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The human brain is a neural network capable of logically processing massively parallel 

information while simultaneously improving its performance via learning in dynamic 

environments. The parallel processing and learning functions are integrated in each synapse, the 

junction between neurons, but missed by electronic devices. Synaptic resistors, having parallel 

processing and learning functions, are arranged into a synaptic resistor network to improve an 

autonomous dynamical system’s performance without any a priori knowledge, and unassisted by 

additional computing and memory circuits. In this way, the system can exhibit intelligent 

behavior in a similar way to humans. In comparison with humans learning the same task, the 

artificially intelligent network exhibited a similar, but slightly superior, strategy, speed, and 
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accuracy, in the simplified, but unknown environment. Synaptic resistor circuits could be scaled 

up to efficiently process and learn from massively parallel information in dynamic and unknown 

environments with intelligence comparable to human brains. 
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1.0 Introduction 

1.1 Characteristic Features and Structures of the Brain 

Biological neural networks are superior to conventional computing techniques due to the 

biological computers parallel signal processing, learning ability, and memory storage styles. 

Learning for intelligent systems are programmed by humans [1] [2], whereas the biological 

learning is based on a synaptic learning rule [3]. The human brain can intelligently process and 

learn from signals in dynamic, and unknown environments, in real-time, and without external 

programming, via a Hebbian learning [4]. In contrast, conventional transistor computers have 

signal processing, learning, and memory operating in a serial mode and occurring in different 

physical locations while having a fixed program strategy.  

Learning functions can help autonomous systems adapt and give them the necessary 

intelligence to improve their performance in dynamic environments with large uncertainty given 

their limited energy resources [5] [6] [7]. The time and energy required for serial computation 

and the signal transmission between the different transistors may increase exponentially with 

signal dimensions [8] [9], which are referred to as the “curse of dimensionality [10]” and “von 

Neumann bottleneck [11]”, respectively. 

Biological neural networks, for example the human brain, excel in both speed and power 

consumption when solving problems where a high dimensional signal must be processed quickly 

[12]. Pattern recognition, speech processing, artificial intelligence, and creativity are all tasks 

well suited for biological neural networks [13] [14] [15]. Creativity allows for biological 

networks to change their processing strategy, rather than being programmed by a human. Fixed 
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programming logic is a heavy constraint on current artificially intelligent systems, whereas 

biological neural computers routinely change, adapt, and learn new processing strategies.   

The basic element of the brain is the synapse, the junction between two neurons. The 

synapse contains pulse signal processing, memory, and learning in the same physical location 

[16]. In this style, the biological network does not need to bus information between separate 

memory and logic circuits. This advantage is particularly obvious when logically processing 

high-dimensional sensor data. The neuron collects current from many synapses and non-linearly 

produces output pulsing in the soma [17]. Output pulsing may interact with other synapses in a 

multi-layered network. 

 
Figure 1: Structure and input/output relationship of a biological neuron. In humans there is a 

103-input dimension per neuron. 

In a quantifiable comparison to conventional computing, the brain consumes much less 

power (~ 10 W) than the fastest supercomputer, as of June 2016, (~ 107 W) [12]. Sunway 

TaihuLight supercomputer’s power consumption is equivalent to supply electricity for 104 

homes. 
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Human Brain 

  

Supercomputer 

 

101 (W) Power Consumption 107 (W) [12] 

1015 (Synapse Number) [18] Number of Devices 1014 (Transistor Number) [19] 

100 (kg) Weight 105 (kg) 

10-3 (m^3) Size 103 (m^3) 

101 (Hz) [20] Operating Frequency 109 (Hz) 

Parallel, Adaptive, Self-

Programmed, Analog 

Logic Human Programmed, Serial 

Processing, Binary 

Table 1: Comparison of physical quantities and computing methodologies between the brain and 

a supercomputer. 

Supercomputers have been used to perform simulations of the neural network, but were 

not able to match the signal processing speed or the low power consumption of the biological 

equivalent [21] [22] [23]. Similarly, Silicon (Si)-based circuits have been used to emulate the 

neural network, but consumed considerably more energy and were unable to be scaled up to a 

size comparable with the biological model [24] [25]. 

1.2 Biological Synaptic Operations 

Although the number of synapses effect the brains ability to logically process and learn 

new strategies, the fundamental structures, both individual synapses and neurons have properties 

allow for the larger networks superior intelligence abilities. Therefore, it is essential to 

understand the fundamental operating mechanisms. 

Operating in pulsing mode, pre-synaptic, or input, spikes generate a dynamic temporal 

response along the neuron. The neuron can, simultaneously, collect currents from other synapses 

spatiotemporally to generate post-synaptic, or output, current [26]. The current is triggered on the 

order of several milliseconds to several minutes, depending on the time scale of the temporal 
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correlation. Finally, the output current is collected in the soma to produce, post-synaptic, or 

output pulsing.  The strength of the correlation between the input spike and post-synaptic current 

is referred to as the synaptic weight. There are two kinds of synaptic weights, inhibitory and 

excitatory. Inhibitory synapses will produce negative output pulsing, while excitatory synapses 

will produce positive output pulsing.  

The modification of the synapse is referred to as synaptic plasticity. Plasticity allows the 

synaptic weight to be adjusted in a non-volatile style. Without plasticity the synapse will ‘forget’ 

its setting quickly, making it impossible to implement learning, memory, or similar high-order 

functionality. 

The synaptic weight can be adjusted based on the correlation between pre- and post-

synaptic pulsing [27]. The modification is performed locally, without external calculation. 

Hebbian Learning, originally proposed by Donald Hebb in 1949, proposes an explanation for the 

adaptation of neurons in the brain during the learning process, including a basic mechanism 

for synaptic plasticity. Later, Synaptic Time Dependent Plasticity (STDP) was introduced to 

account for mismatch in input and output spike timing [28]. In that case, the time difference 

between the input and output pulsing determines the amplitude and polarity of the synaptic 

modification. 

  

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Synaptic_plasticity
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Figure 2: Synaptic modification due to STDP. The top pulses represent the time difference 

between pre-synaptic pulse at t=0, and post-synaptic pulses at t=Δt [27]. 

1.3 Biological Style Computation in Conventional Computers 

Biological neural networks have several distinct advantages over typical computing 

styles. To capture some of these advantages, artificial neural networks (ANN) can be 

implemented in transistor based computers to have learning progressively improve the 

performance of a task. ANNs have had widespread use in image recognition, speech processing, 

autonomous control, and others [29].   
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Artificially intelligent ANNs require considerable computing resources. While the 

biological system have hardware specialized for these complex, high-dimensional and parallel 

tasks, simulating even simplified and low-dimensional tasks on serial style architectures may 

consume vast amounts of memory, time, and power. To specify the synaptic connections will 

require vast amount of memory. Furthermore, the transmission of signals though the network, as 

well as calculation of the synaptic modification, will require enormous CPU processing power 

and time [29]. 

Biological style emulation using a CMOS style circuit directly is also inefficient when 

applied to artificially intelligent systems. In transistor based computers and neuromorphic 

circuits signals are processed by logic transistors and must communicate with other memory 

transistors. Learning in this style of computing is also a serial process. Although the functions of 

the synapse and neuron can be emulated in this way [30] [31] [32], the additional requirements 

of the CMOS style circuits make them ineffective for real-word problems. The power 

consumption, size, computing styles are closer to that of a supercomputer rather than a biological 

brain. 

1.4 Turing Machine, Curse of Dimensionality, von Neumann Bottleneck 

Modern day conventional computers are approximations of the theoretical Turing 

Machine, proposed by Alan Turing in 1936, describes an abstract machine which can read and 

write to cells on an infinite strip of tape according to a logical process. The machine head can 

read cells, one at a time, then perform some user-specified logic such as writing, erasing, or null 

to the tape. Finally, the tape is moved, and the process is repeated. Alan Turing went on to 

https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Central_processing_unit
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provide a mathematical description of the process and show that the simple device is capable of 

arbitrary computations [1]. 

 
Figure 3: Turing machine schematic. Logic and memory communicate sequentially on an 

infinite memory tape.  

The Turing machine however is impossible to implement exactly in hardware. 

Approximations of a Turing machine has been implemented in hardware using transistor 

technology. Finite memory, bussing speeds, and computation frequency are real-world 

limitations of Turing computer implementations. 

The Von Neumann architecture [33], described in 1945 by John von Neumann, is a 

design architecture for a digital computer. The memory unit, containing any stored program, is 

interfaced to the central processing unit via a bus. The critical disadvantage of this architecture is 

referred to as the ‘von Neumann bottleneck’. The bus that fetches instructions from memory 

cannot simultaneously write to memory. In other words, writing and reading from memory are 

serial processes. Each time, the information must travel to or from the central processing unit in a 

different physical location. 

 

https://en.wikipedia.org/wiki/John_von_Neumann
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Figure 4: von Neumann architecture schematic. The von Neumann bottleneck is the transfer of 

information between the memory unit and the central processing unit.  

Shortcomings in the von Neumann architecture are compounded when applying the style 

of digital computing to a large dimension. The number of unique elements in a combinatorics 

type problem increases exponentially with the dimension number. The amount of data need to 

perform learning on such a large dimensional network becomes enormous [34]. The serial central 

processing unit can only perform computations at a fixed rate. As a result, the time and energy 

required to perform a given computation greatly increases with signal dimension. 

In a conventional transistor computer, signal processing, learning, and memory operate in 

a serial mode and occur in different physical locations. The time and energy required for serial 

computation and the signal transmission between the different transistors may increase 

exponentially with signal dimensions, which are referred to as the “curse of dimensionality” and 

“von Neumann bottleneck”, respectively.  
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1.5 Research Goals 

Typical implementations of artificial intelligence are greatly limited by the usual 

computer and processing architecture. The goal of this research is to develop a synaptic resistor 

device and accompanying neuromorphic system that exhibits self-programming, artificially 

intelligent functions, causing improvement in unknown systems, while circumventing the ‘curse 

of dimensionality’ and ‘von Neumann bottleneck’.  

