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Involvement of rppH in Thermoregulation in Pseudomonas syringae

Kevin L. Hockett,* Michael Ionescu, Steven E. Lindow

Department of Plant and Microbial Biology, University of California, Berkeley, California, USA

Temperature, among other environmental factors, influences the incidence and severity of many plant diseases. Likewise, nu-
merous traits, including the expression of virulence factors, are regulated by temperature. Little is known about the underlying
genetic determinants of thermoregulation in plant-pathogenic bacteria. Previously, we showed that the expression of both fliC
(encoding flagellin) and syfA (encoding a nonribosomal polypeptide synthetase) was suppressed at high temperatures in Pseu-
domonas syringae. In this work, we used a high-throughput screen to identify mutations that conferred overexpression of syfA at
elevated temperatures (28°C compared to 20°C). Two genes, Psyr_2474, encoding an acyl-coenzyme A (CoA) dehydrogenase, and
Psyr_4843, encoding an ortholog of RppH, which in Escherichia coli mediates RNA turnover, contribute to thermoregulation of
syfA. To assess the global role of rppH in thermoregulation in P. syringae, RNA sequencing was used to compare the transcrip-
tomes of an rppH deletion mutant and the wild-type strain incubated at 20°C and 30°C. The disruption of rppH had a large effect
on the temperature-dependent transcriptome of P. syringae, affecting the expression of 569 genes at either 20°C or 30°C but not
at both temperatures. Intriguingly, RppH is involved in the thermoregulation of ribosome-associated proteins, as well as of
RNase E, suggesting a prominent role of rppH on the proteome in addition to its effect on the transcriptome.

Temperature is an important environmental factor that influ-
ences many aspects of microbial physiology and profoundly

affects an organism’s ability to survive and reproduce (1). Since
microorganisms must appropriately both perceive and respond to
changes in temperature, they possess some form of thermoregu-
lated gene expression. Certain temperature responses appear to be
conserved across diverse bacterial species, such as the cold shock
and heat shock responses (2, 3). The stimulatory signals and reg-
ulatory mechanisms of these shock responses are also largely con-
served. However, in addition to the shock responses, which main-
tain cellular functions after large and rapid temperature shifts,
most bacterial species also possess more specialized forms of ther-
moregulation whose role is not necessarily to return the cell to
homeostasis but, rather, to reprogram cells for fitness in the al-
tered environment. For example, animal pathogens often use host
body temperature as a cue to express virulence factors (4–6). In
this setting, members of many taxa suppress the production of
flagellar genes since they encode immune-eliciting antigens (i.e.,
flagellin) (7). While the suppression of flagellin at host tempera-
tures is common in such animal pathogens, the stages within the
flagellar hierarchy and the mechanisms by which such regulation
is achieved differ between organisms (cf. E. coli [8], Yersinia [9–
11], and Listeria [12]). Common thermoregulated traits, such as
motility, therefore do not necessarily have conserved mechanisms
of regulation. This may be a consequence of the myriad mecha-
nisms by which thermoregulation can be achieved (reviewed in
references 1 and 13). While the central components of thermo-
regulated gene expression and their interactions have been de-
scribed in model organisms, such as Escherichia coli (14, 15), much
less is known of these processes in most taxa.

Thermoregulation of certain traits in plant-pathogenic bacte-
ria has been observed (16); however, our understanding of the
mechanisms operative in these organisms remains limited. One of
the most thoroughly studied thermoregulation systems in plant
pathogens is the CorRS two-component signaling system that reg-
ulates coronatine biosynthesis in Pseudomonas syringae pv. gly-
cinea (17–19). While this system is necessary for temperature reg-

ulation of coronatine biosynthesis, there appear to be additional
components necessary for thermoregulation of this toxin (20).
Furthermore, this two-component system appears to regulate
only coronatine biosynthesis. Likewise, phaseolotoxin production
is thermoregulated in P. syringae pv. phaseolicola by a process
involving a small, noncoding RNA and, potentially, a metabolic
intermediate, although the details of this process are currently
unknown (21–23). More generally, it is unknown whether there
are any conserved global thermoregulators in P. syringae similar to
those described in E. coli. A better understanding of the molecular
basis of thermoregulation in P. syringae will advance our under-
standing of common versus lineage-specific thermoregulation
across diverse taxa. Additionally, knowledge of how a temperature
signal is integrated into the regulatory networks of P. syringae will
help elucidate the phenotypes that are thermoregulated and, thus,
further our understanding of the genetic regulation that contrib-
utes to this organism’s ability to be a successful epiphyte and
pathogen in an environment where the temperature fluctuates
regularly.

Previously, we demonstrated that the production of both the
flagellum and the lipopeptide surfactant syringafactin were ther-
moregulated in P. syringae and that this regulation was due, at least
in part, to reduced transcription of fliC and syfA at 30°C compared
to their transcription at cooler incubation temperatures (24).
While we found that flgM was necessary for the thermoregulation
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of fliC, it did not play any role in the thermoregulation of syfA,
suggesting that additional means of transcriptional regulation
must be functioning in P. syringae. In this study, we characterized
thermoregulators in P. syringae by assessing syfA expression in a
large collection of random transposon mutants and showed that
one mutation greatly influenced the transcriptome in a tempera-
ture-dependent manner.

