UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Dynamic Information Sampling via Rapid Sequential Storage and Recurrence

Permalink
https://escholarship.org/uc/item/7p57m02w

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 45(45)

Authors

Gao, Mengcun
Ralston, Robert
Sloutsky, Vladimir

Publication Date
2023

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7p57m02w
https://escholarship.org
http://www.cdlib.org/

Dynamic Information Sampling via Rapid Sequential Storage and Recurrence

Mengcun Gao' (g20.643@buckeyemail.osu.edu)

Robert Ralston! (ralston.123@osu.edu)

Vladimir Sloutsky' (sloutsky.1@osu.edu)

IThe Ohio State University Department of Psychology, 1835 Neil Avenue, Columbus, Ohio 43210

Abstract

When making category decisions, humans sample features fol-
lowing their dynamic informativeness. Attention optimization
models successfully predict these categorization behaviors, but
optimization is not the only solution. Alternatively, categoriza-
tion can be viewed as a Reinforcement Learning (RL) task in
which learners sample information based on its expected util-
ity. However, RL models of information sampling have high
computational load, even though human learners solve this
problem on the millisecond timescale. Therefore, we propose
ATHENA-RSS, a model that implements reward-based infor-
mation search in a more computationally efficient way, via the
rapid sequential storage of memories and recurrent retrieval.
To test the model, we conducted an experiment where partici-
pants (N = 99) learned hierarchically structured categories by
uncovering stimulus features. We then conducted a simula-
tion study, where ATHENA-RSS successfully reproduced all
search patterns exhibited by participants. We conclude that
rapid sequential storage and recurrent memory retrieval were
sufficient to achieve human-like information sampling in this
task.

Keywords: Categorization; Reinforcement Learning; Atten-
tion Optimization

Introduction

In formal theories of categorization, human category learn-
ing has been explained by a mechanism of attention opti-
mization (Kruschke, 1992; Love, Medin, & Gureckis, 2004;
Nosofsky, 1986; Weichart, Galdo, Sloutsky, & Turner, 2022).
For example, the Generalized Context Model (GCM) and
the Attention Learning COVEring map model (ALCOVE)
(Nosofsky, 1986; Kruschke, 1992) assumes that humans
learn categories by learning to attend to stimulus features to
optimize performance. However, GCM, ALCOVE, and many
classical models which use these attention weights share one
critical limitation: they lack the flexibility to solve problems
where the importance of dimensions is dynamic.

In classical category-learning models, during one trial, a
common set of attention weights is used for all exemplars and
stimuli. However, a one-size-fits-all set of attention weights
neglects the fact that the importance of stimulus features can
vary based on within-trial context, where the identity of one
dimension can impact the importance of others.

This limitation has been addressed by more recent models
(Aha & Goldstone, 1992; Braunlich & Love, 2022; Kruschke,
2001; Nosofsky & Hu, 2022; Weichart et al., 2022). For ex-
ample, models assuming stimulus-specific or region-specific
attention weights address the problem by incorporating dif-

ferent sets of attention weights for each exemplar or region of
psychological space where categories are embedded.

In addition, the Sampling Emergent Attention Model
(SEA) views categorization tasks as Reinforcement Learning
(RL) tasks where decisions about sampling are driven by the
expected utility of sampling each feature (Braunlich & Love,
2022). SEA incorporates two components: a Bayesian con-
cept learning component and an information-utility compo-
nent that uses a forward-search process (preposterior analy-
sis) to sample features based on their expected utility. Specif-
ically, a full preposterior analysis considers the consequences
of selecting each candidate feature several steps in the future.
This procedure is computationally costly and seems to imply
that participants in category learning experiments are doing
extensive computations on the millisecond timescale to de-
termine which feature to sample next (i.e., where to look).

In contrast, the Adaptive Attention Representation Model
(AARM) showed that dynamic information sampling could
be accomplished by attention optimization with a less-
intensive, confirmatory search mechanism. According to
AARM, instead of considering all possible sampling paths,
learners sample features that are most likely to further sup-
port the most probable category based on the information cur-
rently available. As an attention optimization model, AARM
achieves dynamic information search by allowing attention
weights to update between trials and fluctuate within a trial
(Weichart et al., 2022).

