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Abstract

Computational cognitive modeling is an important tool for
understanding the processes that support human and animal
decision-making. Choice data in sequential decision-making
tasks are inherently noisy, and separating noise from signal
can improve the quality of computational modeling. Currently,
most models assume that noise is constant, or static, typically
by including a parameter (e.g., uniform ε) to estimate the noise
level. However, this assumption is not guaranteed to hold – for
example, an agent can lapse into an inattentive phase for a se-
ries of trials in the middle of otherwise low-noise performance.
Assuming that noise is static could bias parameter and model
identification. Here, we propose a new method to dynamically
infer noise in choice behavior, under a model assumption that
agents can transition between two discrete latent states (for ex-
ample, attentive and noisy). Using four empirical datasets with
diverse behavioral and modeling features, we demonstrate that
our method improves model fit and that it can be easily incor-
porated into existing fitting procedures, including maximum
likelihood estimation and hierarchical Bayesian modeling.
Keywords: computational modeling; decision-making; noise;
human behavior; animal behavior; reinforcement learning

Introduction
Computational modeling has helped cognitive scientists, psy-
chologists, and neuroscientists translate theories into quanti-
tative predictions, and to better explain behavior with math-
ematical equations (Palminteri, Wyart, & Koechlin, 2017;
Wilson & Collins, 2019). Computational modeling is par-
ticularly useful for explaining choice behavior in decision-
making tasks – it reveals links between participants’ observ-
able choices and putative latent internal variables such as
objective or subjective value (Tversky & Kahneman, 1992),
strength of evidence (Bitzer, Park, Blankenburg, & Kiebel,
2014), and history of past outcomes (Dayan & Niv, 2008).
This link between internal latent variables and choices is
made via a policy: the probability of making a choice among
multiple options based on past and current information.

An important feature of choice behavior produced by bio-
logical agents is the inherent noise and variance, which can be
attributed to multiple sources including inattention (Esterman
& Rothlein, 2019; Warm, Parasuraman, & Matthews, 2008),
stochastic exploration (Wilson, Geana, White, Ludvig, &
Cohen, 2014), and internal computation noise (Findling &
Wyart, 2021). Choice randomization can be adaptive, as it
encourages exploration and can come close to optimal per-
formance if implemented correctly (Chapelle & Li, 2011;
Thompson, 1933; Wang & Wilson, 2018).

Computational cognitive models often focus on noiseless
information processing over internal latent variables – for ex-
ample, in reinforcement learning, how the choice values are
updated with each outcome (Daw & Tobler, 2014). A com-
mon approach to model behavioral noise is to include sim-
ple parameterized noise into the model’s policy (Wilson &
Collins, 2019). For example, a greedy policy can be ”soft-
ened” by a logistic or softmax function with an inverse tem-
perature parameter, β, such that choices among more sim-
ilar options are noisier than choices among more different
ones. Another approach is to use an ε-greedy policy, where
the noise level parameter, ε, blends a uniform decision noise
into a greedy policy. This approach is motivated by a different
intuition: that lapses in choice patterns can happen indepen-
dently of the specific internal values used to make decisions.
Multiple noise processes can be used jointly in a model when
appropriate (Collins & Frank, 2012).

Failure to account for a noisy choice process in model-
ing could lead to under- or over-emphasis of certain data
points, and thus inappropriate conclusions (Nassar & Frank,
2016; Schaaf, Jepma, Visser, & Huizenga, 2019). However,
commonly used policies with noisy decision processes share
strong assumptions. In particular, they assume that the level
of noise in the policy is fixed, or ”static,” over the duration
of the experiment. This assumption could hold for some
sources of noise, such as computation noise, but many other
sources are not guaranteed to generate consistent levels of
noise. For instance, a subject might disengage during some
periods of the experiment, but not others. How much sub-
jects explore through choice randomization could also vary
over time. Therefore, such models with static noise inference
might fail to capture the variance in noise level, which can
impact the quality of computational modeling.

