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Unlocking the Potential of CuAgZr Metallic Glasses: A
Comprehensive Exploration with Combinatorial Synthesis,
High-Throughput Characterization, and Machine Learning

Krzysztof Wieczerzak,* Alexander Groetsch, Krzysztof Pajor, Manish Jain,
Arnold M. Müller, Christof Vockenhuber, Jakob Schwiedrzik, Amit Sharma,
Fedor F. Klimashin, and Johann Michler

In this work, the CuAgZr metallic glasses (MGs) are investigated, a promising
material for biomedical applications due to their high strength, corrosion
resistance, and antibacterial activity. Using an integrated approach of
combinatorial synthesis, high-throughput characterization, and machine
learning (ML), the mechanical properties of CuAgZr MGs are efficiently
explored. The investigation find that post-deposition oxidation in
inter-columnar regions with looser packing causes high oxygen content in
Cu-rich regions, significantly affecting the alloys’ mechanical behavior. The
study also reveals that nanoscale structural features greatly impact plastic
yielding and flow in the alloys. ML algorithms are tested, and the multi-layer
perceptron algorithm produced satisfactory predictions for the alloys’
hardness of untested alloys, providing valuable clues for future research. The
work demonstrates the potential of using combinatorial synthesis,
high-throughput characterization, and ML techniques to facilitate the
development of new MGs with improved strength and economic feasibility.

1. Introduction

The field of materials science has been witnessing a rapid surge
in the development and discovery of novel materials, which
holds the key to unlocking unprecedented technological advance-
ments. Multicomponent materials such as MGs have garnered
significant attention due to mechanical and physicochemical
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properties that are not observed in
conventional crystalline alloys such as
high hardness and strength,[1] good
wear resistance,[2] excellent corrosion
resistance,[3] and high elasticity.[4] MGs
are typically composed of three or more
elements and produced in a narrow com-
position range in the vicinity of deep
eutectics.[5,6] However, the vast compo-
sitional space associated with multicom-
ponent systems presents a significant
challenge in identifying and optimizing
materials with desirable properties. Con-
sequently, there is a pressing need for
innovative approaches that can accelerate
the exploration of this complex landscape.

Combinatorial synthesis of material li-
braries (MatLib) has emerged as a powerful
strategy to address this challenge. Among
the various techniques employed for combi-
natorial synthesis, magnetron co-sputtering
has proven to be a highly effective and

versatile method for depositing thin film materials with
controlled compositions and structures.[7–9] Magnetron co-
sputtering allows the synthesis of compositional-focused
MatLibs, where the concentration of each constituent varies
across the substrate, allowing for the rapid screening and opti-
mization of material properties. A large amount of experimental
data produced by high-throughput screening makes it possible to
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employ ML techniques, which have been found to be particularly
useful in this endeavor,[10] as they can be used to identify pat-
terns and relationships in the data that may not be immediately
apparent. Furthermore, ML models can also be used to predict
the properties of new metallic glass compositions, which can
greatly accelerate the discovery process.

In this work, we synthesized compositionally-focused CuAgZr
MatLib within a range of chemical compositions exhibiting
high glass forming ability (GFA). Produced MGs and amor-
phous/crystalline composites were characterized using high-
throughput methods to determine their chemical composition,
impurity levels, structure, and the effects of these factors on me-
chanical behavior. The generated database was employed to train
a ML model, which subsequently predicted the mechanical prop-
erties of untested alloys in virtual space. These predictions were
validated using a separate set of experimental data, which were
not included in the training set. The objective of this work was
to utilize combinatorial synthesis, high-throughput characteri-
zation, and ML to efficiently screen the mechanical properties
of CuAgZr MGs. These alloys are particularly interesting due to
their unique combination of high strength, corrosion resistance,
and antibacterial activity.[11,12] Given these properties, CuAgZr
MGs show great potential as coatings for biomedical applica-
tions, where high mechanical properties are crucial for ensuring
durability. Investigating the underlying mechanisms governing
the mechanical behavior of CuAgZr metallic glasses is essential
to identify the best candidates and optimize their properties for
specific applications. Moreover, our research results enable the
identification of guide alloys for scaling up and producing bulk
metallic glasses, thus paving the way for technological advance-
ments and innovation.

2. Results

2.1. Chemistry and Structure

Experimental studies have shown that MGs can be stabilized in
the vicinity of deep eutectic valleys,[13,14] therefore to increase the
chances of the amorphization of the synthesized alloys, we fo-
cused on the most reactive region of the CuAgZr system based
on the liquidus surface projection, assessed by Kang and Jung[15]

and shown in Figure 1a. The authors predicted the occurrence
of the stable liquid miscibility gap in the middle of the ternary
system (“2 Liquids” in Figure 1a), which is associated with the
tendency to immiscibility in Ag-Cu and Ag-Zr binary systems.
Another characteristic feature of this system is the high density
of peritectic and eutectic valleys in the region with low Ag con-
tent (<25 at. %), thus, the physical vapor deposition (PVD) pro-
cess was calibrated to synthesize a MatLib located in this region.
The composition range of the synthesized MatLib overlaps very
well with the reactive region of the CuAgZr system, i.e., where
peritectic and eutectic valleys are located. Figure 1b presents a
photo of the as-deposited CuAgZr MatLib onto silicon nitride-
coated substrate in the form of 61 patches with a diameter of
5 mm, uniformly distributed on the silicon wafer. The mark-
ing of patches on the tested MatLib is shown in Figure S1 (Sup-
porting Information). The chemical composition of each patch
was determined at its center via X-ray fluorescence (XRF) spec-
troscopy, with a spot size of 0.3 mm. Figure 1c–f show thickness

and compositional distribution across the wafer (results are also
summarized in Table S1, Supporting Information). The obtained
film thickness varies across the wafer in the range between 3.34
and 5.23 μm, which results from the different deposition rates of
the sputtered elements. Regions with a high concentration of a
given element were located in close proximity to the correspond-
ing magnetron. A steep concentration gradient can be observed
in these areas. As the distance from the magnetron increases,
the concentration gradient smoothly turns into an almost flat dis-
tribution. Figure 1g shows X-ray diffraction (XRD) results of se-
lected patches, marked in Figure 1a. It should be noted that the
crystallographic information was obtained from the entire patch
with a diameter of 5 mm, so the gradients of each element’s con-
tent were marked above each diffractogram. The method em-
ployed to determine the gradient of the chemical composition
started with the use of XRF spectroscopy. This was utilized to
identify both the center position of each patch and the content of
each element. Subsequently, a bivariate cubic function was used
to define chemical composition surfaces, representing the ele-
mental content as the function of the x, y position. Leveraging
these surfaces, the gradient for each element within the patches
was then calculated. This methodology offered a systematic ap-
proach for assessing the direction of elemental content change
within each patch of the investigated MatLib. It’s important to
note that the fit of the function, represented by the R2 value, was
greater than 0.99 in every case, indicating a high degree of accu-
racy in the model.

Broad diffraction peaks confirm amorphous or quasi-
amorphous structure of the investigated alloys, which proves
that the alloys located near the peritectic and eutectic valleys
have good GFA. For Cu37.1Ag4.8Zr58.1 (P14) and Cu48.1Ag4.2Zr47.8
(P17) alloys, sharp and low-intensity peaks can be observed that
correspond to the Ag-rich face-centered cubic (FCC) phase and
suggest segregation of Ag, most likely into the inter-columnar
regions. This can be deduced from the work of Huszar et. al.[16]

who studied a thin film of the Cu42Ag5Zr53 alloy and observed
a clearly increased concentration of Ag in the inter-columnar
regions. The asymmetrical and wide shape of the main peaks for
the Cu58.5Ag5Zr36.5 (P42) alloy indicates the presence of at least
two phases with an amorphous or nanocrystalline structure for
this alloy.