MATERIALS AND METHODS
Bacterial strains, plasmids, culture media, and growth conditions.
Pseudomonas syringae pv. syringae B728a (25) and mutant derivatives
were routinely cultured in King’s medium B (KB) broth or on KB plates
supplemented with 1.5% (wt/vol) Difco agar technical (BD, Sparks, MD)
at 28°C (26). Escherichia coli strains TOP10 (Life Technologies, Carlsbad,
CA), S17-1 (27), and SM10(�pir) (28) were cultured in Luria-Bertani
(LB) medium broth or on LB plates supplemented with 1.5% (wt/vol)
Difco agar technical at 37°C (29). Antibiotics were used at the following
final concentrations: 100 �g/ml rifampin, 50 �g/ml kanamycin, 15 �g/ml
gentamicin, 20 �g/ml spectinomycin, 15 �g/ml tetracycline, and 30
�g/ml nitrofurantoin (NFT). The strains and plasmids used in this work
are listed in Table S1 in the supplemental material. The primers used in
this work are listed in Table S2.

The plate temperatures were routinely monitored using a CZ-IR ther-
mometer (ThermoWorks, Lindon, UT). Incubator temperatures and rel-
ative humidity were routinely monitored using HOBO data loggers (On-
set, Bourne, MA).

Transposon mutagenesis. To facilitate a mutagenesis screen using a
spectinomycin resistance-conferring transposon, the syfA promoter was
digested from pPsyfA-gfp (spectinomycin resistance) using HindIII and
EcoRI restriction endonucleases (New England BioLabs, Ipswich, MA)
and cloned into pPROBE-gfp[tagless], where the green fluorescent pro-
tein (GFP) has a long half-life (kanamycin resistance) (30). This construct
was electroporated into P. syringae B728a. Transposon mutants were gen-
erated using an approach similar to that described in reference 31, where
mini-Tn5 (mTn5) Sm/Sp was introduced into P. syringae B728a [pPsyfA-

gfp(K)]. Briefly, E. coli cells harboring pUT mini-Tn5 Sm/Sp (32) and P.
syringae cells harboring pPsyfA-gfp(K) were grown overnight in either LB or
KB broth with proper antibiotic amendment at 37°C or 28°C, respectively,
with shaking at 200 rpm. Cells were mixed in an approximate ratio of 1:3
(E. coli-P. syringae) and incubated overnight on KB medium without an-
tibiotic amendment. Culture lawns were resuspended in 10 mM KPO4

buffer, spread onto KB plates amended with spectinomycin and kanamy-
cin, and incubated at 28 to 29°C. After 2 to 3 days of incubation, plates
were observed under UV illumination and colonies displaying an observ-
able increase in fluorescence compared to that of the majority of colonies
were streaked to isolation and rescreened at 28 to 29°C to ensure pheno-
type reproducibility. A plate containing colonies of wild-type (WT) P.
syringae harboring pPsyfA-gfp(K) was routinely included for comparison at
all stages of screening.

Regions flanking transposon insertions were obtained using arbi-
trarily primed PCR similar to the method described in references 31 and
33. Genomic DNA was isolated from transposon mutants using a DNeasy
blood and tissue kit (Qiagen, Valencia, CA), which served as the template
in two sequential PCRs using tn5sm-ext (first round of amplification) and
tn5sm-int (second round of amplification) (see reference 31 for primer
sequences). The sequenced PCR products were compared to the P. syrin-
gae B728a genome using BLAST on the Integrated Microbial Genomes
website (http://img.jgi.doe.gov).

Targeted deletion of rppH and ACDH and complementation. rppH
and acyl-coenzyme A (CoA) dehydrogenase (ACDH) deletion mutants
were constructed in a fashion similar to that previously described for flgM
(24). Briefly, approximately one kilobase of upstream and downstream
genomic DNA flanking either gene was amplified using Phusion DNA
polymerase (Thermo Scientific [previously Finnzymes], Lafayette, CO)
with the knockout (KO) primers listed in Table S2 in the supplemental

material. Amplified genomic fragments were combined with a kanamy-
cin-FLP recombination target (kan-FRT) PCR fragment amplified from
pKD13 (ACDH) or pKD4 (rppH) (34) for three-fragment overlap-exten-
sion PCR. The combined fragments were cloned into pTOK2T (35) to
create prppH-KO and pACDH-KO. prppH-KO and pACDH-KO were
electroporated into S17-1, which was mated with P. syringae B728a. Ka-
namycin-resistant and tetracycline-sensitive colonies derived from these
matings (indicative of double-crossover homologous recombination)
were verified using PCR. pFLP2� was electroporated into each individual
mutant, and single colonies isolated on KB amended with spectinomycin.
Five kanamycin-sensitive colonies (indicative of Flp-mediated kan cas-
sette excision) from each mutant were grown overnight in KB broth with-
out antibiotic amendment, and 10 spectinomycin-sensitive colonies from
each deletion were screened by PCR for loss of pFLP2�. rppH and ACDH
deletion mutants (referred to here as the �rppH strain and the �ACDH
strain, respectively) were confirmed by sequencing. The pACDH-KO
construct was mated into the �rppH mutant and processed as described
above to construct a double-deletion mutant.

The rppH and ACDH complementation vectors, prppH and pACDH,
respectively, were constructed by amplifying rppH and ACDH coding
sequences, along with their upstream promoter regions, using Phusion
DNA polymerase (Thermo Scientific, Lafayette, CO) and native_comp
primers (see Table S2 in the supplemental material), followed by blunt-
end cloning into pVSP61 (36), which was digested with EcoRI and
blunted with T4 DNA polymerase (New England BioLabs). The comple-
mentation constructs were sequenced using the same primers to verify
insertion.