To resolve this issue, we introduce a dynamic noise in-
ference method that infers the likelihood of noise in choice
behavior trial-by-trial, allowing it to vary over time. Our
method makes looser assumptions than the static noise in-
ference method, making it suitable to solve a broader range
of problems (Fig. 1). Specifically, our dynamic noise policy
models the presence of random noise as the result of switch-
ing between two latent states that correspond to two different
types of noise policy (e.g., a fully inattentive, random policy
vs. a standard, attentive, softmax policy). We assume that a
hidden Markov process governs transitions between the two
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Figure 1: Examples of static and dynamic noise inference fit-
ted to behavioral data (black line). In static noise inference,
the likelihood of the random policy, or noise level (orange cir-
cles), is modeled as a constant parameter ε. In dynamic noise
inference, it is estimated by the inferred probability of being
in the random state λ(0) (green dots), which varies according
to choice behavior.

latent states. This model captures the assumption that noise
levels in decision making tend to be temporally autocorre-
lated, which may be a reflection of an evolved expectation of
temporally autocorrelated environments (Group et al., 2014).

We show that this dynamic noise policy can be inferred
trial-by-trial in sequential decision-making. On each trial,
the model infers the probability of the agent being in each
latent state using observation, choice, and reward data. It es-
timates the choice probability as a weighted average of deci-
sions generated by the random policy and the learned policy,
which is then used to estimate likelihood. Therefore, dynamic
noise inference can be incorporated into any decision-making
model with analytical likelihood. Model parameters can be
estimated using procedures that optimize the likelihood or
its posterior distribution, including maximum likelihood es-
timation and hierarchical Bayesian methods (Piray, Dezfouli,
Heskes, Frank, & Daw, 2019). Fig. 1 illustrates examples of
static and dynamic noise inference on human choice behav-
ioral data from Eckstein et al. (2022). The likelihoods of a
noisy policy inferred by the static and dynamic methods are
shown in conjunction with choice accuracy. In this exam-
ple, choice accuracy drops steeply to a random level around
Trial 350, indicating a higher likelihood of noisy latent state
contamination. This change is captured by dynamic noise in-
ference but not the static method.

Although dynamic noise inference can be applied to mod-
eling any sequential choice behavior, in this work, we focus
on illustrating it on reinforcement learning models (Daw &
Tobler, 2014). In the following sections, we will outline the
dynamic noise inference method, prove its mathematical va-

lidity, and compare and contrast it against the static noise
inference method theoretically and empirically. We show
that using the dynamic noise policy can improve modeling
in four distinct datasets, across three experimental paradigms
and models, and two species.

Methods
In a sequential decision-making task, the data collected in-
clude observation-action pairs (ot ,at) over the learning tra-
jectory for time t = 1,2, ...,T . In a reinforcement learn-
ing task, reward rt is additionally collected. We assume
that choices are generated by a Markov decision process
(Puterman, 2014). The decision-making model leads to a pol-
icy π(a|o) that the agent uses to choose between discrete ac-
tions given the observation. The policy may include noise
mechanisms, such as using the softmax function for action
selection, and it is conditional on the model’s latent variables
and parameters (e.g., learned values and learning rates for re-
inforcement learning models). We describe two extensions of
such a decision model: the static noise inference method that
implements the classic ε-mechanism (Nassar & Frank, 2016)
and the new dynamic noise inference method. The parame-
ters, θ, of both extended models can be optimized by maxi-
mizing the likelihood of the data given the model, denoted as
L(θ). Below, we focus on the model policies; all other model
equations (such as reinforcement learning value updates) are
taken from the published models and not reported here.

Static noise inference
Static noise policies assume that decision noise is at a con-
stant level ε throughout the learning trajectory. At any time
t, from the set of available actions A, the agent samples an
action uniformly at random (with probability ε) or based on
its learned policy (with probability 1− ε). Static noise infer-
ence can be incorporated into likelihood estimation accord-
ing to Algorithm 1. Thus, any model that can be fitted with
likelihood-based procedures can incorporate static noise into
its policy.