2.2. Oxygen Contamination

The mechanical properties of metals strongly depend on the
amount of impurities,[17] therefore detailed research was carried
out on their content in the tested CuAgZr MatLib. Due to the fact
that a wide range of chemical compositions have been produced,
large variations in the content of contaminants such as oxygen
can be expected. Figure 2 displays the results of a semiquanti-
tative oxygen analysis carried out in the center of each patch via
energy dispersive X-ray spectroscopy (EDS) (results are also sum-
marized in Table S1, Supporting Information) and a quantita-
tive oxygen analysis of selected patches via elastic recoil detection
analysis (ERDA). EDS measurements (Figure 2a) show a clear
trend in oxygen distribution, i.e., its concentration increases to-
wards the Cu-rich region. Figure 2b presents quantitative ERDA
depth profiles of selected samples, marked in Figure 2a. The
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Figure 1. Chemical and structural analysis of the CuAgZr MatLib. (a) Calculated liquidus surface projection in the CuAgZr system via the Calculation
of Phase Diagrams (CALPHAD) method, adapted from.[15] E – ternary eutectic, P – ternary peritectic, M – ternary monotectic. On the slice of this
ternary system thickness and compositional distribution of the as-deposited CuAgZr MatLib, measured with XRF, is presented. (b) The appearance
of the as-deposited CuAgZr MatLib. (c)–(f) Contour plots for the thickness and elemental concentration of the investigated thin film on a wafer. (g)
X-ray diffractograms of selected regions of MatLib, marked in Figure 1a, showing amorphous or quasi-amorphous structures. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article).

ERDA results are in good agreement with EDS measurements.
In the low oxygen regions according to EDS, i.e., Cu25.4Ag4.3Zr70.3
(P1), Cu35.7Ag13Zr51.3 (P36), Cu45Ag14Zr41 (P52), a relatively low
oxygen content was found by the ERDA method, i.e., 2.85, 1.12
and 1.08 at. %, respectively. On the other hand, in the oxygen-
rich region according to the EDS, a surprisingly high oxygen
content of 21.37 at. % for the Cu58.5Ag5Zr36.5 alloy (P42) was
found by ERDA. As the origin of oxygen in the tested MatLib
is unclear, a Transmission Electron Microscopy (TEM) experi-
ment was conducted to analyze its distribution and solve this
puzzle. Figure 3 shows the results of TEM analysis on an al-
loy with high oxygen content Cu58.5Ag5Zr36.5 (P42) and low oxy-
gen content Cu45Ag14Zr41 (P52). The Cu58.5Ag5Zr36.5 (P42) alloy
exhibits a columnar structure with a width of columns in the
range of 70 – 100 nm (Figure 3a–c). Selected area electron diffrac-
tion (SAED) pattern revealed quasi-amorphous phase compo-
sition. Dark-field (DF) imaging exposed the location of crys-
talline phases in the inter-columnar regions (Figure 3c). The crys-

talline phases, i.e., Cu-rich FCC phase and ZrO2, were identified
through indexing of intensity profile (Figure 3d) taken from the
SAED pattern. Figure 3e shows the distribution of elements in
the Cu58.5Ag5Zr36.5 (P42) alloy. There is a clear enrichment of the
inter-columnar regions with oxygen. Line scan analysis revealed
that the oxygen-enriched areas are simultaneously Cu-depleted
as shown by the dashed lines in Figure 3e, further indicating
the formation of ZrO2. The structure of the Cu45Ag14Zr41 (P52)
alloy is clearly more homogeneous (Figure 3f–h). Nevertheless,
at high magnification, a fibrous structure can be observed with
column widths in the range of 6–8 nm. SAED confirm the fully
amorphous structure of the investigated alloy (Figure 3g,i) which
agrees with the XRD experiment (Figure 1g), while TEM-EDS
analysis shows a uniform distribution of elements in the alloy
(Figure 3j). The presence of a columnar structure in a coating is in
line with Thornton’s structural zone model of coating growth.[18]

This model suggests that if the ratio of substrate temperature (T)
to the melting point of the material (Tm) is less than 0.3, then
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Figure 2. A semiquantitative oxygen analysis performed on the CuAgZr MatLib using EDS (a) and a normalized quantitative ERDA depth profiles analysis
of selected alloys (b). The regions selected for the ERDA analysis are marked in Figure 2a. Note that the depth was estimated approximately based on
the average theoretical alloy density determined from the Rutherford backscattering spectrometry (RBS) measurements. Values quoted to the right of
the profiles represent average concentration in the depth range marked by red lines. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article).

columnar growth with voided boundaries can be expected. On the
other hand, if the T/Tm ratio is between 0.3 and 0.5, the forma-
tion of dense inter-columnar boundaries is expected. In the case
of compositionally-focused MatLib different film morphologies
can be expected due to variations in Tm as a function of chemi-
cal composition (Figure 2a), even if T remains constant during
synthesis.

2.3. Mechanical Performance

The effect of chemical composition on hardness (H) and reduced
elastic modulus (Er) is shown in Figure 4a (results are also sum-
marized in Table S1, Supporting Information). Both H and Er
distribution show a non-obvious pattern as they do not follow a
chemical composition gradient (Figure 1). Surprisingly, the low-
est H and Er are found in Zr-rich regions, while the highest values
of the above properties were identified in Cu-rich regions. This
surprise is due to the fact that Zr has the highest melting point
among the elements in the CuAgZr system, which is directly re-
lated to bond energy. It is worth noting that alloys with similar
H may differ in Er by up to 20 GPa. No clear correlation between
the mechanical properties and the oxygen content (Figure 2) was
found based on their distribution.

Figure 4b–g show results of micropillar compression in se-
lected alloys from the CuAgZr system, marked in Figure 4a, with
exemplary scanning electron microscope (SEM) images of mi-
cropillars after deformation. The micropillars were produced in
close proximity, so the differences in the content of individual el-
ements are less than 0.001 at. %, which is manifested by a very
good reproducibility of the results and a small standard devia-
tion of yield strength 𝜎y (results are summarized in Table S2,
Supporting Information). The 𝜎y of the investigated alloys is
in the range from 0.89 GPa for Cu58.5Ag5Zr36.5 (P42) alloy to

