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Buckling transition of a semiflexible filament in extensional flow

Harishankar Manikantan and David Saintillan
Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive,

La Jolla, California 92093-0411, USA
(Received 26 June 2015; published 20 October 2015)

An analytical expression for the fluctuation-rounded stretch-coil transition of semiflexible polymers in
extensional flows is derived. The competition between elasticity and tension is known to cause a buckling
instability in filaments placed near hyperbolic stagnation points and the effect of thermal fluctuations on this
transition has yet to receive full quantitative treatment. Motivated by the findings of recent experiments as well
as our simulations, we solve for the amplitude of the first buckled mode near the onset of the instability. This
reveals a stochastic supercritical bifurcation, which is in excellent agreement with full numerical simulations.
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The nonlinear dynamics of elastic filaments driven by
hydrodynamic forces have received significant attention in
recent times, sparked mainly by advances in experiments
ranging from the microscopic [1–3] to the macroscopic [4]
length scales, as well as by the development of efficient
low-dimensional models to quantitatively describe them [5–8].
Of particular interest are semiflexible filaments, which are in
between the extremities of entropy-dominated floppy polymers
and rigid rods in terms of elastic stiffness. Pertinent to the con-
tents of this Rapid Communication is that these particles allow
for a competition between bending forces and flow-induced
internal stresses, in the presence of thermal fluctuations.

Understanding the configurational transitions of semiflex-
ible filaments is key to deciphering a plethora of dynamics
ranging from tumbling [2,3] to buckling [1,9] to helical coil-
ing [8], which in turn could result in atypical transport [10,11]
or non-Newtonian behavior [7,12]. Beside offering rich me-
chanical properties that enable such dynamics, semiflexible
biopolymers are of paramount importance to living cells:
Eukaryotic cells are structurally supported by a cytoskele-
tal system comprised of filamentous actin. Configurational
transitions in such systems have been suggested to lie at the
core of biological pattern formation via self-organizational
phenomena such as cytoplasmic streaming [13].

Much like an elastic beam simply loaded at its ends, an
elastic filament placed in a viscous fluid can undergo a buckling
transition if the hydrodynamic force acting on it overcomes its
elastic restoring force. This may be driven by internal forces
generated in response to an imposed flow [1,6–9,11] or by
an external force [14]. Motivated by the recent experiments
of Kantsler and Goldstein [1] and by the rising ubiquity of
microfluidic trap devices [15] that employ such flows, we
focus here on the former scenario, specifically, the buckling
transition of a semiflexible filament placed at the stagnation
point in a linear hyperbolic flow. Adapting our approach
to simple shear is straightforward. Inextensibility of such
filaments is ensured by an internal tensile force that acts to
resist length changes. It is the competition of this very line
tension with bending forces that results in nontrivial shape
instabilities, and the effect of thermal fluctuations on such
instabilities is the subject of this Rapid Communication.

Euler buckling, wherein an elastic beam is loaded con-
stantly at its ends, is well understood and recent efforts [16,17]
have shown that the effect of stochastic forces is to smoothen

the otherwise sharp transition from a straightened to a buckled
configuration. Although we expect a rounded transition in the
case of filaments placed in a viscous fluid as well, extending
these theories to the fluid-structure interaction problem is not
straightforward, primarily due to the nonuniform tensile force
that drives the buckling instability. In the non-Brownian limit,
Young and Shelley [6] were the first to quantify a dynamic
instability leading to the so-called stretch-coil transition when
the driving flow strength exceeds a critical value. Following
this, Kantsler and Goldstein [1] comprehensively observed
this transition in single actin filaments using microfluidics
and showed that while fluctuations round the bifurcation, it
is broadly consistent with the athermal linear predictions.
More recently, Deng et al. [18] approached the same problem
numerically and reported a similar transition. While their
simulations captured the effect of Brownian noise on nonlinear
filament dynamics, an analytical description of this stochastic
bifurcation has yet to receive a quantitative treatment. Here
we present a mathematical description of the stretch-coil
transition in the presence of thermal fluctuations.

We consider a slender, inextensible filament placed in
an external flow field of characteristic flow strength γ̇ in a
Stokesian fluid of viscosity μ. The filament has length L and
a characteristic radius of cross section b = εL (with ε � 1),
which defines the slenderness parameter c = ln(1/ε2). The
material of the filament is assumed to be homogeneous with
bending rigidity κ , which determines the thermal persistence
length �p = κ/kBT . This is the length scale over which
bending forces and thermal forces are comparable, and
semiflexible filaments fall in the regime where �p ∼ L.