Algorithm 1: Static noise likelihood computation

Initialize L(θ) = 0;
for t = 1,2, ...,T do

Calculate the action probability πt(at |ot) ;
L(θ)← L(θ)+ log[ε · 1

|A| +(1− ε) ·πt(at |ot)] ;
Update the policy with (ot ,at ,rt).

end

Dynamic noise inference
The dynamic noise inference method models decision noise
by assuming that the agent is in one of two latent states at
any given time: the random state in which the agent chooses
actions uniformly at random or the policy state in which deci-
sions are made according to the true model policy. The tran-
sitions between both states are governed by two parameters:
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T 1
0 and T 0

1 , the probabilities of transitioning from the random
state to the policy state and vice versa. From these transition
probabilities, we can calculate the stay probability for each
latent state: 1− T 1

0 for the random state and 1− T 0
1 for the

policy state.
The state is composed of an observation ot , often encod-

ing the stimulus, and unobserved, latent variables including
the learned policy and ht , where ht ∈ {0,1} indicates whether
the agent is in the random state or policy state at time t. It
is further assumed that rt and ot are conditionally indepen-
dent of the latent states up to time t given the observed data
history, since rewards and future observations in behavioral
experiments do not depend on subjects’ unobserved mental
states.

Our goal is to maximize the following log-likelihood:

L(θ) =
T

∑
t=1

logIP(at |ot , ōt−1;θ)

=
T

∑
t=1

logIP
(
∑

i
IP(at |ot ,ht = i;θ)IP(ht = i|ōt−1;θ)

)
where ōt−1 denotes the observation-action-reward triplets up
to time t− 1. Let λt(i) = IP(ht = i|ōt−1;θ) be the prediction
probability of being in the latent state i ∈ {0,1} at time t. We
have

λt(i) = ∑
j

IP(ht = i|ht−1 = j, ōt−1;θ)IP(ht−1 = j|ōt−1;θ),

where j ∈ {0,1} and

IP(ht−1 = j|ōt−1;θ)=
IP(ht−1 = j,at−1,rt−1|ot−1, ōt−2;θ)

∑k IP(ht−1 = k,at−1,rt−1|ot−1, ōt−2;θ)
.

Notice that for any given k, each term in the de-
nominator, including the nominator with j = k, is
equal to IP(rt−1|ot−1,at−1,ht−1 = k, ōt−2;θ)× IP(at−1,ht−1 =
k|ot−1, ōt−2;θ), the first term of which is independent of ht−1
and is canceled out between the nominator and denominator.
Thus, the above ratio is equal to

IP(at−1|ht−1 = j,ot−1, ōt−2;θ)IP(ht−1 = j|ōt−2;θ)

∑k IP(at−1|ht−1 = k,ot−1, ōt−2;θ)IP(ht−1 = k|ōt−2;θ)
.

We can now compute λt(i) by plugging the above expres-
sion into its calculation, which then allows us to calculate
L(θ). The probabilities needed to infer λt(i) and L(θ) can be
iteratively updated according to Algorithm 2 over the learn-
ing trajectory. These calculations can be easily incorporated
into fitting procedures based on optimizing the model’s like-
lihood, including maximum likelihood estimation and hierar-
chical Bayesian modeling.

Note that static noise inference is a special case of dynamic
noise inference with T 0

1 = ε and T 1
0 = 1− ε, such that the

probabilities of staying in the random state and the policy
state are ε and 1− ε, respectively. That is, the probability
of transitioning into each latent state is independent of the

Algorithm 2: Dynamic noise inference likelihood
computation

Initialize L(θ) = 0 and λ0(i) for i ∈ {0,1} ;
for t = 1,2, ...,T do

Calculate the action probability πt(at |ot) ;
lt(θ) = log[ 1

|A| ·λt−1(0)+πt(at |ot) ·λt−1(1)] ;

L(θ)← L(θ)+ lt(θ) ;

λt(h)←
1
|A| ·λt−1(0)·T h

0 +πt (at |ot )·λt−1(1)·T h
1

exp(lt (θ))
;

Update the policy with (ot ,at ,rt).
end

current state. Thus, with optimal parameters, likelihood esti-
mates made with dynamic noise inference must be no worse
than estimates made with static noise inference, despite one
additional parameter.

