where each node represents a single location. For
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a pair of locations 𝑖 and 𝑗 if location 𝑖 dominates location 𝑗 we add an edge from the node

𝑗 to node 𝑖 (worse to best). We add edges in both directions if neither location dominates.

Afterwards, we split the graph on strongly connected components [147] and select all locations

from the sink component.

A.2.4 Identifying reads with high discordance with PSVs

To find reads that show high discordance with PSVs, we calculate the number of conflicts

(mismatches) between each read and the PSVs it intersects. For a given read 𝑟 mapped to location

𝑖 , we analyse all reliable PSVs that intersect the new primary alignment location for the read.

The second position for different PSVs may lie in different homologous locations (denoted by

(−𝑖)). We define the conflict rate for the read 𝑟 as

∑
𝑣 1

(
𝑠
(−𝑖)
𝑣 /𝑠 (𝑖)𝑣 ≥ 10

)
∑
𝑣 1

(
max{𝑠 (𝑖)𝑣 , 𝑠 (−𝑖)𝑣 }/min{𝑠 (𝑖)𝑣 , 𝑠 (−𝑖)𝑣 } ≥ 10

) ,
where 1 denotes indicator function, 𝑠 (𝑖)𝑣 = 𝑃 (𝑟𝑣 | 𝑆 (𝑖)𝑣 ) and 𝑠 (−𝑖)𝑣 = 𝑃 (𝑟𝑣 | 𝑆 (−𝑖)𝑣 ) represent

alignment probabilities for two alleles of the PSV 𝑣 . In the above formula, the denominator

represents the numbers of PSVs that have big difference between alignment probabilities for

two alleles. The value in the numerator shows the number of PSVs that do not support location

𝑖 .

For a given cluster of segmental duplications, we estimate the average conflict rate

using all reads mapped to the cluster with high mapping quality and with at least five PSVs. We

use the average conflict rate and the binomial test to test if the observed number of conflicting

PSVs is higher than expected. Reads for which the Bonferroni-corrected p-value is lower than

0.05 are assigned a low mapping quality (5 by default).
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A.2.5 Mappability of exons

To calculate the mappability of disease-associated genes using long reads, we calculated

the percentage of positions covered by at least 10 reads with mapping quality greater than a

specific threshold. We only analysed positions that were located in at least one exon of the

GENCODE annotation for that gene [130].

A.2.6 Estimating coverage

To calculate read coverage for PacBio and Oxford Nanopore whole-genome sequencing

we selected 200,000 positions at random for the hg38 genome (using bedtools random). We

then selected 100,000 positions (at random) that lie on chromosomes 1-22 outside of centromeres

and telomeres. For each position 𝑥 we counted the number of reads (passing samtools flag

3844) with alignment starting at position ≤ 𝑥 and ending at position ≥ 𝑥 . Then, the median

value of the measured coverages was taken.

A.2.7 Pileups

We constructed pileups using the pileuppy tool v0.2.1 available at https://gitlab.com/

tprodanov/pileuppy.

A.2.8 Datasets

Alignment and variant calling files can be found at the following links:

• HG002 (NA24385) PacBio CLR: https://ftp-trace.ncbi.nih.gov/giab/ftp/data/

AshkenazimTrio/HG002 NA24385 son/PacBio MtSinai NIST/PacBio minimap2 bam

• HG002 (NA24385) PacBio CCS: https://ftp-trace.ncbi.nih.gov/giab/ftp/data/

AshkenazimTrio/HG002 NA24385 son/PacBio CCS 15kb/GRCh38 no alt analysis
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• HG002 (NA24385) Oxford Nanopore: https://ftp-trace.ncbi.nlm.nih.gov/giab/

ftp/data/AshkenazimTrio/HG002 NA24385 son/Ultralong OxfordNanopore/

combined 2018-08-10

• HG002 (NA24385) 10X: https://ftp-trace.ncbi.nih.gov/giab/ftp/data/AshkenazimTrio/

analysis/10XGenomics ChromiumGenome LongRanger2.2 Supernova2.0.1 04122018/

GRCh38

• HG002 (NA24385) GIAB benchmark calls: https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/

release/AshkenazimTrio/HG002 NA24385 son

• HG003 (NA24149) PacBio CLR: https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

AshkenazimTrio/HG003 NA24149 father/PacBio MtSinai NIST/PacBio minimap2

bam

• HG004 (NA24143) PacBio CLR: https://ftp-trace.ncbi.nlm.nih.gov/giab/

ftp/data/AshkenazimTrio/HG004 NA24143 mother/PacBio MtSinai NIST/

PacBio minimap2 bam

• HG005 (NA24631) PacBio CCS: https://ftp-trace.ncbi.nih.gov/giab/ftp/data/ChineseTrio/

HG005 NA24631 son/PacBio SequelII CCS 11kb/HG005 GRCh38

• HG005 (NA24631) GIAB benchmark calls: https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/

release/ChineseTrio/HG005 NA24631 son

• HG001 (NA12878) Oxford Nanopore: https://github.com/nanopore-wgs-consortium/

NA12878

• HG001 (NA12878) PacBio CCS: https://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/

PacBio SequelII CCS 11kb

• HG001 (NA12878) 10X: https://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/

10Xgenomics ChromiumGenome LongRanger2.1 09302016/NA12878 GRCh38

• HG001 (NA12878) Platinium Genome: ftp://ussd-ftp.illumina.com/2017-1.0/hg38/small

