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Reliable change on neuropsychological tests in the Uniform 
Data Set

Brandon E. Gavett1, Lee Ashendorf2, and Ashita S. Gurnani1

1University of Colorado Colorado Springs, Department of Psychology, Colorado Springs, CO USA

2Boston University School of Medicine, Department of Psychiatry, Boston, MA, USA

Abstract

Objective—Longitudinal normative data obtained from a robust elderly sample (i.e., believed to 

be free from neurodegenerative disease) are sparse. The purpose of the present study was to 

develop reliable change indices (RCIs) that can assist with interpretation of test score changes 

relative to a healthy sample of older adults (ages 50+).

Method—Participants were 4217 individuals who completed at least 3 annual evaluations at one 

of 34 past and present Alzheimer’s Disease Centers throughout the United States. All participants 

were diagnosed as cognitively normal at every study visit, which ranged from three to nine 

approximately annual evaluations. One-year RCIs were calculated for 11 neuropsychological 

variables in the Uniform Data Set by regressing follow-up test scores onto baseline test scores, 

age, education, visit number, post-baseline assessment interval, race, and sex in a linear mixed 

effects regression framework. In addition, the cumulative frequency distributions of raw score 

changes were examined to describe the base rates of test score changes.

Results—Baseline test score, age, education, and race were robust predictors of follow-up test 

scores across most tests. The effects of maturation (aging) were more pronounced on tests related 

to attention and executive functioning, whereas practice effects were more pronounced on tests of 

episodic and semantic memory. Interpretation of longitudinal changes on 11 cognitive test 

variables can be facilitated through the use of reliable change intervals and base rates of score 

changes in this robust sample of older adults. A web-based calculator is provided to assist 

neuropsychologists with interpretation of longitudinal change.
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Neuropsychologists are often tasked with re-evaluating individuals to help determine 

whether cognitive functioning has changed over a given time interval. Most 

neuropsychological test instruments are interpreted using normative data collected from a 

putatively healthy sample in order to understand the expected mean and variance in test 

scores produced by nondiseased persons (Mitrushina, Boone, Razani, & D’Elia, 2005). 
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These normative data are typically used to interpret an individual person’s test scores in the 

context of his or her peers, with corrections for demographic factors such as age, education, 

sex, and race (Heaton, Miller, Taylor, & Grant, 2004). When applying norms for the purpose 

of understanding change in older adults, there are two critical issues that could undermine 

interpretation.

First, it is difficult to determine whether the normative data are robust to latent causes of 

cognitive difficulties, especially in older age groups. An older person who is part of a 

normative sample may be in the very early stages of a neurodegenerative disease, such as 

Alzheimer’s disease, but may not be manifesting clinically obvious cognitive difficulties at 

the time the normative data were collected. Recent efforts have been made to include 

participants believed to be disease-free after several years of follow-up (“robust norms;” 

Holtzer, Verghese, Wang, Hall, & Lipton, 2009; Pedraza et al., 2010), as a means of ensuring 

that the normative sample is representative of cognitively healthy individuals.

Second, norms are generally cross-sectional in nature, not longitudinal, yet are interpreted to 

reflect magnitude of change when used for repeated assessments of patients or research 

participants. This ignores properties of the test such as reliability and practice effects, and it 

also discounts statistical effects such as regression to the mean (McCaffrey, Duff, & 

Westervelt, 2000). Various statistical methods have been proposed to account for these 

potential confounds, ranging from simple standard deviation difference methods (see 

Frerichs & Tuokko, 2005), to reliable change model of varying complexity (see Hinton-

Bayre, 2010), to standardized regression-based (SRB) methods (e.g., Attix et al, 2009). See 

Duff (2012) and Heilbronner et al. (2010) for a more detailed discussion of these and other 

issues related to serial assessment in neuropsychology. Robust longitudinal norms 

contextualize the change in an individual’s test scores relative to a sample that is believed to 

have been free from neurodegenerative disease during the test-retest interval. Change in test 

scores that is more extreme than that observed in robust normative samples may reflect a 

change in cognition that is beyond the limits of normal aging (Bläsi et al., 2009). Robust 

norms have been shown to improve diagnostic accuracy in the longitudinal assessment of 

older adults (De Santi et al., 2008; Holtzer et al., 2008; Pedraza et al., 2010).

