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Habenular α5* nicotinic receptor signaling controls nicotine 
intake

Christie D. Fowler1, Qun Lu1, Paul M. Johnson1, Michael J. Marks2, and Paul J. Kenny1

1Laboratory for Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, 
The Scripps Research Institute – Scripps Florida, Jupiter, FL 33458, USA

2Institute of Behavioral Genetics, University of Colorado, Boulder, CO 80309, USA

Abstract

Genetic variation in CHRNA5, the gene encoding the α5 nicotinic acetylcholine receptor (nAChR) 

subunit, increases vulnerability to tobacco addiction and lung cancer, but underlying mechanisms 

are unknown. Here, we report dramatically increased nicotine consumption in mice with null 

mutation in Chrna5. This effect was `rescued' in knockout mice by re-expressing α5 subunits in 

medial habenula (MHb), and recapitulated in rats through α5 subunit knockdown in MHb. 

Remarkably, α5 subunit knockdown in MHb did not alter the rewarding effects of nicotine but 

abolished the inhibitory effects of higher nicotine doses on brain reward systems. The MHb 

extends projections almost exclusively to the interpeduncular nucleus (IPN). We found diminished 

IPN activation in response to nicotine in α5 knockout mice and disruption of IPN signaling 

increased nicotine intake in rats. Our findings suggest that nicotine activates the habenulo-

interpeduncular pathway through α5-containing nAChRs, triggering an inhibitory motivational 

signal that acts to limit nicotine intake.

Tobacco smoking results in greater than 5 million deaths each year and accounts for almost 

90% of all deaths from lung cancer1. Nicotine is the principal reinforcing component in 

tobacco smoke responsible for addiction2. Nicotine acts in the brain through the neuronal 

nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels consisting 

of five membrane-spanning subunits3. Twelve neuronal nAChR subunits have been 

identified, nine α subunits (α2–α10) and three β subunits (β2–β4)3. The predominant 

nAChR subtypes in mammalian brain that have been heavily implicated in regulating the 

addictive properties of nicotine are those containing α4 and β2 subunits (denoted α4β2* 

nAChRs)4,5,6,7,8. A major advance in our understanding of smoking behavior is the finding 

that allelic variation in the α5/α3/β4 nAChR subunit gene cluster located in chromosome 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence and requests for materials should be addressed to P.J.K. (pjkenny@scripps.edu).. 

Author Contributions C.D.F., Q.L., P.M.J. and M.J.M. performed all experiments; M.J.M. also provided essential reagents and 
assisted in manuscript editing; C.D.F. and P.J.K. designed the experiments, performed the statistical analyses and wrote the 
manuscript.

Supplementary /information Supplementary data is linked to the online version of the paper at www.nature.com/nature.

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2011 September 30.

Published in final edited form as:
Nature. 2011 March 31; 471(7340): 597–601. doi:10.1038/nature09797.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/nature
http://www.nature.com/reprints


region 15q25 significantly increases risk of tobacco addiction9,10,11. In particular, 

polymorphisms in the α5 subunit gene (CHRNA5), which result in decreased function of the 

subunit, increase vulnerability to tobacco addiction12,13. Nevertheless, mechanisms through 

which α5* nAChRs may influence smoking behavior are unclear. Genetic variability in 

CHRNA5 is also a major risk factor for lung cancer and chronic obstructive pulmonary 

disease (COPD) in smokers14,15,16, which may reflect higher levels of tobacco dependence 

in individuals carrying risk alleles and consequently greater exposure to carcinogens 

contained in tobacco smoke17, although the precise role of α5* nAChRs in lung cancer and 

COPD is unknown.

α5* nAChRs control nicotine intake

Here, we investigated the role of α5* nAChRs in the reinforcing properties of nicotine. We 

found that wildtype and knockout mice responded for intravenously self-administered 

nicotine infusions according to an inverted U-shaped dose-response curve, consistent with 

previous reports in humans18, non-human primates19, dogs20 and rats21. However, the 

knockout mice responded far more vigorously than wildtype mice for nicotine infusions, 

especially when higher unit doses were available (Fig. 1a); see Ref.22. Increased responding 

for nicotine in knockout mice was not secondary to alterations in operant performance or the 

motivational salience of reward-paired conditioned stimuli (Supplementary Fig. 1). When 

we calculated total amounts of nicotine consumed at each dose available for self-

administration, we found that wildtype mice titrated their responding to consume ~1.5 mg 

kg−1 per session (Fig. 1b); which achieves plasma concentrations of nicotine comparable to 

those detected in humans after 5 h of smoking their preferred brand of cigarette23,24. In 

contrast, knockout mice did not titrate their responding and consumed greater amounts of 

nicotine as the dose increased (Fig. 1b). Knockout mice also had greater motivation to seek 

and obtain nicotine when tested under a progressive ratio schedule of reinforcement, an 

effect most apparent again at high doses (Supplementary Fig. 2). Enhanced responding for 

nicotine as the unit dose increases is thought to reflect an intensification of the reinforcing 

properties of the drug, thereby motivating higher levels of intake25. Diminished responding 

as the dose increases reflects greater restraint over intake to avoid the increasingly aversive 

effects of higher drug doses18,25 or more rapid development of drug satiation25,26. Our 

findings therefore suggest that deletion of α5 nAChR subunits has a dissociable effect on the 

motivational drives that control nicotine intake. The stimulatory effects of nicotine on brain 

reinforcement systems (i.e., ascending portion of dose-response curve) are unaltered by α5 

subunit knockout, since the wildtype and knockout mice responded for nicotine at a similar 

maximal rate. Instead, deficient α5* nAChR signaling appears to attenuate the negative 

effects of nicotine that limit its intake (i.e., descending portion of dose-response curve). 