The slender-body equation [19] provides a balance be-
tween the anisotropic viscous drag on the filament and the
internal forces felt along its backbone. Denoting by x(s,t)
the position of the filament centerline at arc length location
s ∈ [−L/2,L/2] and making the system dimensionless using
standard methods [11,20], this balance reads

xt (s,t) = μ̄u∞(s,t) − M(s,t) · f(s,t). (1)

Here u∞ is the imposed velocity field, μ̄ = 8πγ̇μL4/κ is
a dimensionless flow strength, and subscripts denote partial
differentiation with the corresponding variable. In addition,
M(s,t) = λ1I + λ2xs(s,t)xs(s,t) is a configuration-dependent
second-order mobility tensor that captures the local anisotropic
drag with λ1 = c + 1 and λ2 = c − 3. The force distribution
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FIG. 1. (Color online) Snapshots from three separate numerical
simulations showing typical filament shapes as a result of the buckling
instability. Higher modes are observed as we increase the flow
strength from (a) μ̄ = 16 000 to (b) μ̄ = 32 000 to (c) μ̄ = 64 000.
Streamlines of the hyperbolic flow are shown as dotted lines and the
flow is compressional along the horizontal and extensional along the
vertical. The persistence length in each case is �p = 10L.

f(s,t) on the filament has contributions from Euler-Bernoulli
elasticity and a fluctuating Brownian term f = −(T xs)s +
xssss + fBr. Further, T (s) is the nonuniform line tension, which
is not a material property but a Lagrange multiplier acting
to ensure filament inextensibility. The Brownian contribution
follows from the fluctuation-dissipation theorem and, under
the current nondimensionalization, is such that 〈fBr(s,t)〉 = 0
and 〈fBr(s,t)fBr(s ′,t ′)〉 = 2(L/�p)M−1δ(t − t ′)δ(s − s ′).

Simplifying the slender-body equation and using xs · xs =
1 (following inextensibility) and hence xs · xss = 0, one finds

xt = μ̄u∞ + λ1T xss + (λ1 + λ2)Tsxs − λ1xssss

− λ2(xs · xssss)xs + (λ1I + λ2xsxs) · fBr. (2)

The simulations shown in this Rapid Communication follow
a Brownian dynamics algorithm [11] that solves Eq. (2). The
line tension is unknown a priori and is obtained dynamically as
a solution to a differential equation that results from applying
the identity (xs · xs)t = 0. Free-end boundary conditions are
used to ensure that the total force and torque on the filament be
zero: xss |s=±1/2 = xsss |s=±1/2 = T |s=±1/2 = 0. For all results
reported here, we use an aspect ratio of ε = 0.01.

Figure 1 shows snapshots from our simulations; they
resemble the shapes seen in the experiments of Kantsler and
Goldstein [1] at corresponding flow strengths (	 in their
notation being equal to μ̄/4λ1π

4). When placed along the
compressional axis of a sufficiently strong flow, the filament
experiences a negative tension along its backbone whose
balance with viscous, elastic, and thermal forces dictates
the observed shapes. As it buckles, it also reorients and
eventually aligns with the extensional axis where the now
positive tension acts to stretch it. Solving for the non-Brownian
and linearized dynamics of an initially straight filament in such
a flow, Young and Shelley [6] deduced that an instability first
occurs at μ̄cr ≈ 1478 and that higher modes are destabilized
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FIG. 2. (Color online) Percentage of excited modes across a
range of flow strengths. The vertical dashed lines denote the
deterministic thresholds for the first three modes (shapes shown)
and the shaded area represents the percentage of cases where no
buckling was recorded. All simulations are for �p/L = 10. Each
vertical section is a distribution across 200 simulations.

at subsequent thresholds. Experiments as well as our simu-
lations show modes qualitatively similar to the deterministic
predictions, albeit with shape fluctuations owing to Brownian
kicks. A key difference is that thermal fluctuations excite
multiple modes regardless of flow strength by equipartition
of energy [1], thus affecting the distribution of modes seen
in the event of buckling. To quantify this, we identify the
predominant mode whose amplitude grows beyond a noise
floor of 0.05L in 200 different simulations each for various
flow strengths. The distribution of excited modes is shown
vs μ̄ in Fig. 2 and the trends in dominant shapes, although
strongly rounded by fluctuations, are consistent with the
deterministic predictions. This is reminiscent of the stochastic
Euler buckling problem [16,17], where thermal fluctuations
have been shown to round the transition near the deterministic
critical force. This motivates the following analysis, where we
quantify the transition near the first deterministic threshold or
critical flow strength associated with the first buckling mode.