Although attention optimization can account for category
learning, it is unlikely to be the only mechanism. As de-
scribed above, SEA provides an alternative way to understand
information sampling. Instead of optimizing their attention
through supervised or unsupervised learning, learners may
sample information based on its expected information gain
using a reinforcement learning mechanism. This mechanism
seems promising; however, are there simpler ways to achieve
it without embracing the high computational demands?

Memory Storage in Categorization Models

Many prior category-learning models rely on a memory store
to hold entire examples or summary representations of previ-
ous stimuli (Braunlich & Love, 2022; Kruschke, 1992; Love
et al., 2004; Nosofsky, 1986; Weichart et al., 2022). The idea
that episodic memory is important to categorization is rein-
forced by studies showing that categorization behavior is re-
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lated to recognition memory (Deng & Sloutsky, 2015, 2016;
Jacoby, Wahlheim, & Coane, 2010; Unger & Sloutsky, 2023),
as well as fMRI studies showing activation in the hippocam-
pus during category learning (Davis, Love, & Preston, 2011).

One characteristic shared by essentially all memory-based
category learning models is that memory is updated on the
trial timescale (i.e., a single trace is added at the end of a
learning trial). However, in contrast to the models, humans
have been observed to store rapid sequential memories, re-
calling order information even when visual items are pre-
sented rapidly (Paivio & Csapo, 1971; Ghirlanda, Lind, &
Enquist, 2017). Moreover, storing memories with low tem-
poral resolution may discard important temporal structure; if
individuals retain a record of the order in which features are
sampled, as well as an estimate of the information gained by
sampling each feature, this could provide a basis for infor-
mation sampling via the same inference mechanisms already
used in models of categorization. In other words, through
memory alone, individuals could decide to sample features
which were previously informative in similar situations. In
the following section, we develop this reasoning into a full
model of category learning.

ATHENA with Rapid Sequential Storage

In this section, we introduce AuToassociative and HEt-
eroassociative Neural Attention with Rapid Sequential Stor-
age (ATHENA-RSS), a model that accomplishes category
learning and simple information sampling via instance-based
memory. The name comes from the fact that ATHENA is
a more general system for memory retrieval derived from
the dot product attention layers used extensively in machine
learning (Ralston & Sloutsky, 2022; Vaswani et al., 2017).
Then, to apply ATHENA to the problem of information sam-
pling, we further assume that individuals engage in Rapid
Sequential Storage during category learning, acquiring many
temporally-ordered memory traces during the same trial.

The inference mechanism in ATHENA can be stated sim-
ply. Say that we wish to infer unobserved values of a set of
stimulus features x;,1 from a set of known features x,. This
can be obtained by the following expression.

Athena(x;) = softmax(Px; KT )V = x,41 (1)

Here, K and V represent matrices where each row corre-
sponds to a memory trace and each column to a stimulus fea-
ture. K represents the features of an item which are being
cued, while V represents the features of an item which are
being retrieved. Furthermore, B > 0 is a constant related to
the specificity of the stored memory traces. In this paper, our
goal is to explain information sampling using memory alone.
Thus, we will omit the use of attention weights, though they
could be added to these equations.

Inferences in ATHENA are accomplished by comparing
the current item (x;) to stored items (rows of K) in memory
(via the dot product). Previous work has shown that, under
suitable conditions, the inference mechanism of ATHENA

results in rational inferences (Ralston & Sloutsky, 2022).
Specifically, if v, represents the unobserved dimensions cor-
responding to the cue x;, and x; is assumed to be drawn from
one of the items stored in memory with added angular noise
following a von Mises distribution, then x;1 ~ E[vy|x].
Since x;41 represents an expectation, it can be used to in-
fer many aspects of stimuli. This will be important, as we
use this mechanism to determine both the category label of
an item and the expected value of sampling a dimension.

As suggested by their subscripts, ATHENA can be used
recursively to generate predictions about temporal sequences
when the dimension of x; and x, | are the same. Consider the
case where a participant has experienced a sequence of items,
S1,52,...,8y, many times, and has formed memory traces bind-
ing each item to its successor; i.e., an s1,s2 binding, an s,, 53
binding, and so on. If we represent the first item in each bind-
ing as a row in K, and the second item as a row in V, then
Eq. 1 will provide the expectation of each feature for the item
expected to occur after x;, i.e., x;41 ~ E[s;+1]s:]. Then, by
recursively substituting x;11 — x;, Eq. 1 can be used to in-
fer s;12, s,+3 and so on. In brief, sequential binding allows
ATHENA to recursively infer the state of a system in the fu-
ture from 2-place bindings stored in memory.