1.74 GPa for Cu56.5Ag10.4Zr33 (P59) alloy. Moreover, the serrated
flow behavior from the load-displacement response can be seen
for most alloys except the high-oxygen Cu58.5Ag5Zr36.5 (P42) alloy.
In the case of Cu37.1Ag4.8Zr58.1 (P14), Cu35.7Ag13Zr51.3 (P36), and
Cu56.5Ag10.4Zr33 (P59) alloys, the deformation character is mixed,
i.e., serrated alternates with homogeneous (monotonic segments
on the stress-strain curve after exceeding the yield point). This
demonstrates the profound influence of nanoscale structural fea-
tures on plastic yielding and flow in the tested alloys. SEM im-
ages reveal the occurrence of multiple shear bands, which indi-
cate that one shear band was not sufficient to dissipate the ap-
plied energy. Formation of a single shear band causes stress un-
loading or strain relaxation in their vicinity. Therefore, new shear
bands appear at a certain characteristic spacing. It should be
noted here that the multiplication phenomenon of shear bands
does not depend solely on the chemical composition,[19] but
may also depend on the sample geometry,[20] loading mode[21]

and atomic topological aspects (free volume, defects, etc.).[22] Re-
garding the post mortem nature of the micropillar shape, the
oxygen-rich Cu58.5Ag5Zr36.5 (P42) alloy is clearly different from
the others. The alloy is characterized by a columnar structure
and contains a certain fraction of crystalline phases, i.e., Cu-
rich FCC and ZrO2 phases (Figure 3). In the highly deformed
micropillar the columns underwent splitting and a high degree
of bending. Figure 4h shows correlation between Yield strength
and hardness. The Cu37.1Ag4.8Zr58.1 (P14), Cu35.7Ag13Zr51.3 (P36),
and Cu56.5Ag10.4Zr33 (P59) alloys that had mixed character of
deformation follow the classical relationship H≈3𝜎y, proposed
by Ashby and Jones, and Tabor.[23] Other alloys have a rela-
tionship H>3𝜎y typical for glasses that display brittle behavior
even under compression.[24,25] This group includes both low-
oxygen (Cu25.4Ag4.3Zr70.3 (P1) and Cu56.5Ag10.4Zr33 (P59)) alloys,
and high-oxygen (Cu58.5Ag5Zr36.5 (P42)) alloy, so the main alloy-
ing elements are responsible for these characteristics.
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Figure 3. TEM analysis of the Cu58.5Ag5Zr36.5 (P42) and Cu45Ag14Zr41 (P52) alloys. (a)–(c) TEM images displaying the columnar structure of the
Cu58.5Ag5Zr36.5 alloy. SAED patterns (inset in (b)) of the Cu58.5Ag5Zr36.5 alloy showing diffuse pattern corresponding to amorphous structure, deco-
rated by spots corresponding to crystalline regions. The part of the diffraction pattern marked by a red circle was used for DF imaging (c) of the same
region as shown in (b), where it can be seen that the crystalline phases are located in the regions between the amorphous columns. (d) Intensity profile
taken from the SAED pattern (b) with crystalline phase’s identification. (e) TEM-EDS maps and line scan showing enrichment in oxygen of the inter-
columnar regions. (f)–(h) TEM images displaying columnar structure of the Cu45Ag14Zr41 alloy showing clearly narrower columns (6–8 nm) compared
to the Cu58.5Ag5Zr36.5 alloy (70–100 nm). (i) Intensity profile taken from the SAED pattern (g) indicating fully amorphous structure. (j) TEM-EDS maps
and line scan showing homogeneous distribution of elements within the alloy. HAADF – high-angle annular dark field, BF – bright-field, DF – dark-field.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

2.4. Prediction of the Hardness of Untested Alloys in Virtual
Space

The experimental dataset on hardness/strength provided in this
work obtained using high-throughput nanoindentation enables
the application of machine learning methods to identify relevant
patterns and correlations between input variables such as topo-
logical, chemical, electronic structure, mechanical descriptors,
and desired properties (e.g., hardness or strength). A predictive
model developed on this basis can subsequently be used to fore-
cast the properties of alloys that extend beyond the compositional
space studied in this work.

Figure 5a displays the Pearson correlation coefficient map
between different features. Those with a correlation coefficient
greater than 0.95 were considered highly correlated, which im-
plies that these variables encompass similar or identical informa-
tion. Our choice of 0.95 as the threshold was carefully considered:
it was a balance between maintaining enough features for a com-
prehensive analysis and eliminating redundant or closely linked
variables. This threshold allowed us to retain ten distinct features

(as seen in the bottom-left corner of Figure 5a) from the originally
highly-correlated pool. The reason for this selection was to effec-
tively reduce dimensionality, which consequently decreases the
model’s complexity, simplifies its interpretation, and reduces the
risk of overfitting. While a correlation coefficient threshold of 0.8
is also generally considered to indicate a very strong correlation
according to Evans’s guidelines,[26] adopting this threshold in our
analysis would have significantly reduced the number of features
left for examination. Therefore, the 0.95 threshold was selected
as a way to ensure a reasonable balance between retaining signif-
icant features and minimizing redundancy.

Figure 5b illustrates the performance of various machine
learning models in terms of their best root mean square error
(RMSE) over a wide range of test set sizes from 5% to 90% to
provide a more complete understanding of the performance and
capabilities of the machine learning models under study. For a
more comprehensive overview, we have additionally included in
Figure S2 (Supporting Information) on the training RMSE, and
overfitting/underfitting (test RMSE – training RMSE) curves
for different machine learning models. From Figure 5b it can
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Figure 4. Mechanical properties of CuAgZr MatLib. (a) Results of hardness (H) and reduced Young’s modulus (Er) mapping. (b)–(g) In situ compression
experiments. Compressive engineering stress–strain curves with exemplary SEM images of micropillars after deformation in selected regions of the
CuAgZr materials library, marked in Figure 4a. (h) Yield strength versus hardness. The values next to the data points represent the hardness to yield
strength (H/𝜎y) ratio. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

be observed that the performance of the models varies across
different test set sizes. For several models, e.g., Multilayer
Perceptron Regression (MLP), Support Vector Regression (SVR),
and Decision Tree Regression (DT), increasing the test size from
5% to 10% results in a decrease in RMSE, a phenomenon largely
attributable to overfitting at smaller test size (Figure S2, Support-
ing Information). As the test size expands, the RMSE decreases
for the majority of models. After exceeding a specific threshold
of ≈10% for most ML models, the RMSE begins to rise again.
This pattern emerges because, with a larger test set, the model
has access to less training information. In other words, this
might suggest that the model is underfitting or that the model is
too simple to generalize well on new data. In this case, the model
may struggle to predict data that was not part of the training set,
resulting in a large error on the test data. It is important to note
that a lower test RMSE signifies a better fit of the model to the
data, as it represents the average deviation between the predicted

values and the true values. The MLP model not only outperforms
the other models in the test size range between 5% and 65%,
but it also maintains a low level of overfitting, especially in
the range below 25% in the test size (Figure S2, Supporting
Information). Therefore, due to its superior performance and
ability to generalize well, it was chosen for further optimization
and for predicting hardness in the virtual space. Figure 5c
displays the relationship between the number of features used
in the fine-tuned MLP model and the corresponding RMSE for
various feature combinations. Each black cross (+) on the graph
represents a unique combination of features used in the model,
and its position on the y-axis indicates the RMSE value obtained
for that specific combination. The purpose of this analysis is to
identify the optimal feature set that yields the lowest RMSE and,
consequently, the best model performance. The best-performing
feature sets for each number of features are summarized in
Table S3 (Supporting Information). With the increase in the
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Figure 5. Selection of the features built based on domain knowledge. (a) The Pearson correlation map of the twenty initial features. The diameter and
color of the circles represent the strength of the correlation. After setting the threshold at 0.95, the analysis identified features with high correlation, and
one feature from each correlated pair was dropped leaving ten features. (b) Test RMSE for various machine learning models as a function of test set
size. The plot illustrates the performance of each model trained using ten features, selected based on correlation analysis, in terms of prediction error
on unseen data. Lower RMSE values indicate better model performance. The algorithms used in the study included K-Nearest Neighbors Regression
(KN),[27] Support Vector Regression (SVR),[28] Multilayer Perceptron Regression (MLP),[29] XGBoost Regression (XGB),[30] Decision Tree Regression
(DT),[31] Random Forest Regression (RF),[32] AdaBoost Regression (AB),[33] LightGBM Regression (LGBM),[34] and CatBoost Regression (CB).[35] (c)
The relationship between the number of features utilized in an MLP model and the RMSE of the model’s predictions. Each point (+) represents a different
feature combination. The red line denotes the minimum RMSE for each number of features. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article).