These findings are highly consistent with the increased vulnerability to tobacco addiction in 

human smokers carrying CHRNA5 risk alleles that result in less functional α5* 

nAChRs12,13.

Habenular α5* nAChRs control nicotine intake

The α5 nAChR subunit has a restricted distribution profile in the brain, with dense 

expression in the habenulo-interpeduncular pathway, deep layers of the cortex and 
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hippocampus, and lower expression in the ventral tegmental area (VTA) and substantia 

nigra27. The medial habenula (MHb) projects almost exclusively to the interpeduncular 

nucleus (IPN) via the fasciculus retroflexus28. Functional α5* nAChRs are expressed on 

MHb afferents to the IPN29, and high but not low nicotine doses activate the habenulo-

interpeduncular tract, as measured by an increased local glucose utilization in rats30. The 

habenulo-interpeduncular tract regulates avoidance of noxious substances31 and regulates 

somatic aspects of nicotine withdrawal32. However, little is known of its role in drug-taking 

behavior33. Intriguingly, the lateral habenula (LHb) has an inhibitory influence on VTA 

dopamine neurons34, is activated by aversive stimuli or omission of anticipated reward, and 

is considered a source of negative motivational signals in the brain34. We therefore 

hypothesized that nicotine-induced stimulation of α5* nAChRs in the habenulo-

interpeduncular pathway triggers an inhibitory motivational signal that limits consumption 

of the drug. In knockout and wildtype mice that received injections of a control lentivirus 

expressing green-fluorescent protein (GFP; Lenti-Control) into the MHb, we again found 

that knockout mice self-administered far greater amounts of nicotine when a high unit dose 

was available (Fig. 2a), replicating the above findings. However, nicotine intake was 

indistinguishable in knockout versus wildtype mice after injection of a lentivirus vector 

(Lenti-CHRNA5) into the MHb to rescue α5 nAChR subunits in the habenulo-

interpeduncular tract (Fig. 2b; Supplementary Fig. 3). GFP immunostaining to confirm MHb 

delivery of virus was carried out for the majority of the mice. Responding for nicotine (0, 

0.1 and 0.4 mg kg−1 per infusion) in the subset of Lenti-CHRNA5-treated used for 

immunostaining 3.6 ± 0.83, 8.8 ± 1.4 and 4.86 ± 1.0, respectively, for wildtypes and 4.53 ± 

0.85, 7.72 ± 0.68 and 4.53 ± 1.4, respectively, for knockouts. GFP immunostaining 

confirmed that virus-infected cells were detected almost exclusively in the habenulo-

interpeduncular tract of Lenti-CHRNA5 knockout mice, with little detectable staining in 

other brain areas that could potentially impact self-administration behavior (Fig. 2c,d; 

Supplementary Fig. 4). The remaining mice not used for immunostaining were used to 

verify that the Lenti-CHRNA5 virus was function. Real-time PCR verified that α5 subunit 

mRNA was detectable only in habenula (Supplementary Fig. 5) and IPN (Supplementary 

Fig. 6) of the Lenti-CHRNA5-treated knockout mice, suggesting that α5 nAChR subunit 

mRNA is transported from the MHb along the fasciculus retroflexus and into the IPN. 

Wildtype mice treated with the Lenti-CHRNA5 vector did not demonstrate increased α5 

subunit mRNA above baseline levels in the habenula (Supplementary Fig. 5), suggesting 

that strict regulatory mechanisms control α5* nAChR expression in the MHb-IPN pathway.

Using radiolabeled rubidium (86Rb+) efflux as a functional measure of nAChR signaling, 

we found that acetylcholine-evoked 86Rb+ efflux was dramatically attenuated in 

synaptosomes prepared from the habenula and IPN, but not the cortex or hippocampus, of a 

separate cohort of knockout versus wildtype mice (Supplementary Fig. 7). Consistent with a 

recent report, 86Rb+ efflux was also attenuated in synaptosomes from the thalamus of 

knockout mice35 (Supplementary Fig. 7). Injections of lenti-CHRNA5 into MHb attenuated 

the deficits in 86Rb+ efflux in IPN, but not in MHb or thalamus, of knockout mice 

(Supplementary Fig. 8). These findings demonstrate that α5* nAChRs play a critical role in 

regulating nAChR transmission in the habenulo-interpeduncular tract, and confirm that the 

Lenti-CHRNA5 vector rescues not only expression, but also function, of α5* nAChRs in the 
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habenulo-interpeduncular pathway. These data also reveal three additional insights: First, α5 

subunits produced in MHb are predominately incorporated into α5* nAChRs expressed 

presynaptically on afferents to IPN. Second, injections of the Lenti-CHRNA5 vector into 

MHb rescued local α5 subunit mRNA expression, but not deficits in MHb 86Rb+ efflux. 

This suggests that nAChR signaling in MHb may be derived from α5* nAChRs located 

presynaptically on afferent inputs from brain sites not infected by the virus. Third, whilst the 

Lenti-CHRNA5 vector attenuated the deficits in nAChR signaling detected in IPN of 

knockout mice, this rescue was only partial (Fig. 2e). Hence, postsynaptically localized α5* 

nAChRs on IPN neurons, or perhaps presynaptic α5* nAChRs on afferent inputs that 

originate from brain sites other than the MHb, also play a major role in nAChR transmission 

in the IPN.

Next, we developed and validated a lentivirus vector to deliver a short-hairpin interfering 

RNA against the α5 nAChR subunit (Lenti-α5-shRNA; Supplementary Fig. 9). We then 

microinjected the Lenti-α5-shRNA vector into the MHb of rats to knockdown habenulo-

interpeduncular α5* nAChRs (Supplementary Fig. 10). As expected, Lenti-Control rats 

responded for nicotine according to an inverted U-shaped dose-response curve (Fig. 3a). 

