
Lawrence Berkeley National Laboratory
LBL Publications

Title
Femtosecond Photoelectron Spectroscopy: A New Tool for the Study of Anion Dynamics

Permalink
https://escholarship.org/uc/item/7p6698tz

Author
Greenblatt, Benjamin J

Publication Date
1999-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7p6698tz
https://escholarship.org
http://www.cdlib.org/

o '

Q

LBNL·42877

ERNEST ORLANDO LAWRE;NCE
BERKELEY NATIONAL LABORATORY

Femtosecond Photoelectron
. SPectroscopy: A New Tool for
the Study of Anion Dynamics

Benjamin J. Greenblatt

Chemical Sciences Division

February 1999
Ph.D. Thesis ,

.~~~~:;-3:~~~:;$!:'t;~-~ '...~_ ...
·"-rii'l~""""'~ ',.H-'\

r
CJJ z
r-

n I,
o -'="
'0 N
'< en
I-'

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any ag~ncy thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Femtosecond Photoelectron Spectroscopy:
A New Tool for the Study of Anion Dynamics

by

Benjamin Jefferys Greenblatt

B.S. (Haverford College) 1993

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

III

Chemistry

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Daniel M. Neumark, Chair
Professor Ronald C. Cohen

Professor Jeffrey Bokor

Spring 1999

LBNL-42877

This work was supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Chemical
Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, by the National
Science Foundation under Grant No. CHE-971 0243, and by the Defense University Research Instrumentation Program
under Grant No. F49620-95-J-0078.

Femtosecond Photoelectron Spectroscopy:
A New Tool for the Study of Anion Dynamics

Copyright © 1999

by

Benjamin Jefferys Greenblatt

The U.S. Department of Energy has the right to use this document
for any purpose whatsoever including the right to reproduce

all or any part thereof

Abstract

Femtosecond Photoelectron Spectroscopy:
A New Tool for the Study of Anion Dynamics

by

Benjamin Jefferys Greenblatt

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Daniel M. Neumark, Chair

A new experimental technique for the time-resolved study of anion reactions is

presented. Using femtosecond laser pulses, which provide extremely fast (-100 fs) time

resolution, in conjunction with photoelectron spectroscopy, which reveals differences

between anion and neutral potential energy surfaces, a complex anion reaction can be

followed from its inception through the formation of asymptotic products. Experimental

data can be modeled quantitatively using established theoretical approaches, allowing for

the refinement of potential energy surfaces as well as dynamical models.

After a brief overview, a detailed account of the construction of the experimental

apparatus is presented. Documentation of the data acquisition program is contained in the

Appendix. The first experimental demonstration of the technique is then presented for h-

photodissociation, modeled using a simulation program which is also detailed in the Ap-

pendix. The investigation of h- photodissociation in several size-selected h -(Ar)n (n = 6-

20) and 12 -(C02)n (n = 4-16) clusters forms the heart of the dissertation. In a series of

chapters, the numerous effects of solvation on this fundamental bond-breaking reaction

2 Abstract

are explored, the most notable of which is the recombination of 12- on the ground

geL;) state in sufficien.tly large clusters. Recombination and tr~pping ofl2- on the ex-

cited AeIl3/2,g) state is also observed in both types of clusters. The studies have re-

vealed electronic state transitions, the first step in recombination, on a -500 fs to -10 ps

timescale. Accompanying the changes in electronic state is solvent reorganization, which

occurs on a similar,timescale. Over longer periods (-1 ps to >200 ps), energy is trans-

ferred from vibrationally excited 12- to modes of the solvent, which in tum leads to sol-

vent evaporation. These effects become more important as cluster size increases. In addi-

tion, differences in timescale and mechanism are observed between clusters of Ar, which

binds to rand Iz- rather weakly, and CO2, whose large quadrupole moment allows sub-

stantially stronger binding to these anions.

\
J

Dedication

This dissertation is dedicated to my father

Raymond Benjamin Greenblatt

His unwavering love for me throughout my life

has allowed me to soar

III

IV

Table of contents

Abstract .. 1
Dedication .. 111

Table of contents IV

Preface Vlll

Ackno~i~dg~~~t~:::.xii
Chapter 1. Introduction .. -' 1

References ... 11
Chapter 2. Experimental Apparatus ... 14

1. Vacuum system ... 14
1.1. Pumps .. 16
1.2. In ted ock .. 18
1.3. Source and zeroeth differential regions ... 21

1.3.1. Pulsed valve .. 21
1.3.2. Electron gun .. 23
1.3.3. Zeroeth differential region .. 25
1.3.4. Extraction and acceleration ... 27

1.4. First and second differential regions .. 28
1.4.1. Ion deflectors .. _ 28
1.4.2. Einzellenses ... 29

1.5. Detector region .. 30
1.5.1. Laser windows and baffles .. 34
1.5.2. Retractable ion detector .. 35
1.5.3. Magnetic bottle .. · 37
1.5.4. Electron detector ... 38
1.5.5. Mass gate .. 40
1.5.6. Pulsed ion decelerator41
1.5.7. Reflectron ... 41

1.6. Timing .. .4~.
1.7. Ion time of flight .. 44
1.8. Electron time of flight .. 47

1.8.1. Resolution .. 48
1.8.2. Pulsed ion deceleration .. 50

1.9. Reflectron ion time of flight ... 53
2. Laser system .. 55

2.1. Principles of nonlinear optics .. 59
2.2. Clark-MXR femtosecond laser 63
2.3. Beam pointing stability ... 66
2.4. Quantronix TaPAS optical parametric amplifier ... 68
2.5. CSK Optronics harmonic generator ... 68

2.5.1. Principles .. 68
2.5.2. Operation71

2.6. Aerotech translation stages .. 74
2.7. New Focus optical chopper ... 7 6

Table of Contents· v

2.8. Autocorrelation and cross-correlation~ .. 77
2.8.1. Slow-scan autocorrelator .. .78
2.8.2. Fast scan autocorrelator ... 81
2.8.3. Cross-correlation 85

2.9. Laser pulse optimization .. 87
3. Data acquisition ... , 90

3.1. Mass spectra .. : 90
3.2. Photoelectron spectra ... 90

. 3.2.1. Background subtraction .. 92
3.2.2. Above threshold detachment 94

3.3. Correlation spectra ... 96
4. References ... 97

Chapter 3. Photodissociation dynamics of the h- anion using femtosecond photoelectron

spectroscopy .. _ .. _ .. 99
1. Introduction ... 99
2. Experimental ... , ... 102
3. Results and Analysis ~ ... 106
4. Discussion _ _ _ 111
5. Summary _._ .. 113
6. Acknowledgments ... _ 114
7. References ... 114

Chapter 4. Time-resolved photodissociation dynamics of I2-(Ar)n clusters using anion
femtosecond photoelectron spectroscopy .. 117

1. Introduction .. 117
2. Experimental ... _ ... 119
3. Results __ .. 121
4. Discussion _._ .. 123
5. Conclusions .. 127
6. Acknowledgments .. 128
7. References ... _ _ .. 128

Chapter 5. Time-resolved Studies of Dynamics in Molecular and Cluster Anions130
1. Introduction ... _ .. 130
2. Experimental ... 134
3. Results _ _ ... 139
4. Discussion ... 142

4.1. 12 -(C02)4 .. 143
4.2. 12-(CO2) 16 .. _•... 146

5. Conclusions ... : .. 15 3
6. Acknowledgments .. 154
7. References _ .. _ .. , 154

Chapter 6. Femtosecond photoelectron spectroscopy of h'(Ar)n photodissociation dy-
namics (n = 6, 9, 12, 16, 20L158

I. Introduction .. 158
2. Experimental .. 167
3 . Results ... 168
4. Analysis ... 173

vi Table of Contents

5. Discussion ... 183
5 .1. Short-time dynamics .. 184
5.2. 12.(Ar)6 and Iz -(Ar)9 .. 184
5.3. 12-(Ar)12 and 12-(Ar)16 ... 186
5.4. 12-(Ar)20 .. 191

6. Conclusions ... 197
7. Acknowledgments .. 199
8 . References .. 199

Chapter 7. Femtosecond photoelectron spectroscopy of 12-(C02)n photodissociation dy-
namics (n = 4,6,9, 12, 14, 16L .. , ... 203

1. Introduction .. 204
2. Experimental .. 210
3. Results .. 211
4. Analysis .. 218
5. Discussion .. 222

5.1. 12-(C02)4 .. 222
5.2. 12-(C02)6, 12-(C02)9 and 1z·(C02)12.. .. 226
5.3. 1z-(C02)14 and 12-(C02)16 .. 236
5.4. Trends across cluster size, and comparisons with other studies 242
5.5. Comparison with 1z·(Ar)n clusters ... 246

6. Conclusions .. 248
7. Acknowledgments ... 250
8. References .. 250

Appendix 1. Data Acquisition Program (fpes) .. 253
1. Program overview .. 253
2. Selected variables .. 254

2.1. Background subtraction: _bs ... 255
2.2. Command line: com .. 257
2.3. Screens: sc ... 258
2.4. "Waves" (spectra): wv ... 261
2.5. Local variables 265

3. Compiling and execution .. 265
4. Program listing .. 266

4.1. fpes . pas ... 268
4.2. fpescom. pas ... 268
4.3. fpesai . pas .. 304
4.4. fpes j r . pas .. : ... 332
4.5. fpesst. pas .. 349
4.6. fpesuz . pas .. 371
4.7. fpesvar . pas ... 386
4.8. dosshell. pas , .. 393
4.9. keys . pas .. ~ .. 394
4.10. tpdec 1 . pas ... , 395
4.11. f s . ba t .. 399
4.12. mas s . par ... 399

Table of Contents Vll

Appendix 2. Femtosecond photoelectron spectrum simulation program (alpine,
trans) __ 400

1. Theoretical background ___ 400
2. Compiling and execution __ .406
3. Input files to alpine __ 407

3.1. alpine. inp __ 407
3.2. pot * . in __ 41 ~
3.3. ps i * . inp _, ___ " _________________________________ 412

4. Output files from alp ine ___ .412
5. Input files to tr ans __________ , __ .413

5.1. trans . inp ___ 413
5.2. rna tr ix . ou t ____ , ___ 415

6. Output files from tr ans. ___ .415
7. References. ___ " __ 415
8. Program listings. ___ 416

8.1. alpine5 .4 . 1 . f __ " __ 417
8.2. trans 2 . 2 . 1 . f ___ 438

Appendix 3. Complete FPES spectra of h(Ar)n and h-(C02)n clusters ___________________________ .446
1. 1

2
-, ___ 447

2. 12-(Ar)6 ___ 450
3. 12-(Ar)9 ____________________ . __ 454
4. 12-(Ar)12 __ . __ 465
5. 12-(Ar)16 __ . _________ 467
6. 12-(Ar)20 ___ . ___ 469
7. 12-(C02)4 __ 472
8. 1

2
-(C0

2
)6 __ 475

9. 12-(C02)9 __ 477
10. 12-(C02)12 __ 480
11. 12-(C02)14, __ . _______ 483
12. 12-(C02)16. ___ " __ 485

Appendix 4. Publications from graduate work. __ .488

I

viii

Preface

As I have learned throughout my graduate career, scientific language is often ex

tremely difficult for non-scientists to comprehend, and even when it is translated into

common usage, the ideas themselves are sometimes a challenge. I have tried my hardest

to provide here a short "layman's" explanation of my work, with the hope that, even if

the rest of the dissertation is unintelligible, one can still walk away with a general under

standing of the research, and where it fits into a larger context.

A femtosecond is an extremely short unit of time, a million times faster than a

nanosecond, the time in which a computer can (currently) make decisions. It is so short,

in fact, that light, which can circle the Earth seven times each second; only moves a hair's

breadth. It is also shorter than the time it takes many molecules to vibrate. This means

that the atoms of a molecule can in principle be observed in different positions at differ

ent times, rather than being smeared out over a range of locations if they were measured

over many vibrations. We use these extremely short bursts of light as "strobe lights" for

molecular motion. Everybody knows these devices from the dance floor: a quick burst of

light which seems to freeze the motions of people and objects when observed by the eye.

The same approach is used to study molecules, employing a pair of light pulses to

first, rapidly initiate a chemical reaction, and second, to take a "picture" of the reaction a

short time later. We can use the dance floor as a metaphor for our experiment: the first

flash signals a dancer to begin dancing, and the second flash is used to photograph her.

The dancer will have to have good stamina, because she will be asked to repeat her

moves precisely many thousands of times, while the time delay between pulses is slowly

changed! Fortunately, molecules will always perform the same "dance" if they are care-

Preface IX

fully prepared beforehand, so molecular fatigue is not a concern here. In the end, a de-

tailed movie of the dance is obtained. This approach is far more complex than simply

filming the dance as it occurs, but the "movie camera" option is not possible for mole-

cules: although the flashes of light happen very quickly, recording each "frame" takes far

longer. Also, the second flash of light destroys the molecule!

We conduct our experiments inside a vacuum chamber, that is, a place where all

the air has been removed. This is because collisions between the molecules under study

and molecules of the surrounding air will invalidate our careful measurements, and can-

not be tolerated. Typically, only one trillionth of atmospheric pressure is used, which

sounds phenomenal, but it is actually routinely obtained for many scientific experiments

done in vacuum. We produce a stream of negatively charged molecules ("anions") which

are then guided from one end of the chamber to the other (a distance of 1.3 meters) using

a series of small electric fields, rather like guiding a fast-moving pinball with paddles and

bumpers. When the anions reach their destination, they are bathed with laser light for a

few brief instants, after which "photoelectrons" are produced (photo = created from light;

electron = a subatomic particle which orbits the nucleus of an atom). These electrons

travel with different speeds toward a detector at the end of another tube (also about 1.3

meters long). The laser pulses start a clock which is stopped when the electrons are de-

"

tected, revealing the time it took them to traverse the distance, and hence their speed.

Speed is converted into a more useful quantity called "electron kinetic energy," and the

data take the form of a histogram called a "spectrum," showing the numbers of electrons

with each possible electron kinetic energy. While far from being a photograph of the

molecule, the spectrum reveals important information about the molecule's structure, and

x Preface

it is fairly easy to convert the information into a more intuitive physical picture. The

study of a spectrum is called "spectroscopy."

The focus of my research is on understanding how a chemical reaction changes its

course when it is surrounded by a liquid. Rather than studying the reaction in a liquid di

rectly, we simulate a liquid environment by making small anion "clusters" inside the vac

uum chamber, consisting of no more than a single layer of liquid molecules (about 16-20)

surrounding the chemical reaction. I will not attempt to explain how the number of mole

cules in our clusters can be controlled, but suffice it to say that the number may be varied

one at a time. We study the motion of the reaction without any liquid, then begin adding

liquid molecules, and see how the motions change. In our case, the basic reaction is sim

ply the breaking of a molecule into two atoms. In a cluster, however, collisions with the

liquid molecules allow the atoms to come together again, forming the original molecule.

The amount of "recombined" molecules increases as the size of the liquid cluster grows,

until no atoms can escape the cluster.

The process by which the recombination process happens is very interesting: for

the first few hundred to few thousand femtoseconds, the atoms appear to separate, but

collisions between the atoms and the liquid heats the cluster, so that it begins to jiggle

wildly. In order for the atoms to recombine, the jiggling must be reduced. This happens

by expelling liquid molecules from the cluster, each of which takes away some of the

heat. Over a period ranging from 10,000 femtoseconds to more than 200,000 femtosec

onds, the cluster gradually cools, and the atoms recombine. The process of expelling liq

uid molecules is called evaporation, and is completely analogous to what happens to peo-

Preface

pIe on a hot day: evaporating water from our skin cools us by taking away part of our

heat.

Thus, there is the dissertation in a nutshell: using femtosecond photoelectron

spectroscopy to study chemical reactions in small anion clusters.

Xl

XlI

Acknowledgments

Five and a half years is a long time to spend in one place, working on a single

project, and 1 did not make it through alone.

1 would like to acknowledge Dan Neumark' for taking me into his group, for al

lowing me to be the first student on the FPES project, and for being my advisor.

Warm thanks go to Marty Zanni, my sole partner in the lab for three years.

Marty's natural talent for experiments quickly became apparent, despite his year lag be

hind me, and we built the FPES machine as equals. Marty has a spontaneity to his scien

tific approach which was a welcome contrast to my more methodical style, and 1 believe

we learned from each other how to be more effective experimenters. 1 also thank him for

bringing a lot of fun into lab, with his music, swing dancing, chess games, midnight soc

cer matches (I only heard about them, not a player myself), cultural discussions, and gen

eral social coordination of the group.

Besides Marty, the FPES machine has seen a number of faces throughout my ca

reer. 1 acknowledge the visitations of Benoit Soep from the Universite Paris-Sud, France;

Rainer Weinkauf and Leo Lehr from the TechnischeUniversitat MUnchen, Germany; and

Gustav Gerber from the UniversWit WUrzburg, Germany. Current team members include

graduate student Alison Davis, and our first post-doctoral student, Christian Frischkorn.

Alison in particular I've gotten to know over the past year, as she spent a commendable

amount of time in the lab from the beginning. My last weeks in lab, working on the first

SN2 reaction experiments, she almost always stayed as late as 1 did, even into the wee

hours of the morning. 1 congratulate her on passing her second year exams, and wish her

many successful experiments in the future.

Acknowledgments Xlll

Among other current group members, I extend a warm hand in thanks, both for

practical assistance in the lab and as friends. In particular, I wish to acknowledge Mike

Furlanetto for many discussions on a wide variety of scientific and cultural topics, and for

being an excellent computer administrator during the last couple years. I also want to ac-

knowledge Wei zhong Sun for interesting discussions about China, and, especially, for

arranging a lecture appearance for me at Beijing University with Professor Liming Ying,

when I visited the country last summer.

Former Neumark group members are numerous, and I acknowledge them all for

their direct and indirect gestures. In addition, I want to thank a few people I wasespe-

cially close to. Among the graduate students, David Osborn was a role model for me

from the beginning, as I was quickly awed by his multiple talents apart from science, and

he made an effort to share some of them with me: rock climbing, river rafting, kite flying,

carillon playing, and bread baking. Don Arnold gave me encouragement when I was first

starting to think about the FPES machine (a year before it was constructed), and helped to

orient me with his computer programs which I would later transform into the FPES data

acquisition code. Cangshan Xu and I bonded in a number of ways: as computer affi-

cianados, as tennis players, and as admirers of Chinese culture and language. Ivan Y our-

shaw also became close to me, as a movie hound, pop psychologist, environmentalist,

feminist and fellow cynic.

There are also a few former post-docs I wish to highlight. Esther de Beer had sto-

ries of Europe to dazzle me with, and was my swimming partner for the last six months

of her stay. Gordon Burton was a role model for me, always calm, positive, cultured, and

fascinated by machines as well as science; he was a great brainstorming partner. David

XIV Acknowledgments

Leahy, resident computer expert, spectroscopy guru, and comedian, tickled me with his

off-the-wall humor, and taught me quite a bit about science. Finally, David Mordaunt be-

came more of a friend after leaving the group, having discovered our similar tempera-

ments and interests, and we have fallen into a social foursome together with our partners.

My contacts at Berkeley were not limited to the Neumark group, and there are

several people outside the group I wish to acknowledge. For assistance with understand-

ing femtosecond lasers and/or femtosecond photoelectron spectroscopy, Matt Blackwell

and Pete Ludowise of the Chen group, Matt Asplund of the Charles Harris group, and

Victor Batista of the Miller group all gave generously of their time. Matt and Pete, in

particular, were practically coworkers for a time, both because their project strongly re-

sembled ours (though they looked at neutral molecules), and because they were in our lab

lending and borrowing equipment like any other group member. We hope our expertise

was as beneficial to their project as theirs was to ours. I acknowledge student seminar

program organizers Amy Herhold and C-J Lee of the Alivisatos group, Haw Yang of the

Charles Harris group, and Linda Koch of the Cohen group: they all contributed to the

success of the program, and with their sunny personalities, made it worthwhile for me to

come to meetings.

There is another group of people whom I acknowledge for their innate abilities in

speaking Chinese: Cangshan Xu and Wei zhong Sun (Neumark group), C-J Lee (Alivisa-

tos group), Haw Yang and Nien-hui Ge (Charles Harris group), Wenhong Yang and

Hongwen Li (Strauss group), and Neil Fang (Accounting office). In addition, I acknowl-

edge the patience of my Chinese teachers in the East Asian Languages Department: Joyce

Wang, Ying Yang and Cecilia Chu. An interest of mine since college, I only had the op-

Acknowledgments xv

portunity to take courses in Chinese language during my fourth year at Berkeley. Once I

had begun my studies, the above-named group of people received constant entreaties for

spoken and written practice. The culmination of my studies in a sightseeing tour of China

together with my parents in July 1998 was all the more enriching to me because of their

help and encouragement.

Two faculty members deserve my special thanks for helping me choose a new ca-

reer direction. Professor Ron Cohen has been patient, encouraging and generous of time

and resources since I first expressed an interest in the field of atmospheric chemistry

about a year ago. Since that time I have gone on to take a class with him, attend his group

meetings, and ask him to sit on my dissertation committee. Dr. Susan Kegley has also

served as an advisor of sorts, having spearheaded an inspiring, new environmental lab

curriculum for Freshman Chemistry when I first came to Berkeley. Since that time, I have

continued to keep tabs on her environmental projects, and she has encouraged me

strongly in my recent pursuits of a post-doc in atmospheric chemistry.

I have had considerable professional interaction with two theoretical students

from the University of Colorado, Boulder: James Faeder and Nicole Delaney of the Par-

son group. At first, we corresponded on the subject of anion cluster dynamics exclusively

by phone and e-mail, but we finally met at the ACS Conference in Las Vegas in August

1997, and became friends. Their continued efforts in providing both calculation results

and critical thinking has been invaluable to the writing process, and I wanted to acknowl-

edge their good will.

I've had a few friends in the Bay Area completely outside the chemistry circle

whom I wish to'acknowledge. I met Lorin Gillin at Haverford College, and he has been in

XVI Acknowledgments

and out of California ever since he graduated, but finally moved to San Francisco last

year, where he has been pursuing high school science teaching. An avid outdoorsman, he

and I have camped together in the mountains of Los Angeles, but haven't made it to the

Sierra (yet). Ruth Wittman, an old family friend, first introduced me to Berkeley when I

was here as a prospective student, and allowed me to stay in her home the following

summer when I was shopping for an apartment. We get together occasionally for ice

cream on the porch, and swap stories. My neighbors, Don and. Linda Weingarten, share

my love of science, and have employed me this past year and a half to tutor their two

children, Eric and Neil. Don, especially, entertains me with his tall but true tales, and dis-

cussions on a wide variety of topics.

Out of state are some of my closest friends, and I acknowledge all of them for

making the effort to keep in touch with me. John Kerrigan is a high school acquaintance,

who became a more serious friend only after our graduations from college. He moved

closer to me (to Las Vegas) in 1995, and subsequently w.e have visited each other several

times along with his new wife, Kristin. An expert in Irish literature, John's intellect, hu-

mor and incomparable hospitality have helped sustain me through my years at Berkeley.

Evan Manvel was another Haverford student who has always inspired me with his strong

activist spirit. First he lived in Corvallis, Oregon pursuing local environmental issues, and

I visited him several times there. Then he returned to the East Coast where he studied

public policy at Harvard. Now he's back in Oregon doing activism, though we haven't

seen much of each other lately. Lastly, I met Ameet Raval during a summer internship at

the Princeton Geophysical Fluid Dynamics Laboratory in 1991. We quickly became good

friends, and remain so today. He left atmospheric physics for psychology a few years af-

Acknowledgments XVll

ter we met, and is now almost through his Ph.D. program at Temple University (Phila-

delphia, PA). Not only a great mental sparring partner, his spiritual and emotional sides

have been a blessing to experience in a friend.

My parents, Ray and Sue, and my brother, Alex, all live near West Chester, PA.

They have been a constant support for me, and vacations are seldom considered without

including them: the feeling of renewal in seeing family is tremendous. My uncle, Bill Jef-

ferys, is an astronomer at the University of Austin, Texas, and is in some way responsible

for inspiring me to pursue the Ph.D., since he's the only other family member who has

one. My grandmother, Ena Jefferys, lives in the tiny town of Waitsfield, VT, where I've

managed to visit her three times since coming to Berkeley. I always enjoy the views from

her porch, the smells of her kitchen, and her warm and witty manner. While at Berkeley,

I've lost my three other grandparents, Ben and Claire Greenblatt (in 1995), and Bill Jef-

ferys Sr. (in 1996). Fortunately, I saw them all often enough that I didn't feel I had lost

touch with them when they died, though it was still very painful when I heard the news

from my parents 3,000 miles away.

Finally, there is one last person who has been patiently waiting until the end of

my acknowledgments for recognition, and that is Noreen Buyers. First secretary of the

group, then girlfriend, now fiancee, she has transformed my life as well as helped me

through the most difficult year of my Ph.D. program. My thanks to her are without end,

as our journey unfolds together.

The research described in this dissertation was supported by the Director, Office

of Science, Office of Basic Enetgy Sciences, Chemical Sciences Division, of the U.S.

XVlll Acknowledgments

Department of Energy tinder Contract No. DE-AC03-76SF00098. Additional funds were

provided by the National Science Foundation under Grant No. CHE-9710243, and the

Defense University Research Instrumentation Program under Grant No. F49620-95-1-

0078.

1

Chapter 1. Introduction

For physical chemists, a primary motivation for experimental and theoretical

work is to improve understanding of the process of making and breaking of chemical

bonds. We focus on characterization of potential energy surfaces, which govern both

structure and dynamics of molecular systems. Structure is best studied using so-called

"frequency domain" laser techniques which, owing to the extremely narrow bandwidth of

most tunable lasers, has enabled the complex energetic surfaces of a large number of

systems to be characterized in phenomenal detail. If a sufficiently detailed and accurate

surface can be produced, and the system has only a few degrees of freedom, then all the

dynamics can be calculated from the potential energy surfaces. However, only a small

region of the coordinate space of a potential energy surface is generally accessible from

the minimum-energy configurations typically studied to derive structural information. In

this case, molecules must be perturbed (through laser excitation, collisions in a molecular

beam, or other means) in order to explore new regions of potential surfaces. In the fre

quency domain, such experiments are valuable if the end result of such a perturbation can

be observed, such as a spectrum or kinetic energy distribution of product molecules, or if

the transition state of a reaction can be detected through the broadening of transitions in

the reactant spectrum, or a direct spectral signature of the transition state.

The wide availability of femtosecond pulsed lasers has added powerful new tools

to the study of dynamics, as well as molecular structure, through observation of reactions

in the "time domain." As the vibrational period of a typical diatomic molecule, such as h,

is on the order of 50 fs, comparable to laser pulse durations, these lasers have the unique

ability to prepare a molecular "wavepacket," or coherent superposition of vibrational lev-

2 Chapter

els, and subsequently probe the molecule's evolution in time. In other words, the dynam-

ics of a chemical reaction can be studied as it unfolds, not just at its starting or ending

points. Numerous systems have been examined using a variety of pump-probe tech-

niques, in both the condensed and gas phases, examining small and large molecules, neu-

tral and charged species .1-9

One' area, where relatively little work has been done up until now is the time-

resolved study of anion reactions. Anions play essential roles in the condensed phase,

where they are basic to organic and biological reactions (e.g., nucleophilic substitution,

oxidation-reduction, proton transfer). In the gas phase, they are important in the atmos-

phere (e.g. 0 3- and C03- are intermediates in stratospheric anion chemistry,IO.1l and in-

creased electron densities in the sunlit ionosphere is attributed to 0- photodetachmentI2).

However, the gas phase is also an ideal environment for studying fundamental reactions,

without the distortions to potential surfaces caused by the proximity of solvent molecules

encountered in the condensed phase.

While many gas-phase anion systems have been explored in the frequency do-

main, only a handful have been studied in the time domain, most notably, the experi-

ments on Iz-(Ar)n and I2-(C02)n clusters by the Lineberger group,13-19 and more recently,

the femtosecond photoelectron spectroscopy of AU3- by Eberhardt and coworkers.20

Thus, time-resolved studies of gas-phase anion reactions represent an enormous untapped

area of research. Through studying anion reactions, we hope to gain a better understand-

ing of the underlying chemical processes involved, including the timescales of product

formation in photodissociation reactions (such as 1z_21
,22 and h_23

•
24

), the formation of in-

termediate states on more complex potential surfaces (e.g., the gas-phase SN2 reaction cr

Chapter 1 3

+ CH3CN),25 or the role of solvent in altering a reaction [e.g., the formation of dipole-

bound anion states in r(H20)n clusters,26,27 and the solvent-induced recombination of h-

In the gas phase, anions are difficult to produce in large amounts compared with

neutral molecules, making many traditional detection schemes (direct absorption, laser-

induced fluorescence, multiphoton ionization) infeasible. Sensitive methods have been

developed for studying anions in the gas phase, most notably photoelectron spectroscopy.

It is basically this technique, with a long history in the Neumark group, which has been

coupled to a femtosecond pulsed laser, to enable the study of time-resolved anion reac-

tions.

Photoelectron spectroscopy refers to a collection of related approaches for exam-

ining the electronic structure of gas-phase or surface-bound ions and molecules. Its ori-

gins lie in the discovery of the photoelectric effect, which identified a threshold photon

energy for ejection of electrons from a metal surface.28,29 As a gas-phase technique, its

development in the early 1960s30,31 has led to an explosive growth of the field, and pho-

toelectron spectroscopy is now routinely.usedto.study awide variety of molecular and

ionic systems.

The photoelectric effect can be summarized in terms of an energy conservation

equation as follows: 32,33

hv = EA + Eintemal + Ee- (1)

where hv is the photon energy, EA is the electron affinity (or, in the case of a neutral

molecule, it is replaced by IP, the ionization potential), Eintemal is the internal energy of

the newly-created neutral molecule (or positive ion), and Ee- is the kinetic energy of the

4 Chapter

electron. Einte~a1 can be further broken down into various components, e.g., electronic,

vibrational and rotational. Since the electron produced is free, all its energy is kinetic;

thus useful implementation of the principle involves measuring either the kinetic energy

of ejected electrons usin~ a fixed-frequency photon, or varying the photon energy while

monitoring electrons ejected with a: specific (usually zero) kinetic energy. Both methods

have been implemented successfully in the Neumark group laboratories, and each ap-

proach has different strengths and weaknesses. With a fixed-frequency laser source, an

entire spectrum may be collected at once (photoelectron spectroscopy or PES),34 but

resolution is limited to -50-100 cm -I by the collection angle of the electron detector, the

length of the flight tube, and the spatial extent of the ion and laser beams. When the laser

frequency is tunable, the resolution may approach that of the laser, e.g. -0.05 cm-I
, if

electrons with nearly zero kinetic energy are detected [threshold or zero electron kinetic

energy (ZEKE) spectroscopy],35 but such electrons must have the proper angular mo-

mentum to be detected efficiently near threshold, and data collection is both slower and at

a single energy at a time.

The extension of photoelectron spectroscopy to the ultrafast regime began with a

series of experiments in the early 1990s studying intramolecular vibrational energy re-

distribution in gas-phase anilines,36.37 using a pair of picosecond pulses to first promote

molecules to an electronically excited state, and then to ionize them, producing photoe-

lectrons. Both PES and ZEKE techniques were employed. Later studies utilizing fern to-

second pulses examined the time-resolved vibrations of excited Na3,9 and 1z;38 rates of

internal conversion in hexatriene,3 and the control of NO product states through the

Chapter 1 5

shifting of potentials using intense femtosecond pulses,39 using either ZEKE spectros-

copy (in the first two examples), or PES.

Femtosecond photoelectron spectroscopy (FPES) for anions is similar to the

above approaches for neutrals. It involves the following pump-probe scheme, using the

photodissociation of a generic diatomic anion "xy-" as an example:

hv {XY+e-
2)

X +Y+e-
(2)

where [XY-]* is the anion in an excited electronic state immediately afterexcitation,

X ... Y- is the anion at a later time, where the X and y- products have mostly separated, e-

is the detached photoelectron, hVJ and hV2 are femtosecond-duration pump and probe la-

ser pulses, respectively, and I1t is a variable time delay between the pulses. The measured

signal is the photoelectron, which is energy-analyzed by time-of-flight; therefore, an en-

tire photoelectron spectrum may be collected for each pump-probe time delay I1t. .

The technique is illustrated in more detail in Fig. 1. Preparation of xy- is as-

sumed to be vibrationally cold, however, the same analysis may apply for a vibrationally

hot ion, though dynamics will be blurred outdue-to a less localized starting wavepacket.

Promotion to an anion excited state takes place with the pump photon. The wavepacket

then evolves toward larger internuclear distances, i.e. dissociation into X + Y-. Because

of the ultrafast time duration of the laser pulses, this wavepacket motion can be followed

with the probe pulse at various time delays between pump and probe pulses, indicated by

L\tl and dt2. This second pulse detaches an electron from the anion, leaving the remaining

neutral molecule in a state determined by the Franck-Condon overlap between anion and

neutral wavefunctions. From Eq. 1, the kinetic energy of the electron is determined by the

6 Chapter

internal energy of the neutral molecule; this is reflected in the figure by horizontal lines

representing vibrational eigenstates of the neutral, which connect to peaks in the photoe-

1ectron spectrum on the right. The total energy of the probe photon corresponds to the

origin of the spectrum.

~TT~~----------------------------~"
-'--~------------r---~"

e-

Xy-

Reaction Coordinate
Fig. 1. Schematic diagram of the FPES technique.

x+y

Probe
hV2

x+y-

At time delay ~tl, the wavepacket is still on the repulsive wall of the anion poten-

tial, so overlap with the neutral potential is strongest in the bound region, generating an

extended vibrational progression in the photoelectron spectrum. By time delay /).h, the

wavepacket has'reached the dissociation asymptote, and both potentials are flat; the pho-

Chapter 1 7

toelectron spectrum displays a single sharp peak, corresponding to the energy of y- pho-

todetachment. The horizontal arrow near each wavepacket represents its average kinetic

energy along the reaction coordinate, and has the effect of shifting the Franck-Condon

overlap toward the turning point (zero kinetic energy) region of the neutral potential.

6~,,~~~~~~~~~~--~

5

4

2

1

0

.' III \ , ' , '
\ I 1111 \

" 11 II \

"
" " " ': :,
" "

II II
II II
II II
II II

~: ~\
.. II

:~ ',\ \ \ .. " .. II , •

, II \ • . ,," \ \
\ 11 ,\ \ \

• "II \. \

\ 1\ \\ • \,'"
\ \1 " • >'"
',',\ .. ':.... \~ .. " '. ',. '\- _...... ,

\'\.. '" '" ".

\: ..•• :~ :'::,;:~,:~~",;.c,,","

-50 fs:/ 0 fs
50 fs

/

100fS
. 150 fs

200 fs

780nm
X2L + I -u

2

2 3 4 5

260nm

6
Distance/A

Fig. 2. Snapshots of calculated 12- wavepacket on the A'enI/2,g) state,

7 8

8 Chapter

As an example of a real system, a series of "snapshots" of the calculated evolving

wavepacket for 12- photodissociation are shown in Fig. 2. Here the anion is excited from

the ground geL:) state to the excited keI1112,g) state with 780 nm light of 80 fs dura-

tion. As the wavepacket moves considerably over the pump pulse duration, the

wavepacket at 50 fs is hi~hly asymmetric, with a strong peak in the initial Franck-

Condon region, and a broad tail at larger internuclear distances. By 150 fs, the

wavepacket is completely outside the Franck-Condon region, and by -300 fs, it has

reached the 1 + r dissociation asymptote.

A set of experimental photoelectron spectra of this reaction, taken from Chapter 6,

is shown in Fig. 3. At early time delays, the spectrum is dominated by intensity in two

broad regions, roughly 0.7-1.0 eV, and 1.6-2.3 eV, corresponding to transitions to the two

manifolds of neutral states correlating with the 2p1I2 and 2P3/2 asymptotes of I, respec-

tively (see Fig. 2). By 380 fs, these broad features have been replaced by sharp features at

770 meV and,1.71 eV, respectively: transitions to the 1 spin-orbit states. As demonstrated

in Zanni et al.,22 these photoelectron spectra can be modeled quantitatively, confirming

that wavepacket dynamics may be followed from start to finish over a duration of only a

few hundred fs, and there is a considerable amount of information to be had from such

spectra. The femtosecond photoelectron spectrum simulation program used to generate

such spectra, including a more extensive theoretical background, is covered in Appendix

2.

Fig. 3. Experimental photoelectron spectra of 12- photodissociation (on next page),

Chapter 1 9

0
580 fs

.~

00
~ 380 (1)
~

~
~

280

180

80
-20

-120

0.0 1.0 2.0 3.0
. Electron Kinetic Energy / e V

10' Chapter

This dissertation contains, in addition to the first account of the FPES technique

applied to anions (Chapter 3), a series of papers exploring the effects of solvent mole-

cules ona chemical reaction (Chapters 4-7). Using mass-selected cluster anions to "tune"

the amount of solvation one molecule at a time, the photodissociation of 12- in both Ar

and CO2 clusters has been studied. These experiments are based on earlier work by the

Lineberger group, which examined anionic photofragment distributions of these clusters,

as well as time-resolved two-photon absorption. 13-19 The goal of the FPES experiments

has been to understand the evolution of the dynamics from the uncaged to fully-caged

size regime. The level of detail afforded by measuring complete photoelectron spectra,

rather than probing a specific transition of the anion, is unsurpassed in these reactions,

and has allowed us to glimpse a much more complete picture than what was previously

possible.

Although the detailed findings can be found in the individual chapters, a few key

results are summarized here. With only a few (-4-6) solvent molecules present, photodis-

sociation proceeds relatively unimpeded, though the effect of solvent on the motion of the

iodine atoms is unmistakable. In larger clusters, interesting new dynamics occur, most

importantly, the "caging" of the rand 1 atoms by the solvent to reform Iz-, either on the

ground state, or in an electronically excited state [AeI1 3/2 ,g)]' By the time a full solvent

shell is reached (20 for the case of Ar, or 16 for CO2), 100% caging is observed, with a

considerable speedup in the rate of Iz- formation as well. Extensive vibrational relaxation

of the Iz - in the ground state is observed, accompanied by evaporation of sol vent mole-

cules to dissipate the energy. The main differences in the dynamics between the 12-(Ar)n

and 1z-(C02)n clusters is the presence of solvent-induced electronic transitions in the first

Chapter 1 11

-500 fs-l ps in 12-(C02)n clusters which are absent in 12-(Ar)n clusters, and considerably

faster 12- formation and vibrational relaxation in h -(C02)n clusters. These distinctions

. highlight the significantly stronger binding energy of C02 with rand 12- over that of Ar.

References

1 D. E. Smith and C. B. Harris, J. Chern. Phys. 87, 2709 (1987).

2 C. Lienau and A. H. Zewail, J. Phys. Chern. 100, 18629 (1996).

3 D. R. Cyr and C. C. Hayden, J. Chern. Phys. 104, 771 (1996).

4 R. M. Bowman, M. Dantus, and A. H. Zewail, Chern. Phys. Lett. 161, 297 (1989).

5 M. Gruebele, G. Roberts, M. Dantus, R. M. Bowman, and A. H. Zewail, Chern. Phys.

Lett. 166, 459 (1990).

6 M. Gruebele and A. H. Zewail, J. Chern. Phys. 98, 883 (1993).

7 T. Baumert, V. Engel, C. Meier, and G. Gerber, Chern. Phys. Lett. 200,488 (1992).

8 T. Baumert, V. Engel, C. Rottgermann, W. T. Strunz, and G. Gerber, Chern. Phys.

Lett. 191, 639 (1992).

9 T. Baumert, R. Thalweiser, and G. Gerber, Chern. Phys. Lett. 209, 29 (1993).

10 E. E. Ferguson, F. C. Fehsenfeld, and D. L. Albritton, in Gas Phase Ion Chemistry,

Vol. 1, edited by M. T. Bowers (Academic Press, New York, 1979), pp. 45-82.

11 F. Arnold, in Atmospheric Chemistry, edited by E. D. Goldberg (Springer-Verlag,

New York, 1982), pp. 273-300.

12 J. R. Peterson, J. Geophys. Res. 81, 1433 (1976).

13 D. Ray, N. E. Levinger, 1. M. Papanikolas, and W. C. Lineberger, J. Chern. Phys. 91,

6533 (1989).

12 Chapter

14 J. M. Papanikolas, J. R. Gord, N. E. Levinger, D. Ray, V. Vorsa, and W. C. Lineber-

ger, J. Phys. Chern. 95, 8028 (1991).

15 J. M. Papanikolas, V. Vorsa, M. E. Nadal, P. J. Carnpagnola, J. R. Gord, and W. C.

Lineberger, J. Chern. Phys. 97, 7002 (1992).

16 . J. M. Papanikolas, V. Vorsa, M. E. Nadal, P. J. Carnpagnola, H. K. Buchenau, and W.

C. Lineberger, J. Chern. Phys. 99, 8733 (1993).

,} 7 V. Vorsa, Ph.D. Thesis, University of Colorado, Boulder (1996).

18 V. Vorsa, P. J. Carnpagnola, S. Nandi, M. Larsson, and W. C. Lineberger, J. Chern.

Phys. 105, 2298 (1996).

19 V. Vorsa, S. Nandi, P. J. Carnpagnola, M. Larsson, and W. C. Lineberger, J. Chern.

Phys. 106, 1402 (1997).

20 G. Gantefor, S. Kraus, and W. Eberhardt, J. Electron Spectroscopy and Related Phe- .

nornena 88-91, 35 (1998).

. .
21 B, J. Greenblatt, M. T. Zanni, and D. M. Neurnark, Chern. Phys. Lett. 258, 523-529

(1996).

22 M. T. Zanni, V. S. Batista, B. J. Greenblatt, W. H. Miller, and D. M. Neurnark, J.

Chern. Phys. 110,3748 (1999).

23 M. T. Zanni, B. J. Greenblatt, A. V. Davis, and D. M. Neurnark, in preparation.

24 M. T. Zanni, B. J. Greenblatt, A. V. Davis, and D. M. Neurnark, Proc. SPIE 3271,

196 (1998).

25 A. V. Davis, M. T. Zanni, and D. M. Neurnark, in progress.

26 L. Lehr, M. T. Zanni, C. Frischkom, R. Weinkauf, and D. M. Neurnark, Science, in

Chapter 1 13

press.

27 M. T. Zanni, L. Lehr, B. J. Greenblatt, R. Weinkauf, and D. M. Neurnark, Proceed-

ings of the XIth Ultrafast Conference, Garmisch-Partenkirchen, Germany, in press .

. 28 A. Einstein, Ann. Phys. 17, 132 (1905).

29 R. A. Millikan, Phys. Rev. 7, 355 (1916).

30 M. I. AI-Joboury and D. W. Turner, J. Chern. Phys. 37, 3007 (1962).

31 F. I. Vilesov, B. L. Kurbatov, and A. N. Terenin, Sov. Phys. Dokl. 6,490 (1961).

32 J. H. D. Eland, Photoelectron spectroscopy: an introduction to ultraviolet photoelec

tron spectroscopy in the gas phase, 2nd ed. (Butterworths, Boston, 1984).

33 J. W. Rabalais, Principles of Ultraviolet Photoelectron Spectroscopy (Wiley, New

York, 1977).

34 A. Weaver, Ph.D. Thesis, University of California, Berkeley (1991).

35 T. N. Kitsopoulos, Ph.D. Thesis, University of California, Berkeley (1992).

36 X. Song, C. W. Wilkerso'n, Jr., J. Lucia, S. Pauls, and J. P. Reilly, Chern. Phys. Lett.

174,377 (1990).

37 J. M. Smith, X. Zhang, and J. L. Knee, J. Chern. Phys. 99, 2550 (1993).

38 I. Fischer, D. M. Villeneuve, M. J. J. Vrakking, and A. Stolow, J. Chern. Phys. 102,

5566 (1995).

39 P. Ludowise, M. Blackwell, and Y. Chen, Chern. Phys. Lett. 258, 530 (1996).

14

Chapter 2. Experimental Apparatus

The femtosecond photoelectron spectrometer (FPES machine) is designed to
\

collect time-dependent photoelectron spectra of anions. To accomplish this task, two

fairly independent segments are coupled together: 1) a high-vacuum chamber, in which

. anions are produced and photoelectron signals detected; and 2) a femtosecond laser

system, for producing and characterizing pulses of light at multiple wavelengths. Each is

a highly complex apparatus, and will be described separately. Acquisition of data will be

discussed last.

1. Vacuum system

The vacuum system consists of several differentially pumped regions, a drawing

of which is shown in Fig. 1. Each region of the vacuum is labeled according to function

and/or order of differential pumping: source, "zeroeth" differential, first differential,

second differential and detector. Within the source region, anions are produced and

cooled by crossing an electron beam with a supersonic gas expansion. Passing through a

beam skimmer into the zeroeth differential region, the anions are extracted into a Wiley-

McLaren 1 time-of-flight mass spectrometer. The first and second differential regions

contain ion steering and focusing optics for controlling the position of the beam. Once

inside the detector region, anions are intercepted by the laser pulses, which enter and exit

the region through a pair of windows. After the anions have interacted with the laser,

photoelectrons, neutrals, and possibly photofragment ions are produced. Photoelectrons

are collected in a "magnetic bottle" time of flight energy analyzer, and detected with an

electron detector at the end of a long flight tube. Ions or neutrals are detected by a

Chapter 2

retractable detector, and photofragment ions are analyzed in an off-axis

reflectronldetector. Prior to laser interaction, anions may also be mass-selected and/or

decelerated with a mass gate/pulsed ion decelerator, in order to improve photoelectron

energy resolution.

Source
Region

Zeroeth
Differential

Region

Manual
Gate Valve

Diffusion
PUmp

Fig. 1. FPES vacuum apparatus.

n
Electron

Time of Flight
Tube

Solenoid

Magnetic
Shielding

L---> ~""to-r---~""
Turbomolecular Region

Pumps

Scale = 1:16

15

16 Chapter 2

1.1. Pumps

The design considerations of the FPES machine are rather unusual. Pulsed ion

beams have been shown to work well for photoelectron spectroscopy, but in order to take

advantage of the high repetition rate (l kHz) of the femtosecond laser, anions must be

produced at a comparable rate. This introduces complications to the pumping

requirements of the system, as previous pulsed experiments in the Neumark Group run at

100 Hz or below. Each anion pulse generated involves the admission of a quantity of gas

into the vacuum chamber, increasing the pressure, so the restriction to a working pressure

of ~ 5x 10-4 torr (both to prevent the diffusion pumps from stalling, and to maintain a

viable electron beam) places serious constraints on the choice of primary pumps.

Although the amount of gas contained in each pulse can be limited by reducing the hole

diameter of the gas inlet valve, a minimum quantity is still required to produce reasonable

anion signals. The solution has been found in a combination of large pumps, small valve

orifices, and an "extra" differential region (typical vacuum systems built by the group

have only four differential regions) to reduce the effects on the rest of the system of an

unusually large gas pressure in the source region.

The source region is pumped by a Varian VHS-l 0 diffusion pump (4400 Lis

pumping speed), backed by an Alcatel2063 direct drive mechanical pump [50 cfm (cubic

feet per minute) or 23.6 Lis]. When present, the zeroeth differential region is pumped by

a second Varian VHS-IO, backed by a Sargent-Welch belt-drive mechanical pump (-10

Lis). Otherwise, ,both Varian pumps evacuate the source region (backed by the Alcatel

pump), for a total pumping speed of 8800 Lis. Maximum working pressure in the source

Chapter 2 17

region is limited to approximately 5xlO--4 torr, above which the diffusion pumps begin to

stall, an undesirable (and messy) situation.

The first differential region is pumped by a Varian VHS-6 diffusion pump (1900

Lis), backed by an A1cate12021 direct drive mechanical pump (15 Lis). Typical working

pressure in this region is lxlO--{j torr. The second differential and detector regions are

each pumped by a Varian V-250 turbomolecular pump (250 Lis) and backed by a Varian

SD-300 direct drive mechanical pump (5 Lis). The second differential region maintains a

working pressure of 2xlO-8 torr, while the detector region maintains Ix 10-9 torr.

Between each region is a 3 mm diameter hole (between the source and zeroeth

differential regions, the hole is effected by a skimmer, whose diameter can be varied),

which enables differential pumping. An electropneumatic gate valve separates the first

and second differential regions. The source, zeroeth differential and first differential

regions are referred to as the low vacuum region, and generally do not attain pressures

below lxlO-8 torr because of the use of rubber o-ring seals and a generally oily

environment. The second differential and detector regions constitute the ultrahigh

vacuum region, which routinely attains 5xlO-IO torr. All seals in this region use copper

gaskets, and outgassing materials are kept to a minimum: a capacitor for each detector,

and few resistors associated with the deceleration and reflectron stacks. Any handling of

materials to reside inside these regions must be done under extremely clean conditions, as

a small amount of grease or dirt can spoil the ultrahigh vacuum environment. This region

is usually baked for 1-3 days after initial pump-down.

18 Chapter 2

1.2. Interlock

An automatic protection or "interlock" circuit is required for the automatic

shutdown of the machine under unsafe operating conditions. Although a detailed

. description of the circuit will appear in the dissertation of Martin Zanni, who designed

and built it, a brief summary of its functions is presented here. The interlock controls the

power to the diffusion and turbomolecular pumps, electropneumatic valves and high

voltage equipment. Sensors including pressure gauges, temperature thermocouples (on

the dif~usion pumps) and speed regulators (on the turbomolecular pumps) enable the

interlock circuit to safely turn off and isolate parts of the vacuum chamber, in order to

protect sensitive equipment from damage, and neutralize any potentially dangerous (high

temperature and/or pressure) situation. In addition, the vacuum system was designed so

that, in the event of ~ power failure, key electropneumatic valves automatically vent the

ultrahigh vacuum region to prevent the diffusion of mechanical pump oil into ultraclean

regions. Without human intervention, when power is restored, the interlock keeps the

system shut down since sensors then report an inoperable condition.

Fig. 2. Source and zeroeth differential regions - front view (on next page).

Fig. 3. Source and zeroeth differential regions - side view (on page 20).

I-

Ii

Chapter 2

Electrical Feedthroughs

~"
I I III ~~I~III=C~====================~I==~-

Faraday A Electron Gun

LQCu~-lAl-= ;:-rr n~!_A_. ~_·~_f~_~_le--l--+,I~
~xtractio

Plate

Zeroeth
Differential

Region
h

J IL

Source
Region

[l----t-J_-+-----I[JI----t-_-+-----I[
Manual

Gate Valve

Diffusion
Pump

Manual
Gate Valve

Diffusion
Pump

\

/

19

Scale 1:8

20

Cajon Ultratorr
Fitting

Mounting Flange

Source Region

Skimmer

Extraction Plate

cceleration Plate

Chapter 2

Gas Inlet

+
Electrical

F eedthroughs

!
i
!~ Alternate
! Mounting Site

.-'-------'--,1
Electrical

F eedthroughs

~

Ground Plate-t~fi::r::::q~

/ ~
Extraction

Region
Acceleration

Region -

Zeroeth Differential Region

Gate Valve

Scale 1:4

Chapter 2.

1.3. Source and zeroeth differential regions

21

The source and zeroeth differential regions are shown in two views, from the front

in Fig. 2 and from the side in Fig. 3. The source region consists of a large, stainless steel

box with two solid sides (bottom and rear) and four open sides, on the outside of which

are mounted removable aluminum doors. This design both saves on the total weigh~ of .

the' chamber, and offers maximum flexibility for modifications and access. Two 12"

diameter manual gate valves (Kurt Lesker) are bolted to the bottom of the source

chamber, and under each of these is bolted a diffusion pump. The left side of the chamber

(as viewed from the front, looking toward the detector region) has holes drilled on the

inside bottom and rear surfaces for mounting of a removable zeroeth differential region,

which is described separately below. The right door of the chamber holds the electron

gun flange, containing electrical feedthroughs and, on the inside, pairs of tapped holes for

mounting and adjusting the height of the electron gun. The top door has several flanges

for mounting the pulsed valve, Faraday cup, two sets of electrical feedthroughs, and an

ionization gauge. Some electronic instrumentation (primarily the extraction/acceleration

circuit) sits permanently on the top side of this dooLThe front door has a transparent

acrylic flange for viewing inside the chamber while under vacuum. The left door is

currently blank.

1.3.1. Pulsed valve

The pulsed valve, used to introduce gas into the vacuum chamber, is very similar

in design to that used by the group's Fast Radical Beam Machine (FRBM),2 and is

originally based on the design of Trickl and Proch.3 Briefly, it consists of a stainless steel

cylindrical housing with coupling to the gas supply tube on the rear side, and an area on

Chapter 2

the front for mounting a face plate with a variable diameter orifice. Inside the valve is a

piezoelectric disk translator with a hole in the center, through which is mounted a poppet

shaft. This seals against the inside surface of the faceplate with an o-ring when the valve

is off, and is pulled back by the piezoelectric disk when voltage is applied, allowing gas

to escape through the orifice into the source region.

The valve body itself is made up of two sections bolted together and sealed by an

o-ring, and the faceplate, piezoelectric disk and poppet are all mounted to the front

section. This scheme allows the alignment of the poppet with the faceplate to be adjusted

without the valve in place in the vacuum chamber; the front section can be mounted on a

. flange elsewhere on a source chamber door and adjusted from outside, while the front of I
the faceplate is under vacuum. Performance of the valve is monitored using a fast ion

. gauge (FIG)2 which is borrowed from another group laboratory.

Centering of the valve orifice with the beam axis of the mass spectrometer

(defined by the line of 3 mm diameter differential pumping holes separating each region

after the zeroeth differential) is critical to high ion signals, and this is accomplished using

a close-clearance positioning ring in one of two ways. With the zeroeth differential region

in place, the ring is precisely mounted on the top plate of this internal chamber, and the

valve hangs down from the top of the source chamber, resting inside the ring. Without the

zeroeth differential region, the ring is less precisely mounted on a flange bolted to the

inside of the source top door, with the valve again hanging down from the top door,

. resting inside the ring. In this latter case, the internally mounted flange has been carefully

aligned, then left in place even when using the zeroeth differential region. Either scheme

allows for easy adjustment of the vertical position of the valve under vacuum, because

Chapter 2 23

the tube connecting the valve to the outside is held in place with a Cajon Ultratorr

connection, which can be loosened slightly without significant air leakage.

The driver circuit for the pulsed valve was built by Martin Zanni, so no circuit

diagram is presented here; the design originates from the Hanna Reisler group at USc. It

delivers a voltage pulse to the piezoelectric disk in a "shark's fin" (RC decay) profile, in

order not to damage the crystal. The voltage can be adjusted up to 700 V, though

typically only 200 V are needed for a well-adjusted poppet. The duration of the high

voltage segment can be varied, but is generally kept as short as possible (150? Ils) while

allowing the valve to fully open. The valve is capable of running at a repetition rate well

over 1 kHz, though the optimal rate for producing anions has been found to be 500 Hz.

The only modification from earlier incarnations of the design for implementing this high

speed is the use of a higher current power supply, and a Bertan 205-01R unit (1 kV, 30

rnA) meets these requirements.

1.3.2. Electron gun

The electron gun (Fig. 4 and also Fig. 5) delivers a beam of electrons at 1-2 keY

to the gas pulse emerging from the pulsed valve, creating positive ions and slow,

secondary electrons which then attach to neutral molecules and cool in the ensuing

supersonic expansion. It is a continuous device, unlike most other source components. It

has been found that a fairly diffuse beam, aimed 1-3 mm below the pulsed valve orifice,

produces the highest levels of anions, though the exact conditions vary considerably with

the anion of interest. In certain instances, a pulsed discharge source (see, for instance,

Cyr2) produces higher anion intensities, but the production of 12- and h - clusters, in

particular, have only been made successfully with the electron gun.

24

Vertical {
Deflectors

Horizontal
Deflectors

Einzel Lens

{

, I
'----

I

i=I

'-----

r......I

-r I
I I

I

L I -
I~

I

Anode Cfr
Filament

Chapter 2

--
-

Fig. 4. Electron gun schematic diagram.

Deflector
Voltage Supplies

Einzel Lens
Voltage Supply

Anode
Voltage Supply

Filament
Current Supply

Electron Energy
Voltage Supply

Protective
Housing

The electron gun is modified from a "rejected" Tektronix oscilloscope electron

gun to accommodate a custom filament mount and anode cup. Filaments are made of

thoriated iridium powder on platinum ribbon, custom ordered from Electron

Technologies, Huntingdon Valley, PA. The filament and anode cup are floated at -1 to-.
2 kV, passing a current of 5-7 A; an anode bias voltage of -30 V is typically used. An

Einzellens, and horizontal and vertical deflectors, are used to optimally position the

beam in the gas expansion. Bertan 205-05R high voltage supplies (5 kV, 5 rnA) are used

Chapter 2 25
for the float voltage and Einzellens, while a 150 V Acopian A0150NT05 power-supply is

used for the anode bias, and an Kepco ATE6-10M current supply for the filament current.

l

The deflector circuits have been susceptible to large current fluctuations caused

by the electron beam nearby to the deflector plates, and as a result, the original circuit, in

which a voltage divider was used, had to be abandoned. The new circuit (Fig. 5), based

on the anode power supply, uses Acopian A0150NX05 adjustable 150 V power supplies

to better deal with the high currents involved iri maintaining a deflection voltage.

A copper Faraday cup (Fig. 2), mounted opposite the pulsed valve from the

electron gun, is used to measure the electron current, typically 100-500 !..lA. It is biased to

+9 V using a battery attached outside the source chamber. The cup is soldered to a II<!"

diameter copper rod, which passes through the top of the source chamber, isolated

electrically by an o-ring found in the Cajon Ultratorr connection. The cup can be

repositioned in the beam while under vacuum, in the same manner as for the pul~ed

valve.

1.3.3. Zeroeth differential region

The "zeroeth" differential region, so named since it was built after the first and

second differential regions were completed, yet precedes both of them in the differential

pumping order, is a removable chamber mounted inside the source. Because of its wholly

internal location, it is awkward to measure the pressure, but an ionization gauge is

available in the arm of the roughing line. The purpose of the region is to reduce the

pressure in the vicinity of the extraction and acceleration plates, which is essential for

optimal focusing of the mass spectrometer. The pressure inside this region is typically

26

5V
Supply

5V

· OV
.: Decimal { 0 V
: point position

10-turn
50k,Q

5V

OV

Chapter 2

-8 I 8 8 I---+-+------,

Datel DMS-30PL
Digital Readout

CWCCW

160 k,Q

_Ve------t...l...l----+--..:...f--1"

-S 1----1'--\----'

---+-:-----+--.f++.:r..- V out
150 V Supply

Acopian
#A0150NX05

. +S e------t.,--}-----;-f---1"
'--------- ._----_ . .'

+V
Polarity

H. . switch
: onzontalDeflector , .. .

5V

· OV.
· Decimal { 0 V
: point position

10-turn
50 k,Q

CWCCW

150 V Supply
Acopian

#A0150NX05

-8 I 8 8 I---++----,

Datel DMS-30PL
Digital Readout

-V 1----1'-'-4--'--\---'+--1

-S 1----1'--\----'

. +S f----t,...)-----;--H"

+V

160 k,Q

~--+--+++-;..- V out

Polarity
switch

Vertical Deflector

Fig. 5. Electron gun circuit diagram.

Chapter 2 27

- 2.5-10 times lower than inside the source region, depending on the distance between the

skimmer and pulsed valve. It has been shown to assist in the production of large h -(Ar)n

and 12 -(C02)n clusters. The drawback of using the region, other than having a more

cramped and less accessible source chamber, is that the maximum gas load in the SOl,lrce

is reduced by approximately 2x, since only half the pumping capacity is available !O

evacuate the source region.

The region is used in conjunction with a stainless steel skimmer, which is

mounted directly under the pulsed valve and of which several sizes are available. Typical

hole diameters used are 2-6 mm, the largest one being the most successful for the

production of large h -dusters. The distance between valve orifice and skimmer can be

adjusted while under vacuum, as explained above in the description of the pulsed valve.

The valve mounting ring atop the chamber aligns the valve precisely with the skimmer.

1.3.4. Extraction and acceleration

Three stainless steel electrode plates (see Fig. 3) located in the zeroeth differential

region serve to "extract" the cold anion plume into the time of flight mass spectrometer,

which constitutes the rest of the vacuum chamber. (Technically speaking, when the

zeroeth differential region is not being used, the extraction and acceleration plates are

located in the source region.) A pulsing circuit, built by Martin Zanni and detailed in his

dissertation, delivers rapidly falling (100 ns) high voltage pulses to the extraction and

acceleration plates simultaneously; the third plate, serving as a partition between the

zeroeth and first differential regions, is always grounded. The region between the

extraction and acceleration plates is referred to as the extraction region, while the smaller

region between the acceleration and ground plates is called the acceleration region. The

28 Chapter 2

voltage on the extraction plate is more negative than the acceleration plate during the

pulse, so that anions are accelerated away from the extraction plate, toward the detector

region. The maximum voltage on either plate is currently limited to 2 kV, though it is

straightforward to increase this limitation by adding extra 1 kV MOSFET stages. Typical

voltages used are 1.3 kV for the extraction plate, and 1.0 kV for the acceleration plate.

1.4. First and second differential regions

A diagram of the first and second differential regions is shown in Fig. 6. The first

differential region consists of a stainless steel tee mounted on the back side of the source

chamber, and a box mounted on the opposite side, extending into the ieroeth differential

chamber. Mounted inside the box are a set of horizontal and vertical ion deflector plates,

with wires ultimately connecting to feedthroughs on the top of the source chamber.

Mounted inside the tee, in the arm away from the source, is the first Einzellens. A

manual gate valve is bolted to the bottoin of the tee, with the diffusion pump mounted

underneath. The top flange of the tee holds an ionization gauge. The second differential

region is separated from the first differential region by a pneumatic gate value. This

region contains a set of deflectors on the side nearest the source, and a second Einzellens

on the side opposite. The top flange contains feedthroughs, and an ionization gauge,

while the bottom flange holds the turbomolecular pump. A fifth flange is blank, to allow

for access to components.

1.4.1. Ion deflectors

Both sets of deflectors are controlled by a circuit designed and built by Martin

Zanni, so the diagram will appear in his dissertation. In brief, each circuit consists of a

Chapter 2 29

fixed, 200 V power supply connected to a potenti~meter, arranged such that a dynamic

range of -50 to +50 V is obtained by turning the potentiometer only; no polarity switch is

required. This is an adequate range in virtually all circumstances, so the circuit has

worked well. A digital readout is provided for each voltage, to aid in reproducing

settings.

First
Deflectors

First
Differential

Region

First {
Einzel Lens

Manual
Gate Valve

Diffusion
Pump

P euma ic
G te Val e

Second
Deflectors

Fig. 6. First and second differential regions.

1.4.2. Einzellenses

Electrical
Feedthroughs

Second
Einzel Lens

Scale 1:8

The first Einzellens is used to focus the ion beam in the plane perpendicular to

the travelling direction. A negative voltage of a few hundred volts (Bertan 355) applied to

the central plate is required for optimal ion signals. Intensity is fairly sensitive to the

voltage; in general, a value of 400-500 V is necessary. The second Einzellens is not

30 Chapter 2

typically used. This is not to say it has no effect on the ion signal; on the contrary, a

voltage of several hundred (negative) volts greatly increases the ion signal. However, this

improvement also seems to decimate the electron signal (when the laser is present), and

the best compromise seems to be to leave the lens at 0 V. This problem is not entirely

understood, but appears to stem from the different locations of the laser focal point and

the ion detector (about 21.5 cm); with the Einzellens located only 25.5 cm away from the

laser focus, the longitudinal focus can be quite different in the two locations. It is possible

that careful optimization of settings may well increase the electron signal above its

current performance level.

1.5. Detector region

The detector region is the heart of the FPES machine, where ion beams, laser

beams, electrons and photofragment ions all share space. It consists of two cross-shaped

chambers, and a long tube for electron time of flight. In the "detachment" chamber (Figs.

7 and 8), the left and right flanges each hold a set of laser windows and baffles. Mounted

in the front arm of the chamber is a mass gate/ion decelerator assembly, while the rear

arm contains a wire grid covering the entire area of the tube, to prevent stray fields from

the ion detector located behind the mesh from affecting electron trajectories. The bottom

flange contains electrical feedthroughs for the mass gate/ion decelerator, and a hollow

post extending close to the midline of the chamber, inside of which (outside va9uum) is a

. set of removable, strong permanent magnets, constituting the bottom half of the magnetic

Fig. 7. Detachment chamber - front view (on next page).

Fig. 8. Detachment chamber - front view (on page 32).

Laser
Beam

..,..~
""'~/

r-n
J
~

L--U '-

1[:
~

) l
~ (

rl
~I

I

Laser Baffles

r- t
r- Electron
'-

Time of Flight
Tube

Detachment
Chamber

l l
(=(

~ '-

r-

UI III

III III

-

-

-

:J I

~
l l
((

11
ll""

I

Laser Baffles

-

,r-
l II

(II

~ LL--

Scale 1:4

{1

=-.§
;-..,
N

w

32 Chapter 2

- I--

Solenoid

V
Electron

Time of Flight
Tube

/ Magnetic
I-- Shielding

Mass Pulsed
Gate Decelerator

/

~ 11-----------1 I / Laser Grounding OJ LJ Interaction Mesh'
\ -~ Region ~:::.

111111111111111
III ! .

-----_.--....\ /
- • Ion BeaIll - - - - - -~ ~ - - • • ~ • - .)(_. • • • • - • • • • - - - - - ~ - - - ..

Grounding
Mesh

Cajon Ultratorr
Fitting

Al
Post

Pennanent
Magnets

Electrical
F eedthroughs

Scale 1:2

Ion Beam·

Chapter 2

BNC
Connector

~
Ionization

Gauge

Reflectron
Ion Detector

.

Electrical
F eedthroughs

Retractable
Ion Detector

•••••••• :. • • • • Reflectron :
: . . :

Grounding
Shield

. . · . . · · ·

BNC
Connector

33

Turbomolecular
Pump Scale 1:4

Fig. 9. Reflectron chamber.

bottle. Above this is a 1.17 m long electron flight tube ending at an electron detector.

Outside vacuum, the tube is encased in a removable plastic cylinder wound with wire to

create a weak solenoid, the top half of the magnetic bottle. Around the solenoid is a

single layer of Hypemom magnetic shielding. The "reflectron" chamber (Fig. 9) holds a

turbomolecular pump on the bottom flange, reflectron on the rear flange, and reflectron

34 Chapter 2

ion detector, electrical feedthroughs, and ionization gauge sharing the top flange. A

retractable ion detector is mounted on a small left flange, along with associated

feedthroughs.

1.5.1. Laser windows and baffles

Suprasil windows, transparent to ultraviolet light down to -190 nm, are mounted
/'

on the ends of narrow tubes extending from the left and right arms of the detachment

chamber (Fig. 7). Although the left (exiting) window is still mounted at Brewster's angle

to minimize reflections from vertically polarized light, the right (entrance) window has

been replaced with a 2 mm thick window mounted nearly normal to incident light. This

was done primarily to reduce the thickness of glass encountered by the laser as much as

possible. It also gave flexibility if horizontally polarized light was desired, though the

reflection of oppositely polarized light from a Brewster's window is only -15%. The

reason for using a thinner window stem from group velocity dispersion (GVD) or

broadening considerations of femtosecond ultraviolet pulses, which are discussed in

section 2.1.

A baffle tube is mounted inside each arm. The tube is black anodized aluminum

containing a set of three baffle disks, also black anodized aluminum, with a 1,4" hole

drilled through the center, one side chamfered to form a knife edge at the rim. The disks

in the tube nearest the laserbeam, as well as the two innermost disks in the tube away

from the beam, are oriented with the knife edge pointing toward the laser (chamfer in

back); the remaining two disks in the far tube are oriented pointing away from the laser

(chamfer in front). The purpose of the baffles is to reduce scattered light from the edges

of the laser beam, which may be blotchy, or overall defocused. It also aids in aligning the

Chapter 2 35

laser beam, as a narrow range of input angles can actually get through to the other side.

The main method of laser alignment relies, however, on a pair of reference pinholes

separated by several meters, located on either side of the vacuum chamber.

1.5.2. Retractable ion detector

All three charged-particle (ion, reflectron ion, and electron) detectors utilize a pair

of microchannel plates held at high positive voltage, which, when struck by an anion or

electron, generate an electron cascade whose current can be measured on an ordinary

oscilloscope. These high performa~ce devices require a 1-2 kV potential, producing

signals with a rise time of -1 ns.

The ion detector (Fig. 10) consists of a front wire mesh (grid) held by a metal

sandwich; the microchannel plate pair (Galileo 1390-2500,25 mm dia.) consisting of

front and rear mounting rings, and a thin loop inserted between the plates; and the anode.

The entire assembly is connected together via three sets of insulating vespel spacers

compressed together with loose springs, and bolted to small metal cylinders; the cylinders

are then held in place on a mounting plate with set screws. The voltage of the grid can be

switched negative to repel ions and detect fast-moving neutral molecules, but it is

otherwise kept at 0 V. Each of the remaining four components is connected outside the

vacuum chamber by a resistor chain, with the front plate held at 0 V, and the anode held

at +1.5 kV. In order to measure signals at a safe DC voltage, the anode is capacitively

coupled inside the vacuum chamber to a separate BNC signal connector.

When the machine was first built, the ion detector was mounted on the back

flange, behind the reflectron, but this location was discovered to be too far from the laser

interaction region (55 cm) to allow for optimal ion focusing. Therefore, the entire

36 Chapter 2

detector has been designed to retract via ultrahigh vacuum baffles-sealed translator arm

(MDC Corp. SBLM -133-4), which moves the assembly entirely out of the way of the ion

beam so that reflectron experiments can be performed, but otherwise allows the detector

. to sit much closer to the laser beam, 21.5 cm.

/SPring

GRID

MCPl

LOOP

• t, ~

Insulating ~
MCP2 Spacers

\\: • • • • •
ANODE

• • • •
~ ~ 1000 pF

6kV

I

Vacuum

Fig. 10. Ion detector schematic diagram.

2.4Mn

2.4Mn

82V
IN983

5000 pF

I3kV

Atmosphere

Grid
-HV

+HV

Signal
BNC

Chapter 2 37

1.5.3. Magnetic bottle

The magnetic bottle4,5 is designed to collect a large (>50%) fraction of

photoelectrons while preserving electron energy resolution as much as possible. This is

accomplished using two elements: a stack of strong permanent magnets (3000 G surface

field) located 9.5 mm below the ion beam axis, and a weak solenoid (20 G) beginning

approximately 7.6 cm above the beam axis and continuing for 1.17 m, past the electron

detector. The field at the laser interaction p~int is difficult to measure precisely, but is

estimated to be -1000 G. Electrons in a magnetic field will precess about the field lines,

so that as the field changes, the radius of the orbit will increase or decrease accordingly,

along with a change in the orbital velocity. Since total energy must be conserved, the

forward velocity of electrons headed toward the increasing magnetic field will eventually

become zero, resulting in reflection (the so-called "magnetic mirror" effect).6 All

electrons travelling along field lines which intersect the electron detector are therefore

collected.

The permanent magnets are a samarium type (Edmund Scientific) in two

cylindrical shapes: 1" dia. x 0.38" thick (part # 3"0963), and OS' dia. x 0.20" thick (part #

52861). The arrangement producing the highest electron yield appears to be when they

are stacked on top of one another, the 8 small ones on top of the 3 large ones. However,

detection efficiency is not critically dependent on this set-up. The stack is glued to an

aluminum shaft and the entire post then secured inside the hollow tube with a Cajon

Ultratorr connector. Nonmagnetic stainless steel is used in the construction of all parts of

the ultrahigh vacuum region. The solenoid consists of a removable plastic tube which is

placed around the electron flight tube. One layer of Hypemom magnetic shielding

38 Chapter 2

surrounds the solenoid, to reduce extraneous magnetic fields. Coated copper magnet wire

(14 gauge) is wound at 10 turns per inch (3.94 turns per em) for the entire length of the

tube. A Kepco high current power supply (ATE25-4M) maintains an adjustable current of .

up to 4 A. The magnetic field B at the center of the solenoid can be calculated by:

. B = JiDnI (1)

where JiD is the magnetic permeability (4ro<lO-7 H m-1
), n is the coiling density

(turns/unit length), and I is the current. Thus, a current of 4 A produces a field of 20 G.

The choice of wire thickness was based on the maximum voltage of the power supply (25

V). We find, for a -350 m length of wire, a resistance of 4.5 n, which produces a voltage

of 18 V at 4 A, well within these limits. The heat dissipated, 72 W, is not found to be

significant over the length of the solenoid.

Although it is not trivial to calculate the field surrounding a permanent magnet, .

such calculations have been done for similar magnetic bottles using an electromagnet

(solenoid) in place of the permanent magnet.s The combined magnetic field of the strong

and weak solenoid fields is found to be highly divergent in the vicinity of the ion beam,

the key to the magnetic focusing property. Electrons produced at this "focal point"

through photodetachment are repelled by the converging field near the strong magnet,

and orient themselves along lines of the field as they travel toward the electron detector.

1.5.4. Electron detector

The electron detector (Fig. 11) uses a pair of large, 75 mm diameter microchannel

plates (Galileo 1396-7500) to increase the electron collection area. They are mounted on

the top flange of the electron flight tube, behind a wire mesh which is directly bolted to

Chapter 2 39

• •
/SPring

500 k.Q

MCPI

8Ma

Insulating ~ MCP2 Spacers

\\: • 82V

• IN983

• •
ANODE +HV

• • II500 PF

~ ~ 1000 pF
3kV

lOX Amplifier
I

Signal
Ortec 9301 BNC

Vacuum Atmosphere

Fig. 11. Electron detector schematic diagram.

the sides of the flight tube, allowing electrons below the mesh to experience an

(electrically) field-free region. The microchannel plates are held together via front and

back mounting rings only; the middle loop is absent since the plate resistances have been

matched, allowing a single voltage to be applied across the pair. Behind the plates is an

anode. The assembly is connected together using vespel spacers and loose springs, as for

the ion detector. The three components are connected outside the vacuum chamber by a

40 Chapter 2

resistor chain, with the front plate at 0 V, and the anode at -2.2 kV. The anode is

capacitively coupled inside the vacuum chamber to a BNC signal connect~r. A lOx fast

preamplifier (Ortec 9301) is used just outside the vacuum chamber to boost the signal

prior to digitization.

1.5.5. Mass gate

The mass gate is used to admit a narrow time slice of ions through to the rest of

the spectrometer, which is necessary for both the pulsed ion decelerator and reflectron. It

consists of three stainless steel plates, each with a grid of fine wires to ensure uniform

electric fields, mounted on the same assembly as the ion decelerator (Fig. 8). Normally,

the middle plate is held at high negative voltage to repel all ions, but when the ion packet

of interest approaches the first plate, the potential is quickly and temporarily dropped to

ground to allow admission. After the packet clears the third plate, the potential returns to

high voltage.

The success of such a gate relies heavily on a pulsing circuit capable of delivering

rising and falling edges of -100 ns (see dissertation of Martin Zanni). It also requires the

close spacing of plates. If the distance between plates is large, a greater amount of time

must be spent with the gate "open" (at ground potential), with the consequence of lower

mass selectivity. For an assumed mass resolution of 300 and a time of flight distance of

1.3 m, the spatial extent of an ion packet at the detector is 4.3 mm; it will be slightly

larger at the mass gate. The distance between'the first and last plate of the mass gate, 6.2

mm, is comparable. For a typical flight time of 50 l1s, the ions spend 240 ns inside the

gate, within the capabilities of the pulsing circuit.

Chapter 2 41

1.5.6. Pulsed ion decelerator

The decelerator consists of a stack of 11 plates spaced 1/8" (3.18 mm) apart, with

grids on the first and last plates, and a resistor (1.5 k,Q) joining each plate together; see

Fig. 8. The first plate (closest to the source region) is also a part of the mass gate, being

normally grounded. The last plate (closest to the ion detector) is permanently grounded.

Once the ions have passed the first plate, it is pulsed to high positive voltage, and it is

grounded again before the ions pass the last plate. The response time of the plates, -150

ns, is slightly slower than that of the driving circuit, owing to some capacitance of the

stack, but as 1 Jls or more is typically needed to decelerate the ions with a 2 kV potential,

this is adequately fast. An example of the deceleration capabilities is presented in the

section on resolution of photoelectron spectra, described below.

1.5.7. Reflectron

The reflectron (Fig. 9) consists of 12 rings, 4" in diameter with a 2.5" diameter

hole, separated by W' long insulating Vespel spacers. Each plate is connected electrically

by a 2 M,Q vacuum-compatible resistor (K&M Electronics, CR1243G2MOOG3), with the

front plate grounded, and the rear plate held at a high negative voltage. The front and rear

plates contain mesh grids to ensure a uniform electric field across their entire surfaces.

Anion photofragments entering the reflectron experience a retarding electric field which

ultimately reflects them back out. The reflectron is tilted upward by 4.5°, redirecting the

path of the ions toward the detector located above the beam axis.

42 Chapter 2

• /SPring •

MCP1

• 2.4 M!l

LOOP

• 2.4 M!l

Insulating ~
MCP2 Spacers

\\: • • 82V

• 1N4761A

• •
ANODE +HV

• • • 5000pF

~ 5000 pF [§J
I3kV

3kV
Signal
BNC

Vacuum Atmosphere

Fig. 12. Reflectron detector schematic diagram.

The reflectron ion detector (Fig. 12) is similar in design to the retractable ion

detector. It consists of a pair of 25 mm dia. microchannel plates (Galileo 1390-2500) held

together by front and rear mounting rings, with a thin loop inserted between the plates;

behind this assembly is the anode. Components are connected together with three sets of

insulating Vespel spacers compressed by loose springs, and bolted to small metal

cylinders; the cylinders are then held in place on amounting plate with set screws.

Chapter 2 43

Outside the vacuum chamber is a resistor chain connecting the plates electrically. The

front MCP is grounded, while the anode is held at -1.5 kYo The anode is capacitiveIy

coupled inside the vacuum chamber to a separate BNC signal connector for measuring

signals. The entire assembly is housed inside a grounded cylinder to electrically s~ield it

from the anion beam, which passes underneath it only 14" away. The detector is tilted

.
downward by 9°, so that the detector face is normal to the reflected photofragment beam.

1.6. Timing

The FPES experiment is pulsed. Anions are created, cooled, extracted, focused,

excited and detached by laser beams, and electrons detected, at up to 1 kHz. Therefore,

the careful control of different timing elements in the system is essential for a successful

experiment.

Because the femtosecond laser is passively modelocked, it cannot be triggered by

an external signal, but must instead be used to trigger other parts of the experiment. The

NJA-5 oscillator triggers the Clark-MXR DT-505, which drives the Pockels cell at a

greatly-reduced repetition rate (500 Hz). The Sync 3 output from the DT-505 serves as

the primary trigger for the molecular beam segment of the experiment. From this trigger,

two Stanford Research Systems DG535 delay gerierators ("Stanford boxes") are used to

coordinate several devices: pulsed valve driver, extraction and acceleration circuit, pulsed

discharge circuit, mass gate circuit, pulsed deceleration circuit, New Focus optical

chopper, ion oscilloscope, and an analog-to-digital (AID) converter for recording

autocorrelation and cross-correlation signals. The multichannel scalar (MCS) for

collecting electron time of flight spectra is separately triggered by the DT -505 (Sync 2),

which is almost coincident (few ns delay) with the arrival of the laser pulses in the

44 Chapter 2

detector region. Although needs change slightly depending on the task at hand, an overall

schematic diagram illustrates the general timing approach of the experiment (Fig. 13).

Sync 1
Oscilloscope

NJA-5 Pockels Cell Sync 2
Oscillator Driver MCS

. Sync 3

A
ND Converter

To Stanford
B

Pulsed Discharge

- Box
#1 C Extraction! Accelerati on, Chopper, Oscilloscope,

Stanford Box #2

D
Pulsed Valve

AB
Mass Gate

To Stanford
- Box

#1 CD
Pulsed Deceleration

Fig. 13. Timing signals of the FPES experiment.

1.7. Ion time of flight

The spacing of plates in the extraction and acceleration regions, and the electric

fields in each region, critically affect the focusing of the spectrometer, which is

Chapter 2

monitored by the sharpness of features at the ion detector. Wiley and McLaren 1 first

derived the equations needed to determine these parameters for an idealized mass

spectrometer, assuming negligible initial kinetic energy to the ions, where D is the

distance between the ground plate and the ion detector:

ko = soEs +dEd
soEs

45

(2)

(3)

Here So and d are the distances the ions travel in the extraction and acceleration regions,

and Es and Ed are the electric fields in each of these regions. Since the pulsed valve is

centered over the extraction region, the width of this region is 2so, and So only represents

an average distance traveled by the ions. Note that D is independent of ion mass, which is

a key advantage of the design. Using typical parameters for the machine (2so = 6.35 cm, d

= 2.54 cm, Es = 50 V/cm, Ed = 400 V/cm), one obtains a focal point of 1.18 m, close to

the measured distance of 1.3 m. However, in reality it has been found that the anion

spectrum is slightly dependent on mass, requiring a larger extraction field to focus

heavier anions.

The overall resolution Ms = ml Ilm of the spectrometer depends on the spread of

ion energies, which is in tum determined by the spatial spread & of the ions in the

extraction region:

M = 16k (~)2
s 0 !1s (4)

Without a skimmer, & may be as large as 2so, the width of the extraction region, giving

Ms = 30 in the current setup. However, ions are typically not distributed uniformly across

46 Chapter 2

the extraction region, and we find Ms =: 200 under typical operating conditions, implying

I1s =: 2.5 cm. With a skimmer, I1s may be smaller, producing better resolution (Ms =: 400).

Ions of mass m arrive at the detector at time T:

(5)

(6)

where q is the charge on the ion, and Uion is the total ion kinetic energy.

Because distances are not known precisely, a mass spectrum is generally

calibrated from the measured arrival times of two known masses using the simpler

equation

m = SeT - to)2 (7)

where S and to are empirically determined slope and intercept parameters. A sample mass

spectrum is shown in Fig. 14(a). The spectrum was obtained from an 12/Ar/C02

expansion mixture, and calibrated from two known points, h- and h-(C02)16. The

(C02)n(H20r in smaller amounts. Fig. 14(b) shows an expanded view in the vicinity of

12-(C02)16, where the various cluster progressions can be seen clearly. As this spectrum

was focused for I2-(C02)16, the mass resolution is highest in this region, about 370.

Chapter 2 47
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1~ 12-(C02)n (a) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 (CO)-
1 2 D

0 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 1
1
9 12-(C02)n(H

2
O)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 (C02)n-(H2O)
1

200 400 600 800 1000
Mass/amu

(C02)21- (CO)
1 (C02)21-(H20) 12 22- (C02)22-(H20)

12-(C~2)IS 12-(C02)ls 12-(C~2)16 1
2
-(C0

2
)16

. (H20) . (H20)

(b)

I I

900 920 940 960 980 1000
Mass/amu

Fig. 14. Sample mass spectrum for an Iz/Ar/C02 expansion. (a) Full spectrum. (b)
Expanded view near 958 amu [I2-(C02)16],showing cluster progressions.

1.8. Electron time of flight

Electrons photodetached at the laser interaction region initially travel in all

directions, but the magnetic bottle forces them to tum ·toward the electron detector, where

they travel with constant electron kinetic energy (Ue) which can be measured by the time

of flight technique:

(8)

where me is the electron's mass, Ve is its absolute velocity, t is its arrival time, to is the

laser firing time, and L is the length of the flight tube. The quantity t - to is the time of

fl.i~ht. In general, to and L are empirical quantities which must be determined from

48 Chapter 2

calibration. Typically, r is used for this purpose; it displays two atomic transitions (I

2P312 ~ r ISO and I 2pl/2 ~ r ISO) split by a roughly 1 eV spin-orbit energy. Using the

third harmonic frequency of the laser (260 nm), the electron kinetic energies of these

transitions are 1.709 and 0.766 eV, respectively.

·1.8.1. Resolution

Several factors affect the resolution of the electron spectrometer. The most

significant is ion velocity Vion, which is added as a vector to the center-of-mass electron

velocity v/m
, giving the apparent electron velocity in the laboratory frame Ve:

(9)

The largest difference in velocities is twice the ion velocity: ~ve = 2Vion. The resulting

spread in the laboratory frame electron kinetic energy ~Ue is:5

(10)

where Uion, Ue and Ue em are the kinetic energies of the ion, laboratory frame electron and

center-of-mass frame electron, respectively, and mion is the mass of the ion. Typical

parameters are U/rn = 1 eV, Uion·= 1200 eV and mion = 254 amu (h-), giving ~Ue::::; 200

meV. However, this spread can be reduced significantly by decelerating the ion beam;

this will be dealt with in the following section.

Since the apparent electron kinetic energy is changed so significantly by the ion

velocity effect, an instrument reponse function was derived, for an isotropic electron

angular distribution. The probability p of finding an electron with lab energy Ue, based on

f V ern . a center-o -mass energy e ,IS:

Chapter 2 49

1- ~on (U _ U em _ meUion J2
4 UU em e e

me_ e e ~on
(11)

Note that the offset, meUefmion, is generally very small (2.6 meY using the above

parameters) in comparison to Ue - U/m
.

Another source of resolution loss is the finite time required for electrons ejected

in a direction away from the electron detector to be reflected by the rapidly converging

magnetic field lines near the permanent magnet. The time spread /).t is proportional to live

or I/Ue
1l2

• Since from Eq. 8, Ue oc liP, we find.that

(12)

Thus, the relative uncertainty /).UefUe is independent of energy. It is difficult to calculate

/).t exactly, but in a similar magnetic bottle spectrometer which used a second solenoid in

place of the permanent magnet, the magnetic fields were known exactly, and trajectory

calculations were performed.5 They obtained /).t = 45 ns eyll2/U/2 which gives /).UefUe :::::

4% using our flight length.

After reflection by the magnetic bottle, electrons do not point precisely toward the

detector but precess with a small angle about the magnetic field axis of the solenoid. The

maximum value of this angle Smax depends on the ratio of initial to final magnetic fields,

referred to as the "degree of parallelization":5

(13)

where Bi and Bfare the initial and final magnetic fields, respectively. The effect of Smax

on resolution is to retard the arrival of an electron, resulting in an energy uncertainty of

50 Chapter 2

(14)

The field at the laser interaction point, -1.0 cm above the top magnet, is not known

precisely, but is estimated to be -1000 G. The final field Bfused is 20 G or less. Thus,

I.lUJUe :::; -2%.

The factor which most limits resolution in more traditional photoelectron

spectrometers is the uncertainty in timing arising from the finite pulse duration of ns

lasers, the interaction volume,of the ions, and changes in flight length due to differences

in beam position. The minimum time duration of the digitizing electronics is generally

not an issue. For the FPES machine, the laser pulse duration is obviously not a limiting

factor, but the other two items must still be con·sidered. The size of the interaction volume

of laser and ion beam is on the order of 3 mm, the differential hole diameter. Changes in

laser beam position are probably smaller than 3 mm. The energy uncertainty is:7

I.lU
e
= 2U ilL

L

Thus, with I.lL = 3 mm and L = 1.3 m, I.lUJUe = 0.5%, a very small effect.

1.8.2. Pulsed ion deceleration

(15)

In order to improve electron kinetic energy resolution, it is necessary to reduce the

ion velocity and therefore the electron velocity offsets. Simply running at a lower ion

beam energy is not feasible, since these energies are required for focusing in a reasonable

flight distance, minimizing the importance of intrinsic kinetic energy of the beam,

minimizing the effects of stray fields, and efficient ion detection. Therefore, the ions must

be decelerated just prior to interaction with the laser beams.

Chapter 2 51

The most straightforward scheme for accomplishing this would, at first glance,

seem to require only a static retarding electric field prior to laser photodetachment, with

appropriate rereferencing of the beam either before or after deceleration. This was the

approach taken in some of the first magnetic bottle photoelectron spectrometers.5

However, the kinetic energy spread of the ions inherent in the Wiley-McLaren time of

flight scheme, often 10% or more of the total energy, makes this approach impractical if

significant signal levels are needed, because the energy spread is the same before and

after deceleration:

(16)

(17)

(18)

where Vi and Vf are the initial and final ion kinetic energies, respectively, x is the length

of the deceleration region, and Ex is the deceleration field.

A better deceleration technique, known as "impulse" or "momentum"

deceleration, employs a retarding electric field applied to the ion packet for a finite

amount of time tx while inside the deceleration region:

(19)

(20)

2U ~v v ~ ~U = I I =--.L.~U. = _I ~U.
I I U I

VI Vi i

(21)

where Vi and vf are the initial and final ion velocities. Thus, the spread in velocities, rather

than energies, is preserved, resulting in a much smaller final energy spread ~UJ-

52

U)
:!::

U)
r::

3500

3000

2500

2000

1500

.! 1000 r::

500

Chapter 2

Slow
(b)~

o+---~~~~~--~~--~~----~

o 0.5 1 1.5 2 2.5
Electron Kinetic Energy/eV

Fig. 15. Sample photoelectron spectra of r obtained (a) without ion deceleration, and (b)
with ion deceleration.

As a demonstration of the deceleration properties of the spectrometer, Fig. 15

shows a spectrum of r (127 amu) measured both with and without deceleration. With a

photon energy of 4.71 eV, both spectra display two peaks, at 1.65 eV (I 2P3/2 ~ r 'So)

and 0.71 eV (I 2p1l2 ~ r 'So). The undecelerated electron kinetic energy widths are 450

and 240 meV, respectively, consistent with the known beam energy Ui = 1400 eV. The

initial energy spread !1Ui is estimated to be 100 eV. The decelerated spectrum displays

energy widths of 100 and 45 meV, respectively, a roughly 5-fold decrease, indicating Uf

"" 55 eV and hence !1U!'""" 20 eV.

I

Chapter 2 53

1.9. Reflectron ion time of flight

The reflectron operates on the principle that the kinetic energy of a parent ion Uion

is shared among photofragments according to their masses mfrag, so that the velocity of

each fragment Vfrag is unchanged:

Vfrag = Vi on (22)

U - I 2 _ mfrag (I 2) _ mfrag U
frag -"2 mfrag Vion - -- "2 ~on Vion - -- ion

~on ~on
(23)

where Vion and mion are the parent ion velocity and mass, respectively, and Ufrag is the

fragment ion kinetic energy. The uniform retarding electric field of the reflectron serves

to separate ions of different kinetic energy by allowing them to penetrate to different

distances r (~ 15.2 cm, the full length of the reflectron) before being reflected, exiting the

reflectron with the same energy as they entered:

'V frag r=-
qEr

where Er is the electric field of the reflectron. The reflectron is tilted so that the beam

exits at an angle 8 (9°) with respect to the incoming beam, directing the reflected ions

toward an off-axis detector. The primary time-of-flight focus (at the laser interaction

(24)

region) occurs at a considerable distance from the entrance to the reflectron, unlike the

setup described in Lineberger andcoworkers,8 where the focus is very close to the

reflectron front plate. Therefore, the time of flight T between the primary focus and

arrival at the detector is modified slightly from their equation:

(J
.l (J-.l 2m sec 8/ 2 . . 2 . 2

T = [rag () 2U,on + (DI + D2 sec 8) 2VlOn

qEr ~on ~on
(25)

54 Chapter 2

2000 .

1500
4 5 6 f(C02)n

en :=: 1000 c
=>
..c
L...

~
>-. --en
c

500 Q)
c

a

·500 +-------,----,---,---,------.-~---,---
122 124 126 128 130 132 134

Flight time/us
Fig. 16. Reflectron ion spectrum for the 780 nm photodissociation of h -(COz)s.

Here DI is the distance from the primary focus to the reflectron entrance, and Dz is the

distance from the reflectron entrance to the detector. Note that T is linearly dependent on

mfrag. The secondary focus at the reflectron detector is obtained when dTidUion = 0 (here

recognizing that sec e = 1.012 ::::: 1):

Chapter 2 55

4Ufrag
DJ +D2= -- =4r.

qEr
(26)

With DJ = 38 cm and D2 = 3 cm, r = 10.3' cm, about 70% of the reflectron length. Note

that, for optimal focusing, Er must be adjusted for each fragment ion.

A sample reflectron spectrum of the 780 nm photodissociation of h -(C02)8 is

shown in Fig. 16. Both I2-(C02)n and r(C02)n photo fragments are visible, as two sets of

progressions. Because r (127 amu) has approximately the same mass as 3 CO2 molecules

(132 amu), the I2-(C02)n and r(C02)n peaks are quite close to one another, but they are

easily resolved, The focus is optimized for r(C02)s, which has a resolution Ms :== 130.

2. Laser system

The femtosecond laser system occupies the full area of a 4 ft. x 12 ft. laser table

(Newport-Klinger RS 2000). In addition to the Clark-MXR femtosecond laser, there are

several other commercial and home-built components: beam pointing system, harmonic

and parametric frequency generation, translation stages, autocorrelators, beam chopper,

and coupling to the vacuum system, This section covers all these components in detail, as

well as necessary theoretical background.

Figs. 17 and 18 show the layout of the laser table. The Clark-MXR laser system

occupies approximately the full width and first (farthest from the vacuum chamber) 8 feet

of length of the table. The system consists of six components, described below in more

detail. After the amplified laser beam emerges from the pulse compressor of the system,

it encounters beam steering optics, which include a pointing stability system called

Pointmaster. The beam is then split at the first kinematically mounted, removable

beamsplitter (typically 50% reflection), and the reflected light is directed toward the

56 Chapter 2

. fundamental frequency segment of the table. The transmitted light continues on to a

second kinematically mounted, removable beam splitter (typically 70% reflection), which

directs a portion of the beam into the Quantronix TOP AS optical parametric amplifier

(OPA). The light transmitted encounters additional steering optics before entering the

CSK Optronics harmonic generator, which produces both second and third harmonic

frequency laser light.

The fundamental frequency segment includes, first, a half-wave plate, rotating the

polarization from horizontal to vertical. The beam next encounters a glass window,

antireflection-coated on only one side to provide a small (4%) reflectance, mounted on a

"flipper" (New Focus 9891, allowing rotation in and out of the beam with kinematic

reproducibility). This reflected beam is used by two of the three autocorrelators for

monitoring the temporal width of the laser pulse. Both autocorrelators share the same

detector; the slow-scan autocorrelator signal is directed along the same path as the fast-

scan autocorrelator using another 50% beamsplitter (not shown). The part of the beam not

reflected by the glass window continues on to a flipper-mounted mirror, directing the

entire beam toward the single-shot autocorrelator. When this mirror is rotated out of the

way, the beam continues through a long delay line, and then into a retroflector mounted

on a translation stage. After emerging from the retroreflector, it is directed through a

periscope, which raises the height of the beam to the level of the vacuum chamber laser

window .

. Fig. 17. Laser table layout - overview (on next page).

Nd:YAG
Laser

Regerative
Amplifier

Chapter 2

Ar+

Ion
Lase

Oscillator

II

Pulse
Stretcher

Pulse Compressor

~.

Output

Harmonic Generation
and

Diagnostics Area

57

Scale 1:16

58 Chapter 2

I

Pointmaster .
photo diodes

Pulse Compressor

n n , I(
J ~

~
L- ~ I

~ I. ________ .""1 ... " " I 1../2
I
I

Fast scan .~
auto-

1
,. correlator

TOPAS
Super TripIer

Slow scan
autocorrelator

-

:-: -
· "- / · · • .. · ----· /.,. ---------~ · · Translation I •

~. --------- ~··t=~ stage #1
Translation stage #2

::: . -..•
::: I -... ~ ::: ~ I -

/'
I " 0 :::1 0 I

.. I •
I :~.I.±

i ""-~ ~ ~~. ~~ -~ 0
-:

Penscopes
to laser wmdow level

Fundamental beam

--------- Second harmonic beam

.............. Third harmonic beam

- - - - TOP AS beam

Fig. 18. Laser table layout - close-up.