The human brain, inspiration for the neuromorphic computing strategy, shares many of 

the same advantages of the synthetic neural circuits in comparison conventional computing 

techniques. The new style of processing and learning is heavily inspired by the biological 

equivalent [35] [36] [37]. The natural comparison to the neural circuits is a human performing 

the same task, given the same information. Both intelligent systems share a similar computing 

strategy they can be analyzed in the same style and compared to each other. 

Specifically, the neural circuits will interact with an unknown system in a changing 

environment and, simultaneously, learn how to logically process the systems sensing 

information. It is critical that the system logically process the sensing information and 

intelligently modify its processing strategy in real-time, without external computing circuits or 

memory, and perform learning operations in parallel. Removing external computing circuits 

avoids the ‘von Neumann bottleneck’ while enforcing parallel learning operations eliminates the 

‘cure of dimensionality’.  

For the comparison, several metrics associated with the learning process can be 

statistically compared over several experiments. Explicitly: amplitude, accuracy, speed, 

oscillation of the learning modification. 
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2.0 The Synstor, A Synaptic Transistor 

2.1 Synstor Structure Summary 

The synstor device is a two-terminal memory element, capable of analog learning and 

processing functionality. Voltage signals, 𝑥𝑖 and 𝑧𝑗 are applied of the input and output thermals 

respectively to produce output current signal 𝐼𝑗. Under the device a reference electrode that is 

always grounded.  

 

 

Figure 5: Synstor device structure and two-terminal operation schematic. 

The device structure is essential to the operation modes advantages. Aluminum (Al) is 

used as the contact metal to the 99.9% semiconducting single walled carbon nanotube (CNT) 

layer. The random network of p-type CNTs in the channel form a percolating path between the 

two metal electrodes. The high percentage of semiconducting CNTs, while being sparsely 

distributed, is essential to form non-conducting percolating paths in the channel. The randomness 

of the CNT density and variation in the Al/CNT contact is reduced by making the channel area 

large. The channel width is 20 (um), and the channel length is 0.4 (mm). 
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Figure 6: Atomic force microscopy image of a random, sparse, and 99.9% semiconducting CNT 

network in the synstor channel area. 

Below the channel a HfO2/TiO2/HfO2 structure can allow for the non-volatile storage of 

electrons. The HfO2 charge injection barrier, between the CNTs and the TiO2 is 6.5 (nm). The 

barrier between the gate and the TiO2 is 22 (nm). The thickness of the TiO2 is 2.5 (nm). The 

relative thicknesses in the HfO2 layers are essential for having the smallest capacitance between 

the upper TiO2 and CNT layer. Of course, once the barrier layer become too small/thick the 
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leakage current will be very large or the induced electric field will have negligible effect, 

respectively. 

The proper CNT network density is critical for proper device operation. A sparse CNT 

network will reduce the projected area between the CNTs and the TiO2, causing a smaller 

capacitance. In general, increasing CNT density will result in larger device current. The higher 

CNT density will make the capacitance between the TiO2 and channel layers larger, and 

unfavorable. Under the same tuning condition, the overall tuning range will become decreased 

for a dense network. The normalized tuning amplitude, R, is plotted as a function of average 

device current. A sparse CNT network is essential for large tuning amplitudes. For the devices in 

the population with the smallest current, the largest amplitude of conductance change is 

observed. 

 

Figure 7: Effect of CNT density on tuning normalized tuning amplitude. Sparse CNT networks 

produce the largest tuning amplitude.  
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2.2 Synstor Operation Mechanism 

The device has two operation modes, processing and learning, that can be switched 

between seamlessly. Because a single element can perform both tasks, there is no von Neumann 

bottleneck induced by transmitting data from memory to logic circuits. Unlike conventional 

circuits, the processing and learning take place in the same physical location. The operation 

modes are decided based on physical phenomenon rather than a programming logic. 

In processing mode, the device conductance, 𝑊, is read by applying a negative voltage 

spike on the input, 𝑥, electrode. The negative voltage will produce output current, 𝐼, proportional 

to the device conductance. 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔: 𝐼𝑗 = 𝑊𝑗𝑖𝑥𝑖 

 

Figure 8: Synstor device in processing mode. The conductance, w, is read by applying a 

negative voltage on the input, x, electrode. 
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At the interface between the Al contact and the p-type CNT layer, a Schottky barrier is 

formed [38]. The Schottky barrier reduces the overall current, giving the device its non-linear 

operation. Furthermore, the voltage between the central parts of the CNT layer and the Al gate is 

small when only an input voltage is applied. The small relative voltage between the Al reference 

electrode and channel while in processing mode allows for the non-volatile storage of electrons 

in the TiO2 layer. 

 

Figure 9: Schottky barrier formation at the CNT/Al contact location produces a rectifying 

property at low voltages. 

Under small input voltage conditions, most of the voltage is reduced across the Al/CNT 

Schottky contact, producing small current through the CNT channel. Under these small current 
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conditions, the relative voltage in the CNT channel with respect to the reference electrode is 

small. At larger voltages the voltage reduction across the Schottky barrier does not vary strongly 

with input voltage, resulting in a large current increase, and higher channel voltage with respect 

to the reference electrode. 

The conductance, 𝑊, of the CNT layer can be modified, in an analog style, by applying 

an electric field between the gate and the channel. Charges move through the tunneling barrier, 

HfO2, when a large voltage is applied. The non-linear electron flow through the barrier causes 

exponentially less charge to be transferred as the tuning voltage is reduced. The charge storage is 

non-volatile, causing the resistance change of the CNT layer to remain constant after tuning is 

applied.  

The device is switched into learning mode spontaneously when a spike on the input 

electrode meets a spike on the output, 𝑧, electrode. Depending on the spiking polarity, the device 

conductance can be depressed (η < 0) or potentiated (η > 0). The relative voltage between the 

reference electrode and the channel will cause electron movement in the TiO2 layer. Both the 

amplitude and duration of the voltage intersection can be modified to change the tuning strength. 

When the voltage is released on the output electrode device spontaneously returns to logic mode.  
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𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔: 𝑊𝑗𝑖
̇ = 𝜂𝑧𝑗𝑥𝑖

𝑇 

 

Figure 10: Synstor device in learning mode modifies the charges storied in the TiO2 layer when 

input, x, and learning, z, voltage intersect spatiotemporally. 

In this operating style the device and process input pulsing signals and learn based on the 

correlation between input and output pulsing. The device physics dictate this operation style, 

rather than a computer programming logic. The two processes operate simultaneously in the 

device, and in the same physical location. The style of operation can circumvent the von 

Neumann bottleneck.   
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2.4 Quantifiable Properties and Benchmarking 

In the direction of using the synstor device for a realistic application, it is essential to 

measure properties that are necessary for a large-scale implementation. At the device level there 

are four properties that are empirically tested. 

• Tuning Non-linearity 

Tuning non-linearity is defined by how well the device modification agrees with the Hebbian 

style learning rule described in the earlier section.  

𝑊𝑗𝑖
̇ = 𝜂𝑧𝑗𝑥𝑖

𝑇 (1) 

The learning rule requires, the device conductance not be modified when either 𝑥𝑖 = 0, 𝑧𝑗 ≠ 0, 

or, 𝑥𝑖 ≠ 0, 𝑧𝑗 = 0. Although it is easily attained when implementing a neural simulation, a 

hardware approach will require carful choice of operating conditions. 

• Tuning Smoothness 

Tuning smoothness is defined by the analog tuning of the device. Smooth tuning devices 

will have a gradual change of conductance that is proportional to the integrated history of 

learning. 

Δ𝑊𝑗𝑖 ∝ 𝑠𝑖𝑔𝑛(𝜂)∫ 𝑧𝑗𝑥𝑖
𝑇𝑑𝜏 (2) 

In the case where the tuning is not smooth, the abrupt conductance changes will effectively erase 

all the learning history, making fine adjustments to the network setting nearly impossible. 

• Tuning Symmetry  
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Tuning Symmetry requires that the modification to turn the device on and off are similar 

amplitude. Asymmetry introduced in the tuning ability may cause a bias in the learning process 

making Hebbian learning impossible. 

Δ𝑊𝑗𝑖 ∝ 𝑠𝑖𝑔𝑛(𝜂)(∫𝑧𝑗
+𝑥𝑖

𝑇𝑑𝜏 − ∫𝑧𝑗
−𝑥𝑖

𝑇𝑑𝜏) (3) 

The learning bias will cause device modification in fixed direction that may not be correlated 

with the input signal. 

• Tuning Amplitude  

Tuning Amplitude refers to the total conductance modification percent caused by 

learning. Although at the single device level the amplitude is not a strong factor to consider, in 

larger networks or devices a large tuning amplitude can account for device variation.  

These properties are complicated, non-linear, functions of the voltages applied and tuning 

history. Taking an empirical approach is particularly advantageous as it will closely mimic 

synstor operation in a large-scale implementation, giving a realistic, application based, 

understanding of the device characteristics. Furthermore, many physical phenomena governing 

the device behavior are difficult to quantify accurately with high enough certainty to generate a 

reliable model.  

 Two styles of testing have been developed with the goal of choosing a voltage operation 

condition that has favorable performance characteristics. The “Multi-Voltage Test” applies 

several tuning pulses and measures the change in conductance using many different voltage 

conditions. The “Multi-Pulse Test” applies fixed voltage pulsing but measures the change in 

conductance after each pulse. 
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2.4.1 Multi-Voltage Testing 

 To implement a Hebbian learning algorithm on the device, it must follow the “Learning” 

relation described previously. 

𝑊𝑗𝑖
̇ = 𝜂𝑧𝑗𝑥𝑖

𝑇 (4) 

Unlike neural simulations, the device does not follow an exact programming logic to 

implement the leaning algorithm. As a result, there can be some conductance modification under 

the uncorrelated conditions: 𝑥𝑖 = 0, 𝑧𝑗 ≠ 0, or, 𝑥𝑖 ≠ 0, 𝑧𝑗 = 0. The learning induced by 

uncorrelated pulsing typically does not improve the system performance, a voltage condition that 

most closely follows the Hebbian learning rules should be chosen. The “Multi-Voltage” test was 

developed to quantify the relative modifications due to correlated and uncorrelated pulsing with 

the goal of optimizing tuning non-linearity. 