Figure 6. a) Scatterplot of measured hardness versus predicted hardness using the fine-tuned and trained MLP model. b) The predicted hardness of
unexplored alloys in virtual space. The experimental data marked with circles on the figure were used to train the MLP model. The validation data, marked
with stars, were used to evaluate the predictions of the MLP model, as this model has never seen these data before. This approach ensures an unbiased
evaluation of the model’s predictive performance. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article).

number of features, there is an overall downward trend in
RMSE, which indicates an improvement in model performance.
Nevertheless, 5 features were selected for the final model, i.e.,
Φf, 𝜒AllenLM, 𝜂, D.G, μ, as further addition of features does not
significantly reduce the RMSE.

To predict the hardness, an optimized MLP model with an ar-
chitecture containing two hidden layers with 8 and 6 neurons,
respectively, was used. Figure 6a shows a scatterplot comparing
the predicted hardness values with the measured hardness val-
ues for both the training and test sets (chosen randomly and

Adv. Sci. 2023, 10, 2302997 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2302997 (7 of 15)



www.advancedsciencenews.com www.advancedscience.com

representing 10% of the data) and providing a visual represen-
tation of the model’s performance and its ability to generalize
to new data. The red diagonal line indicates perfect agreement
between the measured and predicted values. The model shows
good predictive power for both training and testing sets, offering
hardness RMSE of 0.13 and 0.22 GPa, respectively. This shows
the model’s potential applicability in predicting the hardness of
CuAgZr metallic glasses. Figure 6b shows the predicted hardness
of unexplored alloys in virtual space. The virtual space was con-
structed based on the single criterion 𝛿r ×100 > 8. The 𝛿r crite-
rion allows predicting alloys with increased propensity to form
metallic glasses that was empirically confirmed.[36,37] To verify
the effectiveness of this criterion, a new validation MatLib con-
sisting of 21 patches was created. The chemical composition of
these patches is presented in Table S4 (Supporting Information).
The calculated chemical composition gradient and X-ray diffrac-
tograms are presented in Figure S3 (Supporting Information). It
was found that the criterion 𝛿r ×100 > 8 is very effective in pre-
dicting the location of amorphous regions. Upon comparing the
experimental data with the predictions made by the MLP model,
it is evident that the model effectively captures the trend of hard-
ness changes concerning the chemical composition. This is par-
ticularly noteworthy given the complex hardness distribution of
the original data. In Figure 6b, the experimental data used to train
the model and the validation data from the new MatLib consist-
ing of 21 patches are also marked. The hardness of these patches
is presented in Table S4 (Supporting Information). Despite the
large distance of chemical compositions at the edges of the vir-
tual space from the convex hull of the experimental data used to
train the algorithm, the predictions are very good. Comparing the
hardness in the validation set, it can be seen that the model accu-
rately predicted the location of alloys with high hardness (area A
in Figure 6b) and alloys with low hardness (area B in Figure 6b).
The presence of outliers can be ascribed to the differences in syn-
thesis parameters between the MatLib used for training and the
one used for validation of machine learning predictions. Addi-
tionally, the relatively small size of the training dataset could also
contribute to these discrepancies. Contaminations may be an ad-
ditional factor. It should be recalled here that the features used
to train the MLP algorithm were calculated based on XRF data,
in which oxygen content is not included. This is a weakness of
these features, as it increases the likelihood of larger deviations
between prediction and experiment for alloys with high oxygen
content. Nevertheless, the predictions in virtual space can serve
as a valuable guide in further exploration of this and other similar
systems. Issues related to impurities and mechanical properties
of CuAgZr alloys will be discussed in more detail in the following
sections.

3. Discussion

3.1. Preferential Oxidation

A large amount of oxygen, reaching up to 21 at. % in some al-
loys (Figure 2), cannot be overlooked from the point of view of
mechanical properties. It is therefore crucial to understand the
origin of oxygen impurities in the investigated alloy. From the
point of view of the magnetron sputtering process, an important
parameter affecting the amount of impurities in the deposited

materials is the base pressure and the related mean free path of
molecules in gas, and the time needed for a single monolayer
formation.

The mean free path, 𝜆 (given in meters), which is defined as
the average distance a particle travels between successive colli-
sions with other particles, for air at room temperature (23 °C)
can be calculated via following approximation (assuming that all
the molecules that compose the gas have the same diameter):[38]

𝜆 = 6.5 × 10−5

p
(1)

where p is the pressure in mbar. Considering the partial pres-
sure of oxygen (assuming the chamber’s atmosphere consists
of 21% oxygen) during the deposition process, the mean free
path for oxygen molecules is calculated to be 516 m (at the base
pressure of 6 × 10−7 mbar measured prior to deposition). This
value is more than three orders of magnitude larger than the pro-
cess chamber’s greatest dimension, which is 0.42 m. The time tm
(given in seconds) to form a monolayer can be determined by:[38]

tm = 2.49 × 10−6

p
(2)

Hence, under the process vacuum conditions (base pressure),
the time to form a single monolayer of oxygen molecules is
19.8 s (0.05 monolayers/s). This expression is valid when the
sticking coefficient, i.e., the ratio of the number of molecules
that are adsorbed on a surface for a finite period of time to the
number of molecules striking the surface, is unity.[38] Even tak-
ing into account the fact that the sticking probability of oxygen
molecules, is ≈0.1 or less,[39] the results of these considerations
can be used to understand the presence of oxygen in deposited
films assuming that it comes mainly from the residual gasses and
other potential sources of oxygen such as targets, leaks in the gas
line, etc. are negligible. The atomic diameters of Cu, Ag, and Zr
are 0.2556, 0.28894, and 0.3205 nm.[40] In scenarios where only
pure elements are deposited, for an average deposition rate of
12 nm min−1, the rate of monolayer formation is 0.78, 0.69, and
0.62 monolayers/s for Cu, Ag, and Zr, respectively. This would
translate to the maximum oxygen content in the films at the level
of 6.5, 7.3, and 8.1 at.% for Cu, Ag, and Zr films, respectively.
It should be noted that high-purity argon was introduced during
the sputtering process to achieve the desired working pressure of
5 × 10−3 mbar enabling high deposition rates. This resulted in a
mean free path of Ar atoms of 1.6 cm and consequently multiple
collisions in the process chamber and should certainly reduce the
oxygen content by pushing it out of the chamber. Also, consider-
ing the fact that the sticking coefficient is significantly less than
unity, as mentioned before, it should be expected that the oxygen
content in the deposited films will be significantly lower (in the
sub-atomic % range). It is therefore highly unlikely that the high
oxygen content in copper-rich alloys (Figure 2) originates from
residual gases.