Model evaluation

To investigate whether our new dynamic noise inference pol-
icy improves modeling in decision-making tasks, we fitted
models with static and dynamic noise inference on four em-
pirical datasets. The Dynamic Foraging dataset consists of
mice choice behavior on a two-armed bandit task with chang-
ing reward probabilities (Grossman et al., 2022). The RLWM
dataset contains human behavioral data on a task testing
the interactions between reinforcement learning and working
memory (Collins, 2018). To further demonstrate our method
on diverse tasks, models, and populations, we included two
more human behavioral datasets with different versions of the
2-step task, which differentiates model-based and model-free
reinforcement learning, tested on adult and developmental
populations (Kool, Cushman, & Gershman, 2016; Nussen-
baum, Scheuplein, Phaneuf, Evans, & Hartley, 2020). For
each dataset, we added both noise inference mechanisms to
the best performing model reported in the paper, except that
on the RLWM dataset, we used an improved model based on
later work (Master et al., 2020). For simplicity, all models
were fitted using maximum likelihood estimation on the in-
dividual level (Wilson & Collins, 2019) using the MATLAB
global optimization toolbox and fmincon function.

To evaluate model fit, we calculated the difference in the
Akaike information criterion (AIC) between static and dy-
namic noise inference model fit (Akaike, 1974). One-tailed
Wilcoxon signed-rank tests were performed to test the alter-
native hypothesis that dynamic noise inference yields lower
AIC than static noise inference. Tests using the protected
exceedance probability (pxp) led to the same conclusions
(Rigoux, Stephan, Friston, & Daunizeau, 2014). We veri-
fied that this model comparison procedure was adequate for
model identification on simulated data. We validated the
models by simulating choice behavior using fitted parameters
for 1,000 times and comparing it to empirical data.
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Furthermore, we assessed the robustness of the dynamic
noise inference models via the recovery of model parame-
ters and the prediction probability. Specifically, we recovered
the transition probability parameters, T 1

0 and T 0
1 , and the pre-

diction probability of the policy state, λ(1), by re-fitting the
models on data simulated using fitted parameters. We also
verified that other model parameters were recoverable. Sim-
ulations were performed once per subject for parameter re-
covery and 1,000 times per subject for prediction probability
recovery. Error bars represent the standard error of the mean.

Results
On the Dynamic Foraging dataset (Grossman et al., 2022),
the model with dynamic noise inference significantly out-
performed its static counterpart (∆AIC =-7.77; p = 0.00027;
pxp = 0.963 for the dynamic model) at the group level (Fig.
2A left). Individually, dynamic noise inference improved
model fit for 29 out of 48 mice (Fig. 2A right). Fit improve-
ment was substantially higher for some animals than others.

Mice were inferred to be in the policy state 89% of the
time on average, as estimated by the λ(1) distribution simu-
lated using fitted parameters (Fig. 2B right). We verified that
this inferred latent state was interpretable using simulations.

Indeed, the recovered values of the prediction probability of
the policy state, λ(1), were similar to the true values overall,
with slightly higher recovered values for true values between
0.1 and 0.9, which accounted for a minority of the data (Fig.
2B left). The parameter governing the transition probability
from the policy state to the random state, T 0

1 , recovered well
with most recovered values close to true values (Fig. 2C left).
The transition probability parameter from the random state to
the policy state, T 1

0 , recovered well for most animals, with a
few outliers whose recovered values were much higher than
the true values (Fig. 2C right). This likely happened when T 0

1
was very low, such that the animals were rarely inferred to be
in the random state, under-powering the recovery of T 1

0 .
In model validation, both models successfully reproduced

key behavioral patterns (Fig. 2D). In behavioral data and
model simulations, the learning curves after sharper reward
probability changes (i.e., high-low to low-high transitions)
were steeper than those after smaller reward probability
changes (i.e., medium-low to low-high transitions).

On the RLWM dataset (Collins, 2018), the dynamic noise
inference model fitted better than the static noise inference
model on average, but not significantly so (∆AIC = −1.50,
p= 0.749; Fig. 3A left). The numerical difference was driven
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Figure 2: Model evaluation on mice Dynamic Foraging data (Grossman et al., 2022). A) The differences in AIC between
models with static and dynamic noise inference at the group (left) and individual (right) levels. On the right, the colors indicate
the winning models (orange: static; green: dynamic). Simulations show that the B) prediction probability and C) latent state
transition probability parameters are recoverable. D) Both models reproduce key behavioral patterns.
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by 34 of 91 subjects for whom dynamic noise inference im-
proved fit substantially (Fig. 3A right).

