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A LIE-TRANSFORMED ACTION PRINCIPLE FOR CLASSICAL PLASMA DYNAMICS· 

Allan N. Kaufman 

Lawrence Berkeley Laboratory and PnYsics Department 
University of California 

Berkeley, CA 94720 
USA 

ABSTRACT 

The Lie transform for a single particle in a wave is 
imbedded in a Lagrangian action principle for self­
consistent plasma dynamics. Variation of the action then 
yields th~ V1asov equation for the oscillation-center 
distribution, the ray equations and amplitude transport 
for the wave, and the Poisson equation for the quasi static 
field. 

There are many situations in classical (as well as quantum) 
physics where phenomena occur on very different space- and time­
scales. The small parameter associated with the ratio of scales 
then implies the existence of a reduced description for the slow 
dynamics in which the fast phenomena are averaged over~ and appear 
at higher order in the slow dynamics. 

LBL-17976 

The Lie transform has proved to be a successful techni quell for 
systematically performing such a reduction for a particle in a given 
field. Beginning with the particle Hamiltonian H(p,q;¢), where ¢ 
represents the field, the Lie transform produces a new Hamiltonian 
K(P,Q;¢) for the "oscillation center," about which the particle 
oscillates. Whereas H depends linearly on cP, and generates rapid 
particle oscillations, the dependence of K on ¢ is typically quadra­
tic, generating so-ca 11 ed "ponderomot he" effects. 

It is clearly desirable to know what the reaction of the par­
ticles is on the field, i.e., to obtain a self-consistent dynamics. 
Before reduction, this dynamics is generally well-known. Our aim 
here is to show how to find the self-consistent dynamiCS for the 
reduced description. 

Our method is to formulate both the original dynamics and the 
reduced dynamics as a Lagrangian action principle. Variations then 
lead automatically to self-consistent evolution equations. Further, 
the symmetries of the action imply conservation laws at both levels. 

* This work was supported by the U.S. Department of Energy under 
contract No. DE-AC03-76SF00098. 

To appear in the proceedings of the Thirteenth International Colloquium 
on Group Theoretical Methods in Physics, College Park, Maryland, May 21-
25, 1984. 
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In order to clarify the essentials of our method, we shall 

introduce simplifying assumptions along the way. In future publica­
tions, we intend to remove these simplifications and present the 
full picture. 

The original (unreduced) ~namics is expressed in terms of the 
Vlasov di stribution f(p, q; t) and the Coulomb. field ~(x, t). The 
former evolves by a Liouville equation: -

af/at + [f, H] = 0, (1) 

with the canonical bracket on (p,q) space. The potential satisfies 
the Poisson equation, with the charge density determined by f. 

To obtain these equations from an action principle, we· introduce 
the particle orbit p(zo;t), q(zo;t), where zQ represents ~he 
initial condition of a particle. Letting fo(zo) be the initial 
Vlasov distribut~on, we adopt the Vlasov Lagrangian action: 2J 

Sv(p,q) = Jd6zo fo(zo) J(pc'j - H)dt, (2) 

where q = aq(zo;t)/at, and we have suppressed summation over the 
three degrees of freedom of (p,q), and over the particle species. 
Demanding that Sv be stationary under variation of the "fields" 
p(zo,t) and q(zo,t) yields the Hamiltonian equations: 

q = aH/ap,p = - aH/aq. (~) 

Then, defining the Vlasov distribution: . J. 
.! 

f(p' ,ql ;t) = JdZ~ fo(zo) 63(p'_p(zo;t» 63(q'.;.q(zo;t)), (4) 

we obtain the Vlasov Eq. tl). 

We now add to Eq. (2) the action of the Coulomb field 

Sc (~) = Jd3xJdt E2/8~, 

where E = - V'~(x,t). Variation .of S = Sv + Sc with respect 
to ~(~:t) then Y1elds the Poisson equation: 

- V'2~(~,t) = 4~ Jd6zo fo(zo) 6H/6¢(~,t). 

We introduce the particle charge density: 

and the identity 

d3p d3q f(p,q;t) = d6zo fo(zo) 

- 2 -
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(7) 
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from (4), to express-the plasma charge density as 

p(!,t;f) = Jd3p d3q f(p,q;t) p(!,t;p,q). (9) 

Thus the Poisson equation 

- v2 ¢ (!, t) ;:; 41Tp(!, t; f) (10) 

couples f to ¢, while the Vlasov Eq. (1) couples ¢ to f. 