In this study, we propose to address the two weaknesses discussed above by quantifying 

expected changes in cognitive abilities over time through the use of linear mixed effects 

regression models to calculate reliable change intervals (RCIs). Linear mixed effects models 

are an extension of SRB models, which address longitudinal data by allowing for individual 

variability in baseline test scores (intercepts) and rate of change over time (slopes; Pinhiero 

& Bates, 2000). These models can be used to predict an examinee’s follow-up test score 

based on variables such as the examinee’s baseline test score and a number of demographic 

variables. The observed follow-up test score is compared to the predicted follow-up test 

score, and if the difference is large enough, the change may be interpreted as reliable. The 

magnitude of reliable change is scaled relative to the standard error observed in the linear 

mixed effects model and the degree of confidence desired in the prediction interval (often 

90%). For instance, if the SE is 2.0 and the desired degree of confidence for the interval is 

90%, then the confidence interval would have a range of 2.0 times the standard normal 

distribution quantile associated with a two-tailed alpha level of .05 (i.e., 1.645).1 In this 
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example, 2×1.645=3.29, indicating that the 90% confidence interval would have range of 

3.29 units in both the positive and negative directions. Differences between observed and 

predicted follow-up scores that are more extreme than ± 3.29 are thus suggestive of reliable 

change. By applying RCIs to neuropsychological measurements, one can identify whether a 

change in a given score is clinically interpretable. We seek to produce robust longitudinal 

change indices that can be used in vivo to determine whether individuals are changing at a 

rate that is consistent with normal aging, whether an individual’s rate of change is more 

rapid than expected, or whether a treatment has a beneficial effect on cognition.

We will identify individuals from the National Alzheimer’s Coordinating Center (NACC) 

Uniform Data Set (UDS; Beekly et al., 2007; Morris et al., 2006) who have been confirmed 

through at least three (and up to nine) longitudinal clinical assessments to be cognitively 

healthy. We will then retrospectively examine the first (baseline) and second (follow-up) 

visits in order to quantify the degree of change observed across time in this putatively 

healthy sample. While the UDS neuropsychological battery is well established (Weintraub et 

al., 2009), the psychometric properties are still under evaluation and no RCIs have yet been 

presented, limiting the effectiveness and potentially the accuracy of longitudinal evaluations 

using this selection of tests. As the UDS neuropsychological battery is possibly the most 

widely used research battery for the cognitive assessment of dementia in the United States, it 

is important to identify the longitudinal psychometric characteristics of this battery, for both 

research and clinical purposes. The objective of this study is to present RCIs based on linear 

mixed effects models for each of the available UDS neuropsychological variables. As a 

result, readers will have access to robust longitudinal data that can be used to interpret 

cognitive changes in older adults.

Method

Participants

This study was determined to be exempt from human subjects review by the University of 

Colorado Colorado Springs IRB. Data used in the present study were obtained from the 

NACC’s publicly available database. Created by the National Institute on Aging, the NACC 

compiles a wide variety of data, including neuropsychological test scores from 34 past and 

present Alzheimer’s Disease Centers (ADCs) using the UDS battery. We included 

participants who had completed at least three visits, including one baseline visit, between 

September 2005 and March 2014. A total of 4598 individuals in the database were 

diagnosed as cognitively normal at all visits. We also excluded 92 participants who were less 

than 50 years old at their baseline visit and 302 participants who did not speak English as 

their primary language or who were not assessed in English. In total, we excluded 381 

participants (13 participants met more than one of the exclusion criteria), leaving a sample 

of 4217 for inclusion in the study. These participants underwent at least three – and up to 

nine – approximately annual evaluations at an ADC and were diagnosed as cognitively 

normal at all evaluations. Because very few participants completed more than seven visits, 

1For small sample sizes, this standard normal quantile can be replaced with the appropriate t distribution quantile for a given degrees 
of freedom.
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we did not analyze data from the eighth or ninth visits. See Table 1 for details regarding 

participant demographic variables.