Participants were estimated to be in the policy state 91%
of the time based on simulations using the fitted parameters
(Fig. 3B right). Similarly to the Dynamic Foraging dataset,
the prediction probability and latent state transition probabil-
ity parameters recovered well overall, with small positive bi-
ases in λ(1) recovery and some outliers in T 1

0 recovery (Fig.
3B, C). The distribution of simulated true λ(1) was shaped
similarly to that of the Dynamic Foraging dataset, with pre-
dominantly values higher than 0.9. In model validation, both
models showed human-like behavioral patterns (Fig. 3D).
Specifically, initial learning was faster and choice accuracy
converged to a higher value for set size of 3 than 6.

For both 2-step datasets, the model improved fit on the
group level on average (Fig. 4), though this improvement was
not statistically significant (top: p=0.853, bottom: p=0.422).
Subject-level ∆AIC followed similar patterns to those of Dy-
namic Foraging and RLWM.

On all datasets, we verified that the addition of the noise
inference parameters did not impair the identifiability of other
model parameters.

Discussion
Our results show that dynamic noise inference can improve
model fit across diverse species, populations, tasks, and mod-

els, qualifying it as a better alternative to static noise infer-
ence. While fit did not always improve at the group level,
the improvements for some individuals were substantial. Dy-
namic noise inference is effective, versatile, and easy to be
incorporated into existing model fitting procedures such as
maximum likelihood estimation and hierarchical Bayesian
modeling. Additionally, although the present work only con-
siders the softmax policy, the method can be applied to vari-
ous other decision policies including Thompson sampling and
the upper confidence bound algorithm.

Dynamic noise inference assumes that making choices ran-
domly and according to the learned policy are distinct, binary
latent states. Biologically, this assumption aligns with an es-
tablished literature on how norepinephrine modulates atten-
tion, a major contributor to varying noise levels: the phasic
or tonic mode of activity of the noradrenergic locus coeruleus
system closely correlates to good or poor task performance
(Aston-Jones, Rajkowski, & Cohen, 1999; Berridge & Wa-
terhouse, 2003). It is worth noting that the binary assumption
of the latent states may not always be accurate. Nonetheless,
it is a less strict assumption than that of static noise inference,
which additionally assumes that the probability of transition-
ing into each latent state is independent of the current state.
Thus, although dynamic noise inference may be limited by its
binary latent state assumption, it is still more suitable to solve
a broader range of problems than static noise inference.
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Dynamic noise inference takes effect by identifying peri-
ods of choice behavior that are better explained by random
noise than the learned policy. These noisy segments of data
can be caused by various factors including extended atten-
tional lapses of the subjects. Their likelihoods are lower-
bounded by that of the random policy, which limits their im-
pacts on the estimation of the overall likelihood and model
parameters. Thus, dynamic noise inference can mitigate the
effects of noisy periods of data on model fitting, which could
help improve data efficiency by preventing the exclusion of
entire sessions or subjects due to noise in a subset of the data.

We compared model fit using the AIC metric to show that
dynamic noise inference improves fit at the group level and
that non-trivial proportions of subjects benefit substantially
from it (Fig. 2A, 3A, 4). Although dynamic noise inference
did not significantly improve fit on some of the datasets at
the group level, it could still be beneficial, particularly for
relatively noisy datasets (e.g., animal and online behavioral
data) and capturing individual differences. In our future work,
we will further characterize these benefits in detail.