The synstors were tested in the learning mode by applying multiple pairs of 𝑥𝑖 and 

𝑧𝑗  potential pulses on their input and output electrodes simultaneously.  The typical device 

conductance change, Δ𝑊𝑗𝑖, induced by the 50 pairs of pulses was measured and plotted versus 

the amplitudes of the 𝑥𝑖 and 𝑧𝑗  pulses.   
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Figure 11: Multi-voltage synstor device testing shows a strong non-linear property under 

coincident pulsing. 

At small voltage magnitudes < 1 (V), both correlated and uncorrelated tuning pulses have 

similar, Δ𝑊𝑗𝑖 = 0, modification. As the magnitude of the voltage is increased, the tuning caused 

by correlated pulsing increases while the tuning caused my uncorrelated pulsing remains small. 

Finally, at voltages near 2.0 (V) the uncorrelated tuning begins to increase, making the ratio 

between the two effects worse. The Δ𝑊𝑗𝑖 data are fitted well by Δ𝑊𝑗𝑖 = Δ𝑊𝑗𝑖
0(1 − 𝑒μ𝑥𝑖) with 

Δ𝑊𝑗𝑖
0=-7.8 (pS), 𝜇 = -3.8 (/V) for 𝑥𝑖 = 𝑧𝑗 > 0; and Δ𝑊𝑗𝑖

0=  0.86 (pS),  𝜇 = -4.5 (/V) for 𝑥𝑖 = 𝑧𝑗 <

0.  It was also observed that Δ𝑊𝑗𝑖 ≈ 0 under 𝑥𝑖 = −𝑧𝑗 and  𝑧𝑗 ≠ 0, 𝑥𝑖 = 0. At the condition 

|𝑥𝑖| = |𝑧𝑖| = 1.75(𝑉) the correlated pulsing was the dominant effect. 
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2.4.2 Multi-Pulse Testing 

The multi-pulse test performs tuning on a device using a fixed voltage condition, for 

example |𝑥𝑖| = |𝑧𝑖| = 1.75(𝑉). Using these voltage amplitudes, the non-linear tuning property 

was shown by the multi-voltage test to have a good character. The device in this test performs 

sequential learning then processing operations. The conductance modification caused by each 

pulse is recorded relative to the initial conductance.  

 

Figure 12: Multi-pulse synstor device testing shows a strong non-linear property under 

coincident pulsing. 

For the case |𝑥𝑖| = |𝑧𝑖| = 1.75(𝑉), 𝑊𝑗𝑖 was gradually decreased or increased in an analog 

mode versus the numbers of the pulse pairs, and approached its lowest or highest saturation 

valueafter applying 50 paired pulses, which indicates 𝜂 is a nonlinear function of 𝑊𝑗𝑖. Within the 

first several pulses, the device shows a very smooth and gradual conductance change, with only 

slight non-linear effect. Within approximately 5 - 10 tuning pulses the device will have a smooth 
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tuning character. Although the device has some asymmetric tuning, the voltage conditions can be 

modified such that |𝑥𝑖| ≠ |𝑧𝑖|. 

In processing modes where 𝑧𝑗 = 0, 𝑊𝑗𝑖 remains unchanged. This indicates that the synstor 

processed the 𝑥𝑖 pulses in its logic mode with a nonvolatile memory of 𝑊𝑗𝑖. In learning mode, the 

device can be modified using a Hebbian style learning rule. 

3.0 Spike Neuromorphic Intelligent Circuit (SNIC) 

3.1 Experimental Details & Set-up 

A crossbar array of synstors, organized into neural circuits, can emulate the analog signal 

processing, learning, and memory functions of a biological spiking neural network. These 

functions occur at the same physical location in each synstor. Scaled-up neural circuits could 

circumvent the “curse of dimensionality” and “von Neumann bottleneck” to process and learn 

from sensing data with speed and energy efficiency exponentially superior to their classic 

counterparts.  

It is reported that a 16-node, spike neuromorphic integrated circuit (SNIC), arranged into 

4 neurons with in-house designed somas, can to improve the performance of an unknown system 

in an unknown, and dynamic environment. The crossbar network simultaneously processes the 

multi-dimensional sensing signals while modifying its strategy without external computation 

circuits or memory. Learning functions can help autonomous dynamic systems adapt and give 

them the necessary intelligence to improve their performance in environments with large 

uncertainty given their limited energy resources [4,5,6]. The performance of the autonomous 

system is analyzed and compared to humans performing the same task.  
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3.1.1 Experiment Schematic 

The SNIC, arranged into a large-scale, N x M network, has combined analog signal 

processing, learning, and memory functions at each node. In processing mode, presynaptic 

potential pulse signals are sent in parallel and logically processed by the network.  

𝐼𝑗(𝑡) = ∑𝑊𝑗𝑖𝑥𝑖(𝑡)

𝑖

(5) 

Where the ith presynaptic potential signal, 𝑥𝑖(𝑡) ∈ ℝ𝑁𝑥1, will produce post synaptic 

current, 𝐼𝑗(𝑡) ∈ ℝ𝑀𝑥1, in the jth neuron, by accessing it analog conductance states, 𝑊𝑗𝑖 ∈ ℝ𝑀𝑥𝑁. 

The post synaptic current of the jth channel is the sum of all the synstors contributions in that 

neuron.  

𝑊𝑗𝑖
̇ = 𝜂𝑧𝑗𝑥𝑖

𝑇 (6) 

The modification of the device conductance follows a Hebbian learning rule, a simplified 

form of spike-timing dependent plasticity (STDP), a description of the learning process in 

biological neural networks. The spatiotemporal intersection of 𝑥𝑖 and 𝑧𝑗 ∈ ℝ𝑀𝑥1, the 

postsynaptic potential, in the network causes modification 𝑊𝑗𝑖
̇ . The conductance modification 

coefficient, 𝜂, is positive when operating in potentiation, 𝑥𝑖 , 𝑧𝑗 < 0 , negative when operating in 

depression, 𝑥𝑖, 𝑧𝑗 < 0.  
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Figure 13: Experiment schematic 
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In processing mode, a Schottky barrier is formed between the Aluminum (Al) contact and 

CNT semi-conductor causing the conductance to be unchanged when 𝑧𝑗 = 0. The hole density in 

the p-type CNT layer allows charges to flow between the two Al electrodes, the hold density is 

related to the device conductance. Modification of the charges stored in the Hafnium(IV) oxide 

(HfO2)/Titanium Oxide (TiO2)/ HfO2 structure was previously used in a CNT nonvolatile 

memory transistor [35] [36] [37]. In learning mode, 𝑊𝑗𝑖 is modified based upon the intersection 

of presynaptic and postsynaptic potential signals in parallel, across the network. The voltage of 

the CNT channel with respect to the Al reference electrode causes charge trapping in the 

dielectric structure, which modifies the channel conductance. 

In general, 𝑧𝑗 pulsing can be used to implement numerous machine learning algorithms 

by adjustment of the pulsing profile and relative amplitude. In this learning algorithm, a zero-

mean learning signal is applied on the 𝑧𝑗 electrode, denoted 𝑧𝑗̃. The network spontaneously, 

including all devices in the jth column, modifies the conductance based on the covariance 

between 𝑧𝑗̃ and 𝑥𝑖. With increase input dimension, no additional time is required to perform the 

covariance based modification, avoiding the “curse of dimensionality”. 

𝛥𝑊𝑗𝑖(𝑡)𝛼 ∫ 𝑧𝑗̃𝑥𝑖
𝑇𝑑𝜏

𝑡

0

(7) 

The network can seamlessly switch from learning to processing modes by setting 𝑧𝑗 = 0, 

causing 𝑊𝑗𝑖
̇ = 0, allowing devices in the jth column to process input signal 𝑥𝑖. The unsupervised 

learning algorithm allows input signals to be produced in a feed-forward style, without 

knowledge about the networks processing/logic state. The network processes a four-dimensional 

input signal, in parallel, while simultaneously changing its memory state, without requiring 
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communication to update the processing logic, allowing the network to circumvent the “von 

Neumann bottleneck”. 

The parallel signal processing, learning, and memory were demonstrated in a 16-node 

crossbar circuit with 4 soma circuits. The interaction between the synstor network and an 

unknown system in an unknown environment is used to demonstrate the synstor network’s 

ability to modify and improve the system’s dynamics via an unsupervised learning process.  

The dynamic system’s performance is described by sensor vector, 𝑃1,2,3,4. The 

performance is encoded as presynaptic sensing input spikes on 𝑥1,2,3,4 inputs to the network, 

continuously.  

The network produces postsynaptic current which is collected by the soma, 𝑆1,2,3,4, to 

produce actuation pulse signals 𝑦1,2,3,4. When learning occurs, postsynaptic potential pulses, 

applied on 𝑧1,2,3,4, interact with presynaptic potential pulses to modify the network logic. The 

modification of the network processing logic, Δ𝑊𝑗𝑖, can be propagated though the system 

dynamics, and reflected by modification of the input spike profile.  

 The goal of the experiment is to improve an autonomous vehicles performance in an 

unknown environment. The SNIC has a randomized initial setting, with no pre-knowledge about 

the unmanned air vehicle or the environment. In the unknown environment, the SNIC will learn 

the best strategy to improve the systems performance while processing sensor data 

simultaneously. The advantage of the SNIC is that there is no external memory or processing 

circuits, circumventing the von Neumann bottleneck. The interface I/O is a simple feed forward 

algorithm that may be implemented in hardware. Additionally, the crossbar architecture 

automatically processes combination style problems automatically, in parallel, without suffering 
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from the curse of dimensionality. Several examples of the learning process are taken and 

compared statistically to a human performing the same task. The human brain, having a similar 

processing style, and inspiration for the SNIC, is a fair comparison to the learning circuits.  

3.1.2 Vehicle Interface I/O 

The dynamic system’s performance is described by sensor vector, 𝑃1,2,3,4. The 

performance is encoded as presynaptic sensing input spikes on 𝑥1,2,3,4 inputs to the network, 

continuously. The frequency of spiking on input 𝑥𝑖 is defined as 𝐹𝑥𝑖. 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑥𝑖(𝑡)) = 𝐹𝑥𝑖(𝑡) (8) 

The Sensor I/O performs this task in a feed-forward style and may be implemented in 

hardware. In general, the input frequency varies monotonically with increasing sensor 

measurement. When 𝑃𝑖 is small the associated input frequency, 𝐹𝑥𝑖, is also small. As the 

deviation from maximum performance condition, 𝑃𝑖 = 0, becomes larger the 𝐹𝑥𝑖 frequency 

begins increasing at a faster rate. There is an additional penalty for the system being close to the 

boundary of the environment. 