Detection of biosurfactants. Biosurfactants were detected using an
atomized oil assay (31). Briefly, bacterial cells were grown overnight in KB
broth with appropriate antibiotics and resuspended to a final concentra-
tion of 2 � 108 CFU/ml. Five microliters of resuspended cells was spot
inoculated onto solid KB medium amended with appropriate antibiotics.
The plates were incubated for ca. 24 h at the temperature indicated below,
and the surfactant area detected by the formation of bright oil drops after
a mist of mineral oil was sprayed onto the plate.

Transcriptional reporter assays. Transcriptional reporter assays were
performed similarly to a previously described method (37). Briefly, cul-
tures were resuspended in 10 mM KPO4 buffer and diluted to a final
optical density at 600 nm (OD600) of 0.1 to 0.2. GFP fluorescence intensity
was determined using a TD-700 fluorometer (Turner Designs, Sunnyvale,
CA) with a 486-nm band-pass excitation filter and a 510- to 700-nm
combination emission filter. Relative GFP fluorescence was determined
by normalizing the fluorescence intensity (arbitrary units) by the optical
density.

RNA isolation and qRT-PCR. RNA isolation and quantitative reverse
transcription-PCR (qRT-PCR) were performed as described in other
studies (24). Briefly, cultures were harvested with RNAlater (Life Tech-
nologies, Carlsbad, CA) and stored for no longer than 1 week at 4°C prior
to RNA isolation. Total RNA was isolated using TRIzol reagent (Life
Technologies). Total RNA was DNase treated with Turbo DNA-free (Life
Technologies), followed by column purification using an RNeasy minikit
(Qiagen). RNA was reverse transcribed using SuperScript II reverse trans-
criptase (Life Technologies) with random primers (Life Technologies).
Quantitative PCR (qPCR) was performed using a 7300 real-time PCR
system (Life Technologies) with QuantiTect SYBR green I (Qiagen) on
diluted cDNA. Samples not treated with reverse transcriptase were rou-
tinely included and exhibited no amplification following 35 cycles. rpoD
and Psyr_3981 (encodes pseudouridine synthase, a gene that was found to
be stably expressed in multiple regulatory mutant backgrounds, as well as
under several different culture conditions [K. L. Hockett, R. A. Scott, and
S. E. Lindow, unpublished data]), were routinely used as endogenous
controls.

mRNA sequencing. All protocols and analyses (including statistical
tests for differentially expressed transcripts and assessment of gene func-
tional enrichment) related to mRNA sequencing were performed exactly
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as described previously (24). Briefly, total RNA was isolated as described
above, with 16S and 23S rRNA removed using a Ribo-Zero rRNA removal
kit (Gram-negative bacteria) (Epicentre, Madison, WI) according to the
manufacturer’s protocol. mRNA samples were assayed with a 2100 Bio-
analyzer (Agilent, Santa Clara, CA) to confirm the removal of rRNA.
mRNA and double-stranded DNA (dsDNA) were routinely quantified
using the qBit RNA and dsDNA HS assay (Life Technologies, Carlsbad,
CA), respectively. See Hockett et al. (24) for details regarding the con-
struction of libraries to be sequenced using the Illumina HiSeq 2000.
Three biological repeats were sequenced per temperature treatment per
strain on three separate flow cells. Reads were aligned to the P. syringae pv.
syringae B728a genome using Burrows-Wheeler Aligner (38), allowing for
a maximum of three mismatches between a given read and the reference
genome. The number of reads that overlapped with a given gene were
counted using a custom script. Differential expression of genes and statis-
tical significance were assessed using edgeR (39). Briefly, significance was
established by comparing the gene expression levels, normalized by the
trimmed mean of M values (TMM; where M is the log expression ratio per
gene between treatments) (40), of three biological replicates incubated at
either 20°C or 30°C (six samples total), using the empirical Bayes estima-
tion and exact tests based on the negative binomial distribution. Alterna-
tively, significance was established by comparing the gene expression lev-
els of three biological replicates of the two strains (WT and �rppH strains)
at either 20°C or 30°C. Genes were considered significantly differentially
expressed if the P value (after adjustment for multiple comparisons) for a
difference in expression between the two treatments was less than or equal
to 0.05. Expression data are available at the Integrated Microbial Genome
website (http://img.jgi.doe.gov). Thermoregulated genes in the WT strain
are reported in reference 24. All genes thermoregulated in the �rppH
strain are presented in Table S3 in the supplemental material. Genes dif-
ferentially regulated between the �rppH strain and the wild-type strain at
20°C are presented in Table S4. Genes differentially regulated between the
�rppH and the wild-type strain at 30°C are presented in Table S5.

RESULTS
A transposon mutagenesis screen uncovers mutations in genes
encoding an ACDH and a Nudix hydrolase, causing overexpres-
sion of syfA at 28°C. Since the expression of syfA is suppressed at
28 to 30°C compared to its expression at cooler growth tempera-
tures, we hypothesized that one or more negative regulators are
necessary to mediate such thermorepression (24). To identify
such regulators, we assessed the GFP fluorescence of a large col-
lection of insertional mutants (mini-Tn5) of a P. syringae strain
that harbored a plasmid containing a fusion of the syfA promoter
(PsyfA) with a gfp reporter gene. A total of 13 mutants that exhib-
ited a visible increase in GFP fluorescence compared to that of the
wild-type strain were found in a screen of approximately 30,000
colonies grown at 28°C (Table 1). Six of the mutants were consid-
erably more fluorescent than the other seven. Characterization of
the sites of transposon insertion in the six highly fluorescent mu-
tants revealed that two unique genes, Psyr_2474, encoding an
acyl-CoA dehydrogenase (ACDH), and Psyr_4843, encoding a
Nudix (nucleoside diphosphate linked to moiety X) hydrolase,
were each disrupted independently in three mutants (Fig. 1). Be-
cause disruption of these two genes always conferred a pro-
nounced hyperexpression of PsyfA at high temperatures and since
such mutants were found multiple times, they were further inves-
tigated.