Measures

The neuropsychological measures available for these analyses included the Mini-Mental 

State Examination (Folstein, Folstein, & McHugh, 1975), WAIS-R Digit Span Forward and 

Backward conditions (Wechsler, 1981), WAIS-R Digit Symbol (Wechsler, 1981), Trail 

Making Test parts A and B (Reitan & Wolfson, 1993), Story A from WMS-R Logical 

Memory (Wechsler, 1987), two semantic fluency tasks (animals and vegetables; Weintraub 

et al., 2009), and the 30 odd-item short form of the Boston Naming Test (Jefferson et al., 

2007). These tests are common to most dementia clinicians and researchers, and will not be 

described here. See the paper by Weintraub and colleagues (2009) for more information.

Data Analysis

The test data, which were available for as few as three to as many as seven approximately 

annual visits, were used in a linear mixed effects model for each test, with visit number 

nested within participants. For each test, we modeled linear, quadratic, and logarithmic 

trends and found that a linear trend provided the best balance between model fit and 

parsimony (data not shown). Reliable change intervals were derived for the second visit 

only. All analyses were performed in R version 3.1.2 (R Core Team, 2015). The lme4 
package (version 1.1-8) was used for longitudinal modeling (Bates, Maechler, Bolker, & 

Walker, 2015).

Eleven linear mixed effects regression models, one for each test, were specified to include 

both fixed and random (intercept and slope) effects. The follow-up test scores from visits 

two to seven were regressed onto the following fixed effects: baseline test score, age at 

baseline (years), education (years), visit number, assessment interval (years post-baseline), 

race (Caucasian or non-Caucasian), and sex (male or female). All predictor variables were 

entered simultaneously; although stepwise regression procedures have been used previously 

for RCI studies in the neuropsychology literature, these methods were not used here. Being 

data driven, rather than theory driven, models identified using stepwise methods have the 

potential to capitalize on chance and may not generalize beyond the sample data; many other 

limitations have also been identified (e.g., Whittingham, Stephens, Bradbury, & Freckleton, 

2006). Dummy coding was used for race and sex, with Caucasians and males as the 

reference categories for their respective groups. For each model, fixed effects parameter 

estimates and their 95% confidence intervals were obtained using restricted maximum 

likelihood estimation. The standard deviation of the random intercepts and slopes were also 

obtained. Predicted follow-up scores were based on the fixed effects parameter estimates 

only. To account for the variability introduced by the uncertainty in both the fixed and 

random effects, 90% reliable change intervals were based on the residual standard error as 

well as the variability in the predictions. The variability in the predictions was estimated 

using parametric bootstrapping (B = 1000) of the predicted test scores across all visits. This 

bootstrapping procedure was based on simulated values for the random effects to account for 

these sources of variability and results in unique prediction intervals for each participant.
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In addition to calculating RCI, we also examined the frequency with which raw scores 

changed from baseline to follow-up. In order to establish base rates for longitudinal change 

in this sample, we derived cumulative percentages for raw score changes of each observed 

magnitude. It is not uncommon for “statistically significant” score differences to occur 

frequently in healthy samples (Matarazzo & Herman, 1984). Therefore, these base rate data 

can serve to augment the RCI values to not only determine the statistical significance of the 

observed change from baseline to follow-up, but to determine the relative frequency of 

change of a given magnitude.