To analyze this transition, we first adopt a Monge represen-
tation and write x(s,t) = (s,h), where h(s,t) is the deflection
away from the axis of compression in the hyperbolic flow
u∞ = (−x,y) = (−s,h). Further, we assume that the parabolic
form of tension corresponding to a straightened filament placed
at the origin holds even when it is deformed, an assumption
that is justified for small deflections away from the axis as
arise near the onset of buckling. This tension profile can
be determined by manipulating Eq. (2) and takes the form
T (s) = μ̄(s2 − 1/4)/2(λ1 + λ2). Also, since the variable h

measures vertical deflections away from the y = 0 axis, we
consider only thermal fluctuations in this direction. Then the
scalar equation for h reads

∂h

∂t
= μ̄

[
h + 1

2

λ1

λ1 + λ2

(
s2 − 1

4

)
hss + shs

]

− λ1hssss − λ2h
2
s hssss +

√
2λ1

L

�p

ξ (s,t), (3)

where ξ (s,t) is a white noise with zero mean and correlation
〈ξ (s,t)ξ (s ′,t ′)〉 = δ(s − s ′)δ(t − t ′).
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Ignoring the nonlinear and stochastic terms above and
assuming a form h(s,t) = φ(s)eςt leads directly to the linear
stability results of Young and Shelley [6]. Defining the terms
within the square brackets in (3) as L[h], marginal linear
stability (Re[ς ] = 0) in the non-Brownian case corresponds
to the eigenvalue problem

μ̄(n)
cr L[φ(n)(s)] = λ1φ

(n)
ssss(s), (4)

where φ(n) is the nth buckling mode that is destabilized at a
critical flow strength μ̄(n)

cr . Since our interest is in the effect
of fluctuations near the first buckling transition, we use n = 1
from here on and avoid the superscripts. Also, we introduce
a parameter m, which is the distance from the deterministic
threshold: μ̄ = μ̄cr + m. In order to reduce to a form amenable
to treatment as a stochastic supercritical bifurcation [21], we
introduce the ansatz h(s,t) = a(t)φ(s) near μ̄cr. Using Eq. (4),
the governing equation becomes

φ
da

dt
= mλ1

μ̄cr
aφssss − λ2a

3φ2
s φssss +

√
2λ1

L

�p

ξ. (5)

Recall that φ and its derivatives solve the eigenvalue prob-
lem (4), which admits orthogonal eigenfunctions. Projecting
Eq. (5) on the first eigenfunction φ then yields a Langevin
equation governing the time dynamics of the amplitude a(t):

da

dt
= mγa − 2ωa3 + √

σζ (t). (6)

This is, in fact, a time-dependent stochastic Ginzburg-Landau
model for the amplitude of the first buckled mode. Here γ =
λ1A1/μ̄cr, ω = λ2A2/2, and σ = 2λ1L/�p are all positive
parameters; A1 and A2 are constants that depend on the shape
of the eigenfunctions, given respectively by

∫ 1/2
−1/2 φφssss ds

and
∫ 1/2
−1/2 φφ2

s φssss ds; and ζ (t) = ∫ 1/2
−1/2 ξ (s,t)φ(s) ds is a

normal variate with zero mean and correlation 〈ζ (t)ζ (t ′)〉 =
δ(t − t ′).

Equation (6) has as its deterministic (σ = 0) and linear
(ω = 0) limit the solution a(t) ∼ exp(mγ t), which, consistent
with the predictions of the linear stability analysis, decays
when m < 0 (μ̄ < μ̄cr) and grows otherwise. Analyzing the
deterministic yet nonlinear problem (σ = 0 �= ω) reveals a su-
percritical pitchfork bifurcation at m = 0 with a = √

γm/2ω

when m > 0. The stochastic bifurcation will be shown to
correctly limit to this form as σ → 0.

We now look to quantify the thermal rounding of this
bifurcation for finite �p (σ �= 0). We first obtain the Fokker-
Planck equation corresponding to Eq. (6), which provides a
deterministic equation for the probability density ψ(a,t) of
the amplitude a:

∂ψ

∂t
= − ∂

∂a
[(mγa − 2ωa3)ψ] + σ

2

∂2ψ

∂a2
. (7)

A steady solution for the stationary probability density ψS =
ψ(t → ∞) can be obtained as

ψS(a; m,γ,ω,σ ) = 1

N
exp

(
1

σ
(mγa2 − ωa4)

)
, (8)

where N (m,γ,ω,σ ) is a normalization constant such that∫ ∞
0 ψSda = 1. The effect of the sign of m is obvious in

Eq. (8), shown also in Fig. 3: ψS(a; m � 0) always peaks
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FIG. 3. Probability density of the amplitude a according to Eq. (8)
corresponding to σ = 2.04 (�p/L = 10). The deterministic buckling
threshold is m = 0 and the distribution consistently shifts towards
higher amplitudes as m increases.