For the current implementation, we use Eq. 1 for three in-
ferences, two of which are recursive. Based on the informa-
tion currently available to an individual, we infer a) the value
of sampling each feature, b) the expected feature values after
sampling each feature, and c) the category label. This is pos-
sible under Rapid Sequential Storage, which postulates that a
memory trace is formed after sampling each new feature of a
stimulus. We define a memory trace - i.e., arow of K and V -
as a compound representation binding two items:

ki = [stimulus at# | IS atf]
ISatr+1 |

| value obtained from¢tor+1 |

v, = [stimulus at t+1 |
label at ¢]

Here, IS represents the information state, denoting what in-
formation is available at the current time (see our implemen-
tation below), and the vertical bars indicate that these vec-
tors are concatenated together. Unsampled features receive a
value of 0 in the trace and do not contribute to the inference
in Eq. 1, and the label is only nonzero during feedback.

One important choice to make when storing memory traces
is whether to impose any constraints on the value obtained by
sampling a feature. In our simulations below, we use an in-
dividual’s assessment of the information gained by sampling
a feature as the reward for sampling that feature. One possi-
ble constraint is the principle of premise monotonicity, which
states that acquiring more information can never make an
individual less certain about an outcome (Osherson, Smith,
Wilkie, Lépez, & Shafir, 1990). This constraint can be in-
stantiated by clamping stored values at 0, so that information
gain could never be negative. However, in empirical stud-
ies, human participants often violate monotonicity, suggest-
ing that such constraints may be unwarranted (Voorspoels,
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Navarro, Perfors, Ransom, & Storms, 2015; Ransom, Perfors,
& Navarro, 2016). Below, we report one simulation with the
monotonicity assumption and one without.

We will now outline how ATHENA-RSS accomplishes cat-
egorization and information sampling. The decision mecha-
nisms below are chosen to be simple in order to show that
recurrent memory retrieval is sufficient for information sam-
pling without a complex decision component.

Category Decisions ATHENA-RSS makes category deci-
sions only considering information currently available to it.
Let y;+1 represent the dimensions of x;,; which are associ-
ated to the category label, and Pr(C|x;) represent a vector
where each place corresponds to the probability that an item
is in one of the categories. We can use Luce’s choice rule to
model decision making (Nosofsky, 1986):

Pr(Clx;) = softmax(deayr+1) 2)

Here, d 4 = O corresponds to a response determinism param-
eter, which determines how sensitive an individual is to small
differences in evidence for each category.

Information Sampling The model determines which fea-
tures to sample by assessing the expected future value of each
feature using the process shown in Figure 1. For each feature
which can be sampled, the model initializes an instance of
Eq. 1 where the information state obtained by sampling the
candidate feature is substituted into its current representation.
In each instance, the predicted features and IS of x;, are fed
back into Eq. 1, forming a recurrent architecture, which can
predict the state of the system after sampling many features.

To decide what to sample, the model attempts to maximize
the time-discounted value which can be obtained using a vari-
ant of the Bellman equation (Bellman, 1957). To determine
V(d), the value of sampling feature d, we use:

V(d) = E[volxo+d] + Y \YE[vilx = E[xilxo+d]] ~ (3)
= Do+ ) ¥ )

Here, 0 < vy < 1 is a discounting parameter, xo + d is the
current stimulus with the information state obtained by sam-
pling d, and v; and V; are the true and estimated immediate
value at time i respectively. In other words, this equation
says that the value of sampling a feature is given by the im-
mediate value expected from sampling that feature, plus the
discounted value of sampling further features given that the
features revealed take their expected values. At each time
step, v is estimated by the value dimension of x;,1, which
represents E[v;|x;]. Therefore, during the recurrent process,
time-discounted reward is accumulated during each iteration.

The estimation of ¥ with the value dimension of x;; at
each time-step is imperfect, and will struggle when projected
into the future if

Z P(xtq2]xi 4 1)P(xey1]x:) % Athena(E[x;1|x])  (5)

Xt+1

However, it has the benefit of being immediately calculable
in the recurrent computation described above. Notice that,
unlike the computationally intense tree search that is typically
needed to determine future value (Braunlich & Love, 2022),
the computation described here determines future value using
one instantiation of Eq. 1 per feature.