Results

Participant demographics are presented in Table 1. Descriptive statistics for the 11 

neuropsychological tests at baseline and one-year follow-up are presented in Table 2. The 

fixed effects parameter estimates and their 95% confidence intervals are presented in Table 

3, along with the standard deviations of the random effects. For each test, the random slope 

accounted for very little variability, with SDs ranging from 0.09 (MMSE) to 3.99 (TMT-B); 

in contrast, the SDs of the random intercept terms were more sizeable, ranging from 0.66 

(MMSE) to 20.99 (TMT-B). These results suggest that, although individuals varied in their 

baseline test scores, there is little heterogeneity in individual trajectories of change over time 

on any of the tests. These patterns of change are depicted graphically in Figure 1. As seen in 

this figure, the margin of error in the average reliable change intervals increases, sometimes 

asymmetrically, across visits for most tests. A closer examination of the fixed effects 

parameter estimates and their 95% confidence intervals in Table 3 reveals that, for most 

tests, baseline test score, age, education, and race were the most reliable predictors of 

follow-up test score. Higher baseline test scores, younger age, more years of education, and 

Caucasian race were associated with better performance on all follow-up test scores. Female 

sex was associated with higher follow-up scores on the MMSE, Digit Symbol Coding, 

vegetable fluency, and Logical Memory I and II, whereas male sex was predictive of higher 

follow-up scores on the Boston Naming Test. A longer post-baseline interval was predictive 

of worse follow-up scores on all tests except the MMSE and Forward Digit Span. More 

frequent exposure to tests (i.e., a larger number of previous visits) yielded better scores on 

Backward Digit Span, Digit Symbol Coding, the Boston Naming Test, and the two Logical 

Memory subtests. Neither visit number nor post-baseline interval were predictive of follow-

up scores on the MMSE and Forward Digit Span.

As there is concern for potential heteroscedasticity among the regression residuals, a plot of 

the residuals vs. fitted values is provided in Figure 2. The models for MMSE, TMT-A, TMT-

B, and BNT should be interpreted with caution due to non-normal score distributions caused 

by floor and ceiling effects. Floor effects (for the Trail Making Test) and ceiling effects (for 

MMSE and BNT) in the data may bias the interpretation of change scores in examinees who 

are close to floor or ceiling on these tests at baseline.

Table 4 contains data relevant to the reliable change indices from baseline to the first annual 

follow-up visit. The methods used in this study produce a unique RCI for each participant. 

To summarize the margin of error needed for reliable change, the data shown in Table 4 

were derived from the average participant in our sample (i.e., with mean values of all 
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continuous predictor variables and modal values for sex [i.e., female] and race [i.e., 

Caucasian]). The column labeled “SEE” reflects the residual standard error, as reported in 

Table 3. The column labeled “90% PI MOE” represents the bootstrapped margin of error for 

predicting follow-up test scores, conditioned on all random effects. The column labeled 

“90% RCI MOE” represents the margin of error for the 90% reliable change intervals. If the 

difference between observed and predicted follow-up scores falls outside of this interval, the 

change may be interpreted as reliable with 90% confidence. The test scores associated with a 

number of relevant base rates of score changes on these 11 tests are presented in Table 5.

Readers wishing to obtain reliable change intervals for other combinations of predictor 

variables are referred to the web-based calculator created to supplement this manuscript. It 

should be noted, however, that predictions for out-of-sample data cannot be conditioned on 

the random effects, which may underestimate the magnitude of the reliable change intervals. 

This calculator can be accessed at https://begavett.shinyapps.io/UDS_RCI.

Discussion

As the aging population continues to grow worldwide, the number of individuals who suffer 

from neurodegenerative diseases also continues to grow (Sosa-Ortiz, Acosta-Castillo, & 

Prince, 2012). Clinical diagnosis of neurodegenerative disease requires a change from a 

baseline level of functioning (McKhann et al., 2011), which supports the need for serial 

assessment. Despite the clear importance of serial assessment in the tracking of longitudinal 

cognitive decline, relatively little attention has been paid to issues of interpreting change 

scores. Without an understanding of factors such as normal aging, practice effects, 

regression to the mean, and measurement error, it may be easy to misinterpret score 

differences between baseline and follow-up. Because there are very limited normative data 

available for serial assessment data and change scores, interpretation of change is often 

subjective.