Joint
~

detec
tor

, I
Single-shot

auto-
correlator

Scale 1:8

Chapter 2 59

The output from the TOP AS OPA encounters a pair of beam separation mirrors

designed to reflect only the desired frequency. This beam is then directed into another

periscope to laser window height. The harmonic generator outputs are similarly directed

into periscopes, but the second harmonic frequency beam is first sent into a second,

translation stage mounted retroreflector, and the third harmonic frequency beam is sent·

through an optical delay line prior to the periscope. The purpose of the delay lines is to

synchronize the arrival time of each beam inside the vacuum chamber at some translation

st~ge position.

Once all the beams are collinear at the laser window height, they are directed into

the vacuum chamber (see Fig. 24 below). A set of beam combining mirrors allows lower

frequency beams to pass through each mirror which reflects a given higher frequency

beam. The beams encounter a long focal length (50 cm or 1 m), uncoated lens, just prior

to passing through the laser window. On the other side of the vacuum chamber, they

emerge and propagate toward the far wall of the laboratory, though usually they are

blocked just beyond the exit window.

2.1. Principles of nonlinear optics

Femtosecond laser pulses are characterized by large frequency bandwidths as well

as very large peak intensities, both of which tend to push their interaction with optical

components into a "nonlinear" response regime. The frequency spread leads to temporal

broadening and other pulse distortions, while the high intensity is responsible for efficient

harmonic generation, self-phase modulation, self-focusing, and easily damaged materials.

Information presented in this section is taken from both Diels and Rudolph,9 and Shen.lO

60 Chapter 2

The electric field of the laser pulse is usually broken into a slowly-varying

envelope function, and an exponential phase function, in both the frequency and time

domains, related through Fourier transformation:

E (co~ = E(O) ei$(ro) (27)

(28)

where E (co) or E (t) is the complex electric field, E(co) or E(t) is the envelope function,

and <\>(co) or <\>(t) is the phase function. In the time domain, the carrier frequency ~ is

used to remove the high-frequency oscillations in the phase, and is somewhat arbitrarily

chosen; for symmetric pulses (Gaussian or sech profile), it is usually the average

frequency.

It is convenient to refer to the phase in terms of elements of a Taylor expansion:

~ 1
<\>(0) ~ "'_</J<n)(OJ)1 (OJ- OJ r £..J , alo 0

n=O n.
(29)

(30)

where <\>(n) (co) = dn<\>/dO)n and <\>(n)(t) = dn<\>/dt are the nth derivative functions, and to is, like

~, a reference point centered in time on the pulse. In the absence of nonlinear

distortions, an optimally shaped femtosecond pulse will have contributions from the n = 0

and n = 1 terms only. <\>(2) is referred to as the "chirp" of the pulse, which is sometimes

expressed in terms of an instantaneous frequency:

(31)

Chapter 2 61

Thus, doo(t)ldt = d~(I)(t)ldt = ~(2\t) i= 0 for chirped pulses, indicating that the

instantaneous frequency changes with time. "Up-chirp" refers to an increasing frequency

sweep or ~(2)(t) > 0, while "down-chirp" refers to ~(2)(t) < O. Higher-order phase

distortions, e.g. ~(3) i= 0 etc., are also possible.

The propagation of light through a medium is only possible because of the

"sympathetic" oscillation of atoms or molecules in response to the incoming

electromagnetic field. This response is expressed by the polarization P of the medium. In

the limit of a weak radiation source at a frequency far from any resonances, P is linearly

proportional to the vector electric field E:

(32)

where X(I)((0) is the (3x3 matrix) linear polarizability of the medium, related in the

isotropic case to the index of refraction nCO)) by:

(33)

For a sufficiently strong incoming field, this linear approximation breaks down, and

nonlinear dependencies on the electric field must be considered:

P((0) = X(I)(O))·E(0)) + X(2)(oo):E(oo)E(0)) + X(3)(oo):E(O))E(oo)E((0) + ... (34)

where X(2), X(3), etc. are higher-order tensor polarizabilities of the medium. These higher-

order terms are responsible for radiation at new frequencies (200, etc.), and will be dealt

with in the section on harmonic generation. For a femtosecond laser pulse, propagation

through a medium in the linear coupling limit still produces nonlinear changes in pulse

characteristics, owing to the frequency dependence of X(1) or n.

Generally, the electric field is expressed in terms of z, the position inside the

medium, and 0):

62 Chapter 2
E (ro, z) = E (ro, 0) e-ik(ro)Z. (35)

Here k(ro) is the wave index:

k(ro) = an(cv) (36)
c

where c is the speed of light in vacuum. A number of useful quantities can be defined

based on derivatives of k(ro). The group velocity, Vg:

1 d~1 n cv ~I
;-g = d;]OJ= -;+~d;]OJ

o 0

(37)

describes the average speed of the pulse inside the medium; when dn/dro is small, Vg Z

cln(~). The group velocity dispersion or GVD, is defined as:
I, ,

(38)

where A is wavelength. The effect of GVD on a pulse generally results in chirp. For

instance, a pulse passing through a medium' of length z acquires a phase

<I>(ro, z) = <I>(ro, 0) + k(ro)z (39)

with

(40)

For an initially unchirped, Gaussian-shaped pulse of form

(41)

where Eo is the maximum field intensity, and 'tG is related to the pulse duration 'tp

(FWHM)by

(42)

we find that 'tG increases with z as

I

Chapter 2 63

(43)

Thus, so long as 21<1>(2)(0)0, z)1 « 'tG2, the pulse broadening is not significant. For input

pulses of'tG 'Z 100 fs, <1>(2) is generally negligible for a few mm of material at infra~ed

frequencies. However, it becomes significant in the ultraviolet. For instance, in fused

silica at 2S0 nm, <1>(2) = 2800 fs2 fcm, producing a pulse width of 1.lS'tG for z = 1 cm.

Third-order dispersion, based on d3kfdro3
, is also important for pulses with

durations shorter than -SO fs. Although minor for our laser system, it nevertheless plays a

role in optimal pulse compression, which is discussed in section 2.9.

2.2. Clark-MXR femtosecond laser

The amplified femtosecond laser source (Clark-MXR CPA-WOO) consists of six

components housed in separate boxes (see Fig. 17): an Ar + ion laser (Coherent Innova

190-6), femtosecond oscillator (Clark-MXR NJA-S), pulse stretcher (Clark-MXR PS-

1000), Nd:YAG laser (Clark-MXR ORC-lOOO), regenerative amplifier (Clark-MXR

TRA-lOOO), and pulse compressor (Clark-MXR PC-WOO). Both the oscillator and

regenerative amplifier use a Ti:sapphire crystal as the lasing medium.

The Ar+ ion laser (continuous wave, all lines, -2.S W) pumps the first Ti:sapphire

rod in the oscillator, generating weak (-2.S nJ) femtosecond pulses at -100 MHz. The

basic principle of solid-state femtosecond pulse generation is self-phase modulation,

arising from changes in the index of refraction at very high intensities:

- 2 net) = no + n2 1 E (t)1 (44)

64 Chapter 2

where no is the linear index of refraction and n2 is the first nonlinear term. Note that

1 E (t)12 is proportional to the intensity let), while n2 is proportional to the third-order

polarizability X(3):

3%(3)
n2= --.

8no
(45)

Most materials, including Ti:sapphire, have X(3) > O. Thus, when focused sufficientiy, a

pulse of moderately short light will be retarded more at the peak intensity than at the

fringes, resulting in a time-dependent phase:

ko(ro) = OJno(OJ) .
c

Rather than chirping or otherwise distorting the phase of the pulse, the effect is to

broaden the frequency spectrum and thereby shorten the pulse if the group velocity

(46)

(47)

dispersion is compensated for (typically, using a pair of intracavity prisms). Evidence for

a wider frequency sweep can be seen by examining the instantaneous frequency:

We see that the maxima in IroCt, z)1 are found at the inflection points of 1 it (t, 0)12
, and

there the magnitude of the frequency excursions increases with larger peak power and

shorter pulse duration.

Amplification of pulses is accomplished using the technique called chirped pulse

amplification, or CPA (hence the name CPA-l 000). This involves stretching pulses from

the oscillator 0l!t in time through up-chirping, multi-pass amplification, and subsequent

Chapter 2 65

recompression using down-chirping. The reason for stretching out the pulse is twofold.

First, it avoids damage to the amplifier optics, which would quickly occur if an unchirped

pulse were to propagate through the cavity at full power. Second, the tremendously

higher peak power of an amplified femtosecond pulse would induce unwanted nonlinear

effects in the gain medium, ruining the pulse duration among other properties. By

carefully choosing a pulse duration short enough to preferentially stimulate emission

from the gain medium over the normally occurring ns-duration pulse, yet long enough to

suppress deleterious nonlinear effects, effective amplification is achieved.

Up-chirping is accomplished by bouncing pulses off a diffraction grating several

times, which introduces GVD through angular dispersion, generating pulses of roughly
,

100 ps duration. A Pockels cell (controlled by the Clark-MXR DT-505 high-voltage

electronics) is used to select pulses at -500 Hz for injection into the regenerative

amplifier cavity, which consists of a second Ti:sapphire rod synchronously pumped by

the Nd:YAG laser(500 Hz, 100 ns duration, 532 nm, 10 mJ/pulse).This "seed" pulse

makes several passes inside the cavity, where it quickly builds up intensity in preference

to the ns-duration pulse which would normally be created every laser shot. The amplified

pulse (-1.5 mJ) is switched out of the cavity via the Pockels cell, and directed into the

compressor. Recompression is accomplished by reversing the up-chirping process with a

down-chirp, using a second diffraction grating in combination with a retroreflector. Aside

from some technical challenges discussed in section 2.9, transform-limited 80 fs pulses

with 1.0 mJ energy can be routinely generated at up to 1 kHz repetition rate using the

Clark-MXR laser. For all experiments discussed in this dissertation, however, a repetition

rate of 500 Hz was used.

66 Chapter 2

2.3. Beam pointing stability

The laser system has been plagued by temperature fluctuation-induced problems

since it was purchased, and this has been partially, though not completely, alleviated

through the use of temperature regulation in three of the four covered boxes comprising

the laser system: oscillator, pulse stretcher and pulse compressor (a unit was not available

for the regenerative amplifier). These simple devices, sold by Clark-MXR, consist of a

series of resistive heaters in thermal contact with the aluminum breadboard of each box,

and a small control box containing a thermocouple switch, electronic keypad and readout.

Although the devices are only capable of heating, the temperature of the breadboards can

be maintained to iO.1 °C if set to above ambient room temperature. It has been

discovered, however, that setting them too far (> 4°C) above room temperature results in

jittery beam output, perhaps due to vibrations caused by drawing too much current. Still,

even with this temperature regulation there is a noticeable drift to the beam position over

a period of hours, which has been dealt with using a different approach, detailed below.

The Pointmaster system, also manufactured by Clark-MXR, was designed fo~ use

with the Ar + ion laser beam, which is known to suffer from drift. Because it was felt that

the stability of the oscillator was not problematic, it made more sense to purchase

Pointmaster for use with the amplified laser beam output, since small changes in beam

position, changing the overlap of the pump and probe beams inside the vacuum chamber,

has disastrous effects on the normalization of FPES data. In fact, no alterations to

Pointmaster were requested for use with the amplified beam (the mirrors supplied for 488

nm have simply been substituted with more appropriate ones), so it would still be

--'

Chapter 2 67
possible to reconfigure Pointmaster for use with the Ar+ ion laser, if this turns out to be a

larger source of drift.

The system consists of two piezoelectric xy tilt stages, two beamsplitters (-99%

reflectance), two quadrant photo diode detectors, a control circuit, and remote

display/keypad. As the beam emerges from the pulse compressor, it is reflected from first

a piezoelectrically-mounted mirror, then a beamsplitter, then a second piezoelectrically-

mounted mirror, then a second beamsplitter, on its way to the harmonic generator. The

weak beams transmitted through each beamsplitter are directed along moderately long

(-1 m) paths before striking a quadrant photodiode. These detectors are able to detect

small changes in both horizontal and vertical position through the principle of current

I balancing. The face of each photodiode is divided into four sections called quadrants, and

the beams are initially aligned so they strike precisely in the center, the same amount of

light falling on each quadrant, producing an identical photocurrent. If the beams move,

the photocurrents from each quadrant will no longer balance, and the system can tell in

which direction the beam has moved. Note that this approach is insensitive to fluctuations

in overall laser power, provided the change is not too great (the dynamic range of the

photodiodes is somewhat limited). A feedback circuit then directs the piezoelectric stages

to move the beams back to the centers of the detectors, restoring the current balance. The

photodiodes are calibrated before use each day (to compensate for small alignment

changes made elsewhere in the system), and are able to maintain good beam pointing

stability indefinitely, provided the beam does not move too much, or the power fluctuate

excessively (more than -50%).

68 Chapter 2

2.4. Quantronix TOPAS optical parametric amplifier

The Quantronix TaPAS optical parametric amplifier (OPA) was purchased fairly

recently, and was not used in any experiment reported in this dissertation. Its detailed

operation, therefore, will be covered in another dissertation (presumably that of Martin

Zanni or Alison Davis). However, a few words will be said about the purpose of the

device. It enables wavelength tunability over a very wide range, from the mid-infrared

(2800 rim) to the blue (450 nm), with continuous coverage. Although pulse energies are

considerably lower than those encountered in the fundamental or second harmonic

frequency beams, they are comparable in most wavelength regimes to the pulse energy of

the third harmonic frequency, with excellent pulse width characteristics. As a result, it is

a valuable addition to the femtosecond laser arsenal.

2.5. CSK Optronics harmonic generator

The generation of second and third harmonic frequency laser pulses is essential to

the study of most anions using FPES, as the electron binding energy (EBE) of most

anions is typically larger than what can be accessed with fundamental frequency light.

For the case of 12- (vertical EBE = 3.21 eV) and its clusters, the third harmonic frequency

is needed. Therefore, the CSK Optronics 8315A Super TripIer has been a workhorse of

the experiment, and its principles and operation will be discussed in detail.

2.5.1. Principles

The interaction of light in a condensed medium to generate light at new

frequencies is a sometimes strange process to understand. 1 have found a classical

anharmonic oscillator model to be the clearest example for me, though others may find

I
Chapter 2 69

alternative models to be simpler. Shen lO was consulted extensively in developing this

section.

Outlined here is an explanation both for second harmonic generation (SHG) as

well as sum- and frequency generation (SFG and DFG, respectively), using light of two

frequencies, WI and ffi2, interacting with an anharmonic oscillator. This oscillator consists

of an electrically charged (q) mass (m) which is displaced along the x axis when

subjected to a force (F) due to the oscillating electric fields of maximum strength El and

E2 for the two frequencies, respectively. The natural frequency ~ of the oscillator is

quantitatively unimportant, so long as it is different from both WI and ffi2. The

anharmonicity a may be either positive or negative, and supplies an asymmetry to the

oscillator as in a real molecular interaction. No damping term is assumed. The differential

equation governing the motion is:

(49)

Here t is time, and c.c. denotes the complex conjugate. Note that a = 0 for materials with

a center of symmetry, since F(x) = -F(-x) must be satisfied. a is proportional to the

second-order nonlinear polarizability X(2).

The motion of the charged mass is assumed to be responsible for the re-radiation

of light, which we solve for using a perturbative treatment:

x = x(l) + X<2) + ... (50)

The first-order solution results in a term for each frequency component Wi:

(51)

70 Chapter 2
I

'In other words, the medium re-radiates at each driving frequency, the normal case for

materials without absorption. Substituting ax2 with ax(l)2, the second-order solution X(2) is

obtained:

(52)

with

(53)

(2) . _ -a(q I m)2 E/e-2iOJ
;t

x (2mi)-(2 2)(2 2)+C.C.
mo -mi mo -4mi

(2) _-a(qlm)2(1 1)
x (0)- 2 2 2 + 2 2 +c.c.

mo mo -m l mo -m2

These new frequency components represent sum-frequency generation [x(2)(COl + ffi2)],

difference-frequency generation [x(2)(COI - ffi2)], second harmonic generation [x(2)(20lj)],

and optical rectification [x(2)(0)]. Note that the terms scale as the square of the electric

field strength. This concludes the development of the anharmonic model.

While generation of new frequency components is possible in all directions,

momentum conservation requires a particular orientation of the incoming and outgoing

beams: the so-called phase matching condition. This is expressed as (for SHG, ro1 = ffi2):

(54)

or

(55)

where k(roD is the momentum of the beam with frequency COi, and CO:3 = ro1 ± ffi2 is the

new frequency component. For most materials, n increases with frequency in the visible

Chapter 2 71

or near-infrared range. Therefore, for sum-frequency and second harmonic generation,

where neW»~ is larger than both n(w) and n(ffi2), the equation cannot be satisfied.

However, a negative birefringent material has the property that the index of refraction of

a beam polarized perpendicular to the optic axis of the crystal (the "extraordinary" wave)

is smaller than the index of refraction of a beam polarized parallel to the optic axis (the

"ordinary" wave). The index of refraction of the extraordinary wave ne also depends on

the angle 8 of the beam relative to the optic axis:

(56)

where nem is the minimum in the extraordinary index of refraction, and no is the ordinary

index of refraction, which is independent of 8. Two polarization schemes can be used to

satisfy Eq. 55, referred to as Type I and Type II phase-matching. Both require wave W) to

be extraordinary, but Type I requires waves (0) and ffi2 both to be ordinary or

extraordinary, while Type II requires one of each. The CSK Super TripIer uses Type I

phase-matching for generation of both second-harmonic and sum-frequency beams.

2.5.2. Operation

The layout of the harmonic generator is shown in Fig. 19. For illustration, it is

assumed that 800 ~ of 780 nm fundamental light is used. The incoming fundamental

frequency beam (horizontal polarization) passes first through a 1.5 mm thick lithium

borate (LBO) crystal, producing a collinear second harmonic frequency beam (390 nm,

-200 ~, vertical polarization). The frequencies are next separated at a dichroic

Fig. 19. CSK Optronics harmonic generator (on next page).

72

Fundamental and
second hannonic

outputs

Chapter 2

Input beam
(00)

--------------~--. Dichroic
beamsplitter

Third hannonic
output (300)

Sum-frequency L----,r+--.-J

Second hannonic
crystal

crystal

Dichroic
beamsplitter

Fundamental
(00)

Second harmonic (200)

~-I----, Half-wave

Manual
translation

stage

plate

Scale 1:2

Chapter 2 73

beamsplitter, which reflects the second harmonic while transmitting the fundamental. The

fundamental beam continues through a half-wave plate (rotating the light to vertical

polarization) to a retroreflector mounted on a manually adjustable translation stage, and

finally to a second, identical dichroic beamsplitter which transmits the beam. Meanwhile,

the second harmonic beam is reflected off of two fixed mirrors toward the second

dichroic beamsplitter, which also reflects it. The two beams, collinear and vertically

polarized, now enter a 300 /-lm thick ~-barium borate (BBO) crystal, producing third

harmonic (sum-frequency) light (260 nm, -50 j..L1, horizontal polarization). Note that,

unlike the second harmonic beam, which required only a match between crystal

orientation and beam direction, the third harmonic beam requires in addition the proper

temporal overlap of the fundamental and second harmonic beams, accomplished by

adjustment of the retroreflector. This "two-dimensional search problem" makes it a bit of

a challenge to find the third harmonic beam when realigning the unit, but it is no more

difficult than aligning a laser cavity, also a two-dimensional problem.

After producing the third harmonic beam, the three frequencies must be separated.

Originally this was accomplished using a series of CSK Optronics-provided mirrors, but

the first mirror, a simple broadband metallic mirror for reflecting all three frequencies,

was easily burned by the pulse energies involved. Beam separation is now accomplished

using, first, a 260 nm high reflector (CVI TLMl-260-45P-1037) to separate third

harmonic from the other two frequencies, and a 390 nm high reflector (CVI TLMl-260-

45P-1037) on the remaining two beams to separate off the second harmonic. The

fundamental beam is not usable, the brightest spatial areas having been depleted in the

conversion to the harmonic frequencies, and so is directed into a beam block. Transport

74 Chapter 2

of the two harmonic beams is accomplished using additional high reflectors of the same

types, in order to increase the frequency purity as much as possible. The residual amount

of each harmonic beam in the other beam path at the entrance to the vacuum chamber is

detectable by the eye, but of inconsequential energy.

The original unit contained a pair of lenses to reduce the beam diameter by

approximately 2x, but this was found to be problematic to overlapping the second or third

harmonic beam and the fundamental beam inside the vacuum chamber, due to the

difference in size. Rather than squeezing maximum energy out of the harmonic generator

through focusing, and thenreexpanding the beams afterward, it was easier to leave all

beams the same size, even if it resulted in lower energy harmonic beams. It must also be

pointed out, however, that there were few lenses to spare during the "proving" phase of

the experiment, so that now it would certainly be feasible to implement this scheme with

the guarantee of considerable gain in pulse energies, if such were required.

2.6. Aerotech translation stages

Control of the pump-probe time delay is accomplished through use of an optical

delay line involving a pair of mirrors in a retroreflecting,arrangement mounted on a

motorized, computer-controlled translation stage (Aerotech ATS-I00-150). Although

there are now two such stages on the optical table (one for delaying the fundamental

beam, the other, for the second harmonic beam), there is only one controller (Aerotech

UlOOM-A-40-Fl), so that cables from each stage must be switched on the controller in

order to change which stage moves.

One ~m equals approximately 3.34 fs for light in air, though since the laser beam

must travel toward and then away from the retroreflecting mirrors, the effective delay

Chapter 2 75

time is always twice the stage movement, so in practice, 1 !lm = 6.67 fs. The total range

of either stage is 15 cm, or -1 ns temporally. The resolution of the stage is reported to be

I !lm, and positioning is in fact possible in 50 nm increments, giving an ultimate time

resolution of -0.3 fs. However, there is a large inaccuracy problem of ±2-3 !lm having to

do with the controller, rather than the stages. The stage motor is a stepper design,

meaning there is a set of four coils or "poles" arranged in a ring about the motor core. To

turn the motor, alternating coils turn on and off, causing the motor to step by one pole at a

time. Fractional movements can be achieved by only partially turning on or off coils, but

the effect is not very linear; in other words, the motor tends to jump from one pole to the

next, without a great deal of flexibility. This point aside, the inaccuracy problem stems

from the fact that the power circuits supplying current to each pole are not very evenly

balanced, meaning that as the motor turns, it "wobbles" irregularly, resulting in a roughly

sinusoidal advance of the stage with a period of 10 !lm and amplitude of 2-3 !lm.

Amazingly, this performance is within the specifications established by the company,

which actually gives an "accuracy" of ±5 !lm. In short, the wrong stage was purchased.

Happily, much of the problem has been overcome through the use of software.

Because the problem is reproducible on a sub-!lm scale, the stage can be precisely

positioned anywhere along its wobbly path. By calibrating the apparent position to the

absolute position (though the use of a fitted autocorrelation trace), the variation can be

reduced to a noise level. The only problem with this method is that the offset, or "phase,"

of the sinusoidal cycle must be determined whenever the stage is translated by a

significant amount, i.e. a few mm, because the period of the cycle is not exactly 10 !lm.

In many cases, however, precise positioning is only required very close to the zero of

76 Chapter 2

time,or "to," location, with inaccuracy of a few fs tolerated tens of ps away from this

location. Fig. 20 illustrates the effectiveness of this correction with a pair of

autocorrelation traces taken with and without wobble correction.

>-
+-'

CIJ
c
Q)
+-'
C

Q)

>
+-'
ct:I
Q)

a:::

1

0.8

0.6

0.4

0.2

.
• • • . . .,.

,

. • · · · · •
J

-(a) raw
. . . (b) corrected .
· I · · · • · ". · : . •

o +-__ ~.~.'~~ __ .-__________ -, __________ -.-J~~~ __ ~

·200 ·100 o
Time/fs

100 200

Fig. 20. Autocorrelation traces illustrating translation stage sinusoidal problem: (a)
without wobble correction; (b) with wobble correction.

2.7. New Focus optical chopper

To aid the normalization of FPES spectra taken at different time delays under

changing ion beam and laser power conditions, an optical chopper (New Focus 3501) was

purchased to perform shot-to-shot background subtraction (see section 3.2.1). This

approach entails blocking the pump laser by the blades of a rapidly spinning chopper

wheel every other laser pulse, or 250 Hz, and subtracting probe-only photoelectron

Chapter 2 77

spectra from pump-and-probe spectra on a per pulse basis. Synchronization of the wheel

with the laser is critical, which was the most difficult feature to locate in a chopper; most

models force the experiment to be triggered from the chopper itself, not an option in our

experiment. The New Focus chopper may be triggered externally, and includes circuitry

to run at a fractional or multiple harmonic of the trigger frequency (112 was required for

our application). Also, the timing offset or "phase" with respect to the trigger is fully

adjustable, avoiding the problem of chopping only part of a beam's spatial profile.

2.S. Autocorrelation and cross-correlation

An autocorrelation is the temporal overlap of a laser pulse with itself.

Mathematically speaking, this is expressed as:

A(t) = f: dtIJ(t')J(t + t ') (57)

where J(t) is the time-dependent intensity profile of a laser pulse, and A(t) is its

autocorrelation function. Although it is not possible to directly measure the intensity

profile, a significant amount of information about it is contained in the autocorrelation, as

can be confirmed through deconvolution. Generally, however, the most useful piece of

information is simply the pulse width (full width at half maximum, or FWHM), which

can be derived from the FWHM of the autocorrelation, and an assumption about the

shape of J(t). If it is Gaussian, then the FWHM of A(t) is equal to J2 (-1.414) times the

FWHM of A(t). On the other hand, if the shape of J(t) is sech2, then the ratio is -1.543. It

is generally assumedll ,12 that a well-formed femtosecond pulse has a sech2 intensity

profile, though in practice, it makes little difference which is used, other than the fact that

a sech2-shaped pulse happens to have a shorter FWHM for a given A(t) FWHM.

78 Chapter 2

Cross correlation is analogous to autocorrelation, except that two frequencies of

light are combined to generate a signal dependent on the pulse width of both pulses.

Mathematically, it is very similar to Eq. 57:

(58)

where [ACt) and [BCt) are the time-dependent intensity profiles of each laser pulse, and C(t)

is its cross correlation. Since in principle either pulse could be characterized separately by

autocorrelation, the cross correlation can be used to find the width of the other pulse

though deconvolution. For gaussian pulses, the relationship is straightforward:

(59)

where 'tA, 'tB and 'te are the FWHMs of the two beams and the cross correlation,

respectively. For sech2 pulses, the relationship is not analytic, but a lookup table has been

employed to calculate 'tB from knowledge Of'tA and 'te.

Measurement of the autocorrelation or cross-correlation signal is obtained through

a nonlinear optical process, usually SHO for autocorrelation, and SFO or DFO for cross-

correlation, inside a nonlinear crystal. See section 2.5.1 for more information on these

techniques.

2.8.1. Slow-scan autocorrelator

. A total of three autocorrelators have been built for the laser system. The "fast-

scan" autocorrelator is used for quick, qualitative measurements only, as no data can be

recorded with it. The "slow-scan" autocorrelator uses one of the motorized translation

stages to vary the path length, so that a computer can direct the stage through an

autocorrelation, recording the digitized photodiode signal at each step. The "single-shot"

Chapter 2 79

autocorrelator is also used for qualitative measurement, but it was added in 1998 by

Alison Davis, and will not be discussed here. Note that each autocorrelator is of a

noncollinear type, meaning the two beams are crossed at a small angle inside the

nonlinear crystal. This arrangement guarantees that the autocorrelation signal will be

background free, but it also prevents an interferometric autocorrelation, containing

valuable additional information, such as temporal chirp, from being obtained if a

collinear arrangement were used.

The table layout for the slow-scan autocorrelator is shown in Fig. 21. After the

fundamental beam is directed into the autocorrelator with a pair of beamsplitters (2% and

50%, respectively), the beam encounters a 50% beamsplitter. The reflected beam is

directed toward a fixed leg retroreflector permanently mounted on the laser table, while

the transmitted beam propagates toward a retroreflector mounted on the same translation

stage as used for the fundamental frequency delay line (on the opposite side of the

carriage). Beams are recombined with the same beamsplitter, then directed into the

detector with a second 50% beamsplitter, which allows the fast-scan autocorrelator to use

the detector without having to move mirrors (one pair of autocorrelator beams are

blocked, of course). The detector consists of a 4" f.l. lens, a 5x5xO.5 mm BBO crystal

(CSK Optronics) cut for second harmonic generation, placed just before the focal point to

prevent burning, a blue bandpass filter (Newport BG40), and a photo diode (Thorlabs

FDSlOO).

80 Chapter 2

Fundamental
Beam

2%
Beamsplitter

To
Experiment

50%
Beamsplitter

Translation
Stage

Fig. 21. Slow scan autocorrelator.

To Fast
Autocorrelator

50%
Beamsplitter

4" F.L.
Lens

BBO .--
Crystal

.-- Blue Filter

Photo
diode

Scale 1:4

The highlight of this autocorrelator is its ability to record autocorrelation traces by

computer, digitizing the photodiode signal while scanning the translation stage. An

overview of the translation stage appears elsewhere in this chapter, and the digitizing

electronics are described in section 3.3.

Chapter 2 81

2.8.2. Fast scan autocorrelator

The layout of the fast scan autocorrelator is shown in Fig. 22. A 50% beamsplitter

reflects half the beam along the variable path, which consists of a pair of mirrors mounted

on a small, 90° aluminum bracket (1/16" thick) glued to a speaker cone (Radio Shack 4"

woofer, part # 40-1022B), while the transmitted half travels along the fixed path

consisting of a pair of mirrors mounted on a small, manual translation stage (Newport-

Fundamental
Beam

2%
Beamsplitter

To
Experiment

To Slow
Autocorrelator

Fig. 22. Fast scan autocorrelator.

Speaker
Cone

50%
Beamsplitter

4" F.L.
Lens

.'
ii\
H\

11\
d±b.-- Blue Filter

1-'-\

Photo
diode

Manual
Translation

Stage

Scale 1:4

82 Chapter 2

Klinger UMR5.16). Rather than recombining the beams with a beamsplitter, the variable

path beam passes directly into the detector, while the fixed path beam is directed into the

detector via a mirror. Both beams pass through the 50% beamsplitter used by the slow-

scan autocorrelator.

The heart of the autocorrelator is the speaker-mounted retroreflector. The speaker

is driven by a home-built amplifier at -20 Hz, which scans the laser pulse from the

variable path through the fixed path pulse. To obtain areal-time autocorrelation trace on

an oscilloscope, the XY mode is employed, using a scaled output from the amplifier as

the X input, and the photodiode signal as the Y input. Note that a relatively large

impedance (l MQ) must be used for the photodiode signal in order to generate a slow

(-100 ~s) decay; otherwise, the signal will be invisible on the time scale of the laser

repetition period (2 ms). Since there is a phase lag between the signal sent to the speaker

and the speaker position, the scaled amplifier output ha~ a variable phase adjustment.

Also, the photodiode signal is blocked on the oscilloscope during half the cycle, in order

to prevent two superimposed images from appearing, which are difficult to align; a "Z

blank" output from the amplifier is used for this purpose.

Fig. 23. Fast scan autocorrelator oscillator circuit (on next page).