Although in this case there is a simple mapping between the position sensor and input 

frequency, the sensing information can be translated into any performance metric to improve 

arbitrary criteria for the autonomous vehicle. For example, stability metrics, range, endurance, 

targeting, disturbance rejection, etc. 
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Figure 14: Analog pixel sensing, P, information is converted to a pulsing frequency, F, in the 

I/O interface. 

At the output of the soma the 𝑦𝑗 actuation signal must be sent to the air vehicle using a 

wi-fi signal. The air vehicle adjusts the rotor velocities depending on the 𝑦𝑗 pulsing signal. The 

specific dynamics of the system are not a concern because the SNIC treats the vehicle as an 

unknown system, correlating 𝑦𝑗 to performance changes without concern of the specific vehicle 

dynamics. In this way, if the system dynamics change, the SNIC will adjust its logic to account 

for the change. 

3.1.3 Pogo-Pin Adapter 

The SNIC crossbar circuit was fabricated on a 3 (cm) x 3 (cm) section of SiO2. The 16-

node, 4x4, SNIC crossbar was chosen and grouped out of a 20x20 fabricated crossbar network. 
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To interface the fabricated device reliably to the printed circuit board (PCB) testing system and 

autonomous system, an adapter contacted the metal pads on the chip surface. 

 

 

Figure 15: 20x20 synstor crossbar network. 

The adapter aligned the chip to an array of pogo-pins that gently contact the Metal/SiO2 

surface. Processed sensing signals, 𝐼𝑗 , are routed off the chip using a connecting logic to the soma 
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circuits in the testing PCB. Input voltage signals, 𝑥𝑖, are routed through the adapter and applied 

to all the devices in the same row. In addition, learning signals, 𝑧𝑗, can also automatically be 

applied on the same column though the pogo-pin adapter. The adapter is essentially a flexible 

interface that can apply voltage signals to the synstor devices.  

 

Figure 16: Pogo-pin adapter model. 

3.1.4 Device Matching 

To achieve good symmetry between devices, and account for variability, the devices in 

the crossbar were chosen to maximize the overlap between all the tuning ranges. With good 

matching, the operating voltage amplitudes can be smaller to have better smooth tuning 

characteristics while still preserving non-linearity. Because the actuation signals are signed, the 

actuation from neighboring columns are subtracted. Having matched tuning ranges will allow for 
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symmetric actuation signals. The matching between nodes was performed at the same operating 

conditions as the multi-voltage and multi-pulse test dictate. 

The various combinations of device groupings are considered and optimized. In this case, 

3 hardware inputs lines are grouped together to have the same 𝑥𝑖 signal. Two outputs are 

grouped together as the same 𝑦𝑗 signal. As a result, out of the 400 synstors in the population, 96 

are chosen and grouped into 16-nodes for the demonstration. The 400 synstor population has a 

uniformity ratio, U, of 1.52. The uniformity ratio compares the mean device current to the 

standard deviation of device currents in the whole population. 

𝑈 =
𝑚𝑒𝑎𝑛(𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

𝑠𝑡𝑑(𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
(9) 

 

 

Figure 17: Histogram of device current. 
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With U=1.52 the possibility of using arbitrary devices to implement a large-scale learning 

implementation is unlikely. To reduce the variability a select population with a higher uniformity 

ratio is selected in accordance with the geometry constraints of the crossbar. After optimization, 

the device population has a uniformity ratio of U=2.81. 

 

 

Figure 18: Uniformity optimized population. 

The population is then reduced to 16 unique elements by grouping 3 input rows together 

for each 𝑥𝑖 signal and matching the proper columns to maximize the overlap between the device 

tuning ranges. In this way the mean column uniform ratio is U=8.47. Using this process, the 

initial population uniformity is increase by a factor of ~6, enabling the large-scale demonstration. 

The relative tuning ranges now have significant overlap.  

The label of 𝑊𝑗𝑖𝑥𝑖 refers to the SNIC node (i,j) which is the optimized grouping of 

several individual synstors. The amplitude of the bars indicates the tuning range given a constant 

𝑥𝑖 voltage signal. 𝐼𝑗 is the sum of all the individual nodal contributions in the column.  
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Figure 19: Optimized device matching based on optimizing tuning overlap of grouped devices. 

3.2 Non-Linear Soma Circuit 

We designed and fabricated an integrate-and-fire circuit with the basic functions 

according to the Hodgkin–Huxley neuron model [39].   The collective current, 𝐼𝑗, from multiple 

synstors flows through a diode toward a capacitor, C, increasing the potential, Vc, on the 

capacitor.  A leakage current, IL, flows through the resistor, RL, decreasing Vc.  Vc is 

proportional to the integration of I - IL with respect to time. When Vc reaches a threshold value, a 

Schmitt trigger composed of transistors M1-M6 is switched back and forth to generate an output 

pulse from the output channel, Vf. The output pulse resets Vc back to zero by switching 

transistors M7, M8, and M9, and the capacitor C restarts the integration of the current.  The 

transistors in the circuit are operated in their subthreshold regions.  The circuit simulation 
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indicated that the average power consumption of the Si “neuron” circuit is ~100 nW under an 

output pulse frequency of 1 KHz.   

 

Figure 20: ‘Integrate and Fire’ CMOS circuit implementation 

The typical firing rate of output pulses from a “neuron” circuit is plotted against the 

magnitude of the current, I.  When I < 20 nA, no pulse is output from the “neuron” circuit. When 

20 nA < I < 90 nA, r increases monotonically with increasing I.  When I > 90 nA, r is saturated at 

20 Hz, which is equal to the frequency of the input potential pulses.   
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Figure 21: Integrate and fire neuron transfer character 

3.3 Methods and Hardware Summary 

The experiment was implemented using National Instruments (NI) LabVIEW 2015 SP1. A 

real-time interface between the Parrot AR Drone 2.0 and the experimental circuits was created 

using the NI cRIO 9063 with accompanying modules. The presynaptic and post synaptic 

potential pulses (𝑥𝑖, 𝑧𝑗) were generated using the NI 9264, measured by the NI 9205, and applied 

to the Al input and output synstor electrodes. Currents, 𝐼𝑗, when 𝑥𝑖 < 0 𝑎𝑛𝑑 𝑧𝑗 = 0, flowing 
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through the synstor, are collected by the soma to produce output pulsing non-linearly, but 

monotonically, related to the input current 𝐼𝑗, are sensed by the NI 9403.  

The Parrot AR Drone 2.0, equipped with a 2500 mAh lithium polymer battery, is flown in an 

indoor environment while communicating with the host computer. A third-party add-on “AR 

Drone Toolkit for LabVIEW – LVH” was implemented to communicate actuation commands to 

the drone using a WiFi connection.  

The position of the drone was captured using the Genius WideCam F100 camera. A 

reference image of the environment is compared to an image of the environment including the 

drone, in real-time. The pixel location of the drone is converted to a presynaptic pulsing 

frequency monotonically. 

The currents from synstor circuits flowed to in-house built integrate-and-fire “soma” circuits 

to trigger output pulses and postsynaptic pulses. The output pulses are counted until reaching a 

threshold which triggers an actuation pulse, 𝑦𝑗, to be sent to the drone. 

Feedback pulsing is triggered when the drone performance is below a certain threshold. Zero 

mean noise is injected into the actuator, which then propagates through the drone system. 

Simultaneously, zero mean feedback, 𝑧𝑗, is applied to interact with the noise injected into the 

plant, causing learning, Δ𝑊𝑖𝑗, in the network.  

For comparison, the human performs the same task, using the same information, the circuit 

has available. Behind a curtain, with audio isolation, the human has 4 unlabeled, paired, buttons 

that activate the drone actuation 𝑦𝑗. The human can only process 4 unlabeled sensing signals, 𝐹𝑥𝑖, 

and is instructed to reduce the frequencies to a minimum. Through a biological learning method, 
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the human modifies their processing logic to optimize the performance of the drone in the same 

environment. 

3.3 Autonomous Air-Vehicle Parallel Learning and Processing Demonstration 

The synstor network was tested using in a fixed voltage, dynamic frequency, pulsing 

mode. The goal of the network operation is to reduce the sum of the input sensing frequencies, Π, 

through an unsupervised learning process. Π represents the energy of the system. 

Π(𝑡) = ∑𝐹𝑥𝑖(𝑡)

4

𝑖=1

(10) 

Input sensing signals are a square wave with 𝑥+ = 1.5(𝑉), 𝑥− = −1.75(𝑉) and pulse 

period of 30 (ms) operating at frequencies up to 20 (Hz). The pulsing profile, shown below, is 

the input to the network. There are four input channels that are used to encode the sensing 

information to the intelligent network. Over time, the frequency of pulsing is reduced, as the 

system reached a favorable configuration. The input pulsing generation does not change 

depending if learning is occurring. In this style, the network and modify itself and process 

sensing signals in the same mode. 
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Figure 22: Input, x(t), pulsing profile 

Simultaneously, with input pulsing, learning pulsing interacts with the synstor devices. 

Learning pulses are a square wave with 𝑧+ = 1.5(𝑉), 𝑧− = 0(𝑉) for a positive pulse and 𝑧+ =

0(𝑉), 𝑧− = −2.0(𝑉) for a negative pulse. The pulses are clustered in 5-pulse groupings 

throughout a 1.5 (sec) duration. After a 2 second pause another 5-pulse cluster is applied in the 

opposite polarity. The time difference between the first cluster and the second allows the 

perturbation to be propagated though the plant, effecting the number of coincident pulses during 

the second cluster. A learning period is defined as a pair of presynaptic pulses. 
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Figure 23: Learning Signal, z(t), profile. 