variants/NA12878/
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Figure B.1. Comparison between Parascopy and experimental AggregateCN estimates
for 18 1kGP samples. Histograms show aggregate read depth distribution at 140 100 bp
windows within NPY4R/2 duplication. Experimental AggregateCN values were obtained for 18
1kGP samples using ddPCR [148]. Parascopy AggregateCN estimates match with experimental
values in 14 samples (shown with dashed blue-yellow lines). In the remaining 4 samples,
Parascopy and ddPCR AggregateCN estimates are shown with separate blue and yellow ver-
tical lines, respectively. The copy number estimates from CNVnator and QuicK-mer2 match
Parascopy’s estimates for all 4 samples in which Parascopy and experimental copy number
estimates disagree.
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Figure B.2. Comparison of experimental AggregateCN estimates for 225 1kGP samples
at the AMY1A/B/C locus with Parascopy, CNVnator and QuicK-mer2 AggregateCN
estimates. The percentage of available AggregateCN estimates, Pearson correlation coefficient
value (𝑟 2) and average absolute error (𝛿) for each method are shown in the top left of each plot.
Low quality copy number estimates are marked in red.
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Figure B.3. Comparison of CNVnator, QuicK-mer2 and Parascopy AggregateCN esti-
mates for four samples at the PMS2 locus. The four panels correspond to the four samples
which were previously reported [112] to have a partial deletion within the PMS2CL pseudogene
(overlapping PMS2 exons 13 and 14). The three vertical columns show copy number profiles for
the three CNV-detection methods: CNVnator, QuicK-mer2 and Parascopy. Black dotted line
shows fractional AggregateCN estimates, while the blue solid line shows integer AggregateCN
estimates. Vertical gray and red rectangles display the duplicated PMS2 exons 11–15.
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Figure B.4. Estimation ofmean read depth (and variance) using non-duplicatedwindows
across the genome. The mean and variance values across different GC-bins are shown for one
sample with PCR-free WGS data (A) and PCR-based WGS data (B). Dots show empirical read
depth mean and variance as a function of GC-content, while solid lines show smoothed mean
and variance approximations, obtained using the LOWESS procedure [149, 150] (not calculated
in gray areas). Fit of various distributions (and corresponding log-likelihood values) to the
read depth are shown for PCR-free data (C) and PCR-based data (D). For PCR-free WGS, both
Negative Binomial and Poisson distributions give a similar fit of the read depth distribution
while the Poisson has a significantly worse fit for PCR-based WGS.
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Figure B.5. Normalized read depth in moving windows for 83 Han Chinese samples
from IGSR and BGI datasets. Each panel consists of 83 blue lines, each shows normalized
read depth at three- and two-copy duplication chr7:74,769,000-74,856,500 that harbors NCF1 and
GTF2IRD2 genes. Normalized read depth is averaged for each sample across moving 2,500 kb
windows. Gray line shows reference copy number. (A) IGSR dataset: no read depth scaling.
(B) IGSR dataset: scaling read depth based on window-specific multipliers𝑚𝑤 (same for all
samples). (C) BGI dataset: no read depth scaling. (B) BGI dataset: scaling read depth based on
window-specific multipliers𝑚𝑤 (same for all samples).
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Figure B.6. PSV f -values for the SMN1/2 locus estimated using Parascopy for the same
set of 83 Han Chinese samples with two different WGS datasets. The plot shows 42
PSVs in the vicinity of the SMN1 gene, of them 22 lie within SMN1. Horizontal black line
shows reliability threshold (0.95), reliable PSVs have 𝑓 -values over the threshold on both copies.
Reliable PSVs used in SMNCopyNumberCaller are shown in red and marked by an asterisk.
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Figure B.7. Structure of the duplication at the GBA locus. The duplication affects a region
between the GBAP1 pseudogene exons 1-9 and the GBA gene exons 10-11, including a region
between GBAP1 and GBA, which is unique in the reference genome (shown in light blue). The
duplication was constructed using a visual inspection of GBA locus de-novo assemblies. De-novo
assemblies were obtained using SPAdes [151] based on the reads mapped to chr1:155,200,000-
155,260,000 in two 1kGP samples (NA19031 and NA19159).
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Figure B.8. Comparison of Parascopy and QuicK-mer2 AggregateCN and ParalogCN
estimates for four duplicated disease-associated genes: (A) ABCC6, (B) FCGR3A/B (B),
(C) SMN1/2 and (D) ZP3/POMZP3. The total number and number of reliable PSVs are also
shown for each locus. For visual clarity, small jitter was added to the integer Parascopy copy
number estimates.
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Table B.1. Accuracy of detecting partial deletions at the SMN1/2 and PMS2/PMS2CL
loci using four different methods. For the SMN1/2 partial deletion, 79/1109 samples were
identified to carry the deletion event using MLPA data [113]. For the PMS2/PMS2CL deletion,
4/150 samples with deletions were identified using LR-PCR [112]. AggregateCN estimates at
single positions within SMN1 exons 2 & 8 and PMS2 exons 14 & 15 were used for evaluation of
each method.

Method SMN1/2 PMS2/PMS2CL

Sensitivity Specificity Sensitivity Specificity
Parascopy (Qual ≥ 20) 1.000 1.000 0.500 1.000
Parascopy (Qual ≥ 0) 1.000 1.000 1.000 1.000
SMNCopyNumberCaller 1.000 0.999 — —
CNVnator (Qual ≥ 20) 0.797 0.850 0.500 0.743
CNVnator (Qual ≥ 0) 0.823 0.849 0.750 0.691
QuicK-mer2 0.709 0.382 0.000 1.000
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Table B.2. Concordance of Parascopy copy number estimates between replicate samples
across 167 duplicated loci obtained using two independent sets of model parameters.

Data type Metric (1) (2) (3) (4)
CHB IBS IBS 2/3 IBS 1/3

AggregateCN
Available estimates (%) 96.3 95.9 94.0 88.3
Concordance (%) 100.0 100.0 100.0 99.9
Mean absolute difference 0.000 0.000 0.000 0.001

ParalogCN
Available estimates (%) 71.8 71.9 71.7 70.4
Concordance (%) 98.9 98.9 98.8 98.4
Mean absolute difference 0.043 0.033 0.034 0.038

(1) 103 Han Chinese samples analyzed using EAS and EUR model parameters
(2) 107 Iberian samples analyzed using EAS and EUR model parameters
(3-4) 107 Iberian samples subsampled to two-third & one-third coverage (EAS model parameters)
and compared to full-coverage dataset (EUR model parameters)
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B.2 Supplementary Methods

B.2.1 Creating homology table

The structure of the homology table is similar to the databases of segmental duplications

that is available for human and other genome assemblies [6]. The motivation for constructing

the homology table is to store extra information for pairs of homologous sequences and to

additionally store short pairs of homologous sequences (< 1 kb) that are absent in segmental

duplication databases.

To create the homology table, we split the reference genome into artificial reads of

fixed length (900 bp) at a gap of every 150 bp and align the reads back to the reference genome

using BWA [31]. For reads from repetitive regions, BWA reports the original location of the

read as well as other regions in the genome, which we will call homologous segments. For each

homologous sequence, we store the genomic coordinates, sequence alignment (CIGAR) and

alignment strand. We filter homologous segments by length and sequence similarity (≥ 250 bp

and ≥ 96%, by default). If the number of retained homologous segments for a region is more

than a threshold (≥ 10 by default), we discard the read and mark its location as too complex for

subsequent analysis.

Next, we combine overlapping read–homologous segment pairs into long duplications.

To do that, we construct a directed graph where each node stores a read–segment pair (a read

with 𝑛 homologous segments would be represented by 𝑛 nodes in the graph). We create an

edge between nodes if both reads and their homologous segments overlap and are on the same

strand. Direction of the edge is determined by the order of the reads and should match the

order of the corresponding homologous segments.