Sine wave
oscillator

Frequency / I

. switch ' ,

8V

8

5kn

5kn

100nF

+12 V ~
9

,------:.-: --1+/2 12 ~

RCA 3240EI

~ ;--] 6

Phase
shifter

100 kil

lOOnF

~
1.->---\ r- X deflector

8V 10~ -12 V

.. __ .. -----_._- .. -.- ...
Amplitude

soon 4.1 kn

10kn
-12 V

~~~------------------------------------~6~------------

Speaker driver 
5 (separate ground) 

>-0-------0--:- Speaker 
(8 n) 

300l1F 

)h 
-15 v ~+~ 470 nF~ 

I kn 20kn 
\/\/\/\ 

IOkn 

II1F 100nF 

~ 
L..O--=-jRCA 

+1 CA3140A~ Z blank 

TTL 
generator 

4 

lOOnF 

~ 
-12 V 

-_.--.- .. _------_. --_.--.-.- .. -.... _------_ .... 

(1 

=-.g 
~ 
"'I 
N 

00 
w 



84 Chapter 2 

The design of the circuit was copied from Lucas Hunziker, a graduate student 

with Prof. Yongqin Chen at Berkeley; it is reproduced in Fig. 23. It consists of, 

principally, a sine-wave oscillator, two signal-modifying circuits generating the X and Z 

. blank outputs, and a power amplifier for the speaker. The frequency of the oscillator can 

be adjusted with a potentiometer and a properly chosen capacitor; with a toggle switch to 

choose between two sets of capacitors, the frequency range is currently 4-85 Hz. Part of 

the oscillator circuit is a feedback loop called "clipping," containing a potentiometer 

whose value must be adjusted for different frequencies, and often again once the circuit 

has warmed up. Setting the value too high allows the circuit to swing to the minimum and 

maximum voltages of the operational amplifier (op-amp), causing flattening of the sine 

wave; setting it too low attenuates the oscillator completely. The output from the 

oscillator is split; one half passes through a phase shifter, adjusted with a potentiometer, 

and on to two simple op-amp circuits, one of which provides the reference X signal for 

the oscilloscope, the other of which generates the Z blank (TTL) signal. The other half of 

. 
the oscillator output is connected to a power amplifier circuit, with adjustable amplitude, 

and from there, to the speaker (8 Q i,mpedance). 

Originally, the circuit was plagued by a terrible noise problem, which seemed to 

stem from the use of a single power supply for all components. This problem was solved 

by using two power supplies, one for the power amplifier (International Power HAA 15-

0.8-A, ±15 V at 0.8 A), and a second for the rest of the circuit (International Power 

IHTAA-16W, ±12 V at 0.4 A). The addition oflarge capacitors on the power supply 

outputs also helped reduce the noise. The amplifier segment of the circuit is also 

separately grounded, to minimize potential ground loops. 



Chapter 2 85 

2.8.3. Cross-correlation 

The layout of a typical cross-correlation setup is shown in Fig. 24. It is a collinear 

arrangement, the path length of one beam being varied by a translation stage elsewhere 

on the laser table. Beams are combined using a mirror which allows the lower frequency 

beam to pass through. No focusing is requireo, as the full power of each beam is 

generally used, providing more than enough cross correlation signal intensity. 

The cross correlation signal is generated using a nonlinear crystal to generate 

sum- or difference-frequency radiation. We have successfully measured cross correlation 

signals for all combinations of fundamental (00), second harmonic frequenc~ (200) and 

third harmonic frequency (300) light, using a 7x7x0.3 mm KDP crystal (CSK Optronics), 

cut for 00 + 200 sum frequency generation. For the other two frequency combinations, 

difference frequency generation was used at the same incidence angle to the crystal; 

however, the polarizations of the beams had to be correctly oriented. Separation of 

frequencies is essential to detection in this collinear design. For 00 and 200 light, a simple 

filter (red or blue bandpass) before the photo diode was used to block the other 

frequencies. For 300 light, a Pellin-Broca prism was employed to separate the beams 

spatially, and a fluorescent card placed at right angles to the photodiode was used to 

image the ultraviolet 300 light, since the photodiode was insensitive to this wavelength. 

Recording of cross correlation spectra was accomplished in the same manner as for 

autocorrelation spectra. 

Fig. 24. Cross-correlation optical layout (on next page), 



86 Chapter 2 

Entrance window 
to vacuum chamber 

Lens (0.5 m F.L.) 

Photo diode ~ 

Filter ' ... ,:;~'~:: .. ' 

:···::·}:~:::·)·······i'.:.. , 
.' , ........... .. . ~ .... - - - .~ .... -... - _ ... ' 

KDP Crystal 

Periscope 
platform 

Mirror 
(co) 

Mirror 

-.... . 

Iris 

Removable 

Edge of vacuum 
chamber platform 

Platform 
extension 

(TOPAS infrared)~3---r==i..-..-.t==--~ 
Scale 1:4 



Chapter 2 87 

In our experiment, cross correlation is also very useful for finding the zero of time 

(to) of two beams prior to entering the vacuum chamber. Although the to changes slightly 

each time the beams pass through additional material, such as a lens or laser window, the 

offset is only a few ps for 260 nm light. Therefore, cross correlation is the primary means 

of temporal beam alignment when preparing for an experiment, and can often be used in 

lieu of an actual determination of to in vacuum (see section 3.2.2), once the time offset 

has been measur~d. 

2.9. Laser pulse optimization 

Over the course of learning how to operate the Clark-MXR system, several 

"tricks" have been discovered which are useful in the optimization of laser pulses. Some 

of the most important are detailed here. 

The oscillator is remarkably stable, though over a period of we'eks the average 

power in the cavity declines to the point where spontaneous loss of mode-locking occurs. 

This may be due to changes in the direction of the Ar+ ion pump beam, but as this is not 

easily adjusted without a complete realignment of the oscillator, the cavity end mirrors 

are typically adjusted instead. The mostsignificant improvement in power is often made 

with vertical adjustments, which are more sensitive. Dusting the cavity mirrors may also 

make large improvements in power. The continuous-wave (cw) cavity power may be 

optimized before achieving mode-locked operation, since the cavity alignment of the two 

modes is very similar. With an At laser aperature size of 4 and pump power of 2.5 W, 

good alignment should approach 200 m W or more. If this benchmark cannot be reached, 

a general alignment of the cavity may be necessary. 



88 Chapter 2 

The Ar+ laser tube has a lifetime of approximately 2000 hours, or 1.5 years 

depending on usage, after which a common sign of impending failure is mode 

degradation, caused by physical descent of the electrodes within the laser tube which 

partially blocks the beam. This seriously affects the efficiency of the oscillator, which 

requires a very good quality pump mode (TEMoo) to achieve proper self-focusing. The 

mode may be easily examined by reflecting the beam, with aperature fully open, off of a 

concave mirror (the "mode tool" of the oscillator may be used) onto a surface several 

meters away. The presence of dark areas or pronounced rings usually indicates mode 

degradation. 

The angular misalignment of the Pockels cell in the regenerative amplifier causes 

an incomplete polarization change to the amplified pulse train before and/or after the 

selected pulse has exited the cavity. This results in a series of "pre-pulses" and/or "post-
• 

pulses" in addition to' the main pulse. For gross misalignments, such additional pulses can 

be seen in a photodiode signal from the compressor. They also appear in the 

autocorrelation spectrum as "wings" (temporally wide, low-intensity shoulders on an 

otherwise nearly sech2-shaped pulse), because they are not optimally compressed, 

spending a different number of round trips in the amplifier cavity and therefore having a 

different amount of group velocity dispersion relative to the main pulse. However, other 

optical elements can also produce wings (see below). An unambiguous method of 

detecting the presence of additional pulses is by using the photoelectron spectrometer. In 

performing a pump-probe experiment on 12- (using 780 nm for the pump pulse and 260 

nm for the probe pulse), it was discovered that a significant (as much as 20%) amount of 

dissociated r was being produced even at "negative" time delays, i.e. when the probe 



Chapter 2 89 

pulse arrived before the pump pulse. Although both pre-pulses, which introduce a 

premature pump, and post-pulses, which supply a late probe, could be responsible for the 

effect seen in the photoelectron spectrum, it is most likely due to additional pre-pulses. 

This is because the intensity of the additional pulses should be greatly reduced for the 
I 

second- and third':'harrnonic beams, which scale inversely with pulse duration. Since the .~. 
\ r signal is very strong, adjustments made to the Pockels cell are easily detected, and the 

effect can be minimized, although not always completely eliminated. 

Although compression of amplified pulses to -80 fs is usually achievable without 

much effort, the presence of wings in the fundamental beam, as seen in an autocorrelation 

spectrum, is a more difficult problem to remedy. Unlike the wings caused by additional 

pulses, these are due to contributions from parts of the frequency spectrum which have 

acquired a significant third-order dispersion <1>(3)(00), and possibly higher dispersions, in 

the amplification process. These temporal distortions cannot be compensated for by 

optimizing the compressor distance, which only alters the group velocity dispersion 

<1>(2)( (0). However, changing the compressor grating angle in the plane of the table 

introduces third-order dispersion which can reduce the high-order phase offset. Another 

approach is to introduce third-order dispersion before regenerative amplification, using 

the "third order knob" in the stretcher. Here, instead of changing the grating horizontal 

angle, the horizontal folding mirror angle is adjusted so that the reflected spectrum 

striking the grating is offset horizontally. High-order dispersion introduced in the 

amplification process will then be partially cancelled by the initial third-order dispersion. 

In practice, iterative adjustment of both optical elements can significantly reduce wings 

in a spectrum. 



90 Chapter 2 

3. Data acquisition 

3.1. Mass spectra 

Mass spectra are acquired using the Tektronix TDS744A digitizing oscilloscope. 

This device is remotely controlled by computer using the National Instruments GPffi 

interface. It is capable of very high resolution « 1 ns) data acquisition, though in 

practice, only 20-100 ns time intervals are used. Spectra are typically averaged for 1000-

4000 scans before downloading the data. Although limited to -80 Hz repetition rate (it is 

even lower when several processes are active), high-quality spectra may be obtained in 

only a few seconds. Up to 500,000 consecutive time intervals may be stored in the 

oscilloscope, though currently the PC data acquisition software is only capable of reading 

1024 intervals at a time; therefore, to record larger record sizes, spectra must be obtained 

in 1024-interval segments. The sample mass spectrum shown in Fig. 14(a) consists of 

three such segments recorded consecutively, using a 20 ns time interval. 

3.2. Photoelectron spectra 

Electron time-of-flight spectra are acquired using the Stanford Research Systems 

SR430 multichannel scalar (MCS), which is a combination of discriminator and event 

counter. It has a> 1 kHz maximum repetition rate, 5 ns minimum time resolution, storage 

capacity of 32,768 consecutive time intervals, and maximum run time of 65,536 trigger 

events before downloading is necessary. Generally, spectra are acquired at 500 Hz using 

5 ns resolution, -10 mV discrimination threshold, 1024 time intervals (total acquisition 

time of 5.12 Jls), and data are acquired for 10,000 laser shots (20 s) before downloading. 



Chapter 2 91 

Communication with the lab computer occurs through the National Instruments GPIB 

interface. 

The MCS must operate in a low-signal limit, that is, in a regime where the 

likelihood of two electrons arriving in the same 5 ns time interval is practically zero. This 

requirement is in fact for a 10 ns interval, because the MCS cannot register two 

consecutive 5 ns events (for larger interval sizes, this limitation is absent; presumably, 

some of the internal circuitry has a 10 ns cycle time). However, most users would be 

more than happy to reduce their signal level if they discovered it to be close to 1 e-1l0 ns; 

with an overall 500 Hz repetition rate, this represents a very fast data acquisition rate 

indeed, as a high-quality spectrum requires only -1000 e- per time interval. More typical 

operating conditions are nowhere near this limit, except perhaps occasionally when 

photodetaching r. 

Electron spectra may also be acquired using the Tektronix TDS744A digitizing 

oscilloscope. Although the resolution of this device is considerably higher « 1 ns) than 

the MCS, its major limitation is the low -80 Hz repetition rate. However, its primary 

application, the collection of I-photon photoelectron spectra in shot-to-shot background 

subtraction mode (see section 3.2.1), does not need a large signal. To collect electron 

spectra, the oscilloscope is "tricked" into operating in a kind of discrimination mode 

whereby the baseline is shifted far offscreen, just outside the range of the digitizer, so that 

the spectrum appears flat except for real signals which protrude into the valid range. Note 

that, unlike the MCS, signals are not simply counted (as a 1 or 0), but have a variable 

height since their voltages are digitized with some resolution. This approach adds to the 

noise of a spectrum, and also presents a greater challenge when normalizing spectra 



92 Chapter 2 

collected by the two techniques, since intensities must be scaled. Another difference of 

the oscilloscope technique is that consecutive spectra are averaged (with 16 bits of 

resolution), rather than summed, so that data must be downloaded well before the signal 

size of a single electron is reduced to one bit. Generally only -1200 spectra are acquired 

in the time it takes the MCS to acquire 10,000, so there is plenty of resolution to spare. 

3.2.1. Background subtraction 

Subtraction of one-photon "background" signal is essential, where the probe laser 

(and, sometimes, pump laser) can detach an electron from almost every anion studied by 

FPES. Also, because the ion and/or laser sources do not always operate with steady 

intensity, concurrent measurement of background and two-photon signals is necessary to 

normalize two-photon spectra 'taken at different pump-probe time delays. In rare cases, 

such as ATD measurements on r (see section 3.2.2) the one- and two-photon signals are 

both present in the same spectrum at well-separated energies, and separate background 

subtraction is not necessary. 

Two background subtraction methods have been developed, each of which has 

different strengths and weaknesses. The first method, "alternating scan" background 

subtraction, consists of switching the time delay (by moving the translation stage) 

between a time of interest and a fixed, negative time (that is, probe pulse before pump 

pulse) at typically 20 s intervals. By choosing a negative time delay much larger than the 

pump-probe overlap, no signal arising from anions excited by the pump laser will be 

present, and a one-photon, background photoelectron spectrum will be recorded. The 

second method, "shot-to-shot" background subtraction, is much more rapid, and uses an 

optical chopper (see section 2.7) to block'the pump laser by the blades of a rapidly 



Chapter 2 93 

spinning wheel every other laser pulse, subtracting probe-only photoelectron spectra from 

pump-and-probe spectra at 250 Hz. The MCS normally used for recording of 

photoelectron spectra supports this capability. However, since the integrated intensity of 

the time-dependent signals are not necessarily the same, separate recording of the probe-

only spectra is also required to normalize spectra. An effective, if perhaps inelegant, 

system has been implemented using the Tektronix digitizing oscilloscope to record 

probe-only spectra at -80 Hz. Although considerably less signal is recorded this way, 

only the integrated intensity is required to normalize spectra. 

Alternating scan background subtraction is only useful when the ion and laser 

power intensities are not fluctuating very much. Because several time delays are 

generally acquired in the same set of scans, choosing a different time delay after each 

background spectrum, and cycling through the full set many times, the number of 

background scans can be much greater than the number of individual two-photon spectra. 

This situation allows for an advantage over shot-to-shot background subtraction: the 

number of laser shots used to acquire each background scan can be reduced, so that more 

time is spent acquiring two-photon spectra, yet a high-signal background spectrum is also 

obtained, averaged for allthe time delays measured in the set. With shot-to-shot 

background subtraction, 50% of the spectra must be background, unless the chopper 

wheel spacing is altered. However, the main advantage of shot-to-shot background 

subtraction is its ability to ride out large fluctuations in ion and laser intensity. While it is 

always advisable to correct such problems before acquiring data, there is almost 

inevitably a slow drift to the ion intensity over a period of minutes, which is not easily 



94 Chapter 2 

compensated for by the alternating scan method, unless a large number of scans (> 20) 

are acquired at each time delay. 

3.2.2. Above threshold detachment 

As mentioned in the section on cross-correlation, when using two laser 

frequencies in an experiment, to changes each time the beams pass through material, such 

as a lens or laser window. The pulse width of each beam also increases, much more so for 

shorter wavelengths. For both these reasons, it is essential to be able to determine to 

inside the vacuum chamber. The nonresonant, two-photon above-threshold detachment 

(ATD) of a halide13 such as r has been used successfully for this purpose. The technique 

is general, but most commonly consists of using the fundamental (780 nm) and third-

harmonic (260 nm) beams. When beams are temporally separate, only the 260 nm light 

detaches electrons, but when the beams are temporally overlapped, new photoelectron 

features appear at higher kirietic energy, corresponding to two-photon detachment. The 

integrated intensity of these features is proportional to the cross-correlation signal. The 

one-photon features are used for normalization of spectra. 

Other approaches we have either tried or considered, such as cross correlation 

inside a vented vacuum chamber, averaging the cross correlations measured before and 

after the vacuum chamber, or nonlinear ejection of electrons from the metal walls of the 

chamber, all suffer from one or more major drawbacks: determination takes place at a 

location different than the interaction region, which is especially important if the beams 

are focused; day to day variation in beam position is not corrected for; a fundamentally 

different process than photoelectron spectroscopy is used, with the potential for unknown 

time offsets. Among the advantages of A TD: the detachment process is instantaneous for 



Chapter 2 95 

a bare anion; and halogen anions are usually already present and plentiful in the ion 

beam, requiring little adjustment to experimental parameters other than laser timing. The 

A TD signal is moderately weak in comparison to typical FPES signals, but a good quality 

spectrum can still be collected rapidly since only integrated peak intensities are required, 

rather than fine details. An example of an ATD photoelectron spectrum of 1 at two time 

delays (near and far from to), is shown in Fig. 25. Other peaks, i.e., one- and two-photon 

3(0 signals, are independent of time delay and are used to normalize spectra to 

14000....---------------------, 

12000 

10000 
~ 
c: 
5' 8000 
o 
c: e 

1:5 6000 
Q) 

w 

4000 

2000 

0)+30) 
-600 fs 

30)+30) 
background 

o 1 

0)+30) 

a fs 

30) 
background 

2 

Flight time/us 

3 4 

Fig. 25. Example of above-threshold detachment photoelectron spectrum of 1, showing 
appearance of additional features when the laser pulses are overlapped. 



96 Chapter 2 

each other. A plot showing the integrated time-dependent peak intensities vs. time, in 

comparison with a cross correlation spectrum measured on the same day, is shown in Fig. 

26. The ATD is considerably broader than the cross correlation (170 vs. 230 fs FWHM). 

1.2 

1 

0.8 I:~~DI >---en 
c 0.6 CI) --c 
CI) 
> 0.4 :;:; 
co 
Q) 
c::: 

0.2 

o 

·0.2+-----~--~----~----~----~----~--~ 

·700 ·500 ·300 ·100 100 300 500 700 
Time/fs 

Fig. 26. Integrated ATD peak intensities vs. time, in comparison with cross-correlation of 
fundamental and third harmonic beams, showing broader pulse overlap inside vacuum. 

3.3. Correlation spectra 

Auto- and cross-correlation spectra are recorded using a Data Conversion DT2821 

analog-to-digital (AID) card, which plugs into an expansion slot of the lab computer (PC-

compatible 486). This flexible device has 12-bit resolution and a software adjustable 

dynamic range from 1.25 to 10 V. It can read up to eight separate analog signals 

simultaneously, though only a single one is used, shared between the auto- and cross-



Chapter 2 97 

correlation photodiode signals. The NO conversion process requires approximately 20 ~s 

to complete. For this r.eason, the signal is connected through 1 MQ impedance to provide 

a sufficiently long decay, though doing this also generates a higher voltage level than a 

smaller impedance connection. A separate trigger signal (TTL) is used to start the 

digitization, supplied by an output from the Stanford box. It is set 120 ~s after the laser 

trigger to allow sufficient time for the signal to reach its maximum level. Reading the 

digitized signal requires some assembly language programming, but this has been built 

into the data acquisition program and is transparent to the user. One item of important 

practical consequence is that the signal level generally seems to fluctuate a great deal, so 

that a number of laser shots (-100) must be digitized to obtain a clean signal for each 

time delay. 

4. References 

W. C. Wiley and I. H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955). 

2 D. R. Cyr, Ph. D. Thesis, University of California, Berkeley (1993). 

3 R. Proch and T. Trickl, Rev. Sci. Instrum. 60, 713 (1989). 

4 L.-S. Wang, H.-S. Cheng, andJ. Fan, 1. Chern. Phys. 102,9480 (1995). 

5 O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. 1. Craycraft, and R. E. Smalley, Rev. 

Sci. Instrum. 58, 2131 (1987). 

6 1. M. Alford, P. E. Williams, D. 1. Trevor, and R. E. Smalley, IntI. 1. Mass. Spec. Ion 

Proc. 72, 33 (1986). 

7 A. Weaver, Ph.D. Thesis, University of California, Berkeley (1991). 



98 Chapter 2 

8 M. L. Alexander, N. E. Levinger, M. A. Johnson, D. Ray, and W. C. Lineberger, J. 

Chern. Phys. 88, 6200 (1988). 

9 J.-c. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, 

Techniques, and Applications on a Femtosecond Time Scale (Academic Press, San 

Diego, CA, 1996). 

10 Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 

1984). 

11 R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, Opt. Lett. 12,483 (1987). 

12 A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 102 

(1997). 

13 M. D. Davidson, B. Broers, H. G. Muller, and H. B. van Linden van den Heuvell, J. 

Phys. B 25, 3093 (1992). 



Chapter 3. Photodissociation dynamics of the 12-

anion using femtosecond photoelectron 
spectroscopy* 

The photodissociation dynamics of the h- anion have been studied in real-time 

using femtosecond photoelectron spectroscopy. In this experiment, 12- is excited to a 

99 

dissociative electronic state with an ultrafast pump pulse, and the photoelectron spectrum 

of the dissociating anion is measured by photodetachment with a second, ultrafast probe 

pulse. The variation of the photoelectron spectrum with delay time enables one to 

monitor the dissociating anion from the initial Franck-Condon region of excitation out to 

the asymptotic region. Dissociation occurs on a time scale of 100 fs. The results are 

comparised with quantum mechanical simulations using previously published potential 

energy curves for h-· 

1. Introduction 

The successful application of time-resolved techniques to gas phase processes 

occurring on a femtosecond time scale has been one of the most important developments 

in chemical dynamics during the last ten years. l ,2 The considerable body of work in this 

area has provided new insights into the photodissociation and reaction dynamics of 

molecules and clusters. However, nearly all gas-phase femtosecond experiments 

performed to date have focused on neutral species. The application of these methods to 

ions, particularly negative ions, is very appealing. In contrast to neutral species, most 

potential energy surfaces involving negative ions are poorly characterized. The low 

number densities typical of gas phase negative ion experiments make it difficult to study 

* B. J. Greenblatt, M. T. Zanni and D. M. N~umark, Chern. Phys. Lett., 258, 523 (1996). 



100 Chapter 3 

the spectroscopy and dynamics of these species using frequency-resolved techniques, 

such as absorption spectroscopy, laser-induced fluorescence, or multi-photon ionization, 

that are applied almost routinely to neutral species. Hence, the photodissociation and 

reaction dynamics of negative ions represent fertile ground for time-resolved 

experiments. The desirability and feasibility of performing time-resolved experiments on 

mass-selected anions has been demonstrated in the pioneering work by Lineberger and 

co-workers3-6 on dissociation and caging dynamics in h(C02)n clusters. 

These cluster studies provide the motivation for the work described here, in which 

the photodissociation dynamics of 12- are investigated using femtosecond photoelectron 

spectroscopy (FPES). This is a relatively new technique which, along with the related 

technique of femtosecond zero electron kinetic energy spectroscopy,7,8 has recently been 

applied to excited state dynamics in neutral molecules.9,10 The results here represent the 

first application of FPES to negative ions. FPES is a pump-and-probe experiment 
I I 

involving two femtosecond pulses. In our experiment, the first pulse (hvl) electronically 

excites the 12- to a repulsive state, and the second (hv2) photodetaches the dissociating 

molecule to form a photoelectron and either two 1 atoms or an excited 12 molecule. The 

overall process is given by: 

(1) 

By measuring the photoelectron kinetic energy spectrum as a function of delay time M, 

one can monitor the dissociation dynamics of the electronically excited h- all the way 

from the Franck-Condon region to the dissociation asymptote. 

The 12- anion was chosen for these first studies because of its experimental 

accessibility, and because it is a fundamentally important anion in gas phase and solution 



Chapter 3 101 

phase chemistry. Chen and Wentworth 11 constructed a set of potential energy curves for 

the ground and excited states of Iz° based on Raman spectroscopy in a rare gas matrix, 

electronic spectroscopy in a crystal, and gas phase dissociative attachment experiments. 

However, questions remain concerning the accuracy of these curves. For example, the Iz-

electronic spectrum clearly depends on the environment of the ion; the bands in rare gas 

matrices are shifted by 0.16-0.27 e V to the blue of the bands in a crystalline 

environment,120 14 and one expects the gas phase spectrum to differ from either condensed 

phase spectrum. Recent dissociative attachment results15 also suggest that the 12-

potential energy curves in Ref. 11 need to be modified. These curves have been used to 

simulate time-resolved dynamics of 12
0 

in clusters 16 and in various solvents,17,18 so it is 

important that they be as accurate as possible. The results presented here provide a 

stringent test of the available potential energy curves for Iz-. 

Fig. 1 shows the potential energy curves involved in our experiments. 12- is 

excited from its ground X 2L: state to the low-lying 2 II g,l12 excited state by the pump 

pulse with photon energy hVI. The time-dependence of the resulting wavepacket is 

monitored by measuring its photoelectron spectrum. The photodetaching probe pulse, 

-I - 3 -3 -3 
hV2, has sufficient energy to access the XL;, A' II 2u ' A IIlu' and B II 0+ U states of 

'12. At short delay times, photodetachment will access bound vibrational levels of these Iz 

states, but at longer times, when dissociation to r + 1 is complete, one is essentially 

photodetaching a free r ion. Hence, the photoelectron spectrum of the dissociating 

wavepacket should change substantially with delay time. Since the Iz states are well 

characterized,190 21 the time-resolved photoelectron spectra should serve as a probe of the 

anion states, as desired. 



102 Chapter 3 

6 , 
, , , , 

5 
, 

> a> 4 
I + I 

-------
""" ~ 

3 C) 
L-

a> 260nm 
c 2 W 

1 
780nm 

0 

2 3 4 5 6 

I-I Distance / A 
Fig. 1. Potential energy curves for relevant electronic states of I{ and h taken from Refs. 
11,19-21. 

2. Experimental 

The experiment consists of two major components: a negative ion photoelectron 

spectrometer with a "magnetic bottle" electron detector, and a high (1 kHz) repetition rate 

laser capable of generating sub-lOO fs pulses. The photoelectron spectrometer is shown 

in Fig. 2. It shares several features with spectrometers currently in operation in our 

laboratory22 as well as others,23-25 but is optimized in design so as to be compatible with 

the laser repetition rate and pulse energy. 

, I 



Chapter 3 103 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 .... 0 0 

hV2 0 B 0 
0 0 

/ Ar, 12 

e 

Ion 
Source 

III D- III •• • 

I~ III 

Time-of-Flight 
Mass Spectrometer 

0 
0 
0 
0 
0 
0 
0 

I I 0 
I I 0 
I I 0 I I 
I I 0 hV1 I I 0 
I I I 

I I I I 
\ I I I I 
\ \ I I I 
\ \ I II 
\ \ I II 
\\ 
\ ( 

lUll 

Photoelectron 
Spectrometer 

I 

Fig. 2. Schematic of apparatus, showing ion source region, time-of-flight mass 
spectrometer, and "magnetic bottle" photoelectron time-of-flight spectrometer. 

12- anions are generated in a continuous free jet ion source by passing Ar carrier 

gas at 20 psig cover h expanding the resulting mixture through a 100 Ilm orifice into the 

source chamber, and crossing the resulting molecular beam just downstream of the orifice 

with 1 ke V electrons from an electron gun. The source chamber is pumped by two 

Varian VHS-l 0 diffusion pumps for a total pumping speed of 8800 lIsec. Ions are 

extracted from the beam and injected into a Wiley~McLaren time-of-flight mass 

spectrometer26 by applying pulsed ~xtraction and acceleration fields perpendicular to the 

molecular beam axis; the final ion beam energy is about 1200 eV. Once the ions are 

accelerated, they pass through two differentially pumped regions en route to the laser 



104 Chapter 3 

interaction region. The first differential region is pumped by a Varian VHS-6 diffusion 

pump. The second differential region and laser interaction region are pumped by Varian 

V250 turbomolecular pumps, and the base pressure in the latter region is 2xl0-9 Torr. An 

in-line microchannel plate detector is used to obtain the time-of-flight mass spectrum of 

the ion beam. 

The ion beam is crossed by the laser pulses 55 cm upstream of the ion detector. A 

large fraction (>50%) of the resulting photoelectrons is collected using a magnetic bottle 

time-of-flight photoelectron spectrometer based on the design of Cheshnovsky et al.,25 

although we use a strong (0.8 tesla) permanent magnet rather than an electro-magnet to 

generate the inhomogeneous magnetic field. The electrons are collected at a 75 mm 

diameter microchannel plate detector 1.4 m from the interaction region, and the arrival 

time distribution is recorded after each laser shot with a Stanford Research Systems 

SR430 multichannel scalar. The energy resolution of the spectrometer is currently 150-

300 meV, depending on the electron kinetic energy; this will be improved in the near 

future by pulsed deceleration of the ion beam.24,25 

The pump and probe laser pulses are generated from a commercia! femtosecond 

laser system. A Coherent Innova-90 Ar+ laser pumps a Clark-MXR NJA-5 Ti:sapphire 

oscillator. Selected pulses are amplified using a Clark-MXR regenerative amplifier 

system that includes a pulse stretcher, a Ti:sapphire regenerative amplifier pumped by a 

Nd: Y AG laser running at a repetition rate of 1 kHz, and a pulse compressor. At 780 nm, 

the pump pulse wavelength, the pulse width and energy are 85 fs and 800 ~, 

respectively. About 70% of this beam is directed into a frequency tripling unit (CSK 

Optronics 8315A), resulting in a probe pulse at 260 nm with width and energy of 110 fs 



Chapter 3 105 

and 18 ~,respectively. (The pulse width of the probe pulse is measured by cross-

correlation with the pump pulse using a KDP crystal for frequency differencing.) The 

remainder of the 780 nm pulse passes through a variable delay line and is then collinearly 

recombined with the probe pulse prior to entering the vacuum chamber. 

The UV probe pulse spreads when it passes through the vacuum chamber 

window, and this window also affects the delay between the pump and probe pulses. 

Two-color above threshold detachment (ATD) of r is used to characterize the laser 

pulses inside the vacuum chamber. 27 The probe pulse alone produces the characteristic 

photoelectron spectrum of r (see below). When the pump and probe pulses temporally 

overlap, additional peaks are observed that correspond to shifting the r spectrum by 1.6 

e V towards higher electron kinetic energy; this is the photon energy of the pump pulse. 

From the intensity of this two-color signal as a function of pump-probe delay, we 

determine the zero-delay time and the cross-correlation of the pump and probe pulses 

inside the vacuum chamber. This yields a pulse width of 140 fs for the probe pulse. 

The combination of high laser repetition rate and high electron collection 

efficiency results in rapid data collection. In the data set presented below, only 50 sec of 

data collection are required at each time delay. The spectra are not background-free 

because one probe photon can photodetach ground state h. At each time delay, 

background subtraction is accomplished by collecting 50% of the data (i.e. for 25 sec) at 

long negative delays (-2 pS), where the probe pulse fires well before the pump pulse. 

This background is suitably scaled and subtracted from the raw spectra to yield the 

spectra in the following section. 



106 Chapter 3 

3. Results and Analysis 

Experimental results are shown in Fig. 3. In the top half of Fig. 3, three 

photoelectron spectra are superimposed, at !1t = 0, 150, and 425 fs. The spectrum at the 

longest delay time, !1t = 425 fs, is essentially the r photoelectron spectrum; the two 

peaks centered at 0.75 and 1.7 eV represent transitions to the Iep3/2) and I*epI/2) states, 

respectively. A comparison with the two spectra at shorter delay times shows that the 

intensities of these atomic transitions increase monotonically with !1t. In addition, there 

is a transient signal on the high electron kinetic energy side of each atomic transition that 

is of comparable intensity in the spectra at !1t = 0 and 150 fs but has decayed to zero by 

!1t = 425 fs. A comparison of the spectra at!1t = 0 and 150 fs shows that the transient 

signal is shifted towards the atomic transitions at the longer delay time. 

The full data set of 21 photoelectron spectra is shown as a three~dimensional 

surface plot in the bottom half of Fig. 3. This plot emphasizes the temporal structure of 

the signal at each electron kinetic energy, and shows that depending on the electron 

kinetic energy, the signal is either monotonically increasing or transient with a full width 

at half-maximum (FWHM) of about 200 fs. The value of !1t at which the transient signal 

reaches a maximum depends on the electron kinetic energy, as indicated by the dark lines 

in Fig. 3. As the electron kinetic energy decreases (i.e. moves towards the atomic 

transition), the maximum occurs at longer values of !1t. 



,~ 

Chapter 3 107 

400 
o fs 

300 150 fs -----
~ I 

425 fs , -......, .- , 
en , 
c 200 

, , 
Q) , 

I ......, , 
c ........ I 

I ... \ 
100 ..... i-.. 

\ '. \ . 
\ .... 
\ '. , '. , '. , '. " .... 

00.5 
........ ..... ........ ........ 

1.0 1.5 2.0 2.5 3.0 
Electron Kinetic Energy/eV 

2 
P1/2 

2 
P3/2 

- - -

Fig. 3. Experimental femtosecond photoelectron spectra of Iz-. Upper panel: spectra at 
three delay times. Lower panel: spectra at 21 delay times ranging from -400 to 725 fs. 
Assignments of various energy ranges are indicated. The dark lines show the delay time 
at which the maximum intensity of transient signal occurs for each electron kinetic 
energy. 



108 Chapter 3 

The monotonically increasing r signal clearly comes from fully dissociated 12-. 

The transient signal can be assigned with reference to the potential energy curves in Fig. 

energetically accessible by photodetachment from the excited 12- 2ng,1I2 state over the full 

range of internuclear distances probed in the experiment. However, the X 1 L; state of h 
-.. .,-

cannot be reached by a one-electron photo detachment transition from the 2ng,1I2 state of 

h-; the valence molecular orbital configurations for these states are crg2nu 
4 rtg

4 and crg
2 rtu4 

rt/ cr/, respectively. Tra~sitions from the excited anion to the X IL; state should 

therefore be weak or non-existent, whereas the other three states are accessible by one-

electron photodetachment transitions. Fig. 1 shows that the excited anion and neutral 

potential energy curves are closer at short internuclear distances than in the asymptotic 

region. We therefore assign the transient signal on the high kinetic energy side of the r 

-7lep3/2) and r-7l*eP1/2) peaks to transitions from the dissociating anion to the 

A' 3n 2u / A 3n 1u states and the B 3no+u state, respectively; these assignments are 

indicated in Fig. 3. 

In order to interpret the spectra in more detail, quantum mechanical simulations of 

the time-resolved photoelectron spectra have been performed, using a wavepacket 

propagation scheme developed by Kosloff. 28 Wavefunctions 1 'If n (t)), with n = I, 2 or 3, 

are represented on a spatial grid for each of three potential energy curves: 1 = h-

(X-2~+)'2 1-(2n )'3 1 (A-,3n A- 3n B- 3n)M f . 1119-21 
.4. u ' = 2 g,1I2, = 2 2u' lu' or O+u' orse unctions ' 

were used for all states. 



Chapter 3 109 

The simulations are carried out in two steps. The wavepacket for the dissociating 

anion, 11fI2(t)), is found by numerically integrating the time-dependent Schrodinger 

equation 

(2) 

Here Hn is the nuclear Hamiltonian for state n, Edt) = EI2sech(tITn)exp(-iml2t) is the 

time-dependent pump laser field (E12 is the maximum field intensity; T12, the pulse width; 

llJJ2, the carrier frequency), and f.112 is the transition dipole moment between states 1 and 

2, assumed to be constant for all internuclear distances. 

First order perturbation theory is then used to calculatellfl/t;c,I1t)), the neutral 

vibrational wavefunctions corresponding to electron kinetic energy £.29 This is given by: 

• t • 

1 'If 3 (t; c,!1t)) = - l~23 f dt' e -i(H, +E;)(t-t')/h E
23 

(t' - !1t)I'If 2 (t'») (3) 
~ 

where I1t is the time delay between pump and probe pulses, H3 is the nuclear Hamiltonian 

for state 3, £ is the electron kinetic energy, and E23(t - /1t) is the probe laser field, with the 

same assumed functional form as for Edt). The transition dipole moment f.123 is again 

assumed to be constant for all distances. The time-dependent photoelectron intensity is 

then obtained by calculating the norm of 1"'3) in the long-time limit: 29,30 

2 ~ z 

P(e, t:.t) = !~l!!( If/ 3 (t; e, t:.t) IIf/ 3 (t; e, t:.t)) = ~;3 L dt' eiD
'/Ii [ E23 (t' - t:.t)eiH,t'lh11f/ 2 (t'))] (4) 

Note that the bracketed expression in the integrand is the argument of a Fourier 

transform. Thus, once the set of wavefunctions IZ(f')) = eiH,t'lhllf/z(t'») is determined, the 

entire photoelectron spectrum is readily calculated. In addition, since E 23(t' - I1t) is a . 



110 Chapter 3 

scalar multiplier, it can be applied independently of Ix(t')) , allowing calculation of the 

spectrum for arbitrary t1t or probe pulse shape without re-determining 1'l/2(n). 

Raw spectra were convoluted with the instrument resolution function for an 

isotropic electron angular distribution, assuming electrons are collected over 4n 

steradians in our experiment: ' 

p(E,e)= l-~(E-e- me
U )2 

4meUe M 
(5) 

Here M = ion mass, me = electron mass, U = ion beam energy, £= electron kinetic energy 

(center-of-mass frame) and E = electron kinetic energy (lab frame). Using M = 254 amu 

and U = 1200 e V gives an energy resolution of 0.20 e V for 1 e V electrons, in good 

agreement with experiment. 

The spectra arising from transitions to the three neutral states of Iz are calculated 

separately, then summed using the following weighting criterion: 1123 is assumed equal 

for transitions to the 1i,J n 2u and Ii 3 n lu states, and 1123 for the transition to the B 3 n O.u 

state is adjusted so that the ratio of I*CZP1l2) to ICZP3/2) intensities (at large delay time) 

reproduces the experimental value of 0.9. 

The simulated spectra are shown in Fig. 4. Overall, the experimental and 

simulated spectra are in reasonable agreement. The transient signal appears over the same 

energy range in both the experimental and simulated spectra, indicating that our 

assignment of the transient features discussed above is correct. However, there clearly 

are differences between the two spectra, and these are discussed in the next section. 



Chapter 3 

Fig. 4. Simulated femtosecond photoelectron spectra of h- using Eq. 4 in text. Delay 
times range from -400 to 600 fs. The dark lines show the delay time at which the 
maximum intensity of transient signal occurs for each electron kinetic energy. 

4. Discussion 

111 

From the experimental spectra alone, one can obtain an approximate time scale 

for dissociation of excited h- from the rise time of the signal corresponding to the product 

atomic transitions. This is plotted in Fig. 5 for electron kinetic energies of 1.65 e V and 

0.75 eV, corresponding to the r~Iep312) and r ~Iep1I2) transitions, respectively. In both 

cases, the electron signal reaches 50% of its maximum value by I1t = 140 fs. A more 

detailed picture of the dynamics comes from the temporal profiles at constant electron 

kinetic energy. As the electron kinetic energy decreases from the onset of the :4.'/ A 

transient at 2.6 eV to the start of the r~Iep312) transition at 1.9 eV, the maximum in the 

temporal profile (dark line, Fig. 3) increases from I1t = 10 to I1t = 110 fs. A similar shift 

is seen for the B transient. This shift essentially tracks the dissociating wavepacket from 



112 Chapter 3 

the initial Franck-Condon region of excitation at short times, where the vertical 

detachment energy from the anion 2I1g,112 state is smaller (see Fig. 1), to the asymptotic 

region at longer times where the vertical detachment energy is larger. 

350 

300 o Expt. 1.65 eV 

250 
Sim. 1.65 eV --------_. 

~ c Expt. 0.75 eV ......, 
"en 200 Sim. 0.75 eV c: ............ xO.5 
Q) 

150 ......, 
c: 

100 

50 

0 
-400 -200 0 200 400 600 800 

Delay time/fs 

Fig. 5. Appearance of signal versus delay time at electron kinetic energies of 1.65 and 
0.75 eV, corresponding to r product. Solid lines: experimental spectra. Dashed lines: 
simulated spectra. Vertical line indicates I1t = 100 fs. 

We next compare the experimental and simulated spectra. The transient signals 

are noticeably less intense in the simulated spectra, and there is a broad peak centered at 

2.5 e V and I1t = 0 fs in the simulated spectra that is not apparent in the experimental 

spectra. However, the overall timescales in the simulated spectra are similar to those in 

the experiment. Fig. 5 shows that the 50% level of the simulated signal at 1.65 e V occurs 

at 100 fs, with a slighly longer rise time (120 fs) at 0.75 eV. From Fig. 4, the maxima in 

the temporal profiles shift by 100 fs in the energy range of the two transients. 



Chapter 3. 113 

The lower intensity in the simulated spectra may simply result from our 

assumption that the transition dipole for photodetachment, Jl23, is constant in Eq. 3; this 

discrepancy would be resolved if Jl23 were larger for small internuclear distances, before 

dissociation is complete. On the other hand, it appears that the potential energy curves 

used in the simulations reproduce the main features of the experimental dynamics 

reasonabl y well. A new set of h - potential energy curves has just been published, 31 and 

it will be of interest to simulate the spectra using these new curves and compare the 

results to experiment. 

5. Summary 

This Letter represents the first application of femtosecond photoelectron 

spectroscopy to negative ions, specifically the photodissociation dynamics of 12-. This 

method offers considerable promise for performing time-resolved studies of molecular 

and cluster anions. The general advantage afforded by FPES is that the probe pulse need 

not be tunable; the photoelectron spectrum maps out the dissociating anion state onto all 

neutral states that are energetically accessible at the photon energy of the probe laser. In 

the case of h-, the wavefunction for the dissociating anion is simultaneously mapped onto 

the A,3I1 2u , A 3I1 1u , and jPI1o+u states ofl2• Moreover, since electron binding 

energies in negative ions are relatively low, only one photon is typically required to 

photodetach the dissociating ion anywhere along the reaction coordinate. One can 

therefore analyze the spectra relatively easily, in contrast to analogous experiments on 

neutrals where multiple photon absorption is typically required for ionization. 



114 Chapter 3 

6. Acknowledgments 

This research is supported by the National Science Foundation under Grant No. 

CHE-9404735. Support from the Defense University Research Instrumentation Program 

and Air Force Office of Scientific Research under Grant No. F49620-95-1-0078 is also 

gratefully acknowledged. The authors thank Prof. Yongqin Chen for many invaluable 

discussions. 

7. References 

1 A. H. Zewail, J. Phys. Chern. 97, 12427 (1993). 

2 J. C. Polanyi and A. H. Zewail, Acc. Chern. Res. 28, 119 (1995). 

3 D. Ray, N. E: Levinger, J. M. Papanikolas, and W. C. Lineberger, J. Chern. Phys. 91, 

6533 (1989). 

4 J. M. Papanikolas, V. Vorsa, M. E. Nadal, P. J. Carnpagnola, H. K. Buchenau, and W. 

C. Lineberger, J. Chern. Phys. 99, 8733 (1993). 

5 J. M. Papanikolas, V. Vorsa, M. E. Nadal, P. J. Carnpagnola, J. R Gord, and W. C. 

Lineberger, J. Chern. Phys. 97, 7002 (1992). 

6 J. M. Papanikolas, J. RGord, N. E. Levinger, D. Ray, V. Vorsa, and W. C. 

Lineberger, J. Phys. Chern. 95, 8028 (1991). 

7 T. Baumert, R Thalweiser, and G. Gerber, Chern. Phys. Lett. 209, 29 (1993). 

8 I. Fischer, D. M. Villeneuve, M. J. J. Vrakking, and A. Stolow, J. Chern. Phys. 102, 

5566 (1995). 

9 B. Kim, C. P. Schick, and P. M. Weber, J. Chern. Phys. 103,6903 (1995). 

10 D. R Cyr and C. C. Hayden, J. Chern. Phys. 104,771 (1996). 



Chapter 3 115 

11 E. C. M. Chen and W. E. Wentworth, J. Phys. Chern. 89,4099 (1985). 

12 C. J. Delbecq, W. Hayes, and P. H. Yuster, Phys. Rev. 121, 1043 (1961). 

13 L. Andrews, J. Am. Chern. Soc. 98, 2152 (1976). 

14 H. N. Hersh, J. Chern. Phys. 31,909 (1959). 

15 R. Azria, R. Abouaf, and D. Teillet-Billy, J. Phys. B: At. Mol. Opt. Phys. 21, L213 

(1988). 

16 J. M. Papanikolas, P. E. Ma~len, and R. Parson, J. Chern. Phys. 102,2452 (1995). 

17 . A. E. Johnson, N. E. Levinger, and P. F. Barbara, J. Phys. Chern. 96, 7841 (1992). 

18 P. K. Walhout, J. C. Alfano, K. A. M. Thakur, and P. F. Barbara, J. Phys. Chern. 99, 

7568 (1995). 

19 X. N. Zheng, S. L.Fei, M. C. Heaven, and J. Tellinghuisen, J. Chern. Phys. 96,4877 

(1992). 

20 X. N. Zheng, S. L. Fei, M. C. Heaven, and J. Tellinghuisen, J. Molec. Spectrosc. 149, 

399 (1991). 

21 J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and W. Klernperer, J. Chern. Phys. 42, 

25 (1965). 

22 R. B. Metz, A. Weaver, S. E. Bradforth, TN. Kitsopoulos, and D. M. Neurnark, J. 

Phys. Chern. 94, 1377 (1990). 

23 L. A. Posey, M. J. DeLuca, and M. A. Johnson, Chern. Phys. Lett. 131, 170 (1986). 

24 c.-Y. Cha, G. Gantefor, and W. Eberhardt, Rev. Sci. Instrurn. 63, 5661 (1992). 

25 O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, and R. E. Smalley, Rev. 

Sci. Instrurn. 58, 2131 (1987). 



116 Chapter 3 

26 W. C. Wiley and I. H. McLaren, Rev. Sci. Instrurn. 26, 1150 (1955). 

27 M. D. Davidson, B. Broers, H. G. Muller, and H. B. van Linden van den Heuvell, J. 

Phys. B 25, 3093 (1992). 

28 R. Kosloff, Annu. Rev. Phys. Chern. 45, 145 (1994). 

29 C. Meier and V. Engel, Phys. Rev. Lett. 73, 3207 (1994). 

30 M. Seel and W. Dorncke, J. Phys. Chern. 95,7806 (1991). 

31 J. G. Dojahn, E. C. M. Chen, and W. E. Wentworth, J. Phys. Chern. 100,9649 (1996). 



Chapter 4. Time-resolved photodissociation 
dynamics of 1£(Ar)n clusters using anion 
femtosecond photoelectron spectroscopy* 

Anion femtosecond photoelectron spectroscopy (FPES) is used to follow the 

117 

dynamics of the h-(Ar)6 and h(Arho clusters subsequent to photodissociation of the h-

chromophore. The experiments show that photodissociation of the h- moiety in Iz-(Ar)6 is 

complete by -200 femtoseconds (fs), just as in bare Iz-, but also that attractive interactions 

between the departing anion fragment and the solvent atoms persist for 1200 

femtoseconds. Photodissociation of Iz-(Arho results in caging of the h- followed by 

recombination and vibrational relaxation on the excited A zI1g.312 state and the ground 

x 2L: states; these processes are complete in 35 picoseconds (ps) and 200 picoseconds, 

respectively. 

1. Introduction 

Our understanding of the potential energy surfaces governing the dynamics of 

elementary chemical reactions in the gas phase has grown significantly during the past 10 

years, largely because of the development of new frequency and time-resolved 

experimental techniques 1,2 combined with theoretical advances in quantum chemistry3 

and reaction dynamics4. A very appealing new direction in this field is to investigate, in 

a systematic way, the effects of solvation on reaction dynamics. Studies of chemical 

reactions occurring within size-selected clusters provides an elegant means of achieving 

this goal, because one can monitor qualitative changes that occur as a function of cluster 

• B. J. Greenblatt, M. T.Zanni, and D. M. Neumark, Science 276, 1675 (1997). 



118 Chapter 4 

size and ultimately learn how the dynamics of an elementary unimolecular or bimolecular 

reaction evolve as one approaches a condensed phase environment.s It is particularly 

useful to perform such experiments on ionic clusters, for which size-selection is 

straightforward~ We recently performed a time-resolved study of the photodissociation 

dynamics of the h- anion using a new technique, anion femtosecond photoelectron 

spectroscopy (FPES)6. We now apply this method to follow the dynamics that result from 

photodissociation of the h- chromophore in the clusters 12-(Ar)6 and 12-(Arho. These 

experiments yield time-resolved measurements of the anion-solvent interactions 

subsequent to photodissociation and, in the case of 12-(Arho, provide new insight into the 

caging and recombination dynamics of the 12- moiety. 

Anion FPES is a pump-probe experiment that uses two femtosecond pulses, a 

pump pulse that photodissociates an anion (or anion chromophore in a cluster) and a 

probe pulse that ejects an electron from the dissociating species. By measuring the 

resulting PE spectrum at various delay times, the experiment yields "snapshots" of the 

dissociation dynamics, and in particular probes how the local environment of the excess 

electron evolves with time. This highly multiplexed experiment yields information on the 

entire photoexcited wavepacket at each delay time, in contrast to most pump-and-probe 

experiments in which signal is observed only if there is an absorption at the frequency of 
" 

the probe pulse. Although FPES has also been applied to neutrals,7-9 the anion 

experiment is inherently mass-selective, making it especially useful in studies of size-

selected clusters. 

The present work builds on the experiments of Lineberger and co-workers, 10-12 

who performed one-photon photodissociatton and time-resolved pump-and-probe 



Chapter 4 119 

experiments on size-selected h-(C02)n and h-(Ar)n cluster anions, and on the time-

resolved studies of neutral 12(Ar)n clusters by Zewail and co-workers.l3 The one-photon 

cluster anion experiments yield the asymptotic daughter ion distributions as a function of 

initial cluster size, in particular the relative amounts of "caged" 12-(Ar)ml<n products, in 

which the 1 and f photofragments are trapped by the solvent atoms and eventually 

recombine, versus "uncaged" rcAr)m2<n products in which trapping does not occur. Only 

uncaged products are observed from the photodissociation of 1£(Ar)6, with Arf as the 

dominant product, indicating that there are not enough solvent atoms to trap the recoiling 

photofragments. In contrast, the solvent shell is approximately complete for h-(Arho so 

that only caged products are seen. Moreover, photodissociation of h-(Arho results in 

two distinct recombination channels formed with approximately equal yield: bare h- and 

12-(Ar)n with <n>=11. The time-resolved experiments on 12-(Arho yield a time constant of 

127 ps for recovery of the 12- absorptionl2; this represents the overall time scale for 

recombination and relaxation of the h- product. Our experiment provides a more 

complete picture of the dynamics following excitation of 12-(Ar)6 and 12-(Arho, and in 

particular clarifies the origin of the two product channels seen for h-(Arho. 

2. Experimental 

The FPES experiment is described in detail elsewhere.6 Briefly, a pulsed, mass-

selected beam of cold cluster anions is intercepted by the pump and probe pulses at the 

focus of a "magnetic bottle" time-of-flight PE spectrometer. The two laser pulses are 

generated by a Ti:sapphire oscillator/regenerative amplifier system (Clark MXR) 

operating at a repetition rate of 500 Hz. The pump pulse at 780 nm and the probe pulse at 



Chapter 4 

260 nm are 80 and 100 fs long, respectively. The high laser repetition rate combined with 

. the high (>50%) collection efficiency of the magnetic bottle analyzer results in rapid data 

acquisition; each spectrum is typically obtained in 40 to 80 s for 12- and 12-(Ar)6, and 10 

to 15 minutes for 12-(Arho. At the ion beam energy used in this work (1750 e V), the 

electron energy resolution of the spectrometer at 1 e V electron kinetic energy (eKE) is 

0.25 eV for h-, 0.18 eV for h-(Ar)6, and 0.12 eV for h-(Arho. 

> 
Q) 

4 

~2 
~ 
Q) 
C 

W 0 

1 + 1* + e-

1 + 1 + e-

Probe (260nm) 

v=O 
/\ 1+1" 

Pump (780nm) 
-2~----~----~~----~----~ 3 4 5 6 

Distance/A 
Fig. 1. Potential energy curves for the low-lying electronic states of h- and h. The curves 

for the h- X 2I,~ A' 2ng,I12 states are taken from Refs. 14 and 15, respectively. For the X 
. 0 - 2 

state, De=1.01 eV and Re=3.205 A. The A ng,312 state is described in the text. The v=O 

- and v=5 wavefunctions on the 12- X and A states are also shown (see text). The 12 curves 
are from Ref. 16 and references therein. 

/ 



Chapter 4 121 

The relevant potential energy curves for 12- and 12 are shown in Fig. I.14-16 The 

pump pulse excites the A' 2n 1/2 f- X 2L: transition in Iz-, creating a localized g. . 

wavepacket on the repulsive excited state. The probe pulse detaches the dissociating ion 

to the various low-lying states of Iz shown in Fig. 1. In the bare ion, rapid and direct 

dissociation to r + lep3n) occurs. However, when the same 12- transition is excited in an 

Iz-(Ar)n cluster, the recoiling fragments interact with the Ar atoms, and the FPES 

experiment provides a sensitive probe of these interactions. 

3. Results 

Fig. 2 shows selected PE spectra at various pump-probe delay times 't for 12-, 

1z-(Ar)6 and 12-(Arho. The spectra of Iz- in Fig. 2a have been discussed in detail 

previously.6 Two peaks centered at eKE = 1.70 eV and 0.75 eV rise monotonically with 

increasing delay; these correspond to photodetachment of the r photodissociation 

product to the lep3/2} and l*ep1I2) atomiG states, respectively .. In addition, there is a 

transient signal peaking at 't=50-1 00 fs on the high electron energy side of each product 

peak attributed to the dissociating ions. The product peaks dominate the spectra by 200 

fs, and no further changes are observed at later times, indicating dissociation is complete. 

Fig. 2 (on next page). Anion femtosecond photoelectron spectra at various pump-probe 
delay times 't for (a) 12-, (b) 12-(Ar)6, and (c) Iz-(Arho. In Fig. 2b, the Iz- spectrum at 250 fs 
is superimposed on the 1z-(Ar)6 spectrum at 240 fs for comparison. In Fig 2c, the signal at 
eKE> 1.6 eV is magnified by a factor of 6 for 't~1 ps. A simulation of the Iz-(Arho 
spectrum at 200 ps is superimposed on the experimental spectrum at the top of Fig. 2c. 

Contributions to the simulation from transitions originated from the Iz - X state (--.) and 

A state (---) are indicated. 



fs 9 -I. 
. -, __ II 

9 

I L.VV 

~ 

600 800 
. -+-' 

rn 
c 250 500 
Q) 

-+-' 240 
c A 

" 

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 
Electron Kinetic Energy / eV 

I .. : .~ -••• ---

0.6 

0.5 1.0 1.5 2.0 2.5 

N 
N 



.\ 

Chapter 4 123 

The 12-(Arkspectra in Fig. 2b resemble the h- spectra at first glance, particularly 

for 't<240 fs. By 't=240 fs, the spectra for h-(Ar)6 consist of two peaks clearly analogous 

to the atomic If-[ transitions in the h- spectra. However, these two 'T" peaks occur at 

0.12 lower eKE than for bare r. In addition, they gradually shift toward 0.10 e V higher 

eKE as 't increases from 240 to 1200 fs. The spectra do not change after 't= 1 200 fs. 

The spectra for 12-(Arho in Fig. 2c show the same general trends up to 't= 1 ps. 

Two new trends are seen at later times, however. First, as 't increases from 1 to 35 ps, the 

two "[" peaks apparently reverse direction and shift toward lower eKE by about 0.14 e V. 

Second, a new, broad feature at high electron energy (eKE>1.6 eV) appears at 't>4 ps. 

This feature shifts toward lower eKE until 't=200 ps, after which no further significant 

evolution occurs. Two small peaks between the two "[" peaks also grow in on this time 

scale. 

4. Discussion 

The 12-(Ar)6 spectra indicate that the dynamics subsequent to photoexcitation can 

be divided into two time regimes. At early times ('t ~ 240 fs), the 12- chromophore 

dissociates to r + I. The similarity between these spectra and those for h- indicates that 

the primary bond-breaking dynamics are not affected by clustering, and that this process 

is complete by 240 fs. The interpretation of the spectra in the second time regime, from 

240 to 1200 fs, is aided by our previous measurements of the electron affinities of I(Ar)n 

clusters, which show that each Ar atom increases the electron affinity by - 25 me V .17 

The 0.12 e V energy offset in the 'T" peaks at 240 fs relative to bare [ is what would be 

expected for an [ ion bound to 5 Ar atoms. As 't increases, the shifts of these peaks 



124 Chapter 4 

toward higher eKE indicate that the f is interacting with progressively fewer Ar atoms. 

The spectrum at 1200 fs is that expected for Arf; this is consistent with the mass-

resolved experiments11 that show Arf to be the dominant product from 1£(Ar)6 
'. 

photodissociation. Thus, the evolution of the spectra from 240 to 1200 fs reflects the 

progressively weaker interactions between the solvent atoms and the f fragment, with 

formation of the asymptotic Arf product complete by 1200 fs. 

One picture of the dynamics during the second time regime consistent with the 

spectra is that once the 12- chromophore is dissociated, the neutral 1 atom is ejected, 

leaving behind a vibrationally hot r(Ar)n cluster from which Ar atoms evaporate until the 

available energy is dissipated, with Arf as the stable product. This picture is suggest:d 

by molecular dynamics simulations carried out by AmarI8 on Br2-(C02)n clusters. 

However, recent molecular dynamics simulations by Faeder et al. I9 ,20 suggest a 

somewhat different mechanism. Their calculations predict that the equilibrium geometry 

of h-(Ar)6 is an open, highly symmetric structure consisting of a ring of Ar atoms lying in 

the plane that bisects the h- bond. When the h is dissociated, the 1 and f fragments 

separate sufficiently rapidly so that the Ar atoms do not cluster around the f fragment. 

Instead, the departing f fragment abstracts one of the solvent atoms, on average, as the 

cluster breaks up. The shifts in the PE spectrum during the second time regime are 

qualitatively consistent with this picture, in that as the f fragment leaves the cluster, its 

attractive interactions with the solvent atoms decrease and the electron affinity drops. 

We next consider the 12-(Arho clusters, for which caging is complete. 11 The 

overall appearance and evolution of these spectra from 300 fs to 1 ps is similar to that 

seen for h-(Ar)6, in that there are two 'T' peaks that shift towards higher electron energy 



Chapter 4 125 

as 't increases. Thus, up to 't=1 ps, the cluster contains 1 and r fragments that are 

essentially independent of one another. The shifting of the peaks towards higher eKE can 

again be explained as a progressive weakening of the interactions between the r fragment 

and the solvent atoms. This is probably due to a combination of evaporation of solvent 

atoms induced by the recoil energy of the 1 and r fragments (- 0.6 e V), and the rather 

large excursions that the r fragment makes within the cluster as the 1 and r photoproducts 

separate on the repulsive . .4' 2 I1g ,1I2 state. Molecular dynamics simulations by Batista 

and Coker21 predict the inter-iodine separation increases to 8-10 A after 1 ps has elapsed, 

a distance comparable to the original size of the cluster, and it is likely that the strength of 

the solvent interactions with the r decreases while this occurs. 

The evolution of the E(Arho spectra at later times can be explained as a result of 

recombination of the 1 and r on the two lowest potential energy curves in Fig. I. The 

shifting of the two 'T" peaks towards lower energy from 't=1 to 35 ps is consistent with 

recombination and vibrational relaxation on the A 2I1g,312 curve. Recent ab initio 

calculations predict that Re = 4.18 A and De=O.11 eV for this state.22 Fig. 1 shows that at 

such a large internuclear distance, photodetachment will access the neutral potential 

energy curves near their asymptotic energies. This will yield two peaks approximately 

separated by the 1 atom spin-orbit splitting, but shifted toward lower electron energy 

compared to bare r by the well depth (De) of the A 2I1g ,312 state and the sum of the 

attractive interactions with the remaining Ar atoms. If we use an approximate binding 

energy of 73 me V / Ar, II the total energy released by the recoiling photofragments and by 

vibrational relaxation of the 12- to the v=O level of the ab initio A 2I1g,312 state is 



126 Chapter 4 

sufficient to evaporate 9 Ar atoms, so this excited state recombination mechanism is the 

likely origin of the 12-(Ar)<n>=11 product seen by Lineberger and co-workers. From these 

considerations, it is reasonable to attribute the signal at eKE> 1.6 e V to recombination on 

the X 2I,~ state followed by vibrational relaxation. This can release enough energy to 

evaporate all of the Ar atoms, leaving 12-(v=8) in the limit of zero photofragment KE . 

. In order to test these assignments, the spectrum at 200 ps was simulated assuming 

photodetachment t? occur from h-(Ar) I I with the h- chromophore in the v=O level of the 

A 2ng,312 state, and from 12-( X 2I,~) in a mixture of vibrational levels. The simulations 

involve calculating the Franck-Condon factors between the anion and neutral vibrational 

wave functions and scaling the results for different electronic transitions to best match the 

experimental intensities. For the A 2ng,3/2 state, Re and De were taken to be 4.5 A and 

0.16 eV, respectively, with both values differing somewhat from the ab initio values; 

these differences may reflect in part the influence of the remaining Ar atoms in the 

cluster. Best results for the X 2I,~ state were obtained using a vibrational distribution 

with <v>=5. The results, shown in Fig. 2c, reproduce the experimental spectrum quite 

well. The h-( A 2ng,312 ,v=O) and h-( X 2I,~, v=5) vibrational wave functions are 

supe,rimposed on the appropriate potential energy curves in Fig. 1. Note that 

photodetachment from the inner turning point of the 12-( X 2I,:, v=5) wave function is 

responsible for the signal at eKE > 1.6 eV; the outer turning point contributes to the 'T" 

peak at 1.35 eV along with photodetachment from the 12" A 2ng,312 state. 



Chapter 4 127 

The shifting of the signal at eKE > 1.6 e V toward lower energy from 10-200 ps is 

attributed to vibrational relaxation of the ground state h- accompanied by evaporative 

cooling of the Ar atoms, that is a series of reactions of the type h-(v")Arn-7 

12-(v'<v")Arn-l+Ar. As the 12- vibrational quantum number decreases, the contribution to 

the PE spectrum from the inner turning point of the vibrational wavefunction shifts 

towards lower eKE. Although this is partially compensated by the lowering of the 

electron affinity as Ar atoms evaporate, our simulations of the PE spectra show a net shift 

of the signal in this region towards lower eKE as the cluster cools. By comparing these 

simulations with the experimental spectra, and starting with the h- vibrational distribution 

at 200 ps, one can estimate the average number of Ar atoms <n> and 12- vibrational 

quantum number <v> for 't<200 ps. We find that <n>=2, <v>=17 at 't=35 ps, and 

<n>=4.5, <v>=32 at 't=1O ps. It therefore appears that 15 or 16 of the original 20 solvent 

atoms evaporate in the first 10 ps, and that the evaporation rate slows down markedly at 

later times. 

5. Conclusions 

Our spectra yield the following picture of the dynamics resulting from 

photoexcitation of 12-(Ar)20' As with h- and 12-(Ar)6, dissociation of the 12- chromophore is 

complete by 300 fs. Between 300 fs and 1 ps, the interaction between the 1 and r atoms 

within the cluster is very weak. After 1 ps, the 1 and r atoms recombine on either of the 

two lower-lying attractive potential energy surfaces. Recombination on the 

A 2ng ,312 state leads to 12-(Ar)<n>=11 product in which the h- is vibration ally cold, 

whereas recombination aon the X 2L~ state results in bare h- with <v>=5. The first 



128 Chapter 4 

process is complete by 35 ps, whereas the second, involving considerably more energy 

flow between the 12- and the solvent atoms, is over after 200 ps. Although recombination 

on the A 2ng.312 state was proposed as a possible mechanism in Lineberger's earlier 

study!!, our experiments provide conclusive spectroscopic evidence that this occurs. 

6. Acknowledgments 

This research is supported by the National Science Foundation under Grant No. 

CHE-9404735. Support from the Defense University Research Instrumentation Program 

under Grant No. F49620-95-1-0078 is also gratefully acknowledged. The authors thank 

J. Faeder, P. Maslen, V. Batista, and R. Parson for helpful discussions and for providing 

access to unpublished results. We are grateful to R. J. Le Roy for a copy of RKR 1: A 

Computer Program for Implementing the First-Order RKR Method for Determining 

Diatom Potential Energy Curves from Spectroscopic Constants. 

7. References 

1 A. H. Zewail, J. Phys. Chern. 100, 12701 (1996). 

2 P. L. Houston, J. Phys. Chern. 100, 12757 (1996). 

3 M. H. Head-Gordon, J. Phys. Chern. 100, 13213 (1996). 

4 G. C. Schatz, J. Phys. Chern. 100, 12839 (1996). 

5 A. W. Castleman, Jr. and K. H. Bowen, Jr., J. Phys. Chern. 100, 12911 (1996). 

6 B. J. Greenblatt, M. T. Zanni, and D. M. Neumark, Chern. Phys. Lett. 258, 523 

(1996). 

7 D. R. Cyr and C. C. Hayden, J. Chern. Phys. 104, 771 (1996). 

8 P. Ludowise, M. Blackwell, and Y. Chen, Chern. Phys. Lett. 258, 530 (1996). 



Chapter 4 129 . 

9 A. Assion, M. Geisler, J. Helbing, V. Seyfried, and T. Baumert, Phys. Rev. A 54, 

R4605 (1996). 

10 J. M. Papanikolas, V. Vorsa, M. E. Nadal, P. J. Carnpagnola, H. K. Buchenau, and W. 

C. Lineberger, J. Chern. Phys. 99, 8733 (1993). 

11 V. V~rsa, P. J. Carnpagnola, S. Nandi, M. Larsson, and W. C. Lineberger, J. Chern. 

Phys. 105, 2298 (1996). 

12 V. V~rsa, S. Nandi, P. J. Carnpagnola, M. Larsson, and W. C. Lineberger, J. Chern. 

Phys. 106, 1402 (1997). 

13 Q. L. Liu, J.-K. Wang, and A. H. Zewail, Nature 364, 427 (1993). 

14 M. T. Zanni, T. R. Taylor, B. J. Greenblatt, B. Soep, and D. M. Neurnark, J. Chern. 

Phys. 107, 7613 (1997). 

15 E. C. M. Chen and W. E. Wentworth, J. Phys. Chern. 89,4099 (1985). 

16 D. R. T. Appadoo, R. J. Leroy, P. F. Bernath, S. Gerstenkorn, P. Luc, J. Verges, J. 

Sinzelle, J. Chevillard, and Y. Daignaux, J. Chern. Phys. 104,903 (1996). 

17 I. Yourshaw, Y. Zhao, and D. M. Neurnark, J. Chern. Phys. 105,351 (1996). 

18 L. Perera and F. G. Arnar, J. Chern. Phys. 90, 7354 (1989). 

19 J. Faeder and R. Parson, J. Chern. Phys.108, 3909(1998). 

20 J. Faeder, N. Delaney, P. E. Maslen, and R. Parson, Chern. Phys. Lett. 270, 196 

(1997). 

21 V. S. Batista and D. F. Coker, J. Chern. Phys. 106, 7102 (1997). 

22 P. E. Maslen, J. Faeder, and R. Parson, Chern. Phys. Lett. 263, 63 (1996). 



130 

Chapter 5. Time-resolved Studies of Dynamics in 
Molecular and Cluster Anions* 

Femtosecond photoelectron spectroscopy (FPES) is used to study the time-

resolved photodissociation dynamics of 1z-(C02)n=4,16 clusters excited at 780 nm. The 

FPES experiment on 1z-(C02)4 shows that the r fragment formed by excitation to theA' 

2I1112,g repulsive state of Iz- initially pulls away from the cluster, but by 0.2 ps it is drawn 

back to complex with more of the solvent molecules. In the n= 16 cluster, where caging 

of the 12- is known to be complete, FPES probes the recombination dynamics of the 12- in 

considerable detail. Specifically, vibrational relaxation on the Iz- X 2L: state and the 

accompanying evaporation on CO2 molecules can be followed in real-time. Vibrational 

relaxation is essentially complete by 10 ps, whereas solvent evaporation is not entirely 

complete by 200 ps. The spectra also show evidence for short-lived recombination on the 

Iz- A 2n312,g state. The results are compared to previous experimental results for Iz-(Ar)n 

clusters and recent simulations of cluster dynamics. 

1. Introduction 

The effect of clustering on the dynamics of elementary chemical processes has 

been the focus of considerable interest, as it offers a route toward understanding the 

evolution of chemistry from gas phase to condensed phase environments. Much of the 

original work in this area focused on neutral van der Waals clusters,I-3 in which a 

chromophore such as 12 was complexed to one or more solvating species, and the 

resulting effects on the chromophore photophysics were probed using laser-induced 

*B. J. Greenblatt, M. T. Zanni, and D. M. Neumark, Faraday Discuss., 108, 101 (1997). 



Chapter 5 131 

fluorescence, multiphoton ionization, and other spectroscopic/dynamical probes. More 

recently, femtosecond time-resolved techniques have been applied to clusters of this 

type.4,5 A parallel effort has developed in the study of ionic clusters comprised of 

solvated charged chromophores.6 These experiments have an advantage over neutral 

cluster studies in that there is generally no ambiguity concerning the size of the cluster, 

an important issue if one is trying to probe size-dependent effects. Clusters of h' with Ar 

and C02 have been of particular recent interest;, the photodissociation dynamics of these 

clusters have been studied in an elegant series of frequency and time-resolved 

experiments by Lineberger and co-workers,?-14 We have undertaken studies of these 

clusters using a new experimental technique, femtosecond photoelectron spectroscopy 

(FPES), providing a picture of the photodissociation dynamics that in many ways 

complements the Lineberger experiments. Previously we have reported results on h' and 

h'(Ar)n clusters. 15,16 Here new results for h'(C02)n clusters are presented and discussed 

in light of earlier experiments on h'(Ar)lI clusters. 

Two types of experiments have been performed by Lineberger's group on clusters 

of 12' and other dihalides with C02 and Ar. In the experiments on h- (see Fig. 1), the 

anion is photoexcited from the X 2L: state to a repulsive electronic state, the A,2n l/2 ,g 

state, and the subseque,nt interactions between the recoiling photofragments and solvent 

species (S) are probed. In one set of experiments,7,8,l3,22 the product masses from one-

photon dissociation were determined. These experiments show that for small numbers of 

solvent species, only "uncaged" ionic products of the type r(S)n are produced, whereas 

for larger clusters, stable products of the type X 2'(S)n dominate. These "caged" products 

result from recombination of the photofragments on a lower-lying, bound state of h', a 



132 Chapter 5 

4 
I*ep 1/2) + lep 3/2) 

ICP3/2) + ICP3/2) 

> 2 Probe (260 nm) a> .......... 
~. 
0> 
L-

a> rCso) + lep 3/2) c 0 W 

-2 
2 

Pump (780 nm) 

3 4 5 
Distance/A 

Fig.I. Potential energy curves for low-lying electronic states of h- and h Correlating 
atomic states are indicated to the right. The anion X 2 ~ + and A 2 II312,g state parameters 
are taken from Ref. 16. The anion A' 2 IhI2,g state parameters are taken from Ref. 17. 

Neutral state parameters are from Refs. 18-21. 

process analogous to geminate recombination in solution.23 The second set of 

experiments9-11 ,14 used a two~photon pump-and-probe scheme with picosecond and, 

6 

more recently, femtosecond lasers to perform time-resolved studies of the recombination 

dynamics in clusters of 12- sufficiently large so that caging occurs. In these experiments, 

the h- chromophore is dissociated with the pump pulse, and subsequent absorption of the 

probe pulse (of the same color) is monitored as a function of delay time. The experiments 

yield the overall time scale for recombination and vibrational relaxation of the h- on its 



I 

Chapter 5 133 

ground electronic state: 1.3 ps in the case of h-(C02)16, versus 130 ps for h-(Arho. 14 

While the recovery of the h absorption is monotonic for h-(Ar)n clusters, the results for 

h-(C02)16 have been interpreted in terms of "coherent recombination" of the 

photofragments occurring on the A 2n 3/2.g excited state of 12- (see Fig. 1) -2 ps after the 

pump pulse.9,l0,14 In related work, the time-resolved recombination dynamics of 12- in 

solution were studie? by Barbara and co-workers via transient absorption in a variety of 

polar solvents.24,25 The absorption recovery times lie in the range of a few picoseconds, 

i.e. a similar time scale to the 12-(C02)n clusters. 

The finite clusters hav.e been considered in a series of theoretical papers in which 

molecular dynamics simulations are used to determine the equilibrium geometries of the 

clusters and track the dynamics subsequent to photodissociation of the dihalide 

chromophore. The original studies by Perera and Amar26 focused on the time scales for 

recombination and solvent evaporation on the ground electronic state of the dihalide. 

More recent work byBatista and Coker27 and Parson and co-workers28-30 has considered 

the importance and time-scale of non-adiabatic electronic transitions that occur 

subsequent to photoexcitation. Parson in particular has emphasized the role of 

"anomalous charge switching" in these clusters, in which the asymmetric charge 

distribution on the two iodine atoms induced by solvation in the cluster ground state is 

reversed in the photoexcited state. 

The FPES experiments discussed here were undertaken to provide a more 

complete picture of the dissociation dynamics in 12-(C02)n clusters. In these experiments, 

the 12- chromophore is excited to the repulsive A'2n1/2.g state by an ultrafast (-80 fs) 

pump pulse. The time-evolution of the cluster is monitored by photodetachment with an 



134 Chapter 5 

ultrafast probe pulse and measurement of the resulting photoelectron spectrum. At each 

pump-probe delay, the photoelectron spectrum provides a "snapshot" of the cluster 

dynamics, and is particularly sensitive to the local environment of the excess electron in 

the cluster. In contrast to the Lineberger's pump-probe experiments, FPES can be used to 

investigate clusters in which no caging and recombination occurs. When recombination 

does occur, FPES can reveal the electronic state of the dihalide at each delay time, along 
1 

with the degree of vibrational excitation and the approximate number of solvent species 

remaining in the cluster. Results are reported here for two clusters: I2-(C02)4, for which 

almost no caging occurs, and 1z-(C02)16, in which caging is complete. 

2. Experimental 

Although the FPES experiment has been described in detail elsewhere,IS several 

improvements have been made recently and are discussed below. Figure 2 shows the 

apparatus. Cluster anions are generated by passing a mixture of 3% C02 in Ar over Iz 

crystals at a backing pressure of 10-30 psig, expanding the gas mixture into a vacuum 

chamber through a piezoelectric valve running at a repetition rate of 500 Hz, and crossing 

the resulting free jet with a 1.5 ke V electron beam just downstream of the nozzle. The 

resulting plasma cools collisionally to produce both positive and negative ions. After 

passing through a 5 mm diameter skimmer located 11 mm below the valve orifice, the 

negative ions are injected into a Wiley-McLaren time-of-flight mass spectrometer31 by 

applying pulsed extraction and acceleration fields perpendicular to the beam axis. The 

final beam energy varies between 800 e V and 1.7 ke V, depending on the voltages used. 

A three-plate pulsed mass gate32 insures that only anions of the desired mass interact with 

the lasers. 

I 



Chapter 5 135 ' 

tB 

..... .!.."" , oM • .... • 
-Ir-----:.--~ : "",; 

Fig. 2. Schematic of the apparatus. Shown are the ion source, time-of-flight mass 
spectrometer, "magnetic bottle" photoelectron spectrometer and reflectron photofragment 
analyzer. 

The original source chamber of our apparatus has been divided into two regions to 

accommodate additional differential pumping. Each region is now pumped by a Varian 

VHS-IO diffusion pump with 4400 Us pumping speed; this results in a considerably 

lower pressure in the region where the ion extraction pulses are applied. On their way to 

the laser interaction region, the anions pass through two additional differentially pumped 

regions. The first differential region is pumped by a Varian VHS-6 diffusion pump. The 

second differential region and laser interaction region are each pumped by Varian V250 

turbomolecular pumps. The base pressure in the final region 'is Ix 10-9 torr. 

Laser pulses cross the ion beam at the focus of a "magnetic bottle" photoelectron 

spectrometer, which is based on the design of Cheshnovsky et al. 32 However, a strong 

(0.8 tesla) permanent magnet, rather than an electromagnet, is used to produce the 

inhomogeneous magnetic field. It is located 9.5 mm below the beam axis, outside the 



136 Chapter 5· 

vacuum chamber, and can be easily removed. A 1.3 m long solenoid field (20 gauss) 

guides the photoelectrons toward a 75 mm diameter dual microchannel plate detector. 

The arrival time distribution is recorded after each laser shot with a Stanford Research 

. . 
Systems SR430 multichannel scalar. Because of the inherently low resolution (-250 

me V) of a spectrometer which collects all of the electrons ejected from a fast-moving ion 

beam, a pulsed deceleration field is used to slow the ions down just before the interaction 

region.33,34 This results in an improvement in the electron energy resolution of up to a 

factor of four, with further improvements expected shortly. 

An in-line microchannel plate detector mounted on a retractable translator arm is 

used to record time-of-flight mass spectra of the ion beam. We can also measure the 

photofragment mass spectra resulting from excitation of a particular cluster with the 

pump pulse alone. To do this, the primary ion detector is retracted, allowing the ions to 

continue into an off-axis reflectron 7 which separates the daughter and parent ions. These 

are collected by another microchannel plate detector for photofragment mass analysis. 

Both types of mass spectra are recorded using a Tektronix TDS744A digitizing 

oscilloscope at a repetit~on rate of -80 Hz. 

The pump and probe laser pulses are generated from a commercial femtosecond 

laser system. A Coherent Innova-90 Ar+ laser pumps a Clark-MXR NJA-5 Ti:sapphire 

oscillator. Selected pulses are amplified using a Clark-MXR regenerative amplifier 

system that includes a pulse stretcher, a Ti:sapphire regenerative amplifier pumped by a 

Nd:YAG laser running at a repetition rate of 500 Hz, and a pulse compressor. At 780 

nm, the pump pulse wavelength, the pulse width and energy are 70 fs FWHM (sech2) and 

1 mJ, respectively. About 80% of this beam is directed into a frequency tripling unit 



Chapter 5 137 

(CSK Optronics 8315A), resulting in a probe pulse at 260 nm with width and energy of 

110 fs and 20 ~,respectively. (The width of the probe pulse is measured by difference 

frequency cross-correlation using a 300 /-lm thick KDP crystal). The remainder of the 

780 nm pulse passes through a computer-controlled variable delay line, and is then 

collinearly recombined with the probe pulse prior to entering the vacuum chamber. The 

polarization of the pump and probe pulses are perpendicular to the ion beam axis. For 

accurate determination of the temporal overlap of the pulses inside the vacuum chamber, 

two-,color above threshold photodetachment (ATD) of r is used.35 

Because the probe pulse wavelength is sufficient to detach electrons from ground 

state Iz-(Ar)n and 1z-(C02)n clusters, the photoelectron spectra are not background-free. 

Background subtraction is accomplished by either alternating 20 s scans between the 

desired delay and a fixed, negative (-2 ps) delay, or by using an optical chopper (New 

Focus 3501). The chopper blocks the pump pulse every other laser shot, and the SR430 

scalar performs shot-by-shot background subtraction. Background spectra are also 

collected concurrently at 80 Hz repetition rate with the TDS744A oscilloscope. These 

are stored and used for longer-time normalization of the spectra. Depletion of the rz-

ground state36 causes a bleach of the background-subtracted signal, which is 

compensated by adding a percentage of the background back to the spectra. 



138 

·en 
~ --c 
::J 

-..c 
s.... « 

............ 
~ 
~ --en 
c 
Q) 
~ 

c -

ChapterS 

82 

fs 

580 

280 

205 
155 
105 
55 
-5 

-45 
~-.-120 

-220 

0.5 1.0 1.5 2.0 2.5 
Electron Kinetic Energy I eV 

Fig. 3. Femtosecond photoelectron spectra of bare 12-, with decelerated ion beam. The 
pump-probe delay times are indicated to the right of the spectra. Assignments of various 
features are indicated, and explained in the text. 



Chapter 5 139 . 

3. Results 

Figure 3 shows FPES spectra of bare h- for several pump-probe delay times. 

These spectra are taken using pulsed deceleration to slow down the ion beam; 

consequently the electron energy resolution (-100 me V) is substantially better than in our 

spectra reported and discussed previously. IS As the delay time increases, two broad 

features, Al and A2 shift toward lower electron energy and evolve into two sharp features 

BI and B2, at electron energies of 1.71 and 0.77 eV, respectively. Peaks BI and B2 

represent photodetachment of the r photoproduct to the 2P3/2 and 2PI/2 states of atomic 

iodine, respectively, whereas the broader features Al and A2 at early times result from 

photodetachment of the dissociating wavepacket on the A' 2TI 1I2.g anion state to the close 

lying A' 3TI 2u and A 3TI\u states (AI)' and the B 3TIo+u state (A2) of neutral h. No 

evolution of the spectra occurs after 200 fs, indicating that dissociation of the bare ion is 

complete by this time. 

Femtosecond photoelectron spectra for h-(C02)4 are shown in Figure 4, also with 

a decelerated ion beam. At short times, from 0.0 to 0.1 ps, the evolution of the 

photoelectron signal between 1.4 and 2.0 eV is similar to bare h-, in that a broad feature 

(A) arises and shifts toward lower electron energy to form a narrower peak (BI); At 

lower energy, a second sharp feature (B2) arises on the same time scale. Bl and B2 are 

separated approximately by the spin-orbit splitting in atomic iodine (0.943 e V), and 

therefore appear to be analogous to the atomic r transitions in Fig. 3, although they are 

noticeably broader and shifted toward lower electron energy by 0.30 eV. By 0.2 ps, two 

new features are evident in the spectrum on the low energy side of Bl and B2, labeled CI 

and C2, with each of the new features occurring at 0.14 e V lower electron energy than the 



140 

• ..c 
s..... 

<:( 

-

Chapter 5 

ps 
200 
20 
2.0 
1.0 
0.7 
0.5 
0.3 
0.2 
0.1 
0.0 

-0.1 
0.5 1.0 1.5 2.0 2.5 
Electron Kinetic Energy I eV 

Fig. 4. Femtosecond photoelectron spectra of 1z-(C02)4 (with decelerated ion beam). A 
simulation (---) of the 200 ps spectrum is shown superimposed on the experimental 



Chapter 5 

spectrum. Labeled features are discussed in the text. Mass distribution used in 
simulation: n=l, 23%; n=2, 39%; n=3, 30%; n=4, 8%. 

141 

main peaks. By 0.5 ps, each doublet has evolved into a single broad peak (Dl and D2). 

Dl broadens and,shifts toward lower electron energy from 0.3-2 ps, followed by a slight 

shift (0.05 e V) of the entire feature to higher energy between 2 and 200 ps. 

Figure 5 shows femtosecond photoelectron spectra for Iz -(C02)l6. In contrast to 

the 12- and 1z-(C02)4 spectra, no transitions to neutral electronic states correlating to 

IeP1l2) are seen; these are too high in energy for the probe pulse because of stabilization 

energy of the anion from the 16 solvent molecules initially. At 0.0 ps, the spectrum 

consists of a broad, symmetric feature (A) centered at 0.72 eV, which is analogous to the 

transient in the FPES of bare 12-. As the delay time increases, this feature rapidly 

disappears, while another broad feature (B) centered at 0.38 e V dominates the spectrum 

by 0.2-0.4 ps. By 0.7 ps, this feature appears as a shoulder on lower energy feature, 

labeled C in Fig. 5; this shoulder steadily decreases in intensity and disappears by 4.0 ps. 

An additional high energy feature (D) is apparent starting at 0.7 ps between 0.5 and 1.7 

e V. This feature increases in intensity to 1.6 ps, and from 1.6 to lOps shifts gradually 

toward lower electron energy. During this time, feature C shifts toward higher energy, 

coalescing with D into a single feature (E) by 10 ps. 



142 

• ..c 
s..... « 

-

Chapter 5 

\ D , , , , , , 
~ 
,~ 

-. ........ -------

---

----

ps 
200 
10 
6 

2.9 

1.6 

1.0 

~~" r2x 
'~~-.... -.----~-~-=--~-~-~~--"~~~~~~"~--.JO~.~jr!.J 

0.4 
0.2 
0.0 

0.5 1.0 1.5 2.0 
Electron Kinetic Energy I eV 

Fig. 5. h-(C02)16 femtosecond photoelectron spectra. Simulations (---) of spectra at 0.4 ps 
and later based on parameters in Table I are shown superimposed on experimental 
spectra. Between 0.4 and 10 ps, the vertical scale is expanded for energies larger than 0.9 
eV. Labeled features are are discussed in the text. 

, , 



Chapter 5 143 

4. Discussion 

It is instructive to compare the FPES results for h-(C02)4 with those obtained for 

12-(Ar)6. 16 Lineberger found that reC02h and reAr) are the dominant products from the 

photodissociation of h-(C02)4 at 720 nm and h(Ar)6.at 790 nm, respectively.8,13 At 780 

nm, we measure essentially the same distribution of products for h-(C02)4 using the 

reflectron mass analyzer to separate the photoproducts from the pump laser alone. In 

spite of similar asymptotic product distributions for the two anions, with essentially zero 

caging in both cases, the FPES spectra of h -(C02)4 differ significantly from those for lz

(Ar)6. The lz-(Ar)6 spectra show that the 12- bond breaks in approximately 200 fs, just as 

in bare lz-. The resulting "f" features then shift toward higher electron energy from 240 

to 1200 fs without otherwise changing in appearance, and do not evolve further after 

1200 fs. This is due to a progressive weakening of the interaction between the fanion 

and the Ar solvent atoms as the charged photofragment leaves the cluster.29 

In the 1z-(C02)4 spectra in Fig. 4, the narrow 'T" features, B1 and B2, are clearly 

apparent at 0.1 ps. They are shifted by 0.30 e V toward lower electron energy from bare r 

; this "solvent shift" corresponds to -1.5 CO2 molecules.37 However, the appearance by 

0.2 ps of features C1 and C2 at lower electron energy indicates that the interaction 

between the r fragment and solvent molecules has increased between 0.1 and 0.2 ps, and 

the subsequent evolution of the doublets into the broad features D1 and D2 by 0.5 ps 

implies that this interaction strengthens further during this time. The spectra thus suggest 

that the r fragment does not monotonically move away from the solvent species, as was 

the case in 12-(Ar)6. Instead, it appears to initially pull away from the cluster (0.1 ps) but 



144 Chapter 5 

then complexes with the solvent molecules (0.2-0.5 ps). These dynamics are consistent 

with the considerably deeper well in r ... C02 (212 meV)38 as compared to r: .. Ar (46 

me V). 39 Fig. 6 shows a "cartoon" of the dissociation dynamics. 

Parson and co-workers have performed molecular dynamics simulations on 

somewhat larger h-(C02)n clusters which show effects similar to those implied by our 

. spectra.3D These calculations show that in the X state of the cluster, there is an 

asymmetric charge distribution on the two I atoms; the CO2 molecules preferentially 