Psyr_2474 encodes an acyl-CoA dehydrogenase. Psyr_2474 is
annotated as an acyl-CoA dehydrogenase, which is predicted to be
involved in multiple metabolic pathways by the KEGG database
(41). Generally, acyl-CoA dehydrogenases catalyze the desatura-
tion at positions �,� of CoA-conjugated fatty acids derived from

�-oxidation or amino acid metabolism (42). Both Psyr_2474 and
Psyr_2473 (encoding a putative LysR-type transcriptional regula-
tor) are highly conserved across diverse pseudomonads (see Table
S6 in the supplemental material).

Psyr_4843 encodes a putative Nudix hydrolase probably in-
volved in mRNA turnover. Psyr_4843 is annotated as a Nudix
hydrolase, an enzyme family widespread throughout the tree of
life that catalyzes the general reaction in which a nucleoside
diphosphate linked to moiety X is converted to a nucleoside
monophosphate plus phosphate linked to moiety X (43).
Psyr_4843 is closely related to RppH of E. coli based on both
amino acid conservation (65% identity/80% similarity) and syn-
tenic conservation (see Fig. S1 in the supplemental material). Ad-
ditionally, since the KEGG database predicts that Psyr_4843 is the
P. syringae B728a ortholog of rppH, we will refer to Psyr_4843 as
rppH. RppH has recently been shown to stimulate mRNA decay
through its action as a decapping enzyme, whereby it cleaves the 5=
pyrophosphate from an mRNA molecule, generating a 5=-mono-
phosphorylated transcript (44). The resultant transcript, having a
5=-monophosphate, subsequently becomes a more favorable
substrate for RNase E and RNase G, resulting in its degradation
(45, 46).

ACDH and rppH knockout mutants require a higher incuba-
tion temperature than the WT strain for full thermorepression
of syfA but are unaffected in thermorepression of fliC. The con-

TABLE 1 Genes disrupted in transposon mutants of Pseudomonas
syringae that overexpress syfA at 28 to 29°C

Locus tag Annotation Fluorescence
No. of times
disrupted

Psyr_1083 Nucleoid-associated protein 	 1
Psyr_2474 Acyl-CoA dehydrogenase 		 3
Psyr_2759 Eukaryotic-like DNA

topoisomerase I
	 1

Psyr_3575 Phenylalanine-4-hydroxylase,
monomeric form

	 1

Psyr_3700 Protein of unknown
function, DUF306

	 1

Psyr_4005 Hypothetical protein 	 1
Psyr_4202 Sodium:neurotransmitter

symporter
	 1

Psyr_4493 PAS-GGDEF domains 	 1
Psyr_4843 Nudix hydrolase 		 3

FIG 1 syfA promoter activity of selected transposon mutants. GFP fluores-
cence exhibited by wild-type Pseudomonas syringae B728a harboring a plasmid
containing a fusion of the syfA promoter with a gfp reporter gene (A and B) and
this strain having a Tn5 insertion in Psyr_2474 (acyl-CoA dehydrogenase) (C)
or Psyr_4843 (Nudix hydrolase) (D).
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tribution of rppH and ACDH to thermoregulation in P. syringae
was examined in mutants in which these loci were disrupted
(mTn5::rppH and mTn5::ACDH, respectively). Compared to the
syfA expression in the wild-type strain, both mutants overex-
pressed syfA at 20°C, as well as at higher temperatures up to

30°C, although both mutants expressed syfA at levels compara-
ble to the level in the wild-type strain at the highest temperatures
assayed (Fig. 2A). Neither mutant appeared to differ substantially
from the wild-type strain in the expression of fliC, a gene pre-
viously shown to be thermorepressed (24), at any temperature,
indicating that neither gene contributed to the thermoregula-
tion of fliC (Fig. 2B).

To confirm the genetic basis of the mutant phenotypes de-
scribed above, we constructed deletion mutants with a targeted
deletion at each locus (�ACDH and �rppH strains), as well as
complementing them with the full-length genes. The deletion mu-
tants exhibited phenotypes similar to those of the corresponding
insertional mutants (the mTn5::rppH strain exhibited slightly
greater syfA expression than the �rppH strain at both tempera-
tures); both overexpressed syfA at 20°C and 29°C (see Fig. S2 in the
supplemental material). Both mutants also produced more sur-
factant at 29°C, evident as a larger halo of modified oil drops
surrounding colonies when assessed with an atomized oil assay
(Fig. 3). In contrast, at 29°C, the surfactant production of the
mutants harboring the corresponding gene expressed in trans

from the native promoter in pVSP61 was much lower than that of
the corresponding mutant itself and did not differ from that of the
wild-type strain (Fig. 3).

rppH likely regulates syfA via syfR. syfA is regulated by syfR, a
LuxR-type regulator (31). Using qRT-PCR, we determined that
syfR is thermoregulated similarly to syfA, with greater transcript
abundance at cooler temperatures (see Fig. S3 in the supplemental
material). Similar thermoregulation was observed using the syfR
promoter fused to a gfp reporter gene (data not shown). The
�rppH strain also exhibited a loss of syfR thermoregulation, sim-
ilar to the results for syfA (see Fig. S3). Thermoregulation of both
syfR and syfA are restored when rppH is complemented in trans
(Fig. 4). These experiments were performed at warm tempera-
tures between 28°C and 29°C, a temperature range where there is
a significant difference between the syfA expression levels in the
WT and �rppH strains. At higher temperatures (�30°C), the
transcript abundance of both syfR and syfA is strongly suppressed
in both the WT and �rppH strain (see Fig. S4), consistent with the
results of studies using gfp reporter gene fusions (Fig. 2A).