Tt
Stimulus at t+1 '—‘

Information State at t+1

Stimulus at t=0

Information State at t=0 +
candidate dimension

softmaz(Bz, KT)V

Value gain from t to t+1
>|< t Value
Y Accumulator

Figure 1: One instantiation of Equation 1 to estimate the ex-
pected value of a candidate dimension.

To determine which feature to ultimately sample,
ATHENA-RSS uses the same decision rule as above. If
dy,...,dy are the features under consideration, the probability
of sampling each feature P(D|x;) is given by:

Pr(D|x;) = softmax(dsamp[V (d1), ...,V (di)]) (6)

Analogously to d¢q above, dgmp = 0 is a response determin-
ism parameter. Note that, when dyqp) is low, this allows for
more exploration, while a large dyunp will result in always
sampling the feature with the largest expected value.

Search Termination Finally, the model needs a mecha-
nism to decide when to terminate the search and give a re-
sponse. To keep this simple, we used a threshold on the pre-
response category evidence. Let e., the pre-decision evidence
in favor of category c, be given by:

y(C)1
€c = t+(i) (7)
Ziyt-H

Here, y,(fr)l represents the component of y;, | corresponding

to category c. If T is the model’s threshold, then information
search will be terminated if e, > 7T for at least one category c.

Current Study

To investigate whether ATHENA-RSS is able to predict hu-
man learners’ dynamic information sampling, the current
study used a category learning paradigm with hierarchical
category structure (Blair, Watson, Walshe, & Maj, 2009;
Meier & Blair, 2013). This structure was useful because it in-
volves stimulus features whose informativeness changes de-
pending on the identities of other sampled features (see Table
1 and our description below).

In addition, our category learning paradigm incorporated
explicit feature sampling. At the beginning of each trial, all
stimulus features were covered, and learners needed to un-
cover features throughout the course of a trial. This allowed
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us to examine which features were sampled by participants as
well as the order in which features were sampled. By compar-
ing observed data from human learners to model simulations,
we show that ATHENA-RSS can produce the qualitative pat-
terns present in human information sampling without using
attention weights (as in AARM) or a computationally costly
information search (as in SEA).

Experiment
Participants

Ninety-nine young adults (50 females, 48 males, one did not
report gender; Age: M = 19.28, SD = 1.52) from the Ohio
State University participated in the experiment for course
credit. Prior to the study, all procedures were approved by
the appropriate Institutional Review Board.

Methods

Stimuli Stimuli were alien creatures that were constructed
according to a hierarchical category structure as in Blair et
al. (2009) (see Table 1). All the stimuli could be first classi-
fied into two higher-level categories (Category A and B), and
within each higher-level category, stimuli could be further
classified into two lower-level categories (Al, B2, etc.). All
stimuli had three features with two binary values. Among the
three features, one feature was assigned as the Higher-level
feature, and the other two were assigned as Lower-level fea-
tures (Category A Relevant feature and Category B Relevant
feature). The value of Higher-level feature determined the
higher-level category membership of the stimulus and which
of the two Lower-Level features was relevant for lower-level
category judgment. The assigned role (higher level vs. lower
level) of each feature was counterbalanced across participants
to control for any prior bias towards certain features.

Table 1: Category Structure.

ool
)
oy
w

Higher-Level Lower-Level Fl

A Al 1
Al
A2
A2

B B1
Bl
B2
B2

OO OO ==
SR O RO O ==
SO = = = O =

Procedure In the experiment, participants were told that
their job was to help alien friends get home. These alien
friends lived on two different planets on which their homes
were located in different places (e.g., trees or grass on the
green planet). Then participants were trained on the lower
level categories for 64 trials with an equal number of trials
for each lower-level category. On each trial, all the features
of the stimulus were covered by grey boxes. Participants were

instructed to click the boxes to uncover features and respond
when they knew the answer. Feedback was provided after
they made decisions. During feedback, participants were pre-
sented with an entire stimulus that had all features uncovered
and the correct category labels (both higher-level and lower-
level category labels). After training, participants received 32
Phase 1 Testing trials that were visually the same as training
trials. Finally, participants received Phase 2 Testing in which
they were tested on the higher level categories for 32 trials.
No feedback was provided during testing phases.