solvate the I atom with the larger negative charge. This situation is reversed upon 

excitation to the A' state, an effect referred to as "anomalous charge switching".29 

Consequently, once dissociation begins, the r fragment is relatively unencumbered by 

solvent molecules. Although the interiodine distance rapidly increases, the attractive .. 
force between the r and the CO2 molecules surrounding the I atoin fragment is sufficient 

to prevent or at least slow down dissociation on the A' state, and this attractive force 

results in the solvent atoms being drawn toward the r. The resulting more symmetric 

distribution of solvent molecules 'induces non-adiabatic transitions to the lower-lying A or 

X state. This is accompanied byrapid, asymmetric solvation of the r, leaving the neutral 

I fragment with its much weaker solvent interaction free to leave the cluster. These 

calculations therefore suggest that the rapid complexation of the r fragment and 

dissociation of the cluster as evidenced by the evolution of the sharp features BI and B2 

into the broader features DI and D2 is associated at least in part with a non-adiabatic 

transition to one of the two lower-lying electronic states of the cluster. 



Chapter 5 145 

hv 0.0 ps 

0.1 ps 
~ 

0.2 ps 

2 ps 

Fig. 6. "Cartoon" of dissociation dynamics in the h-(C02)4 cluster. Dark spheres indicate 
iodine atoms, and light elongated structures denote CO2 molecules. The symbols ((( ))) 
indicate vibrational excitation. 



146 Chapter 5 

Little change in the spectra occurs after 2 ps, so these photoelectron sp~ctra are 

attributed to r(C02)n clusters. In this time regime, the number of CO2 molecules solvated 

to the r fragment can be estimated by fitting the spectra to a distribution of r(C02)n 

photoelectron spectra; these spectra have been measured previously37 and show that for 

n::;9, each CO2 molecule increases the electron binding energy by -150 meV. The results 

of the best fit at 200 ps is shown superimposed on the experimental spectrum Fig. 4; the 

assumed distribution is given in the figure caption. Note that the n=2 and n=3 clusters 

constitute the bulk of the products at 200 ps, with n=2 being slightly dominant. This 

disagrees with the experimental mass distribution, in which r(C02h and nC02)3 

comprise 75% and 7% of the products, respectively.40 This discrepancy may indicate 

that the time required to evaporate the last C02 molecule is longer than the time window 

of the experiments (200 ps), in contrast to the 1z-(Ar)6 results in which photoelectron 

spectra corresponding to the asymptotic Arr product was evident by 1.2 ps.16 This 

explanation could be tested by measuring spectra at much larger (-ns) delay times, which 

is feasible with a slight modification to the apparatus. We note that the r(C02)n spectra 

used to fit the spectrum in Fig. 4 were taken for cold anions; the imperfect fit at 200 ps 

may be an indication that this spectrum is from vibration ally excited r(C02)n, a necessary 

condition for further evaporation. 

Previous work on 1z-(C02)16 photodissociation at 720 nm and 790 nm by 

Lineberger and co-workers8,9,40 show 100% caging of the 12- product, with 7 (720 nm) or 

6.5 (790 nm) CO2 molecules lost, on average, via evaporative cooling as the Iz-

recombines and vibrationally relaxes. Time-resolved experiments9,lO,14 show that 



ChapterS 147 

relaxation of the Iz- is complete on a time scale of several picoseconds, with the exact 

value depending on the photodissociation wavelength. Similar experiments on Iz-(Arho 

also show 100% caging, but the product mass distribution is bimodal, split approximately 

evenly between bare 12- and 12-(Ar)<n>=I1. 13,40 The 12- channel is attributed to 

recombination on the X state of Iz-, and the FPES study of hCArho shows that the other 

channel is due to recombination on the Iz- A state; this state apparently survives for at 

least several microseconds, the time scale of the Lineberger experiments. The FPES 

experiments on Iz-(Arho also show that the time scales for vibrational energy relaxation 

on the A and X states of 12- are 35 and 200 ps, respectively. The role of the A state in the 

dynamics of 12-(C02)16 clusters following photoexcitation appears to be quite different. 

From the product mass distributions, it is clear that there is no asymptotic trapping on the 

A state. On the other hand, the time-resolved measurements by Lineberger show 

evidence for "coherent recombination" on the A state at pump-probe delays around 2 ps. 

With this background, we now consider the interpretation of the Iz\C02)16 spectra 

in Fig. 5. There are several trends in these spectra to be understood: (1) the evolution 

and eventual disappearance of feature B from 0.2 to 4 ps, (2), the appearance of features 

C and D starting at 0.7 ps, and (3) the eventual coalescence of these two features by 10 

ps. The second two trends are similar to effects seen in the FPES of h-(Arho and are 

attributed to vibrational relaxation of the Iz- chromophore on the X state potential energy 

curve. As shown in Figure 7, photodetachment from a highly vibrationally excited anion 

state results in well-separated high and low energy features in the photoelectron spectrum 

corresponding to transitions from the inner and outer turning points, respectively, of the 

vibrational wavefunction on the Iz- X 2:L: state to the X ':L; state of neutrallz. As the Iz-



148 Chapter 5 

4 
Intensity 

3, 

~2 .--~ 
C) 
s...... 
(]) 
c 

1 UJ CD 
A 

CD m 
A m 

0 
hv 

hv 

-1 
2· 3 4 5 

Distance/A 
Fig. 7. Simulated h- X 2.Eu + state v=O and v=20 vibrational wavefunctions, and 
photoelectron spectra. 

'. 

I 

6 



Chapter 5 149 

vibrationally relaxes, the inner and outer turning points coalesce, as will the two 

corresponding features in the photoelectron spectrum. Hence, the first appearance of the 

high energy feature D indicates that recombination on the X state has occurred by 0.7 ps, 

resulting in highly excited 12-. The subsequent coalescence of features C and D by 10 ps 

represents the time scale over which vibrational relaxation is complete. We note that a 

. full coalescence of the analogous features in the 12-(Arho FPES does not occur, because 

all of the Ar atoms evaporate before the 12- relaxes to its vibrational ground state. In 12-

(C02)16, the evaporation of each CO2 molecule removes considerably more energy from 

the cluster (-240 vs. 73 me V),l3.40 so 12- can easily relax to its ground vibrational state 

without evaporation of all the solvent molecules. 

This process of vibrational relaxation and solvent evaporation can be treated more 

quantitatively by simulating the FPES at various delay times in order to determine the 

average level of vibrational excitation and the number of solvent molecules remaining on 

the cluster as a function of time. To do this, one needs to know how much each C02 

molecule increases the electron binding energy of the 12-. We have measured 

photoelectron spectra of several h-(C02)n clusters using the probe laser alone, and find an 

average increase of 80 meV per CO2 molecule (significantly less than the 140 meV shift 

for r(C02)n). Assuming this to be independent of the 1£ vibrational state, the 

simulations in Fig. 5 can be generated using a range of vibrational levels and cluster 

sizes, the average values of which are given in Table I. Thus, for example, at 1.6 ps, the 

simulations assume a broad vibrational level distribution (16 ::;; v::;; 55, <v>=32) and 13-

14 C02 molecules solvating the cluster, moving to a much colder distribution (0 S v S 17, 



150 Chapter 5 

<v>=3) and 11-12 CO2 molecules by 10 ps. The fit is quite good, except at energies ~0.4 

eV in the spectra between 0.7 and 2.9 ps; this is discussed below. 

Time / QS <v> <Evib> / eV <n> 
0.7 40.5 0.482 14.5 
1.0 40.5 0.482 14.5 
1.6 32.1 0.396 13.5 
2.9 17.5 0.231 13.5 
4 7.3 0.104 11.7 
6 4.8 0.071 11.5 
10 3.1 0.049 11.5 
200 3.1 0.049 11.5 

Table I. Average values of parameters used to fit the 12-(C02)16 FPES spectra between 
0.7 and 200 ps. <v> = average vibrational level, <Evib> = average vibrational energy, 
<n> = average number of C02 molecules. 

The simulations indicate 4-5 CO2 molecules have evaporated by 200 ps, and that 

the h- chromophore is largely vibrationally relaxed, with <v>=3. This means nearly all 

the available energy from relaxation on the X state has been transferred to the various 

solvent vibrational and librational modes. However, comparison with the 

photofragmentation study by Vorsa, 40 in which the dominant product fragrrients are 12-

(C02)9,lO, indicates that solvent evaporation is not complete by 200 ps. Thus, at 200 ps, 

the remaining excess energy is distributed among the solvent modes, and the time scale 

for further solvent evaporation is likely to be described statistically. The incomplete 

evaporation by 200 ps is consistent with recent simulations by Parson and co-workers, 

who predict minimum time scales of several hundred ps for complete evaporation.41 

We next consider the interpretation of feature B. This feature is a distinct peak at 

0.2 and 0.4 ps, but from 0.7 to 2.9 ps it appears more as a shoulder in the spectra around 

0.4 eV. At 0.2 ps, it is reasonable to assign feature B to newly formed rcC02)n within the 

< 
, 



Chapter 5 151 

cluster; the shift from bare r is equivalent to solvation by 8-9 CO2 molecules. This 

number does not reflect the number of C02 molecules in the cluster, only the aver~ge 

number close enough to the r to interact with it. There are two possible interpretations 

to the subsequent evolution of this feature. One can consider this evolution as a steady 

decrease of intensity of feature B from 0.4 to 2.9 ps and attribute this decrease to 

depletion of solvated r via recombination on the X state to form vibrationally excited h-. 

Alternatively, the change in appearance of feature B from a distinct peak at 0.4 ps to a 

shoulder at 0.7 ps can be interpreted as recombination on the A state, with the 

disappearance of the shoulder between 0.7 and 4 ps due to leakage out of the A state and 

onto the X state. According to this mechanism, which is depicted in the "cartoon" in 

Figure 8, recombination on both the X and A state occurs starting around 0.7 ps, but no 

population remains on the A state by 4.0 ps. 

The second mechanism is more in line Lineberger's experiments and Parson's 

simulations,30 both of which suggest that recombination on the A state plays a role in the 

overall dynamics. In contrast to the photodissociation of I2-(Arho, the stronger 

interactions with the CO2 solvent molecules are likely to shorten the lifetime of-this -

excited state significantly, consistent with disappearance of the shoulder by 4 ps. It 

would also be somewhat surprising for the solvated r to persist for several picoseconds, 

given that recombination in I2-(Arho occurs in 1 ps, and all other processes common to 

both clusters occur more rapidly in clusters with C02. We therefore favor the mechanism 

involving some short-lived recombination on the A state. However, to really distinguish 

the two mechanisms it is necessary to have a better understanding of the A state and how 

h- molecules in that state interact with CO2 solvent molecules. 



152 Chapter 5 

hv 

t 

c;; k,1t 0.2 ps 

. 2 
AI II1/2,9 

~ 
((( »)) 1.6 ps ))) 

~ 
4 ps 

6·
······'.·· 

.' 

>~ 

10 ps 

. 
Fig. 8. "Cartoon" of h(C02)16 cluster evaporation and recombination dynamics. 
Symbols are identical to those in Fig. 6. . I 



, -

Chapter 5 153 

5. Conclusions 

Time-resolved photodissociation studies of h -CC02)n=4,16 clusters have been 

performed using femtosecond photoelectron spectroscopy CFPES). The 12-(C02)4 spectra 

show that the r photofragment initially moves away from the cluster, but the attractive 

interaction between the r and C02 molecules is sufficiently strong so that the r is 

prevented from escaping. Instead, from 0.2 to 0.5 ps, it is drawn toward the solvent 

molecules and complexes with several of them. This differs from the scenario for h-CAr)6 

photodissociation, in which the attraction between the r andAr atoms is sufficiently 

weak so the anion solvent interaction decreases monotonically subsequent to 

photodissociation of the h- chromophore. The FPES of 12-CC02)4 for times greater than 

0.7 ps appear to be from a distribution of rcC02)n clusters, with the n=2 and 3 clusters 

present in approximately equal amounts as long as 200 ps after the dissociation pulse. 

Comparison with photofragment ion mass spectra taken several microseconds after 

dissociation indicates that solvent evaporation is incomplete at 200 ps. 

In 12-CC02)16, the FPES experiment allows us to follow a complex series of events 

that occurs· subsequent to photodissociation of the 12- chromophore. Dissociation results 

in a partially solvated r chromophore which can be distinctly observed out to 0.4 ps. We 

interpret the spectra atlonger times to indicate that recombination occurs on both the A 

and X states of h-. Recombination on the A state is short-lived, and by 4ps only the X 

state is populated. Starting at 0.7 ps, we can monitor the process of vibrational relaxation 

on the X state and the accompanying evaporation of solvent molecules. We find 

vibrational relaxation to be largely complete by 10 ps, but solvent evaporation is not 



154 Chapter 5 

complete even by 200 ps. The role of the A state is the most uncertain component of our 

interpretation and requires further experimental theoretical investigation. 

6. Acknowledgments 

I 
-This work is supported by the National Science Foundation under Grant No. 

CHE-9710243 and the Defense University Research Instrumentation Program under 

Grant No. F49620-95-1.:0078. 

·7. References 

1 R. E. Smalley, L. Wharton, and D. H. Levy, J. Chern. Phys. 68,671 (1978). 

2 R. J. Le Roy and J. S. Carley, Advances in Chemical Physics 42, 353 (1980). 

3· N. Halberstadt and K. C. Janda, Dynamics of Polyatomic van der Waals Clusters 

(Plenum, New York, 1990). 

4 J. J. Breen, D. M. Willberg, M. Gutmann, and A. H. Zewail, J. Chern. Phys. 93,9180 

(1990). 

5 Q. L. Liu, J.-K. Wang, and A. H. Zewail, Nature 364, 427 (1993). 

6 A. W. Castleman; Jr. and K. H. Bowen, Jr., J. Phys. Chern. 100, 12911 (1996). 

7 M. L. Alexander, N. E. Levinger, M. A. Johnson, D. Ray, and W. C. Lineberger, J. 

Chern. Phys. 88, 6200 (1988). 

8 J. M. Papanikolas, J. R. Gord, N. E. Levinger, D. Ray, V. Vorsa, and W. C. 

Lineberger, J. Phys. Chern. 95, 8028 (1991). 

9 J. M. Papanikolas, V. Vorsa, M. E. Nadal, P. J. Campagnola, J. R. Gord, and W. C. 

Lineberger, J. Chern. Phys. 97, 7002 (1992). 



Chapter 5 155 

10 J. M. Papanikolas, V. Vorsa, M. E. Nadal, P. J. Carnpagnola, H. K. Buchenau, and W. 

C. Lineberger, J. Chern. Phys. 99, 8733 (1993). 

11 D. Ray, N. E. Levinger: J. M.Papanikolas, and W. C. Lineberger, J. Chern. Phys. 91, 

6533 (1989). 

12 A. Sanoy, S. Nandi, and W. C. Lineberger, 1. Chern. Phys. 108,5155 (1998). 

13 V. V~rsa, P.J. Carnpagnola, S. Nandi, M. Larsson, and W. C. Lineberger, J. Chern. 

Phys. 105, 2298 (1996). 

14 V. Vorsa, S. Nandi, P. J. Carnpagnola, M. Larsson, and W. C. Lineberger, J. Chern. 

Phys. 106, 1402 (1997). 

15 B. J. Greenblatt, M. T. Zanni, and D. M. Neurnark, Chern. Phys. Lett. 258, 523 

(1996). 

16 B. J. Greenblatt, M. T. Zanni, and D.M. Neurnark, Science 276, 1675 (1997). 

17 E. C. M. Chen and W. E. Wentworth, J. Phys. Chern. 89,4099 (1985). 

18 D. R. T. Appadoo, R. J. Leroy, P. F. Bernath, S. Gerstenkorn, P. Luc, J. Verges, 1. 

Sinzelle, J. Chevillard, and Y. Daignaux, J. Chern. Phys. 104,903 (1996). 

19 X. N. Zheng, S. L. Fei, M. C. Heaven, and J. Tellinghuisen, J. Chern. Phys. 96,4877 

(1992). 

20 J. W. Tromp and R. J. Le Roy, J. Mol. Spectrosc. 109,352 (1985). 

21 F. Martin, R. Bacis, S. Churassy, and J. Verges, J. Mol. Spectrosc. 116,71 (1986). 

22 M. E. Nadal, P. D. Kleiber, and W. C. Lineberger, J. Chern. Phys. 105,504 (1996). 

23 D. E. Smith and Co B. Harris, J. Chern. Phys. 87, 2709 (1987). 

24 A. E. Johnson, N. E. Levinger,. and P. F. Barbara, J. Phys. Chern. 96,7841 (1992). 



156 Chapter 5 

25 P. K. Walhout, J. C. Alfano, K. A. M. Thakur, and P. F. Barbara, 1. Phys. Chern. 99, 

7568 (1995). 

26 L. Perera and F. G. Arnar, J. Chern. Phys. 90, 7354 (1989). 

27 V. S. Batista and D. F. Coker, J. Chern. Phys. 106, 7102 (1997). 

28 J. M. Papanikolas, P. E. Maslen, and R. Parson, J. Chern. Phys. 102,2452 (1995). 

29 J. Faeder, N. Delaney, P. E. Maslen, and R. Parson, Chern. Phys. Lett. 270, 196 

(1997). 

30 N. Delaney, J. Faeder, P. E. Maslen, and R. Parson, J. Phys. Chern. A 101 (1997). 

31 W. C. Wiley and I. H. McLaren, Rev. Sci. Instrurn. 26, 1150 (1955). 

32 O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, and R. E. Smalley, Rev. 

Sci. Instrurn. 58, 2131 (1987). 

33 L.-S. Wang, H.-S. Cheng, and J. Fan, J. Chern. Phys. 102,9480 (1995). 

34 H. Handschuh, G. Gantefor, and W. Eberhardt, Rev. Sci. Instrurn. 66, 3838 (1995). 

35 M. D. Davidson, B. Broers, H. G. Muller, and H. B. van Linden van den Heuvell, J. 

Phys. B 25, 3093 (1992). 

36 M. T. Zanni, T. R. Taylor, B. J. Greenblatt, B. Soep, and D. M. Neurnark, J. Chern. 

Phys. 107, 7613 (1997). 

37 D. W. Arnold, S. E. Bradforth, E. H. Kim, and D. M. Neurnark, J. ~hern. Phys. 102, 

3510(1995). 

38 . Y. Zhao, C. C. Arnold,and D. M. Neurnark, J. Chern. Phys. Faraday Trans. 89, 1449 

. (1993). 

39 I. Yourshaw, Y. Zhao, and D. M. Neurnark, J. Chern. Phys. 105,351 (1996). 



Chapter 5 157 

40 V. Vorsa, Ph.D. Thesis, University of Colorado, Boulder (1996). 

41 N. Delaney, J. Faeder, and R. Parson, private communication. 



158 

Chapter 6. Femtosecond photoelectron 
spectroscopy of b-(Ar)n photodissociation 
dynamics (n = 6, 9, 12, 16, 20)* 

Femtosecond photoelectron spectroscopy has been used to study the 

photodissociation of 12- embeddedin size-selected 12-(Ar)n cluster (n = 6-20). This size 

range spans the uncaged and fully caged product limits for this reaction. The number of 

Ar atoms around the nascent r product decreases in the first -1.0 ps, due to separation of 

r from the cluster. At longer time delays, the number increases again in 12 -(Ar)n ;:: 9, due to 

an electronic transition from the A' state to the X and/or A states, followed by solvent 

rearrangement. In Iz-(Ar)n;:: 12, recombination of Iz- also occurs, along with vibrational 

relaxation and evaporation of Ar atoms. Simulations of the photoelectron spectra at 

different time delays were generated in order to characterize the dynamics in detail. An 

increasing rate of 12- recombination is observed as cluster size increases from n = 12 to 

20; however, vibrational relaxation is minimal in clusters smaller than n = 20, due to 

insufficient energy dissipation by Ar evaporation. In Iz-(Arho, energy transfer from Iz- to 

Ar atoms through vibrational relaxation is slightly faster than energy loss from the cluster 
L 

through Ar evaporation, indicating the temporary storage of energy within Ar cluster 

modes. Results are compared to previous experimental studies of 12-(Ar)n 

photodissociation, as well as theoretical models. 

1. Introduction 

The femtosecond photodissociation dynamics of Iz- in small, mass-selected 

clusters provides an unprecedented opportunity to study real-time energy transfer 

• B. J. Greenblatt, M. T. Zanni, and D. M. Neumark, J. Chern. Phys., in preparation for submission 



Chapter 6 159 

between solute and solvent in the gas phase. Beginning with.the pioneering efforts of the 

Lineberger group studying Br2-(C02)n and 12-(C02)n photofragments,1.,2 work has 

expanded to include photofragmentation studies in related clusters3-5 including h-(Ar)n,6,7 

femtosecond pump-probe experiments,2,4,8-13 and several theoretical models. 14-27 

Photodissociation of h- in solution has also been performed on the femtosecond time 

scale,28-32 allowing for comparison between molecular cluster and bulk environments. 

The general picture which has emerged is that "caging" of photodissociated X2- (h-, Br2-, 

ICn can occur in clusters with only a few solvent molecules, producing recombined (X2--

based) products. As the cluster size increases, so does the caging fraction, reaching unity 

in the case of h-(Ar)n at n = 17, somewhat less than one full solvent shell. Rates of 

recombination also increase with cluster size. Changing the type of solvent reveals a 

strong dependence on solvent-solute binding energy in the recombination rate (Ar < CO2 

z OCS). Mechanistic changes are also apparent in different solvent environments. 

h-(Ar)n clusters represent an almost ideal weakly interacting system, with an 12--

Ar well depth of only 53 meV,33 much smaller than the h- X state well depth (1.014 

eV).34 Despite the small per atom interaction, the collective effect of many solvent atoms 

has a strong influence on the photodissociation dynamics. A previous study of this system 

using femtosecond photoelectron spectroscopy (FPES) investigated the uncaged and 

fully-caged cluster limits,12 providing information such as the interaction time of the 

solvent with dissociating r, and time scales for electronic transitions and subsequent 

vibrational relaxation ofl2-. This work examines these previous clusters, plus three 

additional intermediate-sized clusters, one of which [h-(Ar)12] yields both caged and 

uncaged products, allowing the evolution of the energy transfer dynamics to be followed 



160 Chapter 6 

across cluster size. A companion paper details results for rz·(C02)n clusters over a similar 

range of sizes.35 

FPES36 is a tiIQ.e-resolved, pump-probe scheme in which a cold, mass-selected 

anion is promoted to an excited electronic state by a femtosecond pump pulse. The 

resulting wavepacket will evolve on this excited potential surface, generally leading to 

dissociation or nonadiabatic transitions to other electronic states with possible 

recombination of fragments. A second, delayed femtosecond probe pulse detaches an 

electron from the anion, producing a photoelectron spectrum. Since the electron kinetic 

energy depends on the difference between anion and neutral potential energies, 

identification of electronic and vibrational states of the anion is possible when the neutral 

potential energy surfaces are well-characterized. The strength of the technique lies in the 

ability to observe wavepacket dynamics on mUltiple electronic states at all time delays, 

without changing the probe wavelength. This was not possible with the techniques 

.employed by Lineberger and coworkers,7,}! who only observed asymptotic products, or 

the time-resolved appearance of vibrationally relaxed 12-. These and other previous 

experimental and theoretical studies will be described briefly below .. 

Photofragmentation mass spectra of photodissociated I2-(Ar)n clusters were 

measured by Vorsa et al.,6,7 in which a cold, mass-selected cluster was excited to the k 

state of 12- (Fig. 1) with a pulsed laser at 790 nm, and the masses of photofragments 

analyzed using a reflectron. They observed only r(Ar)n fragments in smaller clusters, 

slowly being replaced by rz-(Ar)n fragments starting at a parent cluster size of n = 10, 

with the r(Ar)n channel vanishing by n = 17. The numbers of Ar atoms present in both 

r(Ar)n and rz-(Ar)n fragments were smaller than that of the parent cluster, with more 



Chapter 6 161 

atoms lost in the h- fragments. This observation was consistent with the expectation that 

the available energy in the cluster is dissipated through Ar evaporation, so that the larger 

energy liberated by the recombination of h- resulted in a smaller number of remaining Ar 

atoms. Interestingly, two distinct h-(Ar)n fragment size groupings or "channels" were 

observed, hypothesized to correspond to h- X and A state products. Two r(Ar)n 

fragment groupings were also observed in larger (n ~ 11) clusters, for which no 

explanation was given, but Faeder et az.20 later attributed the high-mass channel to 

dissociation on the X or A state, rather than the A' state. 

I 2pl/2 + 12P3/2 

Probe 

o 

-2 2 3 4 5 6 7 8 
Distance/A 

Fig. 1. Potential energy curves for bare h-. Solid lines (--): h-. Dotted lines C····): h. 



162 Chapter 6 

A time-resolved absorption recovery experiment of the 12-(Arho cluster was also 

performed by Vorsa et al., II in which cold, mass-selected clusters were excited with a fs-

duration pulse at 790 nm, then,re-excited with a second, identical pulse after a variable 

time delay, recording the total flux of two-photon photofragments which presumably 

indicated the absorption of 12- near the bottom of the X state well. This absorption was 

found to occur with an exponential time constant tile of 127 ps.No other transient 

features were observed, such as those found in large 12-(C02)n clusters.2,9-11 This work 

was complemented by FPES studies of h-(Ar)6 and h-(Arho clusters in our group. 12 In 

h-(Ar)6, r(Ar)n"" I was observed to leave the cluster in -1.2 ps. In 12-(Arho, caging by the 

solvent resulted in recombination and vibrational relaxation of h- on both the X and A 

states; these processes were complete in -200 ps and -35 ps, respectively. 

A number of theoretical papers have been published on 12-(Ar)n clusters, exploring 

both structure and dynamics. Minimum energy structures of 12-(Ar)n clusters have been 

calculated by Faeder et al.2o and Batista et al. 19 In the study of Faeder et al., which 

appears to be more consistent with experiments,33 the first 6 Ar atoms surround the 12-

axis in a ring configuration, with the next 7 Ar atoms solvating one I atom, and any 

additional atoms cluster to the other I atom, completing a full shell at n = 20. 

Asymmetrically-solvated clusters have an excess negative charge on the more solvated I 

atom. Fig. 2 shows calculated structures for three cluster sizes: n = 6, 12 and 20. 

Fig. 2. (On next page) Calculated minimum-energy structures of selected h-(Ar)n 
clusters: (a) 12-(Ar)6; (b) 12-(Ar)12; (c) h-(Arho. 



Chapter 6 163 

(a) 

(b) 

(c) 



164 Chapter 6 

Maslen et al. l6 investigated the effect of solvent on charge localization in 

different h- electronic states. For the two lowest-lying states, the X and A (see Fig. 1), 

the charge is attracted to the more solvated atom, localizing completely at sufficiently 

large internuclear distances, a process called "normal charge-switching." In the A' state, 

however, the polarizability of the molecule is negative along the 12- axis,2o so that the 

charge tends to localize on the less solvated atom, a process called "anomalous charge-

switching." This is illustrated schematically in Fig. 3 for 12-(Ar)12, an asymmetrically-

solvated cluster, adapted from Delaney et aUl Solid lines indicate potential surfaces near· 

the equilibrium radius of 12-, while dotted lines indicate surfaces near the dissociation 

asymptote. The cluster drawings indicate the solvent configuration and location of the 

charge. The "solvent coordinate" is defined as the change in energy when the charge is 

moved to the opposite I atom. When 12- is excited by the pump pulse (represented by the 

thick vertical arrow) from the X to the A' state, the energetically favorable solvent 

configuration on the X state becomes energetically unfavorable on the A' state. This 

results in motion of the solvent atoms back toward the charge. However, the solvent 

atoms are unable to c.ompletely surround the charge, because it is always localized on the 

less solvated I atom, resulting in a symmetric solvent distribution as the minimum energy 

structure in this state. As the h- bond lengthens, the likelihood of an electronic transition 

to the X or A state increases; when this occurs, the solvent atoms will rearrange into a 

more heavily solvated configuration around the r, similar to the starting arrangement. 



Chapter 6 165 

, Anomalous , , , , 
# , 

# 

~ 
# 

bIJ 
~ 
(]) 

~ 
~ 

~ # 
~ /# 

, # ~ 
# ~ # 

# 
~ 

# , 
# 

# 
, , 

# , 

# Normal ~, 

Solvent Coordinate 
Fig. 3. Illustration of charge-switching. Solid lines indicate potential surface near the 
equilibrium radius of Iz-; dotted lines indicate potential surface near the dissociation 
asymptote. Drawings indicate schematically the solvent configuration and location of the 
charge. The symmetric configuration (center drawing) has the charge shared equally by 
both I atoms. The "solvent coordinate" is defined as the change in energy when the 
charge is moved to the opposite I atom. The thick vertical arrow indicates the A' ~ X 
excitation. (Adapted from Delaney et al.)21 

Time-resolved dynamics of I2-(Ar)n clusters were investigated by Faeder et 

al.,20,23 with molecular dynamics simulations, using a surface-hopping algorithm to 

model electronic transitions. Photoelectron spectra were simulated for F(Ar)6 and 



166 Chapter 6 

Iz-(Arho to allow comparison with FPES work from Greenblatt et al. 12. In all clusters, the 

simulations predicted that r and I fragments separated rapidly until -I ps; in 'larger 

clusters [I2-(Ar)n~9],20,37 some trajectories underwent a transition t~ the X ot A state, 

resulting both in r dissociation, and Iz- recombination and vibrational relaxation. For 

I2-(Arho, recombination on the X state occurred in 5-10 ps, with vibrational relaxation 

requiring more than 200 ps to complete. The number of solvent atoms evaporated tracked· 

the solute internal energy closely. Recombination on the A state took up to 40 ps, but 

relaxation was much more rapid (-10 ps), owing to the smaller amount (-10%) of 

internal energy required to be dissipated. However, the solvent evaporation rate was 

slow, comparable to the X state. 

Batista et al. 19 also investigated Iz-(Ar)n photodissociation using a similar 

molecular dynamics/surface-hopping algorithm. Their results were much the same as for 

Faeder et ai., reproducing all the asymptotic features observed in Vorsa et al. 

Recombination on both the X and A states was increasingly rapid as cluster size I 
increased, from -10 ps in Iz-(Ar)ll, to -3 ps in Iz-(Ar)19, but solvent evaporation in the 

largest cluster took longer than the time scale of the simulations, 45 ps. They also 

observed a larger number of solvent atoms in the Iz- A state at long time delays than in 

Vorsa et al.,6,7implying a slow evaporation rate from this state. 

The FPES experiment excites a mass-selected anion cluster with a femtosecond 

pump pulse from the X state to the dissociative A' state. A second, delayed 

femtosecond probe pulse generates a photoelectron spectrum. Features arising from r, 

and the h- X state in different vibrational levels, are readily distinguished. The h- A 



Chapter 6 167 

state appears similar to r, but is still discernible. The number of solvent atoms 

surrounding the anion in each state may also be determined from the spectrum. 

The major goal of this study, as well as the accompanying study of h-(C02)n 

clusters, is to use FPES to observe how the dynamics evolve from the uncaged to caged 

cluster size limits. Key findings for F(Ar)n clusters include: 1). Determination of the 

initial solvent configuration from measuring the number of solvent atoms around r at 

early time delays (-300 fs). This confirms the anomalous charge-switching predictions of 

Maslen et al.,16 where the electron hops to the less-solvated 1 atom upon excitation to the 

A' state. 2). Measurement of the time-resolved number of solvent atoms in both the r 

and h - X state channels, providing information on relaxation dynamics from the point of 

view of solvent evaporation. This enabled the time evolution of uncaged fragments to be 

observed, and the rates of solvent loss and vibrational relaxation to be compared in caged 

clusters, such as h-(Arho. 3). A detailed picture of the vibrational relaxation in caged 

photofragments, especially 12-(Arho, which relaxes almost completely over a -200 ps 

timescale. 4). Unambiguous identification of the 12- 11 state, along with information 

about its time evolution, which provided a more complete characterization of this state. 

2. Experimental 

The experimental apparatus has been described in considerable detail elsewhere,13 

and will only be summarized briefly here. To generate cluster anions, Ar carrier gas (20 

psig) is passed over solid h and expanded into vacuum through a piezoelectric pulsed 

valve running at a repetition rate of 500 Hz. A 1.5 ke V eiectron gun crosses the resulting 

supersonic expansion, creating vibrationally cold negative ions, which are then pulse-

extracted into a Wiley-McLaren38 time-of-flight mass spectrometer. Femtosecond pump 



168 Chapter 6 

(780 nm, 80 fs, 150 ~) and probe (260 nm, 100fs, 20 ~) pulses, produced from a Clark-

MXR regeneratively amplified Ti:sapphire laser, intersect the ions at the focus of a 

magnetic bottle electron spectrometer,39 detaching photoelectrons. Electron kinetic 

energies (eKE) for the resulting photoelectrons are measured by time-of-flight. High 

collection efficiency of the magnetic bottle enables rapid acquisition (400-1200 s) of 

photoelectron spectra. Since the probe photon has sufficient energy to detach electrons 

from the ground state of F(Ar)n clusters, spectra are not background-free, so a fraction of 

this "probe only" spectrum was subtracted from the pump-probe spectra in order to 

facilitate observation of the two-photon signals. The energy resolution of the 12-

photoelectron spectrum has been improved -4x using pulsed deceleration40 of the anions 

just prior to laser interaction. This technique, recently added to the spectrometer, was 

only employed for bare h-. However, since the resolution scales as (EUlm)1I2, where E is 

the electron kinetic energy, U is the anion kinetic energy, and m is the anion mass,36 the 

heavier h-(Ar)n clusters have an inherently narrower resolution, and light clusters were 

measured at slower beam energies to improve their resolution. Typical resolution for 1 

eV electrons was 90 meV for h-, and 90-130 meV for 12-(Ar)n clusters. 

3. Results 

Time-resolved photoelectron spectra have been measured for h- and for h(Ar)n 

clusters withn = 6, 9, 12, 16 and 20. Each molecule was studied at several pump-probe 

time delays, over a range of -50-200 ps. In addition, the h-(Arho cluster was measured at 

3 ns pump-probe delay. Spectra at selected time delays are shown in Figs. 4-5. Features 

have been labeled with capital letter designations, following a scheme summarized in 

Table 1 which is consistentamong all the clusters studies, as well as with the 12-(C02)n 



Chapter 6 169 

clusters in the accompanying paper,35 tO,allow for comparisons across cluster size and 

type. These assignments are based on previous work,12,13,36 and the analysis presented in 

the following section. 

Bare 12- displays two broad features Al (1.7-2.2 eV) and A2 (0.8-1.3 eV) peaking 

near 0 fs, transforming into sharper features B I (1.71 eV) and B2 (770 meV) which reach 

full height by 380 fs. The A features originate from wavepacket overlap with neutral 

potential energy curves in the initial Franck-Condon region36,41 (see Fig. 1). The B 

features, differing in energy by the spin-orbit splitting of neutral I (943 me V),42 

correspond to fully dissociated r. 

Table 1. Labeling system of features observed in FPES, with corresponding assignments. 
In cases where two spin-orbit manifolds are visible (peaks A, B and D), each is labeled 
with a subscript, e.g. AI and A2, according to decreasing eKE. 

Label 
AI,A2 
BI,B2 
DI , D2 
E 
F 

Assi nment 

Iz ~ Iz- A' (short-time transient) 
I~r 

12 ~ 12- A 
12 X ~ Iz- X inner turning point (ITP) 
Iz X ~ Iz- X outer turning point (OTP), 
12* ~ 12- X 

Fig. 4. (On next page) FPES at selected time delays: (a) 12-; (b) 1z-(Ar)6; (c) 12-(Ar)9. 
Pump photon energy = 1.589 eV, probe photon energy = 4.768 eV. 



(a) B} 12-1 (b) n==61 (c) 

B2 

580fs .c 1.5 
.~ 

rn 
$:l 

~ 
380 

~ 

280 600fs 
180 -

300 

10 

o 1 2 3/0 1 2 0/0 
Electron Kinetic Energy/eV 

n~9 

100 

12 

2.8 

1.2 

290fs 
1 2 3 

( 

...-
-.l 
o 



Chapter 6 171 

In I2-(Ar)6, the spectrum initially resembles bare h-, displaying A features at 10 fs 

which evolve to.B features by 300 fs. BI and B2 are shifted 120 meV to lower eKE 

relative to bare r. This shift is due to the presence of Ar atoms, since the f-Ar bond is 

stronger than that of I-Ar, resulting in an increase in electron affinity. Between 300 fs and 

1.5 ps, the energies of the B features increase 80 me V, indicating a lessening interaction 

between the Ar atoms and f, as the f fragment separates from the cluster. Through 200 

ps there is an additional eKE increase of 10 meV, due to Ar atom evaporation. 

For h-(Ar)9, the B features appear 150 meV lower than bare f, and from 300 fs to 

1.1 ps their eKE's increase 80 meV, as for h(Ar)6. However, from 2.8 to 12 ps, the 

features decrease 30 meV in energy, indicating an iricreased number of Ar atoms around 

f, the cause for which will be explored in the Discussion section. Through 100 ps, the 

energy increases again by 10 meV, due to Ar atom evaporation. 

In the I2-(Ar)12 cluster, the B features closely track those in h-(Ar)9 from 310 fs 

through 2.5 ps, after which they broaden significantly toward lower eKE, and decrease 

-25% in integrated intensity. At this point (9.0 pS), the features are relabeled DI and D2. 

The broadening is attributed to partial recombination on the h- A state (see Discussion). 

Between 2.5 and 9.0 ps, feature E appears between 1.9 and 3.0 eV, along with a broad 

feature F between 900 meV and 1.3 eV. These features are assigned to vibrationally 

excited h- on the X state. Both features E and F become more prominent out to 45 ps. 

Fig. 5. (On next page) FPES at selected time delays: (a) h(Ar)12; (b) h-(Ar)16; (c) 
I2-(Arho. Pump photon energy = 1.589 eV, probe photon energy = 4.768 eV. 



c ~u .-00 
~ 

A ~ 

B2 I I 

o 1 

. ~ 

-

• .f' 
6.0 

- . --

~ 
~ 

E • I fiD fL_ E 3.0 
• 2.5 • 
• 

~ ,.~ lOx 

~II '.~5XuJ ~41\ 
1.0 II 1.1 

~"l 

310fs 250fs 330fs 

2 3/0 1 2 3/0 1 2 3 
Electron Kinetic Energy/eV 



Chapter 6 173 

The I2-(Ar)16 spectra display B features initially 220 meV lower than r, increasing 

90 me V through 1.1 ps. Between 2.0 and 20 ps the features broaden and shift to lower 

eKE by 240 meV, where they are relabeled Dl and D2, due to recombination on the A 

state. Between 2.0 and 10 ps, features E (1.7 and 2.9 eV) and F (0.8-1.3 eV) grow in, 

more intense relative to the D features than in h-(Ar)12, due to recombination on the h-

X state. Between 10 and 50 ps, the high-energy edge of feature E shifts -100 me V to 

lower energy, indicating partial vibrational relaxation. 

For h-(Arho, the B features appear 300 meV lower than r and increase 50 meV 

through 1.0 ps. After this time delay, they reverse direction and are relabeled DJ and D2, 

shifting 140 me V to lower eKE through 35 ps, due to A state recombination, with 

broadening and a -40% decrease in integrated intensity. Features E (1.6-2.7 eV) and F 

(0.5-1.2 e V) appear by 6.0 ps. The high-energy edge of feature E shifts -700 me V to 

lower eKE through 3 ns, while feature F undergoes a complex evolution in structure. The 

changes in features E andF are due to extensive X state vibrational relaxation. 

4. Analysis 

The goal in simulating the FPES spectra is to determine, at each time delay, the 

state of the cluster. This consists of answering four basic questions: 1). Have I and r 

recombined? 2). If r is present, how many solvent molecules surround it? 3). If h- is 

present, what is the electronic and vibrational state, and how many solvent molecules 

surround it? 4). What are the relative populations of the different states (12- X ,h- A, n 

in the cluster? In certain cases, these questions can be answered immediately by looking 

at the spectrum, whereas others require iterative refinement of simulation parameters to 

accurately characterize the cluster. Simulations were performed using a combination of 



174 Chapter 6 

measured spectra and theoretical calculations, the procedures for which are detailed 

below. Unlike previous studies of bare 12-,36,41 no explicitly time-dependent calculations 

were performed, as the number of degrees of freedom in 12-(Ar)n clusters were far too 

large for our existing wavepacket propagation programs. 

It was assumed that, after the initial (-300 fs) h- dissociation, 1 and fare well-

separated, so that 1 has little influence on the photoelectron spectrum of r. This is 

substantiated by the observation that pairs of features (Bl and B2) are present in all 

spectra at short times « 1-2 ps), differing in energy by approximately the spin-orbit 

splitting of 1 (943 me V) which is characteristic of the photoelectron spectrum of f, 

though shifted to lower eKE. The shift is a well-understood effect, arising from the 

difference in binding energy between the f-Ar (45.8 meV) and I-Ar (18.8 meV) bonds.43 

These differences have been measured precisely using zero electron kinetic energy 

(ZEKE) and partially-discriminated threshold photodetachment spectroscopy of r(Ar)n 

clusters.43 

The initial average number of Ar atoms around f ("<n,->") were calculated by 

comparing the eKE of feature Bl at -300 fs to the measured values in the above study, 

using linear interpolation to estimate a fractional <n,-> when the energy lay between 

measured shifts. Resuits are presented in Table 2, along with estimates of <n,"> for the 

anomalous and normal charge-switching states, based on calculated structures,20 and 

assuming no loss of Ar atoms. For analyzing <n,-> at later time delays, Fig. 6 shows the 

eKE of feature B 1 vs. tiI!le for all clusters, with <nI> indicated on the righthand side of 

the figure. For h-(Ar)n ~ 12, the graph stops when the feature begins to decrease in energy 

and is relabeled D 1, as it no longer reflects a pure f signal. 



I 

Chapter 6 175 

Table 2. Number of solvent atoms <nI-> for feature BJ at -300 fs, along with estimated 
<nI-> for anomalous and normal charge-switching states, calculated from model 
structures.23 

Parent cluster BJ Anomalous Normal 
6 4.7 6.0 6.0 
9 5.4 6.0 9.0 
12 5.8 6.0 12.0 
16 9.1 9.0 13.0 
20 13.3 13.0 13.0 

1.7 0 
n=6 • > Q) 

.A -....... 

§ 1.6 n=9 + 
Q) n = 16 5 ~ 
~ 
~ 
0 1.5 • ~ t ~ 

10 u 
Q) n=20 ........ Vorsa 
~ 

1.4 et al. 
0.1 1.0 10 100 

Time/ps 

Fig. 6. Center eKE of feature BJ vs. time, for all 12-(Ar)n clusters. Number of Ar atoms 
(<nI-» is shown on righthand axis, calculated from Y ourshaw et al.43 

Z 

~ 
CD 
~ 

0 
H) 

> ~ 

~ 
!"""t--
0 
S 
00 

For simulating the FPES spectra, r(ArJn features were generated from a measured 

probe-only spectrum of bare r, shifted in energy according to the known solvent shift. 

The integrated intensity of the 1 2P3/2 ~ r J So transition was taken to be 2.0 (see Table 3), 

relative to 1.0 for the 12 X ~ 12- X (v = 0) transition as determined by comparing the 

integrated intensities of h- bleach and r (signal) features in the FPES of bare h-. The 

intensity of the 1 2pl/2 ~ r J So transition was empirically determined to be 0.6. The final 



176 Chapter 6 

spectrum was convoluted with an instrument resolution function,36 calibrated 

approximately for experimental conditions. 

Table 3. Relative integrated intensities of transitions used in simulated spectra. 

Transition 

h X ~ h- X (v = 0) 
h X ~ 12- X (v > 0) 

12 A' / A ~ 12- X 
12 jj' / jj" ~ 12- X 
h (i ~ 12- X 
h (i' ~ 12- X 
h jj ~ Iz- X 

Relative inte rated intensit 
1.0 
0.4-1.6* 
0.24 
0.2 
0.15-0.5** 

1.5x (12 (i ~ h- X) 
0.5-1.0** 
0.22 
0.44 

h (i' ~ 12- A 0.66 

h jj ~ h- A 0.6 

1 P312 ~ r So 2.0 
1 2P1I2 ~ r ISO 0.6 
*Spectra scaled with energy-dependent functionj(E); see below and text. 
**Varied with spectrum. 

To simulate the photoelectron spectrum arising from a vibrationally excited h X 

state, wavefunctions were calculated using standard procedures for a Morse oscillator,44 

and a photoelectron spectrum for each vibrational level was generated using a time-

dependent propagation method45 to calculate the Franck-Condon overlap with various 

neutral states. The 12- X state potential ·parameters are identical to Ref. 34. Neutral state 

parameters are identicalto Ref. 41, with the exception of the jj' state, whose repulsive 

wall was adjusted empirically to fit a high-resolution (-lOme V) photoelectron spectrum 

of h".33 It was assumed that spectra arose from an incoherent superposition of vibrational 

levels, so composite spectra were constructed by summing spectra from individual 

vibrational wavefunctions over a distribution of levels. The presence of Ar atoms 



Chapter 6 177 

decreases the eKE of Iz- features, much as for r(Ar)n. These solvent shifts have been 

measured for vibrationally cold h(Ar)n clusters using photoelectron spectroscopy,33 and 

are used to shift the simulated spectra. The shifts are smaller than for r(Ar)n, despite the 

fact that the 12--Ar binding energy (53 me V) is larger than that of f-Ar (45.8 me V);43 this 

is due to a somewhat larger 12-Ar binding energy over that of I-Ar. It is assumed that the 

shifts do not change for v> O. Note that the Iz--Ar bond energy is significantly lower than 

the energy lost per Ar atom due to evaporation (73 me V), as calculated in Vorsa et ai. 

from the number of solvent atoms remaining in 12- fragments from large (n > 20) parent 

clusters. This discrepancy was attributed to kinetic energy of the departing Ar atom.7 

Two simulated photoelectron spectra of the Iz- X state and their relation to the Iz 

potential energy curves are shown in Fig. 7 for (a) v = 0 and (b) v = 20. The vibrationally 

cold spectrum (v = 0) consists of an extended progression, unresolvable with instrument 

resolution, centered at 1.54 e V (the Iz X state), a pair of narrow features at 1.00 e V 

[kCn2J] and 900 meV [ACn1J], another pair of narrow features at 650 rrieV 

[B'Cno-)] and 540 meV [B"en u )]' and two broad, overlapping features at -300 meV 

[5 Cn 1g ) and B Cno+) ]. The 5' CL~+ g) state is not observable, as it is not accessible by 

the probe photon from h X (v = 0). 

For the vibrationally excited X state (v = 20), the shapes and energies of the 

photoelectron features change considerably. Since the amplitude of the X state 

wavefunction is concentrated near the classical inner and outer turning points of the 

potential (ITP and OTP, respectively), Franck-Condon overlap with 12 states will be 

largest in these regions. For the Iz X ~ h X transition, the large change in Iz X 



178 Chapter 6 

potential energy with internuclear distance produces distinctive and well-separated 

features arising from each region (see Fig. 7): an extended tail at high eKE, arising from 

the ITP region, and a narrower, intense peak at low eKE due to the OTP region. The ITP 

region of the spectrum is very sensitive to v, whereas the OTP region is fairly 

.4 
(b) 

(a) v = 20 
v=O- BOTP 

B+ao } 
12* 

r.-"'~ ---I o 

XITP 
I 

OTP 
(D 

~~ 
(D 

)(W'MwtlllWWINV.)C::...I\jI(v = 20)( 
1",( v = 0)1

2 

3 4 5 6 
Internuclear distance/ A 

Fig. 7. Example of how h- X state wavefunctions in different vibrational levels give rise 
to very different photoelectron spectra. (a) v = 0; (b) v = 20. 



Chapter 6 179 

independent of v over a wide range (-1 0~30). At higher vibrational levels, the OTP 

energy increases with v. For the . .4' ~ X and it ~ X transitions, the difference in 

eKE between the ITP and OTP regions is much less, though there is a considerable 

broadening for v> -30. The jj', jjll, {i and {i' states display a wider range of potential 

energies, so that the OTP regions of these transitions overlap with the A' / it ~ X , and 

the ITP regions occur at much lower eKE. The jj ~ X transition, correlating at large 

internuclear distance with the I 2pl/2 ~ r ISO transition, appears near 200 meV for v ~ 60. 

In order to determine <V> from a spectrum, the number of solvent atoms ("<nx>") 

must also be known, since both parameters affect the eKE of features E and F. When <V> 

is very small « -5), the X ~ X transition is compact and the shape depends sensitively 

on <V>, so both <nx> and <V> may be simultaneously determined by simulating the 

shape and energy of feature E. For larger <V>, the X ~ X ITP energy is mostly 

governed by <V>, but <nx> strongly modifies it, so feature E cannot be used to determine 

<V> exclusively. However, feature F, arising from the X ~ X OTP and 

A' / it / jj' / jj" / {i / {i' / jj (collectively referred to as h*) ~ X' transitions, is more 

sensitive to <nx> than to <V>, and for <V> between -5 and -30, two distinct peaks are 

visible which can be used in conjuction with the X ~ X ITP transition to obtain both 

<V> and <nx>. For <V> larger than -30, the X ~ X OTP and 12* ~ X transitions 

coalesce into a single, broad peak, and determination of <nx> is less precise. 

The integrated intensities of transitions from h- X to different h electronic states 

were empirically determined from fitting a one-photon spectrum of bare 12-, normalizing 

the X ~ X (v = 0) transition to 1.0 as a reference (see Table 3). It is assumed that these 



180 Chapter 6 

. intensities do not change in Iz- clusters. For V > 0, it has been shown in the course of 

fitting spectra that the X ~ X transition dipole moment varies with eKE as' well as v, 

the most dramatic deviations being observed in the ITP and OTP regions at large v (> 

-30), with apparent intensities 1.6 and 0.4 times the v = 0 intensities, respectively. This is 

not unexpected, since the wavefunctions are quite extended for vibrationally excited 

levels,and the overlap oftheelectronic orbitals will be significantly different than at the 

equilibrium bond distance, changing the relative cross section. Therefore, to obtain the 

best estimate of the true integrated intensities, a smooth, energy-dependent scaling 

functionj(E) was appli~d to the simulated spectra for the X ~ X transition: 

(1) 

where E is electron kinetic energy (eV) before applying any solvent shifts. Parameters for 

this function are summarized in Table 4. Note that ai, which governs the X ~ X OTP 

intensity, was varied in different spectra from 0.4 to 1.0, following an inverse trend with 

<V>, which indicated a decreasing transition dipole moment as the internuclear radius 

increased. No such modifications were made to the simulated spectra for transitions to 

higher-lying states, with the exceptions of the (i / (i' ~ X and jj ~ X transitions. 

Here, the relative intensity of the (i ,~ X transition was freely varied to best fit feature 

F, with the (i' ~ X intensity scaled to 1.5x that of the A ~ X , in accord with the 

. estimated relative intensities of these transitions, as discussed in Zanni et al. 41 The 
( 

scaling of the jj ~ X transition, which appeared at very low eKE in all spectra, was 

varied between 0.5 and 1.0 to best fit this region. The final spectrum was convoluted with 

the same instrument resolution function as for r above. 



Chapter 6 181 

Table 4. Parameters used in/(£) function for scaling 12 X ~ h- X transition. Equation 
is defined in the text. 

Parameter Value 
0.4-1.0* 
1.6 
-0.02 eV 
0.08 eV 
1.3eV 
2.0eV 

*Varied with <V>. 

Simulation of the 12- A state was considerably less precise than the X state. A 

simple Morse function was employed, using parameters (Re = 4.7 A, De = 140meV) 

slightly modified from Greenblatt et al. 12 to better fit the h-(Arho spectrum at 3 ns, 

assuming that the number of solvent atoms ("<nA>") was equal to the photofragmentation 

average for this cluster (11.1 ).6 This assumption was supported by the lack of any 

significant change in the energy of the A state features (DJ and D2) between 15 ps and 3 

ns, indicating an asymptotic solvent configuration had been achieved; see the Discussion 

fOf more details. Transitions from v = 0 to each neutral state (except X) were weighted 

equally, as done in Zanni et al. for the 12- A' state.41 The broadening of feature DJ is 

l}kely due to the repulsive regions of the h states (13', 13" , (1 , (1'), but as these are 

poorly defined, adequate reproduction of this broadening was not possible. To simulate 

the broad appearance, therefore, this feature was convoluted with a wide resolution 

function (-250 meV). <nA> was determined from the experimental spectra using the 

energy shifts of the r(Ar)n clusters, rather than the 12-(Ar)n clusters, based on the 

assumption that the electron is localized on a single I atom at the large eqUilibrium bond 

distance, and is therefore stabilized by solvent to the same extent as for r. This 



182 Chapter 6 

assumption was borne out in other clusters by fairly good agreement between the 
) 

calculated <nA>'S at long time delays and the photofragmentation averages (see 

Discussion). The integrated intensity was assumed to be the same as for r, which was 

also supported experimentally. 

Populations of the r, h- X and 12- A contributions, indicated by "P1-," "Px," and 

"P A," respectively, were determined from the intensities of simulated spectral features, 

weighted by their relative cross-sections. Populations sum to unity for all spectra. 

Numerous time delays have been simulated to follow the dynamics in clusters of 

Iz-(Ar)n;::: 12. For 1z-(Ar)12-16, where changes are minimal once features E and F have 

appeared, only a single, long time delay (45-50 ps) is shown in Figs. 8(a-b). In h-(Arho, 

where significant evolution is observed in the spectra after the appearance of these 

features, several time delays (6.0, 15,35 and 200 ps) are shown in Figs. 8(c-f). Each 

figure includes curves representing the r [for 1£(Ar)12 only], 12- X and h A 

contributions, the total simulated spectrum, and the experimental spectrum. Simulation 

parameters are summarized in Table 5. In Fig. 9, Px is plotted vs. time for all three 

clusters, for many more time delays than shown in Fig. 8. Photofragmentation values are 

indicated as detached points on the righthand side of the graph. As h(Arho displays 

considerable vibrational relaxation not seen in the smaller clusters, Fig. 10(a-b) plots <V> 

and <nx> vs. time for this cluster, along with model data from Faeder et al.23 Fig. 1 O( c) 

plots a derived quantity Ecluster which is defined in the section on Iz-(Arho in the 

Discussion. 



Chapter 6 183 

Table 5. Parameters used in simulating spectra of Iz-(Ar)n clusters at selected time delays. 
Px, P A and PI- indicate populations of Iz- X ,12- A and r fragments, respectively. <V> 

indicates the average vibrational level of the Iz- X state. <nx>, <nA> and <nI-> indicate 
the average numbers of Ar atoms surrounding the Iz- X ,Iz- A and r fragments, 
respectively. "MS" indicates results of photofragment experiments from Vorsa et al.6,7 

Parent Time Population 12- X Number of Ar 
Cluster (ps) Px PA PI- <V> <nx> <nA> <nI-> 

12 45 0.30 0.21 0.49 68.0 0 5.0 3.2 
MS 0.23 0.23 0.54 - 0 2.3 3.2 

16 50 0.50 0.50 0 34.4 0 8.0 -
MS 0.43 0.55 0.02 - 0 6.2 8.5 

20 6.0 0.36 0.64 0 40.0 8.0 9.0 -

15 0.50 0.50 0 29.1 6.0 11.0 -
35 0.50 0.50 0 14.2 3.0 11.5 -
200 0.54 0.46 0 5.6 0.5 11.0 -
MS 0.44 0.56 0 - 0.2 11.1 -

5. Discussion 

This section of the paper is divided into four parts. In the first section, the spectra 

of dissociated rat -300 fs are examined for all clusters, in order to determine the initial 

configuration of solvent atoms around the r. Then, 1z-(Ar)6 and 12-(Ar)9 clusters are 

discussed, which display only r dynamics. This is followed by a discussion of Iz-(Ar)12 

and 1z-(Ar)16 clusters, which display Iz- A state and 12- X state features, but limited 

vibrational relaxation in the X state. Finally, I£(Arho is examined separately, whose 

spectra display extensive X state vibrational relaxation, in addition to the dynamics 

observed in smaller clusters. By way of orientation, the fraction of 12- products measured 

by Vorsa et al.6 is useful to state here: 0.00 (n = 6 and 9),0.46 (n = 12),0.98 (n = 16), 

1.00 (n = 20). Roughly equal amounts of low- and high-mass fragments are observed in 

the Iz- products, which will be shown below to correspond to the Iz- X and A states, 

respectively. 



184 Chapter 6 

5.1. Short-time dynamics 

An unverified prediction of Maslen et al. 16 is whether the electron localizes on the 

less solvated 1 atom after excitation to the A' state. When r first appears at -300 fs after 

photodissociation in bare h-, the distance between rand 1 is not very large (6.4 A).23 

Therefore, the number of Ar atoms <nJ-> surrounding r has probably not changed much· 

from the initial configuration around 12-. In Table 2, we examine this measured quantity, 

along with estimated numbers assuming the charge is localized on the more- and less

solvated 1 atom (corresponding to the normal and anomalous charge-switching states, 

respectively). For 12-(Ar)9-16, where the difference between the two estimates is 3.0-6.0 Ar 

atoms, the observed <nJ>'s are in excellent agreement (0.1-0.6) with the anomalous 

charge-switching estimate. In the symmetrically-solvated 12-(Ar)6 and 12-(Arho clusters, 

where there is no distinction between the normal and anomalous configurations, <nJ-> is 

still fairly close to the estimated number, though for h-(Ar)6 it is s(gnificantly lower (1.3) 

than the estimate. This discrepancy probably arises from the virtually unimpeded motion 

of r away from the Ar atoms, lowering the apparent average, whereas in h-(Arho, with r 

motion more arrested by solvent,23 the discrepancy is expected to be less, as verified by 

the excellent agreement (0.3) withthe model for this cluster. 

For these two clusters, the increase in the eKE of the B features after -300 fs 

results from a decreasing number of solvent atoms surrounding f; from Fig. 6, it is seen 

that <nJ-> decreases until -1.5 ps. One possible explanation for the decrease is that the 

loss of solvent is due to fast ejection of neutral I, leaving behind a vibrationally excited 

r(Ar)n cluster which evaporates Ar atoms until the available energy is dissipated. This 



Chapter 6 185 

mechanism was suggested in studies of Br2-(C02)n clusters. 14 However, theoretical 

simulations by Faeder et ai.20,23 predict that, in small clusters such as·h-(Ar)6, the r 

fragment simply leaves the cluster, capturing one or more Ar atoms during its escape_ 

Hence, as discussed previously,12 the decrease in <nI-> reflects the steady weakening of 

the attractive interaction between the rand Ar solvent atoms. 

For I2-(Ar)6, changes to the spectrum are essentially over by 1.5 ps, at which point 

the value of <nI-> (1.2), is close to the photofragmentation average of 0.9 (indicated in 

Fig. 6), which further indicates that the reaction is complete on the -1.5 ps time scale. 

In I2-(Ar)9, there is an increase in <nI-> of 1.5 between 2.8 and 12 ps, followed by 

a decrease of 0.5 through 100 ps. The increase in <nI> does not occur for I2-(Ar)6, and is 

most likely due to a transition to, the X or 11 state, which is predicted to result in a 

substantially greater anion solvation, due to solvent rearrangement from the symmetric 

A' state configuration to a more asymmetric configuration on the normal charge-

switching state. This transition allows the neutral iodine atom to leave the cluster 

virtually unimpeded. A transition to the 11 state without recombination is supported by 

Faeder et al.,20 who found these transitions to be responsible for the high-mass r(Ar)n 

channel observed by Vorsa et ai. in clusters of h-(Ar)n ~,1l,6,7 since the solvent can more 

effectively surround the r in a normal charge-switching state. Although not reported in 

the paper, their model also observes transitions prior to final dissociation in clusters of 

h-(Ar)9.37 In I2-(C02)n clusters, this electronic transition mechanism is present in all 

cluster sizes and occurs as rapidly as -500 fs in large clusters.35 

The long-time (> 12 ps) decrease in <nI-> is probably due to solvent evaporation. 

<nI> exceeds the pho~ofragmentation average (2.7) by 1.0 after the electronic transition 



186 Chapter 6 

to the X / A state, and the value at 100 ps is stil11arger than the photofragmentation 

average by 0.5 Ar atoms. After solvent rearrangement on the noimal charge-switching 

state, the marginal increase in available energy [estimated at 110 me V from the per atom 

evaporative energy loss of 73 me V] is likely to dissipate rather slowly through solvent 

evaporation, as observed for the 12- A state in h-(Ar)12 and 12-(Ar)16 (see below). The 

disagreement between the FPES and photofragmentation values of <nl-> at 100 ps 

probably indicates further evaporation on a longer time scale. 

In these two clusters, the increase in the eKE of the B features is similar to that of 

the smaller clusters, and also occurs over a -1-2 ps timescale, as seen in Fig. 6. Thus, the 

increases, reflecting decreases in <nI->, are probably caused by the same mechanism of r 

pulling away from the cluster. However, in h-(Ar)16, the less-solvated I atom is expected 

to be more arrested by the surrounding Ar atoms than in the smaller clusters, so that the 

decrease in <nI-> may be partially attributed to evaporation of cluster atoms. 

According to the photofragmentation study, there is substantial recombination of 

h-, with virtually no r remaining in h-(Ar)16. Features E and F appear by -10 ps in each 

cluster, indicating recombinati~n of h- on the X state. The broadening of the D features 

after 2.0-2.5 ps, and the shifting toward lower eKE, particularly for 1£(Ar)16 where the 

decrease (240 me V) is much larger than in h-(Ar)9, indicate recombination on the A 

state. Because these spectra no longer indicated the presence of exclusively r, 

simulations were required in order to characterize the dynamics after these time delays. 

In h-(Ar)l2, although the D features broaden through the longest time delay 

measured, and the intensities of features E and F also grow slowly throughout this time 



Chapter 6 187 

range, there is little change in shape to any of these features after their formation by -10 

ps. Therefore, only the spectrum at 45 ps is shown in Fig. 8(a), where' feature E is most 

. intense. Unfortunately, the poor signal-to-n9ise ratio in the region of this feature, even at 

45 ps, made accurate determination of <V> difficult. We therefore set <V> = 68 and <nx> 

= 0, the value consistent with the calculated available energy after evaporation of all 12 

Ar atoms (710 meV) assuming 73 meV per Ar atom. Complete loss of solvent is 

consistent with Vorsa et ai.,6,7 who observed <nx> = 0 in their photofragmentation study. 

Using <V> as a starting point, an X state vibrational distribution was constructed 

with Px = 0.30 and <nx> = O. Although the X ~ X ITP transition does not accurately 

reproduce feature E, error bars in the intensity are estimated at 20-30%, and the overall 

intensity in this region is comparable to the simulation. The X ~ X OTP and h* ~ X 

transitions together account for much of the broad feature F. Px is close to the 

photofragmentation value (0.23). Dl was represented by a combination of h- A and r 

states, using the following parameters: PA = 0.21, P1- = 0.49, <nA> = 5.0 and <n,-> = 3.2. 

The eKE of D2 is also accounted for by the excited spin-orbit transitions from these 

states, though the intensity is lower than in the spectrum. The populations of the 12- A 

and r channels are close to the photofragmentation values (0.23 and 0.54, respectively; 

see Table 5), and <n,-> is equal to the measured average. <nA>, however, is larger than 

the photofragmentation average of 2.3, which was necessary in order to adequately 

simulate the spectrum. 



188 Chapter 6 

(a) n=12 (b)L Bl 
45 ps B X+-X 

n=16 
50 ps 

o 

F 

~ 

B'IB" X+-X 
+-X OTP 

~ 

A 

. 2 OTP 
~. 12* 

-_.... +-X 

3x 
~ -----

\ 

n=20(Q 
35 ps B21L 

n~20 

~ ~OO ps 
X+-X 
OTP 

3x 

1 2 3/0 1 2 
Electron Kinetic Energy/eV 

3 

Fig. 8. Experimental (solid) and simulated (dotted) FPES of h-(Ar)n clusters at selected 
time delays. Thin solid lines indicate simulated contributions from various states. (a) 
1z-(Ar)12, 45 ps; (b) h(Ar)16, 50 ps; (c) I2-(Arho, 6.0 ps; (d) I2-(Arho, 15 ps; (e) Iz-(Arho, 
50 ps; (f) I2-(Arho, 200 ps. 



Chapter 6 189 

Px is plotted vs. time in Fig. 9 for several time delays between 3.5 and 45 ps. 

Population appears by 9.0 ps, and grows in slowly through 45 ps. The slow, monotonic 

increase in the width of the D features over this time interval (not shown) indicates a 

similarly slow growth of the 12- A state, and the large value of <nA> at 45 ps compared to 

the photofragmentation average also indicates incomplete dynamics on this st,ate. Both 

<nx> and <nr->, however, are equal to the photofragmentation averages. In 1z-(Ar)6 and 

1z-(Ar)9 clusters, <nr-> was also observed to be very close (~0.5 atoms) to the Vorsa et al. 

results by -50 ps. Thus, the [ solvent evaporation appears to be complete by 45 ps, and 

only the A state has not finished relaxing. This conclusion is supported by the Faeder et 

al. study, which reported that A state evaporation required longer than the 50 ps length 

of the simulation to complete,20,23 while the low-mass [(Ar)n product, which gives rise to 

the photoelectron signal at the highest eKE where the simulation is most sensitive to <nI-

>, appears in the first 1.0 ps. It would be helpful to measure 1z-(Ar)12 FPES spectra at 

longer time delays to verify that <nA> decreases beyond 50 ps. 

In the FPES of 1z-(Ar)16, the shifts in the D features are complete by 20 ps, and 

after features E and F have appeared at 10 ps, they evolve slightly through 50 ps, but the 

decrease in <V> on the X state is small (5.l). Therefore, only the 50 ps spectrum is 

shown in Fig. 8(b), with the following parameters: Px = 0.50, P A = 0.50, <V> = 34.4, 

<nx> = 0 and <nA> = 8.0. Px and P A are close to the photofragmentation results (0.43 and 

0.57, respectively). <V> corresponds almost exactly to the calculated energy remaining in 

the cluster after evaporation of all 16 Ar atoms (420 meV). This result supports the 

assumption that <nx> = 0, which is also the long-time limit set by the photofragmentation 

study. Feature E is reproduced by the X ~ X ITP transition, while F is accounted for 



190 Chapter 6 

by the overlapping X ~ X OTP and 12* ~ X transitions. Features DI and D2 were 

simulated by the A state. The value of <nA> (8.0) is actually larger than <nl-> at 2.0 ps 

(5.0), reflecting the expected solvent rearrangement on the normal charge-switching state, 

much as was seen in 12-(Ar)9. However, as <nA> is larger than the photofragment average 

(6.2), further evaporation must occur on a longer time scale, as also inferred for 1z-(Ar)12. 

0.8 

0.6 n 20 

16 
~>< 0.4 

n 12 

0.2 

o 
1 10 100 1000 

Time/ps 
Fig. 9. Population of 12- X state (Px) vs. time, for h(Ar)n <: 12 clusters: h(Ar)12 (plus
signs), h-(Ar)16 (diamonds), I2-(Arho (squares). Detached points indicate 
photofragmentation averages from Vorsa et al.6 

Px is plotted vs. time in Fig. 9 for several simulated time delays. It rises faster, 

and is larger at all time delays than that of 12-(Ar)12, though it never achieves a plateau 

c I 



Chapter 6 

value. As Px for time delays ~ 20 ps are roughly the same as the photofragmentation 

value, however, population transfer to the X state ("recombination")' is probably 

complete on this time scale (-20-50 ps). It appears that vibrational relaxation is also 

complete on this time scale, as <V> agrees with the long-term value at 50 ps. 

In this cluster, the decrease in <nI-> of the B features through 1.0 ps is smaller 

than in the smaller clusters (2.6 VS. -3-4), but its time evolution is fairly similar. Since 

both I atoms are predicted to be completely surrounded by solvent atoms,20 the 

191 

unimpeded motion of r away from the Ar atoms in the smaller clusters cannot explain the 

observations. Instead, a combination of cluster expansion and rapid evaporation of Ar 

atoms, particularly the "capping" atoms which lie along the h- axis, appears reasonable,2o 

At later time delays, the features are relabeled D, where they broaden considerably, and 

shift 140 meV toward lower eKE; again, the 12- A state is implicated. The time-resolved 

motion of the E feature, and the complex evolution of the F feature, also indicate 

extensive vibrational relaxation on the 12- X state. Several time delays were simulated 

(6.0 ps, 15 ps, 50 ps, 200 ps) to follow this process, shown in Figs. 8(c-f). 

In the 6.0 ps spectrum (Px = 0.36, P A = 0.64, <V> = 44.5; <nx> = 8.0, <nA> = 

9.0), the h- X state is still in the process of growing in. It is also so vibration ally excited 

that the relative intensity of the X ~ X OTP transition appears to be changing rapidly 

in this range; thus, feature F above 1.0 eV is difficult to simulate accurately. At lower 

eKE, however, the 12* ~ X transitions accounts for much of the intensity of feature F, 

while the X ~ X ITP transition reproduces feature E satisfactorily. <nx> is also 



192 Chapter 6 

difficult to determine from feature F, but an approximate upper limit is obtained by 

matching the falling edge near 1.0 eV. The A state, accounting for DJ and D2, has a 

smaller apparent number of At atoms than at later time delays, and DJ is also not as 

broad. This probably reflects a wavepacket that is still in the process of moving into the 

A state well, giving an artificially low value of <nA>' 

The 15 ps spectrum (Px = 0.50, PA = 0.50, <V> = 29.0, <nx> = 6.0, <nA> = 11.0) 

displays an X state which is considerably larger in population, less vibrationally excited, 

and with fewer Ar atoms than at 6.0 ps. Feature E is well-reproduced by the X ~ X 

ITP transition. The F feature displays two peaks which are reproduced in the simulation, 

corresponding to the X ~ X OTP transition at higher eKE, and the 12* ~ X 

transitions at lower eKE, which enabled accurate determination of <nx>. The A state, 

accounting for DJ and D2, has reached its asymptotic number of Ar atoms, although some 

variation (±O.5) is seen at other time delays. DJ undergoes no more broadening at later 

time delays. 

At 35 ps (Px = 0.50, PA = 0.50, <V> = 14.2, <nx> = 3.0, <nA> = 11.5), the X 

state has undergone more vibrational relaxation, so that the A' / A ~ X and E' / E" ~ 

X transitions now appear as separate peaks at 900 and 610 meV, respectively. The X ~ 

X OTP transition appears as a small shoulder on the low eKE side of feature D J; at later 

time delays, it is completely absorbed by this feature. The A state, accounting for DJ and 

D2, is virtually unchanged from 15 ps. 

The 200 ps spectrum (Px = 0.54, P A = 0.56, <v':> = 5.6, <nx> = 0.5, <nA> = 11.0) 

shows that h- X is almos.t completely relaxed. While the X ~ X ITP transition 



Chapter 6 193 

accounts for feature E, the OTP transition falls completely under D1. Feature F consists of 

the A' / A ~ X and jj' / jj" ~ X transitions, which are clearly separated with 

considerably less intensity between the peaks than at 35 ps, allowing accurate 

determination of <nx>. The A state again accounts for Dl and D2. 

Px is plotted vs. time in Fig. 9, where it is seen to rise more rapidly than in the 

smaller clusters, achieving a plateau near -0.55 by 10 ps, before either vibrational 

relaxation or solvent evaporation has neared completion. Thus, recombination appears to 

occur rapidly, after which these relaxation processes take place. This distinction between 

recombination and relaxation was not visible in 12-(Ar)12 or h-(Ar)16, where relaxation has 

proceeded almost as far as possible by the time significant X population was present. 

This trend of accelerating recombination with cluster size reflects the increased 

translational energy dissipation by a larger number of Ar atoms. 

A state relaxation appears complete by -15 ps, soon after Px reaches its final 

value at 10 ps, as indicated by the plateauing of <nA> in the simulations. One should not 

be surprised by the agreement between <nA> at long time delays (l1.0iO.5) and the 

photofragmentation average (11.1), as the A state parameters were determined by setting 

<nA> in the 3 ns spectrum equal to the photofragmentation value (see Analysis section). 

It is interesting; however, that <nA> is significantly larger (-2-3) at -50 ps than the 

photofragmentation average in the h(Ar)12 and h-(Ar)16 clusters. This trend is consistent 

with the increasing A state recombination rate as cluster size increases. Faeder et al. 

predict slow (> 50 ps) evaporation of solvent from the 12- A state, but they report a 

similarly slow rate for h-(Arho as well.2o,23 As the A state potential determined from the 

h-(Arho spectrum differs considerably from the ab initio potential,18 it is possible that the 



194 Chapter 6 

presence of -11 Ar atoms has a sizable influence on this marginally-bound state,. so that 

potential parameters will be different in smaller clusters. Spectra of Iz-(Ar) I 2 and 12-(Ar)16 

at longer time delays are necessary to resolve whether slow evaporation, or changes in 

the h A state well depth and/or equilibrium distance, is responsible for the discrepancy 

in <nA> for 12-(Ar)I2 and 1z-(Ar)16 clusters. 

The average vibrational level <V> of the X state simulated for each measured 

spectrum has been plotted vs. time in Fig. lO(a), along with <V> derived from Faeder et 

al. 23 Between 6.0 ps and 3 ns, the FPES <V> drops from 40.0 to 5.1, with most of the 

decrease occurring before 50 ps. There is little difference in <V> between 200 ps and 3 

ns. The Faeder et al. results have been adjusted to reflect the available energy from a 780 

nm photon, rather than 790 nm as used in the study. The time scale for vibrational 

relaxation in the Faeder et al. results is similar, and while there is a sizable discrepancy 

between 6.0 and 35 ps, the curves match fairly well at later time delays. 

The average number of solvent atoms <nx> is plotted vs. time in Fig. 1 O(b), 

together with the Faeder et al. simulation results. In the FPES data, <nx> drops from 8.0 

to 0.0 between 6.0 ps and 3 ns, with the majority of the' Ar loss (6.0) occurring before 50 

ps. The final -2.0 Ar atoms take longer than 150 ps to evaporate, consistent with the 

slowdown in evaporation rates seen in other clusters. The Faeder et al. data display 

remarkable agreement with the experiment at time delays ~ 6 ps. The agreement is 

encouraging, for it not only suggests that the model is correctly describing the mechanism 

Fig. 10. (On next page) (a) Average h- X state vibrational level (<V», (b) average 
number of 12- X state solvent atoms (<nx», and (c) excess cluster energy (Ecluster) vs. 
time, for h-(Arho: From FPES (circles and thin line); from Faeder et al.23 (thick line). 

- , 



, \ 

~ 20 
V 

~~ 5 
V 

> Q) 

~ 0.2 rn 
..a 
u 

~ 

o 1 

Chapter 6 195 

10 100 1000 
Time/ps 



196 Chapter 6 

of vibrational relaxation and solvent evaporation, but it confirms that the spectroscopic 

method used to determine <nx> is valid. 

At first glance, it appears that vibrational relaxation and solvent evaporation 

evolve in step with one another, but closer examination reveals a significant time lag. To 

make this comparison, Esolv, the total solvent energy that can be removed by evaporation 

of Ar atoms, is defined: 

Eso1v = <nx>Mevap (2) 

where Mevap is the average energy lost from the cluster by evaporation of one Ar atom 

(73 meV).7 Eint. the average h- internal energy in excess of the final (3 ns FPES) energy, 

\ I 

is obtained by: 

Eint = E( <V» - E( <V>f) (3) 

where E(<v» is the Morse energy for vibrational level <V>, and <V>f(= 5.1) is the 

average vibrational level at 3 ns. 

Subtracting Eint from Esolv, one obtains a positive excess "cluster" energy EcIuster, 

indicating energy neither associated with the 12- vibrational mode, nor lost as evaporating 

solvent. EcIuster is plotted vs. time in Fig. 10(c), along with the same quantity calculated 

using the data from Faeder et al.23 (adjusted for 780 nm, and assuming <v>f is equal to 

the FPES value). Both plots show a general decrease with time, the experimental EcIusier 

dropping from 180 meV at 6.0ps, to 0 by 3 ns. The model shows higher values at all time 

delays, but it is more pronounced at earlier times (320 meV at 6.0 ps), the disparity being 

due to the smaller <V> relative to the experimental data at these time delays. 

The excess cluster energy (at 6.0 ps, equivalent to 2.5 extra Ar atoms in the 

experimental data, and 4.4 atoms in the simulation) implies that energy is temporarily 



I 

Chapter 6 197 

tied up in solvent modes after removal from the 12- vibrational coordinate, but before 

solvent evaporation. The amount of excess energy is expected to be larger at early tiJ?es, 

because there are more solvent atoms available to provide for storage of this energy. For 

solvent molecules with a stronger binding energy to 12- (such as CO2), this storage 

capacity is larger, allowing greater amounts of energy to be stored for longer times.35 

Although there is disagreement between the Faeder et ai. model and the FPES data in 

<V>, which in tum affects Ecluster, the signature of a delayed evaporation mechanism is 

undeniable in both model and experiment, and in fact, the model results show a more 

pronounced effect. 

6. Conclusions 

FPES has been used to study the photodissociation, recombination and energy 

transfer dynamics of h-(Ar)n clusters over a range of sizes. From determination of the 

number of Ar atoms surrounding the nascent r product, the anomalous charge-switching 

nature of the A' state is confirmed, with the electron localized on the less-solvated 1 

atom immediately after photoexcitation. Subsequent separation of rand 1 fragments 

results in a decreasing number of Ar atoms through -1.5 ps in all clusters, after which the 

dissociated products have been formed in the case of small (n = 6) clusters, or 

recombination on the 12- X or A states begins to occur in larger (n ~ 12) clusters. 

Although only dissociated products are observed for h-(Ar)9, there is a long-time (-15-50 

ps) increase in the number of Ar atoms in the cluster, suggesting an electronic transition 

to the X or A state followed by solvent rearrangement. This effect was predicted by 

Faeder et ai.,20,37 and illustrates a situation intermediate between dissociation and caging, 

whereby an electronic transition occurs without subsequent recombination. 



198 Chapter 6 

In h-(Ar)12 and 12-(Ar)16, vibrational relaxation on the X state was slight or 

unobservable, and the final vibrational level remained quite high (<V> = 68 and 34, 

respectively). In 12-(Arho, however, extensive vibrational relaxation was observed, 

accompanied by evaporation of solvent. Maximum relaxation (to <V> = 5.1) is achieved 

by 3 ns, with the loss of all Ar atoms. The average vibrational level <V> and number of 

solvent atoms <nx> were compared to the theoretical study of Faeder et al.,23 which 

agreed in large measure, despite a discrepancy in <V> between 6.0 and 35 ps. Further 

analysis revealed ~xcess energy stored in the cluster, demonstrating a delay between 
.-.... 

removal of h- vibrational energy to the cluster, and its dissipation through solvent 

-I evaporation, in both the experimental and theoretical studies. 

Although 12- X state solvent evaporation is complete on the time scale of the 

experiment, rand 12- A state cluster evaporation appears to require longer to complete in 

rz-(Ar)n!> 16. In h-(Ar)9, there is a long-time slopein the graph of <nl-> vs. time (Fig. 6), 

and the final <nI->'is slightly (0.5 atoms) higher than the photofragmentation results.6,7 

Larger discrepancies exist for the 12- A state in rz-(Ar)12 and rz-(Ar)16, where the long-

time value of <nA> is higher by -2-3 atoms, but in 12-(Arho, <nA> matches the 

photofragmentation value. The differences either indicate much slower solvent 

evaporation in the smaller clusters, as predicted by theoretical studies,2o,23 or a change in 

the A state parameters from h(Ar)12 through 12-(Arho, which would preclude 

comparative analysis. FPES experiments on h-(Ar)12 and h-(Ar)16 at longer time delays 

would help resolve this ambiguity. 



Chapter 6 199 

7. Acknowledgments 

The authors would like to thank James Faeder, Nicole Delane~ and Professor 

Robert Parson for many helpful discussions. Victor Batista is also acknowledged for 

sharing his insight. Funds were supplied by the National Science Foundation under Grant 

No. CHE-9710243, and the Defense University Research Instrumentation Program under 

Grant No. F49620-95-l-0078, and are gratefully acknowledged. 

8. References 

1 M. L. Alexander, N. E. Levinger, M. A. Johnson, D. Ray, and W. C. Lineberger, J. 

Chern. Phys. 88,6200 (1988). 

2 J. M. Papanikolas, J. R. Gord, N. E. Levinger, D. Ray, V. Vorsa, and W. C. 

Lineberger, J. Phys. Chern. 95, 8028 (1991). 

3 M. E. Nadal, P. D. Kleiber, and W. C. Lineberger, J. Chern. Phys. 105,504 (1996). 

4 S. Nandi, A. Sanoy, N. Delaney, J. Faeder, R. Parson, and W. C. Lineberger, J. Phys. 

Chern. A 102,8827-8835 (1998). 

5 A. Sanoy, S. Nandi, and W. C. Lineberger, 1. Chern. Phys. 108,5155 (1998). 

6 V. Vorsa, Ph.D. Thesis, University of Colorado, Boulder (1996). 

7 V. Vorsa, P. 1. Carnpagnola, S. Nandi, M. Larsson, and W. C. Lineberger, 1. Chern. 

Phys. 105, 2298 (1996). 

8 D. Ray, N. E. Levinger, J. M. Papanikolas, and W. C. Lineberger, 1. Chern. Phys. 91, 

6533 (1989). 

9 J. M. Papanikolas, V. Vorsa, M. E. Nadal, P. 1. Carnpagnola, 1. R. Gord, and W. C. 

Lineberger, J. Chern. Phys. 97, 7002 (1992). 



200 Chapter 6 

10 J. M. Papanikolas, V. Vorsa, M. E. Nadal, P. J. Carnpagnola, H. K. Buchenau, and W. 

C. Lineberger, J. Chern. Phys. 99, 8733 (1993). 

11 V. Vorsa, S. Nandi, P. J. Carnpagnola, M. Larsson, and W. C. Lineberger, J. Chern. 

Phys. 106, 1402 (1997)., 

12 B. J. Greenblatt, M. T. Zanni, and D. M. Neurnark, Science 276, 1675 (1997). 

13 B. J. Greenblatt, M. T. Zanni, and D. M.' Neurnark, Faraday Discuss. 108, 101 (1997). 

14 L. Perera and F. G. Arnar, J. Chern. Phys. 90, 7354 (1989). 

15 F. G. Arnar and L. Perera, Z. Phys. D. 20, 173-175 (1991). 

16 P. E. Maslen, J. M. Papanikolas, J. Faeder, R. Parson, and S. V. ONeil, J. Chern. 

Phys. 101,5731 (1994). 

17 J. M. Papanikolas, P. E. Maslen, and R. Parson, J. Chern. Phys. 102,2452 (1995). 

18 . P. E. Maslen, J. Faeder, and R. Parson, Chern. Phys. Lett. 263, 63 (1996). 

19 V. S. Batista and D. F. Coker, J. Chern. Phys. 106, 7102 (1997). 

20 . , J. Faeder, N. Delaney, P. E. Maslen, and R. Parson, Chern. Phys. Lett. 270, 196 

(1997). 

21 N. Delaney, J. Faeder, P. E. Maslen, and R. Parson, J. Phys. Chern. A 101 (1997). 

22 B.M. Ladanyi and R. Parson, J. Chern. Phys. 107,9326 (1997). 

23 J. Faeder and R. Parson, J. Chern. Phys. 108,3909 (1998). 

24 P. E. Maslen, J. Faeder, and R. Parson, Mol. Phys. 94,693 (1998). 

25 J. Faeder, N. Delaney, P. E. Maslen, and R. Parson, Chern. Phys. 239, 525 (1998). 

26 M. E. Nadal, S. Nandi, D. W. Boo, and W. C. Lineberger, J. Chern. Phys., submitted. 

27 C. J. Margulis and D. F. Coker, J. Chern. Phys., in press (1999). 



Chapter 6 201 

28 A. E. Johnson, N. E. Levinger, and P: F. Barbara, 1. Phys. Chern. 96, 7841 (1992). 

29 . D. A. V. Kliner, 1. C. Alfano, and P. F. Barbara, 1. Chern. Phys. 98, 5375 (1993). 

30 1. C. Alfano, Y. Kimura, P. K. Walhout, and P. F. Barbara, Chern. Phys. 175, 147-155 

(1993). 

31 I. Benjamin, P. F. Barbara, B. 1. Gertner, and 1. T. Hynes, 1. Phys. Chern. 99, 7557-

7567 (1995). 

32 P. K. Walhout, 1. C. Alfano, K. A. M. Thakur, and P. F. Barbara, 1. Phys. Chern. 99, 

7568 (1995). 

33 K. Asrnis, T. Taylor, and D. M. Neurnark, 1. Chern. Phys. 109,4389 (1998). 
'" 

34 M. T. Zanni, T. R. Taylor, B. 1. Greenblatt, B. Soep, and D. M. Neurnark, 1. Chern. 

Phys. 107, 7613 (1997). 

35 B. 1. Greenblatt, M. T. Zanni, and D. M. Neurnark, 1. Chern. Phys., to be submitted. 

36 B. 1. Greenblatt, M. T. Zanni, and D. M. Neurnark, Chern. Phys. Lett. 258,523 

(1996). 

37 N. Delaney, 1. Faeder, and R. Parson, private communication. 

38 W. C. Wiley and I. H. McLaren, Rev. Sci. Instrurn. 26, 1150 (1955). 

39 O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. 1. Craycraft, and R. E. Smalley, Rev. 

Sci. In strum. 58, 2131 (1987). 

40 L.-S. Wang, H.-S. Cheng, and 1. Fan, 1. Chern. Phys. 102,9480 (1995). 

41 M. T. Zanni, V. S. Batista, B. J. Greenblatt, W. H. ~1iller, and D. M. Neumark, J. 

Chern. Phys. 110, 3748 (1999). 

42 C. E. Moore, Atomic Energy Levels, Vol. 1, NSRDS-NBS 35 (1971). 



202 Chapter 6 

43 I. Yourshaw, Y. Zhao, and D. M. Neurnark, J. Chern. Phys. 105,351 (1996). 

44 T. Kuhne and P. Vohringer, J. Chern. Phys. 105, 10788 (1996). 

45 S. E. Bradforth, Ph.D. Thesis, University of California, Berkeley (1992). 



Chapter 7. Femtosecond photoelectron 
spectroscopy of 12-(C02)n photodissociation 
dynamics (n = 4, 6, 9, 12, 14, 16)* 

203 

The photodissociation dynamics of h- embedded in size-selected van der Waals 

clusters of 4-16 C02 molecules have been studied with femtosecond photoelectron 

spectroscopy (FPES). The range of cluster sizes span the uncaged and fully-caged 

product limits for this reaction; several intermediate-sized clusters exhibit both caged and 

uncaged products at long (200 ps) time delay. All clusters exhibit exclusively solvated r 

features initially, with the number of CO2 molecules increasing with time delay, due to 

solvent rearrangement and/or electronic relaxation in which the electron hops from the 

less- to more-solvated I atom. At longer time delays (-500 fs-tO pS), vibrationally excited 

h- X state features appear in F(C02)n~6 clusters, with a decrease in r intensity. The X 
i 

state features evolve through to-200 ps, reflecting vibrational relaxation, with a rate 

which increases substantially with cluster size. In clusters of 12-(C02)~ ~ 9, there is also 

significant intensity (-0.1-0.4 fraction of the total population) arising from a solvent-

separated 12- structure, which resembles r with fewer surrounding C02 molecules, 

presumably trapped on the A state. Detailed simulations of the spectra were performed 

in order to determine the populations, X state vibrational level, and number of CO2 

molecules in the cluster at different time delays. Results are compared to previous 

experimental and theoretical studies of 12-(C02)n photodissociation, as well as to the 

FPES study of h-(Ar)n photodissociation presented elsewhere in this journal. 

• B. 1. Greenblatt, M. T. Zanni, and D. M. Neumark, J. Chern. Phys., in preparation for submission. 



204 Chapter 7 

1. Introduction 

The gas-phase study of 12- embedded in a van der Waals cluster of CO2 molecules· 

is a powerful method for understanding the effects of solvation on a chemical reaction. 

Solvent molecules, which often profoundly change the energetic surfaces governing a 

reaction, may be progressively added to a cluster one molecule at a time, owing to the 

inherent size-selectivity of charged particles. This approach enables changes in reaction 

dynamics to be studied across cluster size, as the solvent environment moves from the 

gas phase to a condensed-like phase. Lineberger and coworkers first examined the 

anionic products of Br2-(C02)n photodissociation in 1988,1 and subsequently expanded 

their scope to include h- in CO2, Ar and most recently OCS clusters, examining both 

asymptotic products as well as time-resolved dynamics.2-1O Theoretical investigations of 

the structure and dynamics of h clusters have been performed by several groups. 11-23 

Solution-phase experiments involving 12- photodissociation in numerous solvents have 

also been pursed by Barbara and coworkers.24-28 The gas-phase studies have shown that 

the dissociation channel closes in h- clusters with a relatively small number of solvent 

molecules (less than one-half of a solvent shell), and that the rate of appearance of 

"caged" 12- products increases dramatically with cluster size. Comparisons across solvent 

type reveal a strong dependence on solvent-solute binding energy in the recombination 

rate. In solution, timescales for caging are similar to those of large h-(C02)n clusters, 

though interesting new effects appear, such as the permanent escape of r into solution, 

not observed in the gas-phase experiments. 

Our research group has focused on 12-(Ar)n and h-(C02)n clusters using 

femtosecond photoelectron spectroscopy (FPES).29.30 The preceding article on 12-(Ar)n 



Chapter 7 205 

photodissociation dynamics31 demonstrated the effect of a weakly-interacting solvent on 

the F photodissociation reaction, such as closing of the dissociation channel through 

solvent-induced electronic transitions, dissipation of energy through solvent evaporation, 

I and stabilization of an excited state. It was also shown that the FPES pump-probe 

technique32 provided an enormous amount of time-resolved information, including the 

changing electronic and vibrational state of the anion, and the number of solvent 

molecules near the negative charge. These effects were not observable using previous 

experimental approaches. 

The 12-(C02)n system represents a stronger solute-solvent interaction than that of 

rz-(Ar)n. While CO2 lacks a dipole moment, its large quadrupole moment gives rise to a 

sizable I2--C02 well depth (-200 meV),7 about four times larger than that ofrz--Ar (53 

meV).33 Solvent-induced effects are therefore expected to be more pronounced in 

rz-(C02)n clusters. This paper reports on the use of FPES to investigate rz-(C02)n clusters, 

ranging in size from n = 4, which produces almost exclusively uncaged rcC02)n 

fragments, to n = 16, which exhibits only caged 12-(C02)n fragments. Intermediate-sized 

clusters are of particular interest, as both types of fragments are present. The timescales 

for caging, vibrational relaxation and solvent rearrangement and evaporation are 

investigated as a function of cluster size. A comparison with the h-(Ar)n study is made at 

the end of the paper. 

The FPES technique excites a cold, mass-selected 12-(C02)n cluster with a 780 nm 

femtosecond pump pulse from the geL:) ground state to the .A'eI11/2.g) dissociative 

state of 1£ (Fig. 1). A second, delayed femtosecond probe pulse (260 nm) then detaches 

an electron from the cluster, producing a photoelectron spectrum. Different vibrational 



206 Chapter 7 

and electronic states of the anion, including photodissociated r, are readily 

distinguishable, and the number of solvent molecules nearby to the anion can also be 

determined, giving a detailed picture of the dynamics. The information obtained with 

FPES is complementary to previous experimental and theoretical work, which is 

described briefly below. 

I 2p 1/2 + I 2p 3/2 

> 
Q) 

I 2p 3/2 + I 2p 3/2 
-------------------------

.......... 

6i>2 
L 
Q) 
C 

W 

o 

2 3 

Probe 

456 
Distance/A 

7 

Fig. 1. Potential energy curves for bare 12-. Solid lines (--): h-. Dotted lines (-- .... ): 12. 

8 