Transcripts associated with translation, amino acid import
and metabolism, and other processes are not suppressed at high
temperatures in a �rppH mutant. As rppH is involved in medi-
ating mRNA turnover, we wanted to assess whether it may have a
general role in the thermoregulation of transcript abundance in P.
syringae. Our hypothesis was that there would be fewer transcripts
whose abundances were decreased by incubation at warmer tem-
peratures. To assess the role of rppH in global thermoregulation,
we compared the transcriptome of the �rppH strain incubated at
20°C or 30°C to that of the wild-type strain incubated at the same
temperatures. While this high temperature precluded us from ob-
serving an effect of the rppH mutation on syfA and syfR transcript
abundances, it was necessary to enable a direct comparison with
the temperature-dependent transcriptome in the wild-type strain,
where 1,445 transcripts were thermoregulated (24).

In the �rppH strain, the expression of 1,150 transcripts was
significantly different at the two temperatures (see Table S3 in the
supplemental material); 636 were induced and 514 were repressed
at 30°C compared to their expression at 20°C (Fig. 5A). Of the
1,150 temperature-regulated transcripts, 726 were also influenced
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by temperature in the wild-type strain (Fig. 5A). When grown at
30°C, a total of 576 transcripts differed significantly in expression
in the �rppH strain compared to their expression in the wild-type
strain (see Table S4); 105 transcripts were more abundant in the
mutant, while 471 were less abundant in the mutant (Fig. 5B).
When grown at 20°C, a total of 175 transcripts differed in abun-
dance in the �rppH strain compared to their levels in the wild-type
strain (see Table S5); 42 transcripts were more abundant in the
mutant, while 133 were less abundant in the mutant (Fig. 5B).
Taken together, these results demonstrated that deletion of rppH
significantly affected the transcriptome of P. syringae and that its
effect was largely but not entirely temperature dependent. For
example, more than three times as many transcripts were mis-
regulated in the �rppH strain compared to their regulation in the
wild-type strain at 30°C than at 20°C.

While these results confirmed that rppH affects the transcrip-
tome in a temperature-dependent manner, our hypothesis pre-
dicted that, in general, we would observe less thermosuppres-
sion in the �rppH strain than in the wild-type strain, a pattern
that we did not observe. More transcripts were repressed at 30°C

than at 20°C in the �rppH strain than in the wild-type strain (514
and 338 genes for the �rppH strain and the WT strain, respec-
tively). Furthermore, more transcripts had lower rather than
higher abundance in the �rppH strain compared to the wild-type
strain at 30°C (471 and 105 transcripts suppressed and enhanced,
respectively). That is, in the �rppH strain, there were more ther-
mosuppressed transcripts than in the wild-type strain and the de-
letion of rppH appeared to exert a generally negative effect on
transcript abundance at 30°C. Based on the predicted function of
RppH, it seemed unlikely that this enzyme would directly increase
the abundance of the transcripts of its target genes. A more likely
possibility was that RppH negatively regulates an intermediate
regulator(s) that is itself a negative regulator, potentially in a tem-
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perature-dependent manner. To address this possibility, we deter-
mined those transcripts that were simultaneously (i) lower in
abundance at 30°C than at 20°C in the wild-type strain and (ii)
greater in abundance in the �rppH strain than in the WT strain at
30°C. Such transcripts were thermosuppressed in the wild-type
strain, and this thermosuppression was dependent on rppH. There
were 43 transcripts that fulfilled these criteria. This group was
enriched in genes related to the functional categories of transla-
tion and amino acid transport and metabolism (Table 2). To dis-
count those transcripts that might be overexpressed in the �rppH
strain at both temperatures (indicative of temperature-indepen-
dent overexpression in the �rppH strain), we determined whether
any of these 43 transcripts were more abundant in the �rppH
strain than in the wild-type strain at 20°C. Only four transcripts
(Psyr_0749, Psyr_0750, Psyr_2601 [salA], and Psyr_4175) exhib-
ited such temperature-independent increased abundance,
whereas the other 39 transcripts were more abundant in the
�rppH strain only at 30°C. Intriguingly, RNase E (Psyr_1638) was
more abundant in the �rppH strain than in the wild-type strain at
30°C but not at 20°C. RNase E has recently been shown to stimu-
late 5=-monophosphate-dependent (i.e., RppH-dependent) tran-
script degradation, as well as 5=-monophosphate-independent
(i.e., RppH-independent) transcript degradation. This suggested
that the �rppH strain may exhibit increased turnover of RNase
E-dependent but RppH-independent transcripts. Since RNase E
was only overexpressed in the �rppH strain at 30°C and not at
20°C, this effect would be temperature dependent.

