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ABSTRACT OF THE THESIS

A Multilingual Exploration of Semantics in the Brain Using Tensor Decomposition

by

Sharmistha Bardhan

Master of Science, Graduate Program in Computer Science
University of California, Riverside, June 2018
Dr. Evangelos E. Papalexakis, Chairperson

The semantic concept processing mechanism of the brain shows that different neu-

ral activity patterns occur for different semantic categories. Multivariate Pattern Analysis

of the brain fMRI data shows promising results in identifying active brain regions for a

specific semantic category. Unsupervised learning technique such as tensor decomposition

discovers the hidden structure from the brain data and proved to be useful as well. However,

the existing methods are used for analyzing data from subjects who speak in one language

and do not consider the cultural effect on it. This thesis presents an exploratory analysis

of the neuro-semantic problem in a new dimension. The brain fMRI tensors of subjects

who speak in Chinese or Italian language are analyzed both individually and together to

discover the hidden structure. The Chinese and Italian tensors are jointly analyzed by cou-

pling them along the stimuli object mode to discover the cultural effect. Moreover, the joint

analysis of semantic features and brain fMRI tensor using the Advanced Coupled Matrix

Tensor Factorization (ACMTF) method finds latent variables that explain the correlation

between them. The results of the joint analysis of the tensors support the preliminary pre-
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dictive analysis and find meaningful clusters for the different categories of stimuli object.

Moreover, for a rank 2 decomposition, the prediction of brain activation pattern given se-

mantic features gives an accuracy of 71.43%. It is expected that, the proposed exploratory

and predictive analysis will improve existing approaches of analyzing conceptual knowledge

representation of brain and guide future research in this domain.
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Chapter 1

Introduction

The human brain represents conceptual knowledge and processes it through acti-

vating certain neural regions. A number of different neuroscience based research has been

conducted to determine how this representation is created in the brain. Moreover, it has

been found that different semantic categories of objects show different neural activation. In

other words, when a subject is viewing different objects, different spatial pattern of neural

activation is observed. Though such behavior of the brain is already explained, the reason

behind this is still unclear. An explanation towards why certain semantic concept activates

specific brain regions can clarify this along with answering other research questions.

In this project, the conceptual knowledge or semantic concept processing mecha-

nism of the brain is analyzed. When a human look at a certain object, the brain immediately

sends signals from one region to another to understand and interpret the concept. Through

these brain signals, the concept is presented in the brain. In the brain, there are a num-

ber of regions that are used for different concept processing task. Moreover, according to
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the weight and age of a person, the brain size and concept representation process varies.

Therefore, it is a challenging task to provide a generalized decision on different experi-

ments. However, different research studies show that, it is still possible to find a pattern of

activation from the brain data through proper data pre-processing steps.

The mechanism of semantic concept processing is observed in the brain data that is

acquired during a certain experimental session. The two most popular method for brain data

acquisition is Functional Magnetic Resonance Imaging (fMRI) and Electroencephalogram

(EEG). In this project, the brain fMRI data is used for different experiments. Since brain

fMRI data shows the change in blood oxygenation level, it is easier to find the activation

pattern from brain image. The brain fMRI images have been used for a number of different

experiments. These experiments include finding brain network and its strength, detecting

Alzheimer’s disease, etc. Moreover, it is also the most commonly used imaging technique

to understand the concept processing mechanism of the brain.

The semantic concept processing mechanism of the brain is analyzed with PyMVPA

tool and tensor decomposition method to answer several research questions. In the begin-

ning, brain fMRI data is analyzed using the PyMVPA tool. Then the learning obtained

from this step is used in the next step where the tensor decomposition concept is used

to find out latent structure in the data. In this project, there are two main goals. They

are, answering questions like, is there any cultural effect on how people think? Also in the

presence of different language speaking subject’s data, is it possible to predict the brain

voxels in the presence of additional information? In the following sections, the motivation

and the approaches followed in this project will be discussed in a broad manner.
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1.1 Motivation

In 2008, Tom Mitchell first proposed a computational model for the prediction of

Human Brain Activity Associated with the Meanings of Nouns. In that work, they focused

mainly on brain regions that interact differently for different categories of stimuli [67]. They

considered the semantic feature of different words to predict the brain activity. In 2015,

in a different experiment, the brain fMRI data is coupled with the personal images of the

participant and other participants. This study shows that each person viewing certain

objects, has a different way to represent them in the brain [26]. As discussed, tensors are

also used for different problems related to brain starting from modeling epilepsy seizure

to Brain network analysis. The Coupled Matrix Tensor Factorization (CMTF) couples

the brain data with behavioral response gives better performance regarding finding latent

variables that explain the activity of the brain signals more accurately. The Advanced

CMTF (ACMTF) is also proved to be useful for such joint analysis, in the presence of both

shared and unshared factors. However, all of these experimental results are obtained for

participants who speak English.

In this thesis, we are trying to address this problem in a new dimension. Since

the current analyses are applicable for English speaking people only, it is not possible to

generalize the results for different language speaking people. There can be socio-cultural

effect on how a person thinks and depending on that different activation pattern can be

observed in the brain for different stimuli object. Moreover, when the dataset of different

language speaking are jointly analyzed, is it possible to predict the brain voxels from seman-

tic features? These are the questions that motivate us primarily to solve the problem. In
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this project, the dataset contains data from participants who speak in Chinese and Italian.

The primary goal of this project is to answer two research questions. We want to answer

questions like, is it possible to capture cultural differences using tensor decomposition on

the data? Moreover, we jointly analyze the dataset together and found that such analysis

helps us answer the questions better.

1.2 Problem Statement

In this project, the dataset contains brain fMRI data from Chinese and Italian

language speaking subject. The primary goal of this thesis is to answer the two questions

discussed above. Therefore, the problem can be defined in the following way,

Given, brain fMRI data X = {C, I} where C and I are tensors containing data

for Chinese and Italian speaking people and Semantic Features Y = {s1, s2, . . . , s218} for

nouns, we aim to,

1. Predict the associated Brain voxels related to noun/stimuli.

2. Capture cultural differences.

1.3 Experimental Organization

In order to reach the final goal of this project, the brain fMRI data is collected

from 7 subjects where 4 subjects speak in Chinese and 3 subjects speak in Italian language.

Each subject was shown 84 different stimuli objects multiple times in different runs and

the brain fMRI data is captured. As stimuli, tools, mammals, and different objects are
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considered. However, for analysis purpose, only the tools and mammals are considered.

During the fMRI acquisition, the picture of the stimuli object was shown to the subjects.

Since these experiments take a long time and the subject might get tired, standard procedure

to capture information for each experimental run is considered with the necessary resting

period between sessions. Each stimuli object is shown to the user 3 times at a stretch.

Since, brain fMRI data is prone to noise due to temporal drift, head motion, ap-

propriate detrending and normalization method is applied to clean the data. The PyMVPA

tool is used on the data for the preliminary predictive analysis. As prediction task, the

type of object the user was viewing during the experiment is considered. Then the brain

fMRI data is represented as tensor and different tensor decomposition model is considered

to answer the research questions.

The thesis is organized in the following way: Chapter 1 discusses the problem

statement and introduces the problem, Chapter 2 discusses technical concepts required to

understand the thesis, Chapter 3 discusses related work, Chapter 4 discusses the prob-

lem and experimental setup, Chapter 5 presents the preliminary predictive analysis using

PyMVPA tool, Chapter 6 presents the analysis using Tensor decomposition method, Chap-

ter 7 presents the results and Chapter 8 presents the conclusion and future work.
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Chapter 2

Preliminaries And Notations

In this chapter, we will discuss the common terms and notations used throughout

this paper to understand the technical concepts associated with the main work. The different

models and algorithms used in this work are also discussed.

2.1 Introduction to Tensors

A tensor is a multi-dimensional array. Tensors are also known as the N-way array.

A vector is a one-way array and a matrix is a two-way array. Therefore, when the value

of N is three or more, it is a tensor. Figure 2.1 illustrates the difference between vector,

matrix, and tensor.

In case of tensors, there are certain concepts that need to be considered while

performing a decomposition or any such operation on it. In this section, the different tensor

products and operations are discussed.
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Figure 2.1: The N-way arrays where N=1 indicates a vector, N=2 indicates matrix and
N=3 indicates a tensor.

2.1.1 Definitions

As discussed above, tensors are three or more dimensional arrays containing nu-

meral values. Tensors are most commonly used to represent multi-aspect data. Starting

from online social network’s user-interaction data to the analysis of brain signal obtained

in different trials, tensors have always been useful to present the multiple aspects of these

huge datasets.

Tensor : A tensor is a multi-dimensional array with three or more modes. It

contains numerical values that represent the relationship among multiple aspects. A tensor

is usually represented as X.

Tensor Order or Mode : The order of a tensor is its dimension. It is also known

as Mode. Therefore, 1-dimensional array or vector is the first-order tensor, a 2-dimensional

array is a second-order tensor, 3 or more dimensional array is a tensor. Figure 2.2 is showing

a three-mode tensor.
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Figure 2.2: A three-mode tensor.

