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Abstract

The transistor density continues to increase exponentially, but the
power dissipation per transistor improves only slightly with each
generation of Moore’s law. Given the constant chip-level power
budgets, this exponentially decreases the fraction of the transistors
that can be active simultaneously with each technology generation.
Hence, while the area budget continues to increase exponentially,
the power budget has become a first-order design constraint in
current processors. In this regime, utilizing transistors to design
specialized cores that optimize energy-per-computation becomes
an effective approach to improve the system performance.

To trade transistors for energy efficiency in a scalable manner,
we propose quasi application-specific integrated circuits, or QA-
SICs, specialized processors capable of executing multiple general-
purpose applications while providing an order-of-magnitude more
energy efficiency than a general-purpose processor. The QASIC de-
sign flow is based on the insight that similar code-patterns exist
across applications. Our approach seeks to exploit these similar
code patterns to design specialized cores that can support many of
the widely used computations.

Our results demonstrate that designing relatively few QASICs
can support operator functions of multiple commonly used data
structures and these QASICs provide 13.5× energy savings over
a general-purpose processor. On a more diverse workload consist-
ing of twelve applications selected from different application do-
mains (including SPECINT, Sat Solver, Vision, EEMBC, among
others), our results show that QASICs reduce the required number
of application-specific circuits by over 50% and the area require-
ment by 23% compared to the fully-specialized logic while pro-
viding energy-efficiency within 1.27X of that of fully-specialized
logic. Also, at system level, our approach reduces the application
energy-delay metric by 46% compared to conventional processors.

1. Introduction

Transistor density continues to scale but nearly constant per-
transistor power and fixed chip-level power budget places tight
constraints on how much of a chip can be active at full frequency
at one time. Hence, as the transistor density increases with each
generation, so does the fraction of the chip that is under-clocked or
underused − referred to as dark silicon − due to the power con-
cerns. This dark silicon [3, 21] phenomenon is forcing designers to
find new solutions to convert transistors into performance.

Recent work [4, 10, 21] has shown that specialization is an ef-
fective solution to this problem of utilizing the increasing transistor
budget to extend performance scaling. The specialization-based ap-
proaches seeks to trade the cheaper resource, the dark silicon, for
the more valuable resource, energy efficiency, to scale system per-
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Figure 1. Trade offs between area and energy efficiency The x-
axis measures area compared to implementing our workloads (Ta-
ble 1) in fully-specialized logic. The y-axis measures energy con-
sumption relative to an in-order MIPS processor. As area budgets
decrease, QASICs energy efficiency declines much more slowly
than it does for fully-specialized logic, because QASICs can save
area by increasing the QASIC’s computational power rather than
removing functionality.

formance. Specialized processors improve the system performance
by optimizing per-computation power requirements and hence, al-
lowing more computations to execute within a given power budget.

Conventional accelerators reduce power for regular applications
containing ample data level parallelism, but recent work [21] has
shown that specialized hardware can reduce power for irregular
codes as well. These specialized computing elements can support
relatively short running computations as well because they are
placed close to the general-purpose processor. This increases the
fraction of program execution that could execute on specialized,
efficient hardware, but it also raises questions about area efficiency
and re-usability, since each specialized core targets a very specific
computation. In addition, supporting a large number of tasks in
hardware would necessitate designing a large number of special-
ized cores, which in turn would make it difficult to place all of
them close to the general-purpose processor. To effectively tar-
get a general-purpose system’s workload, these specialized proces-
sors must be able to support multiple computations, and a relatively
small number of these together should be able to support large frac-
tions of execution of an application domain.

To trade area for specialization in a scalable manner, we pro-
pose a new class of specialized processors, Quasi-ASICs, that un-
like the traditional ASICs which target one specific task, can sup-
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port multiple general-purpose computations. These QASICs allow
us to trade between area and energy efficiency in a fine-grained
manner. The QASIC design flow accomplishes this by varying the
required number of QASICs as well as their computational power
based on the relative importance of the applications and the area
budget available to optimize these applications. While the increase
in the QASIC’s computational power comes with marginal decrease
in their energy efficiency, these QASICs are still an order of magni-
tude more energy-efficient than general-purpose processors. In this
manner, our approach can significantly reduce the number of spe-
cialized processors as well the area budget required compared to
that of fully-specialized logic, without compromising on the frac-
tion of system execution that the specialized logic supports.

Figure 1 demonstrates that compared to the recently-proposed
conservation core [21] approach, QASICs give up very little ef-
ficiency in return for substantial area savings. As the area bud-
get decreases (left to right on the X-axis), our toolchain designs
QASICs with greater computational power to ensure that the QA-
SICs continue to cover all the application hotspots. This increase
in the generality of QASICs enable them to provide significant en-
ergy efficiency even as the area budget decreases, unlike the fully-
specialized logic that sees a 4× decrease in their energy efficiency.

In this paper, we address many of the challenges involved in de-
signing a QASIC-enabled system. The first challenge lies in identi-
fying similar code patterns across a wide range of general-purpose
applications. The hotspots of a typical general-purpose application
tend to have many hundreds of instructions, complex control-flow
and irregular memory-access patterns, making the task of find-
ing similarity both algorithmically challenging and computation-
ally intensive. The second challenge lies in exploiting the similar
code patterns to reduce hardware redundancy by designing gen-
eralized code-structures that can execute these code patterns. The
third challenge involves making the area-energy tradeoffs to ensure
that these co-processors fit within the area budget. Addressing this
challenge entails finding efficient heuristics that approximate an ex-
haustive search of the design space but avoid the exponential cost
of that search. The final challenge involves modifying the applica-
tion code/binary appropriately to enable the applications to offload
computations on to the QASICs at runtime.