The total change in the nodal conductance in the nth learning period is related to the 

number of intersections applied on that device, taking place 𝑡𝑛 < 𝜏 < 𝑡𝑛+1, which is also related 

to the correlation between the postsynaptic learning signal and the input pulsing. The amplitude 

of the covariance between pluses on the jth neuron and ith input is defined as 𝜈𝑖𝑗.  

𝛥𝑊𝑗𝑖(𝑛)𝛼𝜈𝑗𝑖(𝑛) = ∫ 𝑧𝑗̃𝑥𝑖
𝑇𝑑𝜏

𝑡𝑛+1

𝑡𝑛

(11) 
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Figure 24: Amplitude of spontaneous learning operation on each synstor node.  

 

The covariance is shown, roughly, to be 𝜈21,22,43,44 ≠ 0, 𝜈41,41,23,24~0. Due to symmetry 

in the learning pulse, 𝑧2 = −𝑧1, the intersection profile is also symmetric 𝜈1𝑖 = −𝜈2𝑖 and omitted 

for this figure. As the system reaches a favorable configuration the amplitude, and frequency, of 

the learning is decreased. 

The actuation pulsing, 𝑦𝑗, is a command sent to the dynamic system, adjusting its 

performance in the environment. The actuation frequency of signal 𝑦𝑗, 𝐹𝑦𝑗, is a non-linear 

function, 𝑆𝑗, of the postsynaptic current collected by the soma. The soma calibration is fixed 

during the experiment and the same for all neurons. 

𝐹𝑦𝑗 = 𝑆𝑗(𝐼𝑗) (12) 
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Figure 25: Actuation signal, y(t). 

The energy of the system is determined by the sum of the sensing frequencies, where 𝐹𝑥𝑖 

represents the frequency of pulsing on presynaptic input 𝑥𝑖, 𝐹𝑥𝑖 ≥ 0. At first, the network logic is 

not well suited for the unknown dynamic system it is interfaced with. Over time, the 

unsupervised correlative learning algorithm modifies the processing logic resulting in the flight 

becoming less erratic, and approaching Π~0. The system is operating in a dynamic environment, 

the trendline (magenta) shows the average movement, ignoring zero-mean noise.  
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Figure 26: System Kinematics. 



 

 

43 

 

Biological neural networks can process parallel signals, while optimizing its logic in real-

time in a similar strategy to the synthetic neural networks described. In comparison to the 

artificial intelligence exhibited by the SNIC, the biological equivalent is used for comparison. In 

a similar way, both styles of network can circumvent the “curse of dimensionality” and the “von 

Neumann bottleneck” while exhibiting intelligent operation. The input pulsing frequency, the 

only sensing information available to the human, is plotted. The human is isolated from the 

environment and can only use the unlabeled input pulsing frequency as sensing information. The 

human is given two paired actuators which they can press and use to correlate the sensing and 

actuation signals. The human is given the same information that is available to the SNIC. 
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Figure 27: Biological intelligent system kinematics. 
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Although improvement of the systems performance is obvious, a way to quantify the 

behavior of the learning process, and its interaction with the circuit can help to understand why 

the system improved.  

4.0 System Modeling and Learning Analysis 

A simple model for the interaction between the synstor circuit, learning process, and the 

system will help to understand and quantify the properties of the intelligent system. There are 

four quantifiable properties that can be compared.  

• Learning Modification Error 

• Total System Improvement 

• Learning Speed 

• Oscillation Induced by Learning 

In this way, the human and the SNIC experiments can analyzed. The model is robust enough 

to be used to quantify further experiments as well as, simply developing a methodology to 

quantify an experiment result.  Although there can be many models and analysis techniques, the 

goal is to provide a simple analysis that is able to quantify the above performance metrics and to 

give an understanding of how the learning process behaves. Developing the most complicated 

model to include every possible effect is not the goal of the analysis. Some assumptions are 

made in the direction of simplicity and ease of understandability. To support the modeling 

choices, an error quantification is performed to demonstrate a strong agreement between the 

model and the system behavior. 
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4.1 Network & System Model Overview 

The network and the system interact to adjust the energy function, Π, the sum of the input 

frequencies. 

Π(t) = ∑𝐹𝑥𝑖(𝑡)

𝑖

(13) 

𝐹𝑥𝑖(𝑡), Π(𝑡) ≥ 0, ∀𝑡 (14) 

Many factors can influence the systems energy function, the environment, damage, 

learning, sensing signals, and fitting parameters. The goal is to generate a model that relates the 

measured variables to the energy of the system. The measured variables are, 𝑉𝑗𝑖′(𝑡), the 

accumulated number of learning pulses in the device at location (𝑖′, 𝑗′). In general, the total 

conductance change is increasing with increasing 𝑉𝑗𝑖′(𝑡). 𝐹𝑥𝑖(𝑡) is the frequency of the sensing 

signal on the ith input. The performance can also be directly a function of time, t. There may also 

be a time delay, τ, between the measured signals and the resulting modification of the energy. 

Finally, a noisy term representing parts of the model that are uncorrelated with the measured 

variables, 𝜀(𝑡). 

Π(𝑡) = 𝑓(𝑉𝑗𝑖′(𝑡), 𝐹𝑥𝑖(𝑡), 𝑡, τ) + 𝜀(𝑡) (15) 

 Although measuring the conductance of the network directly would make the problem 

much simpler, it is impossible to measure directly. The devices are fabricated into a crossbar 

network, automatically summing the currents in the column. There is no way to measure each 

device individual contribution without separating the device from the rest of the network. Based 

on the multi-pulse test data it is reasonable to assume a correlation between the number of 

learning pulses, 𝑉𝑗𝑖′(𝑡), and the total conductance modification, ∆𝑊𝑗𝑖′(𝑡). 
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𝐸[𝑉𝑗𝑖′̃Δ𝑊𝑗𝑖′]

𝐸 [𝑉𝑗𝑖′̃
2
] 𝐸[Δ𝑊𝑗𝑖′

2 ]
≫ 0 (16) 

Due to this strong correlation coefficient we can assume that the measured variable 

𝑉𝑗𝑖′(𝑡) is representative of the learning modification, Δ𝑊𝑗𝑖′ . The dynamic between the energy 

change of the system and the measured variables can be written exactly as follows. 

𝑑Π

𝑑𝑡
= ∑

𝜕𝐹𝑥𝑖

𝜕𝑡
𝑖

+ ∑
𝜕𝐹𝑥𝑖

𝜕𝑉𝑗𝑖′
𝑖

𝑑𝑉𝑗𝑖′

𝑑Δ𝑊𝑗𝑖′

𝑑Δ𝑊𝑗𝑖′

𝑑𝑡
+ ∑

𝜕𝐹𝑥𝑖

𝜕𝐹𝑥𝑖′
𝑖

𝑑𝐹𝑥𝑖′

𝑑𝑡
+ ∑ 𝜀𝑖̇

𝑖

(17) 

 There are four main contributions to the change in energy function. ∑
𝜕𝐹𝑥𝑖

𝜕𝑡𝑖  represents the 

change in the system energy that is only a function of time, excluding all the measured variables. 

Intelligent systems can modify their logic in time varying environments or under if the system 

behavior changes as a function of time. For example, the battery my produce less power in the 

later parts of the experiment or the downwash induced by the rotor can perturb the movement. 

The second contribution, ∑
𝜕𝐹𝑥𝑖

𝜕𝑉𝑗𝑖′
𝑖

𝑑𝑉
𝑗𝑖′

𝑑Δ𝑊𝑗𝑖′

𝑑Δ𝑊
𝑗𝑖′

𝑑𝑡
 represents the change energy due to the 

modification of the conductance. This term is of specific importance to show the advantage of 

the learning process. Additionally, 
𝑑𝑉

𝑗𝑖′

𝑑Δ𝑊𝑗𝑖′
 is assumed to be a non-zero number based upon the 

results of the multi-pulse test. In that style, it is possible to model how the conductance 

modification is reflected in the system energy. 

The system, absent learning, damage, and disturbance is represented by ∑
𝜕𝐹𝑥𝑖

𝜕𝐹𝑥𝑖′
𝑖

𝑑𝐹
𝑥𝑖′

𝑑𝑡
. The 

term reflects the initial setting of the network. In the case Δ𝑊𝑗𝑖′ = 0, this term will dominate the 

energy function behavior. In the experiment, 𝑊𝑗𝑖′(𝑡 = 0) is initialized randomly, without any 
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prior knowledge about the behavior of the system. In that way, this term may help or hurt the 

systems energy function. In any event, the learning process is tasked to overcome poor initial 

settings and guide the device conductance to a critical value.  

Finally, ∑ 𝜀𝑖̇𝑖 , is the parts of the energy function that are uncorrelated with the influence 

of the measured variables. In general, the power of this term is minimized in the fitting process. 

Re-writing the equation into its constituent parts, 

Π̇𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 = ∑
𝜕𝐹𝑥𝑖

𝜕𝑡
𝑖

(18) 

Π̇𝐿𝑒𝑎𝑟𝑛 = ∑
𝜕𝐹𝑥𝑖

𝜕𝑉𝑗𝑖′
𝑖

𝑑𝑉𝑗𝑖′

𝑑Δ𝑊𝑗𝑖′

𝑑Δ𝑊𝑗𝑖′

𝑑𝑡
(19) 

Π̇𝑊0
= ∑

𝜕𝐹𝑥𝑖

𝜕𝐹𝑥𝑖′
𝑖

𝑑𝐹𝑥𝑖′

𝑑𝑡
(20) 

Π̇𝜀 = ∑𝜀𝑖̇

𝑖

(21) 

In general, the whole system can be molded as the sum of its constituent parts. To be exact, all 

are non-linear functions of time.  

Π̇(t) = Π̇𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡(𝑡) + Π̇𝐿𝑒𝑎𝑟𝑛(𝑡) + Π̇𝑊0
(𝑡) + Π̇𝜀(𝑡) (22) 

 

4.2 Network & System Model Simplifications 

Beginning with a quadratic model for each sensor measurements influence the sensor 

measurement change, it is possible to begin to understand the energy function behavior. 𝑔
(0,1,2)
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are modeling parameters and are assumed to be constant. There can be some time delay between 

𝐹𝑥𝑖 and the rate change of 𝐹𝑥𝑖 but it not explicitly written here. 