We start the graph simplification by removing transitive edges. Next, we attempt to

simplify the graph in cases where a node has two or more in- or out-edges. Without loss of

generality, suppose there is a node with two or more out-edges and all homologous segments
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are on the “+” strand. The first node consists of the read 𝑎 and homologous segment 𝑏 and out-

edges lead to nodes with reads {𝑎𝑖} and homologous segments {𝑏𝑖}. We define two vectors of

distances 𝑑𝑖1 = dist(𝑎, 𝑎𝑖) and 𝑑𝑖2 = dist(𝑏, 𝑏𝑖), where dist(𝑥,𝑦) represents the distance between

starts of genomic regions 𝑥 and 𝑦. In other words, 𝑑𝑖1 and 𝑑𝑖2 represent the jump between two

consecutive reads and their homologous counterparts. We will also denote the length of the

region 𝑥 as len(𝑥). Afterwards, we mark an edge 𝑖 as redundant if at least one of the following

statements is true:

• 𝑑𝑖1 > min{len(𝑎), len(𝑎𝑖)} / 2,

• 𝑑𝑖2 > min{len(𝑏), len(𝑏𝑖)} / 2,

• min{𝑑𝑖1, 𝑑𝑖2} > max{𝑑𝑖1, 𝑑𝑖2} / 2.

We then remove all redundant out-edges if at least one non-redundant out-edge remains.

The reasoning behind this procedure is that if there are several possible continuations of the

long homologous region, they must conflict with each other (because all transitive edges were

already removed). This implies that there is a repeat, which is shorter than the artificial read

size, and the reads or their homologous segments align to different copies of this repeat. In that

case we want to keep an edge where jumps 𝑑𝑖1 and 𝑑𝑖2 are relatively small (first two statements),

and similar in size (third statement). Note, that removed edges do not lead to removed nodes,

so no information about additional small homologous regions is lost.

After graph simplification, we search for paths in the graph such that every node except

the first has one in-edge, and every node except the last has one out-edge. We discard short

paths (less than 4 nodes by default), if they do not form a separate connected component in the

graph, and discard regions represented by these nodes from any further analysis. Finally, we

combine a path of nodes into a single duplication. If an obtained duplication overlaps itself, we

split it into several shorter duplications such that no duplication is self-overlapping.
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B.2.2 Calculating background read depth

In order to accurately estimate copy number from read depth in repetitive regions

of the genome, we calculate read depth in a large number of unique regions of the genome

(reference copy number 2). In case of the human genome, we use a predetermined set of

fixed-length (default = 100 bp) non-overlapping windows (≈ 90,000 windows for both hg19 and

hg38 versions of the human genome). For other genomes, it is feasible to select a random set of

non-overlapping fixed length windows outside repetitive regions.

For each window, the read depth is calculated by counting the number of read pairs

for which the center of the first read lies within the window. This ensures that each read is

counted once, and read counts from nearby windows are independent. For the same reason,

we consider each paired-end read as a single entity. A window may have an abnormal read

depth if it contains an insertion or deletion, overlaps a transposable element or other short

duplication, or if it has low-complexity sequence. Such windows can skew the background

read depth distribution. Therefore, we discard a window and call it irregular if at least 10% of

reads in the window correspond to one of the three categories: reads with low mapping quality

(< 10); reads not mapped in a proper pair; or reads with soft clipping at the ends. In addition,

we also remove one adjacent window to the left and right of each irregular window.

For each sample and each GC-content value we aim to find a separate set of distribution

parameters that would explain read depth in unique regions of the genome. To a select read

depth distribution we evaluated Gaussian, Poisson and Negative Binomial distributions (Figure

B.4C-D) and found that Negative Binomial fits the observed values better, which is consistent

with the previous studies [152, 153].

Next, we use LOWESS smoothing procedure [149, 150] to approximate read depth mean

and variance for various GC-content values. As input, LOWESS takes a list of points (𝑥,𝑦)

with the corresponding weights, if needed. As output, LOWESS provides a smoothed mean 𝑦

value for each requested 𝑥 value. Additionally, LOWESS has two parameters: local polynomial
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degree (we use degree 1) and a fraction parameter, which specifies that for each 𝑥 value only

the closest fraction of the input points will be used. We run LOWESS smoothing procedure

with 𝑥 = [0, 100] ∩ Z and the following parameters:

• Read depth mean: As input to LOWESS we use a set of points with 𝑥 = window GC-

content and 𝑦 = window read depth (one point for each window). By default, we use

fraction parameter = 0.1.

• Read depth variance: For read depth variance we cannot use individual read depth

observations, therefore we create one point for each GC-content value, for which there

are at least 10 windows. As 𝑦 values we use read depth variance for windows with the

corresponding GC-content, and we provide weight of the point based on the number of

the corresponding windows. Here, we use fraction parameter = 2/3.

As small number of genomic windows can lead to incorrect estimation of read depth

mean and variance, we discard a set of very small and very large GC-content values and do not

use windows with such GC values in copy number estimation. By default, we keep GC-content

values 𝑢, for which there are both ≥ 1000 input genomic windows with GC-content values ≤ 𝑢

and ≥ 1000 windows with values ≥ 𝑢. This way, for the default set of 90,000 windows for the

hg38 reference genome we keep GC-content values from 22 to 72 (Figure B.4A-B).

For each non-discarded GC-content value we calculate Negative Binomial parameters

as 𝑛 = 𝜇2/(𝑣 − 𝜇) and 𝑝 = 𝜇/𝑣 according to the methods of moments [154], where 𝜇 and 𝑣

are the read depth mean and variance approximations obtained using the LOWESS procedure.

As Negative Binomial random variables must have variance greater or equal to the mean, we

update variance as 𝑣 ← max{𝑣, 𝜇 + 0.001} before calculating parameters 𝑛 and 𝑝 .

B.2.3 Re-mapping reads

In order to accurately calculate aggregate read depth and PSV-allelic read depth, we

use a set of pooled reads. For each region 𝑅, we re-map reads from regions, homologous to 𝑅,
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back to 𝑅. We do that by utilizing sequence alignments between duplication copies, stored in

the homology table. If a read is mapped to one of the duplication copies without gaps, read

alignment to a different copy can be easily inferred using the sequence alignment between

duplication copies (stored in the homology table). Otherwise, we merge the read alignment

with the duplication sequence alignment in order to obtain a set of read positions matching

second copy positions. Next, we fill the gaps in the alignment using Needleman-Wunsch

algorithm [33]. Additionally, if the original read alignment contained soft clipping, we perform

semi-global alignment [34] to check if the ends of the read can be aligned to the second copy.

This procedure ensures that the vast majority of reads can be re-mapped without performing a

full realignment of the read to the region 𝑅.