We evaluate our toolchain by designing QASICs for the find,

insert, delete operations of the commonly used data struc-
tures, namely link-list, binary tree, AA tree, and hash table. Our
results show that designing just four QASICs can support all these
data structure operations and can provide 13.5× energy savings
over a general-purpose processor. On a more diverse general-
purpose workload consisting of twelve applications selected from
different application domains (including SPECINT, Sat Solver, Vi-
sion, EEMBC, among others), our results show that QASICs reduce
the required number of application-specific circuits by over 50%
and the area requirement by 23% compared to the fully-specialized
logic while providing energy-efficiency within 1.27X of that of
fully-specialized logic. Also, at system level, our approach reduces
our workload’s energy-delay metric by 46% compared to conven-
tional processors.

The rest of this paper is organized as follows. Section 2 mo-
tivates our work in the context of other proposals. Section 3, 4,
and 5 describes our QASIC design and hardware generation flow.
Section 6 describes our methodology for evaluating the energy and
performance efficiency of QASICs. Section 7 presents the results,
Section 8 presents the related work and Section 9 concludes.

2. Motivation

In this section, we present some of the recent proposals on design-
ing specialized co-processors and motivate the need for QASICs.

Benchmark Type Application HotSpots

Spec CPU 2000-2006

Twolf new dbox, new dbox a,
newpos a, newpos b

Mcf refresh potential
primal bea mpp

Bzip2 fullGtU
LibQuantum cnot, toffoli

Image Compression
CJPEG ycc rgb extractMCU
DJPEG jpeg idct, rgb ycc

Sat Solver
UBC Sat BestLookAheadScore

FlipTrackChangesFCL

Splash Radix slave sort

SD VBS

Image pre-processing calc dX, calc dY
imageBlur

Disparity finalSAD, findDisparity
integralImage2D

EEMBC Consumer
RGB/CMYK CMYfunction
RGB/YIQ YIQfunction

Table 1. Diverse Application Set The table lists applications we
use to evaluate the effectiveness of QASICs.

Also, we examine the similarity present across applications and de-
scribe how this similarity is exploited by our design methodology.

Specialized Processor Design Yehia et al. demonstrate tech-
niques for automatically designing compound circuits that can
support multiple regular loops in [24]. Their technique focussed
on streaming loops, used an exploration algorithm to map one loop
circuit onto another, and presented evolutionary techniques to en-
able merging of many loop circuits to form one compound circuit.
However, their approach is not directly applicable to the general-
purpose domain because the hotspots tend to be much larger, con-
tains complex control constructs, and have irregular memory pat-
terns. The hotspots typically consist of many hundreds of assembly
instructions, significantly increasing the exploration space, and the
irregular memory pattern is not suited for their streaming memory
model.

Venkatesh et al. present techniques for generating application-
specific hardware of the general class of irregular, hard-to-parallelize
applications in [21]. However, for many applications in a system’s
target workload, it is not scalable to trade silicon for co-processors
that support only one application. Ideally, to make this area-energy
tradeoff more favorable, the co-processors should support multiple
applications with similar control/data dependence.

To effectively utilize the increasing transistor density, we pro-
pose a design methodology that varies the amount of hardware
generalization based on the area budget. Our design methodology
provides increased generalization by exploiting similar control and
data dependences present across applications.

Examining Application Similarity Our technique for reducing
hardware redundancy is based on the insight that similar code
patterns exist across applications. In this section, we quantify the
available similarity and use this to motivate the QASIC design
methodology.

To begin with, we examine the hotspots in the UBC Sat
Solver [18] to give some insight on the kinds of similarity available.
Figure 2 shows the source code for the two hotspots and highlights
the similar code segments. The example shows that while the two
hotspots as a whole do not have similar control-flow, there are sim-
ilar code patterns present across them. Our design methodology
seeks to exploit these similar code patterns to effectively tradeoff
between energy efficiency and the area budget (Figure 1).

To quantify the similarity across applications, we examine a
diverse set of applications from SPEC 2000 [15], Splash [23],
EEMBC-consumer [7], UBC Sat [18], and SD-VBS [20] bench-
mark suites (described in Table 1). First, we profile the applica-
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  iNumChanges = 0;
                                                                                                                                                             
  

  litWasTrue = GetTrueLit(iFlipCandidate);                                                                                                                   
  litWasFalse = GetFalseLit(iFlipCandidate);                                                                                                                 
                                                                                                                                                             
  aVarValue[iFlipCandidate] = 1 - aVarValue[iFlipCandidate];                                                                                                 
                                                                                                                                                             
  pClause = pLitClause[litWasTrue];                                                                                                                          
  for (j=0;j<aNumLitOcc[litWasTrue];j++) {   
                                                                                                                
    aNumTrueLit[*pClause]--;                                                                                                                                 

    if (aNumTrueLit[*pClause]==0) {                                                                                                                          
                                                                                                                                                             
      aFalseList[iNumFalse] = *pClause;                                                                                                                      
      aFalseListPos[*pClause] = iNumFalse++;                                                                                                                                                                                                                             
      UpdateChange(iFlipCandidate);                                                                                                                          
      aVarScore[iFlipCandidate]--;                                                                                                                           
                                                                                                                                                             
      pLit = pClauseLits[*pClause];                                                                                                                          
      for (k=0;k<aClauseLen[*pClause];k++) {                                                                                                                 
        iVar = GetVarFromLit(*pLit); 
                                                                                                                        
        UpdateChange(iVar);                                                                                                                                  
        aVarScore[iVar]--;                    
                                                                                                               
        pLit++;                                                                                                                                              
      }                                                                                                                                                      
    }                                                                                                                                                        
    if (aNumTrueLit[*pClause]==1) {                                                                                                                          
      pLit = pClauseLits[*pClause];                                                                                                                          
      for (k=0;k<aClauseLen[*pClause];k++) {                                                                                                                 
        if (IsLitTrue(*pLit)) {                                                                                                                              
          iVar = GetVarFromLit(*pLit);      
                                                                                                                 