Tensor Rank : The rank of a tensor, X is the minimum number of rank-one

tensors whose sum can form the tensor. The rank of a tensor is denoted by R. Figure 2.3

is showing a three-mode tensor with rank-R. In the figure, a1 . . . aR, b1 . . . bR and c1 . . . cR

are known as Factors. Each of these factors are rank-1 vectors.

The individual rank-1 vectors in each mode can be combined together to form a

matrix where each column will hold one rank-one component. These matrices are called

Factor matrices. Figure 2.4 is showing the same decomposition of Figure 2.3 in terms of

factor matrices. In the figure, matrix A, B , and C are factor matrices for three different

modes.
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Figure 2.3: A three-mode tensor with rank R.

Figure 2.4: A three-mode tensor decomposition represented as factor matrices in each mode.

2.1.2 Tensor products

Kronecker Product : The Kronecker Product between two matrices A and B

with dimension I X J and K X L is defined as A⊗B with dimension IK X JL.

9



A⊗B :=



a11B a12B · · · a1JB

a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB


Khatri-Rao Product : The Khatri-Rao Product between two matrices A and B

with dimension I X K and J X K is defined as A�B with dimension IJ X K. Khatri-Rao

Product is basically the column-wise Kronecker product.

A�B :=

[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
There are a few more tensor product methods available. They are N-mode Product

and Hadamard Product.

2.2 Tensor Decomposition Methods

There are two major types of tensor decomposition. They are Canonical Polyadic

Decomposition (CPD) and Tucker Decomposition.

2.2.1 Canonical Polyadic Decomposition (CPD)

The Canonical Polyadic Decomposition is used for rank decomposition. It is also

known as CANDECOMP/PARAFAC decomposition. It decomposes a tensor into the

sum of rank - 1 tensors. For example, let X is a three-mode tensor of dimension I X J X

K, then the CP decomposition is computed using the following formula,
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X =
R∑

r=1

ar ◦ br ◦ cr

The tensor is basically decomposed as the sum of an outer product of three vectors.

These three vectors are factors, where ar ∈ RI , br ∈ RJ and cr ∈ RK . These factors are

vectors that are merged together in each mode to form the factor matrices where A ∈ RIXR,

B ∈ RJXR and C ∈ RKXR where R is rank of the decomposition.

A =

[
a1 a2 · · · aR

]
B =

[
b1 b2 · · · bR

]
C =

[
c1 c2 · · · cR

]

There are a number of algorithms exist that can compute the CP decomposition.

They are Alternating Least Square (ALS) algorithm, Jennrichs algorithm, Tensor Power

Method, etc.

2.3 Joint Analysis using Tensors

The joint analysis of Tensor means coupling a tensor with one or more tensors

or matrices along one or more modes and then jointly factorize them. This is also known

as Structured data fusion (SDF). When a number of dataset are analyzed together, it can

identify the hidden structure of the data in a broad manner. This Structured Data Fusion

(SDF) problem can be presented as a Coupled Matrix Tensor Factorization (CMTF) prob-

lem. Moreover, there is another variation of CMTF which is known as Advanced CMTF
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(ACMTF). In this section, the CMTF and ACMTF model will be discussed.

2.3.1 Coupled Matrix Tensor Factorization (CMTF)

In CMTF, tensors and matrices are jointly analyzed. Suppose, X ∈ RIXJXK is a

tensor with three modes and Y ∈ RIXL is a matrix. If the given tensor and the matrix is

coupled in the first mode then the common latent structure from both the dataset can be

extracted. Therefore, the CMTF model for a rank-R decomposition can be presented as

Equation 2.1.

f(A,B,C,D) = ‖X− [[A,B,C]]‖2 + ‖Y −ADT ‖2 (2.1)

Where A ∈ RIXR, B ∈ RJXR and C ∈ RKXR are factor matrices for X. In this

equation, the CP decomposition is used. Moreover, the A ∈ RIXR and D ∈ RLXR are the

factor matrices obtained from the matrix factorization. Equation 2.1 can be generalized for

any tensors and matrices. When multiple datasets are analyzed jointly this way, it is easier

to capture underlying structure of the dataset through clusters. Figure 2.5 is showing the

CMTF model.

There are a number of algorithms available to solve the CMTF for a variety of loss

functions. The two most popular algorithms are based on Alternating Least Square (ALS)

method and the Optimized version of it. In the CMTF ALS algorithm, the general ALS

method is used to compute the decomposition where the computation of one factor matrix

is done by keeping the others fixed. The algorithm stops when there is no change in the

loss function, in other words, it is minimized. The ALS method has certain limitations. If

12



Figure 2.5: The Coupled Matrix Tensor Factorization (CMTF) model.

there is missing data, it converges poorly. Moreover, if the number of components or rank

is not determined properly, it may not find the latent structure of the data.

In order to solve the above problems, the CMTF OPT is proposed. In this

paper, the CMTF OPT algorithm is used. In this algorithm, the gradient is computed

first. Afterward, a first-order optimization algorithm is used.

2.3.2 Advanced Coupled Matrix And Tensor Factorization (ACMTF)

The CMTF model works well when all of the factors are shared across the dataset.

However, if there are both shared and unshared factors, it may not capture the underlying

structure of the data. Therefore, the CMTF is reformulated in such a way so that the

columns of the factor matrices have unit norm. The new version of the CMTF is known

as Advanced Coupled Matrix Tensor Factorization (ACMTF) that can effectively identify

shared and unshared factors.
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2.4 Human Brain

The Human brain consists of four regions. They are Frontal lobe, Parietal lobe,

Occipital lobe and Temporal lobe. These lobes have different functions and contribute equally

to the overall brain functioning. Figure 2.6 is showing the different parts of the brain.

Frontal Lobe: This is the front part of the brain. It manages the attention,

planning and reasoning activities.

Parietal Lobe: This is the middle portion of the brain. It manages the percep-

tion, arithmetic calculation activities.

Occipital Lobe: This resides at the back of the brain. It manages the vision.

Temporal Lobe: This resides at the bottom of the brain. It manages the language

comprehension and semantic stimuli processing i.e. interpret the meaning of visual stimuli

and establish object recognition. This region is basically where we are interested in for this

experiment.

Figure 2.6: The different parts of the human brain [61].
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2.4.1 Definition and Preliminaries

Blood Oxygen Level Dependent (BOLD): A particular brain region becomes

active when it is in use. The neurons of that brain region need more energy to be active

than others. The active neurons get this energy from blood since it provides more oxygen

to these neurons. This process is known as the Hemodynamic response.

Functional magnetic resonance imaging (fMRI): fMRI uses BOLD-contrast

imaging technique [108] to determine which regions of the brain are the most active. It

measures the change in blood oxygen levels in the brain. A change in the blood oxygen level

is observed in a particular region of the brain when that region is in use or active. In other

words, the change in the blood oxygenation level actually indicates neural activity in the

brain. The fMRI technique scans the brain and maps the neural activity by considering the

change in the blood oxygenation level. Therefore, the fMRI scan is images of hemodynamic

response, corresponding to the neural activity in the particular region of the brain.

A fMRI image is a 3D volume of the brain. In this image, each point is known as

a voxel. If a voxel is active, it represents, that particular place in the brain is in use and

vice versa. Moreover, the number of voxels are not fixed for all users. It depends on the

size and shape of the brain of a particular person. In different studies that have used fMRI

brain images to train machine learning models, considers voxels as features.

PyMVPA: PyMVPA stands for MultiVariate Pattern Analysis (MVPA) in Python

[108]. PyMVPA is a python package that is used to analyze larger datasets. It is mostly

used for brain fMRI dataset. However, it can be used for different types of dataset as well.

In case of neural data analysis, the statistical learning methods of PyMVPA are useful.
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Temporal Resolution (TR): Temporal resolution basically means the time be-

tween fMRI volume acquisition during an experiment. It is always recommended to have

less than 2 seconds of TR. It is also known as Time to Repetition.

Insula: Insula is a region of the brain that resides at the very deep of the brain

and in the cerebral cortex.

Echo-Planar Imaging (EPI): EPI is considered the standard method for col-

lecting fMRI images. The basic way of collecting fMRI images is to go from top to bottom

of the brain. The scanner goes from top to the bottom of the brain and collects the fMRI

images slice by slice.

2.4.2 Feature Selection

There are different types of methods that are used for feature selection [63, 11,

114, 112, 78, 94, 109, 110]. In case of brain fMRI data analysis, different feature selection

methods are used. The One Way ANOVA method is used for univariate analysis. The

Search Light and Recursive Feature Elimination (RFE) are the most popular multivariate

feature selection methods for brain fMRI images. In this work, the One Way ANOVA

method is used for feature selection.

Analysis of Variance

ANOVA method is used to compute and test the means of several groups of fea-

tures. It usually tests whether the difference between these means are equal or not across all

the groups. The reasoning about the means is basically computed by analyzing the variance

of the groups of features, justifying the name [78].
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There are two major types of ANOVA test. They are, One-way ANOVA and Two-

way ANOVA. The One-way or Two-way ANOVA tests are distinguished by the number of

independent variables that are present in the analysis. One-way ANOVA has one indepen-

dent variable with 2 different groups in it. On the other hand, Two-way ANOVA has two

independent variables with 2 or more different groups in it [94].
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Chapter 3

Related Work

Brain fMRI data has been used in different experiments to answer important re-

search problems. Moreover, a number of important questions have been solved using fMRI

data and tensor decomposition methods. In this chapter, a brief overview of the previous

research works has been discussed.