This comprehensive study on the CuAgZr MatLib illuminates
the complex relationship between alloy composition and oxygen
contamination. Techniques such as EDS, ERDA, and TEM un-
veiled a clear increase in oxygen concentration toward the copper-
rich regions, peaking at ≈21 at.%. Despite initial assumptions
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that the cause of the high oxygen content is residual gases from
magnetron sputtering, this was largely ruled out based on cal-
culations of the rate of oxygen monolayer formation under de-
position process conditions discussed in the previous paragraph.
Unexpectedly, copper-rich alloys exhibited high oxygen content
inconsistent with thermodynamic predictions based on oxide for-
mation energies. Considering that the formation energy at 0 K
of the most stable oxides, which is −0.943 eV/atom for CuO,
−0.445 eV/atom AgO, and −3.81 eV/atom for ZrO2,[41] one would
expect Zr-rich regions to attract more oxygen than others. Of
course, apart from possible changes in the energy of formation
of oxides on the surface in multi-component systems as a result
of redistribution of charges and changes in chemical properties
when Cu, Ag, and Zr atoms are brought into contact with each
other. This observation asserts that the oxygen content is not nec-
essarily governed by an element’s affinity for oxygen, but rather
hinges on the microstructural features of the alloys, notably the
inter-columnar regions typified by looser packing. Oxygen diffu-
sion within these regions led to the post-deposition emergence
of crystalline phases such as ZrO2. The inter-columnar regions
should therefore be characterized by high adsorption energy
which is in line with the work of Baran et al.,[42] who conducted a
study using first-principles to explain the observed limiting thick-
ness of oxide films formed on aluminum during oxidizing con-
ditions. According to the authors, a clean surface has a very high
adsorption energy for oxygen molecules, which rapidly decreases
with the increase in oxide thickness. This suggests that the oxi-
dation process is a subsequent event that takes place after the
sample is withdrawn from the PVD chamber and exposed to
air. Consequently, composite synthesis occurs, characterized by
amorphous columns intermingled with crystalline phases (e.g.,
Cu-rich FCC phase, and ZrO2 in the Cu58.5Ag5Zr36.5 (P42) alloy).
This illustrates that chemical composition, process conditions,
and atomic mobility within a system profoundly affect the oxy-
gen content in the alloys studied. This also leads to the conclu-
sion that the fraction of inter-columnar areas with lower packing
increases with an increase in the copper content of the CuAgZr
system fragment under study.

3.2. Effect of Chemistry on Mechanical Properties

The plastic deformation of metallic glasses at low temperatures is
characterized by inhomogeneous spatial and temporal changes,
carried out by localized shear bands. There have been several the-
ories developed to explain the heterogeneous plasticity of metal-
lic glasses, which are mainly based on two atomic-scale mech-
anisms: deformation-induced dilatation or free volume and co-
operative shearing of atomic clusters called shear transforma-
tion zones (STZs).[43,44] STZs, small clusters of randomly close-
packed atoms, are the basic unit of plasticity and reorganize in re-
sponse to applied shear stress.[45] The strength of metallic glasses
is influenced by a variety of factors, including the composition of
the material, the cooling rate during processing, and the pres-
ence of defects or impurities.[46] Combinatorial synthesis using
the PVD method has the advantage of providing nearly identi-
cal processing conditions for alloys with different chemical com-
positions. As a result, differences in the properties of the al-
loys depend solely on their chemical composition, defects, and

impurities. Figure 7a,b show the correlation between the oxy-
gen content and the content of other elements and mechanical
properties. As mentioned earlier, high oxygen content is charac-
teristic of copper-rich alloys. Simultaneously, as the content of
zirconium and silver in the alloy increases, the amount of oxy-
gen decreases. This relationship is most likely related to the film
growth mechanism and the number of defects that allow post-
deposition oxidation, as discussed in Section 4.1. The strength of
crystalline metals is primarily influenced by the motion of dislo-
cations, which can be assessed by considering factors like Peierls-
Nabarro forces, grain sizes, etc. In contrast, the strength of metal-
lic glasses has been observed to be strongly linked to the phys-
ical and chemical characteristics of their constituent elements.
The atomic configurations and chemical bonding forces of metal-
lic glasses are believed to be the fundamental sources of their
strength.[47,48] From a chemical composition point of view, an in-
creased oxygen content would be expected to lead to improved
strength due to a greater proportion of ionic bonds between metal
and oxygen atoms and/or strengthening with oxides, e.g. ZrO2.
However, the results presented in Figure 7a,b do not support this
assumption, as in alloys with a high oxygen content, both very
high and very low H and Er were reported. This can be explained
by the presence in some alloys of a large fraction of regions
with looser packing (inter-columnar regions), which causes their
weakening (e.g., Figure 3a–c and Figure 4e). An additional factor
blurring the observed trends is the presence of crystalline regions
in the case of some alloys, which can significantly affect the initi-
ation and dominant mechanisms of plastic deformation. A good
example is Cu58.5Ag5Zr36.5 (P42) alloy, in which the presence of
a certain fraction of crystalline phases was identified (Figure 2 –
Cu-rich FCC and ZrO2 phases) and in which no serrated flow was
observed during the micropillar compression experiment, which
distinguishes it from the other alloys tested in this experiment
(Figure 5). Figure 7c shows the relationship between H and Er.
Reduced modulus here has been normalized by molar volume
following Yang et al.[48] The figure also includes the oxygen con-
tent in the tested alloys. Yang et al.[48] observed that the normal-
ization of the glass transition (Tg) temperature using molar vol-
ume allows to emphasize the strong linear relationship with the
strength of metallic glasses. This suggests that increasing the Tg
and decreasing the molar volume results in an increase in the
strength of the metallic glass. The Tg of the alloys tested in this
work has not been measured and is unknown, however, the Tg
is strongly correlated with elastic modulus.[49] Indeed, a reason-
able correlation has been observed between H and Er/Vm, which
should come as no surprise as Er reflects the bonding strength
among the closest neighboring atoms in metallic glasses. Even
differences in oxygen content between alloys did not cause signif-
icant deviations from this trend. In the multicomponent system
atoms of different sizes can introduce some uncertainty about
their position in space, which affects the number of bonds be-
tween individual atoms and, consequently, macroscopic proper-
ties. An interesting observation is that when analyzing the best
set of features (Figure 5c), lattice distortion energy μ appeared in
each set, starting with one feature (Table S3, Supporting Informa-
tion). This suggests that the energy required to accommodate the
differences in atomic size and structure when mixing different el-
ements in an alloy may be correlated with the mechanical behav-
ior of metallic glasses. Since atomic size mismatch 𝛿r is a signifi-
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Figure 7. (a) and (b) correlation between the oxygen content and the content of other elements and hardness and reduced modulus, respectively. (a) and
(b) The size and color of the bubbles correspond to H and Er values facilitating the identification of areas with high H and Er in the composition space. (c)
Hardness versus normalized reduced modulus, Vm – molar volume, calculated based on XRF data. (d) and (e) hardness versus atomic size mismatch 𝛿r,
calculated based on XRF (without oxygen) and EDS (with oxygen) data, respectively. The size and color of the bubbles correspond to the oxygen content
determined by the EDS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

cant contributor to lattice distortion energy (Table S4, Supporting
Information), it has been analyzed in detail in Figure 7d–e, which
show H versus 𝛿r. The 𝛿r parameter was calculated using XRF
and EDS data (Table S1, Supporting Information), respectively.
The atomic radii were taken from Senkov and Miracle,[40] where
they have been critically assessed and are widely used in the field
of MGs. Several interesting trends can be observed. Considering
only the major alloying elements, it can be seen that an increase
in atomic mismatch correlates with an increase in oxygen content
(Figure 7d). On the other hand, if oxygen is included in the calcu-
lations of the lattice mismatch, it can be seen that it significantly
increases it (Figure 7e). There is a linear relationship between
hardness and atomic size mismatch especially for 𝛿r ×100 < ≈20,
i.e., hardness increases with increasing 𝛿r (Figure 7e). For values
of 𝛿r ×100 > ≈20, i.e., for alloys with a high oxygen content, a sig-
nificant scatter in the hardness values is observed. This suggests
that the strongest alloys are those that can absorb large amounts
of oxygen without having loosely packed regions causing them
to weaken, such as inter-columnar regions as in the case of the
Cu58.5Ag5Zr36.5 (P42) alloy (Figure 3a–c and Figure 4e).