B.2.4 Finding aggregate copy number profiles

For a region group with reference copy number 𝑐𝑟 we calculate aggregate copy number

profiles using a matrix of aggregate read depth observations {𝑜 (𝑠)𝑤 } for all windows𝑤 ∈𝑊 and

samples 𝑠 ∈ 𝑆 .

B.2.4.1 Estimating number of AggregateCN states

Average normalized aggregate read depth for a sample is calculated as

𝑜 (𝑠) =
1
|𝑊 |

∑︁
𝑤∈𝑊

𝑜
(𝑠)
𝑤 · 2 · 𝑝 (𝑠)𝑤

𝑛
(𝑠)
𝑤 ·

(
1 − 𝑝 (𝑠)𝑤

) ,
where 𝑝 (𝑠)𝑤 and 𝑛(𝑠)𝑤 are Negative Binomial (NB) parameters for sample 𝑠 and window𝑤 . Next,

we select the minimum and maximum AggregateCN values:

𝑐1 = max
{
0, 𝑐𝑟 − 2 · 𝐵𝑙 , min

{
𝑐𝑟 − 𝐵𝑙 , min

𝑠

⌊
𝑜 (𝑠)

⌋
− 1

}}
,
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𝑐𝐾 = min
{
𝑐𝑟 + 2 · 𝐵𝑟 , max

{
𝑐𝑟 + 𝐵𝑟 , max

𝑠

⌈
𝑜 (𝑠)

⌉
+ 1

}}
,

where 𝐵𝑙 and 𝐵𝑟 are bounds on how much copy number can differ from the reference copy

number 𝑐𝑟 , and are equal 5 and 7 by default, respectively. Range of AggregateCN values from

𝑐1 to 𝑐𝐾 will be used as a set of hidden states in AggregateCN Hidden Markov Model.

B.2.4.2 HMM definition

We define a homogeneous discrete-time HMM [127] for generating the read depth in 𝑇

windows across a region with reference copy number 𝑐𝑟 as follows:

1. For all windows in the region, we define a set of hidden states 𝐶 , |𝐶 | = 𝐾 corresponding

to 𝐾 possible AggregateCN states. We denote hidden state of a sample 𝑠 at window𝑤 as

𝑍
(𝑠)
𝑤 .

2. The initial state distribution 𝜋𝑐 = max
{√
𝑡, 1
|𝑆 |

}
for AggregateCN 𝑐 ≠ 𝑐𝑟 and 𝜋𝑐𝑟 =

1 − ∑
𝑐≠𝑐𝑟

𝜋𝑐 . Here and later we use an input parameter 𝑡 , which is equal to 10−5 by

default.

3. Transition parameters 𝑎↗𝑤 and 𝑎↘𝑤 define all possible transitions (for fixed 𝑖 and𝑤 ):

𝑎𝑖 𝑗𝑤 =



𝑎
𝑗−𝑖
↗𝑤 if 𝑗 > 𝑖,

𝑎
𝑖− 𝑗
↘𝑤 if 𝑗 < 𝑖,

1 −∑ 𝑗≠𝑖 𝑎𝑖 𝑗𝑤 if 𝑗 = 𝑖 .

On the first iteration 𝑎↗𝑤 = 𝑎↘𝑤 = 𝑡 for all windows𝑤 . By default, we limit the maximal

AggregateCN jump between two consecutive windows and set 𝑎𝑖 𝑗𝑤 = 0 if |𝑖 − 𝑗 | > 6.

4. The emission probabilities are defined for each sample 𝑠 using Negative Binomial pa-

rameters 𝑛(𝑠)𝑤 and 𝑝 (𝑠)𝑤 corresponding to the sample 𝑠 and GC-content of the window𝑤 .

Using the fact that sum of NB-distributed random variables with parameters (𝑛1, 𝑝) and
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(𝑛2, 𝑝) is a NB random variable with parameters (𝑛1 +𝑛2, 𝑝), we can multiply parameter

𝑛 by the copy number in order to calculate emission probability of a certain hidden state.

Therefore, we calculate emission probability of copy number 𝑐 at window𝑤 as

𝑏
(𝑠)
𝑤 (𝑐) = 𝑃 NB

(
𝑜
(𝑠)
𝑤 ; 𝑚𝑤 · 𝑛(𝑠)𝑤 · 𝑐/2, 𝑝 (𝑠)𝑤

)𝜓 (𝑚𝑤)

where 𝑜 (𝑠)𝑤 is the observed aggregate read depth. We divide 𝑐 by 2 as background read

depth was calculated for regions with copy number 2. For copy number zero we use

𝑐 = 0.01 to allow possible errorneous read alignments. 𝑚𝑤 is a scale parameter and

𝜓 (𝑚𝑤 ) is the scale parameter weight, both are equal to one on the first iteration.

B.2.4.3 Updating emission probabilities using scale parameters

After the first iteration we introduce non-trivial multipliers𝑚𝑤 for each window 𝑤 .

This scale parameter is used to remove window-specific sequencing bias that is shared across

all samples. Windows with large bias should contribute less to the likelihood, so we assign a

weight to the scale parameter based on the distance |𝑚𝑤 − 1| (𝑚𝑤 = 1 represents no significant

bias). For a region with reference copy number 𝑐𝑟 we expect that all scale parameters should be

within ( 𝑐𝑟−1
𝑐𝑟
,
𝑐𝑟+1
𝑐𝑟
), so scale parameters outside these bounds are assigned weight 0. For scale

parameters within the bounds we distribute weights according to the tricube kernel [155]:

𝜓 (𝑚𝑤 ) =
(
1 −min(1, |𝑚𝑤 − 1| · 𝑐𝑟 ) 3 )3

.

On each HMM iteration we run the Forward-Backward algorithm [128] to obtain a

range of matrices 𝛾 (𝑠)𝑐,𝑤 = 𝑃

(
𝑍
(𝑠)
𝑤 = 𝑐

���𝑜 (𝑠)1:𝑇

)
— probability of sample 𝑠 having copy number 𝑐 at

window𝑤 . We use 𝛾 to update the scale parameters:

𝑚𝑤 ← arg max
𝑚

∏
𝑠∈𝑆

∑︁
𝑐∈𝐶

𝛾
(𝑠)
𝑐,𝑤 · 𝑃 NB

(
𝑜
(𝑠)
𝑤 ; 𝑚𝑤 · 𝑛(𝑠)𝑤 · 𝑐/2, 𝑝 (𝑠)𝑤

)
,
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where 𝑆 is the set of all samples and 𝐶 is the set of hidden states (and copy number values they

represent).