Photofragment mass spectra of photodissociated h-(C02)n clusters were measured 

by the Lineberger group at two wavelengths, 720 and 790 nm.4.7 In these experiments, 

cold mass-selected clusters were excited with a pulsed laser, and photo fragment masses 

were determined using a reflectron. Only uncaged fragments were observed in smaller 

clusters, gradually replaced by caged fragments as the size increased; the uncaged 

channel closed at one full solvent shell, h-(C02)16. The number of solvent molecules 

I 



Chapter 7 207 

present in both types of product fragments was smaller than that of the parent cluster, 

with more molecules lost in the caged fragments due to energy released when the h- bond 

reforms. 

Time-resolved absorption recovery experiments on 12-(C02)n clusters were also 

performed by the Lineberger group, in which cold mass-selected clusters were excited 

with a ps-duration laser pulse at 720 nm,6.9 or a fs-duration pulse at 790 nm,1O then re-

excited with a second, identical pulse after a variable time delay. The total flux of two-

photon photofragments as a function of pump-probe time delay was assumed to indicate 

the absorption of h- near the bottom of the X state well. Minimum absorption was 

observed initially, growing at later time delays. Exponential recovery time constants (tile 

= 1.3-24 ps) were much shorter than observed for h-(Arho (127 ps).10 Additional 

temporal structure in the recovery curves was also observed, most notably a transient 

increase ("bump") at -2 ps in h-(C02)14-16 clusters, attributed to a resonant a-eI1312 ,u) ~ 

Considerable theoretical work has been done on the h-(C02)n system. Minimum 

energy structures have been investigated by several groups, and agree in large 

measure. 12,14,18,23,34 Fig. 2 shows calculated structures for selected cluster sizes, taken from 

the Parson group studies. 14,18,34 The first 3 solvent molecules locate in a ring about the h-

internuclear axis. Six additional molecules surround one 1 atom, until no more space 

remains. The other end of the h- molecule is then solvated, and the number of solvent 

molecules around the 12- internuclear axis also increases to 4. A full shell is obtained for 

16 solvent molecules. The charge is equally shared by both 1 atoms in the small and large 



208 Chapter 7 

clusters, but in the n :::: 6-12 size regime, where asymmetric structures are observed, the 

charge is more localized on the heavily solvated atom. 

The mechanism of I2-(C02)n photodissociation was investigated by Parson and 

coworkers I3,14,18,19,22,34 using nonadiabatic molecular dynamics simulations. They found 

that photodissociation on the A' state is accompanied by rearrangement of solvent to a 

more symmetrical configuration in the first 400-500 fs in all clusters, due to an effect 

called "anomalous charge-switching" where the solvent is prevented from fully 

surrounding the charge. A transition to the A or X state occurs in all clusters, even 

those which form uncaged products, from -500 fs to > 2 ps; the longest transition times 

occur for intermediate-sized clusters [I2-(C02)n '" 9]. Although some transitions proceed 

from the A' directly to the X state, the A ~ A' transition becomes increasingly 

favored as an intermediate step as cluster size increases, with the effect that X state 

recombination becomes more and more delayed in large clusters. However, once 

recombination on the X state occurs, vibrational relaxation proceeds rapidly (1-3 ps) in 

all dusters. Population on the A state is not permanent, but persists in h-(C02)n;?: 7 

anywhere from 1 to 100 ps. Unlike the A state product predicted for h-(Ar)n clusters, 

with 12- stabilized in the shallow well, this structure consists of a "solvent-separated pair," 

with the r surrounded by most of the solvent molecules, and the 1 located outside the 

solvent shell, surrounded by a fewer number of CO2 molecules. 

Fig. 2. (On next page) Calculated minimum-energy structures of selected h-(C02)n 
clusters: (a) 12-(C02)4; (b) h-(C02)9; (c) I2-(C02)16. 



Chapter 7 209 

(a) 

(b) 

(c) 



210 Chapter 7. 

Margulis and Coker23 also investigated the photodissociation of h-(C02)s and 

h-(C02)16 clusters at 720 and 790 nm using a similar nonadiabatic molecular'dynamics 

framework. For the smaller duster, uncaged fragments are produced in -500 fs when the 

electron hops to the more sol'lated 1 atom as a result of an electronic transition from the 

A' state, while caged fragments result when the transition occurs later, allowing solvent 

rearrangement to trap both 1 atoms. The larger cluster exhibits complete caging, but at 

720 nm, only -20% recombine within 2 ps, the majority being delayed by 10-25 ps due to 

trapping in a solvent-separated configuration; at 790 nm, all trajectories are delayed. 

Vibrational relaxation occurs within -lOps after recombination. 

The main goal of this study is to follow the evolution of cluster dynamics from 

the uncaged to fully-caged size regime. Our most important findings include: 1). Short-

time « -1 ps) changes in the number of solvent molecules around r, implying fast 

solvent rearrangement on the initial A' state, as well as electronic transitions to the X or 

A states. 2). Time-resolved vibrational relaxation of h- on the X state in h-(C02)n ~ 6 

clusters. 3). Excess numbers of solvent molecules at long time delays (200 ps) around 12-

X as compared to photofragmentation measurements, implying incomplete solvent 

evaporation despite rapid relaxation of h-. 4). The presence of a long-lived (>200 ps) 

solvent-separated h- product in clusters of 12-(C02)n ~ 9, presumably trapped on the A 

state. 

2. Experimental 

The apparatus differs slightly from the one described in the previous article,31 so it 

is summarized briefly here. h-(C02)n clusters are produced by passing a mixture of 3% 

CO2 in Ar at 20 psig over solid h and expanding into vacuum through a pulsed 



Chapter 7 211 

piezoelectric valve, where the gas is intercepted by a 1.5 ke V electron gun. Cluster anions 

are pulse-extracted into a Wiley-McLaren35 time-of-flight mass spectrometer where they 

travel to the laser interaction region. Femtosecond pump pump (780 nm, 80 fs, 150 Ml) 

and probe (260 nm, 100 fs, 20 Ml) pulses intersect the anions at the focus ofa magnetic 

bottle electron spectrometer,36 and photoelectrons produced are energy-analyzed by time-

of-flight. To increase electron resolution, anions were pulse-decelerated3? just prior to 

laser interaction; however, this technique resulted in a loss of -75% of the electron 

signal, and so was only applied to clusters with relatively high anion flux [12-(C02)n:S; 12]' 

However, the slower beam velocity of the heavier anions results in an energy resoJution 

which scales as m- I12
, where m is the anion mass. Resolution for 1 eV electrons was 40-50 

me V with deceleration, and -100 me V without deceleration. Typical acquisition times 

were 80-1000 s per time delay. One-photon (probe only) photoelectron spectra of 

lz-(C02)n clusters (n = 1-10, 12, 14, 16) were also collected, in order to determine the 

energy shift of 12- features due to the presence of CO2 molecules. Acquisition times for 

these spectra were 1000-6000 s per cluster. 

3. Results 

One-photon (probe only) photoelectron spectra of lz\C02)n clusters (n = 1-10, 12, 

14, 16) are shown in Fig. 3, and the shift in the vertical detachment energy of the X state 

relative to bare 12- is plotted vs. n in Fig 4. A monotonic shift toward lower electron 

kinetic energy is observed with increasing cluster size, -150 me V per CO2 molecule for 

h(C02), and decreasing to -50 meV/C02 for 12-(C02k?: 10. A more systematic study of 

these trends will be presented in a future publication.38 



212 Chapter 7 

n = 16 
14 
12 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

0.0 0.5 1.0 1.5 2.0 
Electron Kinetic Energy/eV 

Fig. 3. One-photon photoelectron spectra of h-(C02)n (n = 1-10, 12, 14, 16) clusters. 
Photon energy = 4.768 eV. 



Chapter 7 213 

1.2 

1.0 

> 0.8 
Q) 

~ 
~ 0.6 
.~ 

~ 
r/J. 0.4 

0.2 

0.00 2 4 6 8 10 12 14 16 
Number of CO2 

Fig. 4. Solvent shift energy of the 12- X state vs. n, for h-(C02)n clusters (n = 1-10, 12, 
14, 16). 

Time-resolved photoelectron spectra for 12-(C02)n clusters with n = 4,6,9, 12, 14 

and 16 are shown in Figs. 5a-c and 6a-c for selected pump-probe delay times. Spectra 

were taken at many more delays than are shown in the figures; the selected spectra 

represent the minimum needed to follow the dynamics in these clusters. The spectra 

consist of peaks of various widths that evolve as a function of time. The maximum time 

delay recorded for each cluster is 200 ps. 

Based on our detailed study of h-(Ar)n reported in the previous paper,3l and the 

mass spectroscopy studies of h-(C02)n photofragmentation by Lineberger and co-

workers,4,5 many of the features in these spectra can be assigned at least on a preliminary 

basis. This assignment scheme is summarized in Table 1. Feature A, seen at the earliest 



214 Chapter 7 

times, reflects the transient h- created on the repulsive A' state by the pump pulse; 

analysis of this feature has been reported in detail elsewhere.39 Features B, C, 'and Dare 

relatively sharp peaks that appear by -1.1 ps. We attribute these to the I ~ r transitions, 

where r is solvated by increasing numbers of CO2 molecules, since for a given cluster 

they occur at progressively lower electron kinetic energies (eKE). The subscripts 1 and 2, 

when shown, (n = 4,6,9) result from photodetachment to the 2P312 and 2PI12 states of 

j 

atomic iodine, respectively. The progression in time and energy for these three features is 

most apparent for lz-(C02)6, lz-(C02)9 and lz-(C02)12, where peak B is most intense at 

- 200 fs, peak C is most intense at -400-500 fs, and peak D is most intense by -800 fs-I.I 

ps. A distinct feature C is not evident for the other clusters, but in all cases there is a net 

shift to lower electron energy from feature B at -200 fs to feature D at -800 fs-l.l ps. 

Table 1. ~abeling system of features observed in FPES of I2-(Ar)n and h-(C02)n clusters, 
with corresponding assignments. In cases where two spin-orbit manifolds are visible 
(peaks A-D), each is labeled with a subscript, e.g. Al and A2, according to decreasing 
eKE. 

Label Assi nment 

A lz ~ 12- A' (transient) 
B I ~ r (anomalous state) 
C I ~ r (symmetrically solvated) 
D I ~ r (dissociated), 

I ~ r (solvent-separated h") 

E lz X ~ lz- X v :::: 0, 

lz X ~ lz- X excited inner turning point (ITP) 
F lz X ~ lz- X excited outer turning point (OTP), 

lz* (higher-lying states) ~ lz- X 
Glz X ~ 12- X and I ~ r (indistinguishable) 

Feature E appears at high electron kinetic energy for all clusters except lz-(C02)4. 

The earliest time at which it can be observed drops with increasing cluster size, from -10 



Chapter 7 215 

ps for h-(C02)6 to -500 fs for h(C02)14-l6. Once this feature appears, it shifts toward 

lower electron kinetic energy with increasing time, and the degree of shifting is most 

apparent for the I2-(C02)14-16 clusters. Based on comparison with our h-(Ar)2o results, 

feature E at early times is attributed to photodetachment from the classical inner turning 

point region of a vibrationally excited h- wavefunction, resulting from recombination on 

the X state; the shifting toward lower electron kinetic energy is from subsequent 

vibrational relaxation of the h-. At time delays> 5 ps for n = 14 and> 4 ps for n = 16, 

feature E is relabeled feature G to signify that is has merged with lower energy features 

(see below). In clusters of n ~ 12, feature E remains distinguishable from other features in 

the spectrum at all time delays. 

The trends at time delays beyond -1 ps for n = 9,12, 14, and 16 clusters at low 

eKE « -1 eV) hint at more complex dynamics that were seen for h-(Ar)n clusters. The 

labeling scheme for the spectra in this regime is based on the simulations described in the 

following sections; it is not obvious by inspection. For I2-(C02)9, the single feature D at 

1.0 ps broadens slightly toward higher eKE, and by 200 ps appears to be a shoulder on 

the high energy side of a peak labeled F. For I£(C02)12, feature D splits into two features 

by 6.0 ps, D (at low eKE) and D' (at high eKE), with feature E appearing as a shoulder 

on D' at 200 ps. In the h-(C02)14 spectra, feature D begins shifting toward higher eKE 

after 1.3 ps, and merges with E by 20 ps, at which point the merged feature is labeled G. 

Fig. 5. (On next page) FPES of h-(C02)n clusters at selected delay times: (a) h-(C02)4, 
(b) h-(C02)6 and (c) I2-(C02)9. Pump photon energy = 1.589 eV, probe photon energy = 
4.768 eV. 

Fig. 6. (On page 217) FPES of h-(C02)n clusters at selected delay times: (a) h-(C02)12, 
(b) h-(C02)14 and (c) I2-(C02)16' Pump photon energy = 1.589 eV, probe photon energy = 
4.768 eV. 



~ 
.~ 

tI.:l 
$:I 
(l) 

~ 

(a) 

0.0 

n=41(b) 

Electron Kinetic Energy/eV 

n==9 1 ~ 

710 fs 

510 

210 --o 
2.0 

n =~ 
"0 
~ .., 
-....l 



c 
.1'""4 

00 
~ 
Q) 

] 

0.0 . 

200 ps 

20 
6.0 -1.1 

380 fs 

1.5 2.0/0.0 0.5 

(b) n' 14 

200os1 
20 

5.0 

230 

30 
1.5 2.0/0.0 0.5 

Electron Kinetic Energy/eV 

(c) n=16 

200 

o 
1.0 1.5 2.0 

(l 
::r' 
.§ 
~ 
""I 
-..J 

N 

-...J 



218 Chapter 7 

A low-energy feature, F, emerges after 880 fs, and drops away again by 20 ps. For h" 

(C02)16, D changes from a peak at 500 fs to a shoulder at 1.0 ps on a lower energy feature 

labeled F. By 4.0 ps, D is gone, leaving E and F, which merge into feature G by 6.0 ps. 

The detailed interpretation of this last set of results is possible only by comparison" 

with simulations described below~ These will demonstrate that peak F has a similar origin 

as in the 12-(Ar)n spectra: namely, photodetachment from the classical outer turning point 

of vibration ally excited 12- to the ground state of 12, and from vibrationally relaxed h to 

the low-lying excited states of h. The simulations also suggest that feature D in clusters 

of 12-(C02)n ~ 9 "[D' in 12-(C02)121 is due to formation of a long-lived, solvent-separated 

state of h- within the cluster. 

4. Analysis 

Simulations of the photoelectron spectra were performed in a manner similar to 

that for the 12-(Ar)n clusters,31 using a combination of previously-measured photoelectron 

spectra to simulate the r features, and calculated photoelectron spectra to model 

vibrationally excited 12- features. Details of the methods used can be found in the 

previous paper,31 but a brief overview of considerations unique to the h(C02)n 

simulations are discussed below. 

The number of solvent molecules around r, termed "<nI->," was determined from 

previously-measured solvent shifts of r(C02)n clusters.40-42 The shifts ary much larger per 

CO2 molecule than per Ar atom, -170 me V for [(C02), decreasing to -40 me V for 

I"(C02)n ~ 10. For analysis of short-time « -1 ps) spectra, the eKE of features B, C and D 

have been converted into <nI-> (using linear interpolation to calculate a fractional value 

when the eKE lay between measured shifts) and are presented in Table 2. Included in this 



Chapter 7 219 

table are estimates of <nI-> for the anomalous and normal charge-switching states, based 

on calculated structures,18,22,34 and assuming no loss of C02 molecules: An estimate for a 

symmetrically-solvated structure, which would occur at later time delays on the A' state, 

is also shown, obtained by averaging the anomalous and normal values. In clusters of 

12-(C02)n ~ 9, there is evidence that a solvent-separated h- structure ("SS h-") is at least 

partially responsible for feature D [D' in the case of h-(C02)12]. This structure appears 

spectroscopically as solvated r, because the r is surrounded by CO2 molecules, with the I 

atom located outside the solvent shell. This interpretation is explored in detail in the 

Discussion. 

Table 2. Calculated number of solvent molecules <nI-> for features B, C and D in 
12-(C02)n clusters from FPES. Estimated <nI-> for anomalous (A') and normal (X , A) 
charge-switching states, and <nI-> for a symmetric solvent configuration on the A' state, 
derived from model structures. 18 

Parent FPES Model estimates 
Cluster B C D Anomalous S mmetric Normal 
4 1.4 2.5 3.0 3.5 4.0 
6 2.1 3.4 4.4 3.0 4.5 6.0 
9 3.0 5.0 6.7 3.0 6.0 9.0 
12 4.8 7.2 8.0 5.0 7.0 9.0 
14 7.8 8.2 9.0 9.5 10.0 
16 8.4 8.9 10.0 10.0 10.0 

For simulating FPES spectra, actual r(C02)n photoelectron spectra were used,41 

rather than the shifted r spectra used for r(Ar)n, because the r(C02)n spectra contain 

prominent progressions arising from CO2 vibrational modes. Normalization of the spectra 

was achieved by scaling the integral of the I 2 P3/2 ~ r 1 So transition to that of the bare r 

spectrum [2,0, relative to 1.0 for the h X ~ 12- X (v = 0) transition].31 



220 Chapter 7 

Solvated h- X was modeled using an empirically determined distribution of 

vibtationallevels, designated by an average level "<V>," and average number' of solvent 

molecules "<nx>." The solvent shift energies from the one-photon photoelectron spectra 

of I2-(C02)n clusters measured in this work (Fig. 4) were employed to shift the simulated 

spectra. The method of generating spectra, and the relative intensities of transitions, were 

identical to those used for h-(Ar)n clusters, including the energy-dependent scaling 

functionj(E) for the X ~ X transition. 31 

The most important task in fitting the solvated 12- X state features is determining 

<nx> and <V>. At long time delays, when <V> is fairly small «-5), simultaneous 

determination of <nx> and <V> from the spectrum is possible by simulating feature E (or 

G). In this situation, the feature arises from a compact h X ~ h- X transition whose 

shape depends sensitively on <V>, while the overall eKE of the transition is governed by 

<nx>. At larger <V>, the X ~ X transition splits into two distinct energy regions 

arising from different segments of the 12- vibrational wavefunction. Near the classical 

inner turning point (ITP) of the 12- potential, the transition exhibits a broad range of 

eKE's, and the maximum eKE increases rapidly with <V>. Near the classical outer 

turning point (OTP), the transition is much narrower and intense,occurring at lower eKE, 

and its eKE is relatively insensitive to <V> over a wide range (-10-30), giving an 

indication of <nx>. The X ~ X ITP transition, lying at the highest eKE in the 

spectrum, corresponds to feature E at short time delays; however, as its eKE is dependent 

on <nx> and <V>, both quantities cannot be simultaneously determined from this feature. I 
In the h-(Ar)n clusters, the X ~ X OTP transition, as well as transitions from h- X to 



Chapter 7 221 

higher-lying h states (A', A, 13', 13" , {i, (i' and B), collectively referred to as the 12* 

~ X transitions, occur at lower eKE where they are denoted by feature F. This feature 

was used to detennine <nx>, as the eKE's of the transitions are all relatively insensitive 

to <v>.31 In h-(C02)n clusters, however, the transitions either are not accessible at the 

probe wavelength due to large solvent shifts, or they are masked by overlapping r 

features, making accurate detennination of <nx> difficult. 

In these cases [primarily at short time delays in h-(C02)14 and I2-(C02)16 clusters], 

simulations using several values of <nx> were perfonned. Several criteria were then 

considered in detennining a "best" <nx> time progression for the cluster. The value of 

<nx> at long time delays, where it could be detennined with more confidence, served as a 

primary constraint. It was assumed that <nx> decreased monotonically with time delay, 

and that changes from one spectrum to another were not abrupt (::; 1 CO2 molecule). The 

correspondence between the experimental spectra and simulations using different values 

of <nx> was not equally good, further limiting the choices of <nx>. A final decision 

rested on careful comparison of <nx> in neighboring clusters, and the photofragmentation 

averages. These issues are covered in detail in the Discussion. 

Populations of the rand 12- X state contributions, indicated by "P1-" and "Px," 

respectively, were detennined from the intensities of simulated spectral features, 

weighted by their relative cross-sections. P1- and Px sum to unity for all spectra. 

Simulation parameters are summarized in a series of graphs in Figs. 7a-b (Px and 

<V> vs. time), and 8a-b «nx> and <nI-> vs. time). Included in these figures are data from 

h-(Arho, and photofragmentation values indicated as detached points in the Px, <nx> and 

<nI-> vs. time graphs. Although several time delays have been simulated to follow the 



222 Chapter 7 

dynamics in each cluster, only a selected number are shown to illustrate the changes 

taking place. These are presented in Figs. 9 (n = 4), lOa-f (n = 6, 9 and 12), 12a-c (n = 

14) and 13a-d (n = 16), and each graph includes curves representing the solvated rand 12-

X contributions, the total simulated spectrum, and the experimental spectrum. 

5. Discussion 

Cluster spectra are treated in three sections, grouped by similar dynamics: 

h-(C02)9 and h-(C02)12, which exhibit more complex r dynamics, and increasing 

where r dynamics are rapidly obscured by h features, which exhibit extensive 

vibrational relaxation. For reference in the following discussions, the fraction of h-

products measured in the photofragmentation experiments4 are: 0.03 in h-(C02)4, 0.29 in 

Thus, there are essentially no h- products in I2-(C02)4, and no r products in h-(C02)14-16. 

After discussion of each group of clusters, trends across cluster size are summarized, and 

comparisons are made to previous experimental and theoretical work. Parallels with 

h-(Ar)n clusters are made in the final section. 

In h-(C02)4, r-based products dominate in the photofragmentation experiments, 

and no h- features are observed in the FPES spectra. This cluster is also predicted to 

possess an initial solvent configuration which is fairly symmetric, with three of the four 

solvent molecules around the h- waist. 



Chapter 7 223 

We begin by focusing on the short-time dynamics. Feature B, peaking at -200 fs, 

represents the earliest observable r signal, when the r and I are not very far apart and the 

system is presumably still on the A' state. For this feature, <n,-> = 1.4, significantly 

smaller than the total number in the cluster, which indicates substantial movement of the 

r away from the cluster by this time delay. By the time feature D fully forms at 800 fs, 

<n,-> is larger (2.5), suggesting a more heavily solvated environment around r. The 

increase could be due to either rearrangement on the A' state into a symmetric solvent 

configuration, or a transition to the normal charge-switching X or it state which returns 

the electron to the original, more solvated I atom. These alternatives are represented in 

Table 2 as the "symmetric" and "normal" estimates, respectively. However, because the 

<n,> of D is smaller than either of these estimates, it is not possible to distinguish among 

these possibilities from the spectra. 

Fig. 7. (On next page) Simulation parameters for 12-(C02)n clusters: (a) Population ofthe 
12- X state (Px) vs. time, (b) Average vibrational level of the 12- X state ( <v» vs. time. 
Legend: upward-pointing triangles = h-(C02)6, downward-pointing triangles = h-(C02)9, 
circles = h-(C02)12, squares = h-(C02h4, diamonds = 12-(C02)'6, crosses = 12-(Arho. 
Detached points indicate values from Vorsa et al. 10 

Fig~ 8. (On page 224) Simulation parameters for lz-(C02)n clusters: (a) Average number 
of CO2 molecules in the h- X state (<nx» vs. time, (b ) Average number of CO2 
molecules in the r fragment (<n,-» vs. time. Legend is identical to Fig. 7. Detached 
points indicate values from Vorsa et al.\O 



224 

1.0 (a) 
0.8 

0.6 
~>< 

, 0.4 

0.2 

30 

10 

Chapter 7 

• 
16 • 

~ 

14 
+- 12 -( Ar )20 

------ 12 x 

~9 

6 
t 

Vorsa 
. et al. 

o~~~~~~~~~~ 

0.1 1 10 100 1000 
Time/ps 



10 

5 

10 

5 

o 
0.1 

Chapter 7 

.&--_~ 16 

--------.----.- 14 

~~-4t-*.......--- 12 
I2-(Ar)2o -+ 

--------.:lII~~--.-...... ____ 

9 

1 10 100 
Time/ps 

Vorsa 
et ale 

t 
• 

-
• 

Vorsa 
et al. 

t 

225 



226 Chapter 7 

The FPES of I2-(C02)4 undergo little change after 800 fs, demonstrating the 

extremely fast nature of the reaction: essentially the unencumbered photodissociation of 

h-- To illustrate the composition of the products, the 200 ps spectrum was simulated 

using a distribution of r(C02)n spectra, shown in Fig. 9. This distribution does not match 

the photofragmentation data exactly, with <n,-> (2.6) somewhat higher than observed in 

these experiments (<n,-> = 1.9). This discrepancy points to possibly vibrationally excited 

product which has not dissipated its excess energy through solvent evaporation by 200 ps. 

n==4 
200ps 

0.0 0.5 1.0 1.5 2.0 
Electron Kinetic Energy/e V 

Fig. 9. Simulated spectra of I2-(C02)4 at 200 ps. Experimental (thick solid line) and 
simulated (thick dotted line) data are shown. Only r contributions were required to 
reproduce the experimental spectrum. 

These in~ermediate-sized clusters exhibit both solvated rand h- features in their 

spectra at long time delays, consistent with the photofragmentation experiments. They are 

also predicted18,22.34 to have highly asymmetric initial solvent configurations, that is, with 

the more negative I atom strongly solvated, and other I atom significantly less solvated. 

This asymmetry is exhibited in the short-time dynamics as three distinct solvated r 

features (at different eKE's) in the first -1.0 ps after photodissociation. These short-time 



Chapter 7 227 

dynamics will be discussed first, and then simulations of the h- dynamics will be covered 

for each cluster individually. 

As shown in Table 2, the difference in <n,-> between the anomalous and normal 

estimates is fairly substantial for these clusters, allowing the charge-switching state 

responsible for the <n,-> of feature 8to be determined unambiguously. In all cases, <n,-> 

is closest to the anomalous estimate, meaning that the negative charge is initially on the 

less-solvated I atom. The increases in <n,-> for features C and D indicate more heavily 

solvated environments around r, but the presence of two distinct features, one of which is 

short-lived (C), and the other of which persists for several ps (D), suggests the existence 

of two, possibly coupled, mechanisms.As for h-(C02)4 above, both features could be due 

to either rearrangement on the it' state into a symmetric solvent configuration, or a 

transition to the normal charge-switching X or A state which returns the electron to the 

original, more solvated I atom. Some CO2 molecules probably escape from the cluster 

during the first -1 ps, making the estimates for <n,> upper limits on the observed value 

of <n,-> corresponding to each structure (symmetric or normal). Bearing this in mind, in 

each cluster there is a reasonable correspondence between the <n,> of feature C and the 

symmetric estimate, and between the <n,-> of feature D and the normal estimate. This 

implies a mechanism where the solvent molecules first rearrange into an energetically 

favorable, symmetric configuration on the it' state (feature C), which maximizes the 

coupling with the X and A states. After a transition to either of these normal charge-

switching states, the solvent rapidly rearranges again into a configuration where r is 

heavily solvated (feature D). Theoretical models must be examined to confirm these 

assignments; the work of Faeder et al.22 and Margulis et al.23 will be considered. 



228 Chapter 7 

The Faeder et al. model predicts for I2-(C02)9 and I2-(C02)12 [h-(C02)6 was not 

considered] that the solvent rearranges to a symmetric configuration within 500 fs, 

followed by transitions to the A or X states at later time delays. The electronic 

transitions are much slower in I2-(C02)9 (-2 ps) than I2-(C02)12 (-700 fs), and is 

dominated by the A ~ A' transition in this time range. The solvent rearrangement step 

is consistent with the assignment of feature C, which appears with maximum intensity at 

-500 fs in both clusters. TheA .~ A' transition corresponds to feature Din h-(C02)12, 

but in h-(C02)9 t~e transition occurs considerably more slowly in the model than 

observed experimentally. The discrepancy may by symptomatic of the predicted slow 

transitions to the X state from both the A' and, A states, which are discussed below in 
~,. 

comparing the appearance of the X state in this model with experiment. 

The model of Margulis et al. investigated I2-(C02)s photodissociation at 720 nm, 

which, while not identical to any of the clusters studied by FPES, is worth examining. For 

-50% of the trajectories, the electron returns to the original I atom (i.e., normal charge-

switching state) in -500 fs, leading to rapid dissociation. The remaining trajectories 

undergo solvent rearrangement on the A' state, with a transition to the X or A state 

occurring within 30 ps, resulting in h- recombination. This description presents a 

significantly different picture of the dynamics than the Faeder et ai. study. The -500 fs 

transition to the A or X state would correspond to feature C, which appears at the same 

time, while the slower rearrangement of solvent molecules on the A' state would be 

indicated by feature D. However, the model predicts that the X / A state trajectories lead 

to rapid dissociation, implying that C remains in the spectrum as an rcC02)n product, 

while in fact it vanishes by 1.0 ps. A possible explanation for this disappearance might be 



Chapter 7 229 

a subsequent solvent rearrangement on the X / A state, increasing <nl-> so that the 

dissociating r signal overlaps with feature D, the trapped h- A' sigmil, at longer time 

delays. 

We are inclined to favor the Faeder et ai. model since it agrees with the arguments 

made at the beginning of this section, and, despite its shortcomings, offers a slightly 

simpler explanation than the Margulis et ai. model. 

Simulations for individual clusters will now be discussed. 

The FPES of 12-(C02)6 were simulated between 10 ps (the earliest time delay at 

which an indisputable E feature was identified) and 200 ps. Over this time period, Px 

grows slowly from 0.24 at 10 ps to 0.31 at 200 ps (Fig. 7a), while <V> decreases in step 

with the rise of Px (Fig. 7b) from 9.4 to 4.5; <nx> and <nl-> are virtually unchanged after 

10 ps (Figs. 8a-b). h-(C02)6 displays the slowest appearance of the X state in all the 

clusters studied here, and the initial value of <V> is also smaller than that seen in any 

other cluster. Since 12- must enter the X state from either the A or A' state with -1 e V 

of internal energy (the difference in bond energies), the low initial value of <V>, 

corresponding to only 130 meV of internal energy, must indicate an average of clusters 

over a wide range of vibrational levels. This idea is reflected in the large width of the 

distribution (standard deviation (jv :::: <V», which narrows in the larger clusters (n ~ 14) 

at early time delays. The growth of Px is also correlated with the decrease in <V>, as 

shown by comparing Figs. 7a and 7b. Thus, the rate-limiting step in vibrational relaxation 

is the influx of population to X state. 



230 

A'/A 

0.00.5 

Chapter 7 

(a) n=6 
200 ps 

(c) n=9 
A'/A 200 ps 

D .-x 

D' 

(d) n=12 
1 .. 1 ps 

(e) n=12 
6.0 ps 

(f) n=~2 
200 ps 

1.0 1.5 2.0/0.0 0.5 1.0 1.5 2.0 
Electron Kinetic Energy/eV 

Fig. 10. Simulated spectra of (a) h-(C02)6 at 200 ps, (b) h-(C02)9 at 9.0 ps, (c) 12-(C02)9 
at 200 ps, (d) 12-(C02)12 at 1.1 ps, (e) 1£(C02)12 at 6.0 ps, and (f) h(C02)12 at 200 ps . 

. Experimental (thick solid line) and simulated (thick dotted line) data are shown. Thin 
.lines indicate simulated r - and 12- X -based CO2 fragment contributions. 

As the changes in the spectra after 10 ps were not dramatic, only the 200 ps 

simulation is shown (Fig. lOa), which illustrates the features encountered in all the 



Chapter 7 231 

spectra. The simulation parameters (Px = 0.31, <V> = 4.5, <nx> = 0.5, <n,-> = 4.1) 

indicate a spectrum dominated by solvated r, which almost entirely accounts for feature 

D. Solvated Iz- X generates a fairly uniform, low-intensity signal over the entire range of 

observed electron kinetic energies, 0-2 eV, with a distinctive, sloping shape in the region 

of the E feature, arising from the X ~ X transition, and a slight increase at 750 meV 

due to the A' / A ~ X transitions. Because of the broad appearance of E, there was 

some latitude in the choice of<nx> (0.5-1.5), which influences the values of the other 

parameters, but the changes are not substantial. The photofragmentation average of 004 is 

comparable to the low end of this range. As for I2-(C02)4, <n,-> is larger than the 

photofragmentation average (304), which points to vibrational excitation and incomplete 

evaporation in the solvated r fragment at 200 ps. <V> is also the largest of any cluster at 

200 ps, suggesting inefficient energy transfer to the small number of CO2 molecules, i.e., 

o or 1, present in the cluster. In larger clusters, with a larger number of CO2 molecules 

remaining, <V> attains values as low as 0.8. 

In 1z-(C02)9, the spectra were simulated from 1.0 to 200 ps. More significant 

changes in the shape of feature E are observed than in I2-(C02)6, so two time delays (9.0 

and 200 ps) are shown in Figs. 10b-c to illustrate the changes. The 9.0 ps spectrum (Px = 

0.34, <V> = 804, <nx> = 4.0, <n,-> = 604) contains an X state signal which appears very 

similar to that seen in the I2-(C02)6 simulation: intensity fairly uniformly distributed over 

0-2 e V, with a sloped structure in the vicinity of feature E (X ~ X), and a peak at 500 

me V ( A' / A ~ X). Feature D is almost entirely accounted for by solvated r. As with 

I2-(C02)6, there is some uncertainty in <nx> (±1.0) which alters the other parameters. 

slightly, but the simulation is essentially unchanged. By contrast, the 200 ps spectrum (Px 



232 Chapter 7 

= 0.44, <V> = 1.1, <nx> = 3.5, <nI"> = 6.4) exhibits a much more structured X state 

signal, which is peaked at 1.15 e V (x ~ X , corresponding to E), -550 me V ( A' / A ~ 

X, feature F) and -250 meV (E' / E" ~ X). Solvated r still accounts for the majority 

of the intensity of D; it is broadened and diminished relative to 9.0 ps, but otherwise 

unchanged. <nx> is well-defined at this time delay « ±a.5), due to a compact and easily 

distinguished E feature. 

Px (Fig. 7a) increases more rapidly than in h"(C02)6, essentially reaching its final 

value of 0.44 by 25 ps, while <V> (Fig. 7b) tracks the rise in Px, falling from 9.4 to 1.4 

by this time 4elay. There is little change to either <nx> or <nI"> after 1.0 ps (Figs. 8a-b). 

As for h"(C02)6, the earliest value of <V> is fairly small with a wide distribution of levels 

«jv "" <V», and the correlated changes between Px and <V> probably indicate that the 

fraction of highly vibrationally excited molecules is small at any given time, with 

relaxation limited by the initial transition into the X state. 

Both <nx> and <nI"> are -0.5 C02 molecules larger than the photofragmentation 

averages of 2.8 and 5.9, respectively, which indicate that some energy still resides in CO2 

vibrational modes. This is despite the fact that the 200 ps value of <V> is much lower 

than in h"(C02)6, indicating more complete vibrational relaxation. Thus, energy is 

efficiently transferred from h" to CO2 modes, but much less efficiently to CO2 

evaporation. This effect will become even more pronounced in larger clusters, as the 

number of C02 modes increases. 

At 200 ps, the spectrum is dominated by solvated r, with Px = 0.44 far smaller 

than the photofragmentation value of 0.70. Together with stronger spectroscopic evidence 

to be described in h(C02)12, this discrepancy is explained by the trapping of part of the 



Chapter 7 233 

12- population into an SS h- structure, which appears as solvated r spectroscopically. 

Approximately half the r signal must be due to SS h- in order to account for the small 

value of Px as compared to the photofragmentation experiment. SS h- is predicted by 

Faeder et al.22 to contain more CO2 molecules than would be indicated by the r solvent 

shift, since some CO2's surround the neutral I. However, in the case of 12-(C02)9, it 

appears that there is little difference between the rand SS 12- spectral signals, other than 

a -50% increase in the width of the distribution between 3.0 and 25 ps, indicating 

possible differences in <nI-> which are not discernible within the resolution of the 

spectra. 

: 1 12-(C02)12 clusters were simulated from 1.1 to 200 ps. Like h(C02)9, the spectra 

exhibit significant changes during this time interval; three time delays (1.1, 6.0 and 200 

ps) are shown to illustrate them in Figs. lOd-f. At 1.1 ps, the spectrum (Px = 0.14, <V> = 

11.9, <nx> = 7.0, <nI-> = 7.5) is almost entirely due to solvated r; the small amount of 

solvated h- X accounts for the small tail comprising E, with a negligible amount of 

intensity present in the vicinity of D. The distribution of r(C02)n contributions is strongly 

peaked near the average value. The spectrum at 6.0 ps (Px = 0.27, <V> = 6.9, <nx> = 7.0, 

<nI-> = 7.8) consists of a more substantial 12- X state, resembling the one simulated for 

h-(C02)9 at 9.0 ps, with a sloped structure accounting for E (X ~ X), and increased 

intensity at -200 meV (A' / A ~ X). The r distribution is double-peaked at n = 7 and n 

= 9, though with an average number which is roughly the same as in the 1.1 ps spectrum. 

These two peaks largely account for features D and D'; the A' / A ~ X transition 

makes a minor contribution to D. The 200 ps spectrum (Px = 0.47, <V> = 0.8, <nx> = 

7.0, <nI-> = 7.3) exhibits strongly peaked X state signals at 850 meV (X ~ X, feature 



234 Chapter 7 

E) and -200 meV (A' / A ~ X , accounting for half of feature D's intensity), and an r 

signal which is much less double-peaked, the majority of the intensity occurring at n = 7. 

The r contribution accounts for the entirety of D', and half the intensity of D. 

The double-peaked r distribution is a fairly direct indication of the presence of 

the SS 12- structure, for the following reasons. While the Vorsa et al. study4,10 observed no 

rcC02)n photofragments with n < 8, feature D' is accounted for almost entirely by 

r(C02)n S 7. Feature D, reproduced mainly by n = 8-10 (as well as the if' / A ~ X 

transitions at later time delays), represents an r distribution much closer to the 

photofragmentation average (8.6). Even the overall <nr-> at all time delays (7.3-7.8) is 
f I 

; 

smaller than the photofragmentation average, while in smaller clusters, it was always 

observed to be larger. An excess of CO2 molecules over the photofragmentation average 

is easy to account for in terms of incomplete solvent evaporation, but the only realistic 

way to account for too few C02 molecules is the SS h- structure, which is predicted to 

contain more CO2 molecules than are apparent from the FPES signal. 22 In addition, the 

200 ps spectrum is dominated by the solvated r features, with Px (0.47) far short of the 

photofragmentationresult (0.84), as in h-(C02)9, indicating a major additional r-like 

component. 

Therefore, we propose that feature D', simulated principally by rcC02)n S 7, 

indicates the SS 12- structure, while D, represented mainly by f(C02)n ~ 8, indicates 

"normal" dissociated f. To illustrate the time-resolved changes in the r distribution more 

clearly, the simulated populations of individual rcC02)n contributions are plotted in Fig. 

11 as a series of histograms. At 1.1 ps, a Gaussian-like distribution is observed from n = 

5 to 9, with <nr-> = 7.5. By 6.0 ps, however, the double-peaked structure with major 



Chapter 7 235 

components n = 7 and 9 is clearly apparent. Through 200 ps, the n ~ 7 contribution 

remains essentially constant near 0.41, while the n ~ 8 component diminishes to only 

0.12. Assuming that all of the SS 12- eventually recombines on the X state, 'Px may be 

added to the SS h- population to obtain a predicted total of 0.88, very close to the 

photofragmentation value (0.84). 

0.4 

0.35 

0.3 
Q 
.9 0.25 
~ 

0.2 -;:j 
~ 
~ 0.15 

0.1 

0.05 

0 
1.1 3.1 6 10 20 

Time/ps 
30 50 200 

Fig. 11. Population of individual rcC02)n contributions to the [ signal in h-(C02)I2 
simulated spectra. 

1il5 
116 
07 
08 
119 , 

I 

1il10 1 

Looking at the time-resolved changes in the other simulation parameters, it is 

observed that Px and <V> (Figs. 7a-b) are again inversely correlated, as observed in the 

smaller clusters. While the X state appears earlier (1.1 ps) than in the smaller clusters, 

the growth of Px is actually slower than in 12-(C02)9, and the initial value of <V> (11.9) is 

essentially the same as those found in the smaller clusters, probably due to the same 

averaging effects of a population transfer-limited relaxation rate. <V> does decrease 

about twice as fast as in h-(C02)9, however, so population transfer alone is not 



236 Chapter 7 

responsible for the relaxation rate. There is no change in <nx> in the simulated spectra 

(Fig. 8a); however, at 200 ps it is larger than the photofragmentation average·of 5.7, and 

is a larger discrepancy (l.3) than found in the smaller clusters. This increase may reflect 

the greater energy storage capacity of a larger CO2 cage, forestalling evaporation. 

In h-(C02)14 and h-(C02)16 clusters, feature E appears at -500 fs, much earlier 

than in the smaller clusters, and also undergoes much larger changes in shape, with a 

distinctly peaked appearance at early time delays (-1 ps), becoming more sloped and 

moving toward lower eKE as time progresses., Feature F is also visible in both sets of 

spectra as an intense peak at very low eKE which is present at early times. These features 

are characteristic of a solvated, highly vibration ally excited 12- X state. The presence of 

solvated r, both as a dissociated product and as SS 12-, is also observed, though the 

amount of r at long time delays is somewhat ambiguous as only a single broad feature G 

remains at 200 ps in both clusters. Since little r fragments were observed by Vorsa et 

al.,4.5 the domination of the spectra by these 12- X state features is not surprising. We 

begin by briefly considering the short-time « -1 ps) dynamics of solvated r, then focus 

on the simulations. 

Since these two clusters possess fairly'symmetric solvent configurations, there is 

little difference between the anomalous and normal estimates for <nI-> (Table 2), 

precluding definitive assignment of the charge-switching state responsible for the B 

features. However, there is no reason to suspect that the system is not on the A' state. In 

fact, it is seen that <nI-> for the B feature is significantly smaller than either estimate, 

which was also the case in h-(C02)4' Rather than being due to rapid separation of r from 



Chapter 7 237 

the cluster, since the I atoms are virtually surrounded by solvent molecules, the 

discrepancy is probably caused by rapid loss of CO2 molecules in the'''capping'' positions 

(along the 12- axis) of the cluster, which Parson and coworkers34 predict to collide with the 

I and r fragments immediately after photoexcitation. The 0.4-0.5 molecule increase in 

<nI-> by -700 fs (feature D) indicates a small increase in solvation. It has been 

established from earlier discussion that solvent rearrangement on the A' state occurs on 

the -500 fs timescale. Presumably, the rapid appearance of solvated h- X (-500 fs) 

implies that production of r on the X / A states occurs on a similar timescale. Thus, the 

increase in <nI-> producing feature D is probably due to a combination of A' state 

solvent rearrangement, and transitions to the X / A· states which switches the electron to 

the (slightly) more solvated I atom, followed by solvent rearrangement. 

In h-(C02)14, spectra at three time delays are shown in Figs. 12a-c: 1.3, 5.0 and 

200 ps. The 1.3 ps spectrum (Px = 0.62, <V> = 23.9, <nx> = 10.0, <nI-> = 7.8) exhibits a 

solvated 12- X state spectrum which is very extended, due to the large value of <V>: 

feature E is accounted for by the X ~ X ITP transition at high eKE, while F is 

represented at very low eKE by a combination of X ~ X OTP and h* ~ X 

transitions. Solvated r contributes the bulk of the intensity to D. In the 5.0 ps spectrum 

(Px = 0.51, <V> = 4.4, <nx> = 9.0, <nI-> = 8.3), <V> is much lower, generating a more 

compact X ~ X feature which accounts for feature E at much lower eKE, and part of 
\. 

D; the A' / A ~ X transition accounts for F. The solvated r contribution peaks at -300 

meV, in between D and F, but represents about 2/3 of the intensity of D. The 200 ps 

spectrum (Px = 0.62, <V> = 0.8, <nx> = 9.0, <nf> = 7.7) consists of a single broad 

feature G, which is accounted for roughly equally by solvated h- X , occupying the high 



238 Chapter 7 

eKE side of the feature, and solvated f, occupying the low eKE side. The A' / A ~ X 

transition is also present in the vicinity of F. 

F 

A'iA 
""" 

(a) n=I4 
1.3 ps 

""" """ A'iA X+-X """ + 
+-X OTP 

""" """ D A'it: (b) n=I4 
5.0 ps 

(c) n=I4 
200 ps 

0.0 0.5 1.0 1.5 2.0 
Electron Kinetic Energy/eV . 

Fig. 12. Simulated 1z-(C02)14 spectra at (a) 1.3 ps, (b) 5.0 ps, (c) 200 ps. Experimental 
(thick solid line) and simulated (thick dotted line) data are shown. Thin lines indicate 

simulated f- and 12- X -based C02 fragment contributions. 

',. , 

I I 



Chapter 7 239 

At 200 ps, <nx> (9.0) is larger than the photofragmentation average (7.6), by 

about the same amount as for 1z-(C02)12, indicating excess energy stored in CO2 modes 

which has not yet found its way into evaporation. Although there is significant leeway in 

the choice of parameters for simulating the 200 ps spectrum, the breadth of feature G in 

comparison to the rz-(C02)16 spectrum suggests a significant amount of solvated r is 

present, comparable to earlier time delays. 

Like the smaller clusters, Px at 200 ps (0.62) is much smaller than observed in the 

photofragmentation experiments (0.95), and like I2-(C02)12, <n,-> is also significantly 

smaller (7.7 vs. 9.6), indicating the presence of SS rz-. No double-peaked r structure is 

observed, however, as it appears that the dissociated r signal is so small that it has little 

influence on the simulation; with a photofragmentation population of only 0.05, this is 

not surprising. There is almost no change in the distribution of rcC02)n populations vs. 

time delay, other than a slight narrowing after 5.0 ps. 

As shown in Fig. 7a, Px rises much faster than in h(C02)12, essentially reaching a 

plateau at 1.3 ps (0.62). Over this time interval, <V> (Fig. 7b) appears to stay constant at 

23.9, much larger than in the smaller clusters. Together with the early plateauing of Px , 

this higher initial value of <V> indicates that the average vibrational level is becoming 

less controlled by the rate of infusion of population onto the X state, so that all clusters 

now enter the X state by 1.3 ps with substantial vibrational excitation. There is also a 

relatively narrow.distribution of vibrational levels (crv ::::::: 0.3<v» compared with smaller 

clusters, which further illustrates this distinction. ~etween 1.3 and 20 ps, <V> falls to a 

very low value (1.3), then decreases slightly more (to O.S) by 200 ps. There is some 

decrease to <nx> with time (Fig. Sa), falling from 10.0 at 1.3 ps to 9.0 at 5.0 ps, but it is 



240 Chapter 7 

. constant after this time delay. Still, this decrease was not observed in the smaller clusters, 

and reflects a more concerted vibrational relaxation process, where an initial,. rapid 

evaporation of solvent molecules discarding most of the vibrational energy of the cluster 

is becoming visible. <nI-> (Fig. 8b) undergoes small changes (±0.7), some of which may 

be model-dependent, but remains essentially constant near 7.7 .. 

For 12-(C02)16, the following simulated spectra are shown in Figs. 13a-d: 1.0 ps, 

2.2 ps, 4.0 psand 200 ps, respectively, which illustrate the large changes to all features in 

the spectra. At 1.0 ps (Px = 0.68, <V> = 38.8, <nx> = 14.5, <nI-> = 8.5), solvated Iz- X is 

responsible for features E (X ~ X ITP) and F (X ~ X OTP), while solvated r 

accounts for D. Note the very intense F feature dominating the spectrum, due to the much 

larger value of <V>, which was absent in 12-(C02h4 near this time delay. By 2.2 ps (Px = 

0.85, <V> = 20.9, <nx> := 13.0, <nI-> = 8.7), the general shape of the spectrum is 

unchanged, but E has moved to much lower eKE, and the intensity of F is diminished, 

due to the considerable X state relaxation and loss of C02 molecules compared with 1.0 

ps. The X state population has increased significantly as well. The solvated r 

contribution, still accounting for D, is of lower intensity but <nI-> is almost identical. The 

4.0 ps spectrum (Px = 0.89, <V> = 6.4, <nx> = 12.0, <nI-> = 8.5) could be simulated 

exclusively by the 12- X state, but there is better reproduction of the low eKE region if a 

small amount of r is included in the vicinity of F. The X ~ X ITP transition is 

responsible for feature E, while the X ~ X OTP transition now domi~ates feature F. 

Unlike 1z-(C02)14, the A' / A ~ X "transitions occur at an eKE too low to observe. The 

200 ps spectrum (Px = 0.86, <V> = 1.4, <nx> = 11.5, <nI> = 8.9) reveals further 

vibrational relaxation to the X state, and whether any r is present depends primarily on 

_,r 

/ 



I 

Chapter 7 241 

the choice of <nx>; over the range <nx> = 10.5-12.0, Px varies from 0.70-1.00. Here we 

choose a median value, which is most consistent with simulations at earlier time delays. 

The X ~ X transition accounts for the majority of G, with the solvated r signal making 

a small contribution to the low eKE side. 

.0 
.,..-4 

til 

X+-X 
OTP 

(a) n==16 
1.0 ps 

(c) n==16 
4.0 ps 

~~F~~~(~b)~n~1~6~~~(~d)~n~1~6 

X+-X 2.2 ps G 200 ps 
OTP 

0.0 0.5 

X+-X 
ITP 

1.0 1.5 2.0/0.0 0.5 1.0 
Electron Kinetic Energy/eV 

1.5 2.0 

Fig. 13. Simulated 12-(C02)16 spectra at (a) 1.0 ps, (b) 2.2 ps, (c) 4.0 ps, (d) 200 ps. 
Experimental (thick solid line) and simulated (thick dotted line) data are shown. Thin 
lines indicate simulated r- and 12- X -based CO2 fragment contributions. 

Although spectral evidence is not conclusive, as it was in smaller clusters, it 

appears that the r contribution persists through 200 ps. This structure is presumably SS 

12-, because r products were not observed in the photofragmentation experiments. The 

value of <nI-> (8.9) is also comparable to h(C02h4, indicating only about half of the CO2 



242 Chapter 7 

molecules surround the r, consistent with the SS 12- structure. Varying the population of 

r in the 200 ps spectrum affects <nI-> very little. 

Px rises faster than in any other cluster, reaching a plateau of -0.9 by 2.2 ps (Fig. 

7a). Over this time period, <V> drops from an initial value of -39 to 20.9, and relaxes 

almost completely by 10 ps (Fig. 7b). The relaxation rate appears slightly slower than in 

1z-(C02)14 before 2.9 ps, but surpasses it at later time delays. As the initial value of <v> is 

much larger than in any other cluster, it appears that population is building up in the X 

state even more rapidly than in h(C02)14, after which this large fraction of clusters 

relaxes in tandem. The width of the distribution is again fairly narrow initially (crv ::::; 

0.3<v», illustrating the more correlated nature of the relaxation process. As seen in Fig. 

8a, <nx> undergoes it large change, from 14.5 at 1.0 ps to 11.5 by lOps, indicating 

simultaneous evaporation of CO2 molecules as energy leaks from 12- into the CO2 cluster 

modes. The 200 ps value of <.nx> is larger than the photofragmentation average (9.7), by 

approximately the same amount as in 1z-(C02)12 and 1£(C02)14, reflecting the energy 

residing in the cluster which will eventually dissipate through CO2 evaporation. <nI> 

undergoes little variation (±0.2) with time, after its initial increase through 500 fs (Fig. 

8b). 

5.4. Trends across cluster size, and comparisons with other studies 

The most signific~nt trend across cluster size is the increasingly rapid appearance 

and subsequent vibrational relaxation of the 12- X state. Using the time of initial 

appearance of feature E (X f- X transition) as a basis of comparison (see Fig. 7a), a 

monotonic decrease with cluster size is observed, from -10 ps in h(C02)6 to -500 fs in 



Chapter 7 243 

12-CC02)14-16. This order-of-magnitude change is due to the increasing perturbation on the 

12- electronic states by larger numbers of CO2 molecules, facilitating nonadiabatic 

electronic transitions to the X state. The earlier appearance of X state population in 

larger clusters is also accompanied by initially larger vibrational excitation with a smaller 

range of levels, indicating the more concerted appearance of 12- on the X state and 

subsequent vibrational relaxation. In smaller clusters, where the rate of population 

transfer onto the X state was slower than the vibrational relaxation rate of individual 

cluster molecules, a much lower maximum vibrational level is observed, with a wider 

distribution of levels. 

Although not directly comparable to our determinations of Px and <V>, the 

absorption recovery experiments of Vorsa et al. confirm the general decrease in time 

required to reach a low vibrational state, with exponential time constants ranging from 24 

ps for 12-CC02)6 to 1.3 ps for hCC02)16.10 These time constants correspond approximately 

to the time at which <V> crosses -7 in Fig. 7b. 

While the Parson group model reports a decrease in the initial appearance of the 

X state with cluster size for n = 6 through 12 CPx = 0.20 at from -3.1 to -1.6 pS),34 a 

large fraction of trajectories become trapped in the SS 12- configuration on the A state, 

particularly for h-CC02)16, so that growth of the X state and vibrational relaxation appear 

significantly slower than observed experimentally. However, once a trajectory does enter 

the X state, vibrational relaxation is very rapid in all clusters (1-2 ps ),22 comparable to 

the rates observed in 12-CC02)14-16 clusters where relaxation does not appear significantly 

limited by the electronic transition rate. 



244 Chapter 7 

The Margulis et ai. study observes for I2-(C02)g recombination in anywhere from 

3.,27 ps, depending on trajectory, with fast vibrational relaxation (-3 ps). These results 

are about on par with the FPES data for I2-(C02h. However, it should be pointed out this 

cluster was simulated only at 720 nm, which deposits enough energy in the I2-(C02)g 

cluster to evaporate all CO2 molecules, whereas -3 CO2 molecules remain for I2-(C02)9 at 

780 nm. For I2-(C02)16, the simulations fare little better than the Parson results, as 

exclusively delayed (10-25 ps) recombination is predicted at 790 nm. The 720 nm results 

do show a minority of trajectories (-20%) which recombine after the first bond extension 

at -700 fs, which is much more consistent with the FPES observations. The paper points 

toward a possible explanation for this majordifference in mechanism: that the initial 1£ 

bond distance extends farther at the higher-energy pump excitation (5.5 A) than at the 

lower-energy (5.0 A), facilitating electronic coupling to the X state. Perhaps this 

apparently sensitive parameter also explains the anomalously high A state population 

observed in the Parson model. 

A by-product of efficient energy absorption by CO2 is longer energy retention, 

which is exhibited in the trend of increasing discrepancy between <nx> determined from 

FPES and measured in the photofragmentation experiments. As cluster size increases, 

<nx> is seen to increase above the photofragmentation average more and more, growing 

from essentially 0 in I£(C02)6, to 1.8 in I2-(C02)16. The Parson group model also revealed 

a decrease in the solvent evaporation rate as cluster size increases, but this decrease was 

compounded by the trapping of a much larger fraction of trajectories on the A state than 

was supported by the FPES data, delaying the appearance of the X state. Thus, no 

quantitative comparison could be made between this group's predictions and FPES at 



Chapter 7 245 

particular time delays. Margulis et al. offered no information on their solvent evaporation 

dynamics. 

One of the most interesting results from the FPES study is the identification of the 

solvent-separated h- structure in 12-(C02)n ~ 9 clusters, which was not observed in the 

photofragmentation experiments. Features arising from SS 12- resemble solvated r, . 

because the 12- potential is expected to lie very near the dissociation energy when r and I 

are far enough apart to allow a CO2 molecule to intervene (5-7 A).18.22.34 By comparison, 

the long-lived A state structure in 12-(Ar)n clusters, which is not solvent-separated, exists 

at a considerably shorter internuclear radius (4.6 A) and possesses a significant well (140 

meV),31 which serves to shift the photoelectron spectrum dramatically. However, in 

h-(C02)n clusters, the effect of the Ii state well is much less important, as it is smaller 

than the binding energy of a single CO2 molecule to r (212 meV).40 It is feasible that the 

SS 12- structure could be stabilized by this strong solvent interaction on any of the 

accessible anion states ( X , A or A'), but Faeder et al.22 predict it to exist exclusively on 

the A state. In their model, SS h- contains more C02 molecules than would be indicated 

by the r solvent shift, with some CO2's surrounding the neutral!. Indeed, SS 12- must 

contain approximately as many solvent molecules as found in the r fragments, since the 

difference in energy between these structures is the binding energy of neutral I to the 

cluster, which is estimated40-42 to be much smaller than the r -C02 well depth. Therefore, 

the main distinguishing factor between SS 12- and dissociated r is the apparent <nI->. It 

was shown that SS 12- is only clearly identifiable using <n,-> for 12-(C02)n ~ 12, but that in 

clusters of 12-(C02)n ~ 9, the large r popUlation in comparison to the photofragmentation 

results also pointed strongly toward an additional r-like structure, e.g. SS h-. 



246 Chapter 7 

If the SS h- structure is indeed limited to the A state, its prominence in the 

spectra is not surprising, as the A' state lies closer in energy to the A than the X state 

at intermediate internuclear distances, making the A ~ A' coupling stronger than that 

, of the X ~ A'. As seen above, the A state is predicted by both theoretical groups to 

playa major role in 12- recombination dynamics;22.23 indeed, perhaps too great a role! 

However, in clusters 'where the X state appears in < -1 ps [12-CC02)n ~ 121, the question 

arises of why the A does not rapidly fall onto the X state. The answer seems to be less a 

matter of electronic coupling, as all states are essentially degenerate at large internuclear 

distances, and more of physical constraint in the SS 12- structure. Thus, regardless of the 

electronic state, the rand 1 atoms must overcome the resistance of one or more C02 

molecules blocking their way to recombination. This is apparently feasible on the 

timescale of the photofragmentation experiments C -5 JlS),5 but not on the 200 ps 

timescale. 

5.5. Comparison with 12"CAr)nclusters 

Comparing the 12-CC02)n c~uster results to those of h-CArho, the most obvious 

difference is the much faster rate of h- vibrational relaxation in h-CC02)n clusters, despite 

the fact that the 12- X state grows at approximately the same rate for h-CC02)n:5 9 Csee 

Fig. 7a). This distinction highlights the existence of the two separate effects involved in 

h- recombination: the ability to remove energy from the 12- bond, and the ability to 

facilitate an electronic transition to the X state in the first place. It is clear that C02 is far 

more effective than Ar in removing energy, but appears no better than Ar in promoting an 

electronic transition for h(C02)n:5 9. However, there is an increased long-term ability to 



Chapter 7 247 

return h- to the X state, exhibited by the lack of any 11 state products in the 

photofragmentation studies (-5 ~s timescale).5 It should also be mentioned that clusters 

as small as h\C02)4 exhibit some 12- recombination, which is not observed in h-(Ar)n 

clusters until n = 10. This last point, however, illustrates the ability of C02to prevent 12-

from dissociating (often trapping the system in an SS 12- configuration), rather than its 

efficacy in promoting a speedy transition to the X state. 

The increasingly large discrepancy between the FPES and photofragmentation 

values of <nx> in F(C02)n, which was absent in h-(Ar)n, illustrates another difference 

between solvent types: the ability to retain energy in the solvent cage. Ar lacks any 

internal degrees of freedom, and the Ar-Ar interaction is also weaker than CO2-C02, 

making Ar far less effective than CO2 in storing energy liberated from 12- vibration. Thus, 

whereas 12-(COi)n clusters may store a great deal in internal and collective cluster modes, 

forestalling evaporation until time delays much longer than 200 ps, 12-(Ar)n clusters must 

rapidly evaporate Ar atoms to dissipate internal energy, and h-(Arho has almost no Ar 

atoms left by 200 ps. 

At early time delays « -1 ps), h-(C02)n and h-(Ar)n clusters exhibit dramatically 

different solvent motions, with the number of solvent molecules increasing in h-(C02)n, 

while decreasing in h-(Ar)n. The increase in 12-(C02)n clusters has been explained by 

solvent molecules strongly affecting the rand 1 motion via solvent reorganization on the 

A' state, and/or electronic transitions to the X /11 states, whereas the decrease in h-(Ar)n 

clusters reflects the much weaker influence of the Ar atoms on the motion of r and I, as r 

is able to separate considerably from the cluster before an electronic transition occurs. 



248 Chapter 7 

Both types of clusters also exhibit long-lived metastable structures, although it is 

known for 12-(C02)n clusters that this state is not stable on the JlS timescale of 

photofragmentation experiments. In 12-(Ar)n clusters, the bond length of 12- on the A state 

is short enough so that a large energy shift is seen in the photoelectron spectra, 

distinguishing this state spectroscopically from solvated r. In 12-(C02)n clusters, the much 

stronger solvation energy of r-co2 enables a solvent-separated structure to form on the 

A state, keeping the 12- bond long enough (estimated at 5-7 A)34 so that it is 

spectroscopically indistinguishable from r. Presumably it is the difference in bond length 

which determines the longevity of this state, because the A and X states lie much closer 

together at long bond lengths than at the A state equilibrium distance (4·.6 A),31 

facilitating an X ~ A transition on the> 200 ps timescale. Experiments probing 

h-(C02)n clusters in the ns regime should be conducted to look for evidence of increased 

X state population. 

6. Conclusions 

The time-resolved photodissociation dynamics of 12- in CO2 van der Waals 

clusters have been investigated using FPES for a range of sizes covering the uncaged and 

fully-caged product limits. In all clusters, solvated r is produced on the anomalous 

charge-switching A' state in -200 fs, followed by solvent rearrangement on this state 

occurs by -500 fs, increasing the number of CO2 molecules around r. Electronic 

transitions to the normal charge-switching X and/or A states occur by -800-1.1 ps, 

further increasing the number of C02 molecules by returning the electron to the more 

solvated I atom. In h-(C02)4, the reaction is essentially over at 800 fs. 



Chapter 7 249 

In !z"(C02k:~6 clusters, the transition to the X / A state induces h- recombination, 

the fraction of which increases with cluster size. For h-(C02)n $ 12, recombination is the 

rate-limiting step in vibrational relaxation, resulting in a broad distribution of vibrational 

levels which decreases from <V> z 9-12 initially to <V> z 1 by 200 ps; in I2-(C02)6, the 

final <V> is much higher, ..... 5, due to the small number of CO2 molecules present (0-1). In 

h-(C02)14-16, recombination occurs much faster, and higher initial values of <V> are 

observed (up to -40), with narrower distributions. The overall rate of vibrational 

relaxation increases dramatically from !z"(C02)6 to !z"(C02)16. 

The numbers of solvent molecules around rand 1£ products at 200 ps are larger 

than those observed in the photofragmentation experiments, implying that evaporation of 

CO2 from the cluster occurs on a much longer timescale. This is consistent with the 

assumption that the CO2 cage stores a considerable amount of energy in vibrational 

and/or cluster modes after removing it from r kinetic energy or h- vibration. The 

discrepancy increases with cluster size, illustrating the increasing energy "storage 

capacity" of larger clusters. 

In clusters of h-(C02)n ~ 9, a solvent-separated 12- structure is observed at long time 

delays, which appears spectroscopically as solvated r. This structure is needed to explain 

the high intensity of r features observed in these spectra, and the small number of CO2 

molecules surrounding r. While the lifetime of this metastable state appears to be > 200 

ps (the longest time delays measured), it is not present in the photofragmentation 

experiments, which have a -5 Ils duration. The strong r -C02 bond is thought to be 

responsible for the stability of the solvent-separated structure. 



250 Chapter 7 

7. Acknowledgments 

The authors would like to thank James Faeder, Nicole Delaney and Ptofessor 

Robert Parson for many helpful discussions. Funds supplied by the National Science 

Foundation under Grant No. CHE-9710243, and the Defense University Research 

Instrumentation Program under Grant No. F49620-95-1-0078, are gratefully 

acknow ledged. 

8. References 

1 M. L. Alexander, N. E. Levinger, M. A. Johnson, D. Ray, and W. C. Lineberger, J. 

Chern. Phys. 88,6200 (1988). 

2 S. Nandi, A. Sanoy, N. Delaney, J. Faeder, R. Parson, and W. C. Lineberger, J. Phys. 

Chern. A 102, 8827 (1998). 

3 A. .Sanov, S. Nandi, and W. C. Lineberger, J. Chern. Phys. 108,5155 (1998). 

4 V. Vorsa, Ph.D. Thesis, University of Colorado, Boulder (1996). 

5 V. Vorsa, P. J. Carnpagnola, S. Nandi, M. Larsson, and W. C. Lineberger, J. Chern. 

Phys. 105,2298 (1996). 

6 D. Ray, N. E. Levinger, J. M. Papanikolas, and W. C. Lineberger, J. Chern. Phys. 91, 

6533 (1989). 

7 J. M. Papanikolas, J. R. Gord, N. E. Levinger, D. Ray, V. Vorsa, and W. C. Lineberger, 

J. Phys. Chern. 95, 8028 (1991). 

8 J. M. Papanikolas, V. Vorsa, M. E. Nadal, P. J. Carnpagnola, J. R. Gord, and W. C. 

Lineberger,1. Chern. Phys. 97, 7002 (1992). 

9 J. M. Papanikolas, V. Vorsa, M. E. Nadal, P. J. Carnpagnola, H. K. Buchenau, and W. 

C. Lineberger, J. Chern. Phys. 99, 8733 (1993). 



Chapter 7 251 

10 V. Vorsa, S. Nandi, P. J. Carnpagnola, M. Larsson, and W. C. Lineberger, J. Chern. 

Phys. 106, 1402 (1997). 

II L. Perera and F. G. Arnar, J.Chern. Phys. 90, 7354 (1989). 

12 F. G. Arnar and L. Perera, Z. Phys. D. 20,173 (1991). 

13 P. E. Maslen, J. M. Papanikolas, J. Faeder, R. Parson, and S. V. ONeil, J. Chern. Phys. 

101,5731 (1994). 

14 J. M. Papanikolas, P. E. Maslen, and R. Parson, J. Chern. Phys. 102,2452 (1995). 

15 P. E. Maslen, J. Faeder, and R. Parson, Chern. Phys. Lett. 263, 63 (1996). 

16 V. S. Batista and D. F. Coker, J. Chern. Phys. 106, 7102 (1997). 

17 J. Faeder, N. Delaney, P. E. Maslen, and R. Parson, Chern. Phys. Lett. 270, 196 (1997). 

18 N. Delaney, J. Faeder, P. E. Maslen, and R. Parson, J. Phys. Chern. A 101 (1997). 

19 B. M. Ladanyi and R. Parson, J. Chern. Phys. 107,9326 (1997). 

20 J. Faeder and R. Parson, J. Chern. Phys. 108,3909 (1998). 

21 P. E. Maslen, J. Faeder, and R. Parson, Mol. Phys. 94,693 (1998). 

22 J. Faeder, N. Delaney, P. E. Maslen, and R. Parson, Chern. Phys. 239, 525 (1998). 

23 C. J. Margulis and D. F. Coker, J. Chern. Phys., in press (1999). 

24 A. E. Johnson, N. E. Levinger, and P. F. Barbara, J. Phys. Chern. 96,7841 (1992). 

25 D. A. V. Kliner, J. C. Alfano, and P. F. Barbara, J. Chern. Phys. 98,5375 (1993). 

26 J. C. Alfano, Y. Kimura, P. K. Walhout, and P. F. Barbara, Chern. Phys. 175, 147 

(1993). 

271. Benjamin, P. F. Barbara, B. J. Gertner, and J. T. Hynes, J. Phys. Chern. 99, 7557 

(1995). 



252 Chapter 7 

28 P. K. Walhout, 1. C. Alfano, K. A. M. Thakur, and P. F. Barbara, J. Phys. Chern. 99, 

7568 (1995). 

29 B. J. Greenblatt, M. T. Zanni, and D. M. Neurnark, Science 276, 1675 (1997). 

30 B. J. Greenblatt, M. T. Zanni, and D. M. Neurnark, Faraday Discuss. 108, 101 (1997). 

31 B. J. Greenblatt, M. T. Zanni, and D. M. Neurnark, 1. Chern. Phys., to be submitted. 

32 B. J. Greenblatt, M. T. Zanni, and D. M. Neurnark, Chern. Phys. Lett. 258, 523 (1996). 

33 K. Asrnis, T. Taylor, and D. M. Neurnark, J. Chern. Phys. 109,4389 (1998). 

34 N. Delaney, J. Faeder, and R. Parson, private communication. 

35 W. C. Wiley and I. H.McLaren, Rev. Sci. Instrurn. 26, 1150 (1955). 

36 O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, and R. E. Smalley, Rev. 

Sci. Instrurn. 58, 2131 (1987). 

37 L.-S. Wang, H.-S. Cheng, and J. Fan, J. Chern. Phys. 102,9480 (1995). 

38 H. Gomez and D. M. Neurnark, in progress. 

39 M. T. Zanni, V. S. Batista, B. J. Greenblatt, W. H. Miller, and D. M. Neurnark, J. 

Chern. Phys. 110,3748 (1999). 

40 Y. Zhao, C. C. Arnold, and D. M. Neurnark, J. Chern. Phys. Faraday Trans. 89, 1449 

(1993). 

41 D. W. Arnold, S. E. Bradforth, E. H. Kim, and D. M. Neurnark, J. Chern. Phys. 102, 

3510 (1995). 

42 D. W. Arnold, S. E. Bradforth, E. H. Kim, and D. M. Neurnark, J. Chern. Phys. 10.2, 

3493 (1995). 



253 

Appendix 1. Data Acquisition Program (fpes) 

1. Program overview 

The primary purpose of the data acquisition program (fpes) is to record 

photoelectron spectra, mass spectra and auto/cross-correlation spectra. However, because 

of the need to record photoelectron spectra at many time delays, and because the program 

is also used to analyze and manipulate these data, a significant amount of extra . 

functionality has been added to aid in these tasks. For instance, several spectra, not 

necessarily of the same type, can be held in memory and displayed simultaneously; the 

screen format can be a single window or several side-by-side windows; zoom-in 

capabilities are supported; peak heights, positions, widths and integrated areas can be 
, 

measured automatically; smoothing and summing of data is possible; data can be 

displayed with alternate units (for instance,a photoelectron spectrum may be displayed 

either on a time or energy axis) and calibration for use of these formats is possible. The 

user interface is also fairly sophisticated, replacing the "one key, one function" approach 

of earlier programs in the group with a command word format, allowing for infinite 

expansion. 

At its largest level, the program operates in a loop, alternating between two 

procedures, cOffi_rd andcoffi_ex (see fpes . pas). cOffi_rd itself operates in a loop, 

updating active processes related to data acquisition (scan procedure), and then 

checking for a keypress. If a key has been entered, cOffi_rd either displays it on the 

screen while simultaneously adding it to a command line buffer (tx_wr_ch procedure), 

or acts on the key immediately. Pressing the enter key ("carriage return," or CR for short) 



254 Appendix 1 

ends the loop, causing the typed command line to be processed or "parsed" for content 

(com-parse procedure). The processed command is then executed by com~ex. 

Commands are designed to use as many modular procedures as possible. For 

instance, commands which modify the graphics display do not write to the screen 

directly; they only change the controlling variables (sc or wv). The visual change is 

caused by calling an updating procedure, update or updateall, upon exiting. The 

syntax for commands is detailed in the help. par file (readable via the help 

command) 

2. Selected variables 

There are too many variables in fpes for an exhaustive survey, but selected 

structured and simple variables will be discussed here. The documentation contained 

within the source code should be sufficient to at least clarify the intended use of other 

variables used by the program. 

Several of these structures (com, sc, wv) contain variables with similar functions: 

ls, a "list" or array of a kind of information (such as individual spectra); cur, the index 

of the current element being manipulated; and num, the total number of such elements in 

memory. In addition, both sc and wv have a sel ("select") variable which many 

commands use when a list has been specified as part of the input line. Those screens or 

waves in the list will have their sel variables set (= 1) to select them for action; the 

command then acts on each selected item, after which the sel variables are cleared (= 

0). 

To refer to an element of a structure in Pascal, a period ( . ) is used between the 

structure name and its element. For instance, to access the num variable within the sc 



· Appendix 1 255 

structure, the syntax is sc . num. It can be extended for more complex references, e.g. 

sc.ls[l] .mode.gr.xh.u[2]. 

2.1. Background subtraction: _bs 

Variable in 
bs 

fg 

dis 

sts 

Function 

Background wave and mode 

Foreground wave 

Display mode simulating background
subtraction waves (alternating scan mode) 

Shot-to-shot mode 

sts_blank Point range for blanking background wave 

sts fac 

Oscilloscope channel of background wave 
(shot-to-shot mode) 

Scaling factor (shot-to-shot mode) 

Toggle mode (shot-to-shot mode) 

Vertical scale of background wave on 
oscilloscope (shot-to-shot mode) 

The variables pertaining to background subtraction have been collected in _bs 

(the underscore "_" is to distinguish it from bs, a substructure within wv). Background 

subtraction is used when collecting electron spectra, in order to compensate for changing 

signal levels due to the ions and/or laser, and concerns the collection of a "background" 

spectrum, generally one obtained in the absence of the pump laser. There are two kinds 

of background subtraction: "alternating scan" and "shot-to-shot." Alternating scan 

background subtraction indicates alternation between various positive time delays and a 



256 Appendix 1 

fixed, negative time delay, such that the effect of the pump laser is absent. Shot-to-shot 

background subtraction requires the participation of the New Focus optical chopper (see 

Experimental apparatus chapter) to block the pump laser every other laser shot; 

photoelectron spectra are either added or subtracted from the accumulating average on 

the Stanford Research Systems Multichannel Scalar (MCS), depending on whether or not 

the pump beam is present. A separate, probe-beam only ("background") spectrum is 

collected at the same time using the Tektronix digitizing oS,cilliscope. 

In order to use either background subtraction mode, the background wave must be 

specified by bg; if it is 0, no background subtraction is performed. The type of 

background subtraction is indicated by s ts ("shot-to-shot"), being equal to ° for 

alternating scan background subtraction, and 1 for shot-to-shot background subtraction. 

Note that, in addition, a participating wave must have its par. dt. ele. bs . mode 

variable set (= 1); see wv variable. 

The dis variable is useful only in alternating scan background subtraction mode, 

and enables (when equal to 1) a display mode whereby participating waves appear with 

the background wave subtracted from it automatically, though the unsubtracted, raw data 

is actually stored in the wave. 

s ts~tog (accessed with the s ts tog command) indicates a choice of "toggle" 

modes useful only in shot-to-shot background subtraction, where the action taken by the 

MCS during a background acquisition can be modified. It is normally set (= 1), 

indicating that background spectra are subtracted from the accumulating data. When 

cleared to 0, it inhibits any action whatsoever, which can be useful in certain 

circumstances, e.g. when a pump + probe signal is desired to be recorded. Note that the 



Appendix 1 257 

BNC cable connection from the New Focus chopper controller to the back of the MCS 

must be changed accordingly (for sts_tog = 1, use "toggle" input; for sts_tog = 0, 

use "inhibit" input). 

The other variables in _bs are relatively minor. 

2.2. Command line: com 

Variable in 
corn 
ls [] 

cur 

nurn 

old 

sv 

tx 

.bdy [] 

. buf'" . 

.col'" 

.cur 

.nurn 

ystart 

Function 

Array of words comprising 
command 

Current word being processed 

Number of words in command 

Last string typed (for ! ! command) 

Current string typed 

Text screen variables: 

Bounding coordinates of command 
screen 

Character buffer pointer 

Color array pointer (one per line) 

Current cursor coordinates 

Character dimensions of screen 

Command screen current starting 
line 

The com structure is used to record command input. It has a two-stage "life," first 

used to record characters as the command line is input and edited (tx structure), then 

used to store the processed "words" (characters separated by spaces) comprising the 



258 Appendix 1 

command (ls array). The remaining variables are either used by text input procedures 

(old, sv and ystart) or command execution procedures (cur and num). cur is an 

important variable, used by numerous procedures, and indicates the current position in 

the array where a procedure has "read" to. 

tx, a tx_type structure, was originally designed to be used by both com and 

sc (screens structure), as fpes was planned to allow each screen to operate in either a 

text or graphics mode. The text capability was not built, however, so tX,-type applies 

only to the com. tx structure. The main variable is buf, a storage area containing the 

characters visible on screen, which is needed for editing and also for when the graphics 

screen is redrawn. col contains a color code for each line of text. Note that both of these 

variables are pointers, which allow their sizes to be altered within the program (in 

practice, however, this feature is unnecessary, since the size of the command screen can 

be fixed before compilation). The other variables are of relatively minor importance. 

The ls array contaihs simple strings which com-parse creates as it reads 

through the command line. For more information on this process, see the com-parse 

procedure. 

2.3. Screens: sc 

Variable in sc Function 
bdy Overall screen bounding coordinates 

cur Current screen 

ls [] Array of screen variables: 

.sel Selection flag 

.ti Screen title variables 



.mode.gr 

.bdy 

.cursorname 

.plotarea 

.. maxxnums, 

. maxynums, . uname, 

. vname, . xname, 

.yname 

.xh 

mode 

num 

sel 

. bitmap 

. mode 

.u[], .v[], .x[], 

. y [] 

. which 

Appendix 1 

Screen mode variables: 

Bounding coordinates of screen 

Cursor variables 

Bounding coordinates of plotting 
area 

Axis variables 

Crosshairs variables: 

Storage area for graphics under 
crosshairs 

Mode (on or off) 

Coordinates of crosshairs 

Active crosshairs 

Screen mode 

Number of active screens 

Overall selection indicator fla 

259 

One of the most poweful features of fpes is its multiple or "split" screen display 

abi.1ity. It is accomplished through the sc structure, which contains, in addition to some 

general variables, the screen list array Is, each element of which has all the variables 

needed to display a complete graphics screen. 

The mode variable enables alternation between text (= sc_mode_TX) and 

graphics (= sc_mode_GR) formats. The text format is used for wave editing (ed 

command), and a few other isolated commands, such as calibration (cal command). 



260 Appendix 1 

While using text format, modifications made to a graphics screen (for instance, by data 

acquisition procedures) are normally suppressed, though when the display reverts to 

graphics format, the changes are implemented, since the controlling variables were 

modified, not the screen itself. However, it is sometimes necessary to revert back to the 

graphics format while the program is using text format, such as when an error occurs in 

the middle of data acquisition. Therefore, a third mode, sc_mode_TX_OVR, is 

available to allow for this "override" possibility (for details of conditions, see the tx_wr 

procedure). 

Actual switching between modes is a bit convoluted. To enter text mode, the 

procedure TextMode is called, which automatically changes mode to sc_mode_TX. 

To enter GraphicsMode, the UpdateA11 procedure must be used, which changes 

mode back to sc_mode_GR. mode may be switched between sc_mode_TX and 

sc_mode_TX_OVR at will, since there is no immediate change to the screen. 

The other variables in the main sc structure are minor. 

Within ls are a few minor variables, and mode, the main variable. mode is a 

case variable, which means it can refer to more than one kind of variable, depending on 

its value. As described in the section on com, fpes was originally planned to allow each 

screen to operate in either a text or graphics mode. The text capability was not built, 

however, so only the gr_type ("graphics") structure is used, and mode is always set to 

sc_mode_GR. Information is accessed with the syntax mode. gr (for discussion of 

case variable usage, see the dt variable in the wv section). 

Most of the variables within gr are used to manage the unit translation and axis 

labeling features of the screen; these variables all start with the letter u, v, x or y (plus 



Appendix 1 261 

maxxnums and maxynums). The remaining variables deal with the cursor position 

(cursorname variables), with the crosshairs (xh structure) or with screen size (bdy and 

plotarea). 

The crosshairs, when active (xh . mode = 1), are composed of three horizontal 

and three vertical lines, one of which is always midway between the other two for each 

direction. The positions of these lines are stored both as screen coordinates (x and y 

arrays) and as unit coordinates (u and v arrays). One line of each direction is "active," 

meaning it is the one which moves from keyboard input; this is indicated by which. 

Finally, because the crosshairs must quickly move over a screen which may contain 

complicated graphics, the entire screen cannot be redrawn every step. Therefore, when 

the crosshairs are drawn, a copy of those sections of the screen underneath them are 

recorded in the bi tmap structure, and they are restored when the crosshairs are erased, 

using built-in graphics procedures. 

2.4. "Waves" (spectra): wv 

wv is probably the most important variable in the program, since it stores 

photoelectron spectra, as well as other data. It is also the largest and most complex 

variable. It is so big that pointers must be used to access it, since it encompasses more 

than 64 kbytes of memory; fortunately, little additional work is needed to utilize pointers, 

other than a few initialization routines (see Ini tialize procedure), and a carat (A) 

symbol after the 1 s [] variable. 



262 Appendix 1 

Variable in wv Function 
cur Current wave 

ls [ ] " Array of wave variable pointers: 

· da ta [ ] Intensity array 

· tmp [ ] Temporary array (for redo) 

· par Parameter variables: 

· d t Datatype and datatype-dependent 
variables 

· alert, . comment, Other variables 
· fn, . gen, . pt, 
.pt_gl, . scan, 
· scan_gl, . sh, 
· skip, . timeperpt, 
· vstop, . yoffset, 
.yscale 

.scan 

.accum 

. cycle 

. mode 

. shots 

.starttime 

.steptime 

· col, . datasaved, 
.lines, .massl, .on, 
.parsaved, .pmin, 
· savemode, . screen, 
.sel, .timel, .vmax, 
.vmin 

Num 

Scan variables: 

Accumulator for cor and pow data 

Number of cycles (see par. skip) 

Scan status 

Number of laser shots 

Time of most recent scan 

Time to wait before updating 

Other miscellaneous variables 

Number of waves 



Sel 

temp [] 

Appendix 1 

Overall selection indicator flag 

At the top level ofwv are a few bookkeeping variables (cur, num, sel), a 

263 

temporary array (temp), and Is, the wave list array (see figure). Within each element of 

1 s is the information about each wave. It contains the actual data array (da ta), a 

temporary data array (tmp), a parameter structure (par), a scan structure (scan), and 

several other variables. The miscellaneous variables can be grouped into several 

categories: display features (col, lines, on, screen, sel), save status 

(datasaved, parsaved, savemode), calibration (massi, timei), and display 

mode-specific quantities (pmin, vmin, vmax). 

The data and tmp arrays each have aMAXPOINTS (currently 1024) number of 

elements, sufficient for a photoelectron or mass spectrum, and more than enough for a 

correlation spectrum. The da ta array is meant to store an accumulating spectrum, while 

the tmp array is used to store the most recently acquired spectrum, in order to provide a 

means of subtracting it from da ta if there is a problem (see redo command). The tmp 

array type is integer, which uses half the memory of the real type, an important 

memory-saving trick, since da ta must be able to take on noninteger values for 

arbitrarily adding and scaling waves, but tmp does not require these capabilities. 

The par ("parameter")structure contains information displayed when editing a 

wave (see ed command). The most important variable here is dt, "datatype," which 

represents the kind of spectrum stored in the wave. There are currently four datatypes 

defined, represented by constants: 



264 Appendix 1 

Constant Actual value Datatype 
dt_COR 1 Correlation 

dt_ELE 2 Electron 

dt_POW 3 Power 

dt_MAS 4 Mass 

The actual values are irrelevant, as the constants are always used. The power 

datatype is seldom used, and caution should be exercised when programming for it, as 

procedures associated with the power datatype may no longer be fully functional. 

Parameters are divided into two groups. Those applicable to all waves, regardless 

of datatype, are placed in the main par structure, and appear on the top half of the 

editing screen in white. Those specific to a certain datatype are accessed through d t 

using the case expression, and appear on the bottom half of the editing screen in green. 

case allows several different variables to be accessed, depending on the value of a 

governing variable (dt). 'Each possible variable has a different name (cor, ele, pow 

and mas, respectively), which are themselves structures. For instance, if dt = dt_COR, 

then access to the correlation structure is specified by par. dt. cor. Note that no error 

checking is performed when accessing a particular case variable; it is up to the 

programmer to know the value of d t at all times. 

The scan structure stores acquisition status information, used by all datatypes 

but with slightly different functions for each. The most critical variable is mode, which 

indicates the current state of an acquisition sequence; see the Scan procedure for 

detailed information. 



Appendix 1 265 

2.5. Local variables 

Within individual procedures are "local" variables where, for general purposes, 

the same names are usually used. Here is a partial list of these variables: 

Name 
c 

dummy 

exitflag 

f 

i,j,k,n 

r 

s, s2, etc. 

temp 

w 

Type Function 
char Keypress, string manipulation 

integer "Dummy" (unused) variable, used with 
the val built-in procedure to convert a 
string to a number 

boolean Flag to signal exit from loop 

text File specifier (for reading/writing files) 

in teger Counting, array indices 

real Real-number calculation 

bufstrin String manipulation 
g 

bufstrin Temporary values 
g, 
integer 

integer Wave index 

3. Compiling and execution 

The program is written in Borland Pascal 7.0. The easiest way to compile the 

program is to use the make menu command within the compiler, after specifying 

fpes . pas as the "target" file. Alternatively, each unit can be compiled separately 

(creating name. tpu object files), and then fpes . pas may be compiled; this is what 

make does automatically. The result in either case is an executable file, fpes . exe. The 

only additional complication is the necessity of executing a single DOS command, for 

serial port initialization, prior to running fpes . exe. This awkward step has been 

alleviated with a DOS batch file, f s . ba t, which accomplishes these tasks with a single 



266 Appendix 1 

command, fs (from DOS). Note that it is currently not possible to run fpes from 

Windows if data 'acquisition is required (it is fine simply for data manipulation). 

Running the program entails simply typing f s from the DOS command line. 

4. Program listing 

The fpes program is divided into a number of files (name. pas), all but one 

(fpes . pas) of which are Pascal "units," an archaic but necessary organization used to 

run a program in the DOS environment. Units are limited to 64 kbytes when compiled, 

and to make matters worse, the total memory of program plus variables cannot exceed 

640 kbytes. As fpes has grown, the number of waves simultaneously held in memory 

has had to decrease accordingly. On the bright side, the unit organization of the program 

has been used advantageously to subdivide logical sections of the program. An overview 

of the files and their contents are as follows: 



fpes . pas (not a 
unit) 
fpescom.pas 

fpesai.pas 
fpesjr.pas 
fpesst.pas 
fpesuz.pas 

fpesvar.pas 

dosshell.pas 

keys.pas 

tpdecl.pas 

Appendix 1 

Main procedure only (highest level of organization) 

Command processing (com_name) and command 
action (do_name) procedures, organized 
alphabeticall y 

All other procedures and functions, organized 
alphabetically over several units 

All constants, types and variables, organized into 
logical sections; within each section, in order as 
const, type, and var; within each category, 
alphabetically 

Procedures for limited DOS functionality within the 
fpes program, originally designed to be used by 
other programs (hence separate unit) 

Constant definitions for nonprinting characters used 
by fpes 

Interface structure for the National Instruments 
GPm card (executable code contained in 
tpib. obj, not listed here) 

267 

The above files are collectively referred to as the "fpes program," and version 6 

of this program is presented in the files which follow. 

In addition, the following files are important enough to list along with the units: 

fs.bat 

help.par 

mass.par 

DOS batch file to initialize serial port before 
running fpes . exe 

Syntax of all commands (viewable from within 