3.3. Accelerating Discovery of High-Strength Metallic Glasses

The application of combinatorial synthesis of MatLibs using
specifically direct current magnetron sputtering (DCMS) and

high-throughput characterization methods has significant impli-
cations for determining the strength of new metallic glasses. By
leveraging the vast amount of data generated by combinatorial
synthesis and high-throughput characterization, machine learn-
ing algorithms can identify patterns and relationships that may
not be immediately apparent. This can significantly accelerate
the discovery of new compositions that produce high-strength
metallic glasses. Figure 8 summarizes the achievements of this
work and shows a strength-density Ashby chart for metals and al-
loys. It presents alloys from the CuAgZr system produced exper-
imentally and those for which predictions of properties in virtual
space were made using a machine-learning model. The density
of the alloys was determined theoretically based on the content
of Cu, Ag and Zr. Simultaneously, it should be noted that the ac-
tual density of the tested alloys may be lower due to the presence
of oxygen and defects (e.g., inter-columnar regions with looser
packing). Conversion of hardness to strength was performed us-
ing the classical relationship H≈3𝜎y.

[23] However, it should be
emphasized that this assumption is optimistic, at least for some
alloys from the CuAgZr system, because the results of experi-
mental studies sometimes showed a less favorable H/𝜎y ratio
as high as 4.3 (e.g., Cu45Ag14Zr51.3 alloy, Figure 4). The metal-
lic glasses and amorphous/crystalline composites of the CuAgZr
system tested in this work have high strength, comparable to the
best steels and nickel alloys. Moreover, the identification of al-
loys with similar properties can enable the selection of those that
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Figure 8. Comparison of the strength of metallic glasses and amor-
phous/crystalline composites from the CuAgZr system with other metals.
Strength-density Ashby chart for metals and alloys adapted from our previ-
ous work ref. [7] nc – nanocrystalline. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of
this article).

are more economically attractive, which can be of great impor-
tance in the development of new materials for commercial appli-
cations. Nevertheless, it should be stressed that the properties of
alloys produced by PVD technology, can change significantly de-
pending on the deposition parameters used.[18] Indeed, in our re-
cent work comparing the effects of DCMS and high-power pulse
magnetron sputtering (HiPIMS) on the structure and properties
of alloys from the same system as the one studied in this work,
i.e., CuAgZr, it was reported that for some compositions HIPIMS
enabled up to 44% higher hardness.[8]

Of course, there arises a temptation to upscale the insights
from thin films to the macro scale. Indeed, in our recent work,[50]

we compared the properties of a thin film metallic glass from the
CuAgZr system, produced using the PVD method, with a bulk
metallic glass created through arc melting with a similar chemi-
cal composition. Experiments were conducted at both room tem-
perature and elevated temperatures up to 500 °C. The thin film
metallic glass displayed enhanced thermal stability and a higher
yield strength in every tested condition. These differences were
attributed to a higher oxygen content present in the thin film
metallic glass. To assess the utility of thin film MatLib in identify-
ing high-strength chemical compositions that can be upscaled to
bulk form, it will be necessary to compare a larger set of thin film
metallic glasses with their bulk counterparts, ensuring a similar
contamination content.

4. Conclusions

This work focused on the investigation of mechanical properties
of metallic glasses and amorphous/crystalline composites from
the CuAgZr system. Combinatorial synthesis using DCMS was
used to produce CuAgZr MatLib, and high-throughput character-
ization methods were used to determine their mechanical prop-
erties and composition.

It was found that the high oxygen content in the Cu-rich re-
gions of the investigated CuAgZr MatLib is the result of post-
deposition oxidation of the inter-columnar regions, with looser
packing, in which oxygen can diffuse in a facilitated manner.
This suggests that an important factor determining the oxygen
content in synthesized alloys is the growth mechanism resulting
from the mobility of atoms in a given system, which in turn is a
function of chemical composition and process conditions.

The “Scanning Indenter” device, introduced in this study, sig-
nificantly advances the state of the art and technological capabili-
ties by enabling the automatic mapping of full wafers, facilitating
the quantification of mechanical properties in MatLibs. It fosters
the integration of various structural and mechanical characteri-
zation techniques such as XRF, XRD, and nanoindentation, pro-
moting the creation of multimodal datasets for a more compre-
hensive understanding of materials properties and their potential
applications.

Micropillar compression tests showed a profound influence of
nanoscale structural features on plastic yielding and flow in the
investigated alloys. An increase in atomic size mismatch is corre-
lated with an increase in oxygen content and including oxygen in
the calculations significantly increases atomic size mismatch. A
linear relationship exists between hardness and atomic size mis-
match for 𝛿r ×100 < ≈20, indicating that hardness increases with
increasing 𝛿r. However, for alloys with a high oxygen content,
observed for 𝛿r ×100 > ≈20, there is a significant scatter in the
hardness values, suggesting that the strongest alloys are those
that can absorb large amounts of oxygen without having loosely
packed regions, such as inter-columnar regions, which can cause
them to weaken.

A large number of ML algorithms have been tested and MLP
has been shown to produce very satisfactory predictions for both
training and testing sets. The leveraging of the fine-tuned MLP
algorithm enabled the prediction of the hardness of untested al-
loys in the virtual space of the investigated CuAgZr system, which
can serve as a valuable guide for further exploration of this and
other similar systems.

The results herein reported demonstrate that the combina-
tion of combinatorial synthesis, high-throughput characteriza-
tion, and machine learning methods holds significant promise
for the discovery of new metallic glasses with improved strength
and economic viability.

5. Experimental Section
Material Synthesis: Thin film ternary CuAgZr compositionaly-focused

MatLib was fabricated in a vacuum chamber (Korvus Technology, UK) us-
ing PVD technique, specifically DCMS, onto a 4-inch (100)-oriented silicon
substrate, coated with 100 nm thick amorphous silicon nitride. Co-sputter
deposition from high purity Cu, Ag, and Zr targets (HMW Hauner GmbH,
99.99%) led to a composition gradient across the wafer’s surface. Sput-
tering was carried out in a chamber equipped with a rotary-turbo pump
combination to obtain a high base vacuum in the order of 6 × 10−7 mbar.
Co-sputtering was performed using Ar (purity of 99.9999%), at a working
pressure of 5 × 10−3 mbar. The CuAgZr compositionally-focused MatLib
was synthesized in the form of 61 circular, 5 mm in diameter, patches us-
ing a 2 mm thick stainless-steel mask. The substrate-to-target distance
was optimized to 90 mm to achieve a desired composition gradient across
the wafer. The deposition rate was ≈12 nm min−1. This compositionally-
focused MatLib was utilized for training the ML model. In addition, to
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validate the ML predictions in the virtual space, a second MatLib was fab-
ricated, consisting of 21 patches. For the second MatLib, the deposition
parameters were adjusted and calibrated to generate as wide a chemi-
cal composition gradient as possible. This broader gradient allowed for
a more comprehensive exploration of the alloy system and provided a ro-
bust set of data for validating the predictive capabilities of the ML model.