We showed that the dynamic noise inference model is ro-
bust through the recovery of latent state transition proba-
bilities and the prediction probability, despite small over-
estimation of λ(1) and outliers in T 1

0 recovery. Note that
both observations were caused by skewed distributions of fit-
ted latent state transition probability parameters (i.e., low T 0

1
and high T 1

0 ; Fig. 2C, 3C). These transition probabilities led

to imbalanced latent state frequencies: the policy state was
much more frequent than the random state. This limited pos-
sible transitions out of the random state, which provided in-
sufficient data for the accurate estimation of T 1

0 . Additionally,
the higher frequency of the policy state than the random state
caused imbalanced λ(1) frequencies favoring extremely high
values, which may have led to a positive bias in λ(1) estima-
tion (Fig. 2B & 3B). However, it is important to keep in mind
that the latent state transition probability parameters are likely
to be distributed similarly on other empirical datasets, as-
suming humans and animals make choices according to their
learned policies most of the time. Therefore, these observa-
tions are likely to persist in further applications of dynamic
noise inference to model human and animal choice behavior.

Although small differences in model validation were ob-
served on both datasets, there is insufficient evidence for
qualitative distinctions between the behavior simulated by
static and dynamic noise inference models. Future work
should further validate dynamic noise inference experimen-
tally, for example, by comparing inferred prediction proba-
bilities to an independent measure of attention, such as bio-
metrics or reaction time, and testing whether inferred latent
states capture this measure.

Having shown that dynamic noise inference may benefit
model fit, the next questions are: how does this improvement
of fit manifest, and does it impact the insights we can derive
from computational modeling? Our future work will focus on
systematically characterizing the benefits of dynamic noise
inference through further theoretical and empirical analyses.
For example, we will demonstrate that dynamic noise infer-
ence can improve parameter fit, especially in the presence of
long periods of noisy behavior (e.g., lapses).

Our work is related to other recent work identifying dis-
crete latent policy states (Ashwood et al., 2022). Here, our
assumptions, which allow two distinct latent noise states, are
more complex than those of most classic policy models (e.g.,
ε-greedy). However, they are simpler than assumptions made
by other approaches with more latent states and more com-
plex policies (Ashwood et al., 2022). The intermediate com-
plexity level of our assumptions allows us to capture chang-
ing noise levels while keeping simple likelihood estimations
accessible, and should thus make dynamic noise inference a
more versatile tool.

In summary, our dynamic noise inference method promises
potential improvements over the static noise inference
method currently used in the modeling literature of decision-
making behavior. Dynamic noise inference enables us to cap-
ture different degrees of task-engagement in different task pe-
riods, limiting contamination of model-fitting by noisy peri-
ods, without requiring ad-hoc data curating. Based on the em-
pirical evaluation of the method reported in the current work,
we expect that dynamic noise inference in modeling choice
behavior will strengthen modeling in many decision-making
paradigms, while keeping additional model complexity and
assumptions minimal.

462



References

Akaike, H. (1974). A new look at the statistical model iden-
tification. IEEE transactions on automatic control, 19(6),
716–723.

Ashwood, Z. C., Roy, N. A., Stone, I. R., Laboratory, I. B.,
Urai, A. E., Churchland, A. K., . . . Pillow, J. W. (2022).
Mice alternate between discrete strategies during percep-
tual decision-making. Nature Neuroscience, 25(2), 201–
212.

Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role
of locus coeruleus in attention and behavioral flexibility.
Biological psychiatry, 46(9), 1309–1320.

Berridge, C. W., & Waterhouse, B. D. (2003). The locus
coeruleus–noradrenergic system: modulation of behavioral
state and state-dependent cognitive processes. Brain re-
search reviews, 42(1), 33–84.

Bitzer, S., Park, H., Blankenburg, F., & Kiebel, S. J. (2014).
Perceptual decision making: drift-diffusion model is equiv-
alent to a bayesian model. Frontiers in human neuro-
science, 8, 102.

Chapelle, O., & Li, L. (2011). An empirical evaluation of
thompson sampling. Advances in neural information pro-
cessing systems, 24.

Collins, A. G. (2018). The tortoise and the hare: Interac-
tions between reinforcement learning and working mem-
ory. Journal of cognitive neuroscience, 30(10), 1422–
1432.

Collins, A. G., & Frank, M. J. (2012). How much of rein-
forcement learning is working memory, not reinforcement
learning? a behavioral, computational, and neurogenetic
analysis. European Journal of Neuroscience, 35(7), 1024–
1035.