Behavioral Analyses Categorization accuracy in the last
sixteen training trials (M = 0.72, SD = 0.27) was significantly
above chance (0.25), #(98) = 17.188, p < 0.001, d = 1.727.
Their categorization accuracy in Phase 1 Testing (lower-level
categorization task; M = 0.71, SD = 0.27) was significantly
above chance (0.25), #(98) = 17.213, p < 0.001, d = 1.730,
and categorization accuracy in Phase 2 Testing (higher-level
level categorization task; M = 0.86, SD = 0.22) was also
above chance (0.5), #(98) = 15.976, p < 0.001, d = 1.616.

Moreover, to examine whether participants explored fea-
tures based on their relevance, we conducted A 2 (True
Higher-Level Category: Category A vs. Category B) x 3
(Feature Type: Higher-level vs. Category A Relevant vs. Cat-
egory B Relevant) mixed ANOVA for Phase 1 and Phase 2
Testing trials. The results for Phase 1 Testing revealed a sig-
nificant main effect of feature type, F(2, 490) = 34.037, ps <
0.001, n2 = 0.12, and a significant interaction between fea-
ture type and true Higher-level category, F(2, 490) = 58.618,
ps < 0.001, n? = 0.19. Furthermore, the results for Phase 2
Testing found only a significant main effect of feature type,
F(2, 490) = 354.039, ps < 0.001, 1> = 0.58. These findings
indicated that participants were able to explore features fol-
lowing their dynamic importance. Specifically, during Phase
1 Testing, participants explored the Higher-level feature and
Category A Relevant feature more than Category B Relevant
feature when the current stimulus belonged to Category A,
but explored the Higher-level feature and Category B Rele-
vant feature when the current stimulus belonged to Category
B. However, during Phase 2 Testing, because the only rele-
vant feature in categorizing stimuli at a higher level was the
Higher-level feature, participants showed reduced exploration
of both Category A and Category B Relevant features. To-
gether, our results found strong evidence that human learners
were able to sample features based on their relevance.

Simulation Study

Our goal in using ATHENA-RSS is to show that a model with
recurrent memory and rapid sequential storage produces the
same sampling patterns as participants. To do this, we sim-
ulated participant behavior during the Training and Phase 1
Testing phases of the experiment, as optimal performance in
these phases required dynamic information sampling.

Model Implementation To implement the model, we used
a one-hot code for each feature of the stimulus, while the in-
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Observed Training State Transition (First 32 Trials)

Observed Training State Transition (Second 32 Trials)

Observed Testing State Transition

Model Training State Transition (First 32 Trials)

Model Training State Transition (Second 32 Trials)

Model Testing State Transition

Model Training State Transition (First 32 Trials)

Model Training State Transition (Second 32 Trials)

Model Testing State Transition

@ Higher-level Feature ~ @ Relevant Feature @ Irrelevant Feature

@ Respond

Figure 2: Observed (Top row) and simulated (Middle: Two-Level Simulation and Bottom: One-Level Simulation) proportion
of trials in each information state during first-half of training (Left Column), second-half training (Middle Column), and phase
1 testing (Right Column). Within each sub-plot, a row represents one participant (top) or one simulation (middle and bottom),
and brighter colors represent a higher proportion of trials. The first four columns represent the four possible choices at the
beginning of a trial, and the following columns represent the possible two-step and three-step sampling patterns which can
occur. "High” (blue dots) choices represent choices for F1 (from Table 1), “Relevant” (green dots) and “Irrelevant” (red dots)
choices are those for the remaining features which are relevant or irrelevant for categorization given F1. The order of dots
represents the order of actions taken (i.e., feature sampling and responding). For instance, if a participant consistently sampled
the High-level feature followed by the relevant feature and then responded, they would have bright values in the blue dot column
(one choice), the blue-green column (two-choices), and the blue-green-black column (three choices).
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formation state was represented by three one-hot features, de-
noting whether each feature of the stimulus was covered or
uncovered. During a trial, the model engaged in informa-
tion search as described in the sections above, and stored a
memory trace every time a feature was sampled, with traces
added to K and V between trials. When feedback was expe-
rienced, category labels were stored as part of participants’
memory traces. Because many traces did not contain cate-
gory labels, we used a weighted one-hot code when storing
labeled traces. For example, the code for category one can be
given as [,0,0,0], where [ > 0 is a free "label-determinism”
parameter representing the relative salience of the label. Ad-
ditionally, to allow for variable exploration, we used separate
dsamp and T parameters for the two halves of Training and the
Testing phase of the experiment. Finally, the subjective value
gained by uncovering a dimension was defined as the reduc-
tion in normalized entropy of the four vector-places denoting
category labels (y;41 above) after being normalized to a prob-
ability distribution. Thus, when a sampled feature increases
the probability that the stimulus is in one category over the
others, this action will be assigned a large value.