Chemical Composition and Thickness: The chemical composition and
thickness of the deposited thin film was determined using the XRF spec-
trometry (Fischerscope X-Ray XDV-SDD by Fischer, Sindelfingen, Ger-
many). A beam energy of 50 kV with a spot size of 0.3 mm was selected for
the analysis (results are summarized in Table S2, Supporting Information).
Due to the fact that the XRF method does not allow the determination of
the oxygen content, additional experiments were carried out using the EDS
to semiquantitatively determine the distribution of the oxygen in the ana-
lyzed MatLib. EDS experiments with an accelerating voltage of 30 kV were
performed in the Mira-3 scanning electron microscope (SEM) (Tescan,
Brno, the Czech Republic), equipped with the Octane Plus SDD detector
(EDAX, Mahwah, USA). Chemical analysis was carried out using a ZAF cor-
rection (results are summarized in Table S2, Supporting Information). The
EDS method was characterized by low accuracy in oxygen quantification.
It should also be noted that the uncertainty of oxygen measurement was
much greater in the case of alloys with a low oxygen content. A direct com-
parison of the oxygen content between different MatLib regions was addi-
tionally made difficult by the fact that the volume of interaction between
the electron beam and the sample depends on the chemical composition.
Hence, the chemical information in different areas of MatLib was obtained
from different interaction volumes. Nevertheless, global semiquantitative
trends in the change in oxygen content can be captured. The EDS results
were summarized in Table S1 (Supporting Information). To validate these
trends, quantitative oxygen analysis was performed using ERDA and RBS
on six selected samples at the 1.7 MV Tandetron accelerator facility of
the Laboratory of Ion Beam Physics at ETH Zurich. For the ERDA anal-
ysis a 13 MeV 127I beam was used under a scattering angle ϕ of 36° and
the scattered recoils were identified by the combination of a time-of-flight
spectrometer with a gas ionization chamber.[51] Precise measurement of
Ag content by ERDA was difficult due to the background generated by the
primary iodine beam, therefore, only Cu, Zr, O and other light elements
(if detected) depth profiles had been extracted from heavy ion ERDA mea-
surements using the POTKU software.[52] A decrease of heavy element
concentrations (Zr in particular) with sample depth was observed, which
was an artifact due to multiple scattering of the recoil ion.

Since RBS gives more reliable results for heavy elements, additional
RBS experiments were performed to measure the Ag content and con-
firm the ERDA results for the other metallic constituents. Consequently,
a more accurate estimation of the oxygen content in the tested samples
was achieved. The RBS measurements were obtained using a 2 and 5 MeV
He beam under a backscattering angle 𝜃 of 167.5° and the data were an-
alyzed using the RUMP software[53] considering Cu, Ag and Zr. The RBS
beam spot had an area of ≈1 mm2. The circular samples were hit at the
center ± 1 mm. The RBS/ERDA chemical composition, listed in Table S2
(Supporting Information), was normalized to RBS results via the Cu con-
tent. Values for O, Cu, Zr, and Ag add up to 100%. The oxygen-rich top
layer (the first few tens of nm) was excluded from the quantification. H,
C, and N which have also been found in some samples are not included.
All the RBS/ERDA experiments were conducted under vacuum conditions
ranging for 10−7 – 10−6 mbar.

Additionally, the distribution of elements in the microstructure of se-
lected alloys was studied by Themis 200 G3 spherical aberration (probe)
corrected Transmission Electron Microscope (TEM) (Thermo Fischer,
Waltham, USA) operating at 200 kV. The TEM studies were performed on
TEM lamellae, prepared via focused ion-milling (FIB technique) using a
dual beam FIB-SEM Tescan Lyra FEG system (Brno, the Czech Republic).
The concentration line profiles, and the elemental maps were acquired us-
ing EDS in STEM mode.

Phase Analysis: To determine the structure of investigated alloys, 10
selected patches were measured using XRD. The measurements were car-
ried out with CuKa1 and CuKa2 radiations (𝜆 = 1.5406 and 1.54439 Å, re-
spectively) by means of the D8 Discover diffractometer (Bruker, Billerica,

USA), equipped with programmable sample-positioning stage. The phase
composition of the CuAgZr MatLibs was identified using XRD data in the
2𝜃 range from 30 to 90° obtained under the conditions: voltage of 40 kV,
current of 40 mA, step size of 0.02° and the collection time at each step of
2 s. The 𝜃/2𝜃-scans were performed with an offset of −4° from the sym-
metrical diffraction geometry to avoid a too high intensity from the (400)
reflection of the oriented (100) single crystal Si substrate.

Nanoindentation Mapping: To extract the mechanical properties of
all 61 patches (see Section 2.1), and to provide a statistically sound
datasets, a “Scanning Indenter” – setup, built around the components of
the portable micro- and nanoindenter from Alemnis (Thun, Switzerland),
was developed. It allows the automated mapping of a full 4-inch wafer, and,
thus, the quantification of mechanical properties in the compositionally-
focused MatLibs. The system can accommodate the full wafer without
the need of cutting the sample into dedicated pieces and gluing them
onto SEM stubs for the experiments (Figure S4, Supporting Information),
as necessary for other commonly used systems. This serves as a unique
trademark of the system. It thus, saves a significant amount of time, and
also allows subsequent mapping experiments capturing different condi-
tions, e.g., when quantifying the effect of heat treatments or different depo-
sition conditions. Hence, it provides the opportunity to characterize a large
number of different conditions in a single process, opening up new high-
throughput possibilities in the search of novel material systems. Further-
more, it facilitates combining structural and mechanical characterization
techniques (XRF, XRD, nanoindentation) in creating multimodal datasets.
More details about the “Scanning Indenter” can be found in Supporting
Information.

For the actual experiments, 9 Berkovich-indents were performed in a
3×3 array in the center of each of the 61 patches (total 549 indents,
Figure S5, Supporting Information), with an indent-spacing of 20 μm. In-
dents were done with a displacement-controlled protocol at a displace-
ment rate of 10 nm−1 s and up to a maximum indentation depth of 220 nm
(< 10% of the CuAgZr layer thickness). A mapping protocol was defined
based on the design of the prepared sample (Figures S1 and S2, Support-
ing Information). To ensure that any potential sample tilt does not inter-
fere with the measurements, i.e., primarily to avoid scratching the surface
with the tip while travelling between indentation locations, an x-y tilt plane
was determined before the actual mapping started. Based on the corre-
sponding angles in x and y, the tip moved either up or down in-between
indents (safety travel). During the test, load and displacement data were
recorded. Data were analyzed with custom-written codes in Python and
R as well as the commercially available software AMMDA from Alemnis
(Thun, Switzerland). Post-processing steps included data structuring, cal-
culation of hardness and elastic modulus[54] calculation of mean, standard
deviation. The instrument compliance and tip area function were deter-
mined based on continuous stiffness measurements on a calibration wafer
of fused silica. Coefficients to estimate the tip shape were done according
to the Oliver-Pharr method.[54] An overview of plots with all 3×3 arrays
of indents on each of the 61 patches can be found in the Figure S5 (Sup-
porting Information). The mean values along with the standard deviation
of the nanoindentation results are summarized in Table S1 (Supporting
Information).