B.2.4.4 Updating initial and transition probabilities

In addition to probabilities matrices 𝛾 , the Forward-Backward algorithm provides

matrices 𝛼 (𝑠)𝑐,𝑤 = 𝑃

(
𝑜
(𝑠)
1:𝑤 , 𝑍

(𝑠)
𝑤 = 𝑐

)
and 𝛽

(𝑠)
𝑐,𝑤 = 𝑃

(
𝑜
(𝑠)
𝑤+1:𝑇

���𝑍 (𝑠)𝑤 = 𝑐

)
— forward and backward

probabilities, respectively. Then, total probability of a sample 𝑠 is 𝜏 (𝑠) = 𝑃
(
𝑜
(𝑠)
1:𝑇

)
=
∑
𝑐∈𝐶 𝛼

(𝑠)
𝑐,𝑇

.

According to the Baum-Welch algorithm [127], we update initial probabilities as

𝜋𝑐 ←
1
|𝑆 |

∑︁
𝑠∈𝑆

𝛾
(𝑠)
𝑐,1 .

Additionally, we bound 𝜋𝑐 ← max
{
𝜋𝑐,
√
𝑡, 1
|𝑆 |

}
.

Let 𝜉 (𝑠)
𝑤,𝑖, 𝑗

denote the probability of going from state 𝑖 at window𝑤 to state 𝑗 at window

𝑤 + 1 at the sample 𝑠 . It can be calculated as

𝜉
(𝑠)
𝑖 𝑗𝑤

=
1
𝜏 (𝑠) · 𝛼

(𝑠)
𝑖,𝑤
· 𝑎𝑖 𝑗𝑤 · 𝛽 (𝑠)𝑗,𝑤+1 · 𝑏

(𝑠)
𝑤+1( 𝑗),

where 𝑎𝑖 𝑗𝑤 denotes transition probability between hidden states 𝑖 and 𝑗 at windows 𝑤 and

𝑤 + 1. Similarly, we can calculate the probability of increasing or decreasing copy number:

𝜉
(𝑠)
↗𝑤 =

∑︁
𝑖∈𝐶, 𝑗∈𝐶, 𝑗>𝑖

𝜉
(𝑠)
𝑖 𝑗𝑤
,

𝜉
(𝑠)
↘𝑤 =

∑︁
𝑖∈𝐶, 𝑗∈𝐶, 𝑗<𝑖

𝜉
(𝑠)
𝑖 𝑗𝑤
.
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Next, we average these values across all samples to get probabilities of increasing or decreasing

aggregate copy number:

𝑎↗𝑤 =
1
|𝑆 |

∑︁
𝑠∈𝑆

𝜉
(𝑠)
↗𝑤 , 𝑎↘𝑤 =

1
|𝑆 |

∑︁
𝑠∈𝑆

𝜉
(𝑠)
↘𝑤 .

B.2.4.5 Speeding up HMM convergence

In some cases, the iterative HMM converges slowly. Therefore, to speed up the conver-

sion we search for peaks in 𝑎↗𝑤 and 𝑎↘𝑤 . We define peaks as local maxima higher than 𝑡 and

higher than any other values in the 10 window neighbourhood to the left and right. For each

peak we set 𝑎 to the sum of 𝑎 over the neighbourhood of the peak, and decrease 𝑎 values in the

neighbourhood to 𝑡 . Next, we bound 𝑎↗𝑤 and 𝑎↘𝑤 to be at least 𝑡 and at most 0.1, and set new

transition probabilities 𝑎𝑖 𝑗𝑤 based on 𝑎↗𝑤 and 𝑎↘𝑤 as described above.

B.2.4.6 Log-likelihood convergence

Similar to most HMM applications, we aim to repeat HMM parameter refinement until

the log-likelihood ℒ =
∑
𝑠∈𝑆 log𝜏 (𝑠) stops increasing. However, the emission probabilities

definition includes the scale parameter weight exponent𝜓 (𝑚𝑤 ), which equals to one for all

windows on the first iteration and can be lower on the subsequent iterations. This can lead to a

drop in log-likelihood after the first iteration. Therefore, we allow the log-likelihood to decrease

between the first and second iteration, and stop only after third iteration if the increase in the

log-likelihood is less than 0.01.

B.2.4.7 Aggregate copy number quality

To assign a quality to each AggregateCN estimate, we calculate a probability of the

prediction and probabilities of alternative predictions. Suppose, the Viterbi path [129] for a
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sample 𝑠 contains a constant stretch between windows 𝑢 and 𝑣 with 𝑍 (𝑠)𝑢:𝑣 = 𝑐 . We calculate the

probability of such a stretch using forward and backward probability matrices 𝛼 (𝑠) and 𝛽 (𝑠) :

𝑃

(
𝑍
(𝑠)
𝑢:𝑣 = 𝑐

���𝑜 (𝑠)1:𝑇

)
=

1
𝜏 (𝑠) · 𝛼

(𝑠)
𝑐,𝑢 · 𝛽 (𝑠)𝑐,𝑣 ·

𝑣−1∏
𝑘=𝑢

𝑎𝑐𝑐𝑘 · 𝑏𝑘+1(𝑐) .

Next, we calculate probabilities of the alternative non-overlapping paths to calculate

the probability of an error:

𝑃error = 1 −
𝑃

(
𝑍
(𝑠)
𝑢:𝑣 = 𝑐

���𝑜 (𝑠)1:𝑇

)
∑
𝑐′∈𝐶 𝑃

(
𝑍
(𝑠)
𝑢:𝑣 = 𝑐′

���𝑜 (𝑠)1:𝑇

) .
Finally, AggregateCN prediction quality is calculated as a Phred [156] quality score:

−10 · log10 𝑃error.

B.2.5 Estimating paralog-specific copy number using PSVs

For a sample 𝑠 and PSV 𝑣 we observe allele counts 𝑋𝑠𝑣 , which form the observed data

𝑋 . Note that 𝑋𝑠𝑣 is a tuple as it stores read counts for two or more alleles of the PSV. We can

easily calculate probability 𝑃 (𝑋𝑠𝑣 |𝐺𝑣 = 𝑔) of allele counts given the PSV genotype 𝑔 using

multinomial distribution [157, 158].

In a region with reference copy number 𝑐𝑟 , each PSV 𝑣 is assigned a vector 𝑓𝑣 ∈ [0, 1]𝑐𝑟 /2,

where 𝑓𝑣𝑘 represents the frequency of the reference allele on 𝑘-th copy of the duplication across

the whole population (there are total 𝑐𝑟/2 copies). For example, a PSV has reference allele A on

the first copy and C on the second copy, but all reads in all samples support C on both copies.