at a = 0, whereas a positive value of m shifts the peak to a
finite positive value of a. The nonlinearity is critical as well,
as ω = 0 is a Gaussian that always peaks at a = 0. We can
now solve for the expected value 〈a〉 = ∫ ∞

0 aψSda of the
amplitude, which reads

〈a〉 = 1

G

√
2σ

γ |m|π exp

(
γ 2m2

8ωσ

)[
1 + erf

(
γm

2
√

ωσ

)]
, (9)

where

G =
{√

2
π

K1/4
[

γ 2m2

8ωσ

]
, m < 0

I−1/4
[

γ 2m2

8ωσ

] + I1/4
[

γ 2m2

8ωσ

]
, m � 0

(10)

and Iν(x) and Kν(x) are, respectively, the modified Bessel
functions of the first and second kinds.

Figure 4 shows the predicted amplitude as the flow strength
is varied across the deterministic threshold. Akin to constantly
loaded fibers, the effect of thermal fluctuations is to round

0.0

0.05

0.1

0.15

0.2

〈a
〉

1000 1200 1400 1600 1800 2000

μ̄

FIG. 4. (Color online) Expected value of the amplitude of the first
buckled mode as a function of flow strength. The dashed line is the
deterministic pitchfork bifurcation; the solid lines (red for �p/L =
100 and blue for �p/L = 10) follow Eq. (9) and depart from the sharp
transition for increasingly noisy systems. The symbols (red circles
for �p/L = 100 and blue triangles for �p/L = 10) are extracted from
simulations without any fitting parameters.
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the sharp transition. Nontrivial modes are excited at arbitrary
flow strengths as a consequence of equipartition of energy and
this manifests as a finite amplitude of the first buckled mode
well below μ̄cr. Evaluating the limit of (9) as m → 0 indicates
that the corresponding expected value is indeed nonzero and
varies as σ 1/4 ∼ �

−1/4
p , i.e., the amplitude at the deterministic

threshold is larger for more flexible filaments. Beyond μ̄cr,
〈a〉 crosses over and approaches the deterministic pitchfork
bifurcation value of

√
γm/2ω. This approach is slower as

�p decreases, suggesting a larger mean projected length in
the buckled state. Recall from Eq. (6) that the finite buckled
amplitude in the deterministic case is set by the component
of the elastic force along the local tangent vector. The effect
of thermal fluctuations beyond the transition is to reduce this
amplitude, which can be viewed as an effectively stiffer spring
against hydrodynamic compression. This coupling between
elasticity and Brownian motion is crucial: An increase in
temperature hardens the filament and acts to straighten it out,
which is contrary to floppy polymers that are driven solely by
configurational entropy and shrink in response to increasing
temperature. This again is reminiscent of constantly loaded
beams under the influence of thermal fluctuations, where an ap-
parent stretching has been reported past the critical force [16].

In order to test this prediction, we compare it against
full numerical simulations of Eq. (2) using a Brownian
dynamics algorithm [11]. We place a filament in a hyperbolic
flow that is dynamically adjusted to remain compressional
along the direction of the end-to-end vector. This eliminates
filament reorientation and provides long-time statistics, which
are necessary for comparison with the stationary probabil-
ity distribution derived above. After an initial transience,
a stochastically steady state is reached. This is ensemble

averaged and compared to φ(s) to obtain a numerical predic-
tion for the expected value of a. Higher modes may be excited
by thermal fluctuations and we eliminate these in our averages.
The result is shown in Fig. 4 for two different values of �p and
matches excellently with our predictions without any fitting
parameters. The simulations also display the smoothed trend
in the transition, as well as the apparent prebuckling softening
and postbuckling hardening due to the particular nature of the
stochastic bifurcation.

We have analytically quantified the buckling transition of
a semiflexible filament in extensional flow as a stochastic
supercritical bifurcation, with the resulting expression spec-
ifying the exact nature of the finite-temperature rounding
of the transition. While this analysis solves a vital facet of
fluid-filament interaction problems at the microscale, it also
provides a powerful tool for experimentalists to extract me-
chanical properties of single macromolecules by fitting shape
deformations around critical points. The theory presented here,
while elaborated for extensional flows, is also sufficiently
general to be extended to other flows commonly encountered in
microfluidics. For instance, predicting the transition to the first
deformed mode in simple shear, often called hairpins [2,12],
is straightforward once the appropriate form of the tension is
known [22]. Generalization of the analysis to include multiple
modes is an open problem that warrants attention, as is the
coupled description of deformation and rotation after buckling.
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Bausch, Phys. Rev. Lett. 110, 108302 (2013).
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