Micropillars Compression Tests: To measure the strength and to deter-
mine the H/𝜎y ratio of the MG thin-film micropillars, compression tests
were performed on selected alloys. Determination of H/𝜎y ratios was im-
portant considering a conversion of hardness into the strength of CuAgZr
alloys. Micropillars with diameters of 1.33 ± 0.17 μm and height 2.98 ±
0.14 μm were fabricated from the selected regions of the CuAgZr MatLib
using a dual beam FIB-SEM Tescan Lyra FEG system. The dimensions of
the micropillars were selected to obtain small aspect ratio (≈2.2) and avoid
their buckling during micropillars compression tests.[55] The taper angle
of the micropillars was 3.39± 0.38°. Both dimensions and taper were mea-
sured from SEM images. To estimate the strength of each of the investi-
gated alloys at least three micropillars were compressed. The micropillars
compression tests were performed using an in situ nanoindenter Alem-
nis, equipped with a 5 μm flat punch diamond tip, and installed in the
SEM (Philips XL30 ESEM FEG, Amsterdam, Netherlands). The micropil-
lars were compressed under the displacement-controlled mode at strain
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Figure 9. A schematic illustrating the process of creating ML models used in this work. (a) In the first step, a high-throughput experiment was used
to create a database in which the target property is hardness (yi). (b) General features were created based on chemical composition and domain
knowledge. (c) Testing of the regression models along with the coarse refinement of hyperparameters. (d) Finally, the optimized model was used to
predict the hardness of unexplored alloys in virtual space.

rate of 10−3 s−1. Before converting the load-displacement curves into en-
gineering stress-strain curves correction for instrument and compliances
were calculated.[56] The stress value at 0.2% strain offsets of the engineer-
ing stress–strain curves was taken as the yield strength.

Forecasting the Strength of Untested Alloys in Virtual Space: To pre-
dict the strength of unexplored Cu-Ag-Zr alloys in virtual space the best-
performing ML model was employed. The performance of each model was
evaluated using the root mean squared error (RMSE), which was defined
as:

RMSE =

√√√√ 1
n

n∑
i=1

(
yi − ŷi

)2
(3)

where yi is the true value and ŷi is the predicted value. A schematic illus-
trating the process of creating machine learning models used in this work
is shown in Figure 9. The dataset used in the study was obtained from a
high-throughput characterization of the CuAgZr MatLib and consisted of
61 samples in which the target property (yi) was hardness (Figure 9a). The
set of features was created based on domain knowledge using topological,
thermodynamic, electronic structure, and mechanical attributes, which
correlate with the structure and properties of metallic materials[36,57–69]

(Figure 9b and Table 1). The formulas for these features are summarized
in Table S6 (Supporting Information). To engineer the features and evalu-
ate the performance of the regression models for prediction of the mate-
rial properties the open-source scikit-learn library was used.[70] The Pear-
son correlation analysis was conducted to detect dependencies among
the features built based on domain knowledge that was helpful in reduc-
ing the dimensionality of the data by removing redundant and/or highly
correlated features. The final set of features was then standardized, and
the data were split into training and testing sets. During standardization,
the data was transformed so that its distribution had a mean of 0 and a
standard deviation of 1. This helped equalize the range and distribution
of features and ensure that each feature contributed equally to the dis-
tance metric used in the machine learning algorithms. In a material de-
sign problem where the available data was limited, as is the case in this
study with a dataset of only 61 samples, the primary focus was on cap-
turing the overall trend for untested alloy compositions rather than solely
minimizing the disparity between the predicted and experimental values.
The goal was to achieve generalizability in the predictions made by the
model. However, in order to find the most effective model, a large number
of regressors were tested (Figure 9c). The algorithms used in the study
included K-Nearest Neighbors Regression (KN),[27] Support Vector Re-
gression (SVR),[28] Multilayer Perceptron Regression (MLP),[29] XGBoost
Regression (XGB),[30] Decision Tree Regression (DT),[31] Random Forest
Regression (RF),[32] AdaBoost Regression (AB),[33] LightGBM Regression
(LGBM),[34] and CatBoost Regression (CB).[35] In ML, an excess of fea-
tures compared to training data can lead to a model that overfits, neg-

Table 1. A feature pool built on domain knowledge used in machine learn-
ing regression models. Note that SE/kB and Λ can also be considered as
thermodynamic parameters.

Class Feature pool

Topological 𝜹r – atomic size mismatch,[36]

D.r – local atomic size mismatch,[57]

SE/kB – excess configurational entropy,[62,63]

𝚲 – entropy and atomic size ratio,[9,64]

𝜸 – the largest and the smallest atom,[9,65]

Thermodynamic 𝚫Hmix – enthalpy of mixing in liquid phase,[63]

𝛀 – competition between entropy and enthalpy of mixing in
liquid phase,[9,66]

ϕ – entropy effect gauge,[9,67]

𝚽f – competition between entropy and enthalpy of formation
of binary compounds,[9,68]

Electronic
structure

VECLM – local mismatch of valence electron concentration,[9]

e/aLM – local mismatch of itinerant electron concentration,[9]

𝝌AllenLM – local mismatch of Allen’s electronegativity[69]

Mechanical 𝜼 – modulus mismatch in strengthening model,[58]

A – energy term in strengthening model,[59]

F – Peierls-Nabarro factor,[60]

w – six square of work function,[61]

G – shear modulus,[60]

𝜹G – shear modulus mismatch,[60]

D.G – local size shear modulus mismatch,[60]

μ – lattice distortion energy[60,71]

atively impacting its performance on unseen data. To address this chal-
lenge, a thorough approach to hyperparameter optimization was strategi-
cally employed. The strategy was focused on avoiding a scenario in which
the model could memorize the training data without truly understanding
the underlying patterns. In this context, it was carried out multiple itera-
tions of the grid search. In each successive iteration, the hyperparameters
were thoughtfully adjusted with the aim of reducing the RMSE. The de-
tails of tested hyperparameters from the ultimate iteration can be found in
Table S7 (Supporting Information). To further enhance the reliability of the
model and mitigate the effects of random fluctuations, each model config-
uration was ran ten times with different random states, averaging the out-
comes. This comprehensive process involved testing more than 100 000
different configurations, ensuring a wide exploration of the hyperparame-
ter space. Ultimately, the most effective algorithm, the MLP, was singled
out. This algorithm was then fine-tuned even further and used for predict-
ing the hardness of untested alloys within a virtual space, as visualized in
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Figure 9d. However, it was important to recognize that there might be a
combination of hyperparameters that could potentially offer better perfor-
mance for other models. Despite this, based on extensive explorations and
optimization, the MLP algorithm demonstrated the most exceptional per-
formance. The potential of other models to possibly outperform the MLP
with a different hyperparameter setup was acknowledged. Still, within the
vast hyperparameter space that was investigated, none of the other con-
figurations proved superior to the MLP. This observation does not depre-
ciate the potential of these other models but rather underscores the effec-
tiveness of the selected model within the tested hyperparameter confines.
Future studies might wish to delve further into this space or incorporate
other novel models for comparative evaluation against the MLP.
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