In that case 𝑓𝑣,1 = 0 and 𝑓𝑣,2 = 1 as the frequency of the reference allele is 0 on the first copy.
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To calculate the probability of observing read counts 𝑋𝑠𝑣 in case of the sample paralog-

specific copy number (ParalogCN ) 𝑔:

𝑃 (𝑋𝑠𝑣 |𝐺𝑠 = 𝑔, 𝑓𝑣 ) =
∑̂︁
𝑔

𝑃 (𝑋𝑠𝑣 |𝐺𝑣 = 𝑔) · 𝑃 (𝐺𝑣 = 𝑔 |𝐺𝑠 = 𝑔, 𝑓𝑣 ).

and to calculate probability 𝑃 (𝐺𝑣 = 𝑔 |𝐺𝑠 = 𝑔, 𝑓𝑣 ) of observing PSV genotype 𝑔 given the

ParalogCN 𝑔 and frequencies 𝑓𝑣 we need to calculate coefficients in a multivariate polynomial.

For example, in a 2-copy duplication (𝑐𝑟 = 4) PSV 𝑣 has two values 𝑓1 = 𝑓𝑣,1 and 𝑓2 = 𝑓𝑣,2. Then,

if sample paralog-specific copy number 𝑔 = 2,2 (each copy is represented twice) we need to

expand a polynomial

(
𝑓1 · 𝑢1 + (1 − 𝑓1) · 𝑢2

)2 ·
(
(1 − 𝑓2) · 𝑢1 + 𝑓2 · 𝑢2

)2
.

Then the probability 𝑃 (𝐺𝑣 = 𝑔 |𝐺𝑠 = 𝑔, 𝑓𝑣 ) of PSV genotype 𝑔 is a coefficient in front of 𝑢𝑔1
1 ·𝑢

𝑔2
2 .

For example, probability of a PSV genotype 𝑔 = 4,0 would be 𝑓 2
1 · (1 − 𝑓2)2. This can be

generalized for any PSV genotype, any paralog-specific, aggregate and reference copy numbers.

Additionally, we use 𝑓 as variables (instead of numeric values) to expand the multivariate

polynomial (with variables 𝑢... and 𝑓...) in advance, which significantly speeds up PSV genotype

probability calculation.

B.2.5.1 EM algorithm

Next, we define the total likelihood of the model 𝐿(𝑋, 𝑓 ) = ∏
𝑠∈𝑆 𝑃 (𝑋𝑠 | 𝑓 ) as the product

of probabilities for all samples. Probability of a single sample is 𝑃 (𝑋𝑠 | 𝑓 ) =
∑
𝑔 𝑃 (𝑋𝑠,𝐺𝑠 = 𝑔 | 𝑓 ),

and probability of a sample and a ParalogCN 𝑔 is

𝑃 (𝑋𝑠,𝐺𝑠 = 𝑔 | 𝑓 ) = 𝑝 (𝑔)
∏
𝑣∈𝑉

𝑃 (𝑋𝑠𝑣 |𝐺𝑠 = 𝑔, 𝑓𝑣 ),
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where 𝑉 is a total set of PSVs and 𝑝 (𝑔) is a paralog-specific copy number prior. We define

ParalogCN priors based on the distance to the reference ParalogCN (all copies are represented

twice), with the smallest prior = 10−6 assigned to the most extreme ParalogCN s. For example,

for a two-copy duplication ParalogCN 4,0 is assigned a prior 10−6, ParalogCN 3,1 is assigned a

prior 10−3 and ParalogCN 2,2 is set to 1 minus all other priors.

According to the Expectation-Maximization algorithm [159], on the E-step we find the

distribution of the hidden variables (paralog-specific copy numbers):

𝑃 (𝐺𝑠 = 𝑔 |𝑋𝑠, 𝑓 ) =
𝑃 (𝑋𝑠,𝐺𝑠 = 𝑔 | 𝑓 )∑
𝑔′ 𝑃 (𝑋𝑠,𝐺𝑠 = 𝑔′ | 𝑓 )

.

We will denote 𝑃 (𝐺𝑠 = 𝑔 |𝑋𝑠, 𝑓 ) as 𝜁𝑠,𝑔.

Next, during the M-step we maximize log-likelihood:

𝑓 ★← arg max
𝑓

𝑝 (𝑓 ) ·
∑︁
𝑠∈𝑆

𝜁𝑠,𝑔 · log 𝑃 (𝐺𝑠 = 𝑔 |𝑋𝑠, 𝑓 )
𝜁𝑠,𝑔

.

This step can be solved numerically and independently for all PSVs. We select prior 𝑝 (𝑓 ) in a

way to encourage higher values of 𝑓 :

𝑝 (𝑓 ) =
∏
𝑣∈𝑉

𝑃 Beta

(
𝑥 ∈

[
max
𝑘
(𝑓𝑣𝑘) − 10−6, max

𝑘
(𝑓𝑣𝑘)

]
; 𝛼 = 5, 𝛽 = 1

)
.

After the EM algorithm converges, we use frequency matrix 𝑓 to select a set of reliable

PSVs
{
𝑣

���min𝑐𝑟 /2
𝑘=1 𝑓𝑣𝑘 ≥ 0.95

}
. We use reliable PSVs to calculate probability of all ParalogCN

values for all samples, including samples with non-reference AggregateCN . Next, for each

duplication copy we calculate marginal probability over all ParalogCN probabilities:

𝑃 ( [𝐺𝑠]𝑘 = 𝑐 |𝑋𝑠, 𝑓 ) =
∑︁

𝑔 𝑠.𝑡 . 𝑔𝑘=𝑐

𝑃 (𝐺𝑠 = 𝑔 |𝑋𝑠, 𝑓 ).
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This allows us to calculate most likely ParalogCN value 𝑐 = arg max𝑐′ 𝑃 ( [𝐺𝑠]𝑘 = 𝑐′ |𝑋𝑠, 𝑓 )

for each duplication copy, and to calculate the corresponding Phred [156] quality score −10 ·

log10 𝑃 ( [𝐺𝑠]𝑘 ≠ 𝑐 |𝑋𝑠, 𝑓 ). Additionally, we do not assign copy number to some duplication

copies if the quality is near zero (< 5). For example a sample in three-copy duplication can have

a paralog-specific copy number (2,?,?), when we do not have enough information to distinguish

between the second and the third copies.