program using help command) 

Mass calculator parameters (example) 



4.1. fpes • pas 

{$M 16384, 0, 327680} 
{~+} 

program £pes (input, output); 

History of modifications (please add to BOTTOM of list!): 

version 1: Begun 28may94 BJG. 

Sty"le notes for program entities: 
lowercase: for commands. types, and variablesi 
CapitalizedWords: for program and unit procedures and functions (not com

mands!) ; 
ALLCAPITALS: for constants. 

Version 6: 1998-6-3-Wed BJG 
NB: Sorry no other notes have been recorded over the years -- this 
situation will be rectified when I write up my.thesis. 

Current version has made the following modifications over version 5 
(to be itself documented later): 
PtoU: Quadratic energy formula modified so as to not crash program 

when attempting to smooth in energy space (sm en). Simply set the 
temp variable to zero when temp < 0, rather than setting entire 
ptoU return to 0 (this is because sqrt(temp) is calculated next) . 
This prevents a large discontinuity in the value of points at low 
energy, in the case where temp < 0, and allows smooth to work fine. 

1998-6-8-Mon BJG 
Realized the reason versions and later can't take mass spectra is 
because the TEK initialization code in ScanMAS was deleted! So I 
put it back in. 

uses 
(Calib5, }crt, dos. FpesCom, FpesVar, FpesAI. FpesJR, FpesST, 
FpesUZ, graph, . 
Keys: 

begin 
( Note: Version i is in VERSION variable; see FPESVAR.PAS ) 
Initialize; ( Initialize all internal variables. check for workspace 

default file on disk (use internal defaults if none). } 
IntroduceProgram; ( Print friendly greeting. ) 
UpdateAI1: { Draw waves with proper bells & whistles } 
while exitflag = false do 
begin 
co~rd; Read command line; also process -hot keys.- } 
co~ex; Execute commands. } 

end; 
ws_sv (WS_FN_DFI; ( Save workspace. 
TidyUp; ( Deallocate memory. ) 

end. 

4.2. fpescom. pas 

uni t FpesCom; 
($M $4000,0,0 

interface 

uses 
FpesVar; 

procedure com_err; 
procedure com_err_wv(w : integer; s 
procedure com_ex; 
procedure c0ItLParse(s : bufstring); 
procedure coItLrd; 

bufstring) ; 

procedure com_wr{s : string; col: word); 
procedure co~wr_db{s : bufstring); 
procedure co~wr_wv(w : integer; s : string: col 
function COItLWr-yo(s : bufstring) : integer; 
function coItLwr-yoaesc(s : bufstring) : integer: 
procedure co~wr_sv: 
procedure do_ahs; 
procedure do_ac_cc (pos real) : 
procedure do_ad: 
procedure do_add; 
procedure do_au to; 
procedure do_blank: 
procedure do_bg; 
procedure do_bg_chg{i integer); 
procedure do_bs; 
procedure do_bs_dis: 
procedure do_bs_mode (i integer) ; 
procedure do_cal; 
procedure do_cd; 
procedure do_cp; 
procedure do_cpd; 
procedure do_dos; 
procedure do_dots; 
procedure do_ed; 
procedure do_fit; 
procedure do_fn; 
procedure do_fn_x: 
procedure do_fpes: 
procedure do_gen; 
procedure do_macro; 
procedure do_me; 
procedure do~mon; 
procedure doJllV; 
procedure do_nw; 
procedure do_osc; 
procedure do_rd; 
procedure do_redo; 
procedure do_rm; 
procedure do_run (blank : integer); 
procedure do_sc: 
procedure do_sc_ss (w : integer); 
procedure do_sech; 
procedure do_sh; 
procedure do_sm: 
procedure dO_55; 
procedure do_stop·; 

word) ; 

tv 
0\ 
00 

> 
'C 
'C 
~ 

= Q.. _. 
~ 
~ 



procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 

do_sts; 
do_sv; 
do_tO; 
do_ts; 
do_ts_dly; 
do_ts_tog; 
do_tw; 
do_vis (v 
do_ws; 
do_wv; 

integer) ; 

do_wv_alert; 
do_wv_bg; 
do_wv_dly; 
do_wv_fn; 
do_wv_info(w : integer; s2 
do_wv_lines(l : integer); 
do_wv_sc; 
do_wv_sh; 
do_wv_skipi 
do_wv _ vs top; 
do_x(scr integer); 
do_xh; 
do-y(scr integer); 
do-yoff; 
do-ysc ; 

implementation 

--

bufstring) i 

crt, dos, FpesAI, FpesJR, FpesST, FpesUZ, 
graph, Keys, DOSShell, TPDecl; 

procedure com_err; 
( Print error message with some diagnostics to help user figure out 

what's wrong. ) 

bufstring; 
begin 

( Convert current word number to string. ) 
str(com.cur, s); 
com_wr('Error in word' + s + 

COLORHL) : 

"' + com.ls[com.curJ + 

wv_sel_off; { Turn off selected waves (usually get errors before 
routine has had a chance to do this). ) 

end; 

procedure com_err_wv(w integer; s : bufstring)i 
( Print error message concerning wave w .. ) 
begin 

com_wr_wv(w, s, COLORHL); 
end; 

procedure co~ex; 
{ Executes commands. 

s bufstring; 
begin 

:= 1; { First word. 
S := com.ls[com.curJ i { Copy word to convenient variable. 
if s = " then ( Update screen for blank entry. 
begin 

Upda teV ita 1 s ; 
Update(sc.cur) ; 

end 
else if s 
else if s 
else if s 
else if s 
else if 5 
else if s 
else if s 
else if s 
else if s = 
else if s 
else if s 
else if s 
else if s 
else if s 
else if s 
else if s 
else if s 
else if s 
else if s 
else if s 
else if 5 
else if s 
else if s 
else if s = 
else if s 
else if s 
else if 
else if 
else if s 
else if s 
else if s 
else if 5 
else if s 
else if s 
else if s 
else if s 
else if s 
else if s 
else if 
else if 
else if s 
else if s 
else if s 
else if s 
else if s 
else if s = 
else if s 
else if s 
else if s 
else if 
else if s 
else if s 
else if s 
else if s 
else if s 
else if 
else if s 
else if s 
else if s 
else if s 
else if s 
else if 

'abs' then do_abs 
'ac' then do_ac_cc(tO.ac) 
'ad' then do_ad 
'add' then do_add 
'area' then do_wv_info(O, s) 
'avg' then do_wv_info(O, s) 
'auto' then do_auto 
'blank' then do_blank 
'bg' then do_bg 
'bs' then do_bs 
'cal' then do_cal 
'cc' then"do_ac_cc(tO.cc) 
, cd' then do_cd 
'col' then _col 
'cp' then do_cp 
'cpd' then do_cpd 
'ctr' then do_wv_info(O, s) 
'dis' then do_bs_dis 
'disc' then disc 
'dIy' then _dIy 
'dos' then do_dos 
'dots' then do_dots 
'ed' then do_ed 
'edgel' then do_wv_info{O, s) 
'edger' then do_wv_info(O, s) 
'en' then SetEnergyConversion 
'ex' then ExitProgram 
'exit' then ExitProgram 
'fit' then do_fit 
'fn' then do_fn 
'fu' then FullView(sc.cur) 
'fwhm' then do_wv_info(O, s) 
'gen' then do_gen 
'help' then Help 
'ht' then do_wv_info(O, s) 
'int' then Integral 
'inv' then do_vis(O) 
'macro' then do_macro 
'mc' then do_mc 
'mon' then do_man 
'mv' then do_mv 
'nor' then ToggleSaveMode 
'nw' then do_nw 
'osc' then do_osc 
'P' then Pause 
'pr' then PrintWave 
'q' then ExitProgram 
'quit' then ExitProgram 
'rd' then do_rd 
'rebin' then rebin 
'redo' then do_redo 
'rescale' then _rescale 
'resume' then do_run(O) 
'rf' then UpdateAll 
'rm' then do_rm 
, run' then do_run ( 1 ) 
'sc' then do_sc 
'sech' then do_sech 
'sh' then do_sh 
'sm' then do_sm 
'5S' then do_ss 
'stack' then StackWaves 

> 
"C 
"C 
~ 

= c::l,. .... 
~. .... 

tv 
0\ 
\0 



else if 5 'stop' then do_stop 
else if s = 'sts' then do_sts 
else if s 'sv' then do sv 
else if s 'sys' then SystemControl 
else if s 'to' then do to 
else if s = 'ts' then do_ts 
else if s ' tw' then do_tw 
else if s 'vis' then do_vis (1) 

else if s • ws' then do_ws 
else if 5 = 'wv' then do_wv 
else if s 'x' then do_x(sc cur) 
else if s ' xh' then do_xh 
else if s 'y' then do-y(sc.cur) 
else if s 'yoff' then do-yoff 
else if s 'yse' then do-ysc 
else if s = 'zm' then Zoom 
else COIlLerr: 

end; 

procedure COllLParse (s : bufstring); 
{ Parse string s into words in com.ls[]. 
var 

clast : char; 
i : integer; 

begin . 
com. cur := I: { Point to first word. 
com.sv := 'x'; ( Set com.sv <> ., as flag to COIlLwr routine not to 

bother saving. } 

First truncate trailing spaces. 
for i := length(s) down to 1 do 

if sri] = • , then 
s := copy(s, I, i - 1) 

else 
i := 1; ( Get out of loop. 

Special case: '!!' = echo last string typed. 
if s = '!!' then 
begin 

com_wr(com.old, COLORMESS); ( Echo last string typed to screen. } 
exit; ( Just use last com.ls(] values over again. } 

end; 

com. old s; ( Transfer current string to storage for use by I I 

com.num 1; 
clast:=' '; 
for i := 1 to com_Is_MAX do 

com.ls[i] := "; 

{ Perform parse. } 
for i := 1 to length(s) do 

( Advance word counter on first space encountered: others ignored. ) 
if s(i] = ' • then 
begin 

if clast <> ' , then 
begin 

clast : = • '; 
inc (com.num) ; 

end; 
end 
else 
begin 

{ Check if exceed max words (trick into ending for loop). 
if com.num > COIlLls_MAX then 

end; 

begin 
com_wr('Maximum words' + makestringint(com_ls_MAX) + 

'; ignoring rest of line.', COLORHL); 
exit; 

end 
else 
( Add character to current word. 
begin 

com.ls (com.num.1 
clast := s(i]; 

end; 
end: 

com.ls[com.num) + s[i1; 

procedure com_rd; 
{ Allows user to type on graphics screen, then parses what was typed into 

com. Is array for further processing by com_exec. Also handles direct 
action keystrokes which can pe typed while command is being entered. } 

var 
c : char; 
exitflag : boolean: ( Flag to exit loop. ) 
i : integer: ( Char counter. ) 
s : bufstring; 

begin 
exitflag := false; 
com.ystart := com.tx.cur.y: 
tx_dr{@com.tx): ( Print screen. 
com.sv := ": ( Erase previously saved input. } 
repeat 

Scan; { Take care of active waves. } 
co~wr_SVi { Restore input if it has been saved due to messages 

printed during Scan. } 
tx_wr_ch(@com.tx, '_'I; ( Write cursor. ) 
if keypressed then 
begin 

{ Read key_ } 
c : = readkey; 
if (c >= 132) and (c <= 1127) then 
begin 

tx_wr_ch{@com.tx, c) i 

if com.tx.cur.x < com.tx.num.x then 
inc (com. tx. cur .x) 

else if com.tx.cur.y < com.tx num.y then 
begin { Advance to next line. } 

com.tx.cur.x := 1; 
inc{com.tx.cur.y) ; 

end 
else if com.ystart > then 
begin { Scroll down if didn't begin at top. } 

com.tx.cur.x := 1; 
tx_scr_up (@com. tx) ; 
dec (com.ystart); 

end; { Otherwise. leave cursor at end of line (dead-ended). } 
end 
else case c of 

BS : begin 
tx_wr_ch(@com.tx, '); 
i.f com.tx.cur.x > then 

dec (com. tx. cur .x) 
else if com.tx.cur.y > com.ystart then 
begin ( Move to previous line if we haven't gone past beginning.} 

com.tx.cur.x := com.tx.num.x; 
dec(com.tx.cur.y); 

tv 
-...l 
o 

> 
"CS 
"CS 
~ 

= ~ .... 
~ 
I-" 



end; ( Otherwise, cursor doesn't move. 
end; 
CR exitflag: = true; 
CTRLS: ScanStopAl1; 
CTRLZ: YScaleChangeSign; 
ESC : Pause; 
EXTENDED 

case readkey of 
XARROWLEFT: MoveCursor(O, -1); 
XARROWRIGHT: MoveCursor (0, 1); 

XARROWUP: ChangeCurrentWave{-l); 
XARROWDOWN: ChangeCurrentWave(l); 
XCTRLARROWLEFT: MoveCursor(O, -20); 
XCTRLARROWRIGHT: MoveCursor(O, 20); 
XCTRLEND: YScaleChange(-l); 
XCTRLHOME: YScaleChange(l); 
XCTRLPAGEUP: MoveCursor(l, -20); 
XCTRLPAGEDOWN: MoveCursor(l, 20); 
XDELETE: YSca!eChange(-O.l); 
XEND: YScaleChange{-O.Ol); 
XF2: SystemControl; 
XHOME: YScaleChange(O.Ol); 
XINSERT: YScaleChange (0.1) ; 

XPAGEUP; MoveCursor(l, -1); 
XPAGEDOWN: MoveCursor{l, 1); 
end; 

TAB : ToggleCrosshairsWhich; 
end; 
tx_wr_ch(@com.tx, '_'); 

end; 
until exitflag; 
( Erase cursor. 
tx_wr_ch(@com.tx, ' '); 

{ Transfer text into s. 

for i := (com.ystart - 1) It com.tx.num.x + 1 to com.tx.cur.x - 1 + 
(com.tx.cur.y - 1 ) It com.tx.num.x do 
s := S + com.tx.buf~(i); 

Clean up screen display for next action -- only advance cursor if 
something was typed. } 

if (com.tx.cur.y > com.ystart) or (com.tx.cur.x > 1) then 
begin 

com. tx.cur.x : = 1; 
if com.tx.cur.y = com.tx.num.y then 

tx_scr_up(@com.tx) 
else 

inc(com.tx.cur.y); 
end; 
com-parse(s); ( Parse text into com.ls(). 

end; 

procedure com_wr(s string; col word); 
( Print string s in color col to com.tx screen, first saving user input 

if nothing has been saved. ) 
var 

i : integer; 
begin 

( See if something has been saved. 
if com. sv = " then 
begin 

{ Save input in com. sv. } 
for i := (com.ystart - 1) It com.tx.num.x + 1 to (com.tx.cur.y - 1) It 

com.tx.num.x + com.tx.cur.x - 1 do 
com.SV := com.sv + com.tx.bufA[i); 
Erase inp~t lines; move current cursor back to start of input. 

FillChar(com.tx.buf A {(com.ystart - 1) It com.tx.num.x + 1], 
(com.tx.cur.y - com.ystart + 1) It com.tx.num.x, ' 'J; 

com.tx.cur.x := 1; 
com.tx.cur.y 

end; 
com.ystart; 

{ Write message. } 
tx_wr(@com.tx, s, col, 1); 
{ Update ystart. } 
com.ystart 

end; 
com. tx. cur .y; 

procedure com_wr_db(s : bufstring); 
{ Print debug message s, wait for user to hit key. } 
begin 

if debug = 0 then 
exit; 

com_wr(s, COLORDEBUG); 
if readkey = extended then 

readkey; 
end; 

procedure co~wr_wv(w : integer; s 
( Print message concerning wave w. 
begin 

string; col word); 

com_wr('Wave ' + makestringint{w) + ' • + s, col); 
end; 

function co~wr-yo(s : bufstring) : integer; 
{ Print message s on com, wait for user response: 

Y (yes), 1 
N (no), O. 
Also stores result in ynaesc_response variable. 

begin 
co~wr{s + ' (Yes/No)?', COLORHL); 
if macro_override = 1 then 
begin 

com_wr-yo 1; 
ynaesc_response 1; 
exit; 

end; 
repeat 

Scan; { Keep active waves happy. } 
case readkey of 
'n'. 'N': 

begin 
co~wr-Yfl : = 0; 
ynaesc_response 
exit; 

end; 
'y', 'Y', 

begin 
com_wrsn 1; 

0; 

ynaesc_response 1; 
exit; 

end; 
EXTENDED: readkey; { Handle extended keys. 
end; 

until false; 
end; 

> 
"C 
"C 
('I) 

= Q.. .... 
>!l .... 

tv 
-.l 



function com_wr-ynaesc(s : bufstring) integer; 
( If the ynaesc_response variable is 0 or 1, prints message s on com, then 

waits for user to type a key, returning: . 

A (all yes): return 
Y (yes): return 1 
N (no): return 0 
ESC (abort): return -1. 

However, if ynaesc_response = 2 or -1, will return this value immediately, 
neither·printing the message nor waiting for user input. This is how 
the concepts -all" and -abort" are implemented. To clear an "all" or 
"abort·" conditioI1, set ynaesc_response = 0 (or 1). 

See also com_wr-YTI, which has more limited choices. 
begin 

if (ynaesc_response < 0) or (ynaesc_response > 1) then 
begin 

COmLwr-YTIaesc ynaesc_responsei 
exit; 

end; 
cOmLwr(s + ' (Yes/No/~I/ESC)?', COLORHL); 
repeat 

Scan; ( Keep active waves happy. } 
case readkey of 
ESC: 

begin 
C0mLwr-YI1aesc : = -1: 
ynaesc_response -1: 
exit; 

end; 
'a', 'A': 

begin 
cOITLwr-Yllaesc : = 2: 
ynaesc_response 2; 
exit; 

end: 
'n', 'N': 

begin 
cOl'ILwr-YTlaesc : = 0: 
ynaesc_response := 0; 
exit; 

end; 
'y', 'Y': 

begin 
COITLwr-Yllaesc : = 1; 
ynaesc_response 1; 
exit; 

end: 
EXTENDED: readkey: { Handle extended keys. } 
end; 

until false: 
end: 

procedure com_wr _sv; 
( Restore saved input to screen. ) 
begin 

if com.sv <> " then 
begin 

tx_wr(@com.tx, com.sv, COLORUSER, 0):. { 0: non-scroll mode. } 
com.ystart := com.tx.cur.y - length(com.sv) div com:tx.num.x; 
com.sv 

end; 

end: 

procedure do_abs; 
{ Switch to absolute y mode. } 
begin 

if sc.ls[sc.curl .gr.yaxismode YAXISMODE_RELATIVE then 
ToggleYAxisMode(sc.cur}i 

end; 

procedure do_ac_cc(pos : real); 
( Set up an AC or CC wave centered at position pos. 
begin 

if wv. nurn = MAXWAVES then 
begin 

COllLwr ('Memory Full. " COLORHL); 
exit: 

end: 
CreateWave(dt_cor, 0); 
with wv.ls[wv.cur]A do 
begin 

par."cor.ts.tO := pas; 
Upda teCORLimi ts (@par) ; 

end; 
UpdateVitals: 
Update(sc.cur) ; 

end: 

procedure do_ad: 

Change start & stop. } 

{ Print or change AID board params. 
var 

ch, chmin, chmax integer; 
dummy : integer: 
i : integer: 
s : bufstring; 
sel : array[l .. AD_MAX] of integer; ( Selection array. 

begin 
if com. cur = com. nurn then 
begin 

COllLerr: 
exit: 

end: 
inc (com. cur) ; 
s := com.ls[com.cur]: 
val (s, chmin, dummy): 
if chmin in [1 .. AD_MAXl then 
begin 

if com. cur = com.nurn then 
begin 

cOllLerr; 
exit: 

end: 
clunax : = chmin: 
inc (com. cur) ; 
s := com.ls[com.curl; 

end 
else 
begin 

chmin : = 1; 
clunax AD_MAX: 

end; 
if s = 'gain' then 
begin 

if com. cur = com.num then 

tv 
-...J 
tv 

> 
"'C 
"'C 
('t) 

= Q.. .-. 
~ 
I-" 



begin 
for" ch ; = chrnin to chrnax do 

com_wr('Channel ' + makestringint{ch) + ' gain' + 
makestringint(ad.ls(ch] .gain), COLORMESS); 

exit; 
end; 
inc (com. cur); 
val(com.ls(com.cur), i, dununy); 
if (i = l) or (i = 2) or (i = 4) or (i 

for ch ;= chmin to chmax do 
ad.ls[ch) .gain := i 

else 
com_err; 

end 
else 

com_err; 
end; 

procedure do_add; 
{ Handle addwaves commands. 

i, j, k, dwnmy integer; 

8) then 

w array[1 MAXWAVESj of integer; ( Keep track of 1st wavelist. 
begin 

if wv.num = then 
exit; 

if com.num < 3 then 
{ Old add functions: turn on/off addwave. 
begin 

if (addwaves.mode = 1) or (com. cur = com.nurn) then 
Togg leAddWavesMode (wv . cur) 

else 
begin 

inc (com. cur) ; 
val(com.ls{com.cur), i, dununy); 
if (i >= 1) and (i <= wv.num) then 

ToggleAddWavesMode (i) 
else 

COllLerr ; 
end; 
exit; 

end; 

( New add function: add (WVLIST) to (WVLIST). 
wv_sel(1); 
( Copy first wave list to temp array. ) 
for i := 1 to wv.num do 

if wv.ls(i]"'.sel = 1 then 
wli] 1 

else 
wli] 0; 

Ensure that 'to' word is present. 
if (com.cur = com num) or (com.ls(com cur + 1] <> 'to') then 
begin 

com_wr('Format: add (WVLIST) to (WVLIST) .', COLORHL); 
exit; 

end; 
inc (com. cur); 
( Get target list. 
wv_sel(1) ; 
( Remove waves selected in both lists from the target list. 
for i 1 to wv. num do 

if (wv.ls(i]"'.sel = 1) and (w(il =1) then 

begin 
wv.ls(i]"'.sel 0; 
co~wr_wv(i, 'removed from target list. 

end; 

Do additions. 
sc_sel_off; 
for i := 1 to wv.nurn do 

with wv.ls[iJ'" do 
if sel = 1 then 
begin 

for j := 1 to par.pt do 
with sc.ls[screenJ.gr do 
begin 

, 
Q, 

COLORHL) ; 

data[j] := PtoV(i, j, xaxismode_POINTS, yaxismode) • 
sgn(par.yscale); ( Need sgn since PtoV uses abs(par .. 
yscale). Use POINTS mode to prevent vertical scale 
changing due to nonuniform x axis (e.g. energy space) . 

for k := 1 to wv.nurn do 
if w[k] = 1 then 

end; 

with sc.ls[wv.ls[kJ"'.screen) .gr do 
data[j] := data[j) + PtoV(k, j, xaxismode_POINTS, 

yaxismode) • sgn(wv.ls{k]A.par.yscale); 

Now reset scaling to default since data has been altered by 
these parameters. 

par .yscale : = 1; 
par.yoffset := 0; 
datasaved : = 0; 
parsaved : = 0; 
( Disable bs mode so don't get bs dis affecting result. 
if par.dt = DT_ELE then 

par.ele.bs.mode := 0; 
( Tag screen for update. 
sc.ls(screen).sel := 1; 

end; 
wv_sel_off; 
UpdateSe!; 

end; 

procedure do_auto; 
( Change auto parameters. 
var 

durmny : integer; 
s bufstring; 

begin 
if com. cur = com.nurn then 
begin 

com_err; 
exit; 

end; 
inc(com.cur) ; 
s com.ls[com.cur); 
if s = 'adv' then 
begin 

if com. cur = com.num then 
begin 

com_wr{'Auto.adv ' + makestring{auto.adv / POWFS, VALMAXFS, 
VALDECFS) + ' fs', COLORMESS); 

exit; 
end; 
inc (com. cur) ; 

:= com.ls(com.curJ; 

> 
"'0 
"'0 
I'D 

5. :;;;0 
~ 

N 
-..l 
W 



if 5 = '0' then 
begin 

auto adv 0; 
exit; 

end; 
val (s, auto. adv, dummy); 
auto.adv := auto.adv * POWFS; { Convert fs to s. } 
roundoff {auto. adv, ts.step I HALFSPEEDOFLIGHT); ( Round to 

neares t 1 urn. } 
{ Check for excessively large step size. } 
if abs (au to. adv) > STAGEMAX I HALFSPEEOOFLIGHT then 

auto.adv 0; 
end 
else if s = 'all' then 
begin 

if com. cur = com.num then 
begin ( Print values of all auto vars. 

str(auto.bg, 5); 

com_wr('Auto.bg , + s, COLORMESS}; 
str(auto.fn, 5); 

com_wr( 'Auto.cor ' + s, COLORMESS); 
str{auto.cor, s); 
com_wr('Auto.fn' + s, COLORMESS); 
str{auto.gen. s); 
COIl\......wr( 'Auto.gen ' + s, COLORMESS): 
str{auto.off, s); 
cOIl\......wr(·Auto.off • + s. COLORMESS); 
str(auto.rm, S); 

com_wr ( • Au to. rm ' + s, COLORMESS); 
str{auto.sv, s); 
cOl'!Lwr ( , Au to. sv + s, COLORMESS); 
exit; 

end; 
inc(com.cur) ; 
s := com.ls[com.cur]; 
( Read value and put in first variable. } 
if s = '0' then 

auto. fn : = 0 
else if s '1' then 

auto. fn 1 
else 
begin 

COIl\......err; 
exit; 

end; 
( Assign other auto vars. 
auto.bg := auto.fn; 
auto.cor auto.tn; 
auto.gen := auto.fn; 
auto.off := auto.fn; 
auto.rm auto.fn; 
auto.sv := auto.fn; 

end 
else if s = 'bg' then 

rd_int{auto.bg. 'Auto.bg·, 0, 1) 
else if s = 'cor' then 

rd_int(auto.cor, 'Auto.cor', 0, 1) 
else if s = 'fn' then 

rd_int(auto.fn, 'Auto.fn', 0., 1) 
else if s = 'gen' then 

rd_int(auto.gen, 'Auto gen', 0, 1) 
else if 5 = 'off' then 

rd_int(auto.off, 'Auto. off' , 0, 1) 

else if s = 'num' then 
rd_int(auto.num, 'Auto.num', I, 999) 

else if s = 'rm' then 
rd_int(auto.rm, 'Auto.rm', 0, 1) 

else if s = 'ser' then 
begin 

rd_str{auto.ser, 'Auto.ser'); 
{ Add M_M to end if not already there. } 
if auto.ser[length(auto.ser)} <> then 

auto.ser auto.ser + '-'; 

end 
else if s 'sv' then 

rd_int(auto.sv, 'Auto.sv', 0, 1) 
else 

COIl\......err; 
end: 

procedure do_blank; 
{ Blank part of waves. 
var 

dwrany integer; 
begin 

if com. cur = com.num then 
{ Assume just blank current wave, using current limits. } 
begin 

wv_sel(l) ; 
Blank; 
exit; 

end; 
inc (com. cur) ; 
if com.ls[com.cur] = 'lim' then 
begin 

if com. cur = com.num then 
{ Print current limits. } 
begin 

COIl\......wr ('blankmin ' + makestringint (blankmin) + ' blankmax ' + 
makestringint(blankmax), COLORMESS); 

exit; 
end; 

{ Read new limits. } 
inc (com. cur) ; 
if com. cur + 1 > com.num then { Ensure there are two words follow

ing 'lim'. } 
begin . 

coro-..err; 
exit; 

end 
else 
beg·in 

val(com.ls[com.cur], blankmin, dummy); 
val (com. 15 [com. cur + 1], blanlanax, dummy); 
{ Keep in range. } 
if blankmin < 1 then 

blankmin : = 1; 
if blankmax > MAXPOINTS then 

blankmax := MAXPOINTSi 
end 

end 
else 

dec (com. cur) ; 
wv_sel (1); 
Blank; 

N 
-..) 
~ 

> 
'C 
'C 
~ 
Q.. .... 
~ .... 



end; 

procedure do_bg; 
( Print or change bg wave. 
var 

dummy, i : integer; 
5 bufstring; 

begin 
if com. cur = com then 
begin 

do_bg_chg(wv.cur); { Change current wave to bg. } 
exit; 

end; 

inc (com. cur) ; 
5 := com.ls(com.cur]; 
if s = '?' then 
( Show current bg wave. 

com_wr( 'bs bg , + makestringint(_bs.bg), COLORMESS) 
else 
begin 

vales, i, dununy); 
do_bg3hg Ii) ; 

end; 
end; 

procedure do_bg_chg(i : integer); 
{ Change current bg wave to i if allowed .. 
begin 

if (i < 1) or (i > wv.flum) then 
begin 

com_wr('Wave number out of range. COLORHL) ; 

exit; 
end; 
with wv.ls(iJ" do 
begin 

{ Forbid change if either: 
1. current wave is bs scanning, 
2. new wave is bs scanning. } 

if «_bs.bg > 0) and (wv.ls(_bs.bg]A.par.dt = dt_ELEl and 
(wv.ls(_bs.bg]A.par.ele.bs.mode = 1) and (wv.lsl_bs bgJ". 
scan. mode > 0» 
or 
«par.dt dt_ELEl and (par.ele.bs.mode 
0» 
then 

begin 

1) and (scan.mode > 

com_wr_wv{i, 'active! No change.', COLORHL1; 
exit; 

end; 
if par dt <> dt_ELE then 
begin 

com_wr_wv (i, 'not ELE! No change. 
exit; 

end; 
_bs.bg := ii 

COLORHL) ; 

par.ele.bs.mode := 1; { Turn on mode if off. 
end; 
DrawWaveData; { Update 'B' flag. 

end; 

procedure do_bsi 
{ Handle bs commands. 

var 
s bufstring; 

begin 
if com. cur = com.num then 
begin 

do_bs_mode ( 1) ; 
exit; 

end; 
inc {com. cur) ; 

com.1s(com.cur] ; 
if s = '0' then 

do_bs_mode (0) 

else if s = '?' then 
do_bs_mode ( -1) 

else if s 'adapt' then 
BsAdapt 

else if s 'dis' then 
do_bs_dis 

else .if s = 'off' then 
do_bs_mode (a) 

else if s = 'on' then 
do_bs_mode ( 1 ) 

else if is_sel(s, 1) then 
begin 

dec(com.cur); { Back up before 1st sel word. } 
do_bs_mode (1) ; 

end 
else 

com_err; 
end; 

procedure do_bs_dis; 
{ Print or change dis mode. 

var 
integer; 

s bufstring; 
begin 

if com. cur = com.num then 
_bs.dis 1 

else 
begin 

inc (com. cur) ; 
s := com.ls(com.cur]; 
if s '?' then 
begin 

com_wr('bs dis' + makestringint(_bs.dis), COLORMESS); 
exit; 

end 
else if (s 

_bs.dis 
else if (s 

bs dis -
else 
begin 

com_err; 
exit; 

end; 
end; 
sc_se 1_0 f f ; 

' 0') or (s 
0 
'1') or (s 
1 

for i : = 1 to num do 
with wv .15 [i] '" do 

'off' ) then 

'on') then 

if (par.dt = dt_ELEl and (par.ele.bs.mode 1) then 

> 
"'CI 
"'CI 
~ 

= Q.. 
~. 

.... 

N 
-.J 
VI 



sc.ls[screen] .sel 
UpdateSel; 

1 ; 

end; 

procedure do_bs_mode (i : integer); 
{ Print (i = -1) or change (i = 0, 1) par.e1e.bs.mode of waves. } 
var 

j : integer; 
begin 

WV'_sel(l); { Get wave list. } 
if com. cur <> com.nwn then 
{ Should not be additional words at end. } 
begin 

cOITLerr; 
exit; 

end; 
for j : = 1 to wv. num do 

with wv.ls[j]~ do 
if sel 1 then 
begin 

if i = -1 then 
com_wr_wv(j, 'bs mode' + makestringint(par.ele.bs.mode), 

COLORMESS) 
else if par.dt <> DT_ELE then 

com_wr_wv(j, 'not ELE! No change.', COLORHL) 
else if scan.mode > ° then 

COrTLwr_wv ( j, 'scanning! No change.', COLORHL) 
else 
begin 

par. ele.bs.mode : = i; 
( Change bg wav~ if currently invalid. 
with wv.ls[_bs.bg]' do 

if <_bs.bg < 1) or (_bs.bg > WV'.nwn) or (par.dt <> 
dt_ELE) or (par.ele.bs.mode = 0) then 

end; 
end; 

WV'_sel_off; 

_bs.bg ;= j; 

DrawWaveData; { Erase selection tags, update bs tags. } 
end: 

procedure do_cal; 
begin 

/ 

if com. cur < com.num then 
begin 

inc(com.cur) ; 
case wv.ls(wv.cur]A.par.dt of 
dt_ELE: case com.ls[com.cur] [1] of 

, 1 '; CalibEnergy ( 1) ; 
, 2'; CalibEnergy (2) ; 

else cOITLerr; 
end; 

dt_MAS: case com.ls[com.cur] (1] of 
'1': CalibMassl; 
'2': CalibMass2: 
else com_err; 
end: 

else com_err; 
end; 

end 
else 

com_err: 
end; 

procedure do_cd; 
{ Print or change current directory. 
var 

i,j,k : integer: { counters} 
s : bufstring; { user input buffer 
tdir, tdir2 : bufstring; { Temporary directories. } 

begin 
if com. cur = com.num then 
begin 

cOITLwr(dir, COLORMESS): 
exit; 

end; 
tdir dir;.( Copy directory for manipulation. 
inc (com. cur) ; 
s := com.ls(com.curl; 
if s <> " then { if user types nothing, no change} 
begin 

if s[l] = '.' then 
( '.' indicates user wants extension of current directory } 
for i := 2 to length(s) do 

tdir := tdir + sCi] 
else 

begin 
{ remove subdirectories 
if (5[1] = "-') then 

begin 
j ; = 1; 
tdir2 := tdir; { restore if necessary } 
repeat 

i := length (tdir) - 1; 
repeat 

i:=i-1; 
until «tdir[i] '\') or (i=l»; 
delete(tdir, i+l, length(tdir)-i); 
j:=j+1: 

until «s[j]<>'-') or (i=l»; 
for k : = j to length(s) do 

tdir := tdir + s(k]: 
if (i=l) then 

tdir .: = tdir2; 
end 

else 

end; 

manual input of new directory 
begin 

tdir := ' '; 

for i := 2 to length{s) do 
tdir : = tdir + ' '; 

for i : = 1 to length (s) do 
tdir[i] ;= s[i]; 

end; 

end; 
UpdateFilenames(tdir); { Assigns tdir to dir inside procedure. } 
DrawWaveData: { fn representation may change. 

end; 

procedure do_cp; 
{ Copy waves. } 
var 

tempnumwaves integer; 
w : integer; 

begin 

tv 
-..l 
0\ 

> 
"0 
"0 
~ 

= Q.. 
~. 

1-01 



i 
" 

W'V_se!(l) ; 
if wv.sel = 

exit; 
then 

tempnumwaves : = wv. num; 
for w := 1 to tempnumwaves do 

with wv.ls[wJA do 
if sel = 1 then 
begin 

if wv. nwn = MAXWAVES then 
begin 

cOll'Lwr ('Memory fulL', COLORHL); 
w := tempnumwaves; { Trick to get out of loop. 

end; 
inc (wv. num) ; 
wv.ls[wv.num]'" := wv.ls[w]A; 
InitializeWave(wv,num); { Set certain parameters to defaults. 
{ Now change a couple back: } 
wv.ls[wv.num]A.datasaved := wv.ls[w]A.datasaved; 
wv .1s [wv. num] A .Ii,nes : = wv .1s [wI A • lines ; 
wv.ls[wv.num]".parsaved := wv.ls[w]A.parsaved; 
wv.ls[wv.num} A .par. sh : = wv.ls{wl A .par. sh; 

end; 
wv_sel_off; { Turn off wave selections. 
UpdateVitals; 
Update (se. cur 1 ; 

end; 

procedure do_cpd; 
( Print or change current print directory, 
var 

counters i,j,k integer; 
s bufstring; user input buffer 
tempdir bufstring; for restoring directory 

begin 
if com. cur = com.num then 
begin 

com_wr(printdir, COLORMESS); 
exit; 

end: 
inc (com. cur): 
s := com.ls[com.cur]: 
if s <> " then { if user types nothing, no change 
begin 

if s [ 1] = '.' then 
'.' indicates user wants extension of current directory} 

for i : = 2 to length (s) do 
printdir := printdir + s[iJ 

else 
begin 

{ remove subdirectories 
if (5[11 = '-'I then 

begin 
j 1; 
tempdir printdir: ( restore if necessary 
repeat 

length(printdir) - 1; 

repeat 
i:=i-l; 

until ({printdir[iJ '\'1 or (i=I»; 
delete(printdir, i+1, length(printdirl-i): 
j : =j+1: 

until ((s[j]<>'-') or (i=1» i 

for k := j to length(s) do 

printdir : = printdir. + S [k] i 

if (i=1) then 

end 
else 

printdir tempdir; 

manual input of new directory } 
begin 

end; 
end: 

printdir := ' 
for i : = 2 to 

printdir := 
for i : = 1 to 

printdir [i J 
end: 

end; 

procedure do_dos; 

length{s) do 
printdir + ' 
length (s) do 

5 [il; 

{ Interfact to ShellToDOS code. } 
begin 

TextMode; 
she1lToDOS; 
DrawAll; 

end; 

procedure do_dots: 
( Change dot size. 
var 

dummy : integer: 
integer; 

s bufstring; 
begin 

if com. cur = com.num then 
begin 

str(dotradius, 5); 

com_wr( 'Dot radius '+ s, COLORMESS); 
exit: 

end: 
inc (com. cur) ; 
val{com.ls[com.cur] , i, dummy): 
if (i < 0) or (i > MAXDOTSIZE) then 
begin 

com_err: 
exit; 

end: 
dotradius := i; 
for i : = 1 to sc MAX do 

sc.ls[iJ .sel := 0; 
for i : = 1 to wv. num do 

with wv.ls(iJ" do 
if (on = 1) and (lines = 0) then 

sc.ls(screen] .sel := I: 
for i : = 1 to se_MAX do 

if sc.ls[iJ .sel = 1 then 
DrawScreen (i) : 

Drawvi ta1s; 
end; 

procedure do_ed; 
{ Edit current or specified wave, or defaults (~df"). 

var 
dummy integer: 

integer: 

> 
't:I 
't:I 
n> 

= Q.. .... 
~ 
I-" 

N 
-...l 
-...l 



S : bufstring i 
begin 

if com. cur = com num then 
begin 

if WV.num > 0 then 
ChangePar(wv.cur)i 

exit; 
end; 
inc (com.cur) ; 
s := com.ls[com.cur]; 
if s = 'df' then 
begin 

ChangePar (O l ; 
exit; 

end 
else 
begin 

valls, i, dummy); 
if (i >= 1) and (i <= wv.num) then 
begin 

ChangePar (i) ; 
exit: 

end; 
end; 
COIfLerr; 

end; 

procedure do_fit; 
var 

s : bufstring; 
begin 

if com. cur = com.num then 
begin 

FitYldt_MIN - 1); 
exit; 

end; 
inc(com.cur) ; 
s := com.ls[com.cur); 
if s = 'area' then 

AreaFitY 
else if S 'bs' then 

FitBs 
else 

COIlLerr; 
end: 

procedure do_fn; 
( Renames wave names. Two modes: 

EXACT MODE (fn xl: Renames waves with same filename, does not need to 
adhere to standard filename convention. 

NORMAL MODE (fn): Renames waves starting with number NUM. If more 
than one wave specified, increments number for subsequent waves. 

STEP MODE (fn num step num): } 

var 
aser 
anum 
dash 
dummy 
ext 

bufstring; 
integer; 
boolean; 

integer; 
bufstring; 

integer; 
s bufstring; 
step integer; 

\ 

begin 
if (wv.nurn 0) or (com. cur 
begin 

com_err; 
exit; 

end; 

com.num) then 

( Check for 'x' in second word. 
inc(com.cur) ; 
if com.ls(com.curl : 'x' then 
begin 

do_fn_x; 
exit; 

end; 

( Break filename into series, number and extension parts. 
s := com.ls[com.cur1; 
intel1igent_filename(s, aser, anum, ext); 

{ Check that num is >= o. } 
if anum < 0 then 
begin 

COIfLerr; 
exit; 

end; 

if com. cur < com.num then 
begin 

inc {com. cur) ; 
if com.ls[com.cur) = 'step' then 
begin 

if com. cur = com.num then 
begin 

com_err: 
exit; 

end; 
inc{com,cur) ; 
val(com.ls[com.cur], step, dummy); 
if step <= 0 then 
begin 

COIfLerr; 
exit: 

end; 
end 
else 
begin 

dec(com.cur) ; 
step 1; 

end; 
end; 

( Now we go thru waves, renaming their filenames if selected. We keep 
the same file extension they had before. ) 

auto.ser := aser; 
auto, nurn : = anum: 
wv_se111) ; 
if wv. sel = then 

exit: 
for i : = 1 to wv. num do 

with wv.ls[i]" do 
if sel : 1 then 
begin 

str(auto num, s); 
if ext = " then 

N 
-...) 
00 

> 
"= "= I'D 

= Q.. .... 
~ 
I-" 



-:~ 

par. fn ; = auto. ser + s + '.' + get_extension (par. fn) { Keep 
old extension. 

else 
par. fn auto.ser +. s + '.' + ext: ( Use new extension. 

inc(auto.num,step); 
end; 

UpdateFilenarnes(dir); ( Update filenames if path changed. 
wv_sel_off; 
DrawWaveData; 

end; 

procedure do_fn_x; 
{ Renames waves with exact filename (no conventions heeded). } 
var 

i : integer; 
s : bufstring: 

begin 
if com. cur 
begin 

com_err; 
exit; 

end; 
inc (com. cur): 

nurn then 

S := corn.ls[com.curJ; ( Record filename. 
wv_sel (1); 

if wv.sel "= a then 
exit; 

for i := 1 to wv.nurn do 
with wv.ls[i]" do 

if sel = 1 then 
par.fn := s; 

UpdateFilenames(dir); { Update filenames if path changed. 
wv_sel_off; 
DrawWaveData; 

end; 

procedure do_fpes; 
Set up multiple waves for fpes experiment. Format of file is: 
- bg wave (0 to turn off bs mode for all waves). 
- Delay times (fs) for each wave desired. Will use default ele 

parameters (to, number of shots, etc.) for everything else. } 
var 

bg_temp : integer; 
delay: real; 
f text; ( File variable. 

integer; 
s bufstring; 

begin 
.i f com. cur = com. num then 
begin 

com_err: 
exit; 

end; 
inc(com.cur) ; 
s := com.ls[com.curJ; 
if get_extension(s) = " then 

s : = 5 + ,.,. + FPES_EXT: 
if not FullPath{s) then 

s dir + 5; } 
if not FileExists(s) then 
begin 

com_wr(s + ' does not exist!', COLORHL); 
exit; 

, 

end; 

if wv.nwn > a then 
begin 

if com_wr-yo ( 'Load FPES template. Erase waves') 
begin 

for i : = I to wv nwn do 
wv.ls[i)'.sel ,= 1; 

EraseWaves; 
end; 

end; 
assign(f, s); 
reset (f) ; 
readln(f. bg_temp); 

then 

if bg_temp > 0 then ( Shift up location of bg wave if other waves 
present. } 
bg_temp : = bg_temp + wv. nurn; 

if bg_temp > MAXWAVES then 
begin 

com_wr( 'Bg wave number exceeds maximum. Aborting.', COLORHL); 
exit; 

end; 
_bs. bg ,= bg_temp; 
while (wv nwn < MAXWAVES) and (not eof(f) do 
begin 

readln(f, delay); 
delay : = delay • POWFS; 
CreateWave(dt_ELE, 0); ( Use default values. ) 
with wv.ls[wv.curJ".par do 
begin 

if _bs.bg '= 0 then 
ele.bs.mode ;= 0 

else 
ele.bs.mode := 1; 

ele.dly := delay; 
{ Fix other parameters to ensure all is ok. } 
ele. ts. pos : = ele. dly .,. HALFSPEEDOFLIGHT + ele. ts. to; 
roundoff(ele.ts.pos, ts.step); 
limit(e!e.ts.pos, STAGEMIN, STAGEMAX)i 
{ Update dly again. } 
ele. dly : = (ele. ts . pos - ele. ts. to) I HALFSPEEOOFLIGHT; 

endi 
end; 
close(f)i 
UpdateAll; 

end; 

procedure do_gen; 
{ Generate new wave, of optionally specified datatype, using auto 

filename. } 
var 

begin 

integer; 
bufstring; 

if corn. cur = com.num then 
CreateWave (0, 0) 

else 
begin 

inc (com. cur) i 

: = com.ls [com. curl; 
for i dt_MIN to dt_MAX do 

if 5 = dt_NAME(iJ then 
begin 

> 
"C 
"C 
~ = ~ .... 
~ 
~ 

N 
-....] 
\0 



CreateWave (i, 0): 
i : = dt_MAX; 

end: 
end; 
UpdateVitals: 
Update (sc.cur) : 

end; 

procedure do_macro: 
{ Read macro file from disk and execute commands. } 
var 

f : text; 
s : bufstring; 

begin 
if com. cur = com.num then 
begin 

com_err: 
exit: 

end; 
inc (com. cur) : 
s := com.ls[com.cur]: 
if not FullPath(s) then 

5 : = dir + s: } 
if not FileExists{s) then 
begin 

co~wr(ERR_FILENOTFOUND, COLORHL); 
exit: 

end; 
assign(f, s): 
reset (f) ; 
macro_override := 1: 
while not eof(f) do 
begin 

{ See if user wants to abort. } 
if keypressed then 

case readkey of 
CTRLC, 

begin 
close(f) ; 
macro_overr ide 0; 
exit: 

end: . 
EXTENDED: readkey; 
end: 

readln(f, s); { Read command line. } 
com_wr(s, COLORMACRO); { Echo to screen. 
cOlILParse (s): { Parse into com. Is []. } 
co~ex: { Execute command. } 

end; 
close(f) : 
macro_override 0; 

end: 

procedure do_mc; 
( Handle mass calculator (mc) commands. 
var 

i, j, lim integer; 
r real; 
s : bufstring; 

begin 
if com. cur = com.num then 
begin 

UpdateMC: 

\ 

cOffiLwr(mc.s, COLORMESS): 
exit: 

end: 
inc(com.cur) : 
5 := com.ls[com.cur]: 
if 5 = 'auto' then 
begin 

if com. cur com.num then 
begin ( Print current mode state. ) 

str(mc.auto, s): 
cOffiLwr('mc auto' + s, COLORMESS): 
exit: 

end; 
inc (com. cur) ; 
s := com.ls[com.cur}: 
if s = '0' then mC.auto := 0 
else if s = 'I' then mc.auto 

end 
else if s 'Is' then { Print list to screen. } 
begin 

if mc.fn = " then 
begin 

cOffiLwr ('No mc file loaded.', COLORHL):" 
exit; 

end; 
Textmode; 
write1n( 'Filename mc. fn, ' Number of elements 
for j := 0 to mC.num div MC_LlNESPERSCREEN do 
begin 

if j < mC.num div MC_LlNESPERSCREEN then 
lim ,= MC_LINESPERSCREEN 

else 
lim := mC.num mod MC_LINESPERSCREEN; 

for i : = 1 to lim do 
with mc.ls(i + j * MC_LINESPERSCREEN1 do 

mc.num) ; 

writeln( 'Mass "', makestring(m, VALMAX, VALDEC), ' Min 
min, , Max " max, ' Label', s); 

write ( 'Press any key to continue.'); 
if readkey EXTENDED then 

readkey; 
writeln; 

end; 
DrawAll: 

end 
else if s 'rd' then 
begin 

mc. fn := 'x'; 
mc_rd(com.ls[com.cur + 1]): 

end 
else if s = 'sens' then 
begin 

if com. cur = com.num then 
begin ( Print sensitivity. 

com_wr('mc sens ' + makestring(mc.sens, VALMAX, VALDEC), 
COLORMESS) ; 

exit; 
end; 
inc (corn. cur) ; 
val(corn.ls[com.cur], r, i); 
if r <= a then 

COffiLerr 
else 

mc.sens r; 

( 

tv 
00 
o 

> 
'C 
'C 

~ 
c:l. •. 
~ 
~ 



end 
else com_err: 

end; 

procedure do_mon; 
( Handle commands for mon{itor) command. 
var 

dummy integer; 
integer; 

s bufstring; 
begin 

if com. cur = com.num then 
begin 

com_wrC'man.w ' + makestringint(mon.w), COLORMESS); 

exit; 
end; 
inc (com. cur) i 

S := cOffi.ls[com.cur]; 
if s = • 0' then 
begin 

man.w : = 0; 
DrawWaveData; ( Update wave indicator. 

end 
else if s 'bins' then 
begin 

if corn. cur com.num then 
begin 

com_wr ( , mon. bins 
exit: 

end: 
inc (com. cur) ; 

+ makestringint(mon.bins), COLORMESS); 

s := com.ls[coffi.cur]; 
val (s, mon. bins, dununy); 
if mon.bins < 1 then 

mon.bins := 1 
else if mon.bins > MAXPOINTS then 

mon.bins MAXPOINTS; 
end 
else if s ' tot' then 

com_wr('mon.tot • + makestringint(mon.tot), COLORMESS) 
else 
begin 

vales, i, dummy); 
if (i < 1) or (i > wv.num) then 
begin 

com_wr( 'Wave number out of range. COLORHL); 
exit; 

end; 
if (wv.ls(i]A.scan.mode > 0) or (addwaves.w i) then 
begin 

com_wr_wv(i, 'active! No change. COLORHL); 
exit; 

end; 
if (wv.ls(i]A.par.dt <> dt_ELE) then 
begin 

com_wr_wv(i, 'not ELE datatype! No change.·', COLQRHL); 
exit; 

end; 
mon.w i; 
DrawWaveData; { Update wave indicator. 

end; 
end; 

-~~~. 

procedure do_mv; 
{ Change to rnv scale for all visible mas waves. 
var 

i integer; 
ytemp ; real; 

begin 
sc_sel_off; 
for i : = 1 to wv.num do 

with wv.ls(i]A do 
if (on = 1) and (par.dt = dt_MAS) then 
begin 

\ 

yternp := par.yscale; { Save before changing. 
par.yscale := par.mas.vert I TEK_YPTSPERDIV; 
if (yoffsetrescale = 1) and (ytemp <> 0) then 

par.yoffset := par.yoffset • par.yscale I ytemp; 
sc.ls(screenj.sel := 1; 

end; 
UpdateVitals; 
for i : = 1 to sc. num do 

with sc.ls[i) do 
if sel 1 then 
begin 

gr .yaxismode YAXISMODE_RELATIVE; 
Update(i) ; 

end; 
end; 

procedure do_nw; 
{.Generate new wave, of optionally specified datatype, using filename of 

specified wave. } . 
var 

d, dummy, i, n : integer; 
s : bufstring; 

begin 
{ Find number of waves to generate. } 
inc (com. cur); 
s := com.ls(com.cur); 
valls, n, dununy); 
if n > 0 then 

inc (com. cur) { Go to next word. } 
else 

n 1; 
Find datatype (or leave as d 0) . 

begin 
S := com.ls[com.cur]; 
d ,= 0; 
for i dt_MIN to dt_MAX do 

end; 

if s = dt_NAME[ij then 
begin 

d i; 
i : = dt_MAX; ( Get out of loop. ) 

end; 

if d = 0 then 
dec(com.cur); { Back up to previous word since nothing was recog

nized. } 
for i : = 1 to n do 

if wv. num = MAXWAVES then 
i := n 

else if WV.num = 0 then 
CreateWave{d, 0) ( No previous wave to base on: use defaults. 

else 
CreateWave{d, wv.cur); 

> 
"C 
"C 

~ 
~ .... 
~ 
~ 

N 
00 



UpdateVitals; 
Update (sc. cur) ; 

end; 

procedure do_osc; 
( Handle virtual oscilloscope functions. 
const 

OSC_ON = ;Osc on.'; 
OSC_OFF = 'Osc off. '; 

var 
dummy : integer; 
i : integer; 
s : bufstring; 

begin 
with osc do 
begin 

if com. cur = com.num then 
begin 

mode ,: = - mode; 
if mode 0 then 
begin 

ADoff (ch); 
COmLwr(OSC_OFF, COLORMESS); 

end 
else 
begin 

AD.ls[chJ .on ,= 1; 
COmLwr(OSC_ON, COLORMESS); 

end; 
exit: 

end; 
inc (com.cur) ; 
S := com.ls[com.curJ; 
if s = ~ch' then 
begin 

if com. cur = com.num then 
begin 

COItLwr ( 'Osc channel = ' + makestringint (ch), COLORMESS): 
exit; 

end; 
inc (com. cur) ; 
val (com. Is [com. curl, i, dummy); 
if (i >= 1) and (i <= AD_MAX) then 
begin 

if mode = 0 then { If osc was off. print message to alert that 
now on. } 
cOmLwr(OSC_ON, COLORMESS); 

mode := 0; { Must turn off so channel can be freed. } 
ADoff(ch) ; 
ch := i; 
Ad.ls[ch) .on ,= 1; 
mode := 1; ( Turn on again. 

end 
else 

coItLerr: 
end 
else if s = 'fu' then 

with sc.ls[scrJ.gr do 
begin 

vllim : = 20.48; 
v21im := 4095; 
yfullmode := 0; 
UpdateVitals; 

Update (scr) ; 
end 

else if s 'sc' then 
begin 

if com. cur = com.num then 
begin 

com_wr('Osc screen = ' + makestringint(scr), COLORMESS); 
exit; 

end; 
inc (com. cur) ; 
val (com. Is [com. cur1, i .. dummy); 
if (i >= 1) and (i <= sc.nupl) then 
begin 

sci : = i; 
{ Turn on if not on. } 
if mode = 0 then ( If osc was off, print message to alert that 

now on. ) 
com_wr(OSC_ON, COLORMESS); 

Ad.ls[ch).on 1; 
mode 1; 

end 
else 

com_err; 
end 
else 

COIlLerr; 
end; 

end; 

procedure do_rd; 
{ Read waves. Checks for existence. Terminates with error if there are 

more files than available waves in memory. } 
var 

abort : boolean; { Flag to abort procedure. } 
anum : integer; 
aser : bufstring; 
dummy : integer; 
ext : bufstring; 
s : bufstring; 

procedure do_r~exit; forward; 
procedure do_rd_fn; forward; 
procedure do_rd_wv; forward; 
procedure do_rd_x; forward; 

procedure do_rCLexi t; 
( Tidy up before exiting. 
begin 

UpdateVitals; 
Update{sc.cur); ( Since can only load waves into current screen, 

this works. } 
end; 

procedure do_rd_fn; 
( Assemble and check for existence of filename. 
var 

i : integer; 
begin 

str(auto.num, 5); 

if ext = " then 
begin 

auto.ser + s; 
if not FullPath{s) then 

I 
< 

N 
00 
N 

> 
'0 
'0 
~ 

= Q. .... 
~ 
)0000 



S : = dir + s; 
Try all dt extensions: 

i : = dt_MIN; 
while (i <= dt_MAX) and (not FileExists(s"+ '.' + dt_NAME(iJ)) do 

inc (i); 
if i <= dt_MAX then 

s : = S + '.' + dt_NAME (i] ; 
end 
else 
begin 

s : = autO. ser + 5 + '.' + ext; { Use new extension. } 
if not FullPath(s) then 

s : = dir + S; 

end; 
do_rd_wv; 
inc(auto num); { Prepare for possible increments. } 

end; 

procedure do_rd_wv i 
{ Call readwave procedure. 
var 

w integer; 
begin 

if keypressed then 
case readkey of 
ESC {Get out of read. } 

begin 
com_wr('Aborted. " COLORMESS); 
abort true; 
exit; 

end; 
EXTENDED: readkeYi { Clean out buffer in case of extended key. } 
end; 

if not FileExists(s) then 
begin 

com_wr(s + ' does not exist', COLORHL); 
exit; 

end; 
if wv num = MAXWAVES then 
begin 

com_wr ( , Memory full.', COLORHL); 
abort : = true; 
exit; 

end; 
begin 

w ;= wv.num + 1; 
if ReadWave{s, w, TRUE) FALSE then 

com_wr('Bad load on ' + s, COLORHL) 
else 

InitializeWave(w); { Change other parameters, update wv.num, 
etc. } 

end; 
end; 

procedure do_rd_x; 
( Literal read. ) 
begin 

while (com. cur < com.num) and (abort 
begin 

inc (com. cur) ; 
s := com.ls{com.curJ; 
if not FullPath{s) then 

: = dir + 5; 

false) do 

do_rd_wv; 
end; 
do_rd_exi t; 

end; 

BEGIN 
abort := false; 
ext ' '; ( Prevent disaster by presetting this. ) 
if com. cur = com.num then 
begin 

com_err; 
exit; 

end; 
inc (com. cur) ; 
S := com.ls[com.cur); 
if s = 'fpes' then 
begin 

do_fpes; 
exit; 

end 
else if s = 'ws' then 
begin 

if com. cur = com.num then 
ws_rd (WS_FN_DF) 

else 
ws_rd(com.ls[com.cur + 1}); 

UpdateAll; 
exit; 

end 
else if 'x' then ( Literal filename mode. ) 
begin 

do_rd_x; 
exit; 

end; 
com_wr('Read waves. Press ESC to abort.', COLORMESS); 
dec(com.cur) ; 
while (com. cur < com.num) and (abort = false) do 
begin 

inc (com. cur); 
s := com.!s(com.cur]; 
if (5 = 'to') then ( Flag that next word is a file number for 

us to read to; assumes auto.ser, auto.num already set. ) 
begin 

if (com.cur = com.nwn) then ( Must be a number following 'to'. ) 
begin 

com_err; 
do_rd_exi t; 
exit; 

end; 
inc (com. cur) ; 
s := com.ls[com.cur]; 
val(s, anum, dummy); { Get number. 
while (auto.num <= anum) and (abort false) do 

do_rd_fn; 
end 
else 
begin 

intelligent_filename (s. aser, anum, ext); ( Analyze filename. ) 
{ Check that num is >= O. 
if anum < 0 then 
begin' 

com_err; 
do_rd_exit; 

> 
"t:I 
"t:I 
I'D 

= Q. 
S<" 
I-" 

N 
00 
W 



exit; 
end; 
auto.ser 
auto.nurn 
do_rd_fn; 

end; 

aser; 
anum; 

end; 
do_rd_exi t; 

end; 

procedure do_redo; 
{ Erase most recent scan from a wave, decreases scan counter and re

starts scan if off. Note waves may be currently scanning.} 
var 

i. j : integer; 
begin 

wv_selill; 
if com. cur < com.num then 
begin 

inc(com.cur); { Put cursor on mystery word. } 
com_err; 
exit; 

end; 

sc_sel_off; 
for i ;= 1 to wv.num do 

with wv.ls[i)A do 
if (sel = 1). and (par.scan > 0) then 
begin 

sc.ls(screen] .sel ;= 1; { Flag screen for update. } 
for j : = 1 to par. pt do 
begin 

data[j) ;= data[j) - tmp[j); 
trnp(j] := 0; ( Erase tmp to prevent disastrous multiple 

redos. ) 
end; 
( Special handling for bs electron waves. 
if (par.dt = dt_ELEI and (par.ele.bs.mode = 1) then 
begin 

par.ele.bs.tot := par.ele.bs.tot - par.ele.bs.1ast; 
par.ele.bs.last 0; 

end; 
dec (par. scan) ; 
datasaved : = 0; 
parsaved 0; 

end; 
wv_sel_off; 
UpdateSel; 

end; 

procedure dO_rnl; 
{ Remove waves. } 
begin 

{ Get list of waves to erase. } 
wv_selill; 
( Exit if extra words after wave list. } 
if com. cur < com.num then 
begin 

inc(com.cur}; { Put cursor on mystery word. 
com_err; 
exit; 

end; 
if wv.sel 1 then 

end; 

( Get permission before erasing. 
if AreYouSure then 
begin 

EraseWaveSi 
UpdateSel; 

end; 

procedure do_runCblank. : integer); 
Activates wave(s) for scanning. blank is a flag to erase existing 
data and reset scan number (blank just passed on to Scanlnit, which 
does the actual initializing). } 

procedure check(w : integer); 
{ Internal function: check that wave satisfies criteria for scanning. 

) 
var 

s : bufstring; 
begin 

strew, sl; 
S := 'Wave' + s + 
with wv.ls[w]A do 
begin 

( Check if already scanning. 
if scan.mode > 0 then 
begin 
co~wr(s + 'already scanning.', COLORHL); 
exit; 

end; 
( Check if in addwaves mode. } 
if (addwaves.mode = 1) and (addwaves.w = wv.cur) then 
begin 

com_wr(s + 'in add waves mode.', COLORHL); 
exit; 

end; 
{ Check that number of points is compatible with MCS in ele 

scans. } 
if ipar.dt DT_ELEI and ipar.pt <> MCS_PT[MCS_PT-HIN)I then 
begin 
co~wr(s'+ 'pt not compatible.', COLORHL); 
exit: 

end; 
{ If there is already data in wave make sure user wants to over

write it. } 
if datasaved = 0 then 
begin 

if co~wr-Yflaesc(s + 'not saved. OVerwrite') < 1 then 
begin 
co~wr (s + ' scan aborted.', COLORMESS); 
exit; 

end: 
cOIrLwr(s + 'overwriting.'. COLORMESS); 

end; 
scanInit(w, blank): ( InitialiZe scan. } 
sc. Is [screen] .sel 1; { Tag screen for update afterward. } 

end; 
end; 

var 
f boolean; 
i integer; 

begin 
if wv.num = 0 then 

tv 
00 
~ 

> 
"0 
"0 
~ 

= Q. _. 
~ 
)00000 



exit; 
wv_sel(1) ; 
if com. cur < com.num then ( Makes no sense if more words at end. 
begin 

inc(com.cur); ( Point to trouble word. ) 
com_err; 
exit; 

end; 
sc_sel_off; 
ynaesc_response : = 0; ( Initialize response var. 
for i := 1 to wv.num do 

with wv.ls(i]" do 
if sel = 1 then 

check(i) ; 
wv_sel_off; 

{ Check bg wave status if bs waves present. 
if bs_on then 
begin 

{ Check range on background wave. } 
if (_bs.bg < 1) or <_bs.bg > wv.num) then 
begin 

com_wr('Sackground wave out of range. 
exit; 

end; 
( Check datatype of bg wave. ) 
with wv.ls[_bs.bg1" do 

COLORHL) ; 

if (par.dt <> dt_ELEl or (par ele.bs.mode = 0) then 
begin 

com_wr_wv(_bs.bg, 'bg not compatible.', COLORHL); 
exit; 

end; 
Figure out if any waves scanning; set scanwave to 0 if not. } 
: = false; 

for i : = 1 to wv. nurn do 
if wv.ls[iJ".scan.mode > 0 then 

f : = true; 
if f = false then 

scanwave := 0; 

If not in middle of a bs scan, reset bs engine to beginning 
i_bs.fg = 0). ) 

with wv.ls{scanwave]" do 

end; 

if (scanwave = 0) or (par.scan 0) or «par.dt 
(par.ele.bs.mode = 0» then 
_bs. fg ;=.0; 

dt_ELE) and 

mcs. new 1; { Flag to send all MCS commands the first time. 

Wait for scan routine to update screen. 
Update affected screens. } 

UpdateVitals; 
for i ; = 1 to sc. nurn do 

if sc.ls[i] .sel = 1 then 
Update(i) ; 

sc_sel_off; } 
end; 

procedure do_sci 
{ Screen commands. 

bdy bdy_type; { Temp. screen limits variable. 

dummy integer; { For val. 
i integer; { Holding val resul ts. } 
s, s2 bufstring; ( Current word. ) 
temp 

begin 
integer; 

if com. cur = com.num then 
begin ( Print current screen. 

str(sc.cur, s); 
com_wr('Current screen = ' + 5, COLORMESS); 
exit; 

end; 
sc_sel; 
if sc.sel = 0 then 

exit; ( Nothing to do. ) 
if com. cur = com.num then { Assume just switch screens. Take first 

screen number from list. } 
begin 

for i : = 1 to sc. nurn do 
if sc.ls(i] .sel = 1 then 
begin 

EraseCursor(sc.cur); 
temp := sc.cur; 
sc.cur := i; 
str(temp, s); 
str (sc. cur. s); 

Erase old cursor first. ) 

DrawTitle(temp); Change colors of old and new screen titles. } 
DrawTit·le{sc.cur) ; 
DrawCursor(sc.cur); { Draw new cursor. } 
exit; 

end; 
end; 
inc (com. cur) ; 
s := com.ls(com.cur]; 
if s = 'bdy' then 
{ Report overall screen boundaries and exit. } 
begin 

str(sc.bdy(l}.x, 52); 
s := 'sc.bdy x ' + s2; 
str(5c.bdy(2] .x, 52); 
s : = S + ' • + 52; 
strisc.bdy[l) .y, s2); 
s := S + ' y , + 52; 
strisc.bdy[2) .y, s2); 
5 : = S + ' • + s2; 
com_wr (s, COLORMESS); 
exit; 

end 
else if s' 'fu' then ( Full mode. 
begin 

for i : = 1 to sc. nwn do 

end 

if sc.ls{iJ.sel = 1 then 
FullView(i) ; 

else if s 'num' then ( Report total number of screens. 
begin 

str(sc.num, s); 
com_wr{'Number of screens 
exit; 

end 

, + s, COLORMESS)i 

else if s 'rf' then { Refresh. 
begin 

UpdateVitals; 
for i := 1 to sC.num do 

> 
"CI 
"CI 
~ 

= ~ 
S;;" 
)00000 

N 
00 
VI 



end 

if sc.ls[i] .sel 
Update(i); 

1 then 

else if s = 'rm' then { Remove screens. 
begin 

if com_wr-YJ1 (' Are you sure') = O' then 
exit; 

for i := sC.num downto 1 do 
with sc.ls[i] do 

if (sel-= 1) and (sc.num > 1) then { Cannot kill only SCreen. } 
begin 

if i < SC.num then 
for temp := i + 1 

sc.ls[temp - 1) 
dee (sc.num); 

to se. nwn do { Move down other screens. } 
sc.ls[temp] : 

if se.cur >= i then ( Move pointer to correct screen. 
dec(sc.cur): 

if sc.cur = 0 then ( Keep from disappearing. ) 
se.cur := 1: 

for temp := 1 to wv.num do ( Move waves to correct screen.) 
with wv.ls[temp)~ do 
begin 

if screen >= i then 
dec (screen) ; 

if screen = 0 then 
screen := 1; 

end; 
if osc.scr >= i then { Move osc to correct screen. } 

dec (osc. scr) : 
if osc.scr = 0 then 

osc.scr := 1; 
end; 

UpdateAll; { Refresh screen. 
exit; 

end 
else if s = 'ss' then 
begin 

if sc.sel = 1 then 
for i := 1 to sC.num do 

if sc.ls{i).sel = 1 then 
begin 

do_sc_ss ( i) ; 
exit; 

end: 
cotrLerr; 
exit; 

end 
else if s = 'sz' then 
begin 

if com. cur = com.num then 
( Report current screen sizes. 
begin 

for i := 1 to sC.num do 
with sc.ls[i) do 

if sel = 1 then 
begin 

str(i, 52): 
s := 'Screen' + s2; 
str{gr.bdy[l).x, s2); 
s := S + ' x ' + 52; 
str{gr.bdy[2) .x, s2); 
s := s + ' , + s2; 
str{gr.bdy[l) .y, s2); 

S : = 5 + ' Y , + s2; 
str{gr bdy[2).y, s2); 

: = S + ' , + s2; 
co~wr(s, COLORMESS); 

end; 
exit; 

end; 
{ Check there are exactly four mOre entries. 
if com. cur + 4 <> com.num then 
begin 

com_err; 
exit; 

end; 
{ Read in values. 
val(com.ls[com.cur + I}, bdy{l} .x, dummy); 
val(com.ls[com.cur + 2), bdy[2J .x, dummy); 
val(com.ls[com.cur + 3), bdy[l] .y, dummy); 
val{com.ls[com.cur + 4). bdy[2) .y, dummy); 
{ Check that values are all valid. } 
if (bdy[l).x < sc.bdy[l) .x) or (bdy[2).x > sc.bdy[2) .x) or (bdy[l).y 

< sc.bdy[l) .y) or (bdy[2).y > sc.bdy[2) .y) or (bdy[l).x >= 
bdy[2).x) or (bdy[l).y >= bdy[2).y) then 

begin 
cotrLwr('Bad screen limits.', COLORHL); 
exit; 

end: 
{ Resize screens and update everything. } 
for i := 1 to sC.num do 

with sc .15 [i] do 
if sel = 1 then 
begin 

gr.bdy := bdy; { Copy temp. bdy to real thing. } 
sc_resiz~ (i I ; 

end; 
UpdateAll; 

end 
else if s 'ti' then { Title. 
begin 

if com. cur = com.num then 
( Print titles. 
begin 

for i := 1 to SC.nwn do 
with sc.ls[i] do 

if sel = 1 then 
begin 

str(i, s1; 
s ; = 'Screen ' + s + ' '; 
if ti.on = 1 then 

I 

cotrLwr(s + 'title = • + ti.s, COLORMESS) 
else 

end; 
exit; 

end; 

cotrLwr('title off.', COLORMESS); 

inc (com. cur) ; 
s := com.ls[com.cur]; 
if (5 = 'on') or (s = 'off') then 
begin { Special: turn on/off titles. 

if s = 'on' then 
temp 

else 
temp ,= 0; 

UpdateVitals; 

tv 
00 
0\ 

> 
"CI 
"CI 
ttl 

= c:l. •. 
jooo!i 

"""" 



for i : = 1 to sc. num do . 
with sc.ls(i) do' 

if sel = 1 then 
begin 

ti.on := temp; 
sc_resize(i); 
Update(i) ; 

end; 
exit; 

end 
else 

end 

if sc.sel 1 then 
begin 

for i : = 1 to sc. num do 
with sc.ls(i] do 

if sel = 1 then 
begin 

if ti.on = 1 then 
begin 

ti.s := S; 

DrawScreen(i); 
end 
else 
begin 

str(i, s2); 
com_wr('Screen' + s2 + ' title off!', COLORHL); 

end; . 

end; 
DrawVitals; 

end 

else if s 'x' then 
begin 

. temp := com.cur; 
for i : = 1 to sc. nurn do 

end 

if sc.ls(iJ.sel = 1 then 
begin 

do_xli) ; 
com. cur 

end; 
temp; 

else if s = 'y' then 
begin 

temp com. cur; 
for i : = 1 to sc. num do 

if sc.ls(i}.sel = 1 then 
begin 

doS(i) ; 
com. cur 

end; 
end 
else 

com_err; 
end; 

temp; 

procedure do_sc_ss(w : integer); 
{ Split screen w into subscreens. 
var 

dummy integer; { For val. 
ix, iy integer; { Generic counters. 
nuffiX, numy integer; { It of screens in x & y directions. 
stepx, stepy integer; { step size in each direction. } 
scr integer; { Screen counter. } 

temp bufstring; 
begin 

if com. cur + 2 <> com.num then 
begin 

com_err; 
exit; 

end; 
inc (corn. cur) i 

val(com.ls(com.cur1, nuffiX, dummy); 
inc (com.cur) ; 
val(com.1s[com.cur], numy, dummy); 
if (nwnx < 1) or (numy < 1) or (sc.nurn + numx • numy - 1 > sc_MAX) 

then { -1 is to account for current screen, which is resized. } 
begin 

str(sc_MAX, temp); 
cOIlLwr ( 'Maxim1.lm screens , + temp, COLORHL)i 
exit; 

end; 
scr : = Wi 
stepx := (sc.ls[w] .gr.bdy(2].x 
stepy ,= (sc.ls[wJ .gr.bdy[2J.y 
for iy : = 0 to numy - 1 do 

- sc.ls[w] .gr.bdy[1] :xl div numx; 
- sc.ls[wJ .gr.bdy[lJ.yl div numy; 

for ix : = 0 to nuffiX - 1 do 
begin 

with sc.ls[scr) .gr do 
begin 

bdy[lJ .x 
bdy[2J .x 
bdy[lJ .y 
bdy[2J .y 

sc.ls[w] .gr.bdy(1).x + ix * stepx; 

end; 

bdy(1).x + stepx; 
sc.ls[w] .gr.bdy(1].y + iy 
bdy[lJ.y + stepYi 

if scr > sC.nurn then 

stepYi 

sc_init (scr); { Only initialize new screens. } 
sc_resize (scr); 
if scr = W then 

scr : = sc. nurn + 1 
else 

inc (scr); 
end; 

UpdateVitals; 
Update(w) ; 
W := sC.num + 1; 
inc(sc.num, numx * numy - 1); 
for w := w to sC.nurn do 

Update (wi; 
if sc.cur > se.num then 
sc.cur := 1; { If prior current screen was erased, reset current screen 
to 1. } 

for w := 1 to wv.num do { Reassign waves to legitimate screen. } 
if wv.ls[w] .... screen > SC.num then 
wv.ls[w] .... screen := sc.cur; 

Upda teAll ; } 
end; 

procedure do_sech; 
{ If cursor on COR wave, creates new COR wave with a sechA2 fit of the 

current wave, based on vertical limits, center and fwhrn. } 
var 

i integer; 
yscale real; 

begin 
if (wv num = 0) or (wv.ls[wv.curjA.par.dt <> DT_CORI or (wv.num 

maxwaves) then 

> 
"'CI 
"'CI 
nl = c::l.o 
;;;;' 
)00000 

N 
00 
-...l 



exit; 
info_edges(wv cur, 1): ( Calculate old wave's center & fwhm. 
ysca1e := info_ht(wv.cur); ( Calculate height to scale by. ) 
CreateWave(O, wv.cur); { Create new wave. } 
for i := 1 to wv.ls[wv.cur]~.par.pt_gl do 
wv.1s{wv.cur]~.data[i] := sech_sq(ptou(wv.cur, i, sc.1s[sc.cur) 

.gr.xaxismode) - info.ctr, info.fwhm) * ysca1e; 
info_wr(wv.cur, info.fwhm, 'fwhrn', 1); 
tJpda teVi tals; 
Update(sc cur); 

end; 

procedure do_sh; 
( Select type of wave information to show. ) 
var 

i integer; 
S : bufstring; 
sh_type : integer; 

begin 
if com. cur = com.num then 
begin 

COIILerr; 
exit: 

end; 
inc (com.cur) : 
S := com.ls[com.cur); 
sh_type := 0; 
for i : = 1 to wv_sh_MAX do 

if s = wv_sh~AME{i) then 
sh_type := i; 

if sh_type = 0 then 
begin 

cOllLerr; 
exit: 

end; 
wv_sel (1); 

for i := 1 to wv.num do 
with wv.ls[i)A do 

if sel = 1 then 
begin 

if {sh_type = wv_sh_DLYI and (par.dt <> DT_ELE) then 
co~wr('Wave ' + makestringint(i) + ' cannot show DLY.', 

COLORHL) 
else 

par.sh 
end; 

wv_sel_off; 
DrawWaveData: 

end; 

procedure do_sm; 
{ Smooth waves. } 
const 

sh_type; 

NO_WIDTH = 'No width given. See sm in help menu.'; 
var 

dummy : integer; { For val. 
en : boolean; ( Flag to save energy file (true) or regular (false). ) 
r real; { Width. ) 
s : bufstring; 
i : integer; { Wave counter. 

begin 
en : = false; 
( See if at end of command line; if so, signal error (no width). ) 

if com. cur = com.num then 
begin 

com_wr(NO_WIDTH, COLORHL); 
'exit; 

end; 
inc(com.cur) ; 
s := com.ls[corn.cur); 
if s = 'en' then 
begin 

en := true; 
if com. cur = com.num then 
begin 

co",-wr I NO_WIDTH, COLORHL); 
exit; 

end; 
inc (com. cur) ; 
s : = com.1s [com. cur] ; 

end; 
{ Read width. } 
valls, r, dummy); 
if r <= 0 then 
begin 

cOIILwr('Width must be positive!', COLORHL); 
exit; 

end; 
if en and (r > 1) then 
begin 

com_wr ( 'Width cannot exceed 1 eV!', COLORHL); 
exit; 

end; 
wv_sel(l); { Read list. 
sc_sel_off; 
if wv.sel = 1 then 
begin 

for i := 1 to wv.num do 
with wv.ls{i]~ do 

if sel = 1 then 
begin 

s := 'Wave' + makestringint(i).+ ' '; 
if (scan. mode > 0) or « addwave5 . mode = 1) and (addwaves. w 

ill then 
cOITLwr(s + 'active! No smooth.', COLORHL) 

else if en and (par.dt <> dt_ELE) then 
com_wr(5 + 'not ELE datatype! No smooth.', COLORHL) 

else 
begin 

cOIILwr(5 + 'smoothing ... ', COLORMESS); 
if en then 

SmoothEnergy(i, r) 
else 

SmoothTime (i, r); 
datasaved : = 0; 
sc. 15 {screen] .sel := 1; ( Mark screen for update. ) 

end: 
end; 

wv_sel_off; 
UpdateVita1s; 
for i := 1 to sC.num do { Update affected screens. ) 

if sc.ls[iJ.sel = 1 then 
Updateli) ; 

sc_sel_off; 
end; 

end; 

N 
00 
00 

> 
"CI 
"CI 
~ 

= c:l,. .... 
~ 
~ 



procedure dO_5s; 
{ Create split screen. See also sc ss. } 
var 

dummy in teger i { For val. 
ix, iy : integer; { Generic counters. 
nurnx, numy integer; ( * of screens in x & y directions. 
stepx, stepy : integer; { Step size in each direction. } 
scr ; integer; { Screen counter. ) 
temp bufstring; 
w integer; ( Wave counter. 

begin 
if com. cur + <> com.num then 
begin 

com_err; 
exit; 

end; 
inc(com.cur) ; 
val(com.ls[com.cur], nurnx, dummy); 
inc (com. cur) ; 
val(com.ls[com.cur], numy, dummy); 
if (numx < 1) or (numy < 1) or (numx * numy > sc_MAX) then 
begin 

str(sc_MAX, temp); 
com_wr('Maximum screens , + temp, COLORHL); 

exit; 
end; 
scr := 1; 
stepx := (sc.bdy[2].x - sc.bdy(l] .x) div numx; 
stepy ,= (sc.bdy[2J.y - sc.bdy[lJ .y) div numy; 
for iy := 0 to numy - do 

for ix : = 0 to numx 
begin 

1 do 

with sc.ls[scr] .gr do 
begin 

bdy[lJ .x 
bdy[2J .x 
bdy[lJ .y 
bdy[2J .y 

end; 

sc.bdy[I].x + ix * 
bdy[l] .x + stepx; 
sc.bdy[I].y + iy * 
bdy[lJ.y + stepy; 

if scr > sC.num then 

stepx; 

stepy; 

sc_init(scr); ( Only' initialize new screens. 
com_wr('about to SC-RESIZE', COLORDEBUG); 

if readkey = extended then readkey; } 
sc_resize(scr) ; 
inc (scr) ; 

end; 
sC.num := nurnx 11 numy; 
if sc cur> sc num then 

sc.cur := 1; If prior current screen was erased, reset current screen 
to 1. ) 

for w : = 1 to wv.num do ( Reassign waves to legitimate screen. 
if wv.ls[w]A.screen > sc num then 

wv. Is [w) "'. screen : "" ,sc. cur i 
if osc. scr > . num then { Reassign osc screen. 

OSC.scr := sc.cur; 
UpdateAll; 

end; 

procedure do_stop; 
( Stop scanning one or more waves. 

integer; 

begin 
wv_sel(I); 
sc_sel_off; 
for i := 1 to wv.num do 

with wv.ls[iJ'" do 
if sel = 1 then 
begin 

ScanS top (i) ; 
sc.ls(screenl.sel 

end; 
wv_sel_off; 
UpdateSel; 

end; 

procedure do_sts; 

1; 

{ Print or change STS (shot-to-shot) mode status. 

function do_sts_err boolean; 
( Print error message if waves scanning. 
begin 

if bs_on and scanning(dt_ele) then 
begin 
co~wr('bs ele waves active! No change. 
do_sts_err true; 

end 
else 

do_sts_err 
end; 

var 
dummy : integer; 

integer; 
r : real; 
s : bufstring; 

begin 

false; 

COLORHL) ; 

if (com. cur = com.num) and (not do_sts_err) then 
_bs.sts := 1 

else 
begin 

inc (com. cur) ; 
s := com.ls[com.cur]; 
if s = '?' then 
begin 

com_wr ( 'sts 
exit; 

end 

+ makestringint(_bs.sts), COLORMESS); 

else if s 'all' then 
begin 

com_wr('sts ' + makestringint(_bs.stsl, COLORMESS); 
com_wr('sts blank' + makestringint {_bs. sts_blank) , COLORMESS); 
com_wr{'sts blank2 ' + makestringint {_bs. sts_blank21 , 

COLORMESS); 
com_wr('sts ch ' + chr(ord('O') + _bs.sts_ch), COLORMESS); 
com_wr('sts fac ' + makestring(_bs.sts_fac, VALMAX, VALDEC) 

+ ' V/div', COLORMESS); 
com_wr('Press any key to continue.', COLORHL); 
readkey; 
com_wr{'sts vert' + makestring {_bs. sts_vert, VALMAX, 

VALDEC) + ' V/div', COLORMESS)i 
com_wr('sts tog' + chr(ord('O') + _bs.sts_togl, COLORMESS); 

end 
else if s 'blank' then 
begin 

> 
"C 
"C 
tD = !:lo .... 
~ .... 

tv 
00 
1..0 



if com. cur 'com. num then 
begin 

com_err; 
exit; 

end; 
inc (com. cur) i 

S := com.ls[com.cur]; 
if s = '?' then 

COIr\....-wr (' sts blank ' .. makestringint (_bs. sts_blank), COLORMESS) 

else 
begin 

valls, i, dummy); 
if (i > 0) and (i < MAXPOINTS) then 

_bs. sts_blank 
else 

end; 
end 

com_err; 

else if s = 'blank2' then 
begin 

if com. cur = com.num then 
begin 

COIr\....-err; 
exit; 

end; 
inc (com. cur) ; 
s : = com.ls [com. cur]; 
if s = '?' then 

COIr\....-wr ( 'sts blank2 
COLORMESS) 

else 
begin 

valls, i. dwmny); 

.. makestringint(_bs.sts_blank2), 

if (i > 0) and (i <= MAXPOINTS) then 
_bs. sts_blank2 

else 
cottLerr; 

end; 
end 
else if s 'ch' then 
begin 

if com. cur com.num then 
begin 

com_err; 
exit; 

end: 
inc (com. cur) ; 
s := com.ls[com.cur); 
if s = '?' then 

cOIr\....-wr(·sts ch ... chr(ord('O') + _bs.sts_ch), COLORMESS) 
else 
begin 

i := ord(s[l]) .- ord( '0'); 
if (i > 0) and (i <= MAS_CM_MAX) then 

_bs. sts_ch 
else 

com_err; 
end; 

end 
else if s 'fac' then 
begin 

if com cur com.num then 
begin 

com_err; 
exit; 

end; 
inc (com. cur) ; 
s := com.ls(com.cur); 
if s '7' then 

COIILwr ( 'sts fac ' + makestring (_bs. sts_fac, VALMAX, VALDEc) 
+ ' V/div'. COLORMESS) 

else 
begin 

valls, r. i); 

if r <= 0 then 
COIlLerr 

else 
_bs.sts_fac 

end: 
end 

r; 

else if s 'vert' then 
begin 

if com. cur com.nwn then 
begin 

cOIlLerr; 
exit: 

end; 
inc (com.cur) ; 
s := com.ls(com.cur]; 
if s = '7' then 

com_wr( 'sts vert' .. makestring (_bs. sts_vert. VALMAX. 
VALDEC) + ' V/div', COLORMESS) 

else 
begin 

valls, r, i); 
for i := TEK_VPERDIV_MIN to TEK_VPERDIV~ do 

if r <= TEK_VPERDIV[i] then 
begin 

_bs.sts_vert := TEK_VPERDIV[i]; 
cOIrLwr{'sts vert' + makestring{_bs.sts_vert, VALMAX, 

VALDEC) + ' V/div', COLORMESS); 
exit; 

end; 
com....-err; 

end; 
end 
else if s = 'tog' then 
begin 

if com. cur = com.nwn then 
begin 

cOIrLerr; 
exit; 

end; 
inc (com. cur) ; 
s := com.ls[com.cur]; 
if s = '7' then 

COm....-WT('sts tog' .. chr(ord('O') + _bs.sts_tog). COLORMESS) 
else 
begin 

i ,= ord(s[l]) - ord('O'); 
if (i = 0) or (i = 1) then 

_bs. sts_tog 
else 

com_err; 
end; 

end 

tv 
\0 
o 

> 
"CI 
"CI 
~ 

= ~ .... 
~ 

~ 



~ 

else if not do_sts_err then 
begin 

if (s = '0') or (5 = 'off') then 
_bs.sts := 0 

else if (5 'I') or (s = 'on') then 
_bs.sts 1 

else 
begin 

com_err; 
exit; 

end; 
end; 

end; 
DrawWaveData; 

end; 

procedure do_sv; 

D 

{ Save waves in normal or energy format; also branch out for ws. fpes 
s~ves. } 

var 
b~fstring; 

w integer; 
begin 

wv_sel(l) ; 
if com. cur < com.num then 
begin 

inc(com.cur) ; 
s := com.ls{com.cur]; 
if s = 'en' then 
begin { Save energy format·. 

wv_sel_off; ( Erase any erroneous waves from first wv_sel. 
wv_sel(l) ; 
ynaesc_response := 0; 
if wv.sel = 1 then 

for w : = 1 to wv. num do 
if wv.ls[w]"'.sel = 1 then 

SaveEnergy (w) ; 
end 
else if s 'fpes' then 
begin 

if com. cur = com.num then 
begin 

com_wr('Must supply a filename to save to. 
exit; 

end; 
inc (com. cur); 
fpes_sv (com. Is [com. cur] ) ; 
exit; 

end 

COLORHL) ; 

else if 5 = 'time' then ( time-space version of data, without 
headers. 

begin 
wv_sel_off; ( Erase any erroneous waves from first wv_sel. 
wv_sel (1) i 

ynaesc_response 0; 
if wv.sel = 1 then 

for w : = 1 to wv. num do 
if wv.ls[wJ".sel = 1 then 

SaveTime (w); 
end 
else if s = 'ws' then { Special code; save worksheet with standard 

filename or user-supplied name. Note that directory dir does not 
apply to worksheet filename. } 

begin 
if wv.sel = 1 then 
.wv.ls[wv.curJ"'.sel := 0; { Deselect wave selected by wv_sel. 

if com. cur = com.num then 
ws_sv (WS_FN_DF 1 

else 
ws_sv(com.ls[com.cur + 1]); 

exit; 
end 
else 
begin 

com....err; 
exit; 

end; 
end 
else { Normal format. 
begin 

ynaesc_response 0; 
if wv.sel = 1 then' 

for w := 1 to wv.num do 
if wv.ls(w]"'.sel = 1 then 

SaveWave (w) ; 

end; 
wv_sel_off; 
DrawWaveData; { Update waves with save symbol. 

end; 

procedure do_tO; 
( Set default to for default or active waves. )' 
var 

i : integer; 
s : bufstring; 
pas : real; 

procedure do_tO_change(w : integer; pos : real); 
{ Change wave w's to to pas, or print if pas < O. 
begin 

with wv.ls[wl'" do 
begin 

case par.dt of 
DT_COR 

if pas < a then ( Flag to print current. 
pas par.cor.ts.tO 

else 
begin 

par.car.ts.tO·:= pos; 
UpdateCORLimits(@par); { Change start & stop. 

end; 
DT_ELE 

if pos < 0 then { Flag to print current. 
pas par.ele.ts.tO 

else 
begin 

par.ele.ts.tO := pas; 
( Update other parameters. 
par.ele.ts.pos := par.ele.ts.tO + par.ele.dly * 

HALFSPEEDOFLIGHTi 
roundoff (par. ele. ts. pos, ts. s.tep) ; 
limit(par.ele.ts.pos. STAGEMIN, STAGEMAX); 
par.ele.dly := (par.ele.ts.pos - par.ele.ts.tO) I 

HALFSPEEDOFLIGHTi 
end; 

else 

> 
"C 
"C 

~ 
Q.. 
~. 

~ 

tv 
\0 
........ 



corn_wr('Wave ' + makestringint(w) + ' not COR or ELE wave!', 
COLORHL) ; 

end; 
( Print out position if correct wave type, mark screen for 

update. ) 
if (par.dt = DT_CORI or (par.dt = DT_ELEI then 
begin 

str(pos / POWTS : ° : 0, s); 
com_wr('wv' + makestringint(w) + I to ' + s + I urn', 

COLORMESS) ; 
sc.ls(screen] .sel := 1; 

end; 
end; 

end; 

procedure do_tO_get; 
( Read in to value. ) 
var 

dummy : integer; 
s : bufstring; 

begin 
if com. cur = com.num then 
begin 

pos ts.pos; 
exit; 

end; 
inc (com. cur) ; 
s := com.ls[com.cur]; 
if s = '?' then 

pos := -1 
else 
begin 

val (s, pos, dummy); 
pes := pos * POWTS; 
limit(pos, STAGEr-UN, STAGEMAX); 

end: 
end; 

begin 
sc_sel_off; 
if com. cur = eom.num then 
begin 

if wv.num = 0 then 
begin 

com_err; 
exit; 

end; 
sc.ls (wv .ls[wv. cur]". screen] . sel 
do_tO_change (wv. cur, ts. pas) ; 
UpdateSel; 
·exit; 

end; 

inc (com.cur); 
s := com.ls[com.curJ; 

1; 

if s = 'ac' then { Change/print ac default to. 
begin 

do_tO_get; 
if pos >= 0 then ( pos < ° is flag to display current. 

to.ac := pos; 
str(tO.ac / POWTS : 0 0, s); 
com_wr('tO ac ' + s + urn', COLORMESS); 

exit; 
end 
else if s = 'ec' then { Change/print cc default to. 
begin 

do_tO_get; 
if pos >= 0 then ( pos < 0 is flag to display current. 

to.cc := pos; 
str(tO.cc / POWTS : 0 : 0, 5); 
com_wr('tO cc ' + s + urn', COLORMESS); 
exit; 

end 
else if s 'cor' then ( Change/print cor default to. ) 
begin 

do_tO_get; 
if pos >= 0 then ( pos < 0 is flag to display current. ) 
begin 

pardf(dt_COR).cor.ts.tO := paS; 
UpdateCORLimits(0pardf[dt_CORJ); ( Change start & stop. ) 

end; 
str(pardf[dt_CORJ.cor.ts.tO/ POWTS , ° , 0. s); 
cOmLwr('tO cor' + s + 'urn', COLORMESS): 
exit; 

end 
else if s = 'ele' then ( Change/print ele default to. ) 
begin 

do_tO_get; 
if pas >= ° then ( pas < is flag to display current. 

with pardf[dt_ELEJ do 
begin 

ele.ts.tO := pos; 
( Update other parameters. 
ele.ts.pos := ele.ts.tO + ele.dly * HALFSPEEDOFLIGHT; 
roundoff{ele.ts.pos, ts.step); 
limit{ele.ts.pos, STAGEMIN, STAGEMAX); 
ele.dly := (ele.ts.pos - ele.ts.tO) / HALFSPEEDOFLIGHT; 

end; 
str(pardf[dt_ELEJ .ele.ts.tO / POWTS , 0 , 0. s); 
C0mLwr (. to ele ' + s + • um'. COLORMESS); 
exit; 

end; 

if s = 'cur' then { Change waves to current position. } 
pos := ts.pos 

else if s = '?' then ( Print current position of waves. 
pas := -1 

else { Assume entry is a number. } 
begin 

dec (com. cur); 
.do_tO_get; 

end: 

wv_sel{l); { Get list of waves. 

( Now assign pos to appropriate waves. 
for i := 1 to wv.num do 

if wv.ls[iJ".sel = 1 then 
do_tO_change (i. pas); 

Update screen. 
wv_sel_off; 
UpdateSel; 

end; 

N 
\0 
N 

> 
"C 
"C 
~ 

S. .... 
~ 
~ 



procedure do_ts: 
{ Handle translation stage commands. 
const 

LF = #10; { Compiler seems to need this declaration here rather than in the 
Keys unit. } 

var 
del longint; 
dummy : in teger : 
exitflag : boolean; 
r : real; 
s, s2 : bufstring: 
w integer; 

begin 
if com. cur = com.num then 
begin { Print current stage position. } 

str(ts.pos / POWTS 0 VALDECTS, s); 
co~wr('Position ' + s + ' urn', COLORMESS): 
exit; 

end; 
inc(com.cur) ; 
s : = com.1s (com. cur]; 
if s = 'ace' then 
begin 

if com. cur = com.num then 
begin 

com_wr('ts ace' + makestringint{ts.acc), COLORMESS); 
exit; 

end; 
inc (com. cur); 
val(com.1s[com cur], ts acc, dummy); 
if ts. acc <= 0 then 

ts. ace : = TS_ACC_DF; 
write(COM2, ACK); 
delay (ACKDELAY) ; 
write {COM2, 'jFCAB6' + LF + 'B' + makestringint(ts.acc) + LF)i 
ts.wait.int := 100 .. ts.ve1 div ts.acc; 
if ts.wait.int < TINT_OF then 

ts.wait.int := TINT_OF; 
end 
else if s = 'ack' then 
begin 

write (COM2, ACK); 
delay (ACKDELAY) ; 

end 
else if s = 'ampl' then { Print/change amplitude of wob function. } 
begin 

if com. cur = com. num then 
begin 

com_wr('ts.wob.arnpl + makestring(ts.wob.arnpl / POWTS, 
VALMAX, VALDEC) + urn. " COLORMESS); 

exit, 
end; 
inc(com.cur) ; 
val (corn. Is [com.curJ, ts.wob.arnpl, dummy); 
ts.wob.ampl := ts.wob.ampl .. POWTS; 
MakeLookup; { Update lookup table. } 

end 
else if s = 'com' then 
begin 

if com. cur = com. num then 
begin { Must be a command after 'com'. 

com_err; 
exit; 

end; 
inc (com. cur); 
S := com.ls[com.cur]; 
write (COM2 , ACK); 
delay (ACKDELAY) ; 

( Convert linefeed symbol '\' to real linefeed code. 
for w : = 1 to length(s) 'do 

if s(w) = '\' then 
s(w) ;= LF; 

{ See if iCA or non-II:CA command. 
if s ( 1) = '#' then 

write{COM2, s + LF) 
else 

write (COM2 , 'iCA' + s + LF); 
end 
else if s = 'home' then 
begin 

write (COM2, ACK); 
delay (ACKDELAY) ; 
write {COM2 , 'II:CAHM' + LF); 
com_wr{coRLwr_MOVINGSTAGE, COLORHL); 
if readkey.= EXTENDED then 

readkey, 
write (COM2, ACK); 
delay (ACKDELAY) ; 

write(COM2, 'iCAABSL' + LF); 
ts.pos := 0; 

end 
else if s = 'init' then 
begin 

( Send setup commands. 
co~wr('Initializing stage ... ', COLORMESS); 
write(COM2, 11:3); 
DELAY(lOOO) ; 
write (COM2 , #32); 
DELAY (1000) ; 

write (COM2 , 830}; 
DELAY(lOOO) ; 

write (COM2, ACK); 
DELAY (ACKDELAY) ; 
{ Home stage. } 

cORLwr(cotrLwr_MOVINGSTAGE, COLORHL); 
write (COM2, 'jCAHM' + LF); 
if readkey = EXTENDED then 

readkey; 
write(COM2, ACK); 
( Set absolute mode. 
write(COM2, 'ft:CAABSL' + LF); 
delay (1000) ; 

write(COM2, ACK); 
( Set current acceleration and velocity. 
delay (ACKDELAY) ; 
write (COM2, 'ft:FCAB6' + LF + 'B' + makestringint(ts.acc) + LF); 
delay (ACKDELAY) ; 
write(COM2, ACK); 
delay (ACKDELAY) ; 
write(COM2, 'ft:FCAB7' + LF + 'B' ,+ makestringint(ts.vel) + LF); 
delay (ACKDELAY) ; 

write (COM2, ACK) i 

ts.pos := 0; 
end 
else if s 
begin 

, int' then { Minimum time constant. 

> 
"C 
"C 
~ = Q.. .... 
~ .... 

tv 
\0 
VJ 



if com. cur = com.num then 
com_wr('ts wait.int ' + makestringint{ts.wait.intl, COLORMESS) 

else 
begin 

inc(com.cur) ; 
val(com.ls[com cur], ts.wait.int, dummy); 
if ts.wait.int < 0 then 

ts.wait.int := TINT_DF; 
end; 

end 
else if s = 'per' then ( Print/change period of wob function. ) 
begin 

if com. cur = com.num then 
begin 

cODLwr{'ts.wob.per ' + makestring(ts.wob.per / POm'S, 
VALMAX, VALDEC) + ' urn.', COLORMESS); 

exit; 
end; 
inc (com.cur) ; 
val(com.ls[com.cur], ts.wob.per, dummy); 
ts.wob.per := ts.wob.per • POWTS; 
MakeLookup; ( Update lookup table. 

end 
else if s = 'ph' then { Print/change phase of wob function. } 
begin 

if cam. cur = com. num then 
begin 

CODLwr ( , ts. wob. ph ' + makestring (ts. wob. ph, 
VALMAX, VALDEC), COLORMESS); 

exit; 
end; 
inc (com.cur) ; 
val(com.ls[com.cur], ts.wob.ph, dummy); 
ts.wob.ph := frac(l + frac(ts.wob.ph»; Keep number 

between 0 and 1 only. } 
{ No need to call MakeLookup -- phase not used there. 

end 
else if s = 'rd' then 
begin 

( Reopen file for reading. 
close (COM2) ; 
assign(COM2, 'COM2'); 
reset (COM2) i 

{ Read characters until user hits CR. } 
COItLwr ( 'Press any key to read next char, or RETURN to exit.', 

COLORMESS) ; 
while readkey <> CR do 
begin 

read (COM2, 5[1]); 
cOll'Lwr ( , ts char 

end; 

, + makestringint(ord(s[l]», COLORMESS); 

{ Reopen file for writing again. 
close (COM2) i 

assign (COM2, ' COM2' ); 
rewrite (COM2) i 

end 
else if S '51' then ( Slope time constant. 
begin 

if com. cur = com.num then 
com_wr('ts.wait.sl ' + makestringint(ts.wait.sll, COLORMESS) 

else 
begin 

inc(com.~ur) ; 

val(com.ls[com.cur], ts.wait.sl, dummy); 
if ts.wait.sl <= 0 then 

ts.wait.sl TSL_DF; 
end; 

end 
else if s 'step' then ( Stepsize. 
begin 

if com. cur = com.num then 
begin 

coItLwr{'ts.step , + makestring(ts.step / POWTS, VALMAXTS, 
VALDECTS) + ' urn', COLORMESS), 

exit: 
end; 
inc(com.cur); 
val{com.ls[com.cur] , ts.step, dummy); 
tS.step := tS.step • POWTS; 
if ts.step < TS_STEP~IN then 

ts. step : = TS_STEP _MIN; 
write (COM2, ACK); 
delay (ACKDELAY) ; 
write (COM2 , 'fCAPRM:203=' + makestringint(round(TS_RES_STEP / 

ts. step» + LF); 
end 
else if s = 'step' then 

begin 
if com. cur = com.num then 
begin ( Print current step. ) 

str{move.step / POWTS 0: 0, s); 
coItLwr('Step = ' + s + ' urn', COLORMESS); 
exit; 

end; 
{ Read new step. } 
inc (com. cur) ; 

val(com.ls[com.cur], move. step, dummy); 
move. step : = move. step * POWTS; 
roundoff (move.step, ts.step); 
limit(move.step, ts.step, STAGEMAX); 

end } 
else if s = 'tog' then { Toggle. 
begin 

{ Use current values. } 
if com. cur = com.num then 
begin 

do_ts_tog; 
exit; 

end: 
inc (com. cur) ; 
s : = com. Is [com. cur] ; 
if s = 'dIy' then 
begin { Print or change delay time. 

do_ts_dly; 
exit; 

end; 
{ Check that at least one more entry in command (must provide both 

positions!) } 
if com. cur = com.num then 
begin 

com_err; 
exit; 

end: 
( Read positions. ) 
valls, move. start, dummy); 
move.start := move. start • POWTSi 

tv 
\0 
~ 

> 
"0 
"0 
~ 

= c:l. .... 
ii< 
~ 



roundoff (move.start, ts.step); 
1 imi t (move. star t, STAGEMIN, . STAGEMAX) i 

inc (com. cur) ; 
val(com.ls[com.curJ, move. stop, dununy); 
move. stop :::: move. stop * POWTS; 
roundoff (move. stop, ts step); 
limit(move.stop, STAGEMIN, STAGEMAX); 
{ Recalculate stage delay. ) 

::= ts. pos i ( Save current stage position. 
ts.pos := move. start; 
move.wait := 10 * abs(StageDelay(move.stop»; { Ignore user input 

flag. 
ts.pos := r; { Restore. } 
{ Check if 'dIy' occurs next (can also change delay). ) 
if com. cur < com num then 
begin 

inc (com. cur); 
if com.ls[com.cur] 

do_ts_dly; 
end; 
{ Do toggle. 
do:"ts_tog; 

end 
else if s 'vel' then 
begin 

'dIy' then 

if com. cur = com num then 
begin 
co~wr('ts vel' + makestringint(ts.vel), COLORMESS); 
exit; 

end; 
inc (com cur); 
val(com.ls[com.cur), ts.vel, dummy); 
if ts.vel <= 0 then 

ts. vel : = TS_VEL_DF 
else if ts. vel >= TS_VEL_MAX then 

ts. vel : = TS_VEL_MAX; 
write (COM2, ACK); 
delay (ACKDELAY) ; 
write {COM2 , '.FCAB7' + LF + 'B' + makestringint(ts.vel) + LF); 
ts. wai t. sl : = 100000000 div ts. vel; 

end 
else if s 'walk' then 
begin 

{ Make sure not interfering with active waves. 
if scanning (dt_COR) or scanning (dt_ELE) 

then 
begin 

if cOmLwr-yn('Stage in use. Stop active waves') 
exit 

else 
begin 

for w : = 1 to wv. num do 
with wv.ls[wJ A do 

o then 

if (scan. mode > 0) and (par.dt <> dt_POW) then 
ScanStop (w) ; 

UpdateAll; 
end; 

end; 
exitflag FALSE; 
{ Main loop. } 
repeat 

str(ts.pos I POWTS 
str (move. step I POWTS 

VALDECTS, 5); 
o VALDECTS, 52); 

com_wr('Pos ' + 5 + ' Step' + s2 + ' urn', COLORMESS); 
case readkey of 
EXTENDED, 

case readkey of 
XARROWUP: 

begin 
move. step := move.step * 2; 
if move. step > STAGEMAX then 

move. step STAGEMAX; 
end; 

XARROWDOWN: { Down arrow } 
if move. step > ts.step then 

move.step ;= int«move.step I ts.step» * tS.step / 2; 
XARROWLEFT: { Left arrow} 

if ts.pos - move. step >= STAGEMIN then 
StageMoveWait(ts.pos - move.step); 

XARROWRIGHT: { Right arrow } 
if ts.pos + move. step <= STAGEMAX then 

StageMoveWait(ts.pos + move.step); 
end; { Extended keys. } 

ESC, ( Exit. ) 
begin 

write (COM2, ACK); 
exitflag := TRUE; 

end; 
en4; 

until exitflag TRUE; 

end 
else if s = 'wob' then { Print all 3 parameters. 
begin 
co~wr('ts.wob.ampl ' + rnakestring(ts.wob.ampl I POWTS, 

VALMAX, VALDEC} + ' urn.', COLORMESS}; 
co~wr('ts.wob.per ' + rnakestring(ts.wob.per POWTS, 

VALMAX, VALDEC} + ' urn.', COLORMESS}; 
com_wr('ts.wob.ph' + makestring(ts.wob.ph, 

VALMAX, VALDEC}, COLORMESS}; 

end 
else if s 'x' then { Disengage. 
begin 

write (COM2, ACK); 
delay (ACKDELAY) ; 

write (COM2 , 'tEA' + LF); 
end 
else 
begin ( Move stage. 

vales, r, dummy); 
r := r * POWTS; 
roundoff(r, ts.step); 
if (r < STAGEMIN) or (r > STAG~) th~n 

begin 
com_err; 
exit; 

end; 
( Check that no ts-dependent waves scanning. 
if scanning (dt_COR) or scanning (dt_ELE) 

then 
begin 

if com_wr-yo('Stage in use. Stop active waves') 
exit 

else 
begin 

for w := 1 to wv do 
with wv.ls(w]A do 

o then 

> 
"CI 
"CI 
('I) 

= Q.. .... 
~ 

"""'" 

N 
\0 
VI 



if (scan. mode > 0) and (par.dt <> dt_POW) then 
ScanStop(w): . 

UpdateAll; 
end; 

end; 
StageMoveWait(r); 

end: 
end; 

procedure do_ts_dly; 
{ Handle dly. } 
var 

dummy integer: 
s : bufstring: 

begin 
if com. cur = com.nurn 'then 
begin ( Print current delay. 

str(round(move.wait). s); 
cOffi_wr('move.wait = . + s + ' ms·. COLORMESS}; 
exit;. 

end: 
inc(com.cur) ; 
val(com.ls[com.cur]. move.wait. dwmny); 

end; 

procedure do_ts_tog: 
( Toggle between stage positions move.start and move. stop. waiting for 

move.wait ms each move. Stops when' user hits a key. } 
var 

del : longint; ( Delay_ 
s, s2 : bufstring: 
sum real: 
w : integer: 

begin 
( Ensure we don't interfere with active waves. } 
if scanning (dt_COR) or scanning (dt_ELE) 

then 
begin 

if cOffi_wr...,yn( 'Stage in use. Stop active waves') 
exit 

else 
begin 

for w := 1 to wv.nurn do 
with wv .ls (w] A do 

o then 

if (scan.mode > 0) and (par.dt <> dt_POW) then 
ScanS top (w) ; 

UpdateAll; 
end: 

end; 
sum := move.start + move.stop; ( Math trick: add limits together; then 

can toggle between the values by subtracting ts.pos from it each 
time (see below). ) 
Move to starting position. } 

StageMoveWait(move.start): 
com_wr('Toggle: ' + makestringint(move.start / POWTS) + '+ 

makestringint(move.stop / POWTS) + ' urn', COLORMESS): 
com_wr ( , Press any key to exit.', COLORMESS); 
( Main loop. ) 
repeat 

StageMove(sum - ts.pos): 
write (BELL): 
delay(round(move.wait»; 

until keypressed: 

{ Remove character from buffer: 
if readkey = EXTENDED then 

readkey: 
end: 

procedure do_tw: 
( Tweak mode: Allow fast MCS scanning to find weak electron signals. ) 
var 

dummy : integer; 
p : real; 
5 : bufstring: 
t : longint: ( Timekeeping variable. ) 

begin 
if com.cur < com.nurn then 
begin 

inc (com.cur) ; 
s : = com. Is [com. cur]: 
p := power(tw.timeperpt): 
if 5 = 'all' then 
begin 
co~wr('tw.reprate ' + makestringint(tw.reprate) + • Hz', 

COLORMESS) ; 
co~wr ( , tw. shotsperscan ' + makestringint (tw. shots'perscan) , 

COLORMESS) ; . 

com_wr('tw.timeperpt ' + makestring(tw.timeperpt / p. VALMAX, 
0) + ' , + UnitPrefix(round(loglO(p)) + 's', COLORMESS); 

end 
else if. s = • rep' then 
begin 

if com. cur = com.num then 
co~wr(·tw.reprate • + makestringint(tw.reprate) + • Hz'. 

COLORMESS) 
else 
begin 

val (com. Is (com. cur + 1), two reprate. dummy); 
if tw.reprate < 1 then 

tw. reprate 1; 
end: 

end 
else if s = 'shots' then 
begin 

if com. cur = com. nurn then 
co~wr('tw.shotsperscan • + makestringint(tw.shotsperscan). 

COLORMESS) 
else 
begin 

val(com.ls[com.cur + 1], tw.shotsperscan. dummy); 
if tW.shotsperscan < 1 then 

tw.shotsperscan := 1 
else if tw.shotsperscan > MAXSHOTSPERSCAN then 

end; 
end 

tw.shotsperscan MAXSHOTSPERSCAN; 

else if 5 = 'time' then 
begin 

if com. cur = com.num then 
co~wr(·tw.timeperpt ' + makestring(tw.timeperpt / p, VALMAX, 

0) + •• + UnitPrefix(round(logIO(pl») + '5', COLORMESS) 
else 
begin 

val(com.1s[com.cur + 1], tw.timeperpt. dummy); 
tw. timeperpt : = MCS_TII1EPERPT[TimebaseToCode (tw. timeperpt '* 

p)]: { Force to match acceptable value. } 

tv 
\0 
0\ 

> 
"'0 
"'0 
~ 

= Q.. .... 
~ 
I-" 



end; 
end 
else 

com_err; 
exit; 

end; 

{ Invalidate currently scanning wave if ele data type (will resume 
after tweak has ended): ) 

if scanwave > 0 then 
with wv.ls[scanwave]A do 

if (par.dt = DT_ELE) and (scan.mode > 0) then 
scan. mode : = SCAN_MODE_NEW: 

com_wr('Tweak using MCS. Press any key to exit. 
mCS.new := 1; 
{ Main loop. } 
repeat 

( Start scan. 
if MCS_init (0) 

exit: 
false then 

Now wait for user keypress or time to elapse. 
repeat 

time{t) : 

COLORMESS) ; 

if (t < tw.starttime) then ( Handle wraparound. 
dec(tw.starttime, TIMEMAX - tw.steptime): 

until (t - tw.starttime > tw.steptime) or keypressed: 
delay(250) ; 
mwrite(mcs.addr, 'stat', false): 

mwrite(mcs.addr, 'spar? 2', false); ( Read total area. 
mread(mcs.addr, 20); 

com_wr('Total counts' + rdbuf, COLORMESS); 
mwrite(mcs.addr, 'scan?', false); 

delay (500) ; 
mread(mcs.addr, 10); 
Val (rdbuf, scan.·shots, result); 
if scan. shots < par.ele.shotsperscan then 

exit; } 
until keyp~essed; 

( Remove pressed key from buffer: 
if readkey = EXTENDED then 

readkey: 

Send full command set next time. 
mcs.new := 1; 

end; 

procedure do_vis(v integer): 
{ Turn on/off selected waves according to v. Command may be chained, 

i.e. 'vis 1 2 3 inv 4 5 6 vis 7 8 9' etc. } 

integer; 
s bufstring; 

begin 
{ Get wave list. 
wv_sel (1); 

{ See if at end of command line; otherwise, signal error (unknown 
word). } 

if com. cur 
begin 

inc(com.cur) ; 
com_err; 

then 

Put cursor on mystery word. 

exit; 
end; } 
if wv. se1 1 then 
begin 

sc_sel_off; 
{ Turn on/off waves and also mark screens affected. Reset tags. } 
for i· : = 1 to wv.num do 

with wv.ls(i]'" do 
if sel = 1 then 

with sc.ls(screen) do 
begin 

sel := 1; 
on := v; 

{ Force xaxis data type to be same as latest wave turned 
on. } 

if v = 1 then 
gr. xaxisdt par. dt: 

end; 
wv_sel_off; 
UpdateSel; 

end; 
if com. cur < com.num then 
( Allow chaining of inv/vis commands. ) 
begin 

inc (com. cur); 
s := com.ls(com cur}; 
if s = 'inv' then 

do_vis{O) 
else if s = 'vis' then 

do_vis (1) 
else 
co~err; 

end; 
end; 

procedure do_ws: 
( Only handle ws df right now. 
begin 

if com. cur = com.num then 
begin 

com_err; 
exit; 

end; 
inc(com.cur) ; 
if com.ls[com curl 

ws_df 
else 

com_err; 
end; 

procedure do_wv; 

'df' then 

{ Create new wave, change wave, print or change wave variables. } 
var 

bufstring; 
w : integer; { Selected wave. 

begin 
if com. cur = com.num then 
begin 

if wv.num = 0 then 
com_wr ( . No waves loaded. COLOJ3.MESS) 

else 
com_wr{'Current wave' + makestringint{wv.cur), COLORMESS)i 

exit; 

> 
"0 
"0 

~ 
~ 
_. 
~ 

~ 

tv 

'" -..) 



end; 
wv_sel(l); { Get list of waves. 
if wv.sel = 0 then 

exit; 
if corn. cur = corn.nurn then 

( Simply switch waves: find first selected wave and use that. ) 
for w := 1 to wv.nwn do 

if wv.ls[w)A.sel = 1 then 
begin 

if wv.ls[wv.cur)".screen sc.cur then 
EraseCursor{sc.cur); 

wv.cur := Wi 

for w : = W to wv. nwn do { Turn of f all selections. } 
wv.ls[wJ'.sel ,= 0; 

ChangeCurrentWave(O); Includes drawwavedata call. } 
exit: 

end; 
Load up next word. 

inc (coro. cur) ; 
s := com.ls[com.cur]i 
if s = ' alert' then 

do_wv_a1ert 
else if (5 = 'area') or (s = 'avg') or (s 

(s = 'ht') or (s = ·width') then 
begin 

for w := 1 to wv.nwn do 
with wv.ls[w]A do 

end 

if sel = 1 then 
do_wv_info(w. 5}; 

'ctr') or (s 

else if 5 = 'bg' then { Background subtraction. } 
do_wv_b9 

else if 5 = 'dIy' then { Delay (electron waves only). 
do_wv_dly 

else if 5 = 'dots' then { Change to dots. } 
do_wv_lines(Ol 

else if 5 = 'fn' then { Filename. 
do_wv_fn 

else if s = 'lines' then { Change to lines. } 
do_wv_lines(l) 

else if 5 = 'sc' then Screen.} 
do_wv_sc 

'fwhm') or 

else if 5 = 'sh' then Choose what kind of information to display in 
wavedata. } . 
do_wv_sh 

else if s = 'skip' then 
do_wv_skip 

else if s = 'vstop' then 
do_wv_vstop 

else 
corn_err: 

wv_sel_off i 
DrawWaveData: 

end; 

procedure do_wv_alert: 
( Print/change par.alert flag. 
var 

dummy integer; 
i : integer; 
w integer: 

begin 
if com. cur = corn.nurn then 

begin 
for w := 1 t~ wv.num do 

with wv.ls[w)A. do 
if sel = 1 then 

corn_wr('Wave ' + rnakestringint(w) + ' alert' + rnakestringint 
(par. alert), COLORMESS); 

wv_sel_off; 
exit; 

end; 
inc (com. cur) i 

val (corn. ls[corn.cur) , i, dummy} i 

if (i 0) or (i = 1) then 
begin 

for w 1 'to wv.num do 
with wv.ls{w)A do 

end 

if sel = 1 then 
par. alert : = i; 

else 
COITLerr; 

wv_sel_off i 
end; 

procedure do_wv_bg; 
{ Handle wave background subtraction variables. ) 
var 

dummy : integer; 
i : integer: 
S, 52 : bufstring: 
temp : integer; 
w : integer: 

begin 
for w := 1 to wv.num do 

with wv.15[w)~ do 
if sel = 1 then 
begin 

temp := com. cur: 
strew, 52}: 
52 : = ' Wave ' + 52 + • '; 
if par.dt <> dt_ELE then 

corn_wr(s2 + ' not ele wave.', COLORHL} 
else 
begin 

if com. cur = corn.num then ( Write current background wave. 
begin 

str(par.ele.bs.mode, 5); 
cortLwr(s2 + 'par.ele.bs.mode ' + s, COLORMESS); 

end 
else 
begin 

inc (corn. cur) ; 
s := corn.ls[corn.curl; 
vales, i, dummy); 
if (i >= 1) and (i <= wv.num) then 
begin 

( Change background wave. Checks a few parameters to ensure 
compatibility. ) 

with wv.ls[i)A do 
if (par:tirneperpt = wv.ls[w]A.par.timeperpt) and 

(par"pt = wv,ls[w]A.par.pt) 
and (par.ele.bs.mode = 0) and (i < w) then 
wv.ls[w]~,par,ele,bs.mode := i 

else 

N 
\0 
00 

> 
"'0 
"'0 
f'D 

= Q. .... 
~ 

~ 



end: 

com_wr{s2 + 'background wave incompatible.', COLORHL); 
end 
else if s = '0' then 

par.ele bs.rnode := ° ( Turn off background mode. 
else if s = 'scale' then 

rd_real{par.ele.bs.tot, 'background scaling', 0, 
LARGE) 

else 
begin 

com_err; 
exit; 

end; 
end; 

end; 
com. cur 

end: 
temp; 

procedure do_wv_dly; 
( Print/change time delay of electron waves. ) 
var 

dummy : integer; 
real; 

5 bufstring; 
w integer; 

begin 
if com. cur = com.nurn then 
begin ( Print time delay. 

for w := I to wv.num do 
with wv.ls[w]A do 

if sel = 1 then 
begin 

sel 0; 
str(w, s); 
S : = 'Wave ' + s + ' '; 
if par.dt <> dt_ELE then 
co~wr(s + 'not electron wave.', COLORHL) 

else 
com_wr(s + 'delay = ' + makestringint(par.ele.dly / POWFS) 

+ ' fs', COLORMESS); 
end: 

exit: 
end; 
inc (com. cur); 
val(com.ls[com cur], r, dummy); 

:= r '" POWFS; 
roundoff(r, tS.step / HALFSPEEDOFLIGHT); 
for w : = 1 to wv. nurn do 

with wv.ls[wJA do 
if sel 
begin 

1 then 

sel 0; 
str (w, s); 

: = 'Wave ' + s + ' '; 
Ensure is electron wave. 

if par.dt <> dt_ELE then 
com_wr(s + 'not electron wave. COLORHL) 

{ Ensure not scanning. } 
else if scan mode > 0 then 

com_wr (s + 'scanning.', COLORHL) 
else 
begin 

( Calculate stage position and keep within limits. 

par.ele.ts.pos := par.ele.ts.tO + r '" HALFSPEEDOFLIGHT: 
limit(par.ele.ts.pos, STAGEMIN, STAGEMAX); 
{ Now assign time delay. } 
par.ele.dly := (par.ele.ts.pos - par.ele.ts.tO) / 

HALFSPEEDOFLIGHT; 
( Print to screen to be sure user knows. 
co~wr(s + 'delay' + makestringint(par.ele dly / POWFS) + 

fs·. COLORMESS); 
end; 

end; 
DrawWaveData; ( uPdate info since waves may display dly. ) 

end; 

procedure do_wv _fn; 
( Print/change filename of waves. ) 
var 

s : bufstring; 
w integer; 

begin 
if com. cur = com.num then 
begin { Print filenames. } 

for w := 1 to wv.num do 
with wv.ls[w]A do 

if sel = 1 then 
begin 

sel := 0; 
str(w, 5); 

co~wr( 'Wave' + s + 

end: 
exit; 

end: 
inc (com. cur); 
S := com.ls[com.curl; 
for w := 1 to wv.num do 

with wv.ls[w]A do 
if sel = 1 then 
begin 

sel := 0; 
par.fn 

end; 
S; 

UpdateFilenames(dir); 

, + par.fn, COLORMESS); 

DrawWaveData; { Update info since waves may display fn. } 
end; 

procedure do_wv_info(w : integer; s2 bufstring); 
( Reports information about waves, depending on s2: 

'area' : Calculates·area under wave. 
'avg' Calculates average value (area / x range) . 
'ctr' Calculates x position of "center", defined as halfway between 

the two 50' marks as seen from left and right sides of wave. 
'fwhm' : Calculates width of wave, defined as distance 

between 50' marks from left and right sides of wave. 
'ht': Calculates height of wave, defined as max - min values. 

var 
vfind 

begin 
integer: 

{ See if vfind flag present. 
vfind := 0: 
if com cur < com.num then 
begin 

inc (com. cur); 
if com.ls[com cur] 

vfind := 1 
'vfind' then 

> 
"0 
"0 

~ 
~ .... 
~ .... 

N 
\0 
\0 



else 
dec(com.cur); ( Back up for wv_sel. 

end; 

if w = 0 then 
wv_sel(l) 

else 
{ Special handling : make only specified wave work. } 
begin 

wv_sel_off; 
wv.ls[wl". sel := 1; 

end; 
for w := 1 to wv.num do 

if wv·.ls [w)". sel = 1 then 
begin . 

if s2 = 'area' then 
info_wr (w, info_area (w), I area', 0) 

else if s2 = 'avg' then 
info_wr(w, info_avg(w), 'average', 0) 

else if s2 = 'ht' then 
info_wr (w, info_ht (w), 'height', 0) 

else 
begin 

info_edges(w, vfind); 
if s2 = 'etr' then 

info_wr(w, info.ctr, 'center', 1) 
else if 52 = 'edgel' then 

info_wr(w, info.edgel, 'edgel', 1) 
else if s2 = 'edger' then 

info_wr (w, info. edger, , edger', 1) 

else if s2 = 'fwhm' then 
info_wr(w, info.fwhm, 'fwhm' , 1) 

else 
begin 

com_err; 
W := wv.num; { Get out of loop. } 

end; 
end; 

end; 
wv_sel_off; 
DrawWaveData; ( Clear tags. ) 

end; 

procedure do_wv_lines(l : integer); 
{ Change waves to lines (1 = 1) or dots (1 
var 

i : integer; 
begin 

if wv.sel = 0 then 
exit; 

for i : = 1 to sc_MAX do 
sc. Is [ i] . sel : = 0; 

for i := 1 to wv.num do 
with wv.ls[iJ" do 

if sel = 1 then 
begin 

lines := 1; 
sel : = 0; 
sc.ls[screenJ.sel 

end; 
for i : = 1 to sc_MAX do 

if sc.ls[iJ.sel = 1 then 
DrawScreen ( i) ; 

1; 

0). ) 

DrawVitals; 
end; 

procedure do_wv_sc; 
{ Print/change screen of waves. 
var 

dummy integer; 
integer; 

s : bufstring; 
w : integer; 

begin 
if com. cur com.num then ( Print wave's screen. 
begin 

for W:= to wv.num do 
with wv.ls[w]" do 

if sel = 1 then 
co~wr_WV(w, 'sc ' + makestringint(screen) , COLORMESS); 

exit; 
end; 

{ Find screen i. } 
inc (com. cur) ; 
s := com.ls[com.cur}; 
if s = 'df' then 

i := 0 { Flag to use default scheme. } 
else 
begin 

val (s, i, dummy); 
if (i < 1) or (i > sc.num) then 
begin 
co~err; 

exit; 
end; 

end; 

( Do screen assignment. 
sc_sel_off; 
for w := 1 to wv.num do 

with wv.ls[w]" do 
if sel = 1 then 
begin 

sc.ls[screen).sel := 1; ( Update old screen. ) 
if i = 0 then 

screen := (w - 1) mod sC.num + 1 { Cycle thru screen numbers 
using wave number. } 

else 
screen := i; 

sc.ls[screenJ.sel := 1; ( Must update new screen too. ) 
if W = wv.cur then { Change screens if. current wave changes.} 

sC.cur := screen; 
sc.ls(screen).gr.xaxisdt := par.dt; { Make screen data type 

reflect latest wave moved to it. } 
end; 

wv_sel_off; 
UpdateSel; 

end; 

procedure do_wv_sh; 
( Print/change show parameter. 
var 

integer; 
s bufstring; 
w integer; 

U) 

8 

:> 
"'CS 
"'CS 

~ 
Q. .... 
~ 
i-" 



begin 
if com. cur 
begin 

com. num then 

for w := 1 to wv.num do 
wi th wv. Is [w]" do 

if sel = 1 then 
begin 

str(w, s): 
com_wr('Wave ' + 5 + ' par.sh 

end; 
exit: 

end; 
inc (com. cur) : 
s := com.ls[com.cur]; 
i : = 1; 

, + W'V_sh_NAME[par.shl, COLORMESS); 

while (i <= wv_sh_MAX) and (s <> wv_sh_NAME[iJ) do 
inc(il: 