          UpdateChange(iVar);                                                                                                                                
          aVarScore[iVar]++;                                                                                                                                 
          aCritSat[*pClause] = iVar;                                                                                                                         
          break;                                                                                                                                             
        }                                                                                                                                                    
        pLit++;                                                                                                                                              
      }                                                                                                                                                      
    }                                                                                                                                                        
    pClause++;                                                                                                                                               
  }                                                                                                                                                          
                      

if (iLookVar == 0) {
    return(0);
  }

  iNumLookAhead = 0;

  /* Add all Decreasing Promising variables to the 'best lookahead' list */

  for (j=0;j<iNumDecPromVars;j++) {
    UpdateLookAhead(aDecPromVarsList[j],0);
  }

  litWasTrue = GetTrueLit(iLookVar);
  litWasFalse = GetFalseLit(iLookVar);

 

 pClause = pLitClause[litWasTrue];
  for (j=0;j<aNumLitOcc[litWasTrue];j++) {

    

if (aNumTrueLit[*pClause]==1) {
      

pLit = pClauseLits[*pClause];
      for (k=0;k<aClauseLen[*pClause];k++) {
        iVar = GetVarFromLit(*pLit);

        UpdateLookAhead(iVar,-1);
       

         pLit++;
      }
    }       
    if (aNumTrueLit[*pClause]==2) {                                                                                                                          
      pLit = pClauseLits[*pClause];
      for (k=0;k<aClauseLen[*pClause];k++) {                                                                                                                 
        if (IsLitTrue(*pLit)) {                                                                                                                              
          iVar = GetVarFromLit(*pLit);      
                                                                                                                 
          if (iVar != iLookVar) {                                                                                                                            
            UpdateLookAhead(iVar,+1);                                                                                                                        
            break;                                                                                                                                           
          }                                                                                                                                                  
        }                                                                                                                                                    
        pLit++;
      }
    }
    pClause++;
  }                    

BestLookAheadScoreFlipTrackChangesFCL

Figure 2. Sat Solver hotspot code comparison Figure highlights
similar code patterns across two functions in the UBC Sat Solver
tool [18].

tions to find the “hotspots” where the application spends most of
their time (listed in Table 1). Then, we build Program Dependence
Graphs (PDG) [9] for these hotspot functions. We find the similar
code segments across these hotspots by searching for isomorphic
subgraphs across their PDGs (Section 3.2 discusses the similarity
algorithm). We quantify the similarity between the hotspots as the
fraction of nodes that matched between their PDGs.

Our results, shown in Figures 3 & 4, demonstrate that significant
similarity exists across applications. Figure 3 bins the hotspot pairs
based on the amount of similarity present between them. The data
shows that most of the hotspot pairs (> 90%) had some similar
code patterns (50% node matched) and more importantly, at least
50% of the hotspot pairs had significant similarity (> 80% nodes
matched). Also, Figure 4 shows that significant similarity exists
within as well as across application classes.

To exploit the available similarity, our tool chain merges appli-
cation hot spots with similar code structure and builds one QASIC

for them. Our design methodology provides the following benefits:
1. Fewer number of specialized circuits and reduced area re-

quirements: Our approach realizes these reductions by design-
ing QASICs that can support multiple similar computations. We
found these similar computations across hotspots of the same
application (such as term newpos a and term newpos b from
Twolf), across different applications in the same application do-
main (such as different image conversion algorithms), and even
across applications from different application domains (such as
Bzip2 and Disparity).

2. Generality: The QASICs tend to have more flexible control
and data flow compared to fully specialized hardware because
they are designed to target multiple code segments. As a re-
sult, QASIC’s computational power can extend beyond the code
segments for which they were designed. For example, in our
benchmark set, the imageBlur kernel uses a 5-stage filter [20]
and the edgeCharacteristics kernel uses a 3-stage filter. How-
ever, the QASIC formed by merging imageBlur and edgeChar-
acteristics can execute both the kernels with either filter, pro-
viding this QASIC with additional computational power.

3. Better backward compatibility for application-specific hard-
ware: In order to remain useful across software versions,

Energy-Intensive 

Code Regions

Merge Similar 

Components

Merge Matched 

Expression

Similar Code 

Regions Present Yes

No

Linearize Program 

Dependence Graphs

QASIC  

Specification 

Generation

Create Dependence 

Graphs

Select Best 

Qasic Set

Figure 5. QASIC Design Flow The design flow from application
hotspots to QASIC generation is shown.

application-specific hardware must be able to adapt to changes
in the code it supports. We can utilize our design methodol-
ogy to ensure that QASICs support all the previous “in-use”
versions. We achieve this by merging the hotspots of “in-use”
application versions with the latest version and design one QA-
SIC for them. This allows the system designer to target the latest
version while ably supporting all the previous versions as well.
For example, compared to the previous work on supporting
multiple application versions [21], our approach can improve
the energy savings of MCF2000 hotspots on the MCF2006
hardware by 1.8X without affecting the energy-efficiency for
MCF2006.

3. Quasi-ASIC Design Flow

In this section, we present the details of our QASIC design flow
(shown in Figure 5). The design flow accepts the target application
set and the area budget as input and generates as output a set of
QASICs that fit within the available area budget and can support a
significant fraction of the execution of target applications.

The design flow starts with a set of dependence graph for each
of the application hotspots. At each stage, the toolchain selects the
dependence graph pair with similar code patterns, merges the de-
pendence graph pair to build a new dependence graph, and replaces
the dependence graph pair with the new merged graph. This process
continues until the toolchain is unable to find similar code segments
across the dependence graphs or the area budget goals are met. We
describe these steps in greater detail below.

Figure 6(a)-(d) shows the process of merging similar hotspots,
computeSum and computePower, to form a QASIC.