B.2.5.2 Information content of the PSVs

In certain cases, the EM algorithm may converge to an undesirable solution. For example,

suppose that there is a set of unreliable PSVs𝑉unrel that exhibit PSV genotype 4,0 in all samples

(all reads support an allele corresponding to the first copy of the duplication). Additionally,

there is a smaller set of reliable PSVs𝑉rel that exhibit PSV genotype 2,2 (alleles from both copies

are present with equal proportions). This situation occurs in the two-copy duplication that

includes genes SERF1A and SMN1. Depending on the relative sizes of PSV sets 𝑉unrel and 𝑉rel,

the EM algorithm can converge to two possible solutions:

• Assign 𝑓𝑣,1 ≃ 1 for all 𝑣 ∈ 𝑉unrel and predict ParalogCN = 4, 0 for all samples. In that case

the EM algorithm would assign 𝑓𝑣 ′,1 ≃ 1/2 for all 𝑣′ ∈ 𝑉rel. Note that 𝑓𝑣,2 can be anything

for both PSV sets, as there are no samples that have a second copy. This solution can be

explained in the following way: for every sample there are four haplotypes, all of which

are more similar to the first copy of the duplication than to the second, therefore it would

be correct to set ParalogCN = 4, 0 for all samples.

• Assign 𝑓𝑣,2 = 0 for all 𝑣 ∈ 𝑉unrel (frequency of the reference allele on the second copy

is 0). In this solution 𝑓𝑣,1 ≃ 1 for 𝑣 ∈ 𝑉unrel and 𝑓𝑣 ′,1 ≃ 𝑓𝑣 ′,2 ≃ 1 for 𝑣′ ∈ 𝑉rel; ParalogCN

prediction for all samples would be 2,2. This solution is more appropriate in the following

way: even though four haplotypes of each sample are more similar to the first copy,

two of them are significantly different from the other two (at reliable PSVs 𝑉rel), and
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share many similarities with the second copy of the duplication. Therefore this solution

provides more information.

To encourage the EM algorithm to converge to the second solution we add a weight to

each PSV based on multiple samples and call it information content of the PSV. Suppose a PSV

𝑣 has 𝑛 alleles, then

𝐼 (𝑣) = 1
|𝑆 |

∑︁
𝑠∈𝑆

∑̂︁
𝑔

𝑃 (𝐺𝑣 = 𝑔 |𝑋𝑠𝑣 ) ·
∑𝑛
𝑘=1 1 [𝑔𝑘 ≠ 0] − 1

𝑛 − 1

The fraction on the right represents how well PSV alleles are represented in the PSV genotype.

For example, PSV genotypes of a PSV with three alleles would have the following weights: 1 for

genotypes without zeros, such as (2,2,2), (3,2,1); 1/2 for genotypes with one zero, such as (4,2,0),

(3,3,0); 0 for genotypes with two zeros, such as (6,0,0), (0,6,0) and (0,0,6). This way, if some

allele of a PSV is consistently missing in many samples — the PSV would get low information

content 𝐼 .

During the E-step (calculating sample ParalogCN probabilities) we use the PSV infor-

mation content as an exponent:

𝑃 (𝑋𝑠,𝐺𝑠 = 𝑔 | 𝑓 ) = 𝑝 (𝑔)
∏
𝑣∈𝑉

𝑃 𝐼 (𝑣) (𝑋𝑠𝑣 |𝐺𝑠 = 𝑔, 𝑓𝑣 ),

This forces PSVs with information content close to 0 have a very small effect on the paralog-

specific copy number calculation and on the total likelihood.

B.2.5.3 Selecting starting states for EM algorithm

A single read can cover several PSVs if they are close enough. Therefore, we filter out

PSVs if they are closer than 100 bp to each other. While discarding neighboring PSVs we first

remove PSVs with low information content, and then remove PSVs that represent insertions or

deletions.
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The EM algorithm is not guaranteed to reach the global maximum and can be trapped

at local maxima. A standard approach to avoid local maxima is to use several starting solutions.

We cluster the PSVs to obtain several starting positions for the EM algorithm as follows: for

each PSV 𝑣 we have a vector of allele counts {𝑋𝑠𝑣 }𝑠∈𝑆 , which we then transform into a numeric

vector by calculating the fraction of the allele corresponding to the first copy: {[𝑋𝑠𝑣 ]1/
∑
𝑋𝑠𝑣 }𝑠∈𝑆 .

Next, we construct a Pearson correlation matrix over PSVs and split it into two clusters based on

the hierarchical clustering [160]. Then we use three starting PSV sets: the two separate clusters

and all PSVs together. We start by assigning 𝑓𝑣,· = 0.9 to PSVs in the starting set and 𝑓𝑣,· = 0.5

to all other PSVs. Next, we iteratively run E- and M-steps until the algorithm converges and

finally select the result from the starting set that produced the highest total likelihood.

B.2.6 Extending homology table to include an additional repeat copy for
OTOA

Analysis of the two-copy OTOA locus on chromosome 16 using Parascopy showed that

majority of the samples have three duplication copies. More than 75% and 91% samples in the

European and African continental populations had AggregateCN = 6. Alignment of the OTOA

and OTOAP1 (pseudo-gene) sequences to the recently generated high-quality genome assembly

for a human cell line, CHM13 [1] using Minimap2 [38] generated three independent hits for

both sequences. We denote the hit that is least similar to OTOA and OTOAP1 as OTOAP∗ and

add it to the homology table. It is not required to create the whole homology table anew to do

this — we find sequence homologies between the OTOAP∗ sequence and hg38 reference genome

and add them to the homology table. This allows us to find reliable PSVs that distinguish OTOA

and OTOAP∗ and detect paralog-specific copy number of an extended three-copy duplication.

Next, to analyze the new three-copy duplication, we can use the standard aligment files

mapped to the hg38 reference genome, which contain reads mapped to OTOA and OTOAP1,
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but not to OTOAP∗. Since Parascopy first re-maps reads from different repeat copies to a single

copy, it is not important to have correct read alignments to all three copies.

B.2.7 Subsampling reads

In order to estimate the impact of read depth on the accuracy of Parascopy, we artificially

reduced coverage for 107 samples from the Iberian population (IBS) from the 1kGP WGS data.

Since the 1kGP samples were sequenced to an average read depth of 33×, we randomly and

independently selected read pairs with probabilities 1/3 and 2/3 to create subsampled datasets

with average read depth 11× and 22×.

B.2.8 Paralog-specific copy number validation using trios

To determine trio concordance for ParalogCN values, it is useful to model the ParalogCN

for each homologous chromosome or haplotype. Suppose an individual has 𝑐 copies of a repeat

copy 𝑅 (ParalogCN𝑅 = 𝑐), then one of the homologous chromosome has 𝑎 ∈ [0, 𝑐] copies of 𝑅,

while the other homologous chromosome would have 𝑏 = 𝑐 − 𝑎 copies of 𝑅. In a sample that is

concordant with the reference, repeat copy 𝑅 appears once on each homologous chromosome,

i.e. 𝑐 = 2 and 𝑎 = 𝑏 = 1. Here (𝑎, 𝑏) is the diploid ParalogCN at the repeat copy 𝑅 for the

individual.