The current study adds to the reliable change literature in two important ways. First, we have 

used linear mixed effects regression to model change in cognitive test scores over at least 

three and as many as seven approximately annual visits. The results of these analyses reveal 

that there is little heterogeneity in the individual trajectories of change over time in a large 

sample believed to be free from cognitive impairment. Second, these results also help to 

tease apart the relative contributions of maturation (i.e., normal aging) and practice effects 

that can affect follow-up test scores. Of the 11 test scores examined here, practice effects 

were most evident for Backward Digit Span, Digit Symbol Coding, the Boston Naming Test, 

and the two Logical Memory subtests. Based on the parameter estimates for these tests, a 

one-point test score increase appears after approximately 2 visits for Logical Memory 

Immediate and Delayed, 3 visits for Digit Symbol Coding, 9 visits for the Boston Naming 

Test, and 17 visits for Backward Digit Span, when holding all other predictor variables 

constant. For many tests, these practice effects are outweighed by the length of the post-

baseline assessment interval, which was inversely associated with performance on Backward 

Digit Span, Digit Symbol Coding, TMT-A and B, both semantic fluency tasks, the Boston 

Naming Test, and both Logical Memory subtests. For Backward Digit Span, Digit Symbol 

Coding, TMT-A and B, and semantic fluency, the post-baseline assessment interval was 
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more pronounced than the influence of practice. On the other hand, practice effects 

outweighed maturation effects on the Boston Naming test and both Logical Memory 

subtests. Therefore, literature on practice effects may be augmented by consideration of test-

retest intervals (e.g., Duff, Callister, Dennett, & Tometich, 2012).

These linear mixed effects models were used to calculate a standard error for predicted test 

scores at an examinee’s second visit. These standard errors are used, along with the 

variability in predicted test scores, to generate 90% reliable change intervals, which provide 

a range of difference scores that fall within the test’s margin of error while accounting for a 

number of important covariates and sources of variability. The results provide empirical data 

on change scores from baseline to approximately one-year follow-up in a robust sample of 

participants who underwent at least three approximately annual evaluations and were never 

diagnosed with any form of cognitive impairment at any visit. Using regression methods that 

account for maturation effects (i.e., aging), practice effects, regression to the mean, baseline 

test scores, and demographic variables, we present data for eleven different UDS 

neuropsychological test variables that can be used to calculate a predicted follow-up test 

score and 90% reliable change intervals for the difference between observed and predicted 

follow-up scores. Follow-up test score changes that fall outside of these intervals can be 

interpreted as reflecting “true” change with a magnitude that is larger than would be 

expected based on the measurement error of the test. To augment these reliable change 

intervals, we also present data on the frequency with which score changes were observed in 

this robust sample. Because statistically significant changes in test scores may often be very 

frequent in a clinical sample, interpreting RCIs along with base rate data can assist with the 

interpretation of score changes in the context of how commonly or rarely such a change 

score is expected to occur in a normative sample.

By way of an example, consider a 73-year-old, college-educated Caucasian man evaluated 

using these UDS measures, with scores and percentiles (calculated using Shirk et al., 2011) 

presented in the first two columns of Table 6. If we were to determine “impairment” by 

using a global cutoff of z = −1.5 (7th percentile), we would find no scores below that cutoff 

and therefore there are no impaired cognitive domains at this initial visit. Thirteen months 

later, he is seen for his first follow-up, reports no functional problems, and his 

neuropsychological test scores are provided in the second two columns of that table. Using 

the same standard for “impairment,” we would say that he is now impaired on Digit Symbol 

Coding and TMT-B and exhibits difficulty with complex processing speed. However, using 

the RCIs developed above and as obtained from the web-based calculator, we can see that he 

exhibited decline in excess of the 90% interval of change (change z-score > ±1.645) on 