3.1 Tensor decomposition and its application

Tensor and different tensor decomposition methods are now very popular in the

field of data mining, machine learning, and signal processing. The tensor was first proposed

in 1900. Gregorio Ricci-Curbastro and Tullio Levi-Civita are the two mathematicians who

proposed this [116]. The tensor decomposition concepts are first introduced in 1927 by

Frank L. Hitchcock [50, 89]. However, this introduction gives a high-level idea of tensor

decomposition. Tensor decomposition method has great potential in modeling latent vari-

ables and it is first introduced by Cattell in Psychometrics [25]. In this study, linear tensor
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decomposition is discussed which is basically the decomposition of tensor in rank-1 factors.

As a result of the first work, tensor decomposition was also used in chemometrics and econo-

metrics. Then in 1960, the concept of multi-linear tensor decomposition is introduced by

Tucker and Levin [98, 97, 60].

In 1970, Carroll and Chang introduced CANDECOMP model [24]. This work pro-

poses an approximate linear rank model for specifically three-mode tensors. At the same

time, Richard A.Harshman proposed another approximate linear rank model, PARAFAC

[24]. Though both of these research studies are based on Catell’s principle, they are separate

work. In 1980’s Kroonenberg proposed Tucker3, Tucker2 and 3-mode PCA. He discussed

these methods as three-mode Principal Component Analysis (PCA) dimensionality reduc-

tion methods [99, 57, 58]. He used Alternating Least Square (ALS) approach for this work.

In 1996 Rasmus Bro published a research work where he discussed different applications of

PARAFAC in chemometrics where he solved problems like missing data, variance analysis,

etc [20]. In 2000, Lathauwer, Moor, and Vandewalle proposed Higher-Order SVD (HOSVD)

[34]. This work basically generalizes the SVD concept of matrix decomposition to tensor

or higher-order matrices. The same year, these three researchers came up with Higher-

Order Orthogonal Iteration (HOOI) [35]. This work discusses about computing the best

approximation of a tensor given another tensor whose column and row rank value is known.

At the beginning of 2000, tensor and different tensor decomposition methods came

to researcher’s attention. There were several works that have been done since then, for exam-

ple, new tensor decomposition methods [106, 119], optimization, improvements or extension

of the existing methods [88, 83, 3, 120, 73], assessing the quality of the decomposition [21],
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etc. Moreover, there are several works that are discussing the application of these methods

for solving different problems, for example, face recognition [105, 104], Video compression

[91], brain data analysis [29]. In the beginning, the tensor decomposition methods were used

only in Chemometrics and Psychometrics. However, tensor decomposition methods are now

used in different fields like data science, machine learning, Neuroscience, and statistics.

3.2 Tensor decomposition in Signal Processing and Machine

Learning

In the year 2000 and later, there has been a lot of research work happened in

signal processing and machine learning involving tensor decomposition. There are research

works where a combination of DS-CDMA signals was separated without any training using

PARAFAC model [32]. When using only one antenna, the signal is always corrupted by

noise. However, in all of the practical designs, we have to use several antennas and for such

array of antennas coupled tensor methods can be used [96]. There are several works where

tensor is used for multi-array blind source separation problems [62, 28]. Moreover, tensors

have been used in signal processing for Multiple Input and Multiple Output (MIMO) radar

as well [75]. In signal processing, a tensor is used for blind source separation problems of

speech and audio signals [76]. The PARAFAC model is used for sensor array processing

problem as well [92].

Tensor decomposition has become a very popular method for solving different

machine learning problems. In case of social media data or recommender system, tensor

used to model the data. In case of social media, it tries to find out the underlying pattern of
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the data that detects a community depending on various factors [14, 117, 80]. Moreover, for

the nature of social media and user’s interaction, data coming is in the form of a stream. In

that case, computing the whole tensor over again is expensive and inefficient. This problem

is also solved using dynamic tensor analysis methods [95]. In case of a recommender system,

evaluating user’s selection, finding any anomalies tensor decomposition methods have been

used [79, 37]. In case of social network data and computer vision, a common issue is missing

data. A modified version of the CP decomposition method is CP Weighted OPTimization,

that takes the weighted least squares for the decomposition is used to solve the problem [4].

This problem is addressed and analyzed in different ways as well [52].

Since one of the most important applications of tensor is modeling latent variables,

it has been used for problems in topic modeling [13], Independent component analysis (ICA)

[16], discovering patterns, etc. It has also been used in Hidden Markov Models as well [70].

Tensor decomposition methods are used for identifying the latent variables in different fields

such as data mining [68], big data analysis while dealing with the curse of dimensionality

[107], etc. There are research works that focus on tensor’s immense capacity to model latent

variables and its application in the field of machine learning [12].

There are several studies that discussed the application of tensor decomposition

for different problems of signal processing and machine learning [28, 55, 93, 33]. There are a

number of surveys where different tensor decomposition methods are discussed [30, 56, 31].
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3.3 Brain data analysis

There are a number of research work where brain data has been analyzed. fMRI

and EEG are the two major type of brain data that is used to analyze brain network, human

emotional state, and diseases. In case of brain fMRI data analysis, MultiVariate Pattern

Analysis (MVPA) was proved to be effective. The reason behind this is, it captures different

patterns in the fMRI data depending on different object category shown to the participant

during the recording. James V. Haxby first introduced MVPA analysis for brain fMRI

data [48, 46] and showed that in Ventral Temporal Cortex, the representation of different

object categories shows different patterns like distributed, overlapping, etc. Then MVPA

analysis is used for different problems, for example, understanding and decoding the neural

activity related to visual object categories, memory search, line orientation, etc. [77, 47].

Brain data analysis is an active research topic and different machine learning algorithms,

tensor decomposition methods are introduced and used in this field. In all of these research

studies, the MVPA method is used.

3.3.1 Brain data and Machine Learning

Machine learning algorithms have been used for solving different problems using

brain data [39, 118, 59]. Both EEG and fMRI data have been used for these experiments.

Machine learning algorithms have been used to classify emotional states of human subjects

where they have used the EEG brain data [18]. Then SVM is used as a classifier to classify

happy and unhappy emotions from Brain EEG signal and an average accuracy of 75.62% and

65.12% have been obtained for subject dependent and independent model respectively [53].
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Machine algorithms have also been used for mental-state monitoring systems as well where

for feature extraction is performed using spatial filters and a framework of regularized linear

discriminant analysis (LDA) is used for classification [71]. Moreover, a neural-weighting

approach has been applied to guide machine learning algorithms [38]. A high-dimensional

model representing the ventral temporal (VT) cortex of the brain shows promising results

in common model space for the Between-Subject Classification problem. In this problem,

SVM is used for classification [49]. Particularly, using fMRI brain images, there have been

a number of research works that discuss how different concepts are processed in the brain

[41].

When the brain data is correlated with behavioral data about specific nouns, it

gives better insight about the brain signals. The first such experiment was performed

by building a computational model using 11 participants’ fMRI data and 60 nouns that

show a promising result in the prediction of brain voxels from semantic features of noun

[67]. The dataset is also available online [66]. Usually, in such experiments, the semantic

features are collected from the participants by asking some questions. These semantic

features can be obtained automatically from a text as well [85]. However, Wikipedia has

also been used to generate such semantic features in different experiments [86]. There has

been a research study where the brain fMRI data is coupled with the personal images of

the participant and other participants. This study shows that each person viewing certain

objects, has a different way to represent them in the brain [26]. Moreover, a framework

for multi-variate pattern analysis on the fMRI brain data and stimuli supports the theory

of unique representation of brain through dissimilarity matrices [27]. In such experiments,

23



multivariate classifiers like Naive Bayes, SVM, and KNN have been used and Naive Bayes

outperforms the other two methods. Moreover, it shows that from the activation pattern of

the brain, it is possible to find out the category of the object shown to the participant [17].

There are tools available for such analysis. EEGLAB is used for such analysis

where mostly EEG data is used [101]. ERPWAVELAB is another such tool that performs

PARAFAC decomposition specifically on EEG and MEG data [69]. Moreover, there are

a number of tools that are developed for the statistical analysis of the brain fMRI data,

for examples, PyMVPA [42, 43, 44]. PyMVPA is a toolbox written in python that is

used for Multivariate Pattern Analysis using brain fMRI data. Analysis of Functional

NeuroImages (AFNI) [74] and Statistical Parametric Mapping (SPM) [100] are tools used

for fMRI analysis as well.

3.3.2 Application of Tensor in Brain data analysis

Tensor decomposition has already been used for brain data analysis in problems

including detecting diseases, analyzing brain network, etc. PARAFAC model is used for

multi-way analysis of EEG brain data of patients with epilepsy seizure where it success-

fully modeled the seizure [1]. Brain network analysis is an active research problem that is

important to find out the temporal and spectral connection between brain regions [102].