There was a dramatic increase in nicotine consumption across the dose-response curve in the 

Lenti-α-shRNA rats that was most apparent at high unit doses (Fig. 3a). When total nicotine 

intake at each dose was calculated, we found that Lenti-Control rats titrated their responding 

to consume ~0.75–1 mg kg−1 nicotine per session (Supplementary Fig. 10). In contrast, 

knockdown rats showed little evidence of titration and continued to increase their 

consumption as the unit dose increased. We obtained similar effects on nicotine intake using 

a second lentivirus vector that expressed an shRNA targeting a different portion of α5 

subunit mRNA (Supplementary Fig. 11). Overall, these findings in rats recapitulate those in 

the α5 knockout mice and confirm that α5* nAChRs in the habenulo-interpeduncular 

pathway regulate levels of nicotine intake across species.

α5* nAChRs inhibit brain reward function

Next, we examined the effects of nicotine on brain-stimulation reward (BSR) thresholds in 

rats following knockdown of α5* nAChRs in the habenulo-interpeduncular pathway. In the 

BSR procedure, rats respond vigorously to obtain rewarding electrical self-stimulation via 

an intracranial stimulating electrode, with the minimal stimulation intensity that maintains 

self-stimulation behavior termed the reward threshold. Low doses of nicotine (~0.25 mg 

kg−1) that condition a place preference in rats also lower BSR thresholds36, reflecting drug-

induced enhancement of brain reward activity. Conversely, higher doses of nicotine (≥1 mg 

kg−1) that condition a place aversion can elevate BSR thresholds in rats37. Importantly, rats 

regulate their pattern of nicotine self-administration behavior at a level that achieves 

maximal lowering of BSR thresholds36, suggesting that obtaining the stimulatory effects of 

nicotine on brain reward circuits, whilst avoiding its negative effects, determines the 

amounts of nicotine consumed by rats. We found that low doses of nicotine (0.125–0.25 mg 

kg−1; free-base; SC) lowered BSR thresholds by a similar magnitude in the Lenti-Control 

and Lenti-α5-shRNA rats (Fig. 3b). However, as the dose of nicotine was increased (1–1.5 

mg kg−1; free-base; SC), BSR thresholds were elevated above baseline in Lenti-Control rats, 

but continued to be lowered below baseline levels in Lenti-α5-shRNA rats (Fig. 3b). These 
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data demonstrate that the stimulatory effects of nicotine on brain reward systems, which 

likely provide a crucial source of reinforcement that maintains the tobacco smoking habit38, 

are unaltered by deficits in α5* nAChRs in the MHb-IPN pathway. Instead, the inhibitory 

effects of higher nicotine doses on the activity of reward circuitries, which likely determine 

the amounts of nicotine that can be consumed, are greatly attenuated by knockdown of α5* 

nAChRs in this pathway.

Habenular α5* nAChRs regulate IPN activation

The 86Rb+ efflux data above suggest that α5 subunits transcribed in the MHb are 

incorporated into presynaptic α5* nAChRs in the IPN where they may regulate 

neurotransmitter release. Acetylcholine and glutamate are the major neurotransmitters 

produced by MHb neurons innervating the IPN39, and presynaptic α5* nAChRs are thought 

to regulate glutamate but not acetylcholine release in IPN29,40,41 Interestingly, 

glutamatergic transmission at the MHb-IPN synapse is increased in response to nicotine 

concentrations likely achieved in the brains of smokers42. We therefore hypothesized that 

deficient α5* nAChR signaling in the habenulo-interpeduncular tract may decrease nicotine-

evoked glutamatergic transmission in the IPN and thereby attenuate a negative motivational 

signal that limits its intake. Consistent with this hypothesis, an aversive higher dose of 

nicotine (1.5 mg kg−1)43, but not a rewarding lower dose (0.5 mg kg−1)43, robustly 

activated the IPN in wildtype mice, reflected in increased Fos immunoreactivity (Fig. 4a,b). 

This effect of the high nicotine dose was almost completely abolished in the knockout mice. 

Wildtype and α5 knockout mice displayed similar Fos immunoreactivity in the ventromedial 

hypothalamus (Supplementary Fig. 12), a region in which Fos induction is highly stress 

responsive44, suggesting that altered stress responses in knockout mice did not account for 

this effect. Nicotine-induced increases in Fos immunoreactivity in the VTA, which controls 

the reinforcing effects of nicotine, were similar in wildtype and α5 knockout mice 

(Supplementary Fig. 13). Nevertheless, there was a non-statistically significant trend toward 

lower VTA Fos immunoreactivity in the knockout mice in response to the high nicotine 

dose. Considering that the VTA can also regulate aversive responses to nicotine45, it is 

possible that α5* nAChRs in VTA may differentially regulate activation of this structure in 

response to aversive but not rewarding doses of nicotine. Taken together, these findings are 

consistent with our behavioral data in which the reinforcing effects of nicotine, likely 

involving VTA activation, are substantially conserved in the knockout mice. However, 

recruitment of an aversive/satiety pathway by nicotine overconsumption, likely involving 

habenular-driven activation of IPN, is diminished in animals with deficient α5* nAChR 

signaling.