if i <= wv_sh_MAX then 
begin 

for w := 1 to wv.num do 
with wv.ls[w) .... do 

if sel = 1 then 
begin 

if (i = wv_sh_DLYl and (par.dt <> dt_ELE) 
then 

begin 
str(w, s): 
co~wr('Wave ' + s + ' cannot show dIy.', COLORHL); 

end 
else 

par.sh i: 
end: 

DrawWaveData: 
end 
else 
begin 

c°tTLerr; 
exit; 

end; 
end; 

procedure do_wv_skip; 
( Print/change skip parameter. 
var 

dummy integer; 
integer; 

w integer; 
begin 

if com. cur 
begin 

com.num then 

for w := 1 to wv.num do 
with wv.ls[w)" do 

if sel = 1 then 
co~wr('Wave ' + makestringint(w) + ' skip' + makestringint 

(par.skip) , COLORMESS); 
wv_sel_off; 
exit; 

end; 
inc (com. cur) i 

val(com.ls[com.cur], i, dummy); 
if i >= 0 then 
begin 

for w := 1 to wv.num do 

with wv.ls[w]" do 
if sel = 1 then 

par. skip : = i; 
end 
else 

com_err; 
wv_sel_off; 

end: 

procedure do_W'V_vstop; 
{ Handle print/change vstop. 
var 

dummy integer; 
i : integer; 
w : integer; 

begin 
if com. cur com.num then 
begin 

for w:= to wv.num do 
with wv .ls (w] .... do 

if sel = 1 then 
cOllLwr('Wave ' + makestringint(w) + ' vstop , + makestringint 

(par. vs top), COLORMESS); 
wv_sel_off; 
exit; 

end; 
inc(com.cur) ; 
val(com.ls[com.cur), i, dummy): 
if i >= 0 then 
begin 

for w := 1 to wv.num do 
with W'V.ls[w) .... do 

if sel = 1 then 

end 
else 

par.vstop i; 

com_err; 
wv_sel_off; 

end; 

procedure do_x(scr : integer); 
{ Handle x axis functions. } 
var 

dummy 
s, 52 
ul, u2 

begin 

integer: 
bufstring; 
real; 

with sc.ls(scr].gr do 
begin 
if com. cur = com.num then 
begin ( Print current x range. 

str(scr, s); 
com_wr('Screen ' + 5 + ' , + makestring(ullim / xpower, 

MAXXDIGITS, MAXXDIGITS 2) + + rnakestring(u2lim / xpower, 
MAXXDIGITS, MAXXDIGITS - 2) + ' , + xuni ts, COLORMESS); 

exit: 
end; 
inc (com. cur) i 

S := com.ls[com.cur]; 
if s = 'conv' then 

ToggleXAxisMode (scr, XAXISMODE_CONVERT) 
else if s = 'fu' then 

> 
"CI 
"CI 
ttl = c:lo .... 
~ .... 

v.> 
o 



begin 
sc.ls[scr).gr.xfullmode 
UpdateVitals; 
Update (scr); 

end 
else if s = 'nor' then 

1; 

ToggleXAxisMode (scr, XAXISMODE_NORMAL) 
else if s = 'off' then 
begin 

xon : = 0; 
sc_resize (scr) ; 
UpdateVitals; 
Update (scr) ; 

end 
else if s 'on' then 
begin 

xon := 1; 
sc_resize(scr) : 
UpdateVi tals; 
Update (scr) ; 

end 
else if s = 'pt' then 

ToggleXAxisMode (scr, XAXISMODE_POINTS) 
else 
begin 

val (s, ul, dummy); 
if com. cur = com.num then 
begin 

com_err; 
exit; 

end; 
inc(com.cur) ; 
val(com.ls[com.cur] , u2, 
with sc.ls(scr].gr do 
begin 

if u1 >= u2 then 
begin 

cOIrLerr; 
exit; 

end: 
xfullmode 0; 
u1lim u1 * xpower; 
u2lim u2 * xpower; 

end; 
UpdateVitals; 
Update (scr) ; 

end; 
end; 

end; 

procedure do_xh; 
{ Crosshairs commands. 
var 

s : bufstring; 
begin 

if com. cur = com.num then 
begin 

ToggleCrosshairsMode; 
exit; 

end; 
inc (com. cur); 
s := com.ls[com.cur); 
if s = 'fu' then 

dummy) ; 

begin 
with sc.ls[sc.curJ .gr do 
begin 

if xh mode = 0 then 
exit; 

EraseCursor(sc.cur); 
xh.x(lJ plotarea.xl; 
xh.x(21 plotarea.x2 - 1: 
xh.y(lJ plotarea.yl; 
xh.y(2J plotarea.y2 - 1; 
UpdateCursor(sc.cur); 
DrawCursor(sc.cur); 

end: 
exit; 

end 
else 

coItLerr; 
end; 

procedure do-y(scr : integer); 
{ Handle y axis "functions. } 
var 

dwnmy : integer i 
5, s2 : bufstring; 
v1, v2 : real; 

begin 
with sc.ls(5crl.gr do 
begin 
if com. cur = com.num then 
begin ( Print current y range. 

str(scr, 5); 
com_wr('Screen ' + s + ' Y = ' + makestring(v1lim / ypower, 

MAXYDIGITS, MAXYDIGITS - 2) + " ' + makestring(v21im / ypower, 
MAXYDIGITS. MAXYDIGITS - 2) + •• + yunits. COLORMESS); 

exit; 
end; 
inc (com. cur) ; 
s := com.ls(com.curl; 
if s = 'abs' then 
begin 

if sc.ls[scr].gr.yaxismode YAXISMODE_RELATIVE then 
ToggleYAxisMode(scr); 

end 
else if s = 'fu' then 
begin 

sc.ls[scr).gr.yfullmode 
UpdateVitals; 
Update (scr) ; 

end 
else if s 'off' then 
begin 

yon := 0; 
sc_resize (scr); 
UpdateVitals; 
Update (scr); 

end 
else if s = 'offres' then 

1; 

rd_int(yoffsetrescale, 'y offset rescale', 0, 1) 
else if s = 'on' then 
begin 

yon 1; 
sc_resize(scr) ; 
UpdateVi tals; 

w 
o 
N 

> 
"0 
"0 
~ 

= Q.. ... 
~ 

>-" 



Update (scr); 
end 
else if s = 'reI' then 
begin 

if sc.ls[scr).gr.yaxismode 
ToggleYAxisMode(scr); 

end 
else 
begin 

val (s, vI, durruny); 
if com. cur = com.num then 
begin 

com_err; 
exit; 

end; 
inc (com.cur) ; 

YAXISMODE_ABSOLUTE then 

val (com. Is [com. cur], v2, dummy); 
with sc.ls[scrJ.gr do 
begin 

if vl >= v2 then 
begin 

com_err; 
exit; 

end; 
yfullmode : = 0; 
vllim vl· ypower; 
v2lim : = v2 • ypower; 

end; 
Updatevitals; 
Update (scr) ; 

end; 
end; 

end; 

procedure do-yoff; 
{ Print/change Y offset values of waves. 
var 

dummy, i : integer; 
p, r real; 
s bufstring; 

begin 
if corn cur = com.num then 
begin 

cOIlLerr; 
exit; 

end; 
inc (com. cur) ; 
s := com. ls [com cur]; 
if s = '?' then 
( Print values. 
begin 

wv_sel(l); (Get wave list. 
for i := I to wv num do 

with wv.ls[i)" do 
if sel = I then 
begin 

p := power(par yoffset); 
if p <> I then 

s 'x' + PowerOfTenPrefix(round(logIO{p») 
else 

s 
com_wr_wv(i, 'yoffset ' + makestring(par yoffset / p, VALMAX, 

VALDEC) + s, COLORMESS); 

end; 
wv_sel_off; 

end 
else if is_num(s) then 
{ Change values. } 
begin 

vales, r, dummy); ( Read in value. 
wv_sel(l) ; 
sc_sel_off ;. 
for i := 1 to wv.num do 

with wv.ls[iJ" do 
if sel = 1 then 
begin 

par.yoffset := r; 
sc.ls[screen].sel 

end; 
wv_sel_off; 
UpdateSel; 

end 
else 

com_err; 
end; 

procedure do-ysc; 

1; 

( print/change y scale values of waves. 
var 

dummy, i : integer; 
p, r : real; 

,s : bufstring; 
begin 

if com. cur = com. num then 
begin 

com_err; 
exit; 

end; 
inc (com.cur) ; 
S := com.ls[com.cur]; 
if s = '?' then 
{ Print values. } 
begin 

wv_sel(l); ( Get wave list. 
for i : = 1 to wv.num do 

wi th wv. Is [ i)" do 
if SEH = 1 then· 
begin 

p : = power (par. yscale) ; 
if p <> 1 then 

s := 'x' + PowerOfTenPrefix(round(log10(p») 
else 

com_wr_wv(i, 'yscale ' + makestring(par.yscale / p, VALMAX, 
VALDEC I + S, COLORMESS I ; 

end; 
wv_sel_off; 

end 
else if is_num{s) then 
( Change values. } 
begin 

vales, r, dummy); { Read in value. 
wv_sel (1); 
sc_sel_of f; 
for i : = 1 to num do 

with wv.ls{iJ" do 

> 
"t:I 
"t:I 
~ = c:l,. .... 
~ 

I-" 

v.> 
o 
v.> 



if sel 1 then 
begin 

par.yscale := r; 
sc.ls[screenJ.sel 

end; 
wv_sel_off: 
UpdateSel; 

end 
else 

com_err; 
end: 

end. 

4.3. fpesai • pas 

unit FpesAI; 
($M $4000.0.0 

1; 

History of modifications (please add to BOTTOM of list!): 

Version 1: Begun 2jun94 BJG. 

Procedures and functions beginning with letters A through I, for the 
program Fpes. Please see main program (fpes.pas) for more detailed 
program modification notes. 

interface 

uses 
FpesVar; 

(procedure ACavQ; 
procedure ACscanInit; 
procedure ADoff(c : integer); 
function ADRead(c : integer) : integer; 
procedure ADReadAll: 
function ADReadAsm(gain, channel : integer) 
function ADReadStrobe : integer; 
procedure AreaFity; 
function AreYouSure : boolean; 
function AutoGen(w : integer) : integer; 
procedure AutoName(w : integer); 
function AutoSave(w : integer) : integer; 
(procedure BackgroundSubtractionInput; } 
function better_div(a, b : integer) : integer; 
procedure Blank; 
function bs_on : boolean; 
procedure BsAdapt; 
procedure CalibEnergy(n : integer); 
procedure CalibMassl; 
procedure CalibMass2; 

integer; 

procedure ChangeCurrentWave(direction : integer); 
procedure ChangePar(w : integer); 
procedure ChangeParArrow(direction : integer; var par-ptr : par_type-ptr: 

d, p : integer: w : integer; var changed: boolean); 
procedure ChangeStep{var step: real; direction: integer): 
procedure Char_to_int(var res: integer; var errcode : integer); 
function ChooseColor{w : integer) : word; 

var 

procedure ClearArea(xl, yl; x2, y2 integer); 
procedure ClearYAxisStuff(scr integer); 
procedure ClipDot(x, y : real; scr : integer); 
procedure ClipLine(xl, yl, x2, y2 real; scr : integer); 
procedure _col; 
procedure CreateWave(d, oldw integer): 
function Dataread(name : integer; numchars : integer; w integer) 

boolean; 
function DerivX(w : integer: p : integer; xaxismode : integer) : real; 
procedure disc; . 
procedure _dly; 
procedure DrawAlI; 
procedure DrawCursor(scr integer) : 
procedure DraWCursorInfo; 
procedure DrawData (scr : integer); 
procedure DrawMessageBox; 
procedure DraWOsc; 
procedure DrawScreen(scr : integer); 
procedure DrawTitle(scr : integer); 
procedure DrawVita!s; 
procedure DrawWaveDa ta; 
procedure DrawXAxisStuff(scr : integer); 
procedure DrawYAxisStuff(scr : integer); 
procedure EraseCursor(scr : integer); 
procedure EraseOsc; 
procedure EraseWaves; 
procedure Error; 
procedure ExitProgram; 
procedure fft(var data: fft_array_type; nn, isign : integer); 
function FileExists(fn : bufstring) : boolean; 
function FilenameStart(s : string) : integer; 
function FileOpenWrite(var f : text; s : string) boolean; 
function FindWave(scr : integer) : integer; 
procedure FitBs; 
procedure FitY(d : integer); 
procedure fpes_sv(s : bufstring); 
function fullpath(s : bufstring) : boolean; 
procedure FullView(i : integer); 
function GainCode(adgain integer): integer; 
function get_extension(s : bufstring) : bufstring; 
procedure GraphicsMode; 
procedure Help; 
function info_area(w : integer) : real; 
function info~avg(w : integer) : real; 
function info_edge(w : integer; pl, p2 : integer; fifty real) real; 
procedure info_edges(w : integer; vfind : integer); 
function info_ht(w : integer) : real; 
procedure info_wr(w : integer; r : real; s : bufstring; code integer); 
procedure InitGraphics; 
procedure Initialize; 
procedure InitializeWave(w : integer); 
procedure Init_ts; 
procedure Integral; 
procedure intelligent_filename(s : bufstring; var aser bufstring; var 

anum: integer; var ext: bufstring); 
procedure IntroduceProgram; 
function is~bg(w : integer) : bool~an; 
function is_num(s bufstring): boolean; 
function is_sells : bufstring; sel : integer) boolean; 

implementation 

uses 

w 
o 
~ 

> 
"0 
"0 
~ 

= c:l.o .... 
~ 
~ 



crt. dos. FpesCom. FpesJR. FpesST. FpesUZ, graph, Keys, 
DOSShell, TPDecl; 

procedure ADoff(c integer); 
{ Turns off channel c if no other scans using it. 
var 

i : integer; 
begin 

{ Turn off. 
~d.ls[c] .on := 0; 
{ Turn back on if any other wave is using it ... } 
for i := 1 to wv.num do 

with wv.ls[i]" do 
if scan.mode > 1 then 

case par.dt of 
dt_COR: if par.cor.ch c then 

ad.ls[cl.on := 1; 
dt_POW: if par pow.ch c then 

ad.ls[c].on := 1; 
end; 

... or if osc is using it. 
with osc do 

end; 

if mode = 1 then 
ad.ls[ch] .on := 1; 

function ADRead(c : integer) 
{ Reads A/D board channel c. 

integer; 

canst 
ADREADDELAY 

begin 
1; { ms to wait after calling ADReadAsm. 

if dev_rd then 
begin 

ADRead := ADReadAsm(GainCode(ad.1s(c] .gain), c); 
delay(ADREADDELAY); 

end 
else 

ADRead : = 0; 
end; 

procedure ADReadAl1; 
{ Reads all active channels of A/D board and saves values in array ADresult. 
var 

i integer; ( Channel number. 
begin 

for i : = 1 to AD_MAX do 
if" ad.ls{i) .on = 1 then 

AD. Is (i) . resu1 t ; = ADRead (i) ; 
end; 

function ADReadAsm(gain, channel integer): integer; assembler; 
Performs A/D conversion on input signal, with external clock signal from 
suitable TTL source (Stanford Box). 16-bit value (only 12 bits valid) 
stored in AX is automaticallY placed in the function result. Channel 
(0-15) specifies which channel to read. Gain defines the gain of the 
channel: 0 = lx, 1 = 2x, 2 = 4x, 3 = 8x. 

canst 
( DT2821 register addresses. 

BASE: $240; 
ADCSR = BASE; 
CHANCSR = BASE 
ADDAT BASE + 

DACSR '= BASE + 

A/D control/status. 
+ 2; Channel-gain list control/status. 
4; A/D data. ) 
6; D/A control/status. 

DADAT = BASE + 8; 
DIODAT BASE + 10; 
SUPCSR BASE + 12; 
TMRCTR BASE + 14; 

D/A data. 
010 data. 
Supervisory control/status. 
Pacer clock. ) 

asm 
mov 

mov 
out 
mov 
mov 
out 
mov 

ax, 02e7h 
dx, TMRCTR 
dx, ax } 
ax, 2240h 
dx, SUPCSR 
dx. ax 
ax, 8000h 

40 kHz 

mov dx, CHANCSR 
out 
mov 

mov 

dx, ax' 
ax, gain ( Load gain. ) 

bx, 16 
iIt),ul 
add 

bx ( Multiply ax by 16 since gain occupies bits 5&4. ) 
ax, channel { Add in channel number. } 

sub 
add 
mov 
out 
mov 
mov 
out 
mov 

mov 
out 
mov 

@wait1: in 
and 
jnz 
mov 

mov 
out 
mov 

@wait2: in 
and 
jz 
mov 
in 

end; 

ax, 1 { Adjust by -1 since user refers to 1-8, not 0-7.} 
ax, 0200h { Add in other flags. } 
dx, ADCSR 
dx, ax 
ax, OOOOh 
dx, CHANCSR 
dx, 
ax, 0012h {10h} { Preload multiplexer (bit 1), 

dx, SUPCSR 
dx, ax 
dx, ADCSR 

ax, dx 
ah, 01h 
@.wait1 

enable external clock (bit 1) . 

Wait for multiplexer to settle (bit 8 
0). } 

ax, OOOah {8h} { Trigger external clock (bit 3 = 1) to 
begin conversion. External clock must be 
enabled again (bit 1 = 1). ) 

dx, SUPCSR 
dx, .ax 
dx, ADCSR ( Conversion done when bit 7 1.) 
ax, dx 
al, 80h 
@wait2 
dx, ADDAT { Read data. ) 
ax, dx 

function ADReadStrobe : integer; assembler; 
{ Reads signal using internal clock to take a fast scan of signal corning in. 

Currently set at 40 kHz acquisition rate. 
const 

DT2821 register 
BASE: $240; 
ADCSR : BASE; 
CHANCSR : BASE 
ADDAT BASE + 
DACSR BASE + 
DADAT BASE + 
DIODAT BASE + 
SUPCSR BASE + 
TMRCTR BASE + 

asm 
mov 

addresses. } 

A/D control/status. 
+ 2; Channel-gain list control/status. 
4; AID data. ) 
6; D/A control/status. 
8; D/A data. ) 

10; DIO data. } 
12 i Supervisory cantrall status. 
14; Pacer clock. ) 

ax, 02e7h { 40 kHz 

> 
"0 
"0 
m 
Q.. .... 
~. 

I-" 

w 
o 
VI 



mov 
out 

mov 
out 
mov 
mav' 
out 

<lx, TMRCTR 
dx, ax 
ax, 2240h 
<lx, SUPCSR 
<lx, 
ax, 8000h 
<lx, CHANCSR 
dx., ax 

mov ax, 0230h Gain = 8 (bits 5-4 
3-0 = 0000). ) 

Ill; channel 1 (bits 

mov 
out 
mov 
mov 

<lx, ADCSR 
dx, ax 

out 
mov 

• ax, OOOOh 
<lx, CHANCSR 
dx, ax 
ax, DOlOh (12h) (Preload multiplexer (bit 1), enable ex-" 

mov 
out 
mov 

@.waitl: in 
and 
jnz 

<lx, SUPCSR 
dx, ax 
<lx, ADCSR 
ax, dx 
ah, 01h 
9waitl 

ternal clock (bit 1 = 1). } 

( Wait for multiple.xer to settle (bit B 0). ) 

mov ax, 0008h {ah) { Trigger external clock (bit 3 = 1) to begin 
conversion. External clock must be enabled 
again (bit 1 = 1). } 

mov <lx, SUPCSR 
out dx, ax 
mov <lx, ADCSR ( Conversion done when bi t 7 l. ) 

@wait2: in ax, dx 
and al, 80h 
jz @wait2 
mov <lx, ADDAT ( Read data. ) 

in ax, dx 
end; 

procedure AreaFitY; 
{ Normalizes all visible waves on current wave's screen by their areas, 

assigning current wave a yscale of 1. } 
var 

w,p integer; 
accum, waccum : real; 

begin 
if wv.num = 0 then exit; 
if addwaves. mode 1 then 
begin 

COItl.-wr( 'Cannot AreaFit Y in Addwaves Mode.', COLORHL); 
exit; 

end; 
sc.1s[wv.ls[wv.cur]A.screen].gr.yaxismode 
UpdateVLimits; 
UpdateYAxis(wv.ls[wv.cur)A.screen); 
accum := 1; 
with wv.ls(wv.cur)A do 

for p := 1 to par.pt do 
accum : = accum + data [p] i 

for w := 1 to wv.num do 
with wv.ls[w]A do 

YAXISMODE_ABSOLUTE; 

if (on = 1) and (screen wv.1s[wv.cur]A.screen) then 
begin 

wac cum 1; 
for p 1 to par.pt do 

waccum waccum + data[p) i 

par yscale := accum / waccum; 
par yoffset := -vmin .. par.yscale; 

end; 
(Messagede1aY('area=',accum,1); ) 

ToggleYaxisMode(wv.ls[wv.cur)A.screen); 
end; 

function AreYouSure : boolean; 
{ Waits for user·to answer yes or no, returning value as a boolean. } 
begin 

case cOITLwr-Yfl ( 'Are you ·sure') of 
o : AreYouSure false; 
1 : AreYouSure := true; 

end; 
end; 

function AutoGen(w : integer) : integer; 
Automatically generate new wave based on old if auto.gen = 1, with 
automatic filename if auto.fn = I (otherwise assigns ". to fn). If out 
of room, removes old waves if auto. rm = 1. If no new wave is created, 
assigns scan. mode = 0 to prevent overwriting. Returns i of new wave 
created, or 0 if none. } 

var 
s : bufstring; 
w2 : integer; 

begin 
if auto.gen 1 then 
begin 

if wv.num MAXWAVES then 
begin ( Remove waves first. 
end; 
if wv.num < MAXWAVES then ( If there's room now. ) 
begin 

inc (wv .num) ; 
wv.ls[wv.num)A := wv.ls[w]A; { Copy old wave to new. } 
wv.ls[wv.num)A.scan.mode := 0; { Turn off scan mode for old 

wave. } 
wv.ls[w]A.col := ChooseColor(wv.num); { Use color we would have 

given to new wave, since it gets old color. } 
with wv.1S[W]A do 
begin 

FiIIChar(data, sizeof(data), 0); 
Fi11Char(tmp, sizeof(tmp), 0); 
AutoName (w) ; 

end; 
{ Reassign addwaves pointer. 
if addwaves. w = w then 

addwaves . w : = wv. num; 
{ Reassign cursor. } 
if wv.cur = w then 
begin 

wv.cur := wv.num; 
ChangeCurrentWave(O); 

end; 
( Reassign. background wave pointers. 
for w2 := 1 to wv.num - 1 do 
with wv.ls[w2]A do 

if par.ele.bg w then 
par.ele.bg := wv.num; 

AutoGen wv.num; 
exit; 

end; 
end 

w 
o 
0\ 

> 
'C 
'C 
I'!) 

= c::l.o .... 
~ 
I-" 



-
else 

AutoGen : = 0; 
wv.ls[w]~.scan.mode 0; 

end; 

procedure AutoName(w integer); 
{ Assigns automatic filename if auto. fn 

filename. } 
1; otherwise assigns " as 

var 
5 : bufstring; 

begin 
with wv.ls[w]~ do 

end; 

if auto.tn = 1 then 
begin 

str(auto.num, 5); 
inc (auto.num); 
par.tn := auto.ser + s + '.' + dt_NAME[par.dtJ; 

end 
else 

par. fn 

function Auto5ave(w integer): integer; 
{ Automatically save wave if auto.sv = 1; otherwise. turn scan.mode off 

for wave. Also calls AutoGen. Returns • of new wave created. } 
begin 

if auto.sv = 1 then 
begin 

if Savewave(w) then 
AutoSave : = AutoGen(w); 

end 
else 
wv.ls[w]~.scan.mode 0; 

end; 

{procedure BackgroundSubtractionlnput; 
( Allows user to change electron scan background subtraction parameters. ) 
{var 

p real; { Power. 
r : real; { Generic input real. 
readonly boolean; ( Flag that scan in progress, so cannot change values. ) 
w : integer; ( Wave counter. ) 

{begin 
readonly := false; 
( Check if any electron scan in progress. ) 
for w := 1 to wv.num do 
if (wv.ls[w]A.par.dt dt_ELE) and (wv.ls[w]A.scan.mode 

1) then 
readonly := true; 

textmodei 
clrscr; 
writeln('Background subtraction parameters:'); 
with background do 
begin 

p := power(stagedelay); 
r := stagedelay I p; 
writeln('Stage delay (default 

round (10g10 (p) ) ), 's)'); 
if not readonly then 
begin 

readln2 r ( r) ; 
stagedelay 

end; 
r * p; 

r : VALMAX VALDEC , I UnitPrefix( 

p := power(stagepos); 
r : = stagepos I p; 
writeln('Stage position for background scan (default 

VALDEC ••. , unitPrefix(round(loglO(p)), ' m )'); 
if not readonly then 
begin 

readln2r(r) i 
stagepos r * p; 

end; 
end; 
if readonly then 

waitkey; 
DrawAll; 

end; ) 

function better_div(a, b : integer) 
{ Computes a div b consistently for a· 
begin 

if a >= 0 then 
better_div a div b 

else 
better_di" (a + 1) div b - 1; 

end; 

procedure Blank; 

integer; 
>Oanda<O.} 

r VALMAX 

{ Blanks data in selected waves using blankmin, blankrnax range. Called 
from do_blank. 

var 
i, j : integer; 

begin 
{ Final check that user wants this. 
if com_wr-YIl ( , Blank data') = 0 then 

exit; 
sc_sel_off; 
( Blank data, marking screens affected. ) 
for i : = 1 to wv. num do 

with wv.ls(ijA do 
if sel 1 then 
begin 

if (scan.mode > 0) or (addwaves.w = i) then 
co~wr_wv(i, 'active: cannot blank!', COLORHL) 

else 
begin 

for j : = blankmin to blankmax do 
data[j) ;= 0; 

sc.ls(screenj.sel 1; 
da tasaved : = 0; 

end; 
end; 

wv_sel_off; 
UpdateSel; 

end; 

function bs_on : boolean; 
( Checks waves for any par.ele.bs.mode > 0 and returns true if so. 

i integer; 
begin 

for i : = 1 to wv num do 
with wv.ls[i]A do 

if (par.dt = dt_ELEJ and (par.ele.bs.mode > 0) then 
begin 

bs_on true; 

> 
"CS 
"CS 

~ 
Q.. 
~. 

.... 

l;.) 

o 
-.....l 



exit; 
end; 

bs_on : = false; 
end; 

procedure' BsAdapt; 
( Adapts old-style background-subtracted ele scans to new scheme. For 

each bg/fg wave pair, finds total bg counts and places in fg tot, 
adds bg into _bs.bg wave, and adds bg 'into f9 wave. ) 

var 
i, j : integer; 
tot : longint; 

begin 
sc_sel_off; 
with wv.lsl_bs.bg)' do 
begin 

if (_bs.bg < 1) or <_bs.bg > wv.num) or (par.dt <> dt_ELE) or 
(scan.mode > 0) or «addwaves.mode = 1) and (addwaves.w = 
_bs. bg)) then 

begin 
COIrLwr_wv(_bs.bg, 'not valid for bg. Aborted . .', COLORHL); 
exit; 

end; 
if (datasaved = 0) or (parsaved = 0) then 

if C01l\...wr-Yll('bg wave not saved. Overwrite') 
begin 

com_wr ( 'bg adapt aborted.', COLORMESS); 
exit; 

end; 
par.ele.bs.mode := 1; ( Set mode. ) 

o then 

par.ele.bs.tot := 0; ( Clear for accumulation to come. ) 
fillchar(data, sizeof(data) , 0); ( Blank wave. ) 
fillchar(tmp, sizeof(tmp), 0); 
datasaved := 0; ( New data will not have been saved. 
par saved : = 0; 
sc.ls[screen}.sel 

end; 

1 ( Tag screen for update. ) 

wv_sel (1); Find participating waves. 

( Adapt. ) 
for i := 1 to wv.num do 

with wv.ls[i]A do 
( Only look at selected fg waves which are not _bs.bg. ) 
if (sel = 1) and (par.dt = dt_ELE) and (par.ele.bs.mode > 0) and 

(par.ele.bs.mode <= wv.num) and (i <> _bs.bg) then 
.begin 

tot : = 0; ( Clear accumulator. ) 
( Add bg wave to _bs.bg wave. ) 
with wv.ls[par.ele.bs.mode]A do 

for j := 1 to par.pt do 
Qegin 

wv .ls (_bs .bg}". data (j] : = wv .ls [_bs .bg] A .data [j] + 
data[j); { Add bg to _bs.bg. } 

wv.ls[iJ'.data[j) := wv.ls[i)'.data[j) + data[j); Add bg 
to fg. } 

incitot, round(data(j]»; ( Accumulate bg counts. 
end; 

par.ele.bs.mode := 1; ( Can erase bg wave * now. ) 
par.ele.bs.tot := tot; { Place total counts in £9 tot. 
wv.ls[_bs.bg]A.par.ele.bs.tot wv.ls(_bs.bg]".par.ele. 

bs.tot + tot; ( Add to _bs.bg total. ) 
da tasaved : = 0; 

par saved : = 0; 
sc.ls[screen] .sel 

end; 
1; ( Tag screen for update. ) 

wv_sel_off; 
UpdateSel; 

end; 

procedure CalibEnergy(n : integer); 
{ Accept point n (1 or 2) in a calibration energy spectrum. } 
var 

done : boolean; 
'p : real; { Power. 
slope : real; { Intermediate value. } 

begin 
if wv.num = 0 then 

exit; 
if (wv.ls(wv.cur]A.par.dt 

(wv .ls [wv .cur)" .on = 0) or 
cursorvisible = 0) then 
exit; 

textmode; 
clrscr; 

dt_ELE) or 
(sc .ls (wv .15 [wv. cur] A. screen) . gr. 

write('Point n, Use last info ctr result as point reference? (YIN)'); 
done : = false; 
repeat 

case readkey of 
'n', 'N': 
begin 

with sc.ls[wv.ls(wv.cur]A.screen}.gr do 
if xh.mode = 0 then 

calib.n(n) PtoU(wv.cur, cursorp, XAXISMODE_NORMAL) 
else 

c~lib.n[n] PtoU(wv.cur, UtoP(wv.cur, xh.u(3], 0), 
XAXISMODE_NORMAL); 

done : = true; 
end; 
'y'. 'y': 
begin 

calib.n[n] := PtoU(wv.cur, UtoP(wv.cur, info.ctr, 0), 
XAXISMODE_NORMAL); 

done : = true; 
end; 
extended : readkeYi 
end; 

until done; 
writeln; 
write( 'Reference time = '); 
p := power(calib.n[n)i 
writevalue(calib.n{n], p, VALDEC, VALMAX, 's'); 
writeln; 
write('Enter energy of calibration point (default '); 
writevalue{calib.c{n], 1, VALDEC, VALMAX. 'eV): '); 
readln2r(calib.c[nJ); 

if n = 2 then 
{ Calculate calibration parameters. setting quad factor to 0 since none was' 

calculated (and, presumably, needed). } 
begin 

with calib do 
begin 

slope := (n[2) - n[l]) / (1 / sqrt(c[2) - 1 I sqrt(c[l)); 
setenergyconversiontO := n[l] - slope / sqrt(c[1); 
setenergyconversionlength := slope I sqrt(SLOPEFACTOR); 

w 
o 
00 

> 
'C 
'C 
~ 

= Q.. .... 
~ 
I-" 



end; 
{ Copy new parameters to current wave and default parameters. 
pardf[dt_ELEJ .ele.cal.tO := setenergyconversiontO; 
pardf(dt_ELEJ .ele.cal.len := setenergyconversionlength; 
wv .ls (wv. cur]" .par. ele. cal. to : = setenergyconversiontO; 
wv.ls[wv.cur]A.par.ele.cal.len := setenergyconversionlength; 
writeln('New calibration parameters: '); 
p := power(setenergyconversiontO); 
writeln('TO = " setenergyconversiontO / p VALMAX VALDEC, , 

UnitPrefix (round( 10g10 (p) ) ), 's'); 
p := power(setenergyconversionlength); 
writeln('Length = " setenergyconversionlength I p VALMAX: VALDEC, ' 

UnitPrefix (round (10g10 (p) ) ), 'm'); 
waitkey; 

end; 
UpdateAll; 

end; 

procedure CalibMass1: 
{ Accept first point in a calibration energy spectrum. } 
begin 

if wv.num = 0 then 
exit; 

if (wv .1s [wv. cur] A .par. dt 
(wv.ls{wv.curJ".on 0) or 
cursorvisible = 0) then 
exit; 

textmode; 
clrscr; 

dt_MAS) or 
(sc .1s (wv .ls [wv cur) A. screen) . gr. 

write('Enter mass of first calibration point (Da): '); 
readln(calib.c[l]): 
calib.n[l] := PtoU(wv cur, sc.ls[wv.ls[wv.cur]A.screen).gr.cursorp, 

XAXISMODE_NORMAL) ; 
DrawAll: 

end; 

procedure CalibMass2; 
{ Accept second point in a calibration energy spectrum and calculate calibra

tion parameters, assigning them to the dt_ELE default. 
var 

p : real; { Power. 
slope : real; { Intermediate value. } 

begin 
if wv.num = 0 then 

exit; 
if (wv.ls[wv.cur)A. par dt <> dt_MAS) or (wv.ls(wv.cur]A.on 

= 0) or (sc.ls[wv.ls(wv curJA.screen) .gr.cursorvisible = 0) then 
exit; 

textmode; 
clrscr; 
write('Enter mass of second calibration point (Da): ')i 

readln(calib.c[2): 
calib.n[2] := PtoU{wv.cur, sc.ls[wv.ls[wv.cur)A.screen) .gr.cursorp, 

XAXISMODE_NORMAL) ; 
{ Calculate calibration parameters. 
with calib do 

with wv.ls[wv.cur]A.par.mas.cal do 
begin 

51 ,= 5qr((5qrt(c[2]) - 5qrt(c[1])) / (n[2] - nIl])); 
int := n[l] - sqrt(c{l] I 51); 
pardf (dt_MAS] .mas. cal. sl : = 51; 
pardf(dt_MAS].mas.cal.int := inti 
writeln('New calibration parameters: 'l; 

p := power(intl; 
writeln(' Intercept int / p :~ VALMAX VALDEC, , 

UnitPrefix(round( 10glO (p»), 's'); 
p := power(sl); 
writeln('Slope = " sl / P VALMAX VALDEC, , UnitPrefix( 

round(loglO(p))), 'Da/s'2'); 
end; 

waitkeYi 
UpdateAll; 

end; 

procedure ChangeCurrentWave(direction : integer): 
{ Changes the value of wv.cur; updates the wavedata area of screen. 
var 

temp: integer; ( Temp storage for sc.cur. ) 
begin 

if wv.num = 0 then 
exit; 

if sc.ls[sc.curJ .gr.cursorvisible 
EraseCursor(sc.cur); 

wv.cur := wv.cur + direction; 
if wv.cur < 1 then 

wv.cur := wv.num 
else if wv.cur > wv num then 

wv.cur := 1; 
temp := sc.cur; 

1 then 

sc.cur := wv.ls[wv curJA.screen; { Forc~ current screen to be one with 
current wave. } 

DrawTitle(temp); (Change colors of old and current screen. ) 
DrawTi tIe (sc. cur) ; 
UpdateCursor(sc.cur); 
co~wr_scan; ( Print scan info if wave is active. ) 

DrawWaveData; 
if sc.ls(sc.cur] .gr.cursorvisible = 1 then 
begin 

DrawCursorlnfo; 
DrawCursor(sc.cur); 

end; 
end; 

procedure ChangePar(w : integer); 
var 

changed: boolean; ( Flag indicating if we changed something. If not in 
changedf mode, will update wv.ls[]".parsaved at end. ) 

d : integer; ( Current dt. ) 
exitflag : boolean; ( Flag to exit loop. ) 
i : integer; ( General integer. ) 
p, poffset integer; { Which parameter is being edited. poffset is 

the parameter offset when list scrolls off-screen. } 
par-ptr : par_type-ptr; { Pointer to parameters (defaults or wave) . 
r real; ( General real for data processing. ) 
s bufstring; { General string for data processing. 
y integeri { Y position. } 

begin 
if w = 0 then 
begin 

d : = dt_MIN; 
par-ptr := @pardf(d]; 

end 
else 
begin 

par-ptr ;= @wv.ls[w]~.par; 

d := par-ptrA.dt; 

> 
"'CI 
"'CI 

~ 
c:l.o .... 
~ 
l-" 

v.> 
o 
\0 



changed := false; 
end; 
exitflag : = false; 
p ,= 1; 
poffset := 0; 
while not exitflag do 
begin 

if sc. mode = sc_mode_GR then 
ShowParams(par-ptr. p. w. poffset); ( Draw screen if in graphics 

mode. ) 
if keypressed then 
begin 

y := p - poffset - 1 + PARYSTART; 
case readkey 0 f 
CR, 

if (w = 0) or (wv.ls[w]~.scan.mode 0) then 
with par-ptr~ do 
begin 
if p < US ERMIN then 

y ,= CHANGEPARYSTART + P - 1 
else 

y ,= CHANGEPARYUSER + P - US ERMIN ; 
gotoxy(CHANGEPARXVALUE, y); 

textcolor (LIGHTRED) ; 
changed : = true; 
case p of 
PARJU,ERT, 

begin 
readln2i (alert); 
if alert < 0 then 

alert : = 0 
'else if alert > 1 then 

alert 1; 
end; 

PAR.....COMMENT, 

begin 
s "; 
readln(s) ; 
if s <> •• then 

comment s; 
end; 

PAR.....FILENAME: 

begin 
s "; 
read1n(s) ; 
if s then 

fn s, 
end; 

PAR_GEN: 
begin 

readln2i (gen) ; 
if gen < 0 then 

gen := 0 
else if gen > 1 then 

gen := I, 
end; 

PAR_PT: 

begin 
readln2i (ptl; 
if pt < 0 then 

pt 0 
else if pt > MAXPOINTS then 

pt MAXPOINTS; 

end; 
PAR_PT_GL, 

if d <> dt_ELE then 
begin 

readln2i (pt_9l) ; 
if pt_gl < 0 then 

pt_g1 ,= 0 
else if pt_gl > MAXPOINTS then 

pt_g1 ,= MAXPOINTS; 

case d of 
dt_COR: ( Change stage stop automatically. 

UpdateCORLimits(par-Ptr); 
dt_MAS: ( Change linked parameters. ) 

mas.scantime timeperpt * pt_gl: 
end; 

end; 
PAR_SCAN, 

begin 
readln2i(scan) ; 
if SCan < 0 then 

scan := 0; 
end; 

PAR_SCAN_GL, 

begin 
readln2i(scan_gl); 
if scan_gl < 0 then 

scan_gl : = 0; 
end; 

PAR_SKIP, 
. begin 

read1n2i (skip); 
if skip < 0 then 

skip := 0, 
end; 

PAR_VSTOP: readvalue{vstop, 0); 

PAR_YOFFSET: readvalue(yoffset, 0); 
PAR_YSCALE, 

begin 
r := yscale; { Save old value of yscale for calc below: 
readvalue (r. 0); 

{ Rescale yoffset to keep same relative position: 
if (yoffsetrescale = 1) and (r <> 0) then 

yoffset yoffset * r / yscale; 
yscale := r, 

end 
else 
case d of 
dt_COR: 

case p of 
PAR_C_CIlANNEL: 
begin 

read1n2 i (cor. ch) ; 
if cor.ch < 1 then 

cor .ch 1 
else if cor. ch > AD.J1AX then 

cor. ch : = AD_MAX; 
end; 
PAR_C_SHOTSPERPT: 
begin 

readln2i(cor.shotsperpt); 
if cor.shotsperpt < l~then 

cor.shotsperpt := 1; 
end; 

~ . 

\.;.l 

o 

~ 
"C:l 
~ 
:I 
Q.. .... 
~ ,... 

-



PAR_C_STAGEwobAMPL: 
begin 

readvalue(cor.ts.wob.ampl. POWTS); 
limit(cor.ts.wob.ampl. STAGEMIN. STAGEMAX); 

end: 
PAR_C_STAGEwobPER: 
begin 

readvalue(cor.ts.wob.per. POWTS): 
limit(cor.ts.wob.per. STAGEMIN. STAGEMAX): 

end; 
PAR_C_STAGEwobPH: 
begin 

readvalue{cor.ts.wob.ph. 0): 
1 imi t (cor. ts . wob. ph. TS_PHASE_MIN. TS_PHASE_MAX); 

end: 
PAR_C_STAGESTART, 

begin 
readvalue{cor.ts.start. POWTS): 
roundoff(cor.ts.start. ts.step): 
limit(cor.ts.start, STAGEMIN. STAGEMAX); 
{ Update number of points. } 
pt_gl 1 + integer(round«cor.ts.stop - cor.ts. 

start) / cqr.ts.step»; 
end; 

PAR_C_STAGESTEP, 
begin 

readvalue(cor.ts.step. POWTS): 
roundoff(cor.ts.step. ts.step): 
limit(cor.ts.step, ts.step. STAGEMAX); 
{ Update time per point. } 
timeperpt := cor.ts.step / HALFSPEEOOFLIGHT; 
UpdateCORLimits(par-p tr ): 
pt_gl := 1 + integer{round«cor.ts.stop - cor.ts. 
start) / cor.ts.step)): } 

end: 
PAR_C_STAGESTOP, 

begin 
readvalue (cor. ts. stop. POWTS) i 

roundoff(cor.ts.stop, ts.step): 
limit(cor.ts.stop. STAGEMIN. STAGEMAX); 
( Update number of points. ) 
pt_9l := 1 + integer{round«cor.ts.stop - cor.ts. 

start) / cor.ts.step»: 
end; 

PAR_C_STAGETO , 
begin 

readvalue{cor.ts.tO, POWTS): 
roundoff(cor.ts.tO. ts.stepl: 
limit(cor.ts.tO. STAGEMIN. STAGEMAX): 

end; 
PAR_TIMEPERPT: 

begin 
readvalue(timeperpt. POWFS): 
{ Round to time corresponding to nearest 1 urn: 
roundoff (timeperpt. ts.step / HALFSPEEDOFLIGHTI: 
{ Limit: } 
limit (timeperpt. ts.step / HALFSPEEDOFLIGHT, 

$TAGEMAX / HALFSPEEDOFLIGHT): 
( Change stage step, number of points: 
cor.ts.step := timeperpt * HALFSPEEDOFLIGHT; 
pt_gl 1 + integer(round«cor.ts.stop - cor.ts. 

start) / cor.ts.step»; 
end; 

end; 
dt_ELE, 

case p of 
PAR_E_BS_LAST: readvalue(ele.bs.last. O)i 

PAR_~BS_MODE , 
begin 

readln2i(ele.bs mode): 
if ele.bs.mode < 0 then 

ele .bs . mode 
else if ele.bs.mode > 1 then 

cile.bs.mode 1; 
end: 
PAR_E_BS_TOT: readvalue{ele.bs.tot. 0); 
PAR_E_CALEV: readvalue(ele.cal.ev, 0); 
PAR_E_CALLENGTH: readvalue(ele.cal.len, 0); 
PAR_E_CALTO: readvalue(ele.cal.tO, 0); 
PAR_E_CALQUAD: readvalue(ele.cal.quad, 0); 
PAR_E_CALQUADOFF: readvalue(ele.cal.quadoff. 0); 

PAR_E_REPRATE: readvalue(ele.reprate. 0); 
PAR_E_SHOTSPERSCAN, 
begin 

readln2i(ele.shotsperscan); 
if ele.shotsperscan < 1 then 

ele.shotsperscan := 1 
else if ele.shotsperscan > MAXSHOTSPERSCAN then 

e1e. shotsperscan : = MAXSHOTSPERSCAN; 
end; 
PAR_E_STAGEwobAMPL, 
begin 

readvalue (ele. ts. wob. ampl, POWTS); 
limit(ele.ts.wob.ampl. STAGEMIN. STAGEMAX); 

end; 
PAR_E_STAGEwobPER: 
begin 

readvalue{ele.ts.wob.per, POWTS); 
limit(e1e.ts.wob.per, STAGEMIN, STAGEMAX); 

end; 
PAR_E_STAGEwobPH, 
begin 

readvalue(ele.ts.wob.ph, 0); 
limit(ele.ts.wob.ph. TS_PHASE~IN, TS_PHASE_MAX); 

end; 
PAR_E_STAGEPOS, 
begin 

readvalue(ele.ts.pos. POWTS): 
roundoff(ele.ts.pos. ts.step); 
limit(ele.ts.pos, STAGEMIN. STAGEMAX): 
{ Update time of FPES. } 
ele.dly := (ele.ts.pos - ele.ts.tO) / HALFSPEEDOFLIGHT: 

end; 
PAR_E_STAGETO, 
begin 

readvalue(ele.ts.tO, POWTS); 
roundoff(ele.ts.tO. ts.step); 
limit(ele.ts.tO, STAGEMIN. STAGEMAX); 
( Update time of FPES. ) 
ele.dly := (ele.ts.pos - ele.ts.tO) / HALFSPEEDOFLIGHT; 

end; 
PAR_E_TIMEFPES: 
begin 

readvalue(ele.dly, POWFS); 
( Update stage position. ) 
ele.ts.pos := ele.dly * HALFSPEEDOFLIGHT + ele.ts.tO; 

> 
"C 
"C 
/'!) 

= ~ 
~. 

"""'" 

w ...... ...... 



roundoff(ele.ts.pos, ts.step); 
limit(ele.ts.pos. STAGEMIN, STAGEMAX); 
( Update dly again. ) 
ele.dly := (ele.ts.pos - ele.ts.tO) / HALFSPEEDOFLIGHT; 

end; 
end; 
dt_POW, 

case p of 
PAR_P_CALINT: readvalue(pow.cal.int. 0); 
PAR_P_CALSLOPE: readvalue(pow.cal.sl, O)i 

PAR_P_CHANNEL, 
begin 

readln2i(pow.ch); 
if pow.ch < 1 then 

pow.ch := 1 
else if pow.ch > AD_MAX then 

pow.ch := AD_MAX; 

end: 
PAR_TIMEPERPT, 
begin 

readvalue(timeperpt. 0); 
if timeperpt < 0 then 

timeperpt : = 0; 
end; 

end; 
dt_MAS, 

case p of 
PAR_M_CALINT: readvalue(mas.cal.int, 0); 
PAR_M_CALSLOPE: readvalue (mas. cal. sl, 0); 

PAR_M_CHANNEL, 
begin 

readln2i(mas.ch); 
if mas.ch < 1 then 

mas.ch 
else if mas.ch > MAS_CH_MAX then 

mas.ch := MAS_CH_MAX; 
end; 
PAR_M_DELAY, 
begin 

readvalue (mas. delay. 0); 

if mas.delay < 0 then 
mas.delay := 0; 

end: 
PARJCINV, 
begin 

readln2i (mas. inv) ; 
if mas.inv < 0 then 

mas.inv 
else if mas. inv > 1 then 

mas.inv 1; 
end; 
PARJCSCANTIME, 
begin 

readvalue(mas.scantime, 0); 
if mas.scantime < 0 then 

mas.scantime := timeperpt; 
( Change linked parameters. ) 
pt := round(mas.scantime / timeperpt); 
if pt > MAXPOINTS then 

pt ,= MAXPOINTS; 
mas.scantime := timeperpt * pt; 

end; 
PAR_M....VERT' 

readvalue(mas.vert. 0); 
PAR_TIMEPERPT: 
begin 

readvalue(timeperpt, 0); 
{ Force to valid timeperpt. 
timeperpt := TEK_TIMEPERPT{TEK_TIMEPERPT_to_code 

(timeperpt I ] ; 
( Change linked parameters. ) 
pt := round(mas.scantime / timeperpt): 
if pt > MAXPOINTS then ' 

pt ,= MAXPOINTS; 
mas. scan time 

end; 
timeperpt *" pt: 

end: 
end; 

end: 
end: 
ESC: exitflag := true: 
EXTENDED, 

end; 

case readkey of 
XARROWUP, 

if p > 1 then 
begin 

dec{p) ; 
if (y = PARYSTART) and (poffset > 0) then 

dec (poffset): 
end; 

XARROWDOWN , 
if p < USERMAXDT[d] then 
begin 

inc(p) : 
if (y = PARYSTOP) and (poffset. < USERMAXDT[d] - PARYSTOP 

+ PARYSTART - 1) then 
inc(poffset) : 

end: 
XARROWLEFT: ChangeParArrow(-l, par-ptr, d, p, w, changed); 
XARROWRIGHT: ChangeParArrow{l, par-ptr, d, p, w, changed); 
XEND, 
begin 

p ,= USERMAXDT[d]; 
poffset p - PARYSTOP + PARYSTART - 1; 

end: 
XHOME, 
begin 

p ,= 1; 
poffset 0; 

end: 
end: 

ShowParams(par-ptr, p. w, poffset): ( Update screen. ) 
end; 
sc.mode := sc_mode_TX_OVR: ( Set text ·override· flag -- which means 

when Scan is called, if any graphics commands are issued, 
nothing will get though except co~wr using COLORHL as color 
i.e. important messages. ) 

Scan; ( Keep active waves happy. 
end; 
if not (w = 0) and changed then 
wv.ls[w]~.parsaved := 0; 

sC.mode := sc_mode_TX; ( Allow screen to redraw again. ) 
UpdateAlli 

end; 

Vol ...-
tv 

> 
"CI 
"CI 

~ 
Q.. :;;;. 
~ 



procedure ChangeParArrow(direction : integer; var par-ptr par_type-Ptr; var 
ct, p integer; w integer; var changed: boolean); 
Increases (direction = 1) or decreases (direction = -1) certain parameters, 
given information about them from Change Par (par-ptr, d, p). Makes changed 
flag = 1 if valid key is pressed. ) 

var 
integer; 

r : real; 
s bufstring; 

begin 
( Cannot change if scanning. ) 
if (w> 0) and (wv.ls[w]~.scan.mode > 0) then 

exit; 
changed true; 
with par-ptr~ do 
case p of 
PAR.-ALERT: alert 
PAR_DT: 

begin 

1 - alert; 

d d + direction; 
if d < dt_MIN then 

d ,= dt_MAX 
else if d > dt_MAX then 

d ,= dt_MIN; 

if w = 0 then 
par-ptr := @pardf[d] { Point to new pardf entry. 

else 
begin 

s : = fn; { Save old filename. 
par-ptr~ := pardf(d]; { Copy goodies. 
fn : = s; ( Restore filename. ) 
( If using standard file extension, change to reflect dt. 
s := get_extension(fn); 
for i : = dt_MIN to dt_MAX do 

if s = dt_NAME[iJ then 
fn rrn_extension(fn) + '.' + dt_NAME(dtl; 

end; 
end; 

PAR_GEN: gen 1 - gen; 
PAR_SCAN, 

begin 
inc(scan, direction); 
if scan < 0 then 

scan 0; 
end; 

PAR_SCAN_GL, 

. begin 
inc (scan_gl, direction); 
if scan_gl < 1 then 

scan_gl 1; 

end; 
PAR_SH, 

begin 
inc(sh. direction); 
if (d <> dt_ELEl and (sh = wv_sh_DLY) then 

inc(sh, direction); ( Skip this value if not ele. 
if sh < 1 then 

sh wv_sh_MAX 
else if sh > wv_sh_MAX then 

sh 1; 

end; 
PAR_SKIP: 

begin 

inc(skip, direction); 
if skip < 0 then 

skip 0; 
end; 

else 
case d of 
dt_COR, 

case p of 
PAR_C_CHANNEL: 

begin 
inc(cor.ch, direction); 
if cor.ch < 1 then 

cor.ch := 1 
else if cor. ch > AD_MAX then 

cor. ch : = AD_MAX; 

end; 
PAR_C_SHOTSPERPT". 

begin 
inc(cor.shotsperpt, 
if cor.shotsperpt < 

cor.shotsperpt 
end; 

direction) ; 
1 then 
1; 

PAR_C_STAGESTEP. PAR_TIMEPERPT, 
{ Change stage step and time per point at the same time. 
begin 

r := cor.ts.step; 
if r > 2 • ts.step then 

r := r + direction· tS.step; 
timeperpt := r / HALFSPEEDOFLIGHT; 
cor.ts.step := r; 
( Update number of points. 
pt_gl 1 + round«cor.ts.stop - cor.tS.start) I r); 

end; 
end; 

dt_ELE, 

case p of 
PAR_E_BS_MODE, 

ele.bs.mode 
PAR_TIMEPERPT, 

1 - ele.bs.mode; 

begin 
i := TimebaseToCode(timeperpt) + direction; 
if i = -1 + direction then ( Number did not ~tch any value in 

array. 
,= MCS_TIMEPERPT_MIN 

else if i < MCS_TIMEPERPT_MIN then 
i : = MCS_TIMEPERPT_MIN 

else if i > MCS_TIMEPERPT_MAX then 
i : = MCS_TIMEPERPT_MAX; 

timeperpt MCS_TIMEPERPT[i]; 
end; 

end; 
dt_POW, 

case p of 
PAR_P _CHANNEL: 

begin 
inc (pow.ch, direction); 
if pow.ch < 1 then 

pow.ch 1 
else if pow.ch > AD_MAX then 

pow ch : = AD_MAX i 
end; 

end; 
dt_MAS: 

> 
"C 
"C 
~ 

= Q.. 
S;;' 
~ 

w 
w 



case p of 
PAR_M_INV: mas.inv 
PAR_TIMEPERPT: 

begin 

1 - mas. inv; 

i := TEK_TIMEPERPT_to_code(timeperpt) + direction; 
if i = -1 + direction then { Number did not match any value in 

array. } 
i := TEK_TIMEPERPT_MIN 

else if i < TEK_TIMEPERPT_MIN then 
i ,= TEK_TIMEPERPT_MIN 

else if i > TEK_TIMEPERPT_MAX then 
i : = TEK_TIMEPERPT_MAX; 

timeperpt := TEK_TIMEPERPT[i); 
{ Change linked parameters. } 
pt := round(mas.scantime I timeperpt); 
if pt > MAXPOINTS then 

pt ,= MAXPOINTS; . 
mas. scantime : = pt * timeperpt; 

end; 
PAR_M_CHANNEL, 

begin 
inc(mas.ch, direction); 
if mas.ch < 1 then 

mas.cb : = 1 
else if mas. ch > MAS_CH_MAX then 

mas.ch := MAS_CH_MAX; 
end; 

end: 
end: 

end; 
end; 

procedure ChangeStep(var step: real; direction: integer); 
{ Increases (direction = 1) or decreases (direction = -1) the value of step in 

stages of 1, 2, 5 * (power of 10). } 
begin 
( Strip away power of 10 to look only at mantissa: ) 

case round(exp(1n(step) - LN_10 * rounddown(ln(step) 
10 

2, 

5, 

if direction = 1 then 
step := step * 2 

else 
step step 2; 

if direction = 1 then 
step := step * 2.5 

else 
step step 2; 

if direction = then 
step step· 2 

else 
step step 2.5; 

end; 
end; 

procedure char_to_~t(var res : integer; var errcode 
var 

i,j : integer; 
resbuf : Bufst'ri..ng; 

function is_num(c: char) 
begin 

boolean; 

LN_10 + SMALL») of 

integer) ; 

if c in [' 0' .. ' 9'] then 
is_nwn := true 

else is_nwn := False; 
end; 

begin 
i : == I: 
j ,= 1; 
resbuf := 
while NOT (is_num(ibbuf[iJ» do i 
while (is_num(ibbuf(i]» do 
begin 

resbuf[jJ ibbuf[iJ; 
j := j+l; 
i := i+l; 

end; 
val(resbuf,res,errcode}; 

end; 

i + 1; 

function ChooseColor(w : integer) : word; 
( Looks at wave colors currently in use, and returns a color not already 

used, unless all are taken in which case chooses one from color array 
based on wave number w.) 

var 
i : integer; 
sel : array{1 

colors. ) 
COLORMAX] of boolean; { Array to keep track of chosen 

begin 
for i := 1 to COLORMAX do { Initialize array. } 

sel[i] := false; 
for i := 1 to wv.num do { Flag all colors used. 

sel[anticolor[wv.ls[i)".col]] true; 
( Look for a free color. ) 
for i : = 1 to COLORMAX do 

if sel[i] = false then 
begin 

ChooseColor := COLOR[i]; 
exit; 

end; 
No untaken colors; choose based on wave number. 

ChooseColor COLOR [ (w - 1) mod COLORMAX + 1] i 

end; 

procedure ClearArea (xl, yl, x2, y2 : 
( Clears area of screen specified by 
begin 

SetViewPort(x1, y1, x2 - 1, y2 - 1, 
ClearViewPort; 
SetViewport(O, 0, GetMaxX, GetMaxY, 

end; 

integer) ; 
coordinates. 

CLIPOFF) ; 

CLIPOFF) ; 

procedure ClearYAxisStuff(scr : integer); 
( Clears area containing ylabel, ynumbers and yaxis on screen scr. ) 
begin 

with sc.ls[scrJ.gr do 
ClearArea(ylabel.xl, ylabel.yl, yaxis.x2 - 1, ylabel.y2); 

end; 

procedure ClipDot(x, y : real; scr integer); 
{ Draws dot (on screen scr) only if y coordinate is in plot area. Assumes 

x coordinate already in range. } 

begin 

w ...-
.j::.. 

> 
"0 
"0 
~ 

5-.... 
~ ..... 



if (y >= sc.ls[scr] .gr yaxis.yl) and (y <= sc.ls[scr).gr.yaxis. 
y2 - 11 then 

begin 
if ( dotradius = 0 ) then 

putPixel (round(x) , 'round(y), GetColor) 
else 

FillEllipse(round(x), round(y), dotradius, dotradius): 
end: 

end; 

procedure ClipLine(xl, yl, x2, y2 real; scr : integer); 
{ Draws segment of line (if any) which falls within y coordinate limits 

of plot area on screen scr. Assumes x coordinates already in range. } 
var 

a : real: 
slope : real: 

Generic real. } 
Slope of line. } 

begin 
{ Switch starting and ending coordinates if yl > y2; this makes case evalua

tion much easier. } 
if yl > y2 then 
begin 

a : = xl; 
xl : == x2: 
x2 := a; 

a : = yl; 
y1 ,= y2; 
y2 := a; 

end; 
Now check to see if line is at all on screen; do nothing otherwise. } 
with sc.ls[scr] .gr do 

end; 

if (yl <= yaxis.y2 - 1) and (y2 >= yaxis.y1) then 
begin 
{ See if x coordinates are equal; if so, clipping routine is trivial. } 

if xl = x2 then 
begin 

if y1 < yaxis.yl then 
yl := yaxis.yl; 

if y2 > yaxis.y2 - I then 
y2 := yaxis.y2 - 1; 

end 
else 
begin 
{ See if yl off screen, and move it on screen if so. 

if yl < yaxis.yl then 
begin 

xl xl + (yaxis.yl - yl) * (x2 - xl) / (y2 - yl) : 
yl := yaxis.yl: 

end; 
See if y2 off screen, and move it on screen if so. 

if y2 > yaxis.y2 - 1 then 
begin 

x2 
y2 

end; 
end; 

x2 + (yaxis.y2 - 1 - y2) * (x2 - xl) / (y2 - yl): 
yaxis. y2; 

Draw clipped line. 
Line(round(xl) , round(y!), round(x2), round(y2)); 

end; 

procedure _col; 
{ Handle wave color variables. 

var 
word: { Color. 
integer; 
bufstring: 

w integer; 
begin 

( Just list colors of specified waves. 
if com. cur com.num then 
begin 

cOIYLerr; 
exit; 

end; 
inc (com.cur) ; 
S := com.ls[com.cur); 
if s = '?' then 
begin 

wv_sel(l) ; 
for w := 1 to wv rium do 

with wv.ls[wJ~ do 
if sel 1 then 

com_wr_wv(w, 'col' + COLORNAME(colJ, COLORMESS); 
wv_sel_off; 
exit; 

end 
else if s 

c 0 
else 
begin 

'df' then 

{ Find integer corresponding to color name. } 
c 0; 
i : = 1; 
while (i <= COLORMAX) and (c 

if 5 COLORNAME[i) then 
c 

else 
inc(i) ; 

Couldn't match. 
if c = 0 then 
begin 

com_err; 
exit; 

end; 
end; 
wv_sel(l); 

( Assign colors. 
sc_sel_of f: 
for w : = 1 to wv num do 

with wv.ls[wJ~ do 
if sel = I then 
begin 

if c 

0) do 

col 
else 

then 
COLOR [ (w 11 mod COLORMAX + 1) 

col c; 

sc.ls[screenJ .sel 1; 
end; 

wv_sel_off; 

{ Update tagged screens. 
for i : = 1 to sc. num do 

if sc. 15 (i 1 . sel = I then 
DrawScreen(i); 

> 
"C 
"C 
!'!) 

= ~ 
~. 

~ 

UJ 

VI 



sc_sel_off; 
DrawVitals; 

end; 

procedure CreateWave{d, oldw : integer); 
{ Creates a new wave of data type d and filename based on wave oldw. 

There are two flag conditions on these variables: 
1. If oldw = 0, the filename determined by AutoName is used (or " is 

given if auto.fn = 0). 
.2. If d = 0, the datatype of wave oldw is used. If oldw = 0 also, the 

default data type (dt_MIN) is used. } 
var 

integer; 
bufstring; 

w : integer; { Temporary wave number. } 
begin 

if wv. num = maxwaves then 
begin 

com_wr ('Memory Full .•• COLORHL); 
exit; 

end; 
w := wv.num + I: 

( Generate default wave, or copy contents of oldw, as specified. ) 
if (w > 1) and (oldw > 0) and (d = 0) then 
begin 

wv.ls{w]A,par := wv.ls[oldw)A. par ; 
{ Reset some parameters. } 
wv.ls(w)~.par.yscale := pardf[wv.ls[w]~.par.dt] .yscale; 
wv.1s(w]~.par.yoffset := pardf[wv.ls[w]~.par.dt].yoffset; 

end 
else if d > 0 then 

wv.ls[w]".par ,= pardf[d] 
else 

wv.ls[w]A.par ,= pardf[dt_MIN]; 
Fillchar(wv.ls[w)~.data, sizeof(wv.ls(w]~.data), 0); 
InitializeWave(w); { Set system defaults for wave. } 
( Change filename. ) 
if oldw = 0 then 

AutoName (w) 
else 
begin 
wv.ls[w]~.par.fn 

NextFileNum(w) ; 
end: 
UpdateVitals; 

wv .ls (oldw1 ~ .par. fn; 

Update(sc.cur): { Update screen (note only one needed since all waves 
are created on sc.cur). ) 

end: 

function dataread(name integer; numchars integer: w integer) 
boolean; 
Reads the data from the device 'name' into buffer of wave w. } 

var 
5 : bufstring: ( debug 

ibptr : ~chararray: 

begin 
ibptr ,= @(wv.ls[w]A.tmp); 
ibrd(name, ibptr~, numchars); { Numchars is precisely known, 2 * pt. Data 

is read into the char array ibbuf. Other routines can then read the same 
array as an integer-type array using intbuf~, which is set in Initialize 
to point to ibbuf. } 

if (ibsta and ERR) <> 0 then 

begin 
error: 
dataread 

end 
false: 

else 
dataread true: 

end; 

function DerivX(w : integer; p integer; xaxismode : integer) : real; 
( Calculates differential of x for integration routines, etc. This de

pends on xaxistype, and dt of wave. ) 
var 

t : real; ( Temporary holder for calculations, 
begin 

with wv.ls[w]A do 

end; 

case xaxismode of 
XAXISMODE_POINTS: Der i vX 1; 
XAXISMODE_NORMAL, 

case par.dt of 
dt_COR: DerivX := par.cor.ts.step; 
dt_ELE, dt_POW, dt_MAS: DerivX := par.timeperpt; 

end; 
XAXISMODE_CONVERT, 

case par.dt of 
dt_COR, dt_POW, dt_MAS: DerivX := par.timeperpt; 
dt_ELE, 
begin 

t := p * par.timeperpt - par.ele.cal.tO; 
DerivX := 2 * SLDPEFACTOR * par.timeperpt * 

sqr(par.ele.cal.len) / (t * t • t); 
end; 

end; 
end; 

procedure disc; 
{ Handle discriminator command. } 
var 

dummy : integer; 
r : real; 
s : bufstring; 

begin 
if com. cur = com. num then 
begin 

com......err; 
exit: 

end; 
inc (com.cur) ; 
s := com.ls{com.cur]; 
if s = '?' then 

com......wr('disc ' + makestring(discrim • 1000, VALMAX. VALDEC) + 
mV'. COLORMESS) 

else 
begin 

val(s, r, dummy); 
r ,= r I 1000; 
if r < 0 then 

com......err 
else 
. discrim r; 

end: 
end; 

w 
01 

> 
"'0 
"'0 
tD 

5-
~. 

~ 



procedure _dly; 
{ Set time delay of waves. 
var 

dly real; 
dummy : integer; 

integer; 
bufstring; s 

step 
begin 

real; 

if com. cur 
begin 

com.num then 

com_err; 
exit; 

end; 
inc (corn.cur) ; 

:; corn.ls[com.cur); 
if s = '?' then 

{ Print delays -- done at end of routine. } 
wv_sel(l) 

else 
begin 

step := 0; ( S.et to 
valls, diy, dummy); 
dly : = dly • POWFS; 

unless user specifies. 
Read delay time. } 

if com. cur < com.num then 
{ Look for optional step. 
begin 

inc (com. cur) ; 
s := com.ls[com.cur]; 
if s = 'step' then 
begin 

if com. cur = com.num then 
begin 

coltLerr; 
exit; 

end; 
inc (corn. cur) ; 
val (com. Is [com cur], step, dummy); 
step step'" POWFS; 

end 
else 

dec(corn.cur); { Point back to before wavelist start. } 
end; 
wv_sel(l) ; 

{ Assign delays. 
for i : = 1 to wv num do 

with wv.ls[iJ" do 

end; 

if (sel = 1) and (par.dt = dt_ELE) then 
begin 

( Assign delay by first ensuring ts position will be valid. 
par.ele.ts.pos := par.ele.ts.tO + dly ... HALFSPEEDOFLIGHT; 
limit(par.ele.ts.pos, STAGEMIN, STAGEMAX); 
par.ele.dly := (par.ele.ts.pos - par.ele.ts.tO) / 

HALFSPEEDOFLIGHTi 
( Increment delay. ) 
dly : = dly + step; 

end; 

( Now print delays. 
for i := 1 to wv.num do 

with wv.ls(il~ do 
if sel = 1 then 

begin 
if par.dt DT_ELE then 

coltLwr_wv(i, 'not ELE! " COLORHL) 
else 

coltLwr_wv(i, 'dly , + makestringint(par.ele.dly / POWFS) + 
fs', COLORMESS); 

end; 
wv_sel_off; 
OrawWaveOataj { Update display. } 

end; 

procedure DrawAII; 
( Sets up complete screen display for program. ) 
var 

scr ; integer; ( Screen counter. 
begin 

if sc . mode = sc_mode_TX_OVR then 
exit; 

GraphicsModei 
DrawVitals; 
for scr 1 to sC.num do 

OrawScreen (scr) ; 
end. 

procedure DrawCursor(scr : integer); 
{ Draws cursor on screen scr - must call after plotting data and calling 

UpdateCursor! } 
begin 

if sc.cur <> scr then 
exit; 

if sc.mode <> sc_mode_GR'then 
exit; 

with sc.ls(scr] .gr do 
begin 

if xh mode = 0 then 
begin 

if cursorvisible = 1 then 
begin 

( Save area underneath in bitmap: 
GetImage(cursorx, cursoryl, cursorx, cursory2, bitmap~); 

{ Draw cursor: ) 
SetColor (WHITE) ; 
line (cursorx, cursoryl, cursorx, cursory2); 

end; 
end 
else 

with xh do 
begin 

{ Save areas underneath crosshairs: } 
GetImage(x[I], plotarea.yl, x[!], plotarea.-y2, bitmap.x(I]"); 
GetImage(x[2], plotarea.yl, x'[2], plotarea.y2, bitmap.x{2]"); 
GetImage(x[3), plotarea.yl, x[3], plotarea.y2, bitmap.x(3)"); 
Get Image (plotarea.xl, y[l], plotarea.x2, y[l], bitmap.y(l]"); 
GetImage(plotarea.xl, y[2], plotarea.x2, y[2], bitmap.y(2]"); 
GetImage(plotarea.xl, y[3], plotarea.x2, y[3], bitmap.y(3)A): 
SetColor(WHITE); 
( Draw active crosshairs: 
SetLineStyle(SolidLn, SolidLn, NormWidth); 
line(x(which], plotarea.yl, x(which] , plotarea.y2); 
line(plotarea.xl, y(which] , plotarea.x2, y[which]); 
( Draw inactive crosshairs: ) 
SetLineStyle(DottedLn, DottedLn, NormWidth); 
line(x[3 - which], plotarea.yl, x[3 - which), plotarea y2); 

> 
"CI 
"CI 
tD 

= ~ .... 
~ .... 

w 
-..l 



line(plotarea.xl. y[3 - which], plotarea.x2, y[3 - which]); 
{ Draw center crosshairs: } 
SetLineStyle(CenterLn, CenterLn, NormWidth); 
line(x[3]. plotarea.yl, x[3], plotarea.y2); 
line(plotarea.xl. y[3]. plotarea.x2, y{3]); 
( Reset line style to normal before exiting: 
SetLineStyle(SolidLn. solidLn, NormWidth); 

end; 
end; 

end; 

procedure DraWCursorlnfo; 
{ All number lengths are VALMAX. Two formats: 
Cursor mode (xh.mode = 0): 

01234567890123456789012345678 
Point Normal Converted 
XXX}{ -XXX.XX us -XXX.XX kDa units are examples only) 
Intensity Relative Int. 
XXX.XXX10"XX -XXX.XXx10"XX 

Crosshairs mode (xh. mode 1) : 

01234567890123456789012345678 
X:Converted Y:Relative 

Dif. XXX.XX meV XXX.XXxlOAXX 
Ctr.-XXX.XX meV _XXX.XXxlOAXX 
) 
var 

p real; 
r real; 
s bufstring; 

begin 
if wv.nwn = 0 then 

exit; 
if sc·.mode <> sc_mode_GR then 

exit; 
with sc.ls[sc.curJ.gr do 
begin 

Power of 1000 of r. 
Generic real. } 
Generic string. } 

SetTextJustify(LEFTTEXT, TOPTEXT); 
SetTextStyle(DEFAULTFONT. HORIZDIR, 1); 
SetColor (WI-UTE) ; 
with cursor info do 
begin 

ClearArea(x1, yl, x2, y2); 
if xh.mode = 0 then 
begin 

if (cursorvisible = 1) and (wv.ls(wv.cur]A.screen = sC.cur) then 
( second check should not be necessary, but doesn't hurt) 

begin 
( Me information. } 
if mc.s <> " then 

if length(mc.s) < cursorinfo.xmax then 
outtextxy(xl, yl, mc.s) 

else 
outtextxy(x1, yl. copy(mc.s, 1. cursorinfo.xma.x - 2) + .... '); 

( X information. 
outtextxy(x1, y1 + textsize, 'Point Normal 
{ Point. } 
str(cursorp, s); 
outtextxy(x1, y1 + 2 1t textsize, s); 
( Normal. ) 

Converted' ) ; 

PtoU (wv. cur, cursorp. XAXISMODE_NORMAL); 
p Power(r); 
if r < 0 then 

5 := makestring(r I p, 7, 5) 
else 

5 := ' , + makestring(r / p, 6. 5); 
outtextxy(xl + 6 1t textsize, yl + 2 1t textsize, s + ' , + 

UnitPrefix(round( 
loq10(p») + XUNITTYPE[wv.ls[wv curj".par.dt, XAXISMODE_NORMALj 
); 

Converted. 
r.:= PtoU(wv,cur, cursorp, XAXISMODE_CONVERT); 

Patch to prevent 0 fs from showing up as lOA-24 s. } 
if (xax.isdt = dt_COR) and (abs (r) < POWFS) then 

r := 0; 
p := Power(r): 
if r < 0 then 

s := makestring(r / p, 7, 5) 
else 

s := ' , + makestring(r / p, 6, 5); 
outtextxy(x1 + 17 1t textsize, yl + 2 * textsize, s + ' , + 

UnitPrefix(round( 
loqlO(p») + XUNITTYPE[wv.ls[wv.curj".par.dt, XAXISMODE_CONVERTj 
); 

Y information. 
outtextxy(x1, y1 + 3 * textsize, 'Intensity Relative Int. '); 
( Intensity. ) 
r := PtoV(wv.cur. cursorp, xaxismode, YAXISMODE_ABSOLUTE); 
p := Power(r); 
if r < 0 then 

s := makestring(r / p. 7, 5) 
else 

s := ' , + makestring(r / p, 6, 5); 
if p <> 1 then 

s := S + 'x' + PowerOfTenPrefix(round(loglO(p»); 
outtextxy(x1, y1 + 4 1t textsize, s); 
( Relative intensity. ) 
r := PtoV(wv.cur, cursorp, xaxismode, YAXISMODE_RELATIVE); 
p := Power(r); 
if r < 0 then 

s := makestring(r / p, 7, 5) 
else 

S := ' , + makestring(r / p, 6, 5); 
if p <> 1 then 

s := S + 'x' + PowerOfTenPrefix(round(loglO(p)); 
outtextxy(x1 + 13 * textsize, y1 + 4 * textsize, s); 

end; 
end 
else 

{ xh mode 
with xh do 
begin 

case xaxismode of 
XAXISMODE_POINTS: s : = • Points' ; 
XAXISMODE~ORMAL: s := 'Normal'; 
XAXISMODE_CONVERT: s := 'Converted'; 
end; 
OutTextXY(x1 + 5 1t textsize, yl, 'X:' + 5); 

case yaxismode of 
YAXISMODE_ABSOLUTE, 5 
YAXISMODE_RELATIVE, 

'Absolute'i 
'Relative' ; 

w 
00 

> 
'C 
'C 
('I) 

S. •. 
~ 
..... 



-

end; 
end; 

end: 

end; 
OutTextXY(xl + 17 1r textsize, yl, 'y:' + 5); 
{ X difference. 

abslu[2] - u[l]); 
p Power (r); 
5 := makestring(r I p, VALMAX - 1, VALDEC); 
if xaxismode = XAXISMODE_POINTS then 
begin 

if p <> 1 then 
5 + 'x' + PowerOfTenPrefix(round(loglO(p)))i 

end 
else 

s := S + ' , + UnitPrefix(round(loglO(p))) + XUNITTYPE[ 
xaxisdt, xaxismodel; 

OutTextXY(xl, yl + textsize, 
{ Y difference. } 

abslv[2] - v[l]); 
p Power(r); 

'Dif. I + 51i 

5:= makestring(r I p, VALMAX -1, VALDEC); 

if p <> 1 then 
s := S + 'x' + PowerOfTenPrefix(round(loglO(p»); 

OutTextXY(xl + 17 • textsize, yl + textsize, s); 
{ X center. } 

u[3] ; 
p : = Power (r) ; 
5 : = makestring (r / p, VALMAX, VALDEC); 
if xaxismode = XAXISMODE_POINTS then 
begin 

if p <> 1 then 
s s + 'x' + PowerOfTenPrefix(round(loglO(p))); 

end 
else 

s + ' , + UnitPrefix(round{loglO(p))) + XUNITTYPE( 
xaxisdt, xaxismodel: 

OutTextXY(xl, yl + 2 * textsize, 'Ctr.' + s): 
{ Y center. } 
r ,= v[3]; 
p := Power(r); 
if r < 0 then 

s := makestring(r I p, VALMAX, VALDEC) 
else 

s := ' , + makestring(r I p, VALMAX - 1, VALDEC); 
if p <> 1 then 

s := S + 'x' + powerOfTenprefix(round(loglO(p)); 
OutTextXY(xl + 16 * textsize, yl + 2 * textsize, s); 

end; 

procedure DrawData(scr : integer); 
( Draw wave data on screen scr. ) 

p integer: 
pl integer; 
p2 integer: 
temp Fi1lPatternType; 
w integer: 
xl real i 
x2 real; 
yl real: 
y2 real; 

begin 
if sc.mode <> sc_mode_GR then 

exit; 
with sc.ls[scrl .gr do 
begin 

for w := 1 to wv num do 

end; 
end; 

if (wv.ls[w]A.on = 1) and (wv.!s[wjA.screen 
begin 

SetColor (wv .ls [w] A. col) : 
GetFillPattern(ternp); 
SetFillPattern(ternp, GetColor); 
Find point limits based on screen limits. ) 

scr) then 

pI UtoP{w, ullim, 1); ( Round up to nearest point in unit space. 
p2 := UtoP(w, u2lim, -1); ( Round down to nearest point in unit space. 

Must pass two tests: if pI = 0, then entire wave is to left of screen 
boundaries; we can forget it: } 
if pI > 0 then 
begin 

xl : = PtoX (w, pI); 
yl PtoYlw, pl); 
Otherwise, if entire wave is to right of screen boundaries, OR view 
is zoomed in so far that the first point larger than ullim is off 
the right edge of screen, then we shouldn't plot either. We check 
this by looking at xl: } , 
if xl < xaxis.x2 - I then 
begin 
( In business! ) 

if wv.ls(w]A.lines = 1 then { Draw lines. 
if (xaxisdt = dt_ELE) and (xaxismode = 

XAXISMODE_CONVERTf then { Go backward for energy. } 
for p := pI downto p2 do 
begin 

x2 : = PtoX(w, p); 
y2 ,= PtoYlw, pI; 
ClipLine(xl, yl, x2, y2, scr): 
xl x2; 
yl ,= y2; 

end 
else 

for p : = pI to p2 do 
begin 

x2 : = PtoX(w, p); 
y2 ,= PtoY(w, pI; 
ClipLine(xl, yl, x2, y2, scr); 
xl x2; 
yl ,= y2; 

end 
else { plot dots. 

end: 
end; 

end: 

if (xaxisdt = dt_ELE) and (xaxismode = 
XAXISMODE_CONVERT) then { Go' backward for energy. } 
for p := pI down to p2 do 

ClipDot(PtoX(w, pI, PtoY(w, pI, scr) 
else 

for p := pi to p2 do 
ClipDot(PtoX(w, pI, PtoY(w, pI, scr); 

procedure DrawMessageBox; 

> 
"CI 
"CI 
~ 

= ~ .... 
~ 
..... 

w 
........ 
\0 



var· 
s : bufstring: 

begin 
if sc.mode <> sc_mode_GR then 

exit; 
tx_dr (@com.tx): 

end; 

procedure DrawOsc: 
{ Draw virtual oscilloscope (if on). , 
begin 

if sc. mode sc_mode_GR then 
exit; 

with osc do 
begin 

if mode = 0 then 
exit; 

y := round(VtoY(AD.ls[ch).result. scr»i ( Compute y value. 
with sc.ls[scr].gr.plotarea do 
begin 

Getlmage(xl. y. x2, y, bit .... ): ( Save area underneath. 
SetColor (WHITE) :" 
ClipLine(xl. y. x2. y, scr): ( Draw line. 

end: 
end; 

end; 

procedure DrawScreen(scr : integer): 
{ Draw axes and belonging waves for screen scr. } 
begin 

if sc.mode <> sc_mode_GR then 
exit; 

with sc.ls[scrJ.gr do 
ClearArea(bdy[l].x, bdy[l].y, bdy[2].x, bdy[2].y); 

DrawData(scr) ; 
DrawCursor(scr): 
DrawTitle(scr} : 
DrawXAxisStuff(scr); 
DrawYAxisStuff(scr): 

end: 

procedure DrawTitle(scr : integer); 
( Draw title if enabled on screen scr. 
var 

temp : bufstring; 
begin 

-

if sc.mode <> sc_mode_GR then 
exit; 

( Draw screen number in LL corner. 
with sc.ls[scrj.gr do 
begin 

if (xon = 1) or (yon 1) then 
ClearArea (ylabel. xl. xlabel. y2 - textsize. ylabel. xl + textsize. 

xlabel.y2); . 
Make current screen title highlighted. } 

if scr = sc.cur then 
SetColor(COLORHL) 

else 
SetColor (WHITE) ; 

SetTextJustify(LEFTTEXT. TOPTEXT); 
str(scr. temp): 
if (xon = 1) or (yon = 1) then 

Outtextxy(ylabel.x1. xlabel.y2 - textsize. temp): 

end; 
( Draw title if on also highlighted if current screen. 
with sc.ls{scr] .ti do 

if on 1 then 
begin 

SetTextJustify(CENTERTEXT. TOPTEXT): 
if scr = sc"cur then 

SetColor(COLORHL) 
else 

SetColor(WHITE); ) 
str(scr. temp); } 

ClearArea(bdy[l].x, bdy[l].y, bdy[2].x, bdy[2].y); 
outtextxy( (bdy[l].x + bdy[2j.x) div 2, bdy[lj.y, temp + ': ' + s); 

end; 
SetColor(WHITE): ( Reset color to default for next operation. ) 
SetTextJustify(LEFTTEXT, TOPTEXT); 

end; 

procedure DrawVitals: 
("Draw all information except screens. ) 
begin 

DrawMessageBox; 
DrawWaveData; 
DrawCursorInfo; 

end; 

procedure DrawWaveData; 
( Print wave information. Indicator variables for each wave are as follows: 

-X.XX *Nis/MDS filename 

where: 
-X.XX is par.yscale (only displayed in relative y axis mode); 
* indicates current wave; 
N is wave number; 

indicates invisible; 
s indicates wave has been saved; 
I indicates tagged for selection; 
M is mode: if addwave, 'A': if scanning, . S'; 
S is screen number; 
filename is self-explanatory. 

var 
s : bufstring; ( General string. 
w : integer; { Wave counter. } 
x. y : integer; ( Screen coordinate temp stg. ) 

begin 
if sc . mode <> sCJl\ode_GR then 

exit; 
SetTextJustify(LEFTTEXT. TOPTEXT); ( Make x.y point to upper left corner of 

string. } 
SetTextStyle(DEFAULTFONT, HORIZDIR, 1f: ( Select font, direction. and 

size. ) 
with wavedata do 
begin 

ClearArea(xl, yl, x2, y2); 
SetColor (WHITE) : 
s := VERSION + • 

case _bs.dis of 
o s s + 
l: s:= s + DIS' ; 

end; 
case bs_on of 

w 
N o 

> 
'C 
'C 

~ 
Q. .... 
~ 
~ 



false 
true 

end; 
case _bs.sts of 

o s s + 

s + ' 

+ ' BS'; 

1 : s := s + ' STS'; 
end; 
OutTextXY{x1, yl, 51; 

end; 
for w 1 to wv.num do 
begin 

5 Wavelnfo{w, wavedata.xmax div 2); 
SetColor(wv.ls[w]A.col); 
if w <= MAXWAVES div. 2 then { First column. 
begin 

x wavedata. xl; 
y wavedata. y1 + w * textsize; 

end 
else 
begin 

x := wavedata.xl + textsize 1< wavedata.xmax div 2; 
y := wavedata.yl + (w - MAXWAVES div 2) ... textsize; 

end; 
OutTextXY(x, y, s); 
{ Draw box around active scan wave. } 
if (w = scanwave) and (wv.ls[w)A.scan.mode > 0) then 
begin 

line(x, y - 1, x + textsize wavedata.xmax div 2 - 1, y - 1); 
line(x, y + textsize - 1, x + textsize 1< wavedata xmax div 2 - 1, 

y + textsize - 1); 
line(x, y, x, y + textsize - 2); 
line(x + textsize 1< wavedata.xmax div 2 - 1, y, x + textsize 1< 

wavedata xmax div 2 - 1, y + textsize - 2); 
end; 

end; 
end; 

procedure DrawXAxisStuf f (scr : integer) i 

{ Handles all graphics for x axis on screen scr. } 

integer; 
bufstring; 
integer; 

u : real; 
begin 

if sc.mode <> sc_mode_GR then 
exit; 

with sc.ls[scrJ.gr do 
begin 

Generic integer. 
Generic string. } 
Generic screen x coordinate. 
Generic user-space x coordinate. 

SetTextJusti fy (CENTERTEXT, TOPTEXT); 
SetTextStyle{DEFAULTFONT, HORIZDIR, 1); { Select font, direction, and 

size. } 
SetCo!or{WHITE1; 

Draw axis. 
with plot area do 
begin { Note line coords are 1 pixel outside active drawing area in all 

directions. } 
line(x1 - 1. y1 - 1, x2, y1 - 1); ( Top line. 
1ine(xl - 1, y2, x2, y2); ( Bottom line. 

end; 

if xon 1 then 

, 

" 
'I 

begin 
Draw tick marks and numbers. 
u := ulnum; { X position in user-space of first tick mark and number. } 
repeat 

with xaxis do 
begin 

x := round(UtoX(u, scr»; { Calculate screen x coordinate. } 
!ine(x, yl, x, y2 - 2): ( Draw tick mark. -2 is to ensure there is 

a space between end of tick mark and beginning of text underneath. 
end; 
OutTextXY(x, xnumbers.yl, makestring(u / xpower, maxxdigits, 

xdecimals»; ( makestring() prevents string from exceeding length 
MAXXDIGITS. } 

u := u + ustep: 

:-

until u > u2num + ustep * SMALL; { Due to small accumulation of error with 
each add, I allow a generous margin of error at end, though this is still 
only 0.1% larger than exact end point. } 

Draw x label. 
with xlabel do 

OutTextXY«xl + x21 div 2, yl, xlabelstring + xunitsl; 
end: 

end; 
end: 

procedure.OrawVAxisStuff(scr : integer); 
( Handles all graphics for y axis on screen scr. ) 
var 

bufstring; Generic string. 
y integer; Generic screen y coordinate. 

Generic user-space y coordinate. V : real; 
begin 

if sc.mode <> sc_mode_GR then 
exit: 

with sc.ls(scrJ.gr do 
begin 

SetTextJustify(RIGHTTEXT, CENTERTEXT); 
SetTextStyle(DEFAULTFONT, HORIZDIR, 1); ( Select font, direction, and 

size. ) 
SetColor (WHITE) : 

Draw axis. 
with plotarea do 
begin ( Note line coords are 1 pixel outside active drawing area in all 

directions. ) 
line{xl - 1, yl - 1, xl - I, y21: ( Left line. 
line(x2, yl - 1, x2, y2); { Right line. 

end; 

if yon = 1 then 
begin 
Draw tick marks and numbers. 
v := vlnum: ( Y position in user-space of first tick mark and number. 
repeat 

with yaxis do 
begin 

y := round (VtoY (v, scr»; 
line(xl + 1, y, x2 - 1, yl; ( Draw tick mark. +1 is to ensure there is 

a space between end of tick mark and beginning of text to the left. ) 
end; 
OutTextXY(ynumbers x2 - 1, y, makestring(v / ypower, MAXYDIGITS, 

ydecimals); { makestring() prevents string from exceeding length 
MAXXDIGITS. } 

> 
"0 
"0 
~ := 
c:lo .... 
~ .... 

W 
N -

.. ,.: 



V := V + vstepi 
until v > v2num + vstep • SMALL; ( Due to small accumulation of error with 

each add, I allow a generous margin of error at end, though this is still 
only O.lt larger than exact end point. ) 

Draw y label. Note that there seems to be a bug with vertical printing: 
neither LEFTTEXT nor RIGHTTEXT works properly: LEFTTEXT prints 8 pixels to 
the left of expected: RIGHTTEXT prints 1 pixel to the left - i.e., they 
both print at the same position, given an x value. ) 
SetTextJustify(LEFTTEXT, CENTERTEXT): 
SetTextSty1e(DEFAULTFONT, VERTDIR, 11; 
with ylabel do 

OutTextXY(x2, (yl + y2) div 2, ylabelstring + yunits): 
end: 

{ Reset text parameters for next operation. 
SetTextJustify(LEFTTEXT, TOPTEXT): 
SetTextSty1e(DEFAULTFONT, HORIZDIR, 11; 

end: 
end: 

procedure EraseCursor(scr : integer); 
( Erase cursor on screen scr. Must already have checked for cursorvisible 

= I, wv.num > O. ) 
begin 

if sc. cur <> scr then 
exit; 

if sc.mode <> sc_mode_GR then 
exit; 

Restore bitmap(s) recorded in DrawCursor. ) 
with sc.ls[scrJ.gr do 
begin 

if xh.mode = 0 then 
begin 

if cursorvisible = 1 then 
Put Image (cursorx, cursory 1 , bitmapA, NORMALPUT) 

end 
else with xh do 
begin 

Put Image (x(1J , p1otarea.y1, bitmap.x(1J', NORMALPUTI; 
PutImage (x(2J, plotarea.y1, bitmap.x[2J', NORMALPUTI; 
PutImage(x(3J, plotarea.y1, bitmap.x(3J', NORMALPUTI; 
Put Image (plotarea.x1, y(1J, bitmap.y(lJ', NORMALPUTI; 
Put Image (plotarea.x1, y(2J, bitmap.y[2J', NORMALPUTI; 
PutImage(plotarea.x1, y(3J, bitmap.y(3J', NORMALPUTI; 

end; 
end: 

end: 

procedure EraseOsc: 
{ Erase virtual oscilloscope (if on). ) 
begin 

if sc.mode ~> sc_mode_GR then 
exit; 

with osc do 
begin 

if mode = then 
exit: 

Putlmage{sc.ls{scr] .gr.plotarea.x1, y, bitA, NORMALPUT); 
end; 

end; 

procedure EraseWaves; 
{ Erase all tagged waves. For each erasure, must move waves above it 

down, if any. Keeps cursor the same unless it was on deleted wave, in 
which case, it inherits wave moved into its place. or previous wave if 
none. Marks affected screen. } 

var 
active : boolean: { Flag indicating wave is active. } 
s : bufstring: 
w, w2 : integer: { Wave counters. 

begin 
for w := wv.num downto 1 do { Must count backward to work. } 

if wv.ls(w1A.sel = 1 then 
begin 

strew, s}: 
( Check to be sure wave is not active. 
active := false; 
if wv.ls(wJA.scan.mode >.0 then 

active := true 
else if (addwaves.mode 

active := true: 
if active then 

1) and (w addwaves.w) then 

C0trLwr ("Cannot remove active wave ' + s + '!', COLORHL) 
else 
begin 

( Keep various wave pointers on correct wave: ) 
if wv.cur >= w then 

dec (wv. cur) ; 
if addwaves. w > w then { Cannot delete addwave. } 

dec (addwaves.w) ; 
if scanwave > w then Cannot delete scanning wave. 

dec (scanwave) ; 
if mon.w w then 

mon.w. 0 { Turn off,mon. } 
else if mon.w > w then 

dec(mon.w) ; 
if _bs. bg >= w then 

dec (_bs.bgl; { Ok if this goes to O. 
if _bs.fg >= w then 

dec (_bs. fgl ; { Ok if this goes to O. 
for w2 := 1 to wv.num do 
with wv .ls {w2 J A .par do 

if dt = dt_ELE then 
if ele.bg > w then 

dec(ele.bgl; .J 
sc.ls[wv.ls[w]A.screenJ.sel := 1: { Tag screen. 
for w2 := w to WV.num - 1 do { Perform erase. 

wv.ls(w2J' ,= wv.ls[w2 + 1J'; 
dec (wv. num} : 

end; 
wv.ls(w]A.sel := 0; { Turn off wave tag. 

end: 
Patch to prevent cursor from vanishing. 

if (wv.num > O) and (wv.cur = 0) then 
wv.cur 1: 

end; 

procedure error; 
{ Prints error message to screen fault is found during ibrd. } 
begin 

if (ibsta and ERR) <> 0 then 
com_wr('Found an error. Redoing scan. 
begin 

Textmode; 

( 
i 

COLORHLI; 

, 
\. 

\ 

VJ 
N 
N 

> 
"CI 
"CI 
~ 

= ~ 
~. 

~ 



Wr teln(#7, 'Found an error.'); 
wr teln('ibsta = " ibsta) ; 
Wr teln('iberr = " iberr) ; 
if iber.r EDVR then writeln (' EDVR <DOS Error>'); 
if iberr ECIC then writeln (' ECIC <Not crc>'); 
if iberr ENOL then writeln (' ENOL <No Listener>'); 
if iberr EADR then wri teln (' EADR <Address error>'); 
if iberr EARG then writeln (' EARG <Invalid argument>'); 
if iberr ESAC then writeln (' ESAC <Not Sys Ctrl>')'; 
if iberr £ABO then writeln (' £ABO <Cp. Aborted>'); 
if iberr ENEB then writeln (' ENEB <No GPIB boards>'); 
if iberr EOIP then writeln (' EOIP <Async 1/0 in prg>' ) ; 
if iberr ECAP then writeln (' ECAP <No Capability>'); 
if iberr EFSO then writeln (' EFSO <File Sys. Error>'); 
if iberr EBUS then writeln (' EBUS <Command Error>'); 
if iberr ESTB then writeln (' ESTB <Status Byte Lost>'); 
if iberr ESRQ then writeln (' ESRQ <SRQ stuck on>'); 
if iberr ETAS then writeln (' ETAB <Table Overflow>'); 
writeln(' ibcnt = " ibcnt) ; 
delay (2000) ; 
Graphicsrnode; 
DrawAll; 

end; ) 

end; 

procedure ExitProgram; 
( Check if user wants to exit, then checks if waves are saved, allowing 

user one more chance to exit if there are unsaved waves. } 

var 
i integer; 

begin 
if com_wrsn(' Exit program' 1 = 0 then 

exit; 
exitflag := true; 
{ Check that all waves are saved. Search until we find one which 

isn' t. } 
for i : = 1 to wv. num do 

with wv.ls[i]" do 

end; 

if (datasaved = 0) or (parsaved = 0) then 
begin 

if cortLwr-YI1{ 'Not all waves saved. Still exit') 
exitflag := false; 

exit; 
end; 

o then 

procedure fft(var data fft_array_type: nn, isign integer); 
{ Fast Fourier transform procedure of data. no is number of points. 

isign indicates direction of Fourier transform, 1 or -1. ) 
var 

ii, jj, n, mmax, m, j, istep, i integer: 
wtemp, wr, wpr, wpi, wi, theta real; 
tempr. tempi : real: 

begin 
2 .. nn; 
1; 

for ii := 1 to nn do 
begin 

'i 2" ii - 1; 
if (j > il then begin 

tempr data [j] ; 
tempi data[j+l]; 
data[j] :'= data{i]; 

-,~ 

datal + 1) := data[i + 1]; 
da ta ( ] : = tempr; 
datal + 1] := tempi; 

end; 
:= n div 2; 

while (m >= 2) and (j > m) do begin 
j j - m; 

m m div 2; 
end; 
j : = j + m: 

end; 
mmax 2; 
while n > mmax do begin 

, istep : = 2 .. mmax; 
theta : = TWOPI * isign I mrnax; 
wpr : = - 2 .0 * sqr (5 in (0 . 5 * the·ta 1 ) ; 
wpi : = sin (theta) ; 
wr := 1.0; 
wi := 0.0; 
for ii : = 1 to (mmax div 2) do begin 

m : = 2 * ii - 1i 
for jj := 0 to (n - m) div istep do begin 

m + jj * istep; 
j : = i + mmax; 
tempr wr'" datalj] - wi * data(j +- 1]; 

tempi wr * data(j + 1] + wi * datalj]; 
datal J ,= data[iJ - tempr; 
datal + 1) := data[i + 1] - tempi; 
datal] := data{i] + tempr; 
datal + 1] := data[i + 1] + tempi: 

end; 
wtemp wr; 

wr * wpr - wi ... wpi + wr: 
wr wi * wpr + wtemp * wpi + wi; 

end; 
mmax 

end; 
end; 

istep; 

function FileExists(fn : bufstring) : boolean; 
{ Checks whether or not file 'fn' exists. returning TRUE if so, FALSE if 

not. } 
var 

file; ( File variable. } 
begin 

assign (f, fn); 
(SI- ) 
reset (f) : 
(S1+) 

if IOResult 0 then 
begin 

FileExists 
close(f) ; 

end 
else 

FileExists 
end; 

TRUE; 

FALSE; { File never opened if IOResult <> o. 

(function find_extension(s string) integer; 
{ Returns numeric extension, or 0 if non-numeric. 
{var 

integer: 
integer: 

> 
"0 
"0 
~ = Q.. 
S;;" 
I-" 

W 
tv 
W 



d integer; { Durrany code. 
{begin 

i : = length(s) - 1; 
while (i > 1) and (i > length(s) - 4) and (s[i) <> ',') do 

i:=i-1; 
v := 0; 
if s[i] = ',' then 

val(copy(s, i + 1, length(s) - i), v, d); 
find_extension v; 

end; } 

function FilenameStart(s : string) : integer; 
{ Finds position in s where filename part starts; all text to left of this 

point is the path. } 
var 

i : integer; 
begin 

for i : = length (s) downto 1 do 
case s[i] of 
'\', ',' , 

begin 
FilenameStart 
exit; 

end; 
end; 

FilenameStart 1; 
end; 

i + 1; 

function FileOpenWrite(var f : text; s : string) : boolean; 
( Opens file for writing using error suppression to detect disk errors 

wi thout crashing program. ) 
begin 

assign(f, 5); 

($I- ) 
rewrite(f) ; 
($I+) 
if IOResult = 0 then 

FileOpenWrite := true 
else 
begin 

COI1Lwr( 'Cannot open· + s, COLORHL); 
FileOpenWrite false; 

end; 
end; 

function FindWave(scr : Lfiteger) : integer; 
( Returns number of first visible wave on screen scr. Otherwise returns 

o. ) 
var 

w integer; 
begin 

{ Return 0 if no waves. 
if wv.num = 0 then 
begin 

FindWave : = 0; 
exit; 

end: 
{ If current wave on screen, use this in preference to first wv.ls. } 
if wv.ls[wv.cur]A.screen = scr then 
begin 

FindWave 
exit; 

end; 

wv.cur; 

[> 

{ Look for first wave on screen scr which is visible. 
for w ;= 1 to wv.num do 

with wv.ls[w]A do 
if (screen scr) and (on 1) then 
begin 

FindWave Wi 

exit; 
end; 

Give up: return O. } 
FindWave 0; 

end; 

procedure FitBs; 
{ Scales all bs .ele scans by 1/tot. } 
var 

integer: 
r real; 

begin 
{ Find wave to scale to: use current if valid bs ele; otherwise use 

first one. } 
r := 1; { Set as default to avoid 10 error. 
with wv.ls[wv.cur]A do 

if (par.dt = dt_ELE) and (par.ele.bs.mode 1) then 
r := par.ele.bs.tot 

else 
for i := 1 'to wv.num do 

with wv.ls[i]A do 
if (par.dt = dt_ELE) and (par.ele.bs.mode 
begin 

r := par.ele.bs.tot; 
{ Avoid /0 error: } 
if r < 1 then 

r := 

else 

1) then 

i := wv.num: { Trick to get out of loop. } 
end; 

( Scale other waves. ) 

sc_sel_off; ( Clear screen sel tags. ) 
for i := 1 to wv.num do 

with wv.ls[i]A do 
if (par.dt = dt_ELE) and (par.ele.bs.mode 1) then 
begin 

par.yoffset := 0: 
if par.ele.bs.tot > 0 then 

par.yscale := r par.ele.bs.tot 
else 

par.yseale := 0; { This will signal user that tot 
sc. Is (screen] . sel ; = 1; ( Tag screen. ) 
se .ls (screen] . gr, yaxismode YAXISMODE_RELATIVE; 

end; 
UpdateSel; 

end; 

procedure FitY(d : integer); 

o. ) 

{ Changes wv.ls(]A.par.yoffset and .yscale of each visible wave, 
so limits all fit on screen together (like fullview, but in 
relative y mode). Applies to screen containing wave w·only. } 
Using current wave, or first qualifying wave if current wave doesn't 
qualify, as a reference, changes yoffset and yscale of other visible 
waves of datatype d (or all datatypes if d < dt_MIN) so that they all 
have same v limits. } 

., 

w 
tv 
~ 

> 
~ 
~ 
('I) 

= ~ .... 
~ 
~ 



i integer; ( General counter. 
wref integer: { Wave reference #. 
vrange, vrangecur real: { Temporary vmax - vrnin. } 

begin 
if wv.num = 0 then 

exit; 
if addwaves. mode then 
begin 
co~wr('Cannot fit Y in addwaves mode.', COLORHL): 
exit; 

end; 
{ Find all qualifying waves, changing their screens to absolute mode, 

marking screens for later, and recording first qualifying wave with 
wref. } 

sc_sel_off: 
wref := 0; 
for i := wv.num downto 1 do { Go backward so wref = first wave. } 

with wv.ls(i)" do 
if (on = 1) and (Cd < dt_MIN) or (par.dt = dll then 
begin 

wref := i; 
sel : = 1; 
sc.ls(screenl.sel 1; 
sc.ls(screenl.gr.yaxismode YAXISMODE-ABSOLUTE; 

end; 
Switch reference to wv.cur if it qualifies. ) 

if wv.ls[wv.cur)".sel = I then 
wref wv. cur i 

{ Exit if no waves qualify. } 
if wref 0 then 

exit; 
Recalculate wave v limits. } 

UpdateVLimi ts; 
{ Calculate reference limits. 
with wv.ls(wref]A do 

vrangecur : = vmax - vrnin; 
if vrangecur < 1 then 

vrangecur := 1; { Prevent yscale from being 0; I use stipulation 
that vrangecur < 1 to prevent problem of roundoff error making 
it not exactly 0, but still close enough to make yscale tiny. } 

Scale all other waves to fit this range. } 
for i := 1 to wv.num do 

with wv.lsfi]A do 
if sel = 1 then 
begin 

vrange : = vmax - vmin; 
if vrange < 1 then 

vrange := 1; ( Same idea as above, but now to prevent / O. ) 
par.yscale := vrangecur / vrange; 
par.yoff$et := -vmin '* par.yscale; 

end; 
Now go back to relative mode for all screens and update: ) 

wv_sel_off; 
for i := 1 to sC.num do 

with sc.ls[iJ do 
if sel 1 then 

gr.yaxismode 
UpdateSel; 

YAXISMODE_RELATIVE; 

{ Make current screen one with current wave (call ChangeCurrentWave in 
order to update some other variables. too). } 

ChangeCurrentWave{O); 

, i: 

( work with real y values. 
sc.ls{sc.curJ.gr.yaxismode 

UpdateVLimits; 
UpdateYAxis (sc. cur) ; 

YAXISMODE_ABSOLUTE; 

{ Find wave with largest y range. 
with wv.ls[wv.cur]" do 
vrangecur : = vmax - vmin; 
if vrangecur < 1 then 

vrangecur := 1; { Prevent yscale from being 0; I use stipulation 
that vrangecur < 1 to prevent problem of roundoff error making 
it not exactly 0, but still close enough to make yscale tiny. } 

Scale all other waves to fit this range. ) 
for w : = 1 to wv. nwn do 

Wl.th wv.ls[wJ" ~do 
if on = 1 then 
begin 

vrange : = vmax - vmin; 
if vrange < 1 then 

vrange := 1; { Same idea as above, but now to prevent / O. } 
par.yscale := vrangecur / vrange; 

par.yoffset := -vrnin '* par.ysca!e; 
end: 

ToggleYAxisMode (sc. cur) ; 
end; 

procedure fpes_sv{s bufstring); 
{ Save parameter file for fpes macro to file s. } 
var 

bg : integer; 
f : text; 
i : integer; 

begin 
{ Go thru active files and ensure that if _bs.bg > 0, and there are 

intervening waves which are not bs mode, or not ELE data type, that 
_bs.bg is decreased appropriately. } 

UpdateBg; { Make sure bg is consistent with current waves. } 
bg := _bs.bg; ( Assign to temp variable. ) 
wv_sel_off; 
if bg > 0 then 
begin 

{ Now go through waves up to bg and decrease value of bg for 
every one which is not a bs ELE wave. Also, highlight waves 
whose delays will be written to file. } 

for i := 1 to bg - 1 do 
with wv.ls(il" do 

if (par.dt = dt_ELE) and (par.ele.bs.mode > 0) then 
sel : = 1 

else 
dec(bg); 

Continue past bg wave. 
for i := _bs.bg to wv.num do 

with wv.ls[iJ" do 

end 

if {par.dt = dt_ELEl and (par.ele.bs.mode > 0) then 
sel := 1; 

else ( Highlight waves for non-bs file. 
for i : = 1 to wv. num do 

with wv.ls[i]" do 
if par.dt = dt_ELE then 

sel := 1; 

Prepare filename. ask for permission to overwrite if it exists. 
if get_extension{s) = ,. then 

> 
"CI 
"CI 
('t> 

= Q.. •. 
~ 
I-" 

lJ..) 

N 
VI 



s ;= s + '.' + FPES_EXT; 
if not fullpath(s) then 

s : =" dir + s; } { Use home directory instead of data directory" 
if fi1eexists{s) then 

if com_wr-yn( 'File' + s + ' exists. Overwrite') = 0 then 
exit; 

Write file. 
assign(f, s): 
rewrite(f); 
write1n(f, bg); 

for i := 1 to wv.num do 
with wv.ls[i]A do 

if se1 = 1 then 
begin 

writeln(f, par.ele.dly I POWFS); 
com_wr ('wv ' + makestringint (i) + ' dly saved.', COLORMESS); 

end; 
close (f) ; 
wv_sel_off: 
DrawWaveData; 

end; 

function fullpath(s : bufstring) : boolean; 
{ Determines if filename s contains a full path or is just an extension of the 

current path. Criteria: 

Return TRUE if s[l] = '\' (root reference) or s(2] 
Return FALSE otherwise. 

begin 

(drive reference). 

if (s[lJ ',') or «length(s) > 1) and (s[2J ':'» then 
ful1path := true 

else 
fullpath 

end; 
false; 

procedure FullView(i : integer); 
( Quick command to make both x and y axes full-width on screen i. 
begin 

sc.1s[i].gr.xfullmode 1; 
sc.ls[i].gr.yfullmode 1; 
Update(i) ; 

end; 

function GainCode(adgain : integer) : integer; 
Calculates gain code used by ADReadAsm: 
adgain GainCode 
1 0 

begin 

16 
32 
48 

case adgain of 
2: GainCode 16; 
4: GainCode : = 32; 
8: GainCode : = 48; 
else GainCode := 0; ( Unity gain for I, plus any garbage codes. ) 

end; 
end; 

function get_extension(s bufstring) bufstring; 

( Returns file extension of filename s. 
var 

i : integer; 
begin 

i : = length(s); 
while (s[i) <> '.') and (i >= length(s) - 3) do 

dec(i) ; 
{ Check to ensure file extension exists! } 
if i >= length(s) - 3 then 

get_extension copy(s, i + I, length(s) - i) 
else 

get_extension 
end; 

procedure GraphicsMode; " 
{ Restore screen to graphics mode after being initialized (see 

InitGraphics). } 
begin 

SetGraphMode (graphmode) ; 
sc.mode sc_mode_GR; 

end; 

procedure Help; 
{ Displays help screen from file HELP_FN. 
var 

e boolean; 
f text; 

Exit flag. 

integer; { General counter. 
integer; { Line counter. } 

lines : integer; { Max. lines in help file. } 
s : bufstring; 

begin 
{ Check to make sure file exists. } 
if FileExists(HELP_FN) = false then 
begin 
co~wr('Help file not available.', COLORHL); 
exit; 

end; 

{ Determine number of lines in help file. } 
assign(f, HELP_FN); 
reset (f) ; 
lines := 0; 
repeat 

readln(f, s); 
inc (lines) ; 

until eof(f); 
close (f) ; 

{ Ini tialize other variables. } 
TextMode; 
e false; 
1 : = 1; 

repeat 
clrscr; 
TextColor(WHITE); 
assign(f, HELP_FN)i 
reset(f); 
( Skip lines before current section. ) 
for i : = 1 to 1 - 1 do 

readln(f, s) i 
for i := 1 to HELP_LINESPERPAGE do 

i 
1 

Vol 
tv 
0\ 

> 
"'CI 
"'CI 
~ 

5-.... 
~ 
)00000 



if not eof(f) then 
begin 

readln(f. s); 
writeln(s) ; 

end; 
close(f); 
textcolor (LIGHTMA.GENTA) ; 
write('Use up/down. page up/down. horne/end to scroll. Press ESC to exit .• ); 

( Now wait for user input. 
case readkey of 
ESC: e : = true; 
EXTENDED: 

case readkey of 
XARROWDOWN , 

if 1 < lines - HELP_LINESPERPAGE + 1 then 
inc(1) ; 

XARROWlJP: 
if 1 > 1 then 

ded1) ; 
XEND: 1 := lines - HELP_LINESPERPAGE + 1; 
XHOME, 1 ,= 1; 
XPAGEOOWN: 

HELP _LINESPERPAGE - 1); 
begin 

inc(l. 
if 1 > 

1 
lines - HELP_LINESPERPAGE + 1 then 
lines - HELP _LINESPERPAGE + 1; 

end; 
XPAGEUP, 

begin 
dec(l, HELP_LINESPERPAGE - 1); 
if 1 < 1 then 

1 ,= 1; 
end; 

end; 
end; 

until e; 
DrawAll; 

end; 

fun~tion info_area(w : integer) : real; 
{ Calculates the area of wave w. Uses variable binning depending on 

xaxismode and dt. } 
var 

integer; 
pl. p2 integer; 

begin 
info. area := 0; 
with wv .ls [wJ ..... do 

with sc.ls[screenJ "do 
begin 

if (screen = .sc.cur) and (gr.xh.rnode 
{ Full range. } 
begin 

p1 1; 
p2 par pt; 

end 
else 

( Use crosshairs to specify range. 
if gr.xh.u[l] < gr.xh.u[2] then 
begin 

pl 
p2 

UtoP(w. gr.xh u[l), 1); 
UtoP(w, gr.xh u[2J. -1); 

1) then 

end 
else 
begin 

pl UtoP(w. gr xh.u[2J. -1); 
p2 ,= Utop(w, gr xh.u[lJ. 1); 

end; 
for i := pl to p2 do 

-

info. area := info.area + PtoV{w, i. gr.xaxisrnode. gr.yaxisrnode) 
'", DerivX(w. i, gr.xaxismode); 

end; 
info_area 

end; 
info. area; 

function info_avg(w : integer) : real; 
{ Calculates the average of wave w. Requires area to be known (call 

info_area). ) 
var 

dx : real; ( x-axis difference. ) 
begin 

info_avg : = 0; 
with wv.ls[w] ..... do 
if par.pt > 0 then 
begin 

dx := abs(PtoU(w. par.pt, sc.ls[screen] .gr.xaxismode) - PtoU(w, 
pmin, sc.ls[screen].gr.xaxismode»; { Use abs to take into account 
the reversal in orientation for energy space. } 

info_area(w); . 
if dx > 0 then 
. info_avg info.area I We; 

end; 
end; 

function info_edge(w : integer; pl, p2 : integer; fifty: real) : real; 
{ Calculates position of edge. given point limits pl, p2, and 50% 

intensity value fifty. } 
var 

p : integer; 
xl. x2. yl, y2 : real; 

procedure loop; 
begin 

with sc.ls[wv.ls[w] ...... screen] .gr do 
begin 

x2 : = PtoU(w, P. xaxismode); 
y2 : = PtoV(w, p, xaxisrnode. yaxisrnode); 
if (yl <= fifty) and (y2 >= fifty) then 
begin 

if yl <> y2 then 
info_edge (xl'" (y2 - fifty) + x2 '" (fifty - yl» 

(y2 - y1) 

else 
info_edge := (xl + x2) I 2; 

p p2; { Trick to get out out loop. } 
end 
else 
begin 

xl 
yl 

end; 

x2; 
y2; 

end; 
end; 

begin 

> 
"C 
"C 
ttl 

= Q. 
~. 

.... 

v.> 
tv 
-..l 



with sc.ls[wv.ls[w]~.screenJ.gr do 
begin 

xl PtoU(w, pl, xaxismodel; 
yl := PtoV(w. pl. xaxismode, yaxismode); 
if pI < p2 then 

for p : = pl + I to p2 do 
loop 

else 
, for p pI - 1 downto p2 do 

end; 
end; 

loop; 

procedure info_edges(w : integer; vfind : integer); 
Calculates the left and right 50% edge positions of 
the center and fwhm (average and difference of edge 
ing all in the info record variable. ) 

wave w, and also 
positions. stor-

var 
fifty: real; 
p1, p2, ptemp 
rtemp : real; 
vI, v2 : real; 

integer; 

begin 
with info do 
begin 

fwhm := 0; 
ctr := 0; 
edgel : = 0; 
edger := 0; 
with wv.ls[w]~ do 
begin 

if (sc.num <> screen) or (sc.ls[screen].gr.xh.mode 
{ Consider whole wave. } 
begin 

pI : = pmin; 
p2 : = par .pt; 
fifty (vmin + vrnax) 2; 

end 
else 
{ Only focus on part of wave inside crosshairs. } 
with sc.ls[screen].gr do 
begin 

if xh.u[I] < xh.u[2] then 
begin 

p1 UtoP(w, xh.u[l], 1); 
p2 UtoP(w, xh.u[2], -1); 

end 
else 
begin 

p1:= UtoP(w, xh.u[2], -1); 
p2 := UtoP(w, xh.u[l], 1); 

end: . 
if vfind = 0 then 

fifty := xh.v[3] { Center of crosshairs. 
else 
{ Find vlimits within crosshairs. } 
begin 

if pI > p2 then 
( Switch so 'for' loop will work. 
begin 

ptemp := p1; 
pI p2; 
p2 : = pternp; 

0) then 

end: 
vI : = PtoV(w. pl, xaxismode, yaxismode): 
v2 := vI; 
for ptemp := pI + I to p2 do 
begin 

rtemp : = PtoV(w, ptemp, xaxisrnode, yaxismode): 
if rtemp < vI then 

vI := rtemp; 
if rtemp > v2 then 

v2 := rtemp; 
end; 
fifty (v1 + v2) / 2; 

end; 
end: 
if (p1 > 0) and (p1 <= par.pt) and (p2 > 0) and (p2 <= par.pt) 

then 
begin 

if pI > p2 then 
{ Switch so 'for' loop will work. } 
begin 

ptemp := p1; 
pI := p2; 
p2 : = ptemp; 

end; 
edgel := info_edge(w, pl, p2, fifty); 
edger := info_edge(w, p2, pI, fifty); 
if edgel > edger then 
{ Switch. } 
begin 

rtemp 
edgel 
edger 

end; 

edgel; 
edger: 
rtemp; 

fwhm : = abs (edger - edgel); 
ctr := (edger + edgel) I 2; 

end; 
end: 

end; 
end; 

function info_ht(w : integer) : real; 
{ Calculates the height (difference between max and min) of wave w. } 
begin 

with wv.ls[w]~ do 
info_ht vrnax - vmin; 

end; 

procedure info_wr(w : integer; r : real: s : bufstring; code : 
integer) ; 
Write quantity r with label s. w is wave number. Code tells whether or 
not to write units after quantity. ) 

var 
p : real; ( Power. 
s2 : bufstring; 

begin 
p := Power(r); 
with wv.lS[W]A do 
begin 

s2 := XUNITTYPE[par.dt, sc.15[5creenJ .gr.xaxismode]; 
if (52 = "l or (code = 0) then 
begin 

ifp 
52 

I then 
'x' + PowerOfTenPrefix(round{loglO{p») 

W 
N 
00 

> 
"C 
"C 

~ 
~ .... 
~ 

""" 



else 
s2 

end 
else 

52 "+ UnitPrefix(round(logIO(p») + 52: 
end: 
com_wr_wv(w, s + ' , + makestring(r / p, VALMAX, VALDEC) + 52, 

COLORMESS) ; 

end; 

procedure InitGraphics; 
{ Launch graphics mode. This procedure is copied from TUrbo Pascal Reference 

Manual, pp. 138-139 } 
var 

errorcode integer: 
graphdriver : integer: 
maxcolor : integer; ( debugging only! 

begin 
graphdriver : = DETECT: 
InitGraph(graphdriver, graphmode, 'O:\BP\BGI'); 
errorcode := GraphResult; 
if errorcode <> GROK then 
begin 

writeln{'Graphics error:' GraphErrorMsg(errorcodel); 
writeln{'Program aborted ... '1; 
halt!l); 

end: 
textsize ;= TextHeight{ 'x'); { Number of pixels for a single character, 

used to layout screen correctly irrespective of graphics mode used. The 
function call requires a dummy string to work. } 

SetBkColor(BLACK); { Set background color to black (all modes). 
{ Set boxes for different information on screen. A pictorial outline is as 

follows (not to scale!): 

I cursor info II 
I I I waveda ta 
+----------+1 
I messagebox II 

II 
ylabel---------->I I I 

II II plot area 
ynumbers----------> II 

II II 
yaxis--------------->I 

II II 
II 

screen 

xlabel xnwnbers xaxis 

with cursor info do 
begin 

xmax := 29; 
ymax := 5; 
xl 0; 

0; 
* textsize; { Number of characters needed. x2 

yl 
y2 ymax * textsize; 

end; 

with wavedata do 
begin 

xl cursorinfo.x2 + textsize; { Leave one space for readability. 
x2 GetMaxX + I: 
xmax : = (x2 + 1 - xl) div textsize; 
ymax : = MAXWAVES div 2 + I; 
yl := cursorinfo.y1; 
y2 cursorinfo.yl + ymax * textsize; 
maxwavenamelength : = xmax div 2 - 14: { Define nwnber of characters 

that can be displayed for wave names. } 
end; 
with messagebox do 
begin 

xl cursorinfo.x1; 
x2 cursorinfo.x2; 
yl cursorinfo.y2; 
y2 wavedata.y2; 
xmax (x2 + I - xl) div textsize; 
ymax := (y2 + 1 - yl) div textsize; 

end; 
{ New: add this 
com. tx.bdy(1].x 
com. tx.bdy[lJ.y 
com. tx.bdy[2].x 
com. tx. bdy [2 J .y 

information to the com block. } 
messagebcix. xl; 
messagebox. y1; 
messagebox. x2; 
messagebox. y2; 

com. tx.num.x := messagebox.xmax; 
com.tx.num.y := messagebox.ymax: 
{ Calculate maximum room for all screens and store in sc.bdy: } 
sc.bdy[lJ .x 0; 
sc.bdy[2].x GetMaxX + 1; 
sc bdy [1] . y wavedata. y2; 
sc bdy[2J.y GetMaxY + 1; 

end; 

procedure Initialize; 
( Gets program running. 
var 

i : integer; 
begin 

{ Set up graphics housekeeping. Note that I seem to get error messages 
if I've already printed to text screen before I call InitGraphics. } 

InitGraphics: 

{ Reserve memory for var.iables. 
GetMem(bitmap, imagesize(O, 0, 0, CURSORLENGTH»; { Cursor bitmap 

buffer. } 
for i := I to sc_MAX do { Graphics screen crosshair bitmap buffers. 

with sc.ls(i] .gr do 
begin 

GetMem(xh.bitmap.x[l], imagesize(O, sc.bdy[l] .y, 0, sc. 
bdy[2J .y)); 

GetMem(xh.bitmap.x[2], imagesize(O, sc.bdy[l] .y, 0, sc. 
bdy[2J .y)); 

GetMem(xh.bitmap.x[3], imagesize (0, sc.bdy[lJ .y, 0, sc. 
bdy[2J .y)); 

GetMem(xh.bitmap.y[l], imagesize(sc.bdy[l] .x, 0, sc. 
bdy[2J .x, 0)); 

GetMem(xh.bitmap.y[2) , imagesize(sc.bdy[l] .x, 0, 
bdy[2J .x, 0)); 

GetMem(xh.bitmap y(3), imagesize(sc.bdy{l].x, 0, sc. 
bdy[2J.x, 0)) ; 

end: 
for i I to MAXWAVES do { Waves. 

> 
"CI 
"CI 

~ 
Q.. .... 
~ 
~ 

w 
tv 
\0 



New(wv.ls{il) ; 
GetMem(com.tx.buf, com.tx.num.x * com.tx.num.y); ( Com text buffer. 
GetMem(com.tx.col, 2 * com.tx.nurn.y);" { Com color buffer. } 
GetMem{osc.bit, imagesize(sc.bdy{l).x, 0, sc.bdy[2].x, 0»); { Virtual 

oscilloscope bitmap buffer. } 

Declaration odds & ends. } 
for i : = 1 to COLORMAX do { Color-to-code array. } 

anticolor[COLOR{i]) i; 
exitflag : = false; 
newworkspace ::= 1; 
ts.pos := 0; 
macro_override 0; 

{ Set up com variables: blank out buffers, put cursor in upper left. } 
FillChar(com.tx.buf A

, com.tx.num.x * corn.tx.num.y, ' '); 
for i := 1 to com.tx.num.y do 

com.tx.colA[i) := COLORUSERi 
com.tx.cur.x 1: 
com. tx.cur.y := I: 

{ Set default command to null (in case user initiates session with I I 

com.num ; = 0; 
com.sv := 'x'; 
com.old := "; 

{ See if user wants to disable devices; otherwise open some. } 
textmode; 
clrscr; 
TextColor(WHITE); 
writeln('Disable devices for analysis use only (Yes/No)?'); 
dev_rd -1; 
repeat 

case readkey of 
'y', 'Y': dev_rd : = 0; 
'n', 'N': dev_rd := 1i 
EXTENDED: readkey; 

end; 
until dev_rd <> -I: 

{ Open channel to translation stage. } 
if dev_rd = 1 then 

. begin 
assign (com2 , 'COM2'); 
rewrite (com2) ; 

end; 

( Read workspace. 
ws_rd IWS_FN_DF) ; 

end; 

procedure Initia1izeWave(w : integer); 
{ Set wave system parameters to their defaults when a wave is first created or 

read in. } 
begin 

with wv .ls (w) h do 
begin 

col := ChooseColor(w); 
datasaved ;= 1; 
lines 1; 
mass1 0: 
on 1; 
parsaved 1 ; 

pmin := 1; 
savemode 0; 
screen sc.cur; { Place on current screen. } 
scan.mode := 0: 
se1 := 0; 
fillchar (tmp, sizeof (tmp) , 0) i 

end; 
( Other things which should be done for newly loaded/created wave. 
wv.num := Wi { Now safe to increase wave number. }. 
wv.cur := Wi ( Make cursor point to new wave. } 
ChangeCurrentWave(O); { Update screen i. } 
sc.ls[sc.cur] .gr.cursorvisible := I: ( Force cursor to be vi

sible for NeWCursor. } 
NeWCursor; ( Place cursor in middle of wave. 
sc.ls[wv.ls(wv.cur]A.screen) .gr.xaxisdt := 

wv.ls[wv.cur]A.par.dt; ( Force most recently loaded 
wave to be the screen's current dt; this is only· 
important if xaxismode <> POINTS. ) 

end; 

procedure Init_tsi 
( Initialize translation stage when load new workspace. 
begin 

MakeLookup; 
if dev_rd = 

Recalculate lookup table. ) 
then 

begin 
{ Set current acceleration and velocity. } 
write (COM2, 'tFCAB6', LF, 'B', makestringint(ts.acc), LF); 
delayIACKDELAY) ; 
writelCOM2. ACK); 
delay I ACKDELAY) ; 
write (COM2, 'iFCAB7', LF,· 'B', makestringint(ts.vel), LF) i 

end; 
end; 

procedure Integral; 
{ Crosshairs mode only: Calculates integral (sum, actually) of region bounded 

by x-axis xh, printing result in message box. Currently not set up 
to properly integrate in energy-space, so gives error message. } 

var 
accum : real; ( Integral. } 
p : real; { Power. } 
pt, pl, p2 : integer; { Point counters . 
s : bufstring; ( String. ) 
u, ul, u2 : real; { U-space counter. } 

begin 
if wv.num 0 then 

exit; 
with sc.ls[sc.cur1.gr do 
begin 

if xh.mode = 0 then 
begin 
co~wr('Must be in xh mode.', COLORHL); 
exit; 

end; 
if wv .. ls (wv. cur] A. screen <> sc. cur then 
begin 

com_wr('Current wave must be on screen.', COLORHL); 
exit; 

end; 
if (xaxisdt dt_ELE) and (xaxismode XAXISMODE_CONVERTl 

then 
begin 

w 
w 
o 

> 
"C 
"C 

~ 
Q.. .... 
~ 
~ 



com_wr('Cannot integrate in energy space. 
exit; 

end; 
{ Copy xh limits to own variables. } 
u1 : = xh. u { 1 ] ; 
u2 ,= xh.u{2J; 
( Ensure u1 <= u2. 
if u1 > u2 then 
begin 

u := u1; 
ul u2: 
u2 := u; 

end; 
pI UtoP(wv.cur, u1, 1); 
p2 UtoP(wv.cur, u2, -.1); 
accum : = 0; 
for pt := pI to p2 do 

COLORHL) ; 

accum := accwn + PtoV(wv.cur, pt, xaxismode, yaxismode); 
p : = Power (accwn) ; 
str(accwn / p : VALMAX VALDEC, s); 
com_wr('Integral = ' + s + 'x' + PowerOfTenPrefix(round(Log10(p»), 

COLORMESS) ; 
end; 

end; 

procedure intelligent_filename(s bufstring; var aser bufstring; var 
anum integer; var ext: bufstring); 