Tensors are highly used for such representation and analysis. SemiBAT is a semi-supervised

approach that is based on constrained tensor factorization method [23]. Tensor-based Brain

Network Embedding (t-BNE) is another such approach for brain network analysis problems

[22]. Moreover, it is also possible to identify the states of the dynamic functional brain

network through tensor decomposition from EEG brain data [64].
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As discussed before, the brain fMRI data is correlated with behavioral data about

specific nouns which are also known as the semantic features, coupling the brain data and

behavioral response gives better performance regarding finding latent variables that explain

the activity of the brain signals more accurately [9]. Coupled Matrix Tensor Factorization

(CMTF) is used to analyze such dataset together [5, 6, 2, 40]. Moreover, CMTF is also used

for problems where the factors are partially shared [36]. However, there can be unshared

factors in the dataset, Advanced CMTF (ACMTF) has also been used for such experiments

and it captures the underlying structures better than other methods [7]. Relaxed ACMTF

(RACMTF) is another method that is used with EEG recordings to detect eye movements

that are associated with the experimental data [90]. The general CMTF solvers are Al-

ternating Least Square (ALS) based methods which are slower while applying on a large

dataset. SCOUP-SMT is a new CMTF solver that is 50-100 times faster because of running

in parallel. Given the semantic features, this algorithm was successful in identifying the

activity in premotor cortex [84]. Turbo-SMT is another algorithm that solved the CMTF

specifically for Sparse Matrix and Tensors with significantly good speed [81].

The fusion of both EEG and fMRI brain data can give a better spatio-temporal

overview of the brain recordings of the epilepsy patients. Joint Independent Component

Analysis (Joint-ICA) and Coupled Matrix Tensor Factorization have been used for such

experiments where the fusion of the EEG and fMRI data were achieved using joint Blind

Source Separation (BSS) process [51]. CMTF has also been used for analyzing the fusion

of EEG and fMRI data to detect the neurological changes in the brain of patients with

Schizophrenia [8]. A general framework has also been proposed for the fusion of multimodal
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brain data where the CMTF like tensor structures are used to capture underlying structure

of the data [54]. There are more applications of tensors for such analysis [15, 103].

Brain fMRI data has been analyzed using different classifiers to see which machine

learning algorithm works better with them. These studies show that, in such experiments,

the brain voxels are directly considered as features to train the model and the class label

is the stimulus object that a participant was looking at [87]. However, it is also possible to

consider the average of a number of voxels that resides in a single ROI as a single voxel. We

can also consider the voxel at each time point in a trial as a single feature [65]. Moreover, in

case of class label also, there are exceptions depending on the requirement of the research

study. It is also a common practice to ask participants questions regarding the shown

stimuli for example, in one of such experiments the subject was shown an apple and were

asked questions like, “Is it edible?” or “Does it fit in hand?”, etc. [82].

The size of the dataset plays an important role on the selection of a classifier [87].

In case of fMRI data analysis, it is a common scenario that data will be noisy and it is

necessary to remove the noise from the data. While removing the noise, the size of the

dataset might reduce. Though having many examples might help training the model, it is

better to use few examples that does not include any noise to train the model. In brain

data analysis, noise is a common issue and always misleads the analysis. Therefore, the

selection of the good examples is important. Moreover, in case of brain data, it is often the

case that there are a few examples, but thousands of voxels or features. In that case, the

trained model might suffer from overfitting problem. The research studies also proposed

linear classifiers to solve their problem. However, it is not always true for all experiments.
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Therefore, the choice of the classifier depends primarily on the size of the dataset and

research problem.

In case of brain fMRI data, it is always a common practice to preprocess the data.

The main reason behind this is, brain fMRI data contains noise. This noise is induced by

different sources such as head motion, eye-blinks, etc. Moreover, as discussed above, it is

also necessary to reduce the number of features if the ratio between the number of features

and number of samples is really high. In data preprocessing step, different approaches have

been followed. In some approaches, a General Linear Model (GLM) is used to capture

the variance in the data and in other approaches, an Independent Component Analysis

(ICA) method is used in the preprocessing step [19]. The fMRI data is first converted to

examples where the definition of examples varies depending on the goal of the experiment.

For example, the linear model activity estimate images using a GLM are created first and

then the examples are created from the activation signals from these images. In other

experiments, the example is generated as the average of several TRs of images in a single

trial [87]. In some of the works, the number of features is reduced using masking technique

[87] (considering only the region of interest) and SVD or PCA technique.
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Chapter 4

Brain data Analysis and Tensor

Tensor analysis has been used for different problems involving brain fMRI data. In

this thesis, a new problem is studied and analyzed using tensor decomposition and Coupled

Matrix Tensor Factorization (CMTF). In this chapter, the experimental setup and the

different features of the acquired brain fMRI data will be discussed. Moreover, the data

pre-processing steps will be discussed as well.

4.1 The Brain fMRI dataset

In this experiment, the brain fMRI data has been collected from 7 participants

where 4 of them speaks in Chinese and the rest of them speaks in Italian. Brain fMRI needs

to be pre-processed and remove the noise before training the model. Moreover, these brain

data come with additional information that needs to be considered to find hidden structure

from them. In this section, the various features and attributes of the acquired brain fMRI

data are discussed.

28



4.1.1 Dataset Properties

The brain fMRI data collected from different participants have a different number

of samples and features. However, all of the participants viewed the same 84 stimuli objects

during the experiment. Since the human brain size varies for different individuals according

to their age and weight [111], the brain fMRI data obtained from different language speaking

people also contains a different number of voxels or features. Table 4.1 lists the number of

samples and features for each participant.

Table 4.1: The properties of the brain fMRI dataset collected from different language speak-
ing participant

Participant ID Number of samples Number of features

Chinese Subject 1 3681 286850

Chinese Subject 2 3158 291910

Chinese Subject 3 3681 291570

Chinese Subject 4 4141 295590

Italian Subject 1 3681 288670

Italian Subject 2 3681 294690

Italian Subject 3 3681 261710

The collected brain fMRI data actually shows the original mapping of the brain.

However, for this experiment, the analysis of the whole brain is not necessary. According to

the goal of this project, it is more interesting to study only those portions of the brain that

deals with visual memory or language comprehension. As discussed previously, temporal

lobe is the brain region that interprets visual objects and tries to recognize them. More

specifically, the ventral temporal cortex is assigned for such object identification job in the

brain. Therefore, in order to utilize only the useful voxels, a brain mask is applied to the

raw data so that only the voxels of the ventral temporal cortex get selected for further

analysis. There are total 379360 voxels correspond to the ventral temporal cortex of the
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brain. Though all of the individual datasets have their own mask file, in order to generalize

the analysis across all dataset, a common mask file has also been used. This mask file is

created by performing a logical OR among all of the seven mask files. This mask file is

created using the SPM8 software.

In different experiments, it is required to know more information about the brain

fMRI data. Therefore, all brain fMRI dataset usually contain three different types of at-

tributes. They are Sample Attribute, Feature Attribute, and Dataset Attribute. The at-

tribute values are stored as vectors. The dataset that has been used in this experiment

contains a different number of sample, feature and dataset attributes.

• Sample Attributes: In case of sample attributes, there is one attribute value per

sample. The sample attributes are stored as Collectable and do not allow inappropriate

attributes. There are total 9 sample attributes in the dataset. They are,

1. time indices: It stores the index of the volume.

2. targets: It stores the class label or stimuli value for each sample.

3. chunks: It stores information about independent groups of samples or corre-

sponding experimental run. Each dataset contains samples that are obtained

from a different experimental run. This attribute contains the id of the exper-

imental run. There are total 9 chunks in the dataset. The last chunk contains

only one sample with target value ignore which usually indicates the end of the

experiment.

4. time coords: It contains information about volume acquisition time.
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5. duration : It stores how long the stimuli were shown to the participant while

collecting the brain fMRI data during a particular experimental run. The time

is stored in seconds.

There are a few more attributes, they are, event chunks, onset , event targets,

and event onsetidx .

• Feature Attributes: There is one attribute value per feature and they are known as

feature attributes. There are 2 feature attributes, event offsetidx , voxel indices.

The voxel indices feature attribute contains information about where the voxels

actually reside in the brain. This is important to again create and plot the brain

fMRI data. The voxel indices are similar for all users after using the same mask.

• Dataset Attributes: The datatset attributes are, imgaffine , imghdr , imgtype ,

mapper , voxel dim and voxel eldim .

1. mapper : Mapper is one of the most important components of PyMVPA. Map-

pers actually transform the data in different ways depending on the requirement

of the experiment. For example, in order to apply different algorithms, the 3D

brain data needs to be flattened in a 1D feature vector. A mapper can be used

for this purpose. Therefore, mapper stores what data pre-processing method has

been applied to the data to transform it.

2. voxel eldim : It stores the size or dimension of 1 voxel in millimeter. In this

experiment, voxel eldim across all voxels were 3 X 3 X 6.

3. imghdr : It stores information about the fMRI image or NIfTI header.
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4. imgtype : It stores information about the class of the image. The brain data

used in this experiment is of Nifti1Image type.