𝑑Π

𝑑𝑡
= ∑

𝑑𝐹𝑥𝑖

𝑑𝑡
𝑖

= ∑(𝑔𝑖
(0)

+ ∑𝑔𝑖𝑗
(1)

(𝑊𝑗𝑖′𝐹𝑥𝑖′)

𝑗𝑖′

+ ∑𝑔𝑖𝑗
(2)

(𝑊𝑗𝑖′𝐹𝑥𝑖′)
2

𝑗𝑖′

+ 𝑛𝑖)

𝑖

(23) 

Without knowing 𝑊directly it is possible to split the effect into an initial setting and a 

variable that correlated well with the measured variables, 𝑊𝑗𝑖′(𝑡 = 0) = 𝑊0
𝑗𝑖′. 

𝑑Π

𝑑𝑡
= ∑

𝑑𝐹𝑥𝑖

𝑑𝑡
𝑖

= ∑(𝑔𝑖
(0)

+ ∑𝑔𝑖𝑗
(1)

(𝑊0
𝑗𝑖′ + Δ𝑊𝑗𝑖′)𝐹𝑥𝑖′

𝑗𝑖′

+ ∑𝑔𝑖𝑗
(2)

(𝑊0
𝑗𝑖′ + Δ𝑊𝑗𝑖′)

2
𝐹𝑥𝑖′

2

𝑗𝑖′

+ 𝑛𝑖)

𝑖

                                                                                                                                                                     (24)

 

Expanding the equation, and grouping the terms into the various effects, and generating 

fitting parameters ′σ′, which are constant over the experiment, the final relation has several parts. 

The time dependent terms, including any time delay are written out explicitly. 

• Effects from the environment and time varying system dynamics: 

Π̇𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 = 𝑓(σ𝑖
𝐸𝑛𝑣) = ∑σ𝑖

𝐸𝑛𝑣

𝑖

(25) 

• Effects of the learning operation: 

Π̇𝐿𝑒𝑎𝑟𝑛(𝑡) = 𝑓 (𝜎𝑖𝑗𝑖′
𝐹2𝑉 , 𝜎𝑖𝑗𝑖′

𝐹2𝑉2
, 𝜎𝑖𝑗𝑖′

𝐹𝑉 )

= ∑𝜎𝑖𝑗𝑖′
𝐹2𝑉𝑉𝑗𝑖′(𝑡 − τ)𝐹𝑥𝑖′

2 (𝑡 − τ) + 𝜎𝑖𝑗𝑖′
𝐹2𝑉2

𝑉𝑗𝑖′
2 (𝑡 − τ)𝐹𝑥𝑖′

2 (𝑡 − τ)

𝑖𝑗𝑖′

+ 𝜎𝑖𝑗𝑖′
𝐹𝑉 𝑉𝑗𝑖′(𝑡 − τ)𝐹𝑥𝑖′

(𝑡 − τ)                                                             (26) 

• Effect of the initial setting: 
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Π̇𝑊0
(𝑡) = 𝑓 (𝜎𝑖𝑗𝑖′

𝐹2
, 𝜎𝑖𝑗𝑖′

𝐹 ) = ∑σ𝑖𝑗𝑖′
𝐹2

𝐹𝑥𝑖′
2 (𝑡 − τ) + σ𝑖𝑗𝑖′

𝐹 𝐹𝑥𝑖′
(𝑡 − τ)

𝑖𝑗𝑖′

(27) 

• Noisy, uncorrelated effects: 

Π̇𝜀(𝑡) = ∑𝑛𝑖(𝑡)

𝑖

(28) 

The relation can be re-written in matrix form, allowing for the pseudoinverse to be taken 

and solve the system of equations. Π̇𝜀(𝑡) is the part of the model that is uncorrelated with the 

measured variables. Matrix 𝐴 is a function of the measured variables, (𝐹𝑥𝑖 , 𝑉𝑗𝑖′), and time delay, 

τ.  

𝐴(𝐹𝑥𝑖 , 𝑉𝑗𝑖′ , 𝑡, τ)

= [𝑉𝑗𝑖′(𝑡 − τ)𝐹𝑥𝑖′
2 (𝑡 − τ) 𝑉𝑗𝑖′

2 (𝑡 − τ)𝐹𝑥𝑖′
2 (𝑡 − τ) 𝑉𝑗𝑖′(𝑡 − τ)𝐹𝑥𝑖′

(𝑡 − τ) 𝐹𝑥𝑖′
2 (𝑡 − τ) 𝐹𝑥𝑖′

(𝑡 − τ) 1] 

(29) 

The fitting variables can be consolidated into a column vector denoted 𝜎. The vector is 

not a function of time. The fitting variables represent the system model.  

𝜎 =

[
 
 
 
 
 
 
 
 𝜎𝑖𝑗𝑖′

𝐹2𝑉

𝜎𝑖𝑗𝑖′
𝐹2𝑉2

𝜎𝑖𝑗𝑖′
𝐹𝑉

σ𝑖𝑗𝑖′
𝐹2

σ𝑖𝑗𝑖′
𝐹

σ𝑖
𝐸𝑛𝑣 ]

 
 
 
 
 
 
 
 

(30) 

The resulting relation becomes, 

𝑑Π

𝑑𝑡
(𝑡) = 𝐴(𝑡 − τ)𝜎 + Π̇𝜀(𝑡) (31) 
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The experimental data is used to fit the model in a least squares sense. Each 𝐹𝑥𝑖 is fitted 

individually then summed together to get the energy function. The energy function is the linear 

superposition of the sensing frequencies. The time delay variable, τ, is adjusted to minimize the 

overall error in the fitting compared to the experiment. Quantifiably, the fitting accuracy of 𝐹𝑥𝑖 is 

denoted 𝐸𝑥𝑖. 𝐹𝑥𝑖
𝑀𝑜𝑑𝑒𝑙 is defined as the cumulative integration of the fitted 𝐹̇𝑥𝑖 with an offset 

applied due to the integration. RMS is defined as the conventional “Root Mean Square” function. 

𝐸𝑥𝑖(τ) =
𝑅𝑀𝑆 (𝐹𝑥𝑖

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡(𝑡) − 𝐹𝑥𝑖
𝑀𝑜𝑑𝑒𝑙(𝑡, τ))

2

𝑅𝑀𝑆 (𝐹𝑥𝑖
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡(𝑡))

2
(32) 

The value of 𝐸𝑥𝑖 is produced at several different τ values between 0.5 (s) and 15 (s). Each 

𝐸𝑥𝑖 is considered when choosing the best τ selection. Typically, a value of roughly 8 (s) is 

chosen to be the optimum fit. The optimum is determined by the sum of the fitting errors.  

τ∗ = min
τ > 0

  
1

4
∑ 𝐸𝑥𝑖(τ)

4

𝑖=1

(33) 

In the biological case, the human measurement is only 𝐹
𝑥𝑖

, the learning done by the 

human is not able to be recorded. Based upon an equivalent biological learning model, it is 

possible to estimate the learning amplitude between two fictional learning intervals 𝑡𝑖 < 𝑡 <

𝑡𝑖+1. The intervals are bounded to have a fixed amount actuation signal, Y, in a learning period. 

The value of Y is fixed for the analysis. 

𝑌 = ∫ ∑ 𝑦𝑗(τ)𝑑𝜏

𝑗

𝑡𝑘+1

𝑡𝑘

(34) 



 

 

52 

 

The value of Y to be taken for all the analysis is 1 (s). On either side of the fictional 

learning interval a pulsing couple is applied to interact with 𝐹
𝑥𝑖

 at that time, similar to the SNIC 

operation. The conductance modification is applied at the center of the interval. 

Δ𝑊𝑗𝑖 (
𝑡𝑘+1 + 𝑡𝑘

2
)𝛼  𝑉𝑗𝑖 (

𝑡𝑘+1 + 𝑡𝑘
2

) = ∫ 𝐹𝑥𝑖𝑧̃𝑗

𝑡𝑘+1

𝑡𝑘

𝑑τ (35) 

The polarity and amplitude of the 𝑧̃𝑗 pulsing is proportional to the average actuation 

signal for each jth column. 

Δ𝑊𝑗𝑖 (
𝑡𝑘+1 + 𝑡𝑘

2
)𝛼  𝑉𝑗𝑖 (

𝑡𝑘+1 + 𝑡𝑘
2

) =
Δ𝐹𝑥𝑖

𝑡𝑘+1 − 𝑡𝑘
∫ 𝑦𝑗(𝜏)𝑑𝜏

𝑡𝑘+1

𝑡𝑘

(36) 

4.3 Experimental Modeling Agreement 

 The human brain is an example of an intelligent system and may be compared to other 

artificially intelligent systems as a benchmark. The non-linear model is used to fit the 

experimental data with the goal of benchmarking and comparing the performance. 

𝑑Π

𝑑𝑡
(𝑡) = 𝐴𝜎 + Π̇𝜀(𝑡) (37) 

The 𝜎 fitting variables are constant over the experiment and eventually will be used to 

extrapolate benchmarking parameters. A satisfactory degree of agreement between the model 

and the experiment can show that the model is a reasonable representation of the system 

dynamics. A comparison between 𝐹𝑥𝑖
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡(𝑡) and 𝐹𝑥𝑖

𝑀𝑜𝑑𝑒𝑙(𝑡, τ ∗) are shown, 𝐹𝑥𝑖
0  is an offset 

introduced by the integration. 

𝐹𝑥𝑖
𝑀𝑜𝑑𝑒𝑙(𝑡, τ ∗) = ∫ 𝐹̇𝑥𝑖

𝑀𝑜𝑑𝑒𝑙𝑑𝜏
𝑡

0

+ 𝐹𝑥𝑖
0 = Δ𝐹𝑥𝑖

𝑀𝑜𝑑𝑒𝑙(𝑡) + 𝐹𝑥𝑖
0 (38) 
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The SNIC and human experiment are fit the same way, using the same model. The agreement 

between the accuracy of the model or predict the kinematics of each intelligent system is 

comparable, with low relative error. The SNIC result is in the left column, the human result is in 

the right column. 