MMSE, animal naming, vegetable fluency, and the BNT. Even though he is not “impaired” 

in the language domain using the fixed z-score criterion, he displayed decline on three 

language-domain tasks relative to the baseline exam, suggesting that this might be a domain 

of clinical interest. In contrast, while Digit Symbol Coding and TMT-B both technically 

declined into the impaired range, neither test showed reliable change across visits and 

therefore, despite the newly developed “impairment” on these tests, this cannot be 

interpreted as a decline relative to the visit 1 baseline.
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All demographic variables were found to contribute to the prediction of follow-up scores, 

with some (e.g., age, education) more robust than others (e.g., sex). It should be noted that 

these results were obtained from a sample of older adults who were diagnosed as cognitively 

healthy at their baseline visit. Therefore, the results presented in this paper, especially the 

data used to predict follow-up test scores (Table 3) cannot be generalized beyond this 

population. It would be a misuse of the data to attempt to predict follow-up test scores for 

individuals with cognitive impairment at baseline. Similarly, the results will not generalize 

to individuals whose baseline test scores are not included in the test score intervals presented 

in Table 2, or to people whose demographic variables or test-retest intervals were not 

observed in the current study.

This study is limited in a number of ways. First, the data in the current sample were obtained 

from the NACC, which compiles data from 34 past and present ADCs across the United 

States. Each ADC may differ somewhat in its recruitment methods, especially for 

cognitively healthy individuals. The sample used in this study was not recruited for the 

purposes of producing normative data (e.g., random sampling was not employed), and valid 

concerns may be raised about the external validity of these findings. The sample was also 

highly educated (M = 15.80, SD = 2.79) and was under-representative of racial and ethnic 

minorities. In contrast, the sample is very large, geographically diverse, and continued 

follow-up beyond the two visits used in this study gives confidence that the participants were 

not in the early stages of a neurodegenerative disease at the time the data were collected. 

Several of the neuropsychological test variables in the UDS have non-normal distributions. 

As discussed above, truncated distributions may be associated with heteroscedasticity 

(Figure 2), which could contribute to an underestimate of the residual variance for tests with 

floor or ceiling effects (i.e., MMSE, TMT, BNT).

Another limitation of the results is the finding that most of the test variables included in the 

current study possessed test-retest reliabilities below .70 (Table 2). These findings are 

roughly consistent with one-year test retest reliability estimates derived from meta-analysis 

(Calamia, Markon, & Tranel, 2013). The change in mean scores from baseline to follow-up 

is likely to be reflective of the magnitude of history and maturational influences acting 

across the two time points. The strength of the correlation between test scores at two 

successive time points may be indicative of the individual differences in variability of 

change (Salthouse & Tucker-Drob, 2008). The low test-retest correlations could be attributed 

to random error, real change in the construct validity of the test between the two time points, 

or measurement error. Though maturational influences may affect within-person change in 

test scores, we also show that practice effects also contribute to change in performance on 

most tests (Salthouse & Tucker-Drob, 2008). As might be expected, tests involving attention, 

processing speed, mental efficiency, and working memory were more susceptible to 

maturational influences (i.e., longer test-retest intervals), whereas tests involving episodic 

and semantic memory were more susceptible to practice effects.

Although a minority of the tests in the UDS battery are current and in common use in 

clinical settings (i.e., TMT, animal fluency, BNT), these results may still be valuable to both 

clinicians and researchers who perform cognitive evaluations of older adults. While newer 

editions of these tests have been published in recent years (e.g., the WAIS and WMS have 
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twice been updated), it is unclear whether these updates have led to substantial 

improvements in the longitudinal measurement properties of these tests for the assessment of 

elderly individuals. The results of the current study can be valuable in that there is a paucity 

of longitudinal data that have been published in robust samples, especially for modern 

versions of these tests. The lack of available robust longitudinal data for some modern tests 

(e.g., WAIS-IV) could affect validity when interpreting changes in test scores without access 

to appropriate data. Although the tests used in this study may be older versions, they should 

not necessarily be considered obsolete due to the fact that they are being used in large, 

modern, federally funded research projects on cognitive aging and neurodegenerative disease 

(e.g., the NACC UDS). In fact, one could argue that the availability of robust longitudinal 

data make these tests more appropriate than updated versions for serial assessment of older 

adults, especially if one takes the perspective that research evidence, and not test publishers, 

should dictate the selection of tests and test norms used by neuropsychologists (Adams, 

2000; Bush, 2010; Silverstein & Nelson, 2000; Strauss, Spreen, & Hunter, 2000).