5. voxel dim : The brain voxels are of 3 dimension. voxel dim stores information

about the size of the 3D voxels in each dimension as a vector. Therefore, the total

number of voxels per volume can be computed from here. In this experiment,

the total number of voxels are 53 X 63 X 23.

There are a few more dataset attributes like, imgaffine , etc.

In PyMVPA, when a specific portion of the brain is selected for certain analysis

using the masking concept, the corresponding sample, feature and dataset attributes are

extracted automatically. Each of the sequential brain samples is collected in 1s TR.

4.1.2 Stimuli objects

The stimuli objects used in this experiments are from 3 different categories. They

are Mammals, Tools, and Objects. There are 30 different Mammals and Tools. The number

of objects used is 24. All of the 7 participants were shown this stimuli objects. Table 4.2

lists the target stimuli objects used in this experiment. The stimuli objects were shown to

the participants on a regular interval. In between each stimuli viewing task, there were rest

or base , so that the participants get time to reset their brain and concentrate on the next

stimuli without any impact of the previous stimuli. In the end there was ignore state.
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Table 4.2: The list of stimuli objects

Worktool Land Mammal Object

worktool-paint brush big vanillaLandMammal-hippopotamus margins-banana

worktool-screw driver vanillaLandMammal-camel margins-tiger

worktool-garden trowel vanillaLandMammal-monkey unid2 margins-shell

worktool-axe vanillaLandMammal-squirrel margins-mountain

worktool-pneumatic drill vanillaLandMammal-mouse margins-frisbee

worktool-nail vanillaLandMammal-koala margins-building

worktool-chain saw vanillaLandMammal-mole margins-helicopter

worktool-hammer vanillaLandMammal-chamois margins-boulder

worktool-crow bar vanillaLandMammal-skunk margins-scorpion

worktool-scissors vanillaLandMammal-elephant margins-puppy

worktool-screw vanillaLandMammal-kangaroo margins-mobiletelephone

worktool-spanner vanillaLandMammal-llama margins-skateboard

worktool-plaster trowel vanillaLandMammal-ibex margins-hamster

worktool-paint roller vanillaLandMammal-hare margins-rose

worktool-saw vanillaLandMammal-gorilla margins-cactus

worktool-scraper vanillaLandMammal-beaver margins-computer

worktool-power drill vanillaLandMammal-deer margins-boat

worktool-pen knife vanillaLandMammal-hedgehog margins-robot

worktool-hack saw vanillaLandMammal-badger margins-table

worktool-rubber mallet vanillaLandMammal-zebra margins-tree

worktool-rake vanillaLandMammal-bison margins-pebbles

worktool-plunger vanillaLandMammal-giraffe margins-handbag

worktool-pliers vanillaLandMammal-ant eater margins-hail

worktool-garden fork vanillaLandMammal-fox margins-cloud

worktool-pick axe vanillaLandMammal-panda

worktool-tape measure vanillaLandMammal-armadillo

worktool-craft knife vanillaLandMammal-boar

worktool-allen key vanillaLandMammal-otter

worktool-file vanillaLandMammal-rhinoceros

worktool-sickle vanillaLandMammal-chimpanzee

4.2 Data Pre-processing

When the brain fMRI data specific to the ventral temporal cortex has been masked

out, next step is to pre-process the data to remove noise. In fMRI brain data, noise can

be induced in different ways. For example, when the fMRI scanner gets warmer because
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of operating for a long time, temporal drifts occur. Moreover, eye-blink, head-motion can

also affect the data. These sources induce variance that is unnecessary and misleads the

analysis. There are several ways to remove the noise from the data. Since the data collected

is already motion-corrected, pre-processing like removing temporal trend and normalization

is required to apply. Therefore, the detrending and normalization methods are applied.

• Detrending: The detrending method is used to remove polynomial trends or tem-

poral drift from the data. In this experiment, the linear detrending method is used.

In linear detrending, linear regression is used to fit a straight line to each voxel’s time

series. The residuals obtained this way is considered as new feature values. The linear

detrending method is performed in a chunk-wise manner.

• Normalization: In order to remove inhomogeneous voxel intensities, a chunk-wise

Z-scoring is applied to the data. It scales all the features into approximately the same

range. It also removes the mean.

In this experiment, after applying the detrending and Z-scoring method, the data

is fed into different machine learning algorithm. Figure 4.1 is showing the changes in the

real dataset after applying the detrending and then the Z-scoring method. From the entire

dataset, the time series data of five voxels are plotted.
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(a) Chinese Dataset 1 (b) Chinese Dataset 2

(c) Chinese Dataset 3 (d) Chinese Dataset 4

(e) Italian Dataset 1 (f) Italian Dataset 2

(g) Italian Dataset 3

Figure 4.1: The change in dataset after applying the detrending and Z-scoring method for
all subjects. The time series data of five voxels are presented to show the changes.
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Chapter 5

Preliminary Predictive Analysis

using PyMVPA

The brain fMRI data has been analyzed by two different methods. They are

PyMVPA and Tensor decomposition. In this section, the techniques applied to the data

using PyMVPA will be discussed.

5.1 Multivariate Pattern Analysis using PyMVPA

In PyMVPA, two different Machine Learning analysis has been applied to the data.

They are, Within Subject Classification and Between Subject Classification. For all of the

following analysis, the clean and masked data has been used.
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5.1.1 Within Subject Classification

In the Within Subject classification process, each of the 7 participants is considered

individually and the classification task is to determine whether the participants are looking

at a worktool or land mammals. Since there are 8 chunks with appropriate samples, an eight-

fold cross-validation is used for each individual dataset. For example, the Chinese Subject 1

dataset contains 460 samples in each of the eight-chunks. Therefore, in each of the eight-fold

cross-validation steps, one whole chunk is used for testing and the remaining seven chunks

are used for training. This way, all of the chunks are tested once. Each of the stimulus

objects is shown 12 times across 4 different chunks in each participant’s session.

In order to select the important features for training, the SensitivityBasedFeature-

Selection method of PyMVPA has been used. This method selects the important features

depending on the given parameters. It computes a sensitivity map for the features and only

the important features depending on the map are selected. There are two different methods

that have been used to select the important features. For both of these methods, top 100,

500 and 1000 features are considered for training. For all of these datasets, their own mask

is used.

• ANOVA method: The FeaturewiseMeasure has been computed using the ANOVA

method and generate the sensitivity map. The F-scores are within the range of 0 to

Infinity, where a high value indicates high activation.

• Sum of Squares Method: In this method, at first a row-wise sum of squares has

been computed for each column or voxel. In other words, for one feature/voxel, the

square of all the values of samples are summed up. Then, the features that have high
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value are selected as important features. Since particular voxels get activated and

participate for object recognition, they are supposed to be activated across all stimuli

objects. Therefore, this method will help to identify those voxels.

The classification results are computed as the mean of correct prediction for each

chunk. For example, for Chinese Subject 1, one chunk contains 460 samples and the pre-

dictions are made for each of these samples. Then a mean is computed that represents, on

average how many correct predictions were made i.e. how many semantic categories were

correctly identified. Then for all the 8 chunks, the 8 classification accuracies are considered

and the mean of all the intermediate results are computed for the overall accuracy measure.

Since in fMRI brain data, there are usually a small number of samples and thou-

sands of features, the choice of classification algorithm should take the situation of overfit-

ting into account. Therefore, three classification algorithms are used for classification. They

are Penalized Logistic Regression (PLR), K-Nearest Neighbor (KNN) and Support Vector

Machine (SVM).

1. Penalized Logistic Regression (PLR): In PLR, it performs the classification task

based on a logistic function [113]. The model is trained to predict the category of the

target and returns the prediction as a binary value.

The general logistic regression is regularized by penalizing the likelihood. The per-

formance of prediction is improved by penalizing the classification that resembles

overfitting attributes. Equation 5.1 is showing the penalized log-likelihood equation.

logL(β) = logL(β)− λ

2
J(β) (5.1)

38



In the above equation J(β) is the ridge penalty where, J(β) = ‖β‖2 =
∑n

j=1 β
2
j and

β is the regression co-efficient.

2. K-Nearest Neighbor (KNN): The KNN takes classification decision based on the

distance measure of the one test sample and all the training samples at a time. When

the distance is computed, depending on the K-value, the top K closest samples are

chosen and the test sample is classified as the label of the samples that got the highest

number of votes [72].

In this work, the distance was measured between different samples. The activation

of brain voxels is considered for the computation. The Euclidean distance measure is

used for computing the distance. Equation 5.2 is showing the equation for computing

euclidean distance between two samples x and y where each sample has k number of

voxels.

EuclideanDistance =

√√√√ k∑
i=1

(xi − yi)2 (5.2)

3. Support Vector Machine (SVM): The SVM builds a hyperplane that separates

the data points of two different classes. The best hyperplane is chosen in a way so

that it stays in the farthest position from the closest data-points of each of the classes

[115].

In this work, the C parameter is used in the Linear-CSVM version of the SVM algo-

rithm. With linear kernel, higher C indicates stricter margin in SVM. This parameter

plays an important role between the margin and support vectors.
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The main reason for choosing these three classifiers is, they can appropriately deal

with brain fMRI data where the data can be noisy. Moreover, such dataset also has few

samples and a large number of features. For such dataset, these classifiers can identify the

patterns of activation and then analyze it appropriately.