TABLE 2 Thermorepressed transcripts in wild-type Pseudomonas
syringae B728a that are more abundant in the �rppH strain at 30°C

Category, locus tag Gene

Ratio of thermorepressed transcripts for
indicated strain(s) and temp(s)a

30°C/20°C

�rppH
strain/WT
strain

WT strain �rppH strain 30°C 20°C

Translation
Psyr_4525 rpsD 0.5 1.2 2.6 1.1
Psyr_4526 rpsK 0.5 1.1 2.4 1.1
Psyr_4538 rplN 0.5 1.1 2.5 1.0
Psyr_4539 rpsQ 0.5 1.1 2.6 1.1
Psyr_4540 rpmC 0.4 1.1 2.6 1.0
Psyr_4541 rplP 0.5 1.1 2.4 1.0
Psyr_4542 rpsC 0.5 1.2 2.3 1.0
Psyr_4543 rplV 0.5 1.1 2.2 1.1
Psyr_4544 rpsS 0.5 1.1 2.2 1.1
Psyr_4545 rplB 0.5 1.1 2.3 1.0
Psyr_4546 rplW 0.5 1.1 2.7 1.1
Psyr_4547 rplD 0.4 1.1 2.7 1.1
Psyr_4548 rplC 0.5 1.1 2.4 1.0
Psyr_4550 tuf 0.5 1.2 2.3 1.0
Psyr_4551 fusA 0.5 1.1 2.3 1.0
Psyr_4552 rpsG 0.6 1.1 2.0 1.0
Psyr_4557 rplJ 0.6 1.0 1.9 1.1

Amino acid metabolism
and transport

Psyr_1072 aapJ 0.6 1.6 1.7 0.6
Psyr_1073 aapQ 0.4 1.5 2.2 0.6
Psyr_1096 gcvP 0.5 0.9 2.0 1.2
Psyr_1097 gcvH-2 0.5 0.9 2.5 1.4
Psyr_2470 liuA 0.4 0.5 1.9 1.5
Psyr_3908 gltI 0.4 0.9 2.6 1.4
Psyr_3909 gltJ 0.3 0.9 3.8 1.3
Psyr_3910 gltK 0.4 0.9 3.0 1.3
Psyr_3911 gltL 0.5 0.8 1.8 1.2

Secretion/efflux/export
Psyr_5134 0.5 0.9 1.9 1.1

Transport
Psyr_3999 0.2 0.9 5.5 1.4
Psyr_4175 0.2 0.6 10.7 3.9

RNA degradation
Psyr_1638 rne 0.4 0.8 2.0 1.0

Nitrogen metabolism
Psyr_4817 glnA-1 0.3 0.8 2.0 0.8

Carbohydrate
metabolism and
transport

Psyr_0944 prsA 0.5 1.1 1.9 0.9
Psyr_2440 mltE 0.4 0.6 2.0 1.4

Fatty acid metabolism
Psyr_0749 fadD 0.3 0.3 1.9 2.1

TABLE 2 (Continued)

Category, locus tag Gene

Ratio of thermorepressed transcripts for
indicated strain(s) and temp(s)a

30°C/20°C

�rppH
strain/WT
strain

WT strain �rppH strain 30°C 20°C

Quaternary ammonium
compound
metabolism and
transport

Psyr_3238 dhcB 0.5 0.7 1.9 1.2

Transcription
Psyr_4524 rpoA 0.5 1.2 2.4 1

Phytotoxin synthesis
and transport

Psyr_2601 salA 0.5 0.9 3 1.9

Transport (peptides)
Psyr_4235 0.5 1.6 2.7 0.8
Psyr_4238 dppA-1 0.5 1.3 2.1 0.8

Hypothetical
Psyr_0750 0.1 4.1 3.5 2.1
Psyr_5135 0.5 0.9 1.9 1.2

Unannotated
Psyr_2239 0.4 1.5 2.2 1.4
Psyr_5136 0.5 0.9 1.9 1.2

a Values in boldface are significant at a P value of �0.05.
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In addition to its temperature-dependent effects on the tran-
scriptome, RppH affected the abundance of 90 transcripts regard-
less of the incubation temperature. Two functional categories (cell
division and phytotoxin synthesis and transport) were more com-
mon among the 18 transcripts that were more abundant in the
�rppH strain than in the wild-type strain (Table 3). The 72 tran-
scripts that were generally less abundant in the �rppH strain were
enriched for those encoding phage and insertion elements (Table
3). These results indicate that RppH exerts a complex regulatory
effect on the P. syringae transcriptome, altering the abundance of
transcripts in both temperature-dependent and temperature-in-
dependent manners.

DISCUSSION

In this study, we used a high-throughput screen to identify ther-
moregulators of syfA and gained thereby broader insight into the
genetic components that mediate responses to temperature in P.
syringae. Two genes, ACDH and rppH, both appear to contribute
to the proper thermoregulation of syfA, while rppH is essential for
the thermoregulation of many other transcripts. These two genes
thus appear to play a role in the temperature-dependent behavior
of P. syringae. To our knowledge, this is the first report of the
involvement of either of these genes in thermoregulation.
Whether ACDH and rppH have a role in direct thermosensing or
are involved in the signal cascade that regulates temperature-sen-
sitive genes but do not sense the temperature themselves remains
to be determined.