Habenular-IPN activity limits nicotine intake

We next examined the effects of reversible inactivation of the habenulo-interpeduncular 

tract on nicotine self-administration behavior in rats, accomplished by direct microinjection 

of lidocaine into targeted brain sites. Lidocaine-induced inactivation of the IPN increased 

responding for nicotine (0.03 mg kg−1 per infusion) (Fig. 5a; Supplementary Fig. 14), 

further supporting a role for nicotine-induced activation of the IPN in restricting nicotine 

intake. Conversely, inactivation of the VTA profoundly decreased nicotine intake (0.03 mg 
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kg−1 per infusion) (Supplementary Fig. 15, 16). Inactivation of the MHb increased nicotine 

intake similar to IPN inactivation (Fig. 5b), but this effect was only detected when rats self-

administered a higher (0.12 mg kg−1 per infusion) unit dose of nicotine (Supplementary 

Figs. 17, 18). This effect is consistent with habenular-mediated activation of the IPN 

preferentially occurring when higher nicotine doses are consumed. Next, we investigated the 

role of glutamate-mediated transmission in these brain sites in regulating nicotine intake. 

Microinjection of the competitive N-methy-D-aspartate (NMDA) glutamate receptor 

antagonist LY23595946 into the IPN dose-dependently increased nicotine self-

administration (Fig. 5c). LY235959 infused into MHb also increased nicotine intake at the 

higher unit dose of nicotine, whereas infusion into VTA decreased nicotine intake (Fig, 5d; 

Supplementary Fig. 16). Taken together, these data support a conceptual framework in 

which high levels of nicotine intake stimulate the habenulo-interpeduncular tract through 

α5* nAChRs and thereby enhance NMDA receptor-mediated glutamatergic transmission in 

the IPN. This nicotine-induced enhancement of IPN activity relays an inhibitory 

motivational signal that limits further drug intake. Deficient α5* nAChR signaling 

diminishes the magnitude of this inhibitory motivational signal, permitting larger amounts of 

nicotine to be consumed (Supplementary Fig. 19).

Our findings reveal the habenulo-interpeduncular pathway as a key neurocircuit controlling 

nicotine intake. This circuit acts in a manner opposite to the mesoaccumbens `positive 

reward' pathway and instead transmits an inhibitory motivational signal that limits nicotine 

intake. There are reciprocal projections between the MHb and portions of the caudomedial 

VTA (interfascicular nucleus), with the VTA and IPN projecting to many common brain 

areas including the dorsal tegmental nucleus, raphé nuclei and dorsomedial nucleus of 

thalamus. Hence, it will be important to determine if direct cross-talk between VTA and 

IPN, or integration of reward-related information from these structures at downstream brain 

sites47, is responsible for regulating the motivational salience of nicotine and coordinating 

behavioral output. Our data suggest that individuals carrying risk alleles for tobacco 

dependence resulting in deficient α5* nAChR function are relatively insensitive to 

inhibitory effects of nicotine on reward pathways, consequently extending the range of 

nicotine doses that have net stimulatory effects on reward systems. Such a scenario is likely 

to be most important in the acquisition of the tobacco habit in which experiencing a negative 

effect of nicotine on reward pathways may decrease the likelihood of repeatedly engaging in 

smoking behavior64. As such, these findings have important implications for understanding 

the high incidence of lung cancer and COPD in individuals carrying CHRNA5 risk alleles, 

suggesting that far higher levels of nicotine can be tolerated in these individuals, likely 

resulting in greater exposure to carcinogens contained in tobacco smoke. In summary, we 

have established a new framework for understanding the motivational drives that control 

nicotine intake. These findings are a key advance in our understanding of brain systems that 

regulate vulnerability to tobacco addiction, and reveal the importance of a5* nAChRs as 

targets for the development of novel smoking cessation therapeutics.

Methods Summary

Mice with null mutation in the α5 nAChR subunit gene and their wildtype littermates, or 

male Wistar rats (Charles River Laboratories, Raleigh, NC), were surgically prepared with 
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silastic catheters in the jugular vein and trained to respond on an “active” lever for food 

pellets under a fixed ratio 5 time-out 20 sec (FR5TO20) schedule of reinforcement. Mice 

and rats then responded for nicotine infusions on the FR5TO20 sec reinforcement schedule 

during 1 h daily testing sessions. Nicotine hydrogen tartrate salt was dissolved in sterile 

saline solution (0.9% w/v). Each nicotine reward earned resulted in the delivery of a nicotine 

infusion (0.033 ml injection volume delivered over 3-sec in mice; 0.1 ml delivered over 1-

sec in rats) and initiated a 20-sec time-out period signaled by a light cue located above the 

active lever during which responding on the lever was without consequence.

Methods

Animals

Male and female mice with null mutation of the α5 nAChR subunit gene Chrna5 (α5 

knockout) and their wildtype littermates were bred in our animal facilities. Brain structure 

and baseline behavioral measures between the knockout mice and wildtype littermates1. The 

mutant mice have been bred for more than 10 generations onto a C57BL6 background. 

Breeding was conducted by mating heterozygous pairs. All mice were housed in cages of 1–

3 and were at least 6 weeks of age at the beginning of each experiment. Male Wistar rats 

weighing 275–300g were purchased from Charles River Laboratories and housed 1–2 per 

cage. Mice and rats were maintained in an environmentally controlled vivarium on a 12h:

12h reversed light:dark cycle, and food and water were provided ad libitum until behavioral 

training commenced. During self-administration procedures, mice and rats were food 

restricted to 85–90% of their free-feeding body weight, but water was maintained without 

restriction. All procedures were conducted in strict accordance with the NIH Guide for the 

Care and Use of Laboratory Animals and were approved by the Institutional Animal Care 

and Use Committee of The Scripps Research Institute - Florida.

Genotyping

Around 21 days of age, mouse pups were weaned and their tails were clipped for genetic 

analysis. DNA was extracted with a tissue DNA extraction kit purchased from Biomiga, Inc. 