5.1.2 Between Subject Classification

The Between Subject Classification basically means that the dataset of all 7 users

will be considered at a time i.e. the 7 datasets will be stacked up as a single dataset.

Then the entire dataset for one user will be considered at a time as test dataset and the

remaining dataset will be used for training, since the dataset will be partitioned depending

on the number of users. In this way, the dataset for each subject will be considered once for

testing. The classification task is to again predict the class label of unseen data as Worktool

or Land mammals.

Since, in the Within Subject Classification portion, the Sum of Squares feature

selection method did not work well, the ANOVA based feature selection method has been

applied with the same classification algorithms. Moreover, for this experiment also top 100,

500 and 1000 voxels are selected for training. In this part of the project, a common mask

has been used which is a logical OR of all seven masks.
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Chapter 6

Tensor Decomposition for Brain

data Analysis

In this section, the tensor decomposition methods used to analyze the data will

be discussed in detail. Three different analysis has been performed. Figure 6.1 is showing

the graphical view of the approaches followed in this work.

6.1 Language specific and Merged tensor analysis

In this step, the simple PARAFAC decomposition is applied on the single tensors

and merged tensor. There are two single tensors, one consists of all the dataset of the

Chinese subjects (Chinese Tensor) and the other consists of all the dataset of the Italian

subjects (Italian Tensor). Then both of these tensors are merged in the third mode to form

a single tensor with all dataset (Merged Tensor). The dimension of Chinese Tensor is 60
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Figure 6.1: The graphical model representing the three different analysis performed on the
dataset.

X 379360 X 4, Italian Tensor is 60 X 379360 X 3 and Merged Tensor is 60 X 379360 X

7. Then all of these three tensors are decomposed using PARAFAC decomposition. Figure

6.2 is showing the decomposition method applied to the data.

Figure 6.2: The graphical model representing the tensor analysis using PARAFAC decom-
position.
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In this figure, A ∈ R60XR is the factor matrix in Stimuli Object Mode, B ∈

R379360XR is the factor matrix in Brain Voxel Mode, C ∈ R4XR is the factor matrix in

Subject Mode for Chinese Tensor. These factor matrices are used for further analysis.

6.2 Joint analysis of language specific tensor

In this step, the Chinese tensor and the Italian tensors are coupled on the Stimuli

object mode and decomposed using the CMTF decomposition. Figure 6.3 is showing the

graphical representation of the decomposition. In this figure, A ∈ R60XR is the factor

matrix in Stimuli Object Mode, B ∈ R379360XR is the factor matrix in Chinese Brain Voxel

Mode, C ∈ R4XR is the factor matrix in Chinese Subject Mode, D ∈ R379360XR is the factor

matrix in Italian Brain Voxel Mode and E ∈ R3XR is the factor matrix in Italian Subject

Mode. Here, R is the rank of the decomposition.

Figure 6.3: The graphical model representing the tensor analysis in the joint analysis step.
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6.3 ACMTF for Joint analysis of tensor and semantic feature

In case of tensor analysis, it has always been proved to be useful when additional

information is added for the decomposition. In this step, the Merged Tensor is coupled

with semantic features in the Stimuli Object mode to see whether brain data and semantic

features can be correlated together or not. Figure 6.4 is showing the graphical representation

of the decomposition. In this figure, A ∈ R58XR is the factor matrix in Stimuli Object Mode,

B ∈ R379360XR is the factor matrix in Brain Voxel Mode, C ∈ R7XR is the factor matrix in

Subject Mode, D ∈ R218XR is the factor matrix for Semantic Features. Here, R is the rank

of the decomposition.

Figure 6.4: The graphical model representing the tensor analysis in the joint analysis step
using ACMTF.

This analysis gave good results and shows promise that if data from different

language speaking subject is analyzed with semantic features, it can give a better response.
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In this experiment, a prediction task has been performed where, given the semantic

features, the brain voxels are predicted. In the cross-validation, the leave-two-out concept

is used to evaluate the model. Two records of stimuli objects are removed from the tensor

and the rest of the 58 stimuli are used for training. Then the two words are used for testing

where the activation of the brain voxels are measured and then compared with the actual

value. In order to compute the activation of brain voxels, the B and D factor matrices will

be used. Let, there are i stimuli objects where i = 1, 2, . . . , 60. Qi be the question vector

for object i. Vi is the brain activity associated with the object i. Equation 6.1 is showing

the formula used to compute the brain activation.

Ṽ i = BDTQi (6.1)

The question vector is first projected to the latent space by the left multiplication

between DT and Qi. Then it is projected on the brain voxel space by the second left

multiplication between the B factor matrix and previous result. The brain activation is

predicted for both the remaining objects and the classification is done according to the rule

in equation 6.2. In the rule, Ṽ 1 and Ṽ 2 are the predicted brain activation for stimuli object

1 and 2. The accuracy results show promising performance with such approach.

‖V1 − Ṽ 1‖2 + ‖V2 − Ṽ 2‖2 < ‖V1 − Ṽ 2‖2 + ‖V2 − Ṽ 1‖2 (6.2)
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Chapter 7

Experimental Results

The results obtained in two major sections of the study shows promising results.

The results are presented and discussed in this chapter.

7.1 Results from PyMVPA analysis

As discussed before, two different analysis has been performed in this section. The

results for Within Subject Classification and Between Subject Classification are presented

below.

7.1.1 Within Subject Classification

The classification task is to distinguish the brain fMRI samples as viewing land

mammals or worktools. Each of the participants’ session is considered individually with their

own mask. For classification, the SVM, PLR, and KNN (for K = 3, 5 and 7) algorithms

are used.
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One Way ANOVA Method

The One Way Anova method is used to select the highly active top 100, 500 and

1000 features. The classification accuracies obtained for the seven dataset with 100, 500

and 1000 feature are listed in Table 7.1, Table 7.2 and Table 7.3 respectively.

Table 7.1: Classification accuracy for Within Subject Classification and One Way ANOVA
method with 100 features

Dataset Linear C-SVM
(%)

PLR (%) KNN with
K = 7 (%)

KNN with
K = 5 (%)

KNN with
K = 3 (%)

Chinese Subject 1 90.82 95.49 95.03 95.02 94.98

Chinese Subject 2 90.53 95.82 92.51 92.04 92.04

Chinese Subject 3 95.51 95.04 93.71 93.05 93.28

Chinese Subject 4 86.65 86.78 87.61 88.85 85.45

Italian Subject 1 87.10 88.35 88.26 88.32 85.82

Italian Subject 2 87.83 91.58 93.13 93.52 93.90

Italian Subject 3 91.38 93.85 92.99 92.58 91.73

Table 7.2: Classification accuracy for Within Subject Classification and One Way ANOVA
method with 500 features

Dataset Linear C-SVM
(%)

PLR (%) KNN with
K = 7 (%)

KNN with
K = 5 (%)

KNN with
K = 3 (%)

Chinese Subject 1 90.45 95.43 95.89 94.61 96.26

Chinese Subject 2 90.50 93.90 89.14 89.17 89.57

Chinese Subject 3 96.27 95.84 92.68 92.35 92.32

Chinese Subject 4 79.91 88.01 85.25 85.19 86.51

Italian Subject 1 85.93 91.56 88.50 88.56 88.22

Italian Subject 2 93.98 94.11 94.04 93.96 93.57

Italian Subject 3 91.35 95.07 95.45 95.48 95.48

The one-way anova method selects the top voxels according to F-scores. Figure

7.1 is showing the highly active voxels that are selected by the one-way anova method for

each individual subject.
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Table 7.3: Classification accuracy for Within Subject Classification and One Way ANOVA
method with 1000 features

Dataset Linear C-SVM
(%)

PLR (%) KNN with
K = 7 (%)

KNN with
K = 5 (%)

KNN with
K = 3 (%)

Chinese Subject 1 94.15 93.79 91.20 92.87 94.21

Chinese Subject 2 94.40 94.85 88.68 88.28 87.27

Chinese Subject 3 97.34 95.78 91.87 91.89 91.97

Chinese Subject 4 85.61 89.51 86.50 83.95 85.22

Italian Subject 1 86.97 89.17 83.79 83.80 84.68

Italian Subject 2 94.68 94.50 93.92 94.00 94.37

Italian Subject 3 92.98 97.13 95.44 95.84 95.84

Sum of Squares Method

The results obtained for the Sum of Squares method is discussed here. The sum

of squares for each column is calculated and features that show high activity are selected.

The highly active top 100, 500 and 1000 features selected this way is used for training. The

classification accuracies obtained for the seven dataset with 100, 500 and 1000 feature are

listed in Table 7.4, Table 7.5 and Table 7.6 respectively.