3.1 Dependence Graph Generation

Our toolchain internally represents the application hotspots as Pro-
gram Dependence Graphs(PDG) [13], where nodes represent state-
ments and edges represent control and data dependencies. The PDG
representation of the hotspots is better suited for finding matching
code regions than control flow graphs or program text because it
enables us to perform matching based on the program semantics
rather than the program code text. Using PDG, our toolchain gets
rid of all the false dependencies, preserving only the “real” control
and data dependences. Figure 6(a) shows the PDG for a simple loop
that computes sum of first n numbers. The solid edges represent
control dependence and dashed ones represent data dependence.
Unlike a control flow graph, there is no edge between the nodes
sum = 0 and i = 0 because these statements are independent of
each other.

We use the CodeSurfer tool [6] to create PDGs for the given
code segments. The output of this stage is a pool of PDGs of the ap-
plication hotspots. The subsequent steps of the design flow increase
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classes of applications.

the generality of these PDGs and reduce hardware redundancy in
this PDG pool until the area budget is met.

3.2 Mining for Similar Code Patterns

This step seeks to find dependence graph pairs from the QASIC

PDG pool that are the similar to each other. The problem of finding
similar code patterns across application hotspots can be reduced
to finding similar subgraphs (subgraph-isomorphism) across their
PDGs. The subgraph-isomorphism is a well studied [11] problem
in the field of graph algorithms. Our algorithm for mining similar
code patterns is based on the FFSM algorithm proposed by Huan
et al. [11]. Below, we present a brief description of the FFSM
algorithm and the optimizations we made to tailor the algorithm
to the problem of finding similar code fragments.

The graph matching algorithm (FFSM) takes as input two
graphs, G1, G2, where every node in both the graphs have a unique
ID as well as type label. The algorithm considers two nodes for
matching only if they have the same type label. The algorithm be-
gins by selecting a node n1 randomly in G1 and finds a matching
node n2 for n1 in G2. Then, it tries to grow the matched subgraph
by comparing the neighbors of n1 and n2 as well as performing
other join operations on the matched subgraphs (refer to [11] for
details). The algorithm returns when it cannot grow the subgraph
any further.

The QASIC toolchain extends the FFSM matching algorithm
in several ways to tailor it to the problem of finding similar code
patterns in PDGs. First, instead of picking and matching nodes in
a random order, our matching algorithm focuses on finding similar
loop bodies. This behavior is desirable since most of the application
execution time is spent in loops. Secondly, we use the node type
to encode the program structure so as to prune “illegal” matches
and reduce the search space. For example, all the nodes within a
loop body should have “similar” node type and different from the

node type of any nested loop nodes within that loop. This node
type definition ensures that two nodes would match only if they
perform similar arithmetic operations (for example addition and
branch operations are not similar ), similar memory operations
(such as array/pointer access), and the control/data edges associated
with these two nodes match.

For example, when trying to find similar code patterns across
computeSum and computePower, shown in Figure 6(a), this
stage would map the sum+=i node in computeSum to sum*=sum
of computePower, among others.

The output of this stage is a list of dependence graph pairs
that have similar code patterns present across them. For each of
these similar dependence graph pairs, this stage also produces a
mapping of the similar code patterns across them. As we saw earlier
in Figure 3, the matching algorithm was able to find substantial
similarity across different code segments.

3.3 Merging Program Dependence Graphs with similar code

structure

This stage of the QASIC design flow accepts as input the similar
dependence graph pairs that the previous stage produces. For each
dependence graph pair, this stage merges their mapped nodes to
form a new QASIC dependence graph that is capable of supporting
all the computations that either of its input dependence graph can
support.

The main challenge in this step is to ensure that the QASIC

PDGs it produces are linearizable, in that there is a sequential order-
ing of the PDG nodes that respects all the data and control depen-
dences. To preserve this linearizable property, the QASIC’s PDG
must be reducible and have no circular data/control dependence. A
PDG is reducible if each of its loop body has a single entry point.

As the first step, this stage ensures that there are no circular de-
pendence in the merged PDG using control, data, and inferred (ex-
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computeSum(int n)
{
   int sum = 0;
   for(i=0;i<n;i++)
   {
       sum += i;
   }
   return(sum);
}

i=0 i++

sum=0
i < n

sum+=i

computePower(int n)
{
   int sum = 2;
   for(i=0;i<n;i++)
   {
       sum *= sum;
   }
   return(sum);
}

i=0 i++

sum=2
i < n

sum*=sum

i=0 i++

init 

sumi < n

mux 

(sum,i)

sum= 

alu(sum,in)

i=0;

i=0

i++;

i++

sum=0

sum = 2i < n;

i < n

sum += i;

sum *= sum

Expression Merging PDG 

Sequentialization

computePower(int n)
{
   sum = QASIC(n, COMPUTE_POWER)
   return(sum);
}

computeSum(int n)
{
   sum = QASIC(n, COMPUTE_SUM)
   return(sum);
}

QASIC(int n, int CONTROL_SIGNALS)
{
   i=0;
   sum = mux(0,2,CONTROL_SIGNALS)
   for(i=0;i<n;i++)
   {
       in = mux(sum,i,CONTROL_SIGNALS);
       sum = ALU(sum,in, CONTROL_SIGNALS);
   }
   return(sum);
}

Merging PDGs

(a)

(b) (c) (d)

i = 0

sum = mux(0,2)

phi(i)

phi(sum)

i < n

in = mux(i, sum)

sum=alu(sum,in)

i++

return(sum)

F

(e)
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stValid
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n
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Data Path
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Figure 6. Quasi-Architecture Example An example showing the different stages involved in conversion of source code segments,
computeSum and computePower (a) to QASIC hardware (f). The resultant QASIC can perform the functionality of the two input code

segments as well as other functions like n!, c2
n

. The solid lines represent the control dependence and the dashed lines represent the data
dependence for the program dependence graphs ((a), (b),(c)).

plained later) dependence edges. We eliminate the circular depen-
dences by removing the least number of node matches that would
break all the dependence cycles. The next step is to merge the loop
entry points and in the process, ensure that each loop body has only
one entry point. Whenever we detect a code region with multiple
entry points, we add dummy control nodes as entry points to main-
tain a reducible control dependence graph. Then, we build a one-
to-one map between variables of the two PDGs based on the nodes
that got matched. We use this variable map to match the declara-

tion and phi nodes that were ignored in the Section 3.2 to reduce
subgraph matching time. At this point, we merge the two PDGs to
form a new PDG of the QASIC that can execute computation cor-
responding to both the merging pdgs.