(San Diego, CA). Primers for the α5 wildtype and mutant genes were: α5 wildtype forward 

(5'-CACTGTCACTTGGACGCAGCC-3'); α5 wildtype reverse (5'-

GTTCCCCTTGCTCCCCATTGC-3'), Neo-1 (5'-

CTTTTTGTCAAGACCGACCTGTCCG-3'); and Neo-2 (5'-

CTCGATGCGATGTTTCGCTTGGTG-3'). Samples were processed for genetic 

amplification with PCR and subsequently run on a 1% agarose gel with ethidium bromide. 

The band for the α5 wildtype gene was at 190bp, and the α5 mutant gene was at 290bp.

Drugs

For self-administration experiments in mice and rats, (−)-nicotine hydrogen tartrate salt 

(Sigma Chemical Co., St. Louis, MO) was dissolved in 0.9% sterile saline. All doses of 

nicotine refer to the free-base form. The NMDA antagonist LY235959 (Tocris, Ellisville, 

MO) or lidocaine (2%, Sigma Chemical Co.) were microinjected at a volume of 0.5 μl for 

over 1 min, and the injector remained in place for an additional 2 min to allow for diffusion. 

The pH of solutions was adjusted to ~7.4.
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Surgery

Mice and rats were anesthetized with an isoflurane (1–3%)/oxygen vapor mixture and 

prepared with intravenous catheters. Briefly, the catheters consisted of a 6 cm (mice) or 12 

cm (rats) length of silastic tubing fitted to guide cannula (Plastics One, Wallingford, CT) 

bent at a curved right angle and encased in dental acrylic. The catheter tubing was passed 

subcutaneously from the animal's back to the right jugular vein, and a 1 cm (mice) or 2.5 cm 

(rats) length of the catheter tip was inserted into the vein and tied with surgical silk suture. 

Catheters were flushed daily with physiological sterile saline solution (0.9% w/v) containing 

heparin (10–60 USP units/ml). Catheter integrity was tested with the ultra short-acting 

barbiturate anesthetic Brevital® (methohexital sodium, Eli Lilly, Indianapolis, IN).

Intravenous self-administration

Mice and rats were mildly food restricted to 85–90% of their free-feeding body weight and 

trained to press a lever in an operant chamber (Med Associates, St. Albans, VT) for food 

pellets (20 mg pellets mice; 45 mg food pellets rats; TestDiet, Richmond, IN) under a fixed-

ratio 5, time out 20 sec (FR5TO20 sec) schedule of reinforcement prior to catheter 

implantation. Once stable responding was achieved (>30 pellets per session in mice; >90 

pellets per session in rats), subjects were catheterized as described above. The animals were 

allowed at least 48 h to recover from surgery, then permitted to respond for food 

reinforcement again under the FR5TO20 sec schedule. Once food responding criteria was 

reestablished, subjects were permitted to acquire intravenous nicotine self-administration by 

autoshaping during 1 h daily sessions, 7 days per week. Nicotine was delivered through the 

tubing into the intravenous catheter by a Razel syringe pump (Med Associates). Each 

nicotine self-administration session was performed using 2 retractable levers (1 active, 1 

inactive) that extend 1 cm into the chamber. Completion of the response criteria on the 

active lever resulted in the delivery of an intravenous nicotine infusion (0.03 ml infusion 

volume for mice; 0.1 ml for rats). Responses on the inactive lever were recorded but had no 

scheduled consequences. For dose-response studies (fixed and progressive ratio schedules), 

animals were presented with each dose of nicotine for at least 5 days (mice) or 3 days (rats); 

the mean intake over the last 3 (mice) or 2 (rats) sessions for each dose was calculated and 

used for statistical analysis. Nicotine doses were presented according to a within-subjects 

Latin square design. In between each dose, subjects were placed back on the training dose 

for at least 2 days or until their intake returned to baseline levels before being tested on the 

next dose in the Latin-square design.

Surgical procedures for microinjections and ICSS electrode placement

Animals were anesthetized as above and positioned in a stereotaxic frame (Kopf 

Instruments, Tujunga, CA). Unless otherwise noted, the incisor bar was set to the `flat-skull' 

position. To test the efficacy of the re-expressing and knockdown viruses in vivo, bilateral 

injections were made into the hippocampus of mice or rats, respectively. This area was 

chosen based on the constitutive expression of α5 nAChR subunit mRNA in wildtype 

animals. In mice, six bilateral injections (1 μl each at a flow rate of 1 μl per min) were made 

at the following coordinates: anterior-posterior (AP): −1.7 mm from bregma; medial-lateral 

(ML): ±0.75 mm from midline; dorsal-ventral (DV): −2.05 mm, −1.80 mm and −1.3 5mm 
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from brain surface2. In rats, the six hippocampal injections (three 2 μl injections per side at a 

flow rate of 1 μl per min) were made at the following coordinates: AP: −3.3 mm from 

bregma; ML: ±1.1 mm from midline; DV: −3.6 mm, −3.0 mm and −2.4 mm from brain 

surface3. For habenular injections in mice, the needle was angled 20° toward midline, and 

bilateral injections (0.375 μl each) were administered at a rate of 0.375 μl per min. For 

habenular injections in rats, the lentivirus was injected bilaterally based on previously 

published coordinates4. The incisor bar was set to 5 mm above plane, and the injector needle 

was at a 10° angle toward midline (AP: −2.2 mm from bregma; ML: ±1.5 mm from midline; 

DV: −4.9 mm from brain surface). The bilateral injections (1 μl each) were administered at a 

rate of 1 μl per min. For all of the injections, the injector needle was remained in place for a 

minimum of 2 min post-injection. For IPN and VTA microinjections in rats, guide cannula 