Table 7.4: Classification accuracy for Within Subject Classification and Sum of Squares
method with 100 features

Dataset Linear C-SVM
(%)

PLR (%) KNN with
K = 7 (%)

KNN with
K = 5 (%)

KNN with
K = 3 (%)

Chinese Subject 1 58.69 52.57 57.53 57.25 55.12

Chinese Subject 2 62.51 50.79 50.07 54.63 53.59

Chinese Subject 3 51.81 44.57 45.98 48.09 46.08

Chinese Subject 4 51.78 50.04 50.23 49.54 48.17

Italian Subject 1 49.78 49.52 47.72 51.58 49.32

Italian Subject 2 49.89 42.27 48.16 50.62 49.09

Italian Subject 3 49.58 44.53 47.57 47.01 47.92
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Figure 7.1: The highly active voxels selected by the One Way Anova method.

In this Sum of Squares method, the voxels are selected that have the highest sum.

When the top voxels are plotted on the brain image, it gives a completely distorted image

which indicates that this approach can not determine the highly active voxels.
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Table 7.5: Classification accuracy for Within Subject Classification and Sum of Squares
with 500 features

Dataset Linear C-SVM
(%)

PLR (%) KNN with
K = 7 (%)

KNN with
K = 5 (%)

KNN with
K = 3 (%)

Chinese Subject 1 53.27 54.31 52.94 50.38 57.06

Chinese Subject 2 58.79 48.19 51.85 52.86 47.97

Chinese Subject 3 57.08 44.53 58.55 59.18 57.09

Chinese Subject 4 51.77 50.88 48.08 49.17 53.27

Italian Subject 1 49.59 49.92 51.64 53.69 49.10

Italian Subject 2 46.58 41.77 45.30 44.73 45.92

Italian Subject 3 47.93 46.81 50.77 53.24 50.36

Table 7.6: Classification accuracy for Within Subject Classification and Sum of Squares
with 1000 features

Dataset Linear C-SVM
(%)

PLR (%) KNN with
K = 7 (%)

KNN with
K = 5 (%)

KNN with
K = 3 (%)

Chinese Subject 1 48.37 54.24 50.21 51.58 51.24

Chinese Subject 2 60.28 55.26 53.29 56.15 58.53

Chinese Subject 3 56.78 59.75 54.39 52.57 53.22

Chinese Subject 4 49.71 50.94 45.75 45.92 49.85

Italian Subject 1 51.51 48.26 50.30 49.67 48.22

Italian Subject 2 55.43 42.11 48.30 53.43 49.69

Italian Subject 3 48.39 45.49 46.66 45.53 46.43

A clear view of the classification performance can be obtained when the results are

plotted. Figure 7.2 and 7.3 are showing the classification performance for both One Way

ANOVA and Sum of Square feature selection method.

From the figure, it is evident that the One Way ANOVA method works really

well since the accuracy is always above 80%. Moreover, the Linear C-SVM classifier works

well when the features are selected using One Way ANOVA method. Whereas, the Sum of

Squares method doesn’t perform well, the reason behind this is over-fitting. Moreover, in

this approach, the brain signal values are squared and summed together. Therefore, if there

is a negative value indicating the signal strength of a voxel, due to the squaring process, it
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Figure 7.2: Classification performance using One Way Anova Feature Selection method.
The top 100, 500 and 1000 voxels are selected for the analysis.
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Figure 7.3: Classification performance using Sum of Squares Feature Selection method. The
top 100, 500 and 1000 voxels are selected for the analysis.
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will become positive and rather than reducing the overall strength of that particular voxel,

it will increase it. Therefore, it turns out that voxels that might have less strength appear

to be active in this feature selection process which misleads the analysis. The classification

accuracy with this approach is around 45%. Moreover, the Penalized Logistic Regression

(PLR) method performed better than the other methods.

7.1.2 Between Subject Classification

In case of Between Subject Classification, the dataset of 7 subjects are considered

as a whole. The classification task is identical to Within Subject Classification i.e. to

distinguish the brain fMRI samples as viewing land mammals or worktools. However, in

cross-validation step the dataset is partitioned according to the number of subjects. In

each step of cross-validation, the dataset of one subject is totally removed, trained with the

rest of the dataset and then tested with the previously removed dataset. Since for Within

Subject Classification step, the anova feature selection method performed well, in this step

this particular feature selection method is used. In this method, again the top 100, 500

and 1000 features are considered for training. The classification accuracies obtained for the

whole dataset are listed in Table 7.7. From the table, it is evident that the accuracies are

really low and Linear C-SVM shows better performance than the other classifiers. Figure

7.4 shows the highly active voxels selected by the anova method, plotted on the brain.
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Table 7.7: Classification accuracy for Between Subject Classification task

Number of Features Linear C-
SVM (%)

KNN with
K = 7 (%)

KNN with
K = 5 (%)

KNN with
K = 3 (%)

100 0.55 0.50 0.46 0.39

500 0.55 0.49 0.46 0.41

1000 0.55 0.48 0.46 0.41

Figure 7.4: The highly active voxels selected by the One Way ANOVA method for the
Between Subject Classification task.

7.2 Results from Tensor analysis

In this section, the results obtained from the tensor analysis will be discussed. The

tensor analysis is performed with different ranks. All of the analysis used rank 2, 3, 4, 5, 7

and 10. However, the analysis of all these decompositions shows that, rank 2 gives a better

approximation of the correlation.
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7.2.1 Language specific and Merged tensor analysis

As discussed previously, there are three different tensors that contain the brain

fMRI data. Chinese Tensor, Italian Tensor and Merged Tensor are analyzed using

PARAFAC decomposition.

• Chinese Tensor : This tensor consists of data that are collected from the Chinese

subjects. The PARAFAC decomposition for rank 2 gives 2 components. The top 5

stimuli objects for both of these components are listed in Table 7.8. Moreover, the

highly active voxels are plotted on the brain for both of these components in Figure

7.5. The decomposition could not find an appropriate cluster from the data.

Table 7.8: The top 5 stimuli objects for Chinese Tensor decomposition

Top 5 Stimuli for component 1 Top 5 Stimuli for component 2

worktool-plaster trowel vanillaLandMammal-panda
vanillaLandMammal-fox worktool-saw
vanillaLandMammal-ibex worktool-nail
worktool-paint roller worktool-scissors
worktool-garden trowel vanillaLandMammal-mole

(a) Component 1 (b) Component 2

Figure 7.5: The two components of Brain Voxel factor matrix obtained from the Chi-
nese Tensor decomposition.
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• Italian Tensor : This tensor consists of data that are collected from the Italian sub-

jects. The top 5 stimuli obtained in this case are listed in Table 7.9. Moreover, the

highly active voxels are plotted on the brain for both of these components in Figure

7.6. The decomposition could not find an appropriate cluster from the data.

Table 7.9: The top 5 stimuli objects for Italian Tensor decomposition

Top 5 Stimuli for component 1 Top 5 Stimuli for component 2

vanillaLandMammal-panda vanillaLandMammal-chamois
worktool-rake vanillaLandMammal-boar
vanillaLandMammal-rhinoceros vanillaLandMammal-kangaroo
worktool-garden trowel worktool-pneumatic drill
worktool-plaster trowel worktool-plaster trowel

(a) Component 1 (b) Component 2

Figure 7.6: The two components of Brain Voxel factor matrix obtained from the Ital-
ian Tensor decomposition.

• Merged Tensor : This tensor consists of data that are collected from both the Chinese

and Italian subjects. The top 5 stimuli obtained in this case are listed in Table

7.10. Moreover, the highly active voxels are plotted on the brain for both of these

components in Figure 7.7. The decomposition could not find appropriate cluster.
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Table 7.10: The top 5 stimuli objects for Merged Tensor decomposition

Top 5 Stimuli for component 1 Top 5 Stimuli for component 2

worktool-plaster trowel vanillaLandMammal-panda
vanillaLandMammal-fox worktool-nail
vanillaLandMammal-ibex worktool-saw
vanillaLandMammal-chamois worktool-scissors
worktool-garden trowel worktool-hack saw

(a) Component 1 (b) Component 2

Figure 7.7: The two components of Brain Voxel factor matrix obtained from the
Merged Tensor decomposition.

Since none of the above three approaches could find a cluster from the decomposi-

tion, it can be said that neither Chinese nor Italian subjects show specific brain activation

through which they can be distinguished.

7.2.2 Joint analysis of language specific tensor

The Chinese Tensor is jointly analyzed with the Italian Tensor by coupling

them in the Stimuli Object mode. The top 5 stimuli objects obtained in this case are listed

in Table 7.11. Moreover, the highly active voxels are plotted on the brain for both of these

components and, for both chinese and italian subjects in Figure 7.8. The decomposition

could not find an appropriate cluster from the data.

57



Table 7.11: The top 5 stimuli objects for joint tensor analysis

Top 5 Stimuli for component 1 Top 5 Stimuli for component 2

vanillaLandMammal-badger worktool-plaster trowel
vanillaLandMammal-chamois worktool-file
vanillaLandMammal-kangaroo vanillaLandMammal-chamois
worktool-plunger vanillaLandMammal-deer
vanillaLandMammal-llama worktool-garden trowel

Since, in this approach, the decomposition could not find a cluster, it can be said

that cultural difference does not have an impact on how people think. However, this is a

broad problem and more data is needed to prove this claim.