Both the ACDH and rppH mutant required higher incubation
temperatures than the WT strain for complete thermorepression
of syfA. These mutations, uncovered in a mutagenesis screen and
confirmed by site-directed deletion mutagenesis, as well as by
complementation, were clearly causative for the overexpression of
syfA and surfactant at 28 to 29°C. However, both the �ACDH
strain and the �rppH strain exhibited repression of syfA at tem-
peratures of �30°C, indicating that additional thermoregula-
tor(s) control temperature-dependent syringafactin expression.
Preliminary studies indicated that stacked deletions of ACDH and
rppH (�ACDH/�rppH) resulted in loss of thermoregulation of
syfA at 30°C but that this mutant still failed to produce syringafac-
tin at this or higher temperatures (K. L. Hockett and S. E. Lindow,
unpublished results). These results suggest that there may be lay-
ers of thermoregulation, where ACDH and rppH are important
for thermoregulation at moderately warm temperatures while
other factors ensure thermoregulation at warmer temperatures.
The finely tuned sensitivity to incubation temperature, where
there is a phenotypic difference between the �rppH and wild-type
strains at 28 to 29°C with regard to syfA expression but no discern-
ible difference between the strains at 30°C or warmer tempera-
tures, is notable. Such precise regulation is not wholly surprising,
given that bacterial RNA-based temperature sensors are able to
respond to 1°C changes in temperature (47). While it is not clear
why the transition from 29°C to 30°C results in the rppH deletion
strain no longer allowing for increased expression of syfA above
the level in the wild-type strain, we can speculate that at the
warmer temperatures (�30°C), the cells are likely starting to ex-
perience heat stress. The optimal growth temperature for P. syrin-
gae is 28°C, and it exhibits a marked decrease in growth rate at
around 32°C or warmer (48). Indeed, we have observed that wild-
type cells incubated at ca. 32°C are elongated compared to cells
incubated at cooler temperatures, likely indicating arrest of cell

division as a stress response. Whatever the cause of the transition
in phenotype at 30°C, further studies of the interaction between
ACDH and rppH, as well as the potential involvement of addi-
tional, yet-to-be-identified thermoregulators, will be fruitful.

Our understanding of the role of ACDH in thermoregulation

TABLE 3 Gene functional categories enriched for those transcripts that
were either increased or decreased in abundance in the �rppH strain
relative to their abundance in the wild-type strain of Pseudomonas
syringae when grown at different temperatures

Category, locus tag Gene Annotation

Abundance
ratio for
�rppH
strain/WT
strain ata:

20°C 30°C

Cell division
Psyr_1611 minE Cell division topological

specificity factor
1.9 2.5

Psyr_1612 minD Septum site-determining
protein

1.9 2.7

Phage and IS elements
Psyr_1030 nfrB Bacteriophage N4

adsorption protein B
0.4 0.6

Psyr_2764 NAb Hypothetical protein 0.5 0.5
Psyr_2766 NA Hypothetical protein 0.4 0.5
Psyr_2805 NA Hypothetical protein 0.4 0.5
Psyr_2806 NA Bacteriophage lambda

NinG
0.4 0.3

Psyr_2807 NA NinB 0.3 0.2
Psyr_2808 NA Hypothetical protein 0.2 0.1
Psyr_2809 NA Hypothetical protein 0.3 0.2
Psyr_2810 NA Hypothetical protein 0.3 0.3
Psyr_2811 NA Hypothetical protein 0.2 0.2
Psyr_2816 NA Hypothetical protein 0.2 0.2
Psyr_2817 NA Hypothetical protein 0.2 0.3
Psyr_2818 NA Hypothetical protein 0.2 0.3
Psyr_2819 NA Hypothetical protein 0.1 0.4
Psyr_2820 recT Recombinase 0.2 0.3
Psyr_2821 recE Promotes recombination by

RecT
0.3 0.4

Psyr_2822 NA Hypothetical protein 0.3 0.4
Psyr_2823 NA Hypothetical protein 0.3 0.5
Psyr_2828 NA C-5 cytosine-specific DNA

methylase
0.3 0.5

Psyr_2831 NA Hypothetical protein 0.2 0.5
Psyr_2832 NA Phage integrase 0.3 0.4
Psyr_2845 NA Hypothetical protein 0.2 0.5
Psyr_2846 NA Phage integrase 0.3 0.5
Psyr_4586 NA Hypothetical protein 0.2 0.2
Psyr_4587 NA Baseplate J-like protein 0.2 0.2
Psyr_4588 NA Phage GP46 0.2 0.2
Psyr_4589 NA Phage baseplate assembly

protein V
0.2 0.2

Psyr_4590 NA Bacteriophage Mu P 0.2 0.2
Psyr_4591 NA DNA circulation 0.2 0.2
Psyr_4592 NA Phage tail tape measure

protein TP901
0.2 0.2

Psyr_4595 NA Bacteriophage Mu tail
sheath

0.2 0.2

a All values listed are significant at a P value of �0.05.
b NA, not available.
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remains limited to its effect on syfA expression. Based on its pre-
dicted function and the conservation of neighboring genes in dif-
ferent taxa, we speculate that it modifies the pool of a key meta-
bolic intermediate(s), such as an amino acid(s) or fatty acid(s) that
regulates the expression of syfA. As the syringafactins are a family
of closely related lipopeptides, consisting of an acyl chain linked to
a short peptide head group rich in leucine (49), ACDH could be
involved in one or more pathways linked to the production of
syringafactin precursors. The LysR-type regulator encoded by the
adjacent, oppositely oriented gene Psyr_2473 is a likely regulator
of such a metabolic intermediate, as this arrangement of genes
encoding enzymes flanked by those encoding a LysR-type regula-
tor is common (50).