Many of the UDS neuropsychological tests have marginal test-retest reliability for 

measuring change in cognition across approximately annual evaluations. Although the 

lengthy interval between baseline and follow-up testing (M = 14.62 months; SD = 5.20) 

would be expected to cause a decrease in test-retest reliability relative to shorter intervals, 

these reliability data are thought to possess better external validity than reliability 

coefficients obtained at shorter intervals because approximately one year is believed to be a 

typical (or even shorter than typical) retest interval for older adults who are cognitively 

healthy at baseline. Because of these undesirable test-retest reliability values, the margin of 

error required to detect reliable change can be quite large for some tests (Table 4). Although 

this margin of error may not be sufficiently precise to detect subtle changes, these results 

may nevertheless be valuable for detecting more obvious cognitive decline across an 

approximately one-year period. The results presented here suggest that there may be great 

value in focusing on test-retest reliability in the development of new cognitive tests, but 

interpretation of score changes must also account for demographic variables, past exposure 

to tests, and test-retest intervals.
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Figure 1. 
Predicted test scores (black circles) and 90% reliable change intervals (dotted red lines) for 

each test across visits 2 to 7 based on linear mixed effects regression.
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Figure 2. 
Residuals vs. fitted plots at visit 2 for each test based on linear mixed effects regression.
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Table 1

Participant Demographics

Variable N M SD Range

Visits 4217 5.12 1.68 3 – 9

Age at Baseline 4217 72.61 8.77 50.1 – 100.3

Education (years) 4202 15.80 2.79 3 – 25

Sex (Female) 2857 (67.7%) -- -- --

Caucasian Race 3440 (81.6%) -- -- --

Hispanic Ethnicity 88 (2.1%) -- -- --

T1 to T2 Interval (months) 4217 14.62 5.20 4.8 – 63.6

T2 to T3 Interval (months) 4217 13.92 4.73 3.6 – 58.8

T3 to T4 Interval (months) 3256 13.51 3.79 2.4 – 55.2

T4 to T5 Interval (months) 2414 13.25 3.50 4.8 – 51.6

T5 to T6 Interval (months) 1771 12.86 2.98 1.2 – 33.6

T6 to T7 Interval (months) 1056 12.59 2.24 7.2 – 26.4

Note. N = sample size; M = mean; SD = standard deviation.
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Table 4

Reliable change intervals from baseline to the first annual follow-up visit for the average participant in the 

study sample.

Test SEE 90% PI MOE 90% RCI MOE

MMSE 0.93 [−0.67, 1.07] [−2.20, 2.60]

DS-F 1.13 [−1.77, 0.84] [−3.62, 2.69]

DS-B 1.24 [−0.83, 2.20] [−2.87, 4.25]

Digit Symbol 4.19 [−12.27, 0.55] [−19.16, 7.44]

TMT-A 7.81 [−6.15, 13.05] [−19.00, 25.90]

TMT-B 24.06 [−15.26, 38.10] [−54.83, 77.67]

Animals 3.08 [−4.15, 3.55] [−9.23, 8.63]

Vegetables 2.55 [−5.86, −0.45] [−10.06, 3.75]

BNT 1.30 [−2.01, 1.69] [−4.14, 3.82]

LM-I 2.13 [−2.43, 2.90] [−5.93, 6.40]

LM-D 2.17 [−3.92, 1.78] [−7.49, 5.35]

Note. SEE = standard error of the estimate; PI = Prediction Interval Margin of Error; RCI MOE = Reliable Change Interval Margin of Error; 
MMSE = Mini-Mental State Examination; DS-F = Digit Span Forward; DS-B = Digit Span Backward; TMT = Trail Making Test; BNT = Boston 
Naming Test; LM-I = Logical Memory Immediate Recall; LM-D = Logical Memory Delayed Recall.
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