(Plastics One) were implanted as follows: IPN (flat skull; 10° angle toward midline; AP: 

−6.72 mm from bregma; ML: ±1.6 mm from midline; DV: −6.5 mm from brain surface) or 

VTA (bilateral; flat skull; 6° angle toward midline; AP: −5.4 mm from bregma; ML: ±1.3 

mm from midline; DV: −7.0 mm from skull)3. The MHb guide cannula coordinates were the 

same as for the lentiviral injections, except with DV at −2.9 mm from brain surface. For all 

of the cannula, injector needles extended 2 mm below the tip of the cannula for placement 

into the brain region. For the ICSS electrode, a stainless steel bipolar electrode (Plastics 

One) was implanted into the lateral hypothalamus (AP: −0.5 mm from bregma; ML: ±1.7 

mm from midline; DV: −8.3 mm from brain surface)3.

BSR Behavioral Procedure

Rats were trained to respond according to a modification of the discrete-trial current-

threshold BSR procedure of Kornetsky and Esposito5,6 in an operant box equipped with a 

wheel manipulandum and ICSS stimulator (Med Associates). Briefly, a trial was initiated by 

the delivery of a non-contingent electrical stimulus. This electrical reinforcer had a duration 

of 500 ms and consist of 0.1 ms rectangular cathodal pulses that delivered at a frequency of 

50–100 Hz. The frequency of the stimulation was selected for individual rats so that 

threshold elevation and lowering may be detected, and this frequency was held constant 

throughout the experiment. A one-quarter turn of the wheel manipulandum within 7.5 sec of 

the delivery of the non-contingent stimulation resulted in the delivery of an electrical 

stimulus identical in all parameters to the non-contingent stimulus that initiated the trial. 

After a variable inter-trial interval (7.5–12.5 sec, mean of 10 sec), another trial was initiated 

with the delivery of a non-contingent electrical stimulus. Failure to respond to the non-

contingent stimulus within 7.5 sec resulted in the onset of the inter-trial interval. Responding 

during the inter-trial interval delayed the onset of the next trial by 12.5 sec. In each testing 

session, current levels were varied in alternating descending (x2) and ascending (x2) series 

in 5 μA steps. A set of five trials was presented for each current intensity. The threshold for 

each series is defined as the midpoint between two consecutive current intensities that yield 

“positive scores” (animals respond for at least three of the five trials) and two consecutive 

current intensities that yield “negative scores” (animals do not respond for three or more of 

the five trials). The overall threshold for the session is defined as the mean of the thresholds 

for the four individual series. Threshold data are presented as percent of baseline values due 

to inter-subject variability in baseline rates.
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Generation of lentivirus

For α5 subunit re-expression studies, the mouse α5 nAChR subunit gene,Chrna5, was 

cloned into the pCDF1 lentivirus expression vector containing cop-GFP from Systems 

Biosciences, Inc. (Mountain View, CA). For α5 subunit knockdown studies, two different 

short hairpin interfering RNAs (shRNA) directed against the rat Chrna5 gene were were 

designed using the Genscript, Inc. online construct builder (see Supplementary Figs for 

shRNA sequence). The shRNAs were cloned into the pRNAT-U6.2/Lenti construct 

containing GFP (GenScript, Piscataway, NJ). Control vectors were identical to the 

expression constructs, but without the gene insert.

Generation of lentivirus

To generate lentivirus supernatant, HEK-293FT packaging cells (3.75 × 106 293TN cells per 

10 cm plate) were transfected with the vectors, along with the pPACKF1TM Lentiviral 

Packaging Kit using lipofectamine reagent and plus reagent (Invitrogen) according to the 

manufacturer's instructions. Medium containing virus particles (~10 ml) was harvested 48–

60 h post-transfection by centrifugation at 76,755g at room temperature for 5 min to pellet 

cell debris and filtered through 0.45 mm PVDF filters (Millex-HV). To concentrate the viral 

supernatant for intrastriatal administration, supernatants were centrifuged at 32,000g for 90 

min at 4 °C, and the precipitate re-suspended in 100 μl cold PBS. Supernatants were 

aliquoted into 10 ml volumes and stored at −80 °C until use.

Estimation of lentivirus titer

Viral supernatant titres were determined using the Lentivector Rapid Titer Kit from System 

Biosciences, according to the manufacturer's instructions. The number of infectious units per 

ml of supernatant (IFU ml−1) was calculated as follows: Multiplicity of infection (MOI) of 

the sample × the number of cells in the well upon infection × 1,000 / μl of viral supernatant 

used.

Tissue dissection

Mice and rats were euthanized by inhalation of CO2, brains were rapidly removed, and 

frozen on dry ice. Tissues were stored at −80°C until dissection. Brains were sliced on a 

cryostat, and bilateral dissections were made for the hippocampus, habenula, IPN and/or 

VTA with a scalpel. Samples were pooled across multiple subjects due to the small size of 

selected brain areas and stored in at −80°C until processing for RNA isolation.