Figure 6(b) shows PDG of the QASIC that our toolchain de-
signs by merging the dependence graphs of computeSum and com-

putePower, shown in Figure 6(a).
The QASIC PDG contains additional node and edge attributes

to enable PDG linearization (Section 3.4).

1. Node Attributes: Each node in the PDG contains a list of
variables defined and used by that node. This node attribute
is extended to contain a list of conditionally defined and used
variables. For example, in Figure 6(b) sum +=i; sum∗=sum
node conditionally consumes variable i because only one of its
input code segments (computeSum) consumes i.

2. Edge Attributes: The PDG is augmented with conditional data
dependences. The conditional edges result from edges present
in only one of the two PDGs being merged. For example,
computeSum in Figure 6(b) has data dependence between i++
and sum +=i but there is no data dependence between i++ and
sum∗=sum. This leads to a conditional dependence from i++
to sum+=i; sum∗=sum in the QASIC’s PDG.
At this point, this stage has designed a QASIC PDG correspond-

ing to each similar dependence graph pair that the previous stage
produced. Each of these newly designed QASICs have greater com-
putational power than the two dependence graphs they were formed
from because they can support the computations that either of their
input dependence graph can support. Moreover, these QASICs re-
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Figure 7. Expression Merging An example showing merging of
the expression trees of the two input expressions to build the new
merged expression tree and the corresponding expression.

while(i<n)         A
{
    if(...)              P      
    {
         a = 5;
         b = a + 6;
    }
    if(...)              Q
    {
         a = 5;
         c = a + 6;
    }    
    if(...)              R
    {
         d = a;
         e = b;
    }
}

P Q

R

Data Dependence 

Graph

Figure 8. Inferred Dependence Example The solid and dashed
lines show true and inferred dependences. There is an inferred
dependence edge from P to Q because no valid ordering of P, Q, R
orders Q before P (Section 3.4).

quires lesser area compared to its input dependence graphs because
they eliminate hardware redundancy across the input dependence
graphs by merging similar computations.

The final step of this stage is to, amongst all the QASICs that
this step designed, select the QASIC that, when compared to the
dependence graph pair they were formed from, will provide the
maximum benefits in terms of the area saved and increase in the
computational power. Section 4 explains in detail our heuristic for
performing this QASIC selection. Once the best QASIC candidate
is chosen, this stage replaces the two input PDGs with the chosen
QASIC’s PDG in the PDG pool.

At the end of this stage, the toolchain loops back to the second
stage (Section 3.2) to find other potential PDG pairs for merging.
Eventually, the QASIC set becomes distinct enough that no substan-
tial similarity can be found across them. At that point, the toolchain
proceeds to generate the QASIC specifications in C.

3.4 QASIC Generation

The fourth stage of the toolchain sequentializes the PDGs of the
QASIC set to produce the QASIC specification in C, which is used
to generate Verilog code by the backend of our toolchain. The two
steps involved in this stage are merging the matched expressions
present in each QASIC PDG node and sequentializing the QASIC’s
data and control dependences.

Merging Expressions This step generates a valid C-expression
corresponding to each node of a QASIC. The QASIC PDGs that the
previous step designs consist of multiple C-expressions in each of
its nodes. For example, in Figure 6(b), a QASIC PDG node contains
the expressions sum += i and sum *= sum. To design this merged
C-expression, we build expression trees using ANTLR [2], which
are then merged into a single expression tree. This merged tree di-
rectly translates to a valid C-expression. This process is shown in
Figure 7. This step achieves much of the area reduction seen in our
results by reusing datapath operators. For example, in Figure 6(c),
the QASIC eliminates hardware redundancy bymerging i < n ex-
pression used in both computeSum and computePower. Fig-
ure 6(c) shows the result of merging expressions for the PDG
shown in Figure 6(b).

Linearizing QASIC PDGs The PDGs are inherently parallel rep-
resentation of a program. However, in order to produce QASIC

specification in C, we need a valid ordering of nodes consistent
with the control and data dependence edges. The ordering of con-
trol edges in a QASIC PDG is straightforward and the previously
proposed techniques for reducible graphs [13] work in our case as
well. Sequentializing the data dependence is more challenging be-
cause of the conditional data flow edges as well as conditionally
defined-used variables of the nodes. This stage uses the following
technique to sequentialize data dependences including the condi-
tional node and edge attributes of QASIC PDG nodes.

The main goal of our technique is to order the PDG nodes in the
presence of conditional data dependence without employing back-
tracking (computation time for backtracking-based techniques can
get very expensive as the PDG’s size and complexity increases).
We use the data dependence edges and use/def analysis to build
inferred dependences between children of same control node. The
inferred dependence is defined as follows: Let us say that parent
node A has child nodes P and Q. We say that child P has inferred
dependence on child Q if there exists a child R of parent node A
such that child P produces value b consumed by child R, child Q
produces value a consumed by child R, and child P also produces
value a. This implies that only valid ordering among them is for
child P to execute before child Q. An example of this is shown
in Figure 8. The subgraph P produces values a and b, subgraph
Q produces values a and c. There is no dependence between P
and Q. The subgraph R consumes value a from Q and b from P
causing an implicit ordering between P and Q. We use the data
dependence, inferred dependence and use/def analysis to linearize
the data dependence. To handle additional node and edge attributes
of the QASIC PDG, we extend the data structures used in data de-
pendence serialization algorithm to make them aware of these addi-
tional attributes. Our linearization algorithm based on inferred de-
pendence lends itself to easily support conditional data dependence
and the algorithm’s computation time scales well w.r.t. the size and
complexity of the QASIC PDG.