With this implementation, we simulated 100 participants
using two sets of parameters. The Two-Level simulation
(Middle of Figure 2) used the parameters p =2, y=.1,1T =
.95,.6,.6,1 =10, and dy4mp = 5,20,20 during the two halves
of training and testing respectively. In contrast, the One-Level
simulation (Bottom of Figure 2) used the parameters § = 2,
Y= .4,1=.85,.85,85,1 =10, and dsump = 5,5, 10. Further-
more, the Two-Level simulation used the premise monotonic-
ity assumption, while the One-Level simulation did not.

Results Our results can be seen in Figure 2. Two predom-
inant patterns are seen in the Two-Level solution. The first
is that many simulated participants show an optimal search
pattern by the Testing Phase, choosing the feature which
distinguishes higher-level categories first, followed by the
correct Relevant feature, and then giving a response. This
group appears to have learned that the feature distinguishing
higher-level categories is useful because it determines which
of the remaining features to sample. In other words, this
group has mastered both levels of the hierarchical task, qual-
itatively matching the performance of participants who per-
formed best. The existence of this group shows that memory
recurrence and rapid sequential storage is sufficient to accom-
plish information sampling in this task.

The second pattern seen in this simulation is a collection of
non-learners who sample either the Relevant or Irrelevant fea-
ture first. The size of this group diminishes through training,
however some participants remain even during testing. This
can occur because the model stores memory traces in a confir-
matory manner, selecting the dimensions that will ultimately
be stored according to its current assessment of the value of
that dimension. Thus, a misleading stimulus order at the be-
ginning of training, or unlucky early sampling choices can
lock the model into a sub-optimal search pattern which some
never escape from. This shows that the model sometimes falls

into information traps which have empirically been observed
in human participants, including in the data presented here
(Rich & Gureckis, 2018; Blanco, Turner, & Sloutsky, 2023).

In the One-Level simulation, a similar pattern of non-
learners can be observed. However, there are also a selection
of qualitatively different learners. These individuals learn that
the F1 dimension is useful for distinguishing between higher-
level categories; however they do not develop a preference to
sample the Relevant or Irrelevant features. This pattern can
occur because non-monotonic information gain can fluctuate
widely through training, leading to unstable value estimates
which the model does not escape from.

Comparing these patterns to participant data in Figure 2,
we observe that, with the exception of a small number of off-
task participants who respond without uncovering any fea-
tures during testing, all qualitative search patterns can be
seen in either the Two-Level or the One-Level simulation.
This shows that ATHENA-RSS reproduces the qualitative
patterns seen in participants without attention weights or a
computationally-intensive search algorithm.

General Discussion

The goal of the current study was to provide evidence that
an instance-based memory model, ATHENA-RSS, is able to
reproduce humans’ information sampling patterns in a hierar-
chical category learning task. In our experiments, we found
that human learners displayed different search patterns dur-
ing learning. Some were able to follow an optimal search
pattern by sampling features based on their dynamic informa-
tion gain, while some were able to prioritize the Higher-level
feature but got confused between two Lower-level features.
Finally, non-learners tended to sample all the features with-
out following a specific order.

ATHENA-RSS successfully reproduced the search patterns
exhibited by human learners via recurrent memory and rapid
sequential storage using two sets of parameters. It reproduced
both the optimal path of human learners and some learning
traps that learners could fall into. This suggests that, while at-
tention optimization plays a large role in the literature, learn-
ers may use other mechanisms in addition to attention when
sampling information. However, the success of both atten-
tion optimization models (i.e., AARM) and our model indi-
cates that this paradigm cannot distinguish between these two
learning mechanisms, and future investigations can explore
when the two mechanisms may perform differently.

Finally, the model considered here has several limitations.
In our investigations, we focused on the memory storage and
retrieval component of ATHENA-RSS to distinguish it from
alternatives. As a result, we omitted attentional learning and
used a simplified response mechanism. To make the model
more realistic, future research can implement it with more
psychologically-plausible mechanisms to understand the pre-
dictions that ATHENA makes more clearly and how changes
in model parameters affect these predictions.
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