We now restrict the field ¢ to represent a single wave in eiko­
nal fonn, plus a self-consistent quasi-static background: 

¢(x;d= ¢o(x) + W(x) exp ie(x)/£ + c.c., 

where x = (x,t), and the amplitude~, the phase a, and the back­
ground ¢o are all slowly varying functions of space-time x. 

(11) 

The Hamiltonian H(p,q;¢) thus generates rapid oscillations, 
characterized by the local wave-vector k(x) = -Va/E and frequency 
w(x) = -(aa/at)/E. For particles not in resonance with the wave, 
the 1 inear dependence of H on q> is L ie-transfonned to a quadratic 
dependence of K on r. Further, whereas H contains the rapid phase 
dependence of Eq. (11), K d~pends on a only thorugh its derivatives 
(!,w), which are themselves slowly varying. 

Because the Lie transform is a canonical transformation, the 
phase-space L~grangian action is form-invariant. 

Jdt (pq - H) = Jdt (PO - K) (12) 

Substituting Eq. (12) into Eq. (2), we now vary Sv with respect 
to the "fields" P,Q. By steps analogous to those yielding Eq. (1), 
we now obtain the Vlasov equation for the oscillation-center 
distribution F(P,Q;t): 

aF/at + [F,K] = O. (13) 

Thus the evolution of F is generated by K(P,Q;~o,$,a). It remains 
to obtain the self-consistent evolution of ¢o,W,a • 

. The contribution of K to S can be expressed as 

(14) 

where we have identified Q and x, and where k(x) = (!,w). We expand 
K in powers of W: --

(15) 

- 3 -
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truncating at the quadratic tenn. (The 1 inear tenn vanishes in the 
abs.ence of resonance.) The coefficient K2, explicitly known from' 
the Lie-transfonn generating function, generates the ponderomotive 
effects. 3J Substituting (15) into (14), we obtain SK = S~ + s~, with 

S~ = Jd4x w2(x} ,,(x) t (16) 

in tenns of the susceptibJlity X(x), defined as 

. X(x) = - Jd3p F(~,f.;t) K2(~,f.;<I>o(~,t}, k(~,t)}. (17) 

This definition represents the K- X theorem, discovered some years 
ago. 4] The Coulomb contribution to S 'is, by (5) and (11), 

Sc = Jd4x ('\7 <l>o)2/81T + J d4x !2(xr~2(x)/41r. 

We collect the quadratic tennsfrom (16) and (18): 

S2 = Jd4xqi'2(x) dx),. 

with the local dielectric function defined as 

£(x) = £(x,k(x)} = ~2(x)/41T + X(x}. 

Now variation of S with respect to the amplitude ~(x) yields 
the dispersion relation 

dx, k(x» = O. 

(18) 

(20) 

(21) 

This is solved for the phase sex) by Hamilton's method; i.e ... the 
ray equations: . 

(22 ) 

are integrated to obtain 
x 

s ( x ) = J k IJ ( X ' ) dx ' (23) 

Variation of S witb respect to the phase sex} yields the wave-action 
conservation law: 5] . 

aJIJ/axlJ = 0, 

with the action 4-vector defined as 

- 4 -

(24) 

(25) 



In terms of the scalar action density: 

J(x) = ~2(x) at/aw, 

(24) is the amplitude-transport equation: 

aJ(~,t)/at + V·(J,Y) = 0, 

where 'y(~,t) is the wave group velocity. 

Finally, we need to va~ S with respect to ~o(x), obtaining 
from (18) and (14): 

_V2~o(x) = 4~ Jd3p F(!,!;t) aK/a~o' 

(26) 

(27) 

(28) 

The right side of (28) is the charge density, p(x;F), expressed in 
terms of the oscillation-center distribution F. From (15), we see 
that there are two contributions: aKo/a~o represents the 
oscillation-center charge density, while aK2/a~o is a polariza­
tion contribution from the wave. The generalization of the latter 
is particularly important in the magnetic case, where it represents 
polarization drift and wave magnetization current. 

We now have obtained a closed set of equations for F,¢o,~,e, 
representing the self-consistent slow dynamics. 

In future publications we shall present generalizations to the 
full Maxwell equations, covariant relativistic dynamics, many 
waves, resonant interaction, higher order effects in~. We shall 
also discuss the conservation laws arising from the Noether 
symmetri es. 
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