The final linearized QASIC formed by merging computeSum
and computePower is presented in Figure 6(d). Based on the
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value of the CONTROL_SIGNALS, this QASIC can be configured
to support the computations performed by computeSum as well
as computePower. In addition, this QASIC can also be config-

ured to perform other operations such as factorial, c2n

, besides
computeSum and computePower by configuring the control
lines to the mux, ALU and init value of sum.

3.5 Modifying Application Code to utilize QASICs

Our toolchain also modifies the application code to allow it to
offload the computations on to the QASIC at the runtime. The
toolchain does this by determining a valid setting of the QASIC’s
CONTROL_SIGNAL input that would allow the QASIC to execute
the computation performed by the application. For example, Fig-
ure 6(d) shows how the application code is modified to use the QA-
SIC. In this example, the computeSum function sends the func-
tion argument values as well as an additional argument that would
configure the ALU in the QASIC to perform addition. Moreover, the
toolchain also inserts stubs in the application code to query the run-
time for the availability of a matching QASIC(not shown in the fig-
ure for simplicity). In case no matching QASIC is present or avail-
able, then the application defaults to running the software version
of the function on the general-purpose processor.

4. QASIC-selection heuristic

In the previous section, we described our design methodology for
merging application hotspots and building QASICs for them. Sec-
tion 3.3 described our methodology for merging two hotspots with
similar code structures. However, a hotspot can match well with
multiple other hotspots. For example, integralImage2D hotspot
in Disparity matches well with multiple hot spots (slave_sort in
Radix, findDisparity in Disparity) belonging to different appli-
cation classes and having different code sizes. In general, there
are exponentially different alternatives for merging the application
hotspots to form the final QASIC set. In this section, we present
our heuristic to decide which hotspots to merge to make the best
area-energy tradeoff at each step.

Our tool chain’s goal is to find the set of QASICs that will most
significantly reduce the power consumption while fitting within the
available area budget. The reduction in power consumption that
a QASIC can deliver is a combination of its power efficiency and
fraction of programs that it executes. Formally, a QASIC b occupies
area Ab, consumes power Pb, has speedup Sb, and has coverage Cb

(relative application importance).

To evaluate b, we define a quality metric Qb = CbSb

AbPb

. To select

a good set of QASICs to build, we will need to compute Qb for an
enormous number of candidate QASICs. Computing precise values
for Sb and Pb in each case is not tractable since it requires full-
fledged synthesis and simulation. To avoid this overhead, we make
two assumptions.

First, we conservatively assume that the speedup, Sb, is always
1. We synthesized and simulated fully specialized hardware for
fragments from integer programs and found that the they are typi-
cally no more than twice as fast as a general purpose processor. We
estimate Ab based on the datapath operators and register counts.
Next, we assume that power consumption is proportional to area.
This approximation is valid if we assume constant activity factors,
constant clock frequencies, and circuit capacitance that grows lin-
early with circuit area. The Cb value is estimated based on system-
level profiling.

Although there is invariably some error introduced due to these
approximations, we believe that the loss of accuracy is more than
compensated by the improvements in computational tractability.

With these assumptions we can approximate Qb as Q′

b = Cb

A2

b

.

I-$

CPU

FPU D-$

OCN

Scan Chain 

Select

QASIC QASIC

QASIC

Figure 9. QASIC-enabled Tiled Architecture A QASIC-enabled
system containing an array of tiles, each of which contains many
QASICs connected via scan chains to the general purpose processor.

We use X ⊲⊳ Y to denote the QASIC that results from merging
the QASICs for X and Y (Section 3). While estimating AX⊲⊳Y

is straightforward, estimating CX⊲⊳Y is more challenging because
X ⊲⊳ Y can implement other code segments beyond X and Y .
Currently, we set CX⊲⊳Y = Cx + Cy as a conservative estimate.
In the future, we intend to use some form of cross-validation to
measure CX⊲⊳Y more accurately to promote generality.

To evaluate the quality of a set of QASICs, B, we sum the value
of Q′ for each QASIC. The goal of the QASIC design flow is to
maximize

Q
′

B =
X

b∈B

Q
′

b =
X

b∈B

Cb

A2
b

subject to
X

b∈B

Ab < Abudget.

(1)
Algorithm 1 contains the pseudo-code for our QASIC-selection

heuristic that starts with a fully specialized ASIC for each fragment
and merges them to create QASICs. It iteratively selects QASIC

pairs that maximize Q′

B (Line 2) and merges them to form a more
general QASIC that has a greater computational power than its input
QASIC pair.

1: while |B| > 1 do

2: (b1, b2) = varmax(b1∈B,b2∈B)
Cb1⊲⊳b2

A2

b1⊲⊳b2

−
Cb1

A2

b1

−
Cb2

A2

b2

3: B = B \ {b1, b2}
4: B = B ∪ {b1 ⊲⊳ b2}
5: Record the merging of b1 and b2 and the resulting values of

Q′

B and
P

b∈B Ab.
6: end while

Algorithm 1. Greedy clustering algorithm The algorithm for
deciding which QASICs to build. B is initially the set of fully-
specialized ASICs, one for each of the fragments selected by
the profiler.

5. QASIC Architecture Design

In this section, we describe our hardware generation compiler and
integration of these QASICs with general purpose processor.
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5.1 QASIC Hardware Generation

Our hardware generation compiler is built on the C-to-HW com-
piler proposed in c-cores [21] for generating Verilog from C source
code. This compiler also generates a cycle-accurate module for our
architectural simulator. Figure 6(d-f) presents this hardware gener-
ation step for the example QASIC designed in Section 3.3.