 

Figure 28: Comparison between the SNIC and human modeling and fitting error. 
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The model agrees well with the experimental result. Some high frequency components 

are missed in the model but could be a result of sensor noise. The assumptions made to the 

human data to calculate the synaptic modification,  𝑉𝑗𝑖, can also introduce fitting error, causing 

the relative error to be larger in comparison the to the circuit fitting. The model was fit to 10 

datasets total, 5 for each of the intelligent systems. The fitting result was similar in quality. The 

fitting error, 𝐸𝑥𝑖, is quantified for each fit and documented. The strong correlation between the 

modeling assumptions and the actual system provide evidence for a strong foundation for further 

analysis. The effects of only the correlated terms are considered, Π̇𝜀 = 0, in this comparison. 

 

Figure 29: Modeling and experimental agreement. 

4.4 Learning Effect & System Improvement 

To gradually improve the performance of the system, the learning process will perform 

modification of the devices, in parallel. In that way, the time for modification of the parallel 

sensing signal logic is not increased with input signal dimension, a key advantage of the circuit. 

During the modification process, the system follows the same model as before, 
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𝑑Π

𝑑𝑡
= ∑

𝑑𝐹𝑥𝑖

𝑑𝑡
𝑖

= ∑(𝑔𝑖
(0)

+ ∑𝑔𝑖𝑗
(1)

(𝑊𝑗𝑖′𝐹𝑥𝑖′)

𝑗𝑖′

+ ∑𝑔𝑖𝑗
(2)

(𝑊𝑗𝑖′𝐹𝑥𝑖′)
2

𝑗𝑖′

+ 𝑛𝑖)

𝑖

(39) 

 To perform the exploration operation and sample the system behavior, a zero-mean signal 

replaces the 𝑊𝑗𝑖′𝐹𝑥𝑖′  on a single column, the signal is denoted 𝑦̃(𝑡). The exploration signal is 

synchronized with the leaning signal, 𝑧̃(𝑡). The two signals have amplitude |𝑦̃| and  |𝑧̃| 

respectively. 

 

 

Figure 30: Probing Period Detail. 

The probing signal is propagated through the systems causing change in 𝐹𝑥𝑖 , the 

changing 𝐹𝑥𝑖  interacts with the learning signal. The correlation between the probing signal and 

the changing 𝐹𝑥𝑖  updates the 𝑊𝑗𝑖 setting. Using the earlier non-linear approximation, the 

conductance modified due to learning becomes simplified to the following. 

Δ𝑊𝑗𝑖′𝛼
𝑇|𝑧̃|

2
(𝑔𝑖′

0 − 𝑔
𝑖′𝑗

(1)
|𝑦̃| + 𝑔

𝑖′𝑗

(2)
|𝑦̃|2) (40) 
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The change in the system dynamic can be quantified by comparing the change in 
𝑑𝐹𝑥𝑖

𝑑𝑡
 

before and after the learning period. The change caused by applying the Δ𝑊𝑗𝑖 amount is denoted 

by Δ𝐹̇𝑖.  

Δ𝐹̇𝑥𝑖 = 𝐹̇𝑥𝑖(𝑊𝑗𝑖′
0 + Δ𝑊𝑗𝑖′ , 𝐹𝑥𝑖

∗ ) − 𝐹̇𝑥𝑖(𝑊𝑗𝑖′
0 , 𝐹𝑥𝑖

∗ ) = ∑𝑔𝑖𝑗
(1)

∆𝑊𝑗𝑖′𝐹𝑥𝑖′
∗

𝑗𝑖′

+ 𝑂(∆𝑊𝑗𝑖′
2 ) (41) 

The dominant effect of the conductance modification on 𝐹̇𝑥𝑖 occurs on the device that 

processes the 𝐹𝑥𝑖 signal. In other words, the covariance between 𝐹̇𝑥𝑖 and 𝐹𝑥𝑖′ is largest when 𝑖 =

𝑖′. Although it does not have to be necessarily true, the assumption offers a tangible explanation 

of the learning process.  

Δ𝐹̇𝑖𝛼
𝑇𝐹𝑥𝑖|𝑧̃|

2
(𝑔𝑗𝑖

(2)
𝑔𝑗𝑖

(1)|𝑦̃|2 − 𝑔𝑗𝑖
(1)2|𝑦̃| + 𝑔𝑖

(0)
𝑔𝑗𝑖

(1)
) + 𝑂 (∆𝑊𝑗𝑖

2(|𝑧̃|2, |𝑦̃|4, 𝑇2, … )) (42) 

Referring to the modification of Δ𝐹̇𝑖 as a function of |𝑦̃| can give insight into the effect of 

the learning operating on the system. In general, increasing |𝑦̃|, |𝑧̃|, or 𝑇 will not always result in 

favorable effects. Modification of these parameters in an active sense is outside the scope of this 

report but can produce favorable results. However, following a paradigm of a slow learning rate 

will most likely produce improvement, but not necessarily at the fastest rate. 
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Figure 31: Effect of learning amplitude on system improvement. 

There are several major considerations that this relation uncovers. First, the modification 

amplitude of Δ𝐹̇𝑖 is automatically showed as 𝐹𝑥𝑖 is reduced. In that way, as the system 

approached the minimum energy condition, the learning amplitude will be reduced. Although the 

learning amplitude |𝑦̃| and  |𝑧̃| are constant, higher order modification of the feedback amplitude 

is not required for a modification of the learning rate. 

The second observation is that the zero order zero, under null actuation, 𝑔𝑖
(0)

, can have an 

influence on the learning effect. With strong enough 𝑔𝑖
(0)

 effect the learning can have negligible, 

favorable, or adverse effect. In general, the influence of the actuation signal can outweigh the 

environment effect. In the situation where the environment effect dominates, the actuation will 

be ineffective at modifying the system performance. In realistic situations, |𝑦̃|, can be increased 

to overcome environment effects. Perhaps, in an active style. 

The third observation is that increasing the exploration signal |𝑦̃| does not necessarily 

improve the learning speed. Higher order considerations, captured by the non-linear terms show 
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that as |𝑦̃| the Δ𝐹̇𝑖 response may become unfavorable or have negligible effect when applying 

large amplitudes of learning. The learning amplitude may be modified in an active style to 

increase the improvement rate in a higher order effect. 

The fourth observation is only apparent when including 𝑂 (∆𝑊
𝑗𝑖
2 (|𝑧̃|2, |𝑦̃|4, … )). In the 

current model, it appears that increasing |𝑧̃| or 𝑇 will only amplify the modification amount. 

However, due to the higher order terms, increasing the effect without bound will have adverse 

effects, similarly to modification of |𝑦̃|. These terms may also be modified in an active style. 

 

4.4 Performance Benchmarking 

The human is an example of an intelligent system, with many similarities to the SNIC. 

Due to the heavy similarity it is fair to compare and benchmark the performance of the SNIC to 

human. The performance of the learning process of the SNIC can be analyzed to show 

comparable, but slightly better, performance with respect to humans performing the same task. 

To be specific, the systems are analyzed and modeled the same way, under the same 

experimental conditions. The humans were not given any prior knowledge about the system 

dynamics. The actuation and sensor information supplied to both systems are the same. There are 

four metrics to compare the relative permeance of the two intelligent systems. 

• Learning Accuracy 

• Total Learning Improvement 

• Learning Speed 

• Learning Oscillation 
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The average parameters, and variation can be compared over comparing 5 experiments 

by the human and SNIC each. Variation in initial setting of the SNIC, drone, and human 

experience, comparing a single experiment is not appropriate. 

4.4.1 Learning Accuracy 

Learning accuracy refers to how close to the optimum logic setting the intelligent 

system’s learning achieves. The optimum learning setting is found based upon the earlier 

modeling and fitting results. A set of fitting parameters, σ, can be used to calculate an optimum 

learning modification, 𝑉̂𝑗𝑖. The optimal configuration can be compared to the final system 

modification, 𝑉𝑗𝑖
𝐹𝑖𝑛𝑎𝑙. The format of the comparison is equivalent to the modelling error 

quantification.  

𝐸𝑉 =
𝑅𝑀𝑆(𝑉𝑗𝑖

𝐹𝑖𝑛𝑎𝑙 −  𝑉̂𝑗𝑖)
2

𝑅𝑀𝑆(𝑉̂𝑗𝑖. )
2

(43) 

𝑉̂𝑗𝑖, the optimal modification the device, can be calculated by minimizing the non-linear 

model on average. This represents the total modification resulting in 
𝑑Π

𝑑𝑡
 to be at a minimum 

configuration. Effectively, this condition will have optimum logic to drive the system it its best 

configuration the fastest possible.  

𝑑

𝑑𝑉𝑗𝑖′

𝑑Π

𝑑𝑡
]
𝑉

𝑗𝑖′
=𝑉̂𝑗𝑖′

=
𝑑

𝑑𝑉𝑗𝑖′
𝐴𝜎]

𝑉
𝑗𝑖′

=𝑉𝑗𝑖′

= 0 (44) 

When the system is performing optimally, Π = 0, the condition 
𝑑

𝑑𝑉𝑗𝑖′

𝑑Π

𝑑𝑡
= 0 is satisfied. 

At the Π = 0 setting, adjusting the tuning, 𝑉𝑗𝑖′, logic will not result in any change in performance 
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because ∑ 𝑊𝑗𝑖𝐹𝑥𝑖 = 0𝑖𝑗  and  𝐹𝑥𝑖 = 0. The optimal setting, 𝑉̂𝑗𝑖′, can be found using the following 

relation.  

𝑉̂𝑗𝑖′ =
∑ σ𝑖𝑗𝑖′

𝐹2𝑉
𝑖

−2∑ σ𝑖𝑗𝑖′
𝐹2𝑉2

𝑖

(45) 

For each experiment there are 8 total 𝑉̂𝑗𝑖′ values. The total error is taken using the 𝐸𝑉 

relation to quantify the total modification, rather than each individual node. When comparing the 

average value for both the SNIC and human the SNIC is roughly twice as accurate, on average. 

However, both systems have large variation but will always result in a modification that 

improves the network setting, 𝐸𝑉 < 1. 

 

Figure 32: SNIC and Human tuning accuracy. 