7.2.3 ACMTF for Joint analysis of tensor and semantic feature

The Margerd Tensor is jointly analyzed with the Semantic Features matrix by

coupling them along the Stimuli Object mode and it shows promising results. It is possible

to find clusters in the data and the expected brain voxels are active.

The top 5 stimuli obtained in this case are listed in Table 7.12. Moreover, the

highly active voxels are plotted on the brain for both of these components in Figure 7.9.

Table 7.12: The top 5 stimuli objects for ACMTF analysis

Top 5 Stimuli for component 1 Top 5 Stimuli for component 2

worktool-pick axe vanillaLandMammal-chimpanzee
worktool-garden trowel vanillaLandMammal-llama
worktool-axe vanillaLandMammal-squirrel
worktool-plaster trowel vanillaLandMammal-camel
worktool-rake vanillaLandMammal-chamois

Moreover, after the decomposition, the predictive analysis shows that, it is suc-

cessful in identifying the important brain voxels depending on semantic stimuli as well. In
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(a) Component 1 of Chinese Factor Matrix (b) Component 2 of Chinese Factor Matrix

(c) Component 1 of Italian Factor Matrix (d) Component 2 of Italian Factor Matrix

Figure 7.8: The highly active voxels for each component of the joint tensor analysis.

this case, two different noun pairs are removed from the dataset and then trained the model.

Then the brain voxels for the removed noun pairs are predicted. Table 7.13 is showing the

accuracy obtained for two different noun pairs.

Table 7.13: Accuracy for brain voxel prediction

Rank zebra/tape measure squirrel/spanner

R=2 71.43% 71.43%

R=3 57.14% 57.14%

R=4 85.714% 71.43%

R=5 71.43% 71.43%
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(a) Component 1 (b) Component 2

Figure 7.9: The highly active voxels for each component of the ACMTF analysis.

The two different noun pairs that are used for this experiments are, {vanillaLandMammal-

zebra, worktool-tape measure} and {vanillaLandMammal-squirrel, worktool-spanner}. The

results show that, for different ranks the accuracy is similar for both of the noun pairs.

Since, there are two classes of Stimuli Objects in the dataset, the results for rank 2 should

be considered as correct, and thus the accuracy of the brain voxel prediction task is 71.43%.

Since this approach is showing promising results, it is evident that, if additional information

is jointly analyzed with brain fMRI tensor, hidden structures can be found out.
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Chapter 8

Conclusion

The current approaches have already shown promising results. However, there is

a number of scopes to improve.

• In the joint analysis approach, more data sequence can be considered to see whether

tensor decomposition methods can identify the latent structure that can differentiate

subjects according to different languages. In other words, by adding more dataset for

different language speaking subjects, it can be claimed whether it is possible to find

out cultural effect or not.

• In Advanced CMTF analysis, if more than two types of stimuli objects are consid-

ered then more data sequence should be added. In that case, it will be possible to

generalize the method for clustering brain voxels for different categories of the stimuli

object. Though the current approach for voxel activation computation and classifica-

tion approach works well, a concrete classification approach should be considered for

this task.
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The conceptual knowledge processing mechanism of the brain can answer impor-

tant research questions that are required to understand the human brain. There are a

number of reasons for which it is challenging to solve this problem completely. In this

thesis, this problem is addressed on a new dimension. The two different problems are an-

alyzed using PyMVPA and tensor decomposition methods. Though the joint analysis of

Chinese Tensor and Italian Tensor cannot identify cultural difference, the joint analysis of

Merged Tensor and Semantic Feature matrix shows promising result.

The dataset for the Chinese and Italian subject is studied with different types of

tensor analysis. The reason behind this is to find out which method captures the correlation

properly. Among all of the applied method, the joint analysis using ACMTF gives a good

prediction of brain voxels. If questions related to the existence of cultural differences are

answered properly, then many important problems in this domain will be resolved. More-

over, if this problem is again addressed with the proposed future extension, it can definitely

create ways to understand the brains clearly. It is expected that, in order to solve different

neuro-semantic problems, the proposed methods will work as an ideal model and contribute

effectively to future research in this domain.
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[32] Lieven De Lathauwer and Joséphine Castaing. Tensor-based techniques for the blind
separation of ds–cdma signals. Signal Processing, 87(2):322–336, 2007.

[33] Lieven De Lathauwer and Bart De Moor. From matrix to tensor: Multilinear algebra
and signal processing. In Institute of Mathematics and Its Applications Conference
Series, volume 67, pages 1–16. Citeseer, 1998.

[34] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular
value decomposition. SIAM journal on Matrix Analysis and Applications, 21(4):1253–
1278, 2000.

[35] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1 and
rank-(r 1, r 2,..., rn) approximation of higher-order tensors. SIAM journal on Matrix
Analysis and Applications, 21(4):1324–1342, 2000.

65



[36] Lieven De Lathauwer and Eleftherios Kofidis. Coupled matrix-tensor factorizationsthe
case of partially shared factors. In Proc. of the Asilomar Conference on Signals,
Systems and Computers, number accepted, 2018.

[37] Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar. Temporal link prediction using
matrix and tensor factorizations. ACM Transactions on Knowledge Discovery from
Data (TKDD), 5(2):10, 2011.

[38] Ruth C Fong, Walter J Scheirer, and David D Cox. Using human brain activity to
guide machine learning. Scientific reports, 8(1):5397, 2018.

[39] Elia Formisano, Federico De Martino, and Giancarlo Valente. Multivariate analysis
of fmri time series: classification and regression of brain responses using machine
learning. Magnetic resonance imaging, 26(7):921–934, 2008.

[40] Matthieu Genicot, P-A Absil, Renaud Lambiotte, and Saber Sami. Coupled tensor
decomposition: a step towards robust components. In Signal Processing Conference
(EUSIPCO), 2016 24th European, pages 1308–1312. IEEE, 2016.

[41] Giacomo Handjaras, Emiliano Ricciardi, Andrea Leo, Alessandro Lenci, Luca Cec-
chetti, Mirco Cosottini, Giovanna Marotta, and Pietro Pietrini. How concepts are
encoded in the human brain: a modality independent, category-based cortical orga-
nization of semantic knowledge. Neuroimage, 135:232–242, 2016.

[42] Michael Hanke, Yaroslav O Halchenko, James V Haxby, and Stefan Pollmann. Sta-
tistical learning analysis in neuroscience: aiming for transparency. Frontiers in neu-
roscience, 3:7, 2010.

[43] Michael Hanke, Yaroslav O Halchenko, Per B Sederberg, Stephen José Hanson,
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[103] Simon Van Eyndhoven, Borbála Hunyadi, Lieven De Lathauwer, and Sabine Van Huf-
fel. Flexible fusion of electroencephalography and functional magnetic resonance imag-
ing: Revealing neural-hemodynamic coupling through structured matrix-tensor fac-
torization. In Signal Processing Conference (EUSIPCO), 2017 25th European, pages
26–30. IEEE, 2017.

[104] M Alex O Vasilescu. Human motion signatures: Analysis, synthesis, recognition. In
Pattern Recognition, 2002. Proceedings. 16th International Conference on, volume 3,
pages 456–460. IEEE, 2002.

[105] M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis of image en-
sembles: Tensorfaces. In European Conference on Computer Vision, pages 447–460.
Springer, 2002.

[106] M Alex O Vasilescu and Demetri Terzopoulos. Multilinear independent components
analysis. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages 547–553. IEEE, 2005.

[107] Nico Vervliet, Otto Debals, Laurent Sorber, and Lieven De Lathauwer. Breaking
the curse of dimensionality using decompositions of incomplete tensors: Tensor-based
scientific computing in big data analysis. IEEE Signal Processing Magazine, 31(5):71–
79, 2014.

[108] Wikipedia. Blood-oxygen-level dependent imaging. Last accessed: January 3, 2018.

[109] Wikipedia. Chi-squared test. Last accessed: January 3, 2018.

[110] Wikipedia. Feature selection. Last accessed: January 3, 2018.

[111] Wikipedia. Human brain. Last accessed: January 3, 2018.

[112] Wikipedia. Linear discriminant analysis. Last accessed: January 3, 2018.

[113] Wikipedia. Logistic Regression. Last accessed: January 3, 2018.

[114] Wikipedia. Pearson correlation coefficient. Last accessed: January 3, 2018.

[115] Wikipedia. Support Vector Machine. Last accessed: January 3, 2018.

71



[116] Wikipedia. Tensor. Last accessed: January 3, 2018.

[117] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G Carbonell.
Temporal collaborative filtering with bayesian probabilistic tensor factorization. In
Proceedings of the 2010 SIAM International Conference on Data Mining, pages 211–
222. SIAM, 2010.

[118] Haoyan Xu, Brian Murphy, and Alona Fyshe. Brainbench: A brain-image test suite for
distributional semantic models. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2017–2021, 2016.

[119] Tong Zhang and Gene H Golub. Rank-one approximation to high order tensors. SIAM
Journal on Matrix Analysis and Applications, 23(2):534–550, 2001.

[120] G. Zhou, A. Cichocki, Q. Zhao, and S. Xie. Nonnegative matrix and tensor factoriza-
tions : An algorithmic perspective. IEEE Signal Processing Magazine, 31(3):54–65,
May 2014.

72