RNA Isolation and real-time RT-PCR

Cells grown in monolayer or dissected tissue was homogenized in RNA-STAT60 (Tel-Test 

Inc., Friendswood, TX) using a 27 gauge needle. Following homogenization, 250 μl of 

chloroform was added and the samples were vortexed for 1 min. Samples were then 

centrifuged for 15 min at 12,000 × g at 4°C, and the upper aqueous RNA containing layer 

was removed for an additional RNASTAT60/chloroform extraction. The RNA was 

precipitated with 2 × volume of isopropanol overnight at −20°C and centrifuged for 30 min 

at 12000 × g. The RNA pellets were washed twice with 70% ethanol/RNAase-free water and 

subsequently resuspended in RNAsecure (Ambion/Applied Biosystems, Austin, TX), and 
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~10 μg of RNA from each sample was treated with Turbo DNase (Ambion/Applied 

Biosystems) for 60 min at 37°C to degrade residual genomic DNA. To assess RNA levels, 

samples were reverse transcribed into cDNA with the TaqMan High Capacity cDNA 

Reverse Transcription kit (Applied Biosystems, Foster City, CA). Thereafter, they were 

processed with the TaqMan Universal PCR kit with the mouse or rat CHRNA5 gene 

expression assay (Applied Biosystems); controls consisted of either β-actin or 18S. Samples 

were quantified by real-time RT-PCR (7900 Real-Time PCR system; Applied Biosystems). 

All data were normalized in accordance with the mean housekeeping mRNA expressing 

levels as an internal control. Comparison between groups made using the method of 2−ΔΔCt.

Brain Perfusion and Fixation

Subjects were anesthetized with sodium pentobarbital (0.1 mg/10 g body weight) and 

perfused through the ascending aorta with 0.9% saline, followed by 4% paraformaldehyde in 

0.1 M phosphate buffer solution (PBS; pH 7.4). Brains were harvested, postfixed for 2 hrs in 

4% paraformaldehyde, and then stored in 30% sucrose in PBS. All brains were cut into 30–

40 μm coronal sections on a microtome, and the floating sections were stored in 0.1 M PBS 

with 0.01% sodium azide at 4°C until processing for immunocytochemistry.

Fluorescence Immunolabeling

Floating sections were processed for GFP fluorescent immunostaining. To localize the GFP-

tagged lentivirus-infected cells in mice, we utilized a rabbit polyclonal IgG that recognizes 

GFP cloned from copepod Pontellina plumata (copGFP). To localize the lentivirus tagged 

with GFP in rats, we utilized a chicken polyclonal IgG that recognizes a 27kDa protein 

derived from the jellyfish Aequorea Victoria. Further, to identify IPN we utilized a guinea 

pig polyclonal IgG that recognizes VAChT. Sections were rinsed in 0.1M PBS, pH 7.4, with 

0.3% Triton-X 100 (PBT) and then blocked in 10% normal donkey serum/PBT. Thereafter, 

sections were incubated in the primary antibody in PBT at 4°C overnight. The primary 

antibodies were diluted as follows: rabbit anti-copGFP (1:2,000; Evrogen, Moscow, Russia), 

chicken anti-GFP (1:2,000; Millipore, Billercia, MA) or guinea pig anti-VACHT (1:500; 

Millipore). On day 2, the sections were rinsed and incubated in Alexa 488 donkey anti-

rabbit (1:400; Invitrogen), DyLight 488 donkey anti-chicken (1:400; Jackson 

ImmunoResearch, West Grove, PA) and/or DyLight 594 or 647 donkey anti-guinea pig 

(1:500; Jackson ImmunoResearch) secondary antibodies in 0.3% PBT for 2 hrs. Next, the 

sections were rinsed, mounted on slides with vectashield (with or without DAPI) (Vector 

Labs, Burlingame, CA), and coverslipped. Controls included processing the secondary 

antibodies alone to verify background staining, processing each primary with the secondary 

antibody to verify laser-specific excitation, examining for autofluorescence in an alternate 

laser channel with tissue lacking that laser-specific probe, and using sequential scanning. 

For subsequent fluorescent images, only the brightness and/or contrast levels were adjusted 

post-acquisition and were imposed across the entire image.

86Rb+ Efflux

86RbCl (average initial specific activity 15 Ci/mg) as well as Optiphase Supermix 

scintillation cocktail was purchased from Perkin-Elmer NEN (Boston, MA). The α5 
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knockout mice were injected with either the Lenti-CHRNA5 or Lenti-Control vector as 

previously described. Following an incubation period of at least 3 weeks, mice were killed 

synaptosomes generated from the IPN, habenula, hippocampus, striatum, thalamus and 

cortex as described previously 7. Samples were loaded with 86Rb+ and acetylcholine-

stimulated 86Rb+ efflux was measured as described previously7, with each sample 

stimulated only once. 86Rb+ efflux was expressed as the increase in signal above basal 

efflux. A non-linear least squares curve fit to a first order equation (Ct = C0*e−kt), where Ct 

is the basal efflux counts at time, t, C0 is the estimated efflux counts at t = 0 sec, and k is the 

first order decay constant) was used to estimate basal efflux for each sample. Counts in 

fractions preceding and following the peak were used for curve fitting. Acetylcholine-

stimulated efflux was calculated by summing the counts in the fractions exceeding basal 

efflux during ACh exposure and dividing by the corresponding basal efflux counts. This 

value represents total peak relative to baseline.

Fos Procedure

Wildtype and α5 subunit knockout mice were injected subcutaneously with nicotine (0.5 or 

1.5 mg/kg, free-base) or saline. The moderate dose of nicotine is known to be rewarding in 

these mice, reflected in the conditioning of a place preference8. The higher dose of nicotine 

is aversive, reflected in the induction of a conditioned taste aversion in wildtype mice9. 