Daw, N. D., & Tobler, P. N. (2014). Value learning through
reinforcement: the basics of dopamine and reinforcement
learning. In Neuroeconomics (pp. 283–298). Elsevier.

Dayan, P., & Niv, Y. (2008). Reinforcement learning: the
good, the bad and the ugly. Current opinion in neurobiol-
ogy, 18(2), 185–196.

Eckstein, M. K., Master, S. L., Xia, L., Dahl, R. E., Wilbrecht,
L., & Collins, A. G. (2022). The interpretation of computa-
tional model parameters depends on the context. Elife, 11,
e75474.

Esterman, M., & Rothlein, D. (2019). Models of sustained
attention. Current opinion in psychology, 29, 174–180.

Findling, C., & Wyart, V. (2021). Computation noise in hu-
man learning and decision-making: origin, impact, func-
tion. Current Opinion in Behavioral Sciences, 38, 124–
132.

Grossman, C. D., Bari, B. A., & Cohen, J. Y. (2022). Sero-
tonin neurons modulate learning rate through uncertainty.
Current Biology, 32(3), 586–599.

Group, T. M. A. D., Fawcett, T. W., Fallenstein, B., Higgin-
son, A. D., Houston, A. I., Mallpress, D. E., . . . McNamara,
J. M. (2014). The evolution of decision rules in complex

environments. Trends in cognitive sciences, 18(3), 153–
161.

Kool, W., Cushman, F. A., & Gershman, S. J. (2016). When
does model-based control pay off? PLoS computational
biology, 12(8), e1005090.

Master, S. L., Eckstein, M. K., Gotlieb, N., Dahl, R.,
Wilbrecht, L., & Collins, A. G. (2020). Disentangling the
systems contributing to changes in learning during adoles-
cence. Developmental cognitive neuroscience, 41, 100732.

Nassar, M. R., & Frank, M. J. (2016). Taming the beast: ex-
tracting generalizable knowledge from computational mod-
els of cognition. Current opinion in behavioral sciences,
11, 49–54.

Nussenbaum, K., Scheuplein, M., Phaneuf, C. V., Evans,
M. D., & Hartley, C. A. (2020). Moving developmental re-
search online: comparing in-lab and web-based studies of
model-based reinforcement learning. Collabra: Psychol-
ogy, 6(1).

Palminteri, S., Wyart, V., & Koechlin, E. (2017). The impor-
tance of falsification in computational cognitive modeling.
Trends in cognitive sciences, 21(6), 425–433.

Piray, P., Dezfouli, A., Heskes, T., Frank, M. J., & Daw,
N. D. (2019). Hierarchical bayesian inference for concur-
rent model fitting and comparison for group studies. PLoS
computational biology, 15(6), e1007043.

Puterman, M. L. (2014). Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.

Rigoux, L., Stephan, K. E., Friston, K. J., & Daunizeau,
J. (2014). Bayesian model selection for group stud-
ies—revisited. Neuroimage, 84, 971–985.

Schaaf, J. V., Jepma, M., Visser, I., & Huizenga, H. M.
(2019). A hierarchical bayesian approach to assess learning
and guessing strategies in reinforcement learning. Journal
of Mathematical Psychology, 93, 102276.

Thompson, W. R. (1933). On the likelihood that one un-
known probability exceeds another in view of the evidence
of two samples. Biometrika, 25(3-4), 285–294.

Tversky, A., & Kahneman, D. (1992). Advances in prospect
theory: Cumulative representation of uncertainty. Journal
of Risk and uncertainty, 5(4), 297–323.

Wang, S., & Wilson, R. (2018). Any way the brain blows?
the nature of decision noise in random exploration.

Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vig-
ilance requires hard mental work and is stressful. Human
factors, 50(3), 433–441.

Wilson, R. C., & Collins, A. G. (2019). Ten simple rules
for the computational modeling of behavioral data. Elife,
8, e49547.

Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A., &
Cohen, J. D. (2014). Humans use directed and random
exploration to solve the explore–exploit dilemma. Journal
of Experimental Psychology: General, 143(6), 2074.

463