The compiler builds the hardwares datapath and control state
machine based on the data and control flow graphs of the QASIC

source code in Static Single Assignment [7] form. In addition to
standard C data operators, our hardware compiler also supports
QASIC-specific operations such as ALU and data-selector (shown as
mux in Figure 6(d)). The generalized arithmetic operations, ALUs,
in a QASIC’s dataflow graph are instantiated as functional units in
the hardware’s datapath. The data-selectors in a QASIC’s dataflow
graph are instantiated as a mux operator. To optimize the QASIC’s
energy-efficiency, the computation of the data-selector’s inputs are
predicated on the data-selector’s control signal. Hence, based on
the control signal, only one of the inputs is computed.

The memory operations in the dataflow graph are instantiated as
load/store units in the hardware datapath. The load-store units con-
nect to same coherent data cache as the general purpose processor
and perform all the memory operations in program order.

5.2 Integrating QASICs with General-Purpose Processors

The QASICs can be used to extend any general purpose system
to provide higher specialization and optimize energy consumption
per instruction. In this paper, we describe how tiled-architectures
like RAW [16] can be extended with QASICs. In a QASIC-enabled
system (Figure 9), each tile contains a general-purpose processor, I-
Cache, D-Cache, set of QASICs and interconnect logic. The system
includes 100s of QASICs designed for key functions of the target
system’s workloads. The general purpose processor provides the
safety net for code regions not covered by any of the QASICs.

On each tile, QASICs are connected to a general-purpose pro-
cessor via scan chains. The general-purpose processor passes input
arguments, starts QASIC execution as well as receives QASIC task
completion notifications via these scan chains. The scan chain in-
terface is slow but scales well, allowing us to connect 10s of QA-
SICs to a CPU. The QASICs shares the D-Cache with the general-
purpose processor enabling data transfers through the L1 cache as
well.

6. Methodology

In this section, we provide details of our synthesis toolchain and
simulation infrastructure for performance and power measure-
ments.

Synthesis For synthesis, we target a TSMC 45 nm GS process us-
ing Synopsys Design Compiler (C-2009.06-SP2) and IC Compiler
(C-2009.06-SP2). The toolchain processes synthesizeable Verilog
to generate placed and routed QASICs.

Performance and Power measurements We extend the cycle-
accurate simulator presented in [21] to measure QASIC’s perfor-
mance. Our simulator models the complete QASIC-enabled sys-
tem including the general-purpose processor, QASICs, intercon-
nect, runtime and a coherent memory system.

In order to measure QASIC power usage, the simulator periodi-
cally samples execution of QASIC and feeds these samples to Syn-
opsys VCS logic and Synopsys Primetime. We use processor and
clock power values for a MIPS 24KE processor in TSMC 45nm re-
ported in [21]. Finally, we use CACTI 5.3 [17] for I- and D-cache
power.

7. Results

In this section, first we evaluate our QASIC selection heuristic by
comparing it to the optimal solution found via exhaustive search.
Next, we demonstrate that relatively few QASICs can support all
the commonly used operations on multiple data structures. More-
over, these QASICs provide an order-of-magnitude more energy ef-
ficiency than general-purpose processors. In addition, for a more
diverse application set (Table 1), the data shows that our methodol-
ogy can significantly reduce the required number of specialized cir-
cuits as well as the area requirements compared to fully-specialized
logic while continuing to provide ASIC-like energy efficiency. Fi-
nally, our results show that QASICs can effectively support the
legacy application versions and can provide significant improve-
ments in their energy efficiency compared to the previous work in
this area [21].

7.1 Evaluating the Clustering Heuristic

In this section, we evaluate our QASIC selection heuristic (Algo-
rithm 1) against exhaustive search. We use a micro-benchmark
set containing functions for computing eight mathematical func-

tions —
P

i=0

i<n
i, n!, 2n, a2

n

,
P

i=0

i<n
a[i],

Q

i=0

i<n
i,

P

i=0

i<n
|a[i]|, and

count of powers of 2 in an array.
To evaluate our heuristic, we build QASICs using the heuristic

and also using the exhaustive approach that will design all of the
255 QASICs that can arise from merging subsets of the 8 programs.

We compare our algorithm to the exhaustive search approach
under different design constraint scenarios. These different scenar-
ios were formed by varying the area budget available for special-
ization as well as by varying the relative importance assigned to
each of the eight computations. In all the cases, our heuristic built
the same set of QASICs as exhaustive search.

The low computational complexity and near optimality of our
heuristic algorithm allows it to scale to handle large target appli-
cation sets. This ability is critical because we expect the system’s
target workload set to be very large in general.

7.2 Evaluating QASIC’s Area and Energy Efficiency

In this section, we evaluate the ability of our toolchain to support a
significant fraction of the target system execution in hardware using
a relatively small number of QASICs that fit within a limited area
budget.

7.2.1 Evaluating QASIC’s ability to target an application

domain

The first experiment designs QASICs for the find, insert,

delete operations for the commonly used data structures, namely
link-list, binary tree, AA tree, and hash table. Figure 10 shows
how the toolchain varies the QASIC design based on the area bud-
get available for specialization. The X-axis plots the number of
QASICs that the toolchain designs to fit within the available area
budget. The left and right Y-axes show how our toolchain trades be-
tween area and energy efficiency. The results show that relatively
few QASICs can support all these 12 data structure operations while
improving the energy efficiency by more than 13.5× compared to
our baseline general-purpose processor.

The next experiment shows that our toolchain can provide hard-
ware support for increasing number of functionalities without a cor-
responding increase in the required number of specialized cores.
Figure 11 plots the increase in the functionality supported in hard-
ware against the required number of distinct QASICs. The data
shows that just four QASICs can support all these operations, while
the previous work, c-cores, would need to design eleven special-
ized cores. This 63% decrease in the required number of special-
ized cores allow us to closely integrate hardware support for greater
number of features with a processor pipeline. For example, for our
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scan chain based interconnect design explained in Section 5.2, QA-
SICs reduce the interconnect overhead (measured as the number of
connections between the CPU and all the specialized cores) by 54%
compared to c-cores.