Suppose the diploid ParalogCN at the repeat copy 𝑅 for two parents is (𝑎𝑚, 𝑏𝑚) and

(𝑎 𝑓 , 𝑏 𝑓 ). Then the four possible diploid ParalogCN values for a child are: (𝑎𝑚, 𝑎 𝑓 ), (𝑎𝑚, 𝑏 𝑓 ),

(𝑏𝑚, 𝑎 𝑓 ) and (𝑏𝑚, 𝑏 𝑓 ). Note that this does not model situations when the different copies of 𝑅 lie

on several non-homologous chromosomes or lie far from each other on the same homogolous

chromosome, in both cases a child can receive a different combination of copies of 𝑅.

In a sample set with 𝑛 individuals, let 𝑛𝑐 be the number of samples with 𝑐 copies of

𝑅 (summed over two homologous chromosomes) and let 𝑐max = arg max𝑐 𝑛𝑐 be the maximal

observed copy number. Suppose vector 𝜙 stores the allele frequency distribution of copy
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number values for a single homologous chromosome in the population. If the two homologous

chromosomes are independent, the expected number of samples with ParalogCN𝑅 = 𝑐 would

be 𝑒𝑐 =
∑𝑐
𝑎=0 𝑛 · 𝜙𝑎 · 𝜙𝑐−𝑎 . We calculate the likelihood of the copy number frequencies 𝜙 using

chi-square distribution with 𝑐max degrees of freedom and

𝜒2 =
𝑐max∑︁
𝑐=0

(𝑒𝑐 − 𝑛𝑐)2

𝑒𝑐
.

Next, we use maximum likelihood to estimate the most-likely frequencies 𝜙 according

to the observed diploid ParalogCN𝑅 counts in each continental population. On all steps, only

samples with high-quality (≥ 20) ParalogCN𝑅 estimates were used.

Throughout 5 continental populations, 167 duplicated loci and a total of 384 paralogs

(1920 total entries), we estimated copy number frequencies in 1474 cases with at least 10 samples.

In only 20 cases 𝜒2 𝑝-value was under 0.05, and in only 4 cases (0.3%) 𝑝-values were under 0.05

after the Benjamini-Hochberg correction [161] (controlling false-discovery rate). This shows

that (i) probabilistic model is consistent with ParalogCN estimates; (ii) Parascopy ParalogCN

values do not violate Hardy–Weinberg equilibrium in the vast majority of the cases.

Using the distribution 𝜙𝑐 , we can calculate the probability of observing a child with 𝑐

copies of 𝑅 when the two parents have 𝑐𝑚 and 𝑐 𝑓 copies:

𝑝 = 𝑃 (𝑐 | 𝑐𝑚, 𝑐 𝑓 ) =
∑︁

𝑎𝑚+𝑏𝑚=𝑐𝑚
𝑎𝑚, 𝑏𝑚≥0

𝑃
(
ParalogCN𝑅 = (𝑎𝑚, 𝑏𝑚)

)
×

∑︁
𝑎𝑓 +𝑏 𝑓 =𝑐 𝑓
𝑎𝑓 , 𝑏 𝑓 ≥0

𝑃
(
ParalogCN𝑅 = (𝑎 𝑓 , 𝑏 𝑓 )

)
×

∑︁
𝑥∈{𝑎𝑚, 𝑏𝑚}
𝑦∈{𝑎𝑓 , 𝑏 𝑓 }

1
4 · 1[𝑥 + 𝑦 = 𝑐] .
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The probability 𝑃
(
ParalogCN𝑅 = (𝑎, 𝑏)

)
of having diploid ParalogCN at the repeat copy

𝑅 can be calculated as:

𝑃
(
ParalogCN𝑅 = (𝑎, 𝑏)

)
=

𝜙𝑎 · 𝜙𝑏∑
𝑎′+𝑏′=𝑎+𝑏 𝜙𝑎′ · 𝜙𝑏′

.

A low value of probability 𝑝 implies that the child’s ParalogCN estimate is not consistent

with the parental ParalogCN values. We use a default threshold of 𝑝 < 0.01 to identify discordant

trios. Stricter thresholds (such as 𝑝 < 0.05 and 𝑝 < 0.1) produce similar results.
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appendix C

Supplementary Material for Chapter 4

C.1 Supplementary Methods

C.1.1 Hashing sequencing reads

On average, a length of the sequencing read name varies between 30 and 40 symbols,

and, according to the BAM/CRAM file specification, can be as long as 256 symbols. In order to

reduce the volume of stored and transferred information, we transform the read name into an

8-byte integer using the Fowler–Noll–Vo hash function (FNV). Specifically, we use the 64-bit

flavor of the FNV-1 version of the hash function. Finally, we multiply the hash integer by two

and replace the last bit with read-pair information (first or second read mate in the pair). This

allows us to (i) store and transfer the ordinal read pair number together with the read hash and

(ii) quickly determine the hash of the corresponding read mate.
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C.1.2 Identifying possible locations for sequencing reads in the duplicated
regions

In order to identify possible sequencing read locations, we utilize the overlaps between

reads and PSVs. Although it is possible to use the homology table to find the possible read

locations, this approach is more time-consuming, as it requires several table fetch operations

for a large amount of reads.

As every PSVs contains information about its homologous positions, finding possible

read locations is a relatively straightforward operation. We assume that the analyzed reads are

short enough not to overlap the same PSV several times, and greedily search for clusters of PSV

homologous coordinates, such that the total cluster length does not exceed the read length by

more than 10 bp. Finally, we extend each cluster by the read length to the left and to the right.

In certain cases, we can either discard one of the possible locations, or be certain that

the original location is correct. Consider a read with an original alignment to one of the repeat

copies, that was remapped to another repeat copy to get a pooled alignment. We say that an

alignment has unique tail if it contains at least 15 bp that do not overlap any entry in the

homology table. If the original alignment has high mapping quality (≥ 50), has a unique tail,

and has the same or fewer clipped basepairs than the pooled alignment (or if the original

alignment matches the pooled alignment and has no clipping at all) — we say that the original

alignment location is certainly correct. Finally, if the original alignment is much better than the

pooled alignment (aligned length is at least 15 bp more) — we say that the pooled alignment

is certainly incorrect. We cannot easily confirm that the original location is correct, as it is

possible that there exists a third repeat copy that the read can map to, and checking for such

cases would significantly hamper the execution time.

In certain cases, out of two read mates, only one has a confirmed location or a set of

possible locations, while the other read mate does not overlap any PSVs and does not have a
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unique tail. For such read pairs, we extend all possible first read locations to both sides by the

insert length, and keep PSV-based location probabilities derived from the first read mate.
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