4.4.2 Total Learning Improvement 

The modification of the network processing logic, in biological and synthetic sense, 

modify the system 𝐹𝑥𝑖 behavior. The effect of learning, represented by Π̇𝐿𝑒𝑎𝑟𝑛(𝑡) can be 
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integrated over the experiment to quantify the learning improvement effect on the overall 

behavior. Π̇𝐿𝑒𝑎𝑟𝑛 can be directly calculated by, using both experimental and fitting data. 

Π̇𝐿𝑒𝑎𝑟𝑛 = 𝑖𝑗𝑖′𝜎𝑖𝑗𝑖′
𝐹2𝑉𝑉𝑗𝑖′(𝑡 − τ)𝐹𝑥𝑖′

2 (𝑡 − τ) + 𝜎𝑖𝑗𝑖′
𝐹2𝑉2

𝑉𝑗𝑖′
2 (𝑡 − τ)𝐹𝑥𝑖′

2 (𝑡 − τ)

+ 𝜎𝑖𝑗𝑖′
𝐹𝑉 𝑉𝑗𝑖′(𝑡 − τ)𝐹𝑥𝑖′

(𝑡 − τ) 

                                                                                                                                                                     (46) 

The total improvement due to learning  ΔΠ𝐿𝑒𝑎𝑟𝑛 is normalized by the average 𝐹𝑥𝑖 = 𝐹𝑥̅ 

over the whole experimental time. The normalized amount is defined as ΔΠ𝐿𝑒𝑎𝑟𝑛,𝑁𝐷. The 

normalization is to make every experiment comparable, relative to the average energy. 

ΔΠ𝐿𝑒𝑎𝑟𝑛,𝑁𝐷 =
ΔΠ𝐿𝑒𝑎𝑟𝑛

𝐹𝑥̅

=
∫ Π̇𝐿𝑒𝑎𝑟𝑛𝑡𝑓𝑖𝑛𝑎𝑙

0
𝑑𝜏

1
4 𝑡𝑓𝑖𝑛𝑎𝑙 ∫ Π𝑑𝜏

𝑡𝑓𝑖𝑛𝑎𝑙

0

𝛼
∫ Π̇𝐿𝑒𝑎𝑟𝑛𝑡𝑓𝑖𝑛𝑎𝑙

0
𝑑𝜏

∫ Π𝑑𝜏
𝑡𝑓𝑖𝑛𝑎𝑙

0

(47) 

Both systems exhibit negative change in energy due to learning. This agrees with the 

analytical results showing that the learning process should improve the system. The experimental 

result verifies that the learning process was effective at improving the system, on average. Both 

intelligent systems we able to learn to improve the system in every experiment, although with 

different amplitudes. The improvement induced by the circuit leaning was of higher amplitude as 

compared to the human. However, both exhibit wide variation. 
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Figure 33: Improvement caused by learning comparison. 

4.4.3 Learning Speed 

The learning speed for both systems are similar with the SNIC performing slightly better. 

The learning speed refers to the time it takes for the system to reach a steady, 
𝑑𝑉𝑗𝑖

𝑑𝑡
~0. The 

learning time, 𝑇𝑗𝑖
𝐿𝑒𝑎𝑟𝑛, can be estimated by using the 𝑉𝑗𝑖 data directly. 

𝒅𝑽𝒋𝒊

𝒅𝒕
=

−𝟏

𝑻𝒋𝒊
𝑳𝒆𝒂𝒓𝒏 (𝑽𝒋𝒊 − 𝑽𝒋𝒊

∗ ) (𝟒𝟖) 

Both variables, 𝑇𝑗𝑖
𝐿𝑒𝑎𝑟𝑛 and 𝑉𝑗𝑖

∗ are fitted in a least square sense from the experimental 

data. 𝑉𝑗𝑖
∗ is not necessarily equal to 𝑉𝑗𝑖

𝐹𝑖𝑛𝑎𝑙 because this is only a linear approximation of the 

change of  𝑉𝑗𝑖 without consideration of the effects due to 𝐹𝑥𝑖, 𝑊𝑗𝑖
0, time delays, …. For each (i,j) 

node in the network a  𝑇𝑗𝑖
𝐿𝑒𝑎𝑟𝑛 time can be calculated. As convention, only devices that have a 

high enough amplitude of 𝑉𝑗𝑖 while having a correlation coefficient large enough will be counted. 
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Figure 34: Learning Time. 

The learning times for the human and SNIC have a similar median value but the human 

exhibits larger variation. The large human variation is probably due to the skill levels of the user 

at similar tasks. Humans that have very little experience in similar tasks will take longer to 

achieve a good learning setting. Users that have better native intuition about the system tend to 

perform at similar levels to the SNIC.  

 

4.4.4 Learning Oscillation 

Once the system has reached a state where there is only zero-mean noisy change in 𝑉𝑗𝑖 the 

noise injected into 𝐹𝑥𝑖 can be quantified.  

𝐹̇𝑥𝑖
𝑂𝑠𝑐 = 𝐹̇𝑥𝑖(𝑉𝑗𝑖 = 𝑉̂𝑗𝑖 + 𝑉̃𝑗𝑖 , 𝐹𝑥̅) − 𝐹̇𝑥𝑖(𝑉𝑗𝑖 = 𝑉̂𝑗𝑖, 𝐹𝑥̅) (49) 

Comparing the change in 𝐹̇𝑥𝑖 with and without the contribution of 𝑉̃𝑗𝑖  variation can 

quantify the effect of a continuous learning process on the system. The total amplitude of the 
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learning oscillation on 𝐹̇𝑥 is taken by quantifying the overall RMS amplitude of the oscillation on 

all the sensing signals. 

𝐹̇𝑥
𝑂𝑠𝑐 = 𝑅𝑀𝑆(𝐹𝑥̅

2
∑𝐸[𝑉̃𝑗𝑖

2]σ𝑖𝑗𝑖′
𝐹2𝑉2

)

𝑗𝑖′

(50) 

  The oscillation of the learning signal, 𝐸[𝑉̃𝑗𝑖
2], is found by synthesizing the 𝑉𝑗𝑖 directly. 

The oscillation amplitude is found by finding the later parts of the experiment times from 𝑡 = 𝑡∗ 

to 𝑡 = 𝑡𝐹𝑖𝑛𝑎𝑙  that have a high standard deviation of 𝑉𝑗𝑖 relative to the mean signal over the same 

interval. This signal is maximized when the detonator is approaching 0. 

𝒕∗ = 𝐦𝐚𝐱
𝒕′

𝒔𝒕𝒅 (𝑽𝒋𝒊(𝒕
′ → 𝒕𝑭𝒊𝒏𝒂𝒍))

|𝒎𝒆𝒂𝒏 (𝑽𝒋𝒊(𝒕′ → 𝒕𝑭𝒊𝒏𝒂𝒍) − 𝑽𝒋𝒊(𝒕′))|
(𝟓𝟏) 

𝑬[𝑽̃𝒋𝒊
𝟐 ] ≈ 𝒔𝒕𝒅 (𝑽𝒋𝒊(𝒕

′ → 𝒕𝑭𝒊𝒏𝒂𝒍)) (𝟓𝟐) 

 The oscillation is compared for both intelligent systems. In this case, the SNIC network 

has a higher oscillation amplitude, on average. The human tends to have higher learning 

frequency with a small amplitude of modification due to each learning operation. In comparison, 

the SNIC have a slower learning rate at a higher amplitude. The larger amplitude results in a 

larger 𝐸[𝑉̃𝑗𝑖
2] amount. 
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Figure 35: Oscillation induced by learning comparison. 
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5.0 Conclusion 

The brain is a powerful computer with the ability to process large numbers of signals in 

real-time, while simultaneously modifying its logic via a learning process. The human brain, is 

unlike conventional computers, which often are larger, less efficient, and operate in a serial style. 

Conventional computers, often has trouble in regimes where biological computers excel. For 

example, tasks that have high dimensional signals, require real-time processing, and operate in 

unknown and changing environments are all tasks where biological computers has a strong 

advantage. The ‘curse of dimensionally’ and the ‘von Neumann bottleneck’ are core problems 

transistor based computers are unable to escape. 

The biological neural computers can exhibit intelligence. Intelligence is defined as the 

ability to vary its state or action in response to varying situations, varying requirements, and 

experience. [5] The type of modification is referred to as ‘learning’, transistor-based computing 

has difficulty when tasked with problems that require intelligence. At the fundamental level, the 

synapse is much different from a transistor, these differences enable intelligence in the larger 

system. Taking biological inspiration from the synapse and using it to developing a neural 

computer exhibiting intelligent function is certainly possible. 

The goal of the project is to develop a synaptic resistor device and accompanying 

neuromorphic system that exhibits self-programming intelligent functions, causing improvement 

in unknown systems, while circumventing the ‘curse of dimensionality’ and ‘von Neumann 

bottleneck’.  

For demonstration, the synaptic device, a synstor, was interfaced with an unmanned air 

vehicle in an unknown and changing environment. There was no pre-training of the synstor or 



 

 

67 

 

system. Initially, the system behaved poor, over time, the performance improved due to a 

parallel, real-time learning process. The network exhibited intelligent functions by modifying its 

or action in response to varying system and environment. The elimination of external 

computation and memory circuits is a central aspect of the demonstration. It may be possible for 

conventional computer to improve the system performance, but the computing style will never be 

able to circumvent the ‘curse of dimensionality’ and ‘von Neumann bottleneck’. 

The resulting experiments were analyzed to quantify and understand the learning process. 

The learning process can be understood as a gradient descent algorithm. The modification to 

each device is related to the correlation between its actuation signal and the systems 

improvement. Although the devices do not numerically process signal to calculate the correlation 

directly. Instead, the physical properties of the device and operating mode spontaneously 

implement the modification.  the that way, the learning process can cause improvement without 

the need of external circuits and memory. The learning process in this experiment is of fixed 

pulsing amplitude, however there may be several advantages to higher-order modification. Even 

in the fixed amplitude, ‘simple’, case the improvement is quite evident. 

The total improvement, learning rate, oscillation, and accuracy were documented. The 

ability of the SNIC was compared to humans, another intelligent system. The benchmarks for 

each system, are compared statistically over several experiments. In general, the SNIC 

performance comparable to a human, but slightly superior on average.  
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