After 2 hr, each subject was perfused and brains were removed and stored as described 

above. Brain sections were cut at 30μm on a cryostat and stored in 0.1M PBS with 0.01% 

sodium azide until processing. For Fos immunolabeling, sections were rinsed in 0.1M PBS 

(ph 7.4), treated with 0.3% H2O2-PBS for 15 min, rinsed in PBS, and then blocked in 10% 

normal goat serum and 0.5% Triton X-100 in PBS for 1 hr. Thereafter, sections were 

incubated in rabbit anti-cfos IgG (1:500 dilution; Abcam, Cambridge, MA) in 0.5% Triton-

PBS overnight at 4°C. The following day, sections were incubated at room temperature for 2 

hrs, rinsed in PBS, and then incubated in 1:300 dilution of goat anti-rabbit secondary IgG 

(Vector Labs) in 0.5% Triton X-100 in PBS for 2 hrs. Following rinsing, sections were 

incubated in ABC Elite (Vector Labs) for 90 min, rinsed in PBS, and immunoreactivity was 

revealed by using 3-diaminobenzidine (DAB) with nickel (Vector Labs). To reduce 

variability in the background and to standardize the staining, sections from subjects across 

groups were processed concurrently. Sections were mounted and coverslipped with 

Permount (Fisher Scientific). Cell numbers and region volumes for the interpeduncular 

nucleus, ventral tegmental area and ventromedial hypothalamus were quantified under 40× 

magnification using unbiased stereological methods and the optical fractionator probe with 

Stereo Investigator software (MicroBrightField, Inc., Williston, VT). This method of 

assessing total volume and cell number has been validated and employed in many prior 

studies. Total cell counts and area measurements were determined for each brain area, and 

cell density (number of cells per cubic millimeter) was calculated for each subject.

Statistical Analyses

All data were analyzed by one- or two-way analysis of variance (ANOVA) or t-test using 

Graphpad Prism software (La Jolla, CA). Significant main or interaction effects were 

followed by Bonferroni or Newman-Keuls post-hoc tests as appropriate. The criterion for 

significance was set at p<0.05.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Increased nicotine intake in α5 subunit knockout mice
(a) Data are presented as mean (± SEM) number of nicotine infusions earned across a range 

of nicotine doses. Two-way ANOVA: Genotype F(1,91)=28.57, p<0.0001; Dose 

F(6,91)=13.69, p<0.0001; Interaction F(6,75)=2.55, p<0.05; n=10–11 per group. (b) Data 

from [a] are presented as mean (± SEM) total nicotine intake at each dose. Genotype 

F(1,91)=67.98, p<0.0001; Dose F(6,91)=39.06, p<0.0001; Interaction F(6,791=14.25, 

p<0.0001.
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Figure 2. “Rescue” of α5* nAChRs in MHb-IPN normalizes nicotine intake
(a) Mean (± SEM) nicotine infusions in Lenti-Control mice. Genotype F(1,22)=7.70, p<0.05; 

Dose F(2,22)=19.34, p<0.0001; Interaction F(2,22)=3.75, p<0.05. **P<0.01 between 

genotypes (b) (± SEM) nicotine infusions in Lenti-CHRNA5 mice. Genotype F(1.28)=0.17, 

not significant (n.s.); Dose F(2,28)=16.05, p<0.0001; Interaction F(2,28)=0.36, n.s.; n=6–9 per 

group. (c) GFP Immunostaining confirmed MHB virus delivery. Hipp, hippocampus; LHB, 

lateral habenula; LV lateral ventricle; MHb, medial habenula. (d) GFP-labeled cells in MHb, 

DAPI-counterstained in left panel, extend into the fasciculus retroflexus (Fr). (e) GFP-

positive axons detected in IPN. Left panel is labeled with VAChT (red) to identify IPN.
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Figure 3. α5* nAChRs in MHb-IPN tract control nicotine intake and its reward-inhibiting 
effects in rats
(a) Nicotine self-administration in rats injected with Lenti-Control or Lenti-α5-shRNA in 

the MHb. Data are presented as mean (± SEM) number of nicotine infusions earned. 

Lentivirus F(1,60)=21.07, p<0.01; Dose F(6,60)=3.84, p<0.01; Interaction F(6,60)=1.57, n.s.;; 

n=5–7 per group. (b) ICSS self-stimulation thresholds in rats. Data are presented as mean (± 

SEM) percentage change from baseline reward threshold. Lentivirus F(1,60)=13.23, p<0.001; 

Dose F(5,60)=6.38, p<0.0001; Interaction F(5,60)=4.19, p<0.01. *p<0.05, **p<0.01 and 

***p<0.001 indicates statistically significant difference between groups; n=6–8 per group.
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Figure 4. Nicotine-induced activation of IPN in mice
(a) Photomicrograph of IPN showing Fos immunoreactivity in wildtype (left panels) and α5 

knockout (right panels) mice following saline (top panels), 0.5 mg kg−1 nicotine (center 

panels), or 1.5 mg kg−1 nicotine (bottom panels); n=5 per group. (b) Cell density was 

quantified with unbiased stereology. Data are presented as the mean (± SEM) density of 

Fos-immunoreactive cells (number per mm3). Genotype F(1,24)=13.50, p<0.01; Drug 

F(2,24)=21.13, p<0.0001; Interaction F(2,24)=8.64, p<0.01.
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Figure 5. Disruption of IPN or MHb signaling increases nicotine intake in rats
All data are presented as mean (± SEM) number of nicotine infusions earned. (a) Lidocaine 

infused into IPN increased nicotine intake in rats; **P<0.01. (b) Lidocaine into MHb 

increased nicotine intake in rats self-administering a high unit dose (0.12 mg kg−1 per 

infusion); *P<0.05. (c) LY235959 infused into IPN increased nicotine intake in rats (n=9). 

F(3,24)=6.08, p<0.01. *P<0.05 and **p<0.01 compared to control. (d) LY235959 (10 ng/

side) into MHb increased nicotine intake in rats responding for a high unit dose (0.12 mg 

kg−1 per infusion; n=5); *P<0.05.
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