We chose to perform temperature-dependent global transcrip-
tome analysis on the �rppH strain because of a possibility that this
gene is involved in controlling transcript stability, based on its
characterized function in E. coli (44). Our results suggest that
RppH regulates transcripts in both a temperature-dependent and
-independent manner. A potential explanation for such a phe-
nomenon would be that temperature-dependent regulation of a
transcript is due to the 5= untranslated region (UTR) of a partic-
ular transcript rather than being an inherent quality of RppH ac-
tivity. Thermoregulation of translation by RNA thermometers
(RNATs) is well described (51, 52). In RNATs, temperature-de-
pendent conformational changes in the 5=UTR of a temperature-
sensitive transcript either allow or block access of the ribosome to
the ribosomal binding site, thus allowing or inhibiting translation.
Such conformational changes are the consequence of alternative,
temperature-dependent stem-loop structures forming and can
result from either trans-acting (intermolecular) or cis-acting
(intramolecular) interactions. Temperature-dependent tran-
script stability has also been described, but the manner in which
temperature regulates transcript stability remains poorly under-
stood. Two well-described examples of temperature-dependent
RNA stability include the cspA transcript, encoding a cold shock
protein in E. coli (53), and the small RNA DsrA, which is impor-
tant in establishing rpoH expression at cool but not warm temper-
atures (15). In both examples, the RNA molecules are stable at
cool temperatures but are rapidly degraded when shifted to a
warmer temperature. Importantly, in both cases, processing by
RNase E is involved in processing the RNA molecules into inactive
forms (53, 54). Despite the involvement of RNase E in processing
these RNAs into inactive forms, a mechanistic understanding of
how temperature alters their stability remains to be described.
Our model of RppH-mediated thermoregulation is mechanis-
tically similar to the function of RNATs in that thermoregu-
lated transcripts might possess a 5= UTR stem-loop structure
that maintains transcript stability at cool temperatures but
melts at warmer temperatures, thus facilitating processing by
RppH and RNase E. Both RppH-mediated decapping and
RNase E-mediated cleavage are inhibited by stem-loop struc-
tures at the 5= terminus of transcripts (44, 55–57).

One of the most striking temperature-dependent phenotypes
for which rppH is required is the expression of ribosomal proteins
(Table 2). Previous work in Pseudomonas indicated that elevated
expression of the ribosomal protein operon infC-rpmI-rplT (by
increasing the copy number) partially restored toxin and protease
production in gacS and gacA mutants of P. syringae and Pseudomo-
nas fluorescens (58, 59), suggesting that the balance of ribosomal
proteins in the cell can modulate certain phenotypes. We thus

hypothesize that the ribosome itself might potentially play a role
in mediating temperature-dependent phenotypes. There is evi-
dence to support this hypothesis. Ribosomal function appears to
be a regulatory input for both the cold shock and heat shock re-
sponse, given that translation-inhibiting antibiotics can stimulate
the cold shock response in both E. coli and Bacillus subtilis at sub-
lethal doses (60, 61), while depletion of 4.5S rRNA or treatment
with antibiotics that decrease translational fidelity induce the heat
shock response (60, 62). This suggests that perturbation of ribo-
some function can mimic the effects of a large temperature shift.
In addition, one of the cellular effects of heat shock is the down-
regulation of a subset of ribosomal proteins (63, 64). Conversely,
the expression of ribosomal or ribosome-associated proteins of B.
subtilis increases following cold shock, as well as during prolonged
cool incubation (65–67). It has been hypothesized that the mod-
ification of ribosomes to function at cooler temperatures is one of
the major acclimation processes that occurs when cells experience
cool temperatures (68). More pertinently, in E. coli, RppH associ-
ates with ribosome precursor particles, and its abolishment leads
to an increase of the ratio of 30S to 70S ribosomal complexes (69),
suggesting that disruption of rppH may lead to altered ribosomal
function in P. syringae. If ribosomal function is, in fact, altered in
the �rppH strain, we might expect an even more pronounced
change of the proteome than of the transcriptome.

The mRNA-decapping function of RppH also results in RNase
E- and RNase G-mediated degradation of messages and is com-
plicated by the fact that mRNA turnover can be catalyzed by sev-
eral independent mechanisms. Most relevant to this work is the
recognition that RNase E itself can cleave transcripts in both a
5=-monophosphate-dependent and -independent manner, these
functions being genetically separable (70, 71). Our data indicated
that the RNase E transcript, like the transcripts for ribosomal pro-
teins, were more abundant at 20°C than at 30°C in the wild-type
strain, while the �rppH strain expressed these transcripts equally
at both temperatures. There are no previous reports of tempera-
ture-regulated RNase E transcript abundance. In E. coli, the rne
transcript is autoregulated but in an RppH-independent manner,
in that RppH does not cleave pyrophosphate from the rne tran-
script (72). Our results indicated that RppH is involved in the
regulation of rne in P. syringae but only at warm temperatures. A
similar effect was observed in E. coli, where deletion of rppH led to
an apparent increase in RNase E activity (as measured by RNase E
autoregulation) (71). This result suggests that while degradation
of transcripts via an RppH-dependent mechanism may be abol-
ished in an RppH mutant, it could stimulate the degradation of
transcripts via an RppH-independent but RNase E-dependent
mechanism, which would functionally resemble thermoregula-
tion due to its preferential effect at higher temperatures.
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