7.2.2 Evaluating QASIC’s ability to target a diverse workload

In this section, we evaluate our QASIC design flow by using it to
design QASICs for the hotspots from our diverse workload listed in
Table 1. The results are shown in Figure 12. The X-axis plots the
number of QASICs required to cover all the application hotspots.
The left-most point on the X-axis corresponds to fully-specialized
logic, and hardware generality (i.e., the average number of com-
putations that a QASIC supports) increases from left to right. The
results show that our toolchain can reduce the number of special-
ized co-processors required to cover all application hotspots by
over 50% (which in turn reduces the interconnect overhead by
1.58×). Also, QASICs reduce the total area requirements by 22%

compared to that of fully-specialized hardware, while incurring a
27% increase in energy consumption. The first few merges result
in area reduction without any impact on power consumption. This
is because leakage energy goes down as the area is reduced and
that offsets any increase seen in dynamic energy. For the subse-
quent merges, our approach ensures that energy-efficiency degrades
gracefully with decreases in the total area budget. These results
show that our toolchain can effectively reduce hardware redun-
dancy while providing ASIC-like energy-efficiency.

Application-level energy savings Figure 14 shows that, com-
pared to the baseline tiled system, a QASIC-enabled system con-
sisting of just thirteen QASICs can provide significant energy ef-
ficiency improvements for our diverse workload. This experiment
models the complete system including the overheads involved in
accessing the runtime system as well the overheads for offloading
computations on to the QASICs. The data show that, at the applica-
tion level, QASICs save 45% of energy on average compared to a
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Figure 14. Quasi-ASIC enabled System Energy Efficiency The graphs show the energy and EDP reductions by QASICs compared to an
in-order, power efficient MIPS core (”SW”). Results are normalized to running on the MIPS core (lower is better). The QASICs can reduce
the application energy consumption and energy-delay product by up to 79% and 83% respectively.

MIPS processor, and the savings can be as high as 79%. Also, QA-
SICs reduce application energy-delay product by 46% on average.
The energy savings for these QASIC-enabled systems are signifi-
cant, and as we saw in the previous section the energy-efficiency
will only improve as the transistor budget increases.

7.3 Backward Compatibility for QASICs

In this section, we evaluate QASIC’s ability to support older appli-
cation versions. The specialized hardware should be able to support
multiple application versions in order to remain useful for a long
time. We assume that while hardware designers will design special-
ized hardware for the latest version of each application, they will
also want to support older “in-use” versions of the application as
well. To provide this backward compatibility, our toolflow merges
the older application versions with the latest version and builds one
QASIC for all of them.

Previous work, conservation cores [21], presented reconfigura-
bility mechanisms to support newer (and older) application ver-
sions. Figure 15 presents QASIC’s energy-efficiency across appli-
cation versions and compares it to that of the technique proposed
in [21]. The Y-axis plots the energy-efficiency compared to an

in-order MIPS processor. The results show that QASICs provide
significant energy-improvements compared to the baseline proces-
sor for all the application versions and can be up to 7× more
energy-efficient than conservation cores for older application ver-
sions. Also, for the latest application version, QASICs are almost as
energy-efficient as conservation cores (less than 10% difference on
average).

8. Related Work

The topic of code similarity has been studied in the past in other
contexts like for detecting plagiarism [14] and in software engi-
neering tools [13]. The main difference between our goals and that
of these previous research works is that we want to find similar-
ity among diverse pieces of code to improve hardware reusability
while the previous research focuses on finding exact or almost same
code segments in a body of code that is expected to have code reuse.
While there is much we can learn from the techniques proposed in
these papers, we would have to significantly augment and enhance
them to make it suitable for the purpose of this project.
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Figure 15. Building QASICs for backwards compatibility The
energy-efficiency of the older versions improves significantly (up
to 7×) with minimal impact on that of newer ones.

Recent work has focused on providing hardware support for reg-
ular embedded loops as well as irregular integer codes [8, 21, 24].
The QASIC’s design goals as well as target application set differs
from these previous efforts on automatically designing specialized
circuits. We differentiate our work from these previous approaches
in Section 2. The ideas presented in these papers can be used to
augment our work to enable QASICs to better exploit the available
parallelism in the target functions as well as to ensure that QASIC’s
longevity is comparable to general-purpose processors.

In the past, there has been some work on building application
specific processors or reconfigurable logic like PICO [12], Critical-
Blue [1], WARP [19] and application specific instruction set exten-
sions [5, 22]. Our work differs significantly from these approaches
in that our approach does not use any of pre-engineered compo-
nents but builds the co-processors ground up based solely on the
application characteristics. Our application-specific design process
yields an energy efficiency closer to an ASIC rather than a recon-
figurable fabric or co-processor.

9. Conclusion

Technology scaling trends will continue to increase the number of
available transistors while reducing the fraction that can be used
simultaneously. To effectively utilize the increasing transistor bud-
gets, we present QASICs, specialized co-processors that can sup-
port multiple general-purpose computations and can provide sig-
nificant energy efficiency compared to a general-purpose processor.
Our toolchain designs these QASICs by leveraging the insight that
similar code patterns exist within and across applications. Given a
target application set and an area budget, our toolchain varies the
computational power of these QASICs such that a significant frac-
tion of the execution is supported in hardware without exceeding
the area budget. Our results show that designing just four QASICs
can support operator functions of multiple commonly used data
structures and moreover, these QASICs provide 13.5× more en-
ergy efficiency than our general-purpose processor. On a more di-
verse workload, our approach reduces the required number of spe-
cialized cores by over 50% and occupies 23% less area compared
to fully-specialized circuits while providing ASIC-like energy effi-
ciency (within 1.27X on average).

Specialization has emerged as an effective approach to combat
the dark silicon phenomenon and enable Moore’s Law-style system
performance scaling without exceeding the power budget. QASICs
enable a system designer to provide this specialization in a scalable
manner by improving the computational power of specialized pro-
cessors such that, a relatively few of them, combined, can support
a significant fraction of the target workload execution in hardware.
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