Analyzes string s for series, number and extension parts. Returns 
series in aser, number in anum and extension in ext. ) 

dash boolean: 
dummy in teger : 
i : integer; 

begin 
( Get EXT if it exists. 
ext get_extension(s); 
if ext <> " then 

5 := copy(s, 1, length(s) - length(ext) - 1); ( Omit extension from 
string. ) 

See if we have NUM only, or SER-NUM. } 
dash : = false; 
for i := length(s) downto 2 { don't check for in first character: 

could be a directory symbol } do 
if sri] = then 
begin 

{ Extract auto.ser and auto.nwn. } 
aser : = copy{s, I, i); 
val(copy(s, i + I, length(s), anum, dununy): 
i 2; { Trick to get out of loop. } 
dash : = true; 

end; 
Just get number: use auto.ser for series prefix. 

if dash false then 
begin 

aser auto.ser; 
val(copy(s, I, length(s)), anum, dummy); 

end; 
end; 

procedure IntroduceProgram; 
{ Print friendly greeting. } 
const 

CEN 40; 

begin 
textmode; 
clrscr; 
TextColor(WHITE); 
writeln; 
writeln; 
writeln_ctr(HEAD_WV, CEN); 
writeln_ctr (HEAD_WS, CEN); 
writeln; 
writeln_ctr{'Jeff Greenblatt', CEN): 
writeln_ctr{'Gordon Burton', CEN); 
writeln_ctr{'Martin Zanni', CEN); 
writeln: 
writeln_ctr('Data Acquisition and File Comparison Program.', CEN); 
writeln_ctr{'Supports file versions E and later.', CEN); 
writeln; 
writeln: 
writeln; 
writeln; 
writeln: 
writeln_ctr('Press F2 to get to system control menu, or any other key to start. 

CEN) ; 

if readkey = EXTENDED then 
if readkey = XF2 then 

SystemControl; 
end; 

function is_bg{w : integer) boolean; 
{ Checks if any wave is calling w its background wave. 
var 

i : integer: 
begin 

for i : = 1 to wv nwn do 
with wv.ls[i] .... do 

if (par.dt dt_ELE) and (par.ele.bs.mode w) then 
begin 

is_bg true; 
exit; 

end; 
is_bg := false; 

end: 

function is_nwn(s : bufstring) 
{ Determines if s is a number. 
var 

i integer; 
begin 

for i := 1 to length(s) do 

boolean; 

if «s[i] < '0') or (s(i] > '9'» and (s(i] <> '+') and (s(i] <> 
'-') and (sCi] <> '. ') and (s[i] <> 'e') and (s(i] <> 'E') then 

begin 
is_nwn false: 
exit; 

end; 
is_num 

end; 
true; 

function is_sel{s bufstring; sel : integer) ; boolean; 
{ Determines if s is a valid sel option (number, 'all' or 'sel'). If 

sel = 0, 'sel' keyword is invalid (can't use 'sel' in SCLIST). } 
begin 

if is_num(s) or (5 = 'all') or «sel = 1) and (s = 'sel'») then 
is_sel ;= true 

> 
"C 
"C 
~ 

= ~ .... 
~ ... 

v.> 
v.> 



else 
is_sel 

end; 

end. 

false; 

4.4. fpesjr .pas 

unit FpesJR; 
{ History of modifications (please add to BOTTOM of list!): 

Version 1: Begun 2jun94 BJG. 

Procedures and functions beginning with N through Z for the program FPES. 
See FPES (at appropriate version) for more specific program modification 
notes. 

interface 

uses 
FpesVar; 

procedure limit(var r : real; min, max real); 
function LoglO(r : real) : real; 
procedure MakeFilter(res : real); 
pr.ocedure MakeLookup; 
function makestring(r : real; max, dec: integer) : buf~tring; 
function makestring2(r : real; max, dec: integer) : bufstring; 
function makestringint(r : real) : bufstring; 
procedure MC_rd(s : bufstring); 
function mcs_init(w : integer) : boolean; 
procedure MoveCursor{axis, numberofpoints : integer); 
procedure Mread(name : integer; numchars : integer); 
{procedure Mscan;} 
procedure Mwrite{name : integer; wbuf : bufstring; lfflag boolean); 
procedure NextFileNum(w integer); 
procedure NewCursor; 
function NumptstoCode(r real): integer; 
procedure Pause; 
(procedure PickPeaks; ) 
function Power (number : real) : real; 
function PowerOfTenPrefix(logpower : integer) : bufstring; 
procedure PrintW'ave; 
function PtoU(w, p, xaxismode : integer) real; 
function PtoV(w, p, xaxismode, yaxismode integer I : real; 
function PtoX{w, p : integer) : real; 
function PtoY(w, p : integer) : real; 
procedure rd_int (vax: v : integer; mess : bufstring; min, max : integer); 
procedure rd_long(var v : longint; mess: bufstring; min, max : longint); 
procedure rd_real(var v : real; mess: bufstring; min, max : real); 
procedure rd_str(var v : bufstring; mess: bufstring); 
procedure readroundandlimit(var r : real; min, max. : real); 
procedure Readln2i(var i integer); 
procedure readln21(var 1 longint); 
procedure Readln2r(var r real); 
procedure Readln2s(var i bufstring); 
procedure readvalue(var r : real; p : real); 
function ReadWave(fn : bufstring; wave index : integer; userinput 

boolean) boolean; 

procedure ReadWaveE(var f : text; w : integer); 
procedure ReadWaveEUpgrade (w integer) ; 
procedure ReadWaveF(var f : text; w : integer); 
procedure ReadWaveFUpgrade (w : integer); 
procedure ReadWaveG(var f : text; w : integer); 
procedure ReadWaveGUpgrade (w : integer); 
procedure ReadWaveH(var f : text; w : integer); 
procedure ReadWaveHUpgrade(w : integer); 
procedure ReadWaveI (var f : text: w : integer); 
procedure ReadWaveIUpgrade (w : integer); 
procedure ReadWaveJ (var f : text; w : integer); 
procedure ReadWaveJUpgrade (w : integer); 
procedure ReadWaveK(var f : text; w : integer); 
procedure rebin: 
procedure _rescale; 
function ~extension(s : bufstring) : bufstring; 
function rounddown(r : real) : longint; 
procedure roundoff (var r : real; s : real); 
function roundup(r : real) : longint; 

implementation 

uses 
crt, dos, FpesCom, FpesAI, FpesST, FpesUZ, graph, Keys, TPDecl; 

procedure limit(var r : real; min. max : real); 
( Constrains r to lie between min and max limits. 
begin 

if r < min then 
r : = min 

else if r > max then 
r max; 

end; 

function Log10(r : real) : real; 
( Calculates common logarithm of r. ) 
begin 

if (r <= 0 ) then 
LaglO := In(-r) LN_10 

else 
LaglO In(r) I LN_10; 

end; 

procedure MakeFilter(res : real); 
{ Sets up Lorentzian.filter function with FWHM of res. } 
var 

i : integer; 
begin 

res := 4 / (res· resl; ( Put in convenient form for calculation. ) 
for i : = 1 to MAXPOINTS div 2 + 1 do 

filter[i] ;= 1 / (1 + (i - 1) • (i - 1) • res); 
end: 

procedure MakeLookuPi 
( Creates lookup table (ts.lookupl using wob parameters. Form of 

function is a single- cycle of a sine wave added to a line with eq. 
y = x. Phase is not considered until the StageLookup function. ) 

var 
i integer; 

begin 
for i : = 0 to TS_LOOKUP _MAX do 

ts.lookup[i] := i * ts.wob.per TS_LOOKUP_MAX + 
sin{i * TWOPI / TS_LOOKUP_MAX) * ts.wob.ampl: 

w 
w 
N 

> 
'C 
'C 
I'\) 

== ~ ... 
II< ,.... 



end; 

function makestring(r real; max, dec in'teger) bufstring; 
Converts real number r into string with minimum possible length, but having 
at least dec decimal places. However, overall length is kept to <= max digits 
with truncation occurring from left, so decimal places are not guaranteed. } 

var 
s bufstring; 

begin 
str(r 0: dec, s); 
if length(s) > max then 

makestring copy(s, 1, max) 
else . 

makestring 
end; 

s; 

function makestring2(r real; max, dec integer) bufstring; 
Converts r into string having exactly max characters, and dec decimal 
places; extra characters are padding added on the left. Assumes r has 
been divided by appropriate power already so that there are no more 
than 3 digits to left of decimal point. Note that routine only really 
works if dec> 3; otherwise, for instance, if dec = 3, will encounter 
situation where r / p > 100 and so truncation will kill first fraction
al number but not decimal point. 

var 
s : bufstring; 

begin 
str(r : 0 : dec, s); 
com_wr_db ( , '" + s + '~'); 

if (r > -1) and (r < 0) then 
s := copy(s, I, dec + 3) ( 3 extra chars: -o.XXX ) 

else if r < 1 then 
s copy(s, 1, dec + 2) extra chars: -X.XX or O.XXX ) 

else 
S := copy(s, 1, dec + 1); { 1 extra char: X.XX } 

if max> length(s) then 
makestring2 copy (BLANKLINE, 1, max - length(s» + s 

else 
makes tr ing2 s; 

end; 

function makestringint(r : real) bufstring; 
{ Converts r into integer string. } 
var 

s : bufstring; 
begin 

str(r: 0 : 0, s); 
makestringint := s; 

end; 

procedure Mc_rd(s : bufstring); 
( Read in mc file with name s. ) 
var 

C : char; { Dummy char to handle space between * and string. 
f text; 

begin 
( if not Ful1Path(s) then 

s : = dir + S; } 

if mc.fn = " then 
begin 

mc.num : = 0; 
exit; 

end; 

if not Fi1eExists(s} then 
begin 
co~wr(s + ' not found.', COLORHL); 
mc. fn : = "; 
mC.nwn 0; 
exit; 

end; 
mc.fn s; 
assign(f, s); 
reset (f); 
mc.nwn := 0; 
while (not eof (f» and (mc. nurn < mc_MAX) do 
begin 

inc (me. num) ; 
with mc.ls[mc.num] do 

readln(f, m, min, max, e, 5); ( Read mass, max and label. 
end; 
close (f) ; 

end; 

function mcs_initCw : integer) : boolean; 
Set up MCS for scanning, using abbreviated command sequence if para
meters in wave w match those currently in use. If w = 0, this is a 
flag to use the tw (tweak) variables instead, and adds a few more 
commands particular to the tw mode. Returns false only if MCS was 
not found on the GPIB bus. } 
3/18/97: Added communication with Tektronix 744A scope as well, for 
implementation of STS (shot-to-shot) mode. ) 

var 
devname : nbuf; 
j : integer; 
s, s2 : bufstring; 

begin 
mcs_init := true; 
if mes.new = 1 then 
begin 

( Check that MCS is on GPIB card. 
devname := 'mcs 
mcs.addr := ibfind(devname); 
mwrite(mcs.addr, 'clrs', false); ( Clear device. 
if (ibsta and ERR) <> 0 then 
begin 

error; 
mcs_init 
exit; 

end; 

false; 

mwrite(mcs.addr, 'outp 1', false); ( Direct device output to gpib 
card. ) 

mwrite (mcs. addr, 'tr1v .5', false); ( Trigger level. 
mwrite (mes. addr, 'trsl 0', false); (Trigger slope = positive. 
str(-discrim, s); 
mwrite(mcs.addr, 'dclv ' + s, false): ( Discrimination level. 
mwrite(mcs.addr, 'dcsl 1', false); ( Discrimination slope = neg. 
mwrite(mcs.addr, 'bckl 0', false); ( Internal clock timebase } 
mwrite(mcs.addr, 'left 0', false); ( Set leftmost bin to O. 
mwrite(mcs.addr, 'botm 0', false); ( Set bottom bin to 0 cts. 
if w > 0 then { Normal mode. } 

with wv.ls[wl~ do 
begin 

mcs.pt := par.pt; 
mcs.shotsperscan := par.ele.shotsperscan; 
mcs.timeperpt := par.timeperpt; 
{ Undo tweak mode settings. 

> 
"CI 
"CI 
(D 

= ~ .... 
~ 
~ 

VJ 
VJ 
VJ 



mwrite(rncs.addr, 'hscl 7', false); { Set 1024 bins per screen.} 
end 

else 
beg in ( .Tw"eak mode. ) 

mcs.pt := tW.pti 
mcs.shotsperscan := tw.shotsperscan; 
mcs.timeperpt := tw.timeperpti 
( Additional commands for tweak mode. 
mwrite (mcs. addr, 'hscl 4', false); { Set bins per screen to 128.} 

mwrite (mcs. addr, , llim 0', false); { Set left limit for integra-
tion to bin O. } 

mwrite (mcs. addr, 'rlim 127', false); 
( Set right limit to 127 bins. ) 

end; 
mwrite (mcs. addr, 'brec ' + makestringint(NumptsToCode(mcs.pt», 

false); { Bins per record. } 
mwrite (mcs. addr, 'rscn' + makestringint(mcs.shotsperscan), false); 

{ Records per scan. } 
mwrite (mcs.addr, 'bwth ' + rnakestringint (TimebaseToCode (mcs. 

timeperpt», false); { Select bin width. } 
delay(250); { Give it time. } 

{ STS:. Prepare TEK (except in tweak mode) . 
if (w > 0) and (_bs.sts = 1) then 
begin 

( Check that TEK is on GPIB card. 
devname : = 'tek ' ; 
tek : = ibfindCdevname); 
if tek < 0 then 
begin 

com_wr ( 'Tek find error. " COLORHL); 
mcs_ini t : = false; 
exit: 

end; 
ibc1r (tek) i 
{ Shut off possible acquisition in progress (don' t use 

tekwrite since this waits for scope to be free first, 
which defeats purpose of shutting off an acquisition!) 

tekset_rd(_bs.sts_ch): ( Record settings before changing. 
mWrite(tek, 'acq:state 0', true); 
( No zoom: ) 
tekwriteC'zoom:state off'): 
( Disable fit to screen: ) 
tekwrite ('hor: fittoscreen off'); 
{ Average multiple scans: } 
tekwrite (' acq:mode ave'); 
( Number of shots to average: 
str(wv.ls[_bs.bg]A. par . e 1e.shotsperscan, s); 
tekwrite( 'acq:numavg • + s); 
{ Stop after set number of scans: } 
tekwrite( 'acq:stopafter seq'); 
( Set up string for use by channel commands: 
s := 'ch' + chr(ord( '0') + _bs.sts_ch); 
( Set channel for data acquisition: ) 
tekwrite( 'data: source + s); 
( Turn on channel: ) 
tekwri te ( 'sel:' + s + on' ) ; 
( Set vert. position to O. ) 
tekwrite(s + ':pos 0'); 
{ Set vert. scale. } 
str{_bs.sts_vert, s2); 
tekwrite(s + I :scale ' + s2); 
( Read vert. scale, store in _bs.sts_vert. 

tekwrite(s + ':sca1e?'): 
mread(tek, sizeof(s2»; 
s2 : = ,. 
for j := 1 to ibent - 1 do 

s2 ;= s2 + ibbuf[j) i 

val(s2. _bs.sts_vert, j); { j is dummy variable. 
{ Set vert. offset to -5 div - discrim: } 
str(-5 • _bs.sts_vert - discrim, s2); 
tekwrite(s + ':offset ' + 52); 
{ 2 bytes per bin: } 
tekwrite('data:width 2'); 
{ Transfer desired .number of data points: } 
str(wv.ls[_bs.bgl'.par.pt. s); 
tekwrite('data:start l;stop , + s): 
{ Use signed binary format with LSB (low byte) transferred 

first: } 
tekwrite('data:encdg sribinary'); 
( Calculate minimum i of bins and set: 
j ;= round(wv.ls[_bs.bgl'.par.pt); 
if j <= 500 then 

j ; = 500 
else if j <= 1000 then 

j ;= 1000 
else if j <= 2500 then 

j ;= 2500 
else 

j ; = 5000; 
str(j, s); 
tekwrite('hor:reco' + s); 
{ Set pretrigger to 0%: } 
tekwrite('hor:trig:pos 0'); 
{ Use main sweep: } 
tekwrite('hor:mode main'): 
{ Set time per division ( = time per pt * pts per div) : 
str{wv.ls{_bs.bg]A.par.timeperpt * TEK_PTPERDIV, S); 
tekwrite('hor:main:seale ' + S)i 

end; 
mcs.new 0; 

end 

{ When mcs.new = 0 ... 
else if w > 0 then 

{ Selective commands sent if parameters have changed (don' t bother 
for w = 0 case, since never more than one tweak going at once!) } 

with wv.ls{w)A do 
begin 

if mes.timeperpt <> par.timeperpt then 
begin 

mes. timeperpt : = par. timeperpt; 
mwrite {mes. addr, 'brec ' + makestringint(NumptsToCode{mcs.pt», 

false); { Bins per record. } 
end; 
if mcs.shotsperscan <> par.ele.shotsperscan then 
begin 

mcs.shotspersean := par.e1e.shotsperscan; 
mwrite(mcs.addr, 'rscn ' + makestringint(mcs.shotsperscan), false); 

{ Records per scan. } 
end; 
if mcs.timeperpt <> par.timeperpt then 
begin 

mcs.timeperpt := par.timeperpt; 
mwrite (mcs. addr, 'bwth + makestringint (TimebaseToCode {mcs. 

timeperpt», false); { Select bin width. 

w 
w 
~ 

> 
"C 
"C 
('I) 

= ~ 
~. 

~ 



end; 
end; 

Commands sent every time. 

STS mode: Start the TEK. 
if (w > 0) and (_bs.sts = 1) then 

tekwrite('acq:state run'); 

STS mode (bs set only) run toggle mode. } 
if (w> 0) and (_bs.sts = 1) and (wv.1s[w]~.par.ele bs.mode 

(_bs.sts_tog = 1) then 
mwrite{mcs.addr, 'acmd 2', false) 

else 
mwrite(mcs.addr, 'acmd 0', false); 

Start the MCS. } 

1) and 

mwrite(mcs.addr, 'clrs', false); { Clear device twice for good measure. } 
rnwrite(mcs.addr, 'c1rs', false); 
mwrite(mcs.addr, 'sscn', false); ( Start the scan. 
mwrite(mcs.addr, 'locI 0', false); ( Allow front panel to remain 

active while scanning. ) 

if w > 0 then 
with wv.ls(w)'" do 
begin 

Time(scan.starttime); ( Record start time. 
scan.steptime := 100 * round(mcs.shotsperscan / par.ele. 

reprate); ( How long to wait between data reads. 
end 

else 
begin 

Time(tw.starttime); 
tw.steptime 100 * round(mcs.shotsperscan I tW.reprate); 

end; 
end; 

procedure MoveCursor{axis, numberofpoints : integer); 
{ Two functions: 

1. If xh.mode = 0: For axis = 0 (x), moves cursor a specified number 
of points along a wave (use numberofpoints = 0 when changing wave only). For 
axis = 1 (y), calls ChangeCurrentWave. 
2. If xh.mode = 1: Moves active crosshair corresponding to axis (0 = 
x, 1 = y) and numberofpoints. } 

begin 
with sc.ls[sc cur] .gr do 

if xh.mode = 0 then 
begin 

if wv.num = 0 then 
exit; 

if (axis = 0) and (wv.ls[wv cur]h.screen = sc.cur) then { Must be 
left/right arrow and wave on current screen in order to move. } 

begin 
if cursorvisible = 1 then 

EraseCursor(sc.cur) 
else 
begin 

cursoru : = (u1lim + u2lim) / 2; 
UpdateCursor(sc.cur); 

end; 
{ Calculate new cursor position. 
if (xaxismode = XAXISMODE_CONVERT) and <xaxisdt 

dt_ELE) then 

end; 

cursoru := PtoU{wv.cur, cursorp - numberofpoints, xaxismode) 
{ Go backward for energy. } 

else 
cursoru := PtoU(wv.cur, cursorp + numberofpoints, xaxismode); 

Make sure cursor is on visible part of x axis; calculate screen coordi
nates. 
UpdateCursor(sc.cur); 
DrawCursor(sc.cur); 
DrawCursorInfo; 
if (mc.auto = 1) and (mc.s <> "J then 

C0tTLwr (mc. s, COLORMESS); 
end; 

end 
else with xh do 
begin 

EraseCursor(sc.cur); 
if axis = 0 then 
begin 

x[whichl := x [which] + numberofpoints; 
if x[which] < plotarea.x1 then 

x(which] := plotarea.xl 
else if x(which} > plotarea.x2 - 1 then 

x(which] := plotarea.x2 - 1; 
end 
else 
begin 

y[whichJ := y(which} + numberofpoints; 
if y[whichJ < plotarea.y1 then 

y[which] := plotarea.yl 
else if y(which) > p1otarea.y2 - 1 then 

y[which] : = plotarea.y2 - Ii 
end; 
UpdateCursor(sc.cur)i 
DrawCursor(sc.cur); 
DrawCursorInfo; 

end; 

procedure mread(name : integer; numchars integer); 
{ Reads a character array from the device name and changes it to a 

string array "rdbuf. } 
var 

i : integer; 
begin 

rdbuf : = "; 
ibrd(name, ibbuf, numchars); { Numchars is a guess to how long the 

string is. } 
rdbuf[O) := chrCibcnt - 1); ( The length of rdbuf is set to the number 

of characters read, ibcnt - 1. ) 
if (ibsta and ERR) <> 0 then errqr; 
for i := 1 to ibcnt do 

rdbuf[i) ibbuf[il; 
end; 

(procedure Mscan; 

const 
MaxIbbuf = $1000; 

type 
iobuf = array[l .. MaxIbbuf] of char; 
iolbuf = array[l .200] of integer; 

var • 
ibbu f iobu f ; 

> 
"CI 
"CI 
/'I) 

= ~ .... 
~ 

~ 

v,) 
v,) 

VI 



devname : nbu f ; 
hbuf iolbuf; 
i, j, k, scan, result, terr : integer; 
stringconv,c,s,bina : bufstringi 
c2, numblocks : longint; 

begin 
if wv .ls [wv. cur] "'. saved = 0 then ( If there is already data in wave 

make sure users wants to overwrite it. ) 
begin 

message := 'overwrite Existing Wave?'; 
DrawMessageBox; 
c : = readkey; 
if (e = 189) or (e U2l) then ( 'y' or "(' ) 

begin 
message := 'OVerwriting'; 
DrawMessageBox; 
delay (1000) ; 

end 
else 

end; 

begin 
message := 'Scan Aborted.'; 
DrawMessageBox; 
delay (1000) ; 
message : = MESSAGEDEFAULT; 
DrawMessageBox; 
exit; 

end; 

message 'Starting Mscan'i 
DrawrnessageBoxi 
FillChar (wv .1s [wv. cur]" .data, sizeof (wv .ls [wv .cur] '" .data) , 0) ; 

arrays. } 
( devname: = ' mag ic 

magic := ibfind(devname); Locate device on gpib card. 
if (ibsta and err) <> 0 then error; 

if magic < 0 then error; 
ibc1r (magic) ; 
delay (200) ; 
ibclr (magic) ; 
delay (200) ; 
message 'Found Magic Controller'; 
DrawMessageBox; 
mwrite{magic, 'ECHO OFF'); 
mwrite(magic,'A 0 '); 
rnwrite(magic,'N 18 '); 
mwrite(magic,'Z '); 
mwrite(magic,'F 26 '); 
mwrite(magic,'E '); 

( Inita1ize 

mwrite (magic, 'COMM.:_FORMAT OFF, WORD, BINARY '); 
mwrite(magie, 'COMM_BLOCKSIZE 200 '); 
mwrite(magic, 'COM1·CORDER LOFIRST '); 
delay(100); (Ridiculous but have to have it.) 

mwrite(magic, 'USING 18 .); 
mwrite(magic, 'AVGENABLE ON'); 
delay(lOO); (Same) 

mwrite(magic,'W 255 '); (set offset 
mwrite (magic, ' F 19 '); 

mwrite(magic,'E '); 
str(256 + 16*timebasetocode(wv.1s[wv.cur]"'.timebase),stringconv)i 
mwrite(magic,'W' + stringconv + ' '); 
delay(lOO) 
mwrite(mag c, 'F 16 '); 
mwrite(mag c,'E '); 

str (wv·.ls [wv. cur]". numpts+10, stringconv) ; 
mwrite(magic, 'AVGLEN ' + stringconv + ' '); 
str(wv.ls{wv.cur]".numscans,stringconv)i 
mwrite(magic, 'AVGN ' + stringconv + ' '); 
mwrite(rnagic, 'AVG START'); 
delay (100) ; 
message : = 'Started MScan' i 

DrawMessageBoxi 
repeat 
result := 0; 
mwrite(magic, 'AVGDONE '); 
mread (magic, 20) ; 
terr : = 0; 
char_to_int(resu1t,terr); 

if keypressed then 
begin 

c : = readkey; 
if c = 127 then 

end; 

begin 
message : = ' Scan Aborted' ; 
DrawMessageBox; 
delay(2000) ; 
message := MESSAGEDEFAULT; 
DrawA11; 
exit; 

end; 

delay (1000) ; 
until resul t > 0 i 
message 'About to read.'; 
Drawmessagebox; 

numblocks := round(wv.1s(wv.cur]".numpts/100); 
str(round(200*numb10cks-l),stringconv); 
mwrite(magic, 'READ -A, 0,' + stringconv + ' '); 
delay (100) ; 
message := 'dataread sent'; 
drawrnessagebox; 

for j := 0 to round(2*wv.ls{wv.cur]".numpts/200) do 
begin 

dataread (magic, 200) ; 
for i := 1 to 200 do 

wv .ls (wv. cur] "'. scan [10*j+i] wv .15 [wv. cur] A. scan[i] ; 
end; ) 

textmode; 
scan. w : = wv. cur; 

for j : = 0 to numb1ocks-l do 
begin 
write1n('going into dataread i ',j); 
delay(SOO) ; 

dataread(magic,200); 
for i := 1 to 100 do 

wv .1s [wv. cur]" .data [j *100+i] scan.data[i] ; 
end; 
graphicsmode; 

for j : = 0 to numblocks-l do 
begin 

ibrd (magic, ibbuf, 200) ; 
message : = ' ibrding' ; 
drawmessagebox; 
for k : = 1 to 200 do 

wv .1s [wv. cur] '" .data [k+100*j J 
wv.ls[wv,cur)"'.scan(kli 

end; ) 

wv.ls{wv.cur]".data(k+100*j] + 

w 
W 
0\ 

> 
't:I 
't:I 
n> 

= ~ 
~. 

I000O 



wv.ls[wv.cur]A.saved 
FindLargest(wv.cur), 
FullView; 

end; ) 

0; 

procedure mwrite{name : integer'; wbuf : bufstring; LFFLAG boolean); 
( Changes string to character array which is sent to the 

device, mcs.addr. 
const 

LF = no; 
var 

wlen, i integer; 
begin 

wlen := length(wbuf); 
for i : = 1 to wlen do 

ibbuf til ; = wbuf [il; 
if Ifflag then 
begin 

ibbuf[wlen + I} LF; 
inc (wlen) ; 

end; 
ibwrt(name, ibbuf, wlen); 
for i : = 1 to wI en do 

ibbuf[il ;= • '; 

if (ibsta and ERR) then 
com_wr('Error sending 

end; 
wbuf + 

procedure NextFileNum(w integer); 

COLORHLI; 

{ Finds current file number and increments. If file number cannot be 
found (invalid £n), sets filename to } 

var 
dummy : integer; 
ex : bufstring; 
i integer; 
s, 52 : bufstring; 
v integer, 

begin 
with wv.ls[w)A.par do 
begin 

{ If using standard file extension, change to reflect dt (otherwise, 
keep intact). ) 

ex := get_extension(fn); 
for i : = dt_MIN to dt_MAX do 

if ex = dt_NAME[i] then 
ex ;= dt_NAME[dtl; 

Find current file number. 
s : = rm_extension (fn) ; 
i : = length (s); 
while (i > length{s) - 4) and (i > 0") and (s[i] <> '-') do 

dec (i) ; 

if (i = 0) or (sri] <> '-') then' 
begin 

fn := 

exit; 
end; 

{ Compare root with auto .ser, updating auto.num if they match and 
au to. num < v. } 

val(copy(s, i + 1. length(s) - i), v, dummy); 
s := copy(s, 1, i); 
if not FulIPath(s) then 

S := dir + s; 
inc (v) ; 

s2 := auto.seri 
if not FuIIPath(s2) then 

s2 : = dir + s2; 
if (s = s2) and (auto num <= v) then 

auto.num := v + 1; 

Update filename. 
fn s + makestringint(v) + + ex; 

end; 
end, 

procedure NewCursor; 
{ Place cursor in middle of wave wv. cur. } 
begin 

if wv.num a then 
exit; 

with sc.ls[wv.ls[wv.cur]~.screen].gr do 
cursoru := (PtoU(wv.cur, wv.ls[wv.cur]A.pmin, xaxismode) + 

PtoU(wv.cur, wv.ls{wv.cur]A.par.pt, xaxismode» / 2; 
end; 

function NumptstoCode(r : real) : integer; 
( Converts the numpts number to the corresponding mcs integer. ) 
var 

i : integer; 
begin 

for i : = MCS_PT_MIN to MCS_PT_MAX do 
if r = MCS_PT[i] then 
begin 

NumptsTocode : = i; 
exit; 

end; 
NumptsToCode 

end; 

procedure Pause; 

-1; {If something doesn' t work, assigns -1. } 

( Suspend operations until user presses a key. 
begin 

com_wr( 'Paused. Press any key.', COLORHL); 
( Read key, and if extended code, read next char as well. 
if readkey = EXTENDED then 

readkey; 
end; 

(procedure PickPeaks; 
var 

peak array (1 .. MAXPEAKS] of integer; 
after : real; 
before : real; 
ch : char; 
count integer; 
i,j : integer; 
message : bufstring; 
modified boolean; 
ok boolean; 
s bu£string; 
temp real; 

integer; 

begin 
if (wv.num > 0 ) then 

> 
"'CI 
"'CI 
n> 

= Q. 
~. 

~ 

w 
W 
-..l 

/' 



begin 
for i:=1 to MAXPEAKS do 

peak[i] := 0; ( reset values} 
textmode; 

writeln(' ') i 
writeln('Procedure for finding peaks in a spectrum.'); 
writeln(' .); 
repeat 

modified := FALSE; 
writeln('Present peak threshold is 
writeln('Present 2nd deriv. term is 
writeln(' '); 

, • peakthre5hold: 5: 3 ••.• ) ; 
',peaksecond:6:3,'.') ; 

writeln('Modify· these (YIN)?'); 
repeat 

ch : = Upcase (Readkey) ; 
until (ch in ['Y', 'W]); 

writeln(ch) ; 
if (ch = 'Y') then 

begin 
writeln(' '1; 
writeln ('New value for peak threshold (default 

',peakthreshold:5:3, ') .'); 
readln(s) ; 
if (s <> ") then 

begin 
modified : = TRUE; 
val_r (s, temp) ; 
if «temp < 0.0) or (temp> 1.0» then 

writeln( 'Value must be a percentage from 0 to 1') 
else 

peak threshold temp: 
end: 

writeln( 'New value for second deriv. (default 
readln(s) ; 
if (s <> ") then 

begin 
modified := TRUE: 
val_res, temp); 
if (temp> 0.0) then 

• , peaksecond: 6 : 3, , I . ' I ; 

temp := temp· -1.0; { peaksecond should be negative} 
peaksecond : = temp; 

end; 
end; ( if ) 

until (modified FALSE); 
writeln(' 'I; 
repeat 

ok := TRUE; 
writeln('Check for peaks in which wave? (default 
readln(s) ; 
val_i(s,wl; 
if «w < 0) or (w> wv.numl) then 

begin 
ok : = FALSE; 
writeln( 'Wave number out of range.'); 

end; 
until (ok = TRUE); 
if (5 = "I then 

wv.cur; 
count := 0; 
message := "; 

with wv.ls[w]~ do 
begin 

for i : = pmin+l to numpts-l do 

',wv.cur,').'); 

1) 

end; 

begin 
( compute second derivative} 
temp := (PtoV(w;i-l) + PtoV(w,i+l) - 2.*PtoV(w,i»/sqr(timebase); 
before := PtoV(w,i) - PtoV(w,i-l); 
after := PtoV(w,i+l) - PtoV(w,i); 
if « temp <= peaksecond ) and 

( before >= 0.0 ) and 
( after <= 0.0 ) and 
(PtoV(w,i)/largest ·peakthreshold I) then 
found one} 

begin 
inc (count) ; 
if (count<=MAXPEAKS) then 

peak[countl := i 
else 

end; 
end; 

( limit exceeded 
begin 

str(MAXPEAKS,s) ; 
message: = 
, Peak limi t exceeded. Maximum number of peaks is ' + s; 

end; 

writeln{'····· FINISHED ••••• ,); 
writeln('Found ',count,' peaks. 'I; 
writeln(' '); 
writeln(message); 
waitkey; 
if (count> MAXPEAKS then 

count := MAXPEAKS; 
if (count <> 0 ) then 
begin 

with wv .15 [w] ~ do 
begin 

case scantype of 
TIMESCAN,LONGTIMESCAN: 
begin 

j := 0; 
repeat 

clrscr; 
writeln(' '); 
writeln( 'PEAK LIST FOR WAVE NUMBER', w, , ('+wavename+').'); 
writeln(' 'l; 
writeln{'Peak Time (ns) ReI. Int. Abs. Int. Sec. Deriv.'}j 
writeln('---- --------- --------- -----------'); 
i : = 0; 
while (i < LlNESPERPAGE) do 

begin 
inc{il; 
if {(i+j <= MAXPEAKSl and (i+j <= count» then 

end; 

writeln( (i+j) :4,' " (PtoU(w,peak[i+j] ,xaxismodel) :9:0,' 
(AbstoRel(w,PtoV(w,peak(i+j],xaxismode,yaxismode»):lO:3,' 
(PtoV(w,peak[i+j),xaxismode,yaxismode»:lO:O,' 
«PtoV(w,peak[i+j]+l,xaxismode,yaxismode) + PtoV{w,peak[i+j]-

-2.0·PtoV(w,peak(i+j1»/sqr(timebase»:10:3); 

:= j + LINESPERPAGE; 
waitkey; 

until (j >= count); 
end; ( TIMESCAN, LONGTIMESCAN 

ENERGYSCAN: 

w 
w 
00 

> 
"CI 
"CI 
n> 

S
&<0 .... 



begin 
j 0; 
repeat 

clrscr; 
writeln{' '); 
writeln('PEAK LIST FOR WAVE NUMBER w,' ('+wavename+').'); 
writeln(' '); 
writeln('Peak Time(ns) Energy (eV) ReI. Int. 

Deriv.') ; 

----, ) ; 

writeln( ,----

i := 0; 
while (i < LINESPERPAGE) do 

begin 
inc (i); 
if «i+j <= MAXPEAKS) and (i+j <= count» then 

writeln( (i+j) :4,' 
(peak(i+j)*timebase + delay time) :9:0, 
(PtoU(w,peak[ i+j] » : 11: 3, ' 
(AbstoRel(w,PtoV(w,peak[i+jj») :10:3,' 
(PtoV(w,peak[i+j]» :10:0,' 
«PtoV(w,peak[i+jj+1) + PtoV(w,peak[i+jj-l) 

-2.0*PtoV(w,peak[i+j) )/sqr(timebase» :10:3); 
end; 
: = j + LINESPERPAGE; 

waitkey; 
until (j >= count); 

end; (ENERGYSCAN ) 
MASSSCAN: 

begin 
j : = 0; 
repeat 

clrscr; 
writeln(' '); 

Abs. Int. 

writeln( 'PEAKLIST FOR WAVE NUMBER w,' ('+fn+').'); 

Deriv. '); 

---- ') ; 

writeln(' 'I; 
writeln('Peak Time (ns) Mass (Da) ReI. Int. 

writeln( ,----

0; 
while (i < LINESPERPAGE) do 

begin 
inc (i); 

if «i+j <= MAXPEAKS) and (i+j <= count» then 

end; 

writeln«i+j) :4,' 
(peak[i+j)*timebase + delay time) :9:0,' 
(PtoU(w,peak{i+jj» :11:2,' 
(AbstoRel (w, PtoV (w, peak[ i+j] ) ) ) : 10: 3, ' 
(PtoV(w,peak{i+jj» :10:0,' 
«PtoV(w,peak{i+jj+1) + PtoV(w,peak[i+j]-l) 

-2.0*PtoV(w,peak{i+j]»/sqr(tirnebase» :10:3); 

j : = j + LINESPERPAGE; 
waitkey; 

until (j >= count); 
end; { MASSSCAN } 

end; { case } 
end; ( with) 

end; ( if ) 
DrawAll; 

end; { if } 
(end; ) 

Abs. Int. 

Sec. 

Sec. 

function Power(number : real) real; 
( Calculates power of 1000 which, when divided from number, leaves a mantissa 

between 1 and 99'9.9 ... If number = 0, Power returns 1. ) 
begin 

~f number = 0 then 
Power 1 

else 
Power := XToTheY(1000, rounddown(LoglO(number) / 3 + SMALL»; { SMALL is 
added to force function to advance to next power of 1000 prematurely. 
This is to ensure numbers are less than 1000 (though there is a chance 
they may be less than 1). Preference is for an interval to be 0 .. 0.9 
rather than O .. 900, especially on vertical axis when displaying 
normalized spectra. } 

end; 

function PowerOfTenPrefix(logpower : integer) : bufstring; 
( Like UnitPrefix{), but produces notation like 'lOh_)' rather than S1 unit 

prefixes. If logpower = 0, returns". } 
begin 

if logpower = 0 then 
PowerOfTenPrefix 

else 
PowerOfTenPrefix := '10 h ' + makestring(logpower, 4, 0); ( Extra 
space added for clarity with units succeeding, i.e., '10~3 eV'. I use 4 
digits since this provides room for up to 10~-999, adequate to indicate 
if there's a problem; if only 3. digits used, will truncate to left, so 
that logpower = -100 turns into -10, not a good indicator! } 

end; 

procedure PrintWave; 
var 

user : text; 
i : integer; 
s : bufstring; 

begin 
if wv.num = 0 then 

exit; 
s := wv.ls[wv.curj~.par.fn; 
i := FilenameStart(s); 
if i = 1 then 

s := printdir + 'P' + s 
else 

s := copy(s, 1, i-I) + 'P' + copy(s, i, length(s»; 
if FileExists(s) then 

if COrtLwr-YIl( 'File exists. Overwrite') = 0 then 
exit; 

if FileOpenWrite(user, 5) = false then 
exit; 

com_wr('Writing print file.', COLORMESS); 
writeln(user, wv.ls{wv.curJ~.par.fn); 
for i:= 1 to wv.ls[wv.cur]~.par.pt do 

writeln (user, wv .ls (wv. cur] ~. data [ij ) ; 
close(user); 

end; 

function PtoU(w, p, xaxisrnode : integer) : real: 
Converts point p in wave w to unit space x coordinate for any xaxismode 
(can specify mode other than current one). U depends both on xaxismode and 
dt of wave: 

xaxismode wave[wl~.par.dt x axis dimensions 

> 
"CI 
"CI 
ttl 

= Q. .... 
~ 
I-" 

w 
W 
\0 



XAXISMODE_POINTS (any) points 
distance (urn) 

time (ns) 
XAXISMODE_NORMAL dt_COR 

dt_ELE 
dt_MAS 
dt_POW 

time (us) 

XAXISMODE_CONVERT dt_COR 
time (ms to 5) 

time (fs) 
energy (eV) 
mass (Oa) 

var 

dt_ELE 
dt_MAS 
dt_POW no change from XAXISMODE_NORMAL 

t : real; { Conversion variable for time -> energy. 
a,b,c,invsqE,temp : real; { temporary variables} 

begin 
if p < 1 then 
begin 

ptou 
exit; 

0; 

end; 
with wv.ls[w]~ do 

case xaxismode of 
XAXISMODE_POINTS, 

PtoU : = p; 
XAXISMODE_NORMAL , 

case par.dt of 
dt_COR, 

PtoU := par.cor.ts.start + (p - 1) • par.cor.ts.step; 
dt_ELE. dCPOW, 

ptoU : = p • par. timeperpt; 
dCMAS, 

ptoU := p • par.timeperpt + par.mas.delay; 
end; 

XAXISMODE_CONVERT, 
case par.dt of 
dt_COR, 

ptoU := (par.cor.ts.start + (p - 1) • par.cor.ts.step 
- par.cor.ts.tO) I HALFSPEEDOFLIGHT; 

dt_ELE' 
if (par.ele.cal.quad = 0) then (if quad cal factors are) 
begin { not being used. do normal 

t : = p • par. timeperpt - par. ele. cal. to; 
PtoU SLOPEFACTOR· sqr(par.ele.cal.1en) I (t • tl; 

end 
else 
begin 

(1998-5-18 
( 

t : = p • par. timeperpt; 
if ( t < O.2e-6 ) then 
begin 

PtoU par .ele. cal. eV; 
end; 

My function doesn't work well) 
below 0.2us or above 4.8us, so } 
fix these ranges so fxn doesn't crash 

SJG: need to access longer times -- comment this part:} 
if ( t > 4. 8e-6 ). then 

begin 
PtoU 

end; } 
if ( t >= 

begin) 

0.06; 

0.2e-6} and (t <= 4.8e-6 ) then 

t p. par.timeperpt - par.ele.cal.tO; 
a := par.ele.cal.quad ,. ELECTRONMASSKG I 2; 
b := sqrt(ELECTRONMASSKG/2) * (par.ele.cal.len -

2 • par.ele.cal.quad * par.ele.cal.quadoff); 
c := par.ele.cal.quad * par.ele.cal.quadoff * 

par.ele.cal.quadoff - t; 

end; 

temp: = b ,. b - 4 ,. a ,. c; 
if temp < 0 then 

temp := 0; 
else 

begin } 
invsqE (-b+sqrt(temp)l/(2*a); 
if invsqE 0 then 

ptoU (1 I (invsqE" invsqE) ,. JTOEV 
else 

PtoU 0; 
end; } 

end; } 
end; 

dt_POW: { No change from XAXISMODE_NORMAL. 
ptoU := p • par.timeperpt; 

dt_MAS, 
PtoU := par.mas.cal.sl • sqr(p ,. par.timeperpt + par.mas.delay 

- par.mas.cal.int); 
. end; 

end; 

function PtoV(w, p, xaxismode. yaxismode : integer) : real; 
Converts point p in wave w to unit space y coordinate. for any xaxismodel 
yaxismode combination (not limited to current ones). Two x axis units re
quire rescaling of y axis: energy and mass. Other units have the y axis 
passed through untouched. 

New addition: ·display-only· background subtraction, that is. if 
selected (_bs.dis = 1), and w is an ele wave. PtoV will return 
the difference between wave wand the background wave _bs.bg, 
suitably scaled by the wave's bg.scale factor. } 

var 
temp: real; ( Temporary calculations. ) 

begin 
if p < 1 then 
begin 

ptov 0; 
exit; 

end; 
with wv.ls[w]~ do 
begin 

if (par.dt = DT_ELE) and (xaxismode XAXISMODE_CONVERT) then 
begin 

temp: = PtoU(w, p, xaxismodel; 
if temp > 0 then 

temp data[p] I (temp' sqrt(temp)} E' -1.5. } 
else 

temp 0; { Trap to avoid imaginaries. 
end 
else if (_bs.dis = 1) and (par.dt = DT_ELEl and (par.ele.bs.mode = 

1) and (_bs.bg·<> w) and (_bs.bg > O) and (wv.ls[_bs.bg]'.par.dt 
= DT_ELE) then 
Handle bg subtraction display. } 

begin 
temp := wv.ls(_bs.bg]~.par.ele.bs.tot; 

if temp > 0 then 
temp ,= data[p] - wv.1s[_bs.bg]'.data[p] • par.ele.bs.tot I 

temp 
else 

end 
else 

temp .,= data[p]; 

w 
~ 
o 

> 
"C 
"C 

~ 
~ .... 
iI< 
I-" 



temp : = data [p) ; 
if yaxismode = YAXISMODE_RELATIVE then 

PtoV := temp * abs(par.yscale) + par.yoffset 
else 

ptoV 
end; 

end; 

temp; 

function PtoX(w, p integer) real; 
{ Converts point p in wave w into a screen x coordinate. 
begin 

PtoX := UtoX(PtoU(w, p, sc.ls[wv.ls[wjA.gcreen].gr.xaxismode), wv.lg{W]A. 
screen) ; 

end; 

function PtoY(w, p : integer) real; 
( Converts point p in wave w into a screen y coordinate. ) 
begin 

PtoY := VtoY(PtoV(w, p, sc.ls{wv.lg{w]A.screenj.gr.xaxismode, 
sc.ls[wv.ls[w)A.screenJ .gr.yaxismode), wv.ls[wjA.screen); 

end; 

procedure rd_int(var v integer; mess: bufstring; min, max integer); 
{ Either print current value of integer variable v (using message mess), 

or change to user's input provided it falls within range of min and 
max. } 

var 
dummy : integer; 
u integer; 
s : bufstring; 

begin 
if com.cur = com.num·then 
begin 

str(v, g); 
com_wr(mess + ' 

exit; 
end; 
inc (com. cur); 

, + s, COLORMESS); 

val (com.ls [com. curl, u, dummy); 
if (u >= min) and (u 

V := U 

else 
com_err; 

end; 

max) then 

procedure rd_long(var v longint; mess: bufstring; min, max: longint); 
{ Either print current value of longint variable v (using message mess), 

or change to user's input provided it falls within range of min and 
max. } 

dummy : integer; 
u longint; 
s : bufstring; 

begin 
if com. cur = 
begin 

str(v, 5); 

cOffi_wr (mess -+ '. 
exit; 

end; 

then 

, + s, COLORMESS); 

inc(com.cur); 
val(com.ls[corn.cur], u, dummy); 
if (u >= min) and (u max) then 

v := u 
else 

com_err; 
end; 

procedure r~real(var v real; mess bufstring; min, max : real); 
{ Same as r~int, but for real values. } 
var 

dwmny : integer; 
u : real; 
s : bufstring; 

begin 
if com. cur = com.num then 
begin 

str(v, s); 
co~wr(mesg +' '+ s, COLORMESS); 
exit; 

end; 
inc (com. cur); 
val(com.ls[com.cur) , u, dummy); 
if (u >= min) and (u max) then 

v := u 
else 

coItLerr; 
end; 

procedure rd_str(var v bufstring; mess: bufstring); 
{ Either print current value of string variable v (using message mess), 

or change to user's input. } 
begin 

if com. cur = com.num then 
begin 

C0ItLwr (mess + ' = H' + V + 
exit; 

end; 
i~c(com.cur) ; 
V := com.ls[com.cur); 

end; 

COLORMESS) ; 

procedure readroundandlimit(var r : real; min, max real); 
( Read value into r from keyboard, round off, and constrain it within the 

limits min and max. 
begin 

readIn2r (r); 
r := round(r); 
if r < min then 

r : = min 
else if r > max then 

r max; 
end; 

procedure readln2i(var i : integer); 
( Only changes the parameter value if a character is entered. 
var 

s string(20); 
dummy integer; 

begin 
readln(s) ; 
if s<>" then 
val(s, i, dummy); 

end; 

procedure readln21(var I longint) ; 

> 
"0 
"0 
~ 

= \:l.o 
:;;;" 
~ 

w 
+:>. 



( Only changes the parameter value if a character is entered. 
var 

string[20] ; 
dummy : integer i 

begin 
readln(s) ; 
if s<>" then 
val (5. 1. dummy) i 

end; 

procedure readln2r(var r : real); 
{ Only changes the parameter value if a character is entered. } 
var 

s : string(20]; 
dummy : integer; 

begin 
readln(s} ; 
if s <> " then 

vales, r, dummy); 
end; 

procedure readln2s(var i : bufstring); 
{ Only changes the parameter value if a character is entered. } 
var s : bufstring; 

begin 
readln(s} ; 
if s<>" then 

s; 
end; 

procedure readvalue(var r : real; p : real); 
Change value of r. If user hits return only, r is unchanged; otherwise, 
r is changed after multiplying by proper power conversion p. If p. = 0, 
calculates appropriate power of p automatically. 

var 
dummy : integer; { Dummy variable needed by val. 
s : bufstring; { Input string. } 

begin 
if p = 0 then 

p := Power(r); 
S : = "; 
readln(s) ; 
if s <> ., then 
begin 

vales. r, dummy); 
r := r '* p; 

end; 
end; 

function ReadWave(fn : bufstring; waveindex : integer; userinput 
boolean} : boolean; 
This procedure reads file fn into wv.ls[waveindex). Must check that 
filename exists first. Data formats E and later are supported. Other 
wave parameters (yscale, etc.) are not changed. Userinput is a flag 
indicating whether to accept user input of additional parameters; if 
FALSE is passed, it is assumed that these parameters are already 
known (from ws_rd l ~ 

var 
f : text; 
i : integer; 
ok : boolean; 
s : bufstring; 

File variable. ) 
General counter. 
Flag to indicate if load fails. 

{ String variable for general use. } 

begin 
ok : = TRUE; 
assign(f, fn); 
reset (f); 
readln(f, s); ( Read first line to obtain version *. ) 
if s[l] = 'E' then 

ReadWaveE(f, waveindex) 
else if s[l) = 'F' then 

ReadWaveF(f, waveindex) 
else if 5(1] = 'G' then 

ReadWaveG{f, waveindex) 
else if s[l] = 'H' then 

ReadWaveH(f, waveindex) 
else if s[l] = 'I' then 

ReadWaveI (f, wave index) 
else if s{l] = 'J' then 

ReadWaveJ (f, waveindex) 
else if s = HEAD_WV then { Current format. } 

ReadWaveK{f, waveindex) 
else 
begin 
co~wr('Data format not supported.', COLORHL); 
ok ,= FALSE; 

end; 
if ok then 

with wv.ls[waveindex]~ do 
begin 

par.fn := fn; { Assign filename. 
for i := I to par.pt do ( Read data points. ) 

readlnlf. data[iJ); 
end: 

cloself) ; 
ReadWave : = ok; 

Preserve for posterity: oldest version formats: 
else ( oldest format - no letter code. 

begin 
Reset IF); 
Readln(F. r); timebase := MCS_TlMEPERPT(round(r)]; 
Readln(F, r); numpts := round(r); 
If SameScanType(waveindex) = FALSE then 

ok ,= FALSE 
else 
begin 

Readln(F, 5); 

ReadlnlF, s); 
Readln(F, sl; 

end; 
if userinput and ok and «scantype = TlMESCAN) or (scantype = 

ENERGYSCAN)) then 
begin 

writelnC'This file needs the following information provided:'); 
writeln(' Laser wavelength'); 
writeln(' Ion mass'): 
writelnC' TO'); 
writeln(' Length'); 
writeln(' Float voltage'); 
writelnC' Quadratic compression factor'); 
writeln('If these quantities are readily available, press Y, or press any 

other key to'); 
writelnC'exit.'); 
case readkey of 
'y', 'Y': ; { Do nothing. 

v.> 
~ 
tv 

> 
"0 
"0 

~ 
Q. 
~. 

~ 



else 
ok FALSE; 

end; 
if ok then 
begin 

write('Laser wavelength (run): 'I; 
readln(r) ; 
laserev : = EVNM / r; ( Convert wavelength 
write('Ion mass (Daltons): 'I; 

readln (ionmass) ; 
write('TO (ns): 'I; 
readln (to I ; 
write('Length (m): '): 
read In (leng) : 
slope ;= SLOPEFACTOR '" leng '" leng; 
writeln('Float voltage (V): '); 
readln(float) ; 

to energy. 

delta_e : = ELECTRONMASS • float / leng; 
write('Quadratic compression factor (ns.eV) (default 
readln(s) ; 
if s = then 

quad ;= 0 
else 

end; 
end; 

end; } 

val_res, quad); 

writeln ( , File format: . + S I; ) 
'A' : 

begin 
Readln (F, r); timebase : = MCS_TIMEPERPT(round( r) 1 ; 
delay time := 0; 
Readln(F, r); numpts := round(rl; 
If SameScanType(waveindex) = FALSE then 

ok := FALSE 
else 
begin 

Readln(F, s); 
Readln(F, s); 
Readln(F, s); 
Readln(F, to); 
Readln(F, leng); slope := SLOPEFACTOR • leng • leng; 

end; 

I 

if userinput and ok and «scantype = TIMESCAN) or (scantype 
ENERGVSCAN) then 

begin 

01; 'I; 

writeln('This file needs the following information provided:'); 
writeln(' Laser wavelength'); 
writeln(' Ion mass'); 
writeln(' Float voltage'); 
writeln(' Quadratic compression factor'); 
writeln('If these quantities are readily available, press Y. or press any 

other key to'); 
writeln{ 'exit.'); 
case readkey of 
'y'. 'Y': ; { Do nothing. 
else 

ok : = FALSE; 
end; 
if ok then 
begin 

repeat 
found TRUE; 

write( 'Laser wavelength (run): 
readln(i) ; 
case i of 

213 P 0; 
266 p 1; 
299 p 2; 
355 p 3; 
416 P 4; 
532 p 5; 

else 
found := FALSE 

end; 
until (found = TRUE); 
laserev : = CODE_TO_LASEREV [p 1 ; 
write{'Ion mass (Daltons): '1; 

readln(IonMass); 
writeln('Float voltage (V): 'I; 
readln{floatl: 

'I; 

delta_e := ELECTRONMASS '" float I iorunass; 
write('Quadratic compression factor (ns.eV) (default 
readln(s) ; 
if s = then 

quad ;= 0 
else 

val_res, quad); 
end; 

end; 
end; 

'B' : 
begin 

Readln(F, r); timebase := MCS_TIMEPERPT[round(r)]: 
delay time := 0; 
Readln(F, r); numpts : = round(r); 
If SarneScanType (waveindex) = FALSE then 

ok. := FALSE 
else 
begin 

Readln(F, s); 
Readln(F, s); 
Readln(F, s); 
Readln(F, to); 
Readln{F, leng): slope 
read In ( f, quad) j 

end; 

SLOPEFACTOR '" leng • leng; 

01; 'I; 

if userinput and ok and «scantype = TIMESCAN) or (scantype = 
ENERGYSCANII then 

begin 
writeln('This file needs the following information provided: 'j; 
writeln(' Laser wavelength'); 
writeln(' Ion mass'); 
writeln(' Float voltage'); 
writeln('If these quantities are readily available, press Y, or press any 

other key to'); 
writeln(·exit.'); 
case readkey of 
'y', 'V': ; { Do nothing. 
else 

ok := FALSE; 
end; 
if ok then 
begin 

repeat 
found TRUE; 

> 
't:I 
't:I 
~ a 
~. 

~ 

V-l 
~ 
V-l 



write ( , Laser wavelength (run): '); 
readln (i) ; 
case i of 

213 p 0; 
266 p 1; 
299 p 2; 
355 p 3 ; 
416 p 4; 
532 p 5; 

else 
found : = FALSE 

end; 
until (found = TRUE); 
laserev : = CODE_TO_LASEREV[p]; 
write ( 'Ion mass (Daltons): '); 
readln (ionmass) ; 
writeln( 'Float voltage (V): '); 

readln(float) i 
del ta_e ELECTRONMASS * float ionmass; 

end; 
end; 

end; 
'C' , 

begin 
Readln(F, r)i timebase := MCS_TIMEPERPT[round(r)]; 
delayt ime : = 0: 
Readln(F, r); numpts := rounder); 
If SameScanType (waveindex) = FALSE then 

ok : = FALSE 
else 
begin 

Readln(F, s); 
Readln(F, s); 
Readln{F, s): 
Read1nlF, to); 
Readln(F, leng): slope 
read1n I f. quad); 
readln(f, s); 

end; 

SLOPEFACTOR * leng * leng; 

if user input and ok and «scantype = TIMESCAN) or (scantype = 
ENERGYSCAN» then 

begin 
writeln( 'This file needs the following information provided:'): 
writeln{' Laser wavelength'); 
writeln(' Ion mass~l: 
writeln(' Float voltage'): 
writeln( 'If these quantities are readily available, press Y, or press any 

other key to·); 
writeln( 'exit.') i 
case readkey of 
'y', 'Y': ; ( Do nothing. 
else 

. ok ,= FALSE; 
end; 

. if ok then 
begin 

repeat 
found : = TRUE; 
write('Laser wavelength (run): '); 
readln(i) ; 
case i of 

213 pO; 
266 p 1; 

end: 

299 p 2; 
355 p 3 ; 
416 P 4; 
532 p 5; 

else 
found FALSE 

end; 
until (found = TRUE); 
laserev ; = CODE_TO_LASEREV[p]; 
write('Ion mass (Daltons): '); 
readln ( ionmass) ; 
writeln (' Float voltage (V): .) i 
readln (float) ; 
delta_e ELECTRONMASS * float 

end; 
end; 

end; 
'0' , 

ionmass; 

begin ( read all parameters. keeping only those needed. 
readln(f, s); 

readln(f, s); 
readln(f, r, s): numpts := round(r); ( reading s after number skips text 

commentary } 
readln(f. r, s): timebase := MCS_TIMEPERPT_D[round(r)]; 

If SameScanType(waveindex) = FALSE then 
ok ,= FALSE 

else 
begin 

readln(f, 
readln( f, 
readln(f, 
readln(f, 
readln(f, 
readln(f, 
readln(f, 
readln(f, 
readln(f, 
readln(f, 
readln(f, 
readln(f, 

end; 
end;} 

s) ; 

s) ; 

s) ; 

r, s); laserev 
r. s); ionmass 
to, s); 

leng. s); slope 
float, s); delta_e 
quad, s); 
s) ; 

s) ; 

delay time , s); 

COOE_TO_LASEREV[roundlr)}; 
rounder) : 

SLOPEFACTOR * leng * leng; 
ELECTRONMASS * float / ionmass; 

procedure ReadWaveE(var f : text; w : integer); 
( First FPES format (actually contained a lot of tenure parame-

ters!), read protocol of which was revised 25JAN96 for compatibility 
with new data format 'G'. Parameters not contained in file are assigned 
their pardf[dt_ELEj value. } 

var 
r : real; 
s : bufstring; 

begin 
with wv.ls[wJ A do 
begin 

par := pardf[dt_ELE); ( Copy over defaults. 
par.comment := 'Data format E (old FPES). '; 
readln(f, 5); ( Skip wavename. } 
readln(f, s); ( Skip 'update every.' } 
readln(f, r, 5); par.pt_gl := rounder); 
readln(f, r. 5); par.timeperpt := MCS_TIMEPERPT[round(r»); 
readln(f. s); { Skip discrimination level. } 
readln(f. 5l; ( Skip time scan flag. ) 

W 
.j:::.. 
.j:::.. 

> 
"'CI 
"'CI 
~ 

5-..... 
~ 

~ 



readln(f, 5) ; Skip background subtraction flag. 
readln (f, 5) ; Skip laser energy. ) 

readln(f, s) ; Skip ion mass. ) 

readln(f, r, s) ; 
par.ele.cal.tO := r * le-9; { Convert ns -> s. 
readln (f, r, s); 
par. ele. cal. len * 1e-2; ( Convert cm -> m. 
readln(f, s); { Skip float. } 
rE!adln(f. s); { Skip quadratic compression factor. 
readln (f, s); ( Skip vertical scale. 
readln(f, 5); ( Skip horizontal position. 
readln(f, 5); { Skip time offset. } 
readln(f, r, s); par.5can_gl := rounder); 
readln (f, s); { Skip timeFPES. } 

end; 
readwaveEupgrade(w); 

end: 

procedure ReadWaveEupgrade(w integer); 
begin 

ReadWaveFUpgrade (w) ; 
end; 

procedure ReadWaveF(var f : text; w integer): 
{ Added 25JAN96, this is a nscrew-upM format which resembles E, 

except contains no parameters (just data), for files 148-6 thru 1A8-26 
only. } 

begin 
with wv.lS(W]A do 
begin 

par := pardf[dt_ELE]; ( Copy over defaults. ) 
par.comment := 'Note: Data format F (weird).'; 

end; 
readwaveFupgrade(w); 

end; 

procedure ReadWaveFupgrade(w 
begin 

ReadWaveGUpgrade (w) ; 
end; 

integer) ; 

procedure ReadWaveG(var f : text; w integer); 
{ True new data format, 25JAN96. } 
var 

real; 
S : bufstring; 

begin 
with wv.ls[wl A do 
begin 

readln (f, par. comment) ; 
readln(f, par.dt); 
readln(f, par.pt_gl); 
readln(f, par.yoffset); 
readln(f. par.yscalel; 
case par.dt of 
dt_COR, 

begin 
readln{f, r); par.cor.ch := rounder); 
readln(f, r); par.scan_gl := rounder); 
readln(f. r); par.cor.shotsperpt := round(r); -
readln(f. par.cor.ts start); 
readln(f, par.cor.ts.step); 
readln(f. par.cor.ts stop); 

readln (f, par, cor. ts, to) ; 
readln ( f, par. t imeperpt) ; 
readln(f); ( Waittime -- now defunct. 

end: 
dt_ELE, 

begin 
readln(f, par.ele.cal.len); 
readln(f); ( Skip quad factor. 
readln(f. par.ele.cal.tO); 
readln(f); { Skip counttotal. 
readln (f. par. ele. cal. ev) : 
readln(f, r); par.5can_gl := rounder); 
readln(f); { Skip powerpump } 
readln ( f); ( Skip powerprobe ) 
readln(f, par.ele.reprate); 
readln(f, r); par.ele.shotsperscan rounder); 
readln(f, par.ele.ts.pos); 
readln(f, par.ele.ts.tO); 
readln(f, par.ele.dly); 
readln(f, par.timeperpt); 

end; 
dt_POW, 

begin 
readln(f. r); par.pow.ch := round(r); 
readln (f. par .pow. cal. intI ; 
readln (f. par .pow. cal. 51) ; 

readln(f, par.timeperpt); 
par.scan_gl := pardf[dt_POWJ.scan_gli ( Not recorded, 

so make default. ) 
endi 

end; 
end; 
ReadWaveGUpgrade {wI ; 

end; 

procedure ReadWaveGUpgrade (w : integer); 
{ Modifies version G wave so is compatible with latest version. } 
begin 

with wv.ls[w]~.par do 
begin 

alert := pardf[dt) .alert; 
if dt = dt_ELE then 
begin 

ele.bs.tot := pardf[dt) .ele.bs.tot; 
ele.b5.mode := pardf{dtl .eie b5.mode; 

end; 
sh ,= pardf[dt).sh; 
skip := pardf[dt).skip; 

end; 
ReadWaveHUpgrade (w) ; 

end; 

procedure ReadWaveH(var f : text; w 
var 

S : bufstring; 
begin 

with wv.ls[w)A do 
begin 

readln{f, par.alert); 
readln(f, par.comment); 
readln(f, par.dt); 
readIn(f, par pt_gl); 
readIn(f, par,scan_gl); 

integer) ; 

> 
"'CI 
"'CI 
~ 

5-
~. 

~ 

I..J,.) 
.j:::. 
Vl 



readln(f, par sh); 
read In ( f, par. skip) ; 
readln(f, par.timeperpt); 
readln(f, par.yoffset); 
readln (f, par. yscale) ; 
case par.dt of 

dt_COR: wi th par. cor do 
begin 

readln(f, ch); 
readln(f, shotsperpt); 
readln (f, ts. start) ; 
readln(f, ts.step); 
readlnCf, ts.stop); 
readln ( f, ts. to) ; 

end; 
dt_ELE: with par.ele do 
begin 

readln(f, s); 
readln(f, bs.totl; 
readln(f, bs.model; 
readln( f. cal. ev) ; 
readln(f, cal.len); 
readln(f, cal.tOl; 
readln (f, dly); 
readln(f, reprate); 
readln(f, shotsperscanl; 
readln(f, ts.pos); 
readln(f, ts.tO); 

end; 
dt_POW: with par . pow do 
begin 

readln (f, chl; 
readln(f, cal.int); 
readln(f, cal.sl); 

end; 
dt_MAS: with par.mas do 
begin 

readln(f, cal.int); 
readln(f, cal.sl); 
readln (f, ch); 

end; 
end; 
readln (f); ( Read blank line separating header from data. 

end; 
ReadWaveHUpgrade(w); ( Upgrade to latest version. } 

end; 

procedure ReadWaveHUpgrade (w : integer); 
( Modifies version H wave so is compatible with latest version. 
begin 

with wv.ls[w]~.par do 
begin 

vstop := pardf[dt] .vstop; 
if dt dt_MAS then 
begin 

mas.scantime := pardf[dt].mas.scantime; 
mas.vert := pardf[dt).mas.vert; 

end; 
end; 
ReadWaveIUpgrade (w) ; 

end; 

procedure ReadWaveI{var f text; w : integer); 

var 
s : bufstring; 

begin 
with wv.ls(w]~ do 
begin 

readln(f, par.alert); 
readln(f, par. comment) ; 
readln(f, par.dt); 
readln(f, par.pt_gl); 
readln (f, par. scan_gl) ; 
readln (f, par. sh) ; 
readln ( f, par. skip) ; 
readln(f, par.timeperpt); 
readln(f, par.vstop); 
readln(f. par.yoffset); 
readln ( f, par. yscale) ; 
case par.dt of 

dt_COR: wi th par. cor do 
begin 

readln (f, ch); 
readln(f, shotsperpt); 
readln(f, ts.start); 
readln(f, ts. step) ; 
readln{f. ts. stop) ; 
readln(f, ts. to); 

end; 
dt_ELE: with par.ele do 
begin 

readln( f, s); 
readln{f, bs.tot); 
readln(f, bs.mode); 
readln (f, cal. ev) ; 
readln (f, cal. len) ; 
readln(f, cal.tO); 
readln( f, dly); 
readln(f, reprate); 
readln(f, shotsperscan) ; 
readln(f, ts.pos) ; 
readln(f. ts.tO); 

end; 
dt_POW: with par.pow do 
begin 

readln(f, ch); 
readln(f, cal.int); 
readln(f, cal.sl); 

end; 
dt~S: with par.mas do 
begin 

readln(f, cal.int); 
readln(f, cal.sl); 
readln (f, ch); 
readln(f, delay); 
readln(f, inv); 
readln(f, scantime); 
readln ( f, vert I ; 

end; 
end; 
readln(f); ( Read blank line separating header from data. } 

end; 
ReadWaveIUpgrade (w) ; 

end; 

procedure ReadWaveIUpgrade (w integer) ; 

W 
~ 
0\ 

> 
"0 
"0 
~ 

= Q.. .... 
jjoIl 

)ooool 



{ Modifies version I 

begin 
so is compatible with latest version. } 

with wv.ls(w]A.par do 
begin 

gen := pardf[dt] .gen; 
pt ,= pegl; 
sea'n : = scan_gl; 
case dt of 

DT_COR' 
cor.ts.wob 

DT_ELE' 
ele.ts.wob 

pardf[dt].eor.ts.wob; 

pardf [dt] . ele. ts. wob; 
end; 

end; 
ReadWaveJUpgrade (w) ; 

end; 

procedure ReadWaveJ{var 
var 

s : bufstring; 
begin 

with wv.lS[W]A do 
begin 

text; w : integer); 

skiplabel{f); readln(f, par.alert); 
skiplabel(f); readln(f, par.comment); 
skip!abel{f); readln(f, par.dt); 
skiplabel(f); readln(f, par.gen); 
skiplabel(f); readln(f, par.pt); 
skiplabel(f); readln(f, par.pt_gl); 
skiplabel(f); readln(f, par.sean); 
skiplabel(f); readln{f, par.sean_gl); 
skiplabel(f); readln(f, par.sh); 
skiplabel{f); readln{f, par.skip); 
skiplabel(f); readln(f, par.timeperpt); 
skiplabel(f); readln(f, par.vstop); 
skiplabel(f); readln(f, par.yoffset); 
skiplabel(f); readln(f, par.yscale); 
case par.dt of 

dt_COR: with par.cor do 
begin 

skiplabel(f); readln{f, ch); 
skiplabe!(f); readln(f, shotsperpt); 
skiplabel(f); readln(f, ts,start); 
skip!abel(f); readln(f, ts.step); 
skip!abel(f); read!n(f, tS.stop); 
skip!abel(f); read!n(f, ts.tO); 
skip!abel(f); read!n(f, ts.wob.arnpl); 
skiplabe!(f); read!n(f, ts.wob.per); 
skiplabel{f); read!n(f, ts web.ph); 

end; 
dt_ELE: with par.ele do 
begin 

skiplabe!(f); readln(f, bS.last); 
skiplabe!(f); read!n(f. bs.mode); 
skip!abe!(f); readln{f, bs.tot); 
skiplabel(f); readln(f, eal ev); 
skiplabel{f); readln(f, cal.len); 
skiplabel(f); readln(f, eal.tO); 
skiplabel(f); readln(f, dly); 
skiplabel(f); readln(f. reprate); 
skiplabe!(f); readln(f, shotsperscan); 
skiplabel(f); readln(f, ts.pos); 
skiplabel (f); readln (f, ts. t9) ; 

skiplabe I ( f); readln ( f , ts . wab. ampl) ; 
skiplabel(f); readln(f, ts.wob.per); 
skiplabel(f); readln{f, ts.wob.ph); 

end; 
dt_POW: with par .pow do 
begin 

skiplabellf); readlnlf, ch); 
skiplabel(f); readln(f, cal.int); 
skiplabel(f); readln(f. cal.sl); 

end; 
dt_MAS: with par.mas do 
begin 

skiplabel(f); readln(f, cal,int); 
skiplabel(f); readln{f, cal.sl); 
skiplabel(f); readln(f, ch); 
skiplabel(f); readln(f, delay); 
skip!abel(f); readln(f, inv); 
skiplabel{f); readln(f, scantime); 
skiplabel (f); readln (f, vert); 

end; 
end; 
readln(f); { Read blank line separating header from data. } 

end; 
ReadWaveJUpgrade{w); 

end; 

procedure ReadWaveJUpgrade(w : integer); 
( Modifies version J wave so is compatible with lateSt version. 
begin 

with wv.ls[w]~.par do 
begin 

ease dt of 
DT_ELE, 

begin 
ele.cal.quad 
ele.eal.quadoff 

end; 
end; 

pardf[dtj .ele.cal.quad; 
pardf[dt].ele.cal.quad; 

end; 
end; 

procedure ReadWaveK (var 
var 

text; w : integer); 

s : bufstring; 
begin 

with wv,ls[w]A do 
begin 

skiplabel(f); readln(f, par,alert); 
skiplabel(f); readln(f, par.comment); 
skiplabel(f); readln(f, par.dt); 
skiplabel(f); readln(f, par.gen); 
skiplabel (f); readln (f, par .pt) ; 
skiplabel(f); readln(f, par.pt_9l); 
skiplabel{f); readln(f, par.scan); 
skiplabel(f); readln(f, par.sean_gll; 
skiplabel(f): readln(f. par.sh); 
skiplabel(f); readln(f. par.skip); 
skiplabel(f); readln{f, par.timeperpt); 
skiplabel(f); readln(f, par vstop); 
skiplabel(f); readln(f, par yoffset); 
skiplabel(f); readln{f, par yscale); 
case par,dt of 

dt_COR: with par.cor do 

> :g 
~ 
Q.. 

-~ 

w 
~ 
-.l 



,~ 

begin 
skiplabel(f); readln(f, chI: 
skiplabel(f); readln(f, shotsperpt 1 ; 
skiplabel{f); readln(f, ts. start) ; 
skiplabel(f); readln(f, ts _ step) ; 
skip label (f); readln (f, ts. stop) ; 
skiplabel: (f); readln (f, ts. to); 
skiplabel(fl; readln(f, ts. wob. ampl) ; 
skiplabel(f); readln(f, ts.wob.per) ; 
skiplabel(f); readln(f, ts.wob.ph) ; 

end: 
dt_ELE: with par.ele do 
begin 

skip label (f l; readln (f, bs .last) ; 
skiplabel (f): readln (f I bs. mode) ; 
skiplabel (f); readln (f, bs. tot) ; 
skiplabel(f); readln(f, cal.ev); 
skiplabel(f): readln(f, cal.len); 
skiplabel(f); readln(f. cal.tO); 
skiplabel ( f): readln ( f, cal. quad) ; 
skiplabel(f); readln(f, cal.quadoff); 
skiplabel(f); readln(f. dly); 
skiplabel(f); readln(f, reprate); 
skiplabel (f); readln (f. shotsperscan) i 
skiplabel(f); readln(f. ts.pos}; 
skiplabel (f); readln (f. ts. to); 
skiplabel(f); readln(f. ts.wob.ampl) ; 
skiplabel (f); readln (f, ts.wob.per) ; 
skiplabel (f); readln (f. ts.wob.ph) ; 

end; 
dt_POW: wi th par. pow do 
begin 

skiplabel (f); readln (f. ch); 
skiplabel(f); readln(f. cal.int); 
skiplabel(f): readln(f, cal. 51); 

end; 
dt_MAS: wi th par. mas do 
begin 

skiplabel(f): readln(f. cal.int); 
skiplabel(f): readln(f, cal.sl); 
skiplabel (f): readln (f. ch); 
skiplabel (f); readln (f. delay); 
skiplabel (f): readln (f. inv); 
skiplabel(f); readln(f, scantime); 
skiplabel(f): readln(f, vert): 

end: 
end; 
readln(f); ( Read blank line separating header from data. ) 

end; 
end; 

procedure rebin; 
( Handle dialog for data rebinning function. ) 
var 

bins : integer: 
i, j, w : integer: 
s : bufstring: 
temp: real: 

begin 
if com. cur com.num then 
begin 

COllLerr; 

exit: 
end: 
inc (com. cur) ; 
s := com.ls[com.cur]; 
val (s, bins, j): 
co~wr('Bins ' + makestringint(bins), COLOROEBUG); 
if (bins < 1) or (bins> MAXPOINTS) then 
begin 

c0m.....err; 
exit; 

end: 
wv_sel (1); 
sc_sel_off: 
if C0ltLwr-YJl ( , Rebin' ) 

exit; 
for w := 1 to wv.nwn do 

with wv.ls[w]~ do 
if sel = 1 then 
begin 

o then 

for i : = 0 to par. pt di v bins - 1 do 
begin 

temp ,= 0; 
for j := 1 to bins do 

temp : = temp + cia ta [i .". bins + j); 
for j := 1 to bins do 

data[i .". bins + j) := temp / bins; 
end; . 
coltLwr('Oone rebin', COLOROEBUG); 
datasaved := 0; 
parsaved : = 0: 
if par.dt = dt_ELE 

par. ele.bs . mode 
sc. Is [screen] . sel 

end; 

then 
0; 

,= 1; ( tag screen for update. ) 

wv_sel_off; 
UpdateSel; 

end: 

procedure _rescale; 
( Rescale wave so yscale 
var 

i, j : integer; 
begin 

wv_sel (1); 
sc_sel_off; 
for i := 1 to wv.nwn do 

with wv.ls[i]~ do 
if sel = 1 then 
begin 

1, yoffset 

for j := 1 to par.pt do 

O. } 

data [j J ,= ptoV (i. j. XAXISMODE_POINTS. 
YAXISMODE) .". sgn(par.yscale)i 

par .yscale : = 1; 
par.yoffset := 0; 
da tasaved : = 0: 
parsaved : = 0: 
if par. dt = dt_ELE then 

par.ele.bs.mode 0; 

sc.1s(screen).gr. 

sc.ls[screen) .sel := 1; ( tag screen for update. ) 
end: 

wv_sel_off; 
UpdateSel: 

end; 

w 
~ 
00 

> 
"0 
"0 
~ 
c::l.o .... 
~ 
I-l 



function rm_extension(s bufstring) bufstring; 
( Returns filename s without its file extension. ) 
var 

i integer; 
begin 

i := length(s); 
while (s[i] <> '.') and (i >= length{s) - 3) do 

dec{i) ; 
( Check to ensure .file extension exists! 
if i >= length(s) - 3 then 

rm_extension 
end; 

copy(s, 1. i - 1); 

function rounddown(r : real) : longint; 
{ Takes expression to next smallest integer if non-integer, regardless of 

sign. 
begin 

if (r < 0) and (r <> trunc(r» then 
rounddown := trunc(r) - 1 

else 
rounddown 

end; 
trunc (r); 

procedure roundoff(var r real; s real); 
{ Rounds off r to nearest multiple of s (can be > or < 1). 
begin 

r := round(r / s) * s; 
end; 

function roundup(r : real) : ·longint; 
( Takes expression to next largest integer if non-integer, regardless of 

sign. ) 
begin 

if (r > 0) and (r <> trunc{r» then 
roundup trunc(r) + 1 

else 
roundup 

end; 

end. 

trunc(r) ; 

4.5. fpesst .pas 

unit FpesST; 
( History of modifications (please add to BOTTOM of list! 1 : 

Version 1: Begun 2jun94 BJG. 

Procedures and functions beginning with y through Z for the program FPES. 
See FPES (at appropriate version) for more specific' program modification 
notes. 

interface 

uses 
FpesVar; 

procedure SaveEnergy{w integer) ; 

procedure SaveTime(w integer); 
function SaveWave{w integer): boolean; 
procedure sc_init(n : integer); 
procedure sc_resize(n integer); 
procedure sc_sel; 
procedure sc_sel_off; 
procedure Scan; 
procedure ScanCOR(s bufstring; t longint); 
procedure ScanELE(s bufstring; t longint); 
procedure ScanMAS(s bufstring; t longint); 
procedure ScanPOW(var t : longint); 
procedure Scanlnit(w, blank: integer); 
function scanning(d : integer) boolean; 
procedure ScanStop(w : integer); 
procedure ScanStopAll; 
function sech_sq(pos, fwhm real): real; 
procedure SetEnergyConversion; 
function sgn(r : real) : real; 
procedure ShowParams(par-ptr : par_type-ptr; p, w, poffset : integer); 
procedure SkipLabel(var f : text); 
procedure SmoothEnergy(w : integer; res: real); 
procedure SmoothTime(w : integer; res: real); 
procedure SmoothWiener(w : integer; res: real); 
procedure StackWaves; 
procedure Stage; 
function StageDelay(r : real) longint; 
function StageLooKup(r : real) : real; 
procedure StageMove(r : real); 
procedure StageMoveDelay(w : integer;' r : real); 
procedure StageMoveWait (r : real); 
procedure SystemControl; 
procedure tekset_rd(ch : integer); 
procedure tekset_wr; 
function TEK_TIMEPERPT_to_code(timeperpt real): integer; 
procedure tekwrite(wbuf : bufstring); 
procedure tekwrite_ver(wbuf : bufstring); 
procedure TextMode; 
procedure TidyUp; 
procedure Time(var nowtime : longint); 
function TimebaseToCode(r : real) : integer; 
procedure ToggleAddWavesMode (w integer) ; 
(procedure ToggleBackgroundSubtractionModei) 
procedure ToggleCrosshairsMode; 
procedure ToggleCrosshairsWhich; 
procedure ToggleSaveMode; 
procedure ToggleXAxisMode (scr : integer i mode integer) ; 
procedure ToggleYAxisMode(scr : integer); 
procedure ToggleYOffsetRescale; 
procedure tx_dr(tx tx_type-p); 
procedure tx_scr_upltx tx_type-p); 
procedure tx_wr(tx tx_type-p; s : string; col word; scr : integer); 
procedure tx_wr_ch(tx : tx_type-Pi c : char); 

implementation 

uses 
crt, dos, FpesCom, FpesAI, FpesJR, FpesUZ. graph, Keys, TPDecl; 

procedure SaveEnergy(w integer) ; 
{ Write simple energy vs. intensity file of wave w. }. 
var 

eext; { File var~able. 
integer; { Char counter. 

> 
't:I 
't:I 
ttl 

= Q. .... 
~ 
I-" 

u,) 

~ 
\0 



ok boolean; { Flag for user input. 
p integer; { Point number. } 
s, s2 : bufstring; { General string. 

begin 
if wv.nurn 0 then 

exit; 
Determine if filename has same directory as dir, edit wavename so 
that 'U' always appears before rest of filename. } 

with wv.l5[w]A do 
begin 

5tr(w, 52}; 
52 : = 'Wave ' + 52 + ' '; 
if par.dt <> dt_ELE then 
begin 

coItLwr(s2 + 'is not ele datatype; not saved.', COLORHL); 
exit; 

end; 
if get_extension(par.fn) = dt_NAME{dt_ELE1 then 

s := rm_extension(par.fn} + '.en' 
else 
begin { Old label method: use U prefix. 

i := FilenameStart(par.fn); 
if i = 1 then 

s := 'U' + copy(par.fn, i, length(par.fn» 
else 

s := copy(par.fn, 1, i - 1) + 'U' + copy(par.fn, i, 
length (par. fn) ) ; 

end; 
if not fullpath(s) then 

s := dir + s; 
ok : = TRUE; 
if FileExists(s) then 

if CORLwr-YIlaesc (s2 + 'file exists. Overwrite') < 1 then 
exit; 

coItLwr (~2 + • saved as + s, COLORMESS); 
if Fi1eOpenWrite(f, s) false then 

exit; 
for p := par.pt downto do 

writeln(f, PtoU(w, p, XAXISMODE_convert), 
XAXISMODE_convert, YAXISMODE_relative»; 

close(f) ; 
end; 

end; 

procedure SaveTime (w : integer); 
{ Save wave in time space (work for any datatype). ) 
var 

f : text; ( File variable. ) 
i : integer; { Char counter. 
ok : boolean; { Flag for user input. 
p : integer; { Point number. } 
s, 52 : bufstring; ( General string. 

begin 
if wv.num = 0 then 

exit; 
with wv.ls[w]A do 
begin 

str(w, s2); 
52 := 'Wave' + 52 + ' '; 
s := rItLextension(par.fn) + '.tim'; 
if not fullpath(s) then 

s : = dir + s; 
ok := TRUE; 

PtoV(w, p. 

if FileExists(s) then 
if com_wr-Yllaesc (s2 • 'file exists. Overwrite') < I then 

exit; 
cOItLwr(s2 + 'saved as + 5, COLORMESS); 
if FileOpenWrite(f, s) = false then 

exit; 
for p : = 1 to par. pt do 

writeln(f, PtoU(w, p, XAXISMODE_normal), PtoV(w. p, 
XAXIsMODE_normal, sc.ls(sc.cur].gr.YAXISMODE»; 

close(f); . 
end; 

end; 

function SaveWave(w : integer) : boolean; 
( Save wave w, asking user's permission if file already exists. Return 

true if saved; false if not. . 
var 

text; 
integer; 

ok : boolean; 
s, s2 : bufstring; 

begin 
if wv.num = 0 then 
begin 

savewave false; 
exit; 

end; 
with wv .15 [w] ..... do 
begin 

str(w, s2); 
52 'Wave' + s2 + ' '. ; 
s := par.fni 
if s = " then ( Flag indicating user has not chosen a name yet. ) 
begin 

savewave false; 
exit; 

end; 
if not fu1lpath(s) then 

s := dir + s; 
ok := TRUE; 
if FileExists(s) then 

if cOItLwr-Yflaesc(s2 + 'file exists. oVerwrite') < 1 then 
begin 

savewave false; 
exit: 

end; 
if FileOpenWrite(f, s) = false then 

exit; 
COItLwr (s2 + 'saved.', COLORMESS); 
par saved : = 1; 
datasaved := 1; 
writeln(f, HEAD_WV); 
writeln(f, PARLABEL[PAR~ERTj, LABEL_END_CHAR, par.alert); 
writeln(f, PARLABEL[PAR_COMMENT1, LABEL_END_CHAR, par.comment); 
writeln(f, PARLABEL[PAR_DTj, LABEL_END_CHAR, par.dt); 
writeln(f, PARLABEL[PAR_GENj, LABEL_END_CHAR, par.gen); 
writeln(f, PARLABEL[PAR_PTl, LABEL_END_CHAR, par.pt); 
writeln(f, PARLABEL[PAR_PT_GL]. LABEL_END_CHAR, par.pt_g1); 
writeln(f, PARLABEL[PAR_SCANj, LABEL_END_CHAR, par.scan); 
write1n(f, PARLABEL[PAR_SCAN_GL], LABEL_END_CHAR, par.sean_gl); 
writeln{f, PARLABEL[PAR_SH], LABEL_END_CHAR, par.sh); 
writeln{f, PARLABEL[PAR_SKIP} , LABEL_END_CHAR, par.skip); 
writeln(f, PARLABEL[PAR_TIMEPERPT), LABEL_END_CHAR, par.timeperpt); 

w 
VI 
o 

> 
'C 
'C 

~ 
Q., .... 
~ 
~ 



writeln(f. PARLABEL[PAR_VSTOP], LABEL_END_CHAR. par.vstop); 
writeln(f, PARLABEL[PAR_YOFFSET], LABEL_END_CHAR. par.yoffset); 

if globalsavemode = 0 then 
writeln(f, PARLABEL[PAR_YSCALE], LABEL_END_CHAR. par.yscale) 

else 
writeln(f, PARLABEL[PAH_YSCALE], LABEL_END_CHAR. 1); 

for i : = US ERMIN to USERMAXdt [par dt I do 
writeln(f. par.user[i); } 

case par.dt of 
dt_COR: with par.cor do 
begin 

write1n(£. PARLABELDT[DT_COR] [PAR_C_CHANNEL], LABEL_END_CHAR, ch); 
write1n(f, PARLABELDT[DT_COR] [PAR_C_SHOTSPERPT], LABEL_END_CHAR, 

shotsperpt) ; 
writeln (f. PARLABELDT[DT_CORj [PAR_C_STAGESTART), LABEL_EN'D_CHAR. ts. start) ; 
write1n(f, PARLABELDT[DT_COR] [PAR_C_STAGESTEP], LABEL_END_CHAR, ts.step); 
writeln(f. PARLABELDTfDT_COR) [PAR_C_STAGESTOPI. LABEL_END_CHAR. ts.stop); 
write1n( £. PARLABELDT[DT_COR] [PAR_C_STAGETO], LABEL_END_CHAR, ts. to); 
write1n(f, PARLABELDT[DT_COR] [PAR_C_STAGEwobAMPL] , LABEL_END_CHAR, 

ts .wob. ampl); 
write1n(f, PARLABELDT[DT_COR][PAR_C_STAGEwobPER], LABEL_END_CHAR, 

ts ;wob per); 
write1n(f, PARLABELDT[DT_COR} (PAR_C_STAGEwobPHj. LABEL_END_CHAR. ts.wob.ph); 

end; 
dt_ELE: with par.ele do 
begin 

writeln (f, PARLABELDT[DT_ELE] [PAR_E_BS_LAST). LABEL_EN'D_CHAR. bs .last) ; 
write1n(£. PARLABELDT[DT_ELE] [PAR_E_BS_MODE], LABEL_END_CHAR, bs.mode); 
write1n(f, PARLABELDT[DT_ELE] [PAR_E_BS_TOT], LABEL_END_CHAR, bs.tot); 
writeln(f. PARLABELDT[DT_ELE} [PAR_E_CALEVI. LABEL_END_CHAR. cal.ev); 
writeln (f. PARLABELDT(DT_ELE] [PAR_E_CALLENGTHl, LABEL_END_CHAR. cal. len) ; 
write1n(f, PARLABELDT[DT_ELE] [PAR_E_CALTO], LABEL_END_CHAR, cal. to) ; 
wiite1n(f, PARLABELDT[DT_ELE] [PAR_E_CALQUAD], LABEL_END_CHAR, cal. quad) ; 
wr i te1n ( f, PARLABELDT [DT_ELE] [PAR_E_CALQUADOFF], LABEL_END_CHAR, 

cal. quadoff I; 
write1n(f, PARLABELDT[DT_ELE] [PAR_E_TIMEFPES], LABEL_END_CHAR, d1y); 
writeln(f, PARLABELDT(DT_ELE) [PAR_E_REPRATE]. LABEL_END_CHAR. reprate); 
write1n(f, PARLABELDT[DT_ELE] [PAR_E_SHOTSPERSCAN] , LABEL_END_CHAR, 

shotsperscan) ; 
writeln(f, PARLABELDT[DT_ELEI [PAR_E_STAGEPOS], LABEL_END_CHAR. ts.pos); 
write1n(f, PARLABELDT[DT_ELE] [PAR_E_STAGETO], LABEL_END_CHAR, ts.tO); 
write1n(f, PARLABELDT[DT_ELE][PAR_E_STAGEwobAMPL], LABEL_END_CHAR, 

ts.wob.ampl) ; 
wr i te In ( f. PARLABEL~ [DT_ELE] [PAR_E_STAGEwobPER 1. LABEL_END_CHAR, 

ts.wob per); 
writeln(f, PARLABELDT[DT_ELEI (PAR_E_STAGEwobPHl, LABEL_END_CHAR, ts wob.ph); 

end; . 

dt_POW: with par.pow do 
begin 

wr te1n(f, PARLABELDT[DT_POW] [PAR_P_CHANNELl. LhllEL_END_CHAR, ch); 
teln(f. PARLABELDT{DT_POWj [PAR_P_CALINTj, LABEL_END_CHAR. cal.int); 

wr teln(f. PARLABELDT(DT_POW) [PAR_P_CALSLOPE], LABEL_END_CHAR, cal.sl); 

end; 
dt_MAS: with par.mas do 
begin 

writeln(f, PARLABELDT(DT_MASI [PAR_M_CALINT}, LABEL_END_CHAR. cal.int); 
writeln(f, PARLABELDT[DT_MAS] (PAR_M_CALSLOPE), LABEL_END_CHAR. cal.sl); 
writeln(f, PARLABELDT{DT_MASJ (PAR_M_CHANNELI. LABEL_END_CHAR, ch); 
writeln(f, PARLABELDT[DT_MAS] (PAR_M_DELAYJ, LABEL_END_CHAR, delaY)i 
writeln(f, PARLABELDT[DT_MAS] [PAR_M_INV], LABEL_END_CHAR, inv)i 
writeln(f, PARLABELDT[DT_MASJ (PAR_M_SCANTIMEJ, LABEL_END_CHAR. scantime); 
writeln(f, PARLABELDT[DT_MASJ (PAR_M_VERT], LABEL_END_CHAR, vert); 

end;. 

end; 
writeln (f, 'DATA'. LABEL_END_CHAR); { Prepare for data. 
if globalsavemode = 0 then 
begin 

savemode :=.0; 
·for i:= 1 to par.pt do 

writeln(f, data[i}); 
end 
else 
begin 

savemode : = 1; 
for i 1 to par.pt do 

Writeln(f, par.yscale • data[i] + par.yoffset); 
end; 
close (f) ; 

DrawWaveData; ( Display s flag beside wave. ) 
savewave 

end; 
true; 

end; 

procedure sc_init(n : integer); 
( Set up new screen with some default parameters. ) 
var 

s2 : bufstring; 
begin 

with sc.ls(n] do 
begin 

mode : = sc_mode_GR; 
sel := 0; 
ti.on := 0; 
str (n, s2); 
ti. s : = 'Use sc ti to change.'; 

end; 
with sc.ls[n] .gr do 
begin 

cursoru := 0; 
cursorvisible 0; 
u1lim 0; 
u2lim l; 
v1lim 0; 
v2lim 1; 
xaxisdt : = dt_MIN; 
xaxismode : = XAXISMODE_NORMAL; 
xfullmode : = 1; 
xh.mode := 0; 
xh.which := 1; 
xh.u[l] u11im; 
xh.u[2] u2lim 
xh.v(l] v11im 
xh.v[2] v2lim 
xon := 0; 
yaxismode 
yfullmode 
yon 1; 

YAXISMODE_ABSOLUTE; 
1; 

end; 
end; 

procedure sc_resize(n : integer); 
{ Resizes screen n to limits given by sc.ls{nJ .bdy. } 
var 

i integer; 
begin 

{ Declare title block (if disabled, give no vertical hei'ght). 

> 
"C 
"C 
nl 

== c:l,. 
S;;. 
.... 

VJ 
VI 



with sc.ls(n] .ti do 
begin 

bdy[lJ.x ls[nJ .gr.bdy[lJ.x 
bdy[2J.x sc.ls[nJ .gr.bdy[2J.x 
bdy[lJ.y sc.ls[nJ .gr.bdy[lJ.y 
if on = 1 then 

bdy[2J.y ,= bdy[lJ.y + textsize 
else 

bdy[2J .y bdy[lJ .y; 
end; 
{ Now do graphics-specific areas. } 
with sc.ls[nl.gr do 
begin 
{ Declare axis, number and label x & y positions in t.wo stages - first, the 

·short~ dimension, whose sizes are well-defined ... } 
with ylabel do 
begin 

xl ,= bdy[l].x; 
x2 := xl + yon * textsize; 

end; 
with ynumbers do 
begin 

xl := ylabel.x2: 
x2 : = xl + yon * MAXYDIGITS * textsize; 

end; . 
with yaxis do 
begin 

xl 
x2 

end: 

ynumbers. x2; 
xl + yon * textsize; 

Note reverse order of declarations for the following three entries: } 
with xlabel do 
begin 

y2 ,= b<iY[2].y; 
yl y2 - xon * textsize: 

end; 
wi th xnumbers do 
begin 

y2 ,= xlabel.yl; 
yl : = y2 - xon * textsize,· 

end: 
with xaxis do 
begin 

y2 
y1 

end: 

xnumbers.yl: 
y2 - xon * textsize: 

... now we go back to fill in the -long- dimensions, which simply take up 
whatever room is left over. } 
with ylabel do 
begin 

y1 ,= sc.1s[n].ti.bdy[2].y; 
y2 := xaxis.Yl + xon * yon * textsize div 2; 
xmax (x2 + 1 - xl) div textsize; 
ymax : = (y2 + 1 - yl) div textsize: 

end: 
with ynumbers do 
begin 

yl ,= ylabel. y1; 
y2 ,= ylabel.y2; 
xmax := (x2 + 1 - xl) div textsize; 
ymax : = (y2 + 1 - yl) div textsize; 
maxynums ymax div 3; { Calculate maximum 

number of numbers to be printed along y axis: since each number only 

takes up one character height, give space of two characters between 
each for readability (hence factor of 3). } 

end; 
with yaxis do 
begin 

yl ylabel.yl + yon * textsize div 2 + - yon; { Ticks centered on number 
text. } 

y2 := ylabel.y2 - yon * textsize div 
xmax (x2 + 1 - xl) div textsize; 
ymax : = (y2 + 1 - yl) div textsize; 

end; 
with xlabel do 
beg·in 

- 1 + yon: 

xl : = yaxis. x2 - xon * yon * (MAXXDIGITS div 2) * 
textsize; ( Endpoint of y axis, minus half the distance taken up 
by an x number of maximum width. ) 

x2 ,= b<iY[2].x; 
xmax (x2 + 1 - xl) div textsize; 
ymax := (y2 + 1 - y1) div textsize; 

end: 
wi th xnumbers do 
begin 

xl := xlabel.x1; 
x2 := xlabel.x2: 
xmax := (x2 + 1 - xl) div textsize: 
ymax := (y2 + 1 - y1) div textsize: 
maxxnums := xmax div (MAXXDIGITS + 1); 
( Calculate maximum number of numbers to be printed along x axis, allow

ing space of textsize between each number. ) 
end: 
with xaxis do 
begin 

xl := xlabel.xl + xon * MAXXDIGITS div 2 * textsize + 
x2 := xlabel.x2 - xon * MAXXDIGITS div * textsize - 1 
xmax (x2 + 1 - xl) div textsize: 
ymax : = (y2 + I - yl) div textsize: 

end; 
with plotarea do 
begin 

xl xaxis . xl; 
x2 xaxis.x2; 
yl := yaxis.yl: 
y2 := yaxis.y2; 
xmax (x2 + I - 'Xl) div textsize; 
ymax := (y2 + 1 - y1) div textsize: 

end; 
( Calculate screen coordinates of xh. 
for i : = 1 to 2 do 
begin 

xh.x[i] 
xh.y[i] 

end; 

round{UtoX{xh.u[il, n»; 
round{VtoY{xh.v(i), nl); 

- xon; 
+ xon; 

end; 
end; 

procedure sc_sel: 
{ Examines command line for several levels of flags: null, valid wave 

number list, or 'all'. Unlike wv_sel above, 'sel' is not so convenient 
to implement, since it requires curso.r moving around on screen titles, 
not all of which may even be visible. So I've settled for this entirely 
adequate compromise. 

Sets wv.sel to 0 if no waves selected {if wv.num 0, or if sel 

w 
VI 
N 

> 
"C 
"C 
ttl 

5-
~. 

I000'o 



option returned no tags); otherwise, sets to 1. Leaves com. cur pointing 
to last recognized word (initial command, 'all', or last enumeration 
list number. 

var 
dummy : integer; { Dummy variable for val. 
exitflag boolean; { Flag for enumeration list. 
i : integer; ( wave counter. ) 
s : bufstring; ( Holds current word. 

begin 
( Set tags to O. 
for i := 1 to sC.num do 

sc.ls[i) .sel := 0; 
if com. cur = com.num then 
( Null. ) 
begin 

sc.ls[sc.cur).sel 1; 
sc.sel 1; 
exit; 

end; 
inc(com.cur) ; 
s := com.ls[com.cur); 
vales, i, durruny); 
sc. sel : = 0; 
if (i >= 1) and (i sC.num) then 
begin 

sc.ls[il.sel := 1; 
sC.sel 1; 
( Read in more wave numbers. ) 
exitflag := false; 
while (com. cur < com.num) and (not exitflag) do 
begin 

inc(com.cur) ; 
val (com.ls [com. cur), i, durruny); 
if (i >= 1) and (i <= sC.num) then 

sc.ls[iJ.se1 := 1 
else 
begin 

dec(com.cur); { Let calling routine figure out what was 
meant. } 

exitflag : = true; 
end; 

end; 
end 
else if s = 'all' then 
begin 

for i : = 1 to sc. num do 
sc.ls[iJ .se1 := 1; 

sc. sel : = 1; 

end 
else 
begin { Unrecognized word; assume want current wave selected. 

sc.ls[sc.curJ.sel := 1; 
sc.sel ;= 1; 
dec{com.curl; { Leave word for calling routine to decipher. 

end; 
end; 

procedure sc_sel_off; 
{ Clears all sc. Is [1 . sel tags. 
var 

i integer; 
begin 

for i := 1 to sC.num do 
sc.ls(iJ .sel := 0; 

sc. sel : = 0; 
end; 

{.**.*. * * •• * ** * ** * ****'" *. *.*.*.*"'''' **"'. * **"'. * **"' •• * * ••• * •• ~ •••••••••• *. 
MAIN SCANNING ROUTINE 

.*** * •••• ** •••• * •••• ** •••••• *.** ••••••••• *. * *** ••••••••••••••••• * •• *.} 

procedure Scan; 
{ Read AID card channels, check time elapsed on all waves and read data 

if needed. } 
var 

s 
t 

w 
begin 

bufstring; { 'Wave XXX' storage. 
longint; { Current time. } 
integer; ( Wave counter. ) 

ScanPOW(t); { Read AID card, update power scans, draw osc. } 

Find active wave for scanwave to point to. If unsuccessful, scanwave 
= O. Note that scanwave will continue to point to same active wave 
until wv.ls[l~.scan.done = 1 (because some processes require mUltiple 
passes through this loop before the scan"is do~e -- i.e. starting 
electron scan, then reading 30 sec later; redoing scan if data 
transfer is bad, etc.) ) 

if scanwave = 0 then 
w := 1 

else 
w : = scanwave; 

scanwave 0; 
while w <= wv. num do 

with wv.ls(wl~ do 
if par. dt <> dt_POW then 
begin 

if scan mode > 1 then 
begin 

scanwave w; 
W := WV.num + 1; { Trick to get out of loop. } 

end 
else 
begin 

if scan.mode = 1 then ( Reset scan. mode to ~new~ position 
before moving on. ) 

begin 
5 C an . mode SCAN_MODE-flEW; 
DrawWaveData; { Erase old scanwave indicator. } 

end; 
inc(w); { Go to next wave. 

end; 
end 
else 

inc(w) ; 

Check that scanwave is still valid (otherwise indicates no active 
waves). ) 

if scanwave > 0 then 
begin 

str{scanwave, s); 
'Wave ' + s + ' 

case wv"ls(scanwavel~.par dt of 
dt_COR: ScanCOR(s, tl; 
dt_ELE: ScanELE{s, tl; 
dt_MAS: ScanMAS (s, t); 
( dt_POW handled already -- see above. 

> 
'C 
'C 
~ 

= c:l.. .... 
~ 
~ 

V.) 

VI 
V.) 



end; 
end; 
EraseOsc; 

end; 

procedure ScanCOR(s : bufstring; t 
{ Scan.mode values for COR scans:_ 

SCAN_MODE_NEW: Nothing done yet. 
3: Stage still moving. 
2: Taking data. 
l: Ready to move to next wave. 
(0: Not scanning.) } 

var 
devname : nbuf; { Device name. } 
j : integer; { General counter. } 
k : integer; { • } 

longint) ; 

result : integer; ( Boogey variable for val. ) 
r : real; { General real. } 
s2 : bufstring; { General strings. 
w : integer; ( Wave counter. ) 

begin 
with wv.ls[scanwave]A do 
begin 

( Done anything yet? ) 
if scan. mode = SCAN_MODE_NEW then 
begin 

if scan. cycle mod (par. skip + 1) 0 then 
begin 

{ Move stage to beginning, reset counters. 
DrawWaveData; { Show new scanmode indicator. 
if par.alert = 1 then 
begin ( Pause before beginning. ) 
co~wr(s + 'press any key to begin.', ,COLORHL); 
if readkey = EXTENDED then 

readkey; 
end; 
str(par.scan + 1, 52); 
com_wr{s +. 'scan' + s2 + ' started.', COLORMESS); 
StageMoveDe1ay(scanwave, par.cor.ts.start); 
scan.mode := 3; 
par.pt := 0; 
AD.ls(par.cor.ch].on 1; 

end 
else 

scan.mode := 1; { Move on to next wave. } 
inc(scan.cycle)i 

end 
else if scan.mode = 3 then 

( See if stage is still moving. 
if t - scan.starttime < scan.steptime then 

exit 
else 
begin 

scan. shots := 0; 
scan. accum : = 0; 
scan. mode := 2; 

end; 
if scan.mode = 2 then 
begin 

( Take all shots at one go, updating power scans as well. ) 
if scan. shots < par.cor.shotsperpt then 
begin 

{ Add value to accumulator. 

scan.accum := scan.accum + AD.ls[par.cor.ch] .result; 
inc (scan. shots) ; 
exit; 

end; 
{ Add averaged point value to array, update counters. } 
inc (par .pt); 
data[par.pt] := data[par.pt] + scan.accum / scan. shots; 
datasaved := 0; ( Set to 0 after 1st· successful point. ) 
scan.accum := 0; 
scan. shots := 0; ) 
{ See if more points. 
if par.pt < par.pt_gl then 
begin 

{ Advance stage. } 
StageMoveDelay(scanwave, par. cor. ts. start + par .pt * 

par.cor.ts.step); 
COITLwr ( , Press any key to continue', COLORHL); 
if readkey EXTENDED then 

readkey; } 
scan. mode 3; 
exit; 

end; 
{ Update counters. 
inc (par. scan) ; 
par.pt ,= 0; ) 
{ See if more scans. 
if par. scan < par.scan_gl then 

scan. mode SCAN_MODE~EW { Start over at big stage move. 
else 
begin 

{ Send ack code. } 
write (COM2. ACK); 
if auto.off = 1 then 
begin 

{ Check all waves for active electron datatypes. If find 
any, keep scan going. Otherwise, turn off. } 

scan. mode : = 0; 
for w : = 1 to wv. nwn do 

if Cwv.ls[w]A.scan.mode > 0) and (wv.ls[w]~.par.dt 
dt_ELE) then 
scan.mode 1; 

end 
else 

scan.mode : = 1; 
AutoSave(scanwave); 
ADoff(par.cor.ch); 
par.scan := 0; { Reset counter for next round. } 

end; 
( Update screen after each scan number. ) 
if auto.cor = 1 then 
begin 

FitY{dt_COR); { Includes screen update. } 
do_wv _i'nfo (scanwave, , fwhm' ) ; 

end 
else 
begin 

UpdateVitals; 
Update (screen) ; 

end; 
end; 

end; 
end; 

w 
Ul 
~ 

> 
"CI 
"CI 
tI> 

5-
~. 

~ 



procedure ScanELE(s bufstring; t 
( Handle regular and bs ele scans. 
var 

accum longint; 
j, k integer; 
result integer; 
52 : buf5tring; 
temp real; 

procedure ScanELE_status; 

longint) ; 

{ Print updated counts for current wave. } 
begin 

with" wv.ls(scanwave]A do 
com_wr('wv ' + makestringint(scanwave) + ' scan' + 

makestringint(par.scan) + ' tot' + makestringint(round( 
par.ele.bs.tot)) + ' +' + makestringint(par.ele.bs. 
last), COLORMESS); 

end: 

begin 
{ as waves only: When starting a new wave, we first check value of 

_bs.fg: 
0: nothing done, must do bg wave first. Stores scanwave in _bs.fg 

for second pass. 
>0: bg done, now reassign 5canwave with _bs.fg and run this wave. 

if (wv.ls(5canwave)A. par .ele.bs.mode = 1) and (_bs.sts = 0) and 
(_bs.fg = 0) then 

begin 
if scanwave = _bs.bg then 
begin 

wv. ls[scanwave] A.scan.mode 1; { Skip bg wave. 
exit; 

end; 
_bs.fg := scanwave; ( Store fg wave number for later. 
scanwave := _b5.bg; ( Do bg wave instead. ) 
wv.ls(scanwave)A.scan mode := SCAN_MODE-NEW; 

end; 

if <_bs.sts = 1) and (5canwave = _bs.bg) then 
wv.ls(scanwave)A.scan.mode := 1; ( Skip bg wave. 

5tr{scanwave, s); 
5 := 'Wave' + 5 + 

with wv.ls[scanwave]A do 
begin 

{ Has nothing happened yet? 
if scan. mode = SCAN_MODE_NEW then 
begin 

{ Check cycle count. 
if scan. cycle mod (par.skip + 1) <> 0 then 

scan mode : = 1 { Skip to· next wave. } 
else 
{ Move stage to correct location. 
begin 

DrawWaveData; { Show new scanwave indicator. 
if par.alert = 1 then 
begin ( Pause while waiting to begin. 

cOffi_wr(s + 'press any key to begin. COLORHL); 
if readkey = EXTENDED then 

readkey; 
end; 
str(par.scan + 1, s2); 
cOffi_wr(s + 'scan' + s2 + ' started. COLORMESS); ) 

StageMoveDe1ay(scanwave, par.ele.ts.pos); 
scan.mode := 4; 

end: 
inc(scan.cycle); 

end; 
{ Is stage moving? 
if scan. mode = 4 then 
begin 

if t - scan.starttime < scan.steptime then 
exit 

else 
scan. mode 3; 

end; 
{ Stage in position? 
if scan mode 3 then 
begin 

scan.mode 2; 
( Start the scan -- including TEK if in STS mode. 
if MCS_init(scanwave) = false then 
begin 

ScanStop(scanwave); 
exit; 

end; 
{ Update screen from last pass. } 
UpdateSel; 
exit; 

end; 
( MCS started? 
if scan.mode = 2 then 
begin 

{ Wait some more? } 
if t - scan.starttime < scan.steptime then 

exit; 
( See if MCS is really ready. 
mwrite{mcs.addr, 'scan?', false); 
delay(250); ) 

mread(mcs.addr, 10); 
Val (rdbuf, scan. shots, result); 
if scan. shots < par.ele.shotsperscan then 

exit; 

If STS mode, also make sure TEK is ready. 
if _bs.sts = 1 then 
begin 

( See if TEK is really ready. ) 
mwrite(tek, 'acq:state?', true); 
mread{tek, 2); 

if ibbuf[l) <> '0' then 
exit; 

{ Read data. } 
tekwrite{'curve?')i 
if dataread(tek, 2 * wv.ls[_bs.bg]~.par.pt, _bs.bg) false 

then 
begin 

com_wr('Error reading TEK data. Repeating', COLORHL); 
scan.mode 3; { Re-issue "go" command for next pass. 
exit; 

end. 
end; 

{ Read MCS data and confirm that read was good. 
cOffi_wr(s + 'reading.', COLQRMESS); } 

mwrite(mcs.addr, 'binb?', false); 

> 
"C 
"C 
('t) 

= c:l.o .... 
Ii< .... 

w 
VI 
VI 



delay(250); ) 
if dataread(mcs.addr, 2 * par.pt, scanwave) false then 
begin 

scan. mode 3; { Re- issue "go ~ command for next pass. 
exit: 

end; 

se_sel_off; { Blank screen selections for update list. } 

{ Add data to array, update counters. } 
datasaved := 0; ( Set to 0 after 1st successful scan. 
for j := 1 to par.pt do 

data[jj ;= data[j) + tmp[j); 
inc (par. scan) ; 

if _bs.sts = 1 then 
( STS handling; ) 
begin 

( Transfer data to bg wave, scaling data appropriately. ) 
with wv.ls[_bs.bg)A do 
begin 

par.ele.bs.last := 0; 
for j := 1 to _bs sts_blank - 1 do ( Blank out noise spike. ) 

t_[j) ;= 0; 
for j := _bs.sts_blank2 + to par.pt do 

t_[j) ;= 0; 
for j := _bs.sts_blank to _bs.sts_blank2 do 
begin 

temp := (32767 - tmp[j) * _bs.sts_vert • _bs.sts_fac; 
data[j) ;= data[j) + temp; 
par.ele.bs.last := par.ele.bs.last + temp: 

end; 
par.ele.bs.tot par.ele.bs.tot + par.ele.bs.last; 
inc (par. scan) ; 
sc.ls[screen] .sel 1; { Select screen for update. 

end; 

{ Scale counts by shotsperscan ratios: } 
par.ele.bs.last := wv.ls[_bs.bg]A.par.ele.bs.last * 

par.ele.shotsperscan / wv.ls(_bs.bg]A.par.ele.shotsperscan; 
( correction for non-toggle mode: record double the number 

of (bg) counts); } 
if par.ele.bs.mode = 0 then 

par.ele.bs.last := par.ele.bs.l.ast * 2; 
par.ele.bs.tot := par.ele.bs.tot + par.ele.bs.last; 
ScanELE_status; 

end 
else if (par.ele.bs.mode = 1) and (_bs.sts = 0) then 
{ Non-STS BS handling: } 
begin 

if scanwave <> _bs. fg then 
( We're on bg wave, so calculate total counts. ) 
begin 

par.ele.bs.last := 0; 
for j := 1 to par.pt do 

par.ele.bs.last := par.e!e.bs.last + tmp[j]; 
( Add to total counts of bg wave. ) 
par.ele.bs.tot := par.e!e.bs.tot + par.e!e.bs.last; 
( Now save values in tg wave, set up for fg scan. ) 
scanwave := _bs.fg; 
with wv .15 [scanwave] .... do 
begin 

par.ele.bs.last := wv.ls(_bs.bg] ..... par.ele.bs.last * 

par.ele.shotsperscan / wv.ls[_bs.bg] ..... par.ele. 
shotsperscan; ( Scale by ratio of shotsperscan's. 

par.ele.bs.tot := par.ele.bs.tot + par.ele.bs.last; 
( Print status information - pretend scan # is 1 more. 
inc (par. scan) ; 
ScanELE_status; 
dec (par. scan) ; 

end; 
end 
else 

fg wave chores: make next scan bg again. 
_bs. fg ; = 0; 

end 
else 
begin ( Non-bs mode chores : record counts and display. 

par.ele.bs.last := 0; 
for j : = 1 to par. pt do 

par.ele.bs.last := par.ele.bs.last + tmp[j); 
( Add to total counts of bg wave. ) 
par.ele.bs.tot := par.ele.bs.tot + par.ele.bs.last; 
SeanELE_status; 

end; 

( Handle mon wave. 
if mon.w > 0 then 
begin 

mon.tot := 0; 
for j : = 1 to par .pt div mon.bins do 

with wv.ls[mon.w] .... do 
begin 

data[j) ;= 0; 
for k : = 1 to mon.bins do 

data[j) ;= data[j) + wv.ls[scanwave)'.tmp[ 
(j - 1) * mon.bins + k]; 

mon.tot := man. tot + data[j); 
end; 

wv.ls[mon.w]h.par.pt := par.pt div mon.bins; 
wv.ls[mon.w]h.par.timeperpt := par.timeperpt * man. bins; 
with sc.ls[wv.1s[mon.w]A.screenJ.ti do 

if on = 1 then 
s := 'Tot' + makestringint(mon.tot); 

end; 

No more scans? Two ways to terminate: 
1. if par.scan_gl > 0, par.scan must be >= par.sea~gl; 
2. if par.vstop > 0, vmax must be >= par.vstop. ) 

UpdateVLimits; 
if {(par.vstop > 0) and (vrnax >= par.vstop» or «par.scan_gl > 

0) and (par.scan >= par.sean_gl» then 
begin 

sean.mode := 0; 
AutoSave(scanwave) ; 
UpdateVitals; 
Update(sereen); ( Draw final screen. ) 

end 
else 

scan.mode : = 1i 
{ Get screens ready for update on next pass. 
sc.ls[screen).sel := 1; 
it mon.w > 0 then 

end; 
end; 

sc.ls[wv.ls[rnon.w) ..... sereen] .sel 1; 

Vol 
VI 
0\ 

> 
"C 
"C 
~ 

= c:lo .... 
~ 

~ 



end; 

procedure ScanMAS(s bufstring; t 
{ Scan.mode values for mass scans: 

longint) ; 

SCAN_MODE_NEW: Nothing done yet. 
2: TEK started. 
1: Data read; ready to move to next wave. 

(0: Not scanning.) } 

devnarne nbuf; { Device name. } 
integer; ( General counter. ) 

k : integer; { ~ } 
result integer; ( Boogey variable for val. 
r : real; ( General real. ) 
52 : bufstring; ( General strings. 
w : integer; { Wave counter. } 

begin 
with wv.ls[scanwaveJA do 

begin 
{ Has nothing happened yet? 
if scan. mode = SCAN_MODE_NEW then 
begin 

if scan. cycle mod (par. skip + 1) a then 
begin 

{ Initialize Tek scope. 
DrawWaveData; { Show new scanmode indicator. 
if par. alert = 1 then 
begin { Pause while waiting to begin. } 

com_wr{s + 'press any key to begin. " COLORHL); 
if readkey = EXTENDED then 

readkey; 
end; 
str(par.scan + 1, s2); 
com_wr(s + 'scan' + s2 + ' started.', COLORMESS); 
{ Check that TEK is on GPIB card. } 
devname := 'tek '; 
tek := ibfind(devnarne); 
if tek < 0 then 
begin 

com_wr( 'Tek find error.', COLORHL); 
scan.mode := 0; 
DrawWaveData; ( Erase scanmode indicator. 
exit; 

end; 
ibclr (tek) ; 
{ Shut off possible acquisition in progress (don't use 

tekwrite since this waits for scope to be free first, 
which defeats purpose of shutting off an acquisition!) 

tekset_rd{wv.ls{scanwaveJA.par.mas.ch); ( Record settings 
before changing. ) 

mwrite (tek, ' acq: state 0', true); 
{ No zoom: } 
tekwrite (' zoom: state off'); 
( Disable fit to screen: ) 
tekwrite('hor:fittoscreen off'); 
( Average multiple scans: ) 
tekwrite('acq:mode ave'); 
( Number of scans to average: 
str(par.scan_gl, sl; 
tekwrite('acq:numavg , + s); 
( Stop after set number of scans: 
tekwrite('acq:stopafter seq'); 
{ Set up string for use by channel commands: 

:= 'ch' + chr(ord('O') + par.mas.ch); 
Set· channel for data acquisition: } 

tekwrite('data:source ' + s); 
{ Turn on channel: } 
tekwrite('se1:' + s + on') ; 
( Set vert. posi tion and of fset to 0: 
tekwrite(s + ':offset 0'); } 

tekwrite(s + ':pos 0'); 
( Read vert. scale, place in par mas.vert. 
tekwrite(s + ':scale?'): 
mread(tek, sizeof(s»; 
s : = "; 
for j : = 1 to ibcnt - 1 do 

s := S + ibbuf[jJ; 
val (s, par. mas. vert, j); { is dummy variable. 
{ 2 bytes per bin: } 
tekwri te ( 'data: width 2'); 
( Transfer desired number of data poin1;.s: 
str(par.pt, s); 
tekwrite('data:start 1;stop , + s); 
{ Use signed binary format with L$B (low byte) transferred 

first: } 
tekwrite('data:encdg sribinary'); 
{ Calculate minimum * of bins and set: } 
j := round(par.pt); 
if j <= 500 then 

j ,= 500 
else if j <= 1000 then 

j ,= 1000 
else if j <= 2500 then 

j ,= 2500 
else 

j ,= 5000; 
str(j, s); 
tekwrite ( 'hor: reco ' + s); 
( Set pretrigger to 0%: "> 

tekwrite('hor:trig:pos 0'); 
( Check delay parameter to determine whether to use main 

or delayed trigger: ) 
if par.mas.delay = 0 then 
begin 

( Use main sweep: ) 
tekwr i te ( , hor : mode main' ) ; 
{ Set time per division ( =·time per pt * pts per div): 
str(par.timeperpt * TEK_PTPERDIV, s); 
tekwrite('hor:main:scale ' + s); 

end 
else 
begin 

{ Use delayed sweep: ) 
tekwrite{'hor:mode delayed'); 
{ Set time per division ( = time per pt • pts per div): } 
str(par.timeperpt • TEK_PTPERDIV, s); 
tekwrite( 'hor:delay:scale ' + sl; 
( Set delay time before starting acquisition: 
str(par.mas.delay, s); 
tekwrite('hor:delay:time:runsafter ' + s); 

end; 
( Start the scan: 
tekwrite{'acq:state run'); 

Time(scan.starttime); ( Record start time. 
scan.steptime := 100 * round(par.scan_gl) div TEKREPRATE; 

> 
"0 
"0 
~ 

= Q. ... 
~ 
I-" 

V.l 
VI 
-.....} 



end; 

{ How long to wait between data reads. 
scan mode := 2; 

end 
else 

scan.mode := 1; ( Skip to next wave. 
inc (scan.cycle) ; 

end; 
{ TEK started? 
if scan.mode = 2 then 
begin 

{ Wait some more? } 
if t - scan.starttime < scan.steptime then 

exit: 
See if TEK is really ready. } 

mwrite(tek, 'acq:state?', true): 
mread( tek, 2): 
if ibbuf[1] <> '0' then 

exit; 
{ Read data. } 
tekwrite('curve?'}: 
if dataread(tek, 2 • par.pt, scanwave) = false then 
begin 

COITLwr ( , Error reading TEK data.',· COLORHL); 
scan.mode 0; 
exit: 

end; 
ibc lr ( tek) i ( Reset tek for user. ) 
tekset_wr; { Restore settings. } 
{ Add data to array, update counters. 
datasaved : = 0; { Set to 0 after 1st successful scan. } 
{ Transfer data to wave, checking invert flag first: } 
if par.mas.inv = 0 then 

for j : = 1 to par. pt do 
data[jJ ,= tmp[jJ 

else 
for j : = 1 to par. pt do 

data[jJ ,= -tmp[jJ; 
scan.mode := 0; 
UpdateVitals; 
Update (screen) ; 

end; 
end; 

procedure ScanPOW(var t : longint); 
{ Read AID card, update power waves, handle time wraparound, draw osc 

if on. } 
var 

ptadv : integer; { Number of points to advance in power scans. ) 
S : bufstring; 
w : integer; 

begin 
ADReadAll; ( Read active channels on AID card. ) 
time(t); { Read current tim~. } 
DrawOsc; 

Handle time wraparound: Normally t is always larger than starttime, 
but if clock has just reset (at 12 AM), will be smaller. In this case 
we just calculate the amount of time after 12 AM at which we need to 
wait, and adjust starttimes accordingly. } 

for w := 1 to wv.num do 
wi th wv. Is [w] A do 

if (scan.mode > 0) and (t < scan.starttirne) then 

dec (scan. starttime, TIMEMAX - scan.steptime); 

Handle power scans. } 
for w : = 1 to wv. nwn do 

with wv.ls[w1A do 

end; 

if (scan.mode > 0) and (par.dt = dt_POW) then 
begin 

{ Accumulate signal, update shots. } 
scan.accum := scan.accum + AD.ls{par.pow ch].result; 
inc(scan.shots); 
{ Time to advance point counter? } 
ptadv := (t - scan.starttime) div scan.steptime; 
if ptadv > 0 then 
begin 

{ Save averaged power in data array, update counters. } 
inc(par.pt) ; 
data[par.pt] := scan.accum I scan. shots; 
if ptadv > 1 then 

inc(par.pt, ptadv - 1); { Skip over intervening points which 
may have been lost (due to user tying up computer). } 

datasaved : = 0; .< Set to 0 after 1st successful point. } 
scan.accum := 0; 
scan. shots : = 0; 
Time(scan.starttime); { Start next point. 
{ See if enough points. } 
if par.pt >= par.pt_gl then 
begin 

{ Indicate scan is finished, update counters, screen. } 
scan.mode : = 0; 
par.pt := par.pt_gl; ( Ensure points is not larger than 

max. ) 
ADoff(par.pow.ch); Turn off channel. 
strew, s); 
co~wr('Wave ' + s + ' scan completed. " COLORMESS); 
Upda teVi tals; 
Upda te (screen) ; 
AutoSave (w) ; 

end; 
end; 

end; 

procedure Scanlnit(w, blank: integer); 
{ Sets needed variables when scan is started. blank is flag to reset 

scan number and blank data. } 
begin 

with wv.ls[w]'" do 
begin 

if blank = 1 then 
begin 

datasaved := 1; ( Initially "just blank data so don't care if 
not saved. ) 

FillChar(data, sizeof(data), 0); 
FillChar{tmp. sizeof{tmp). 0); 
par.scan := 0; 
{ Initialize bg total counts. 
if par. dt = dt_ELE then 
begin 

par.ele.bs.tot := 0; 
par.ele.bs.last 0; 

end; 
end; 
scan. cycle 0; 

w 
VI 
00 

> 
"'CI 
"'CI 

~ 
c:l. .... 
~ 
I-" 



scan. mode : = SCAN_MODE_NEW i 
case par.dt of 

DT_COR: 
begin 

par.pt 0; 
par.cor.ts.wob 

end; 
DT_ELE: 

par.ele.ts.wob 
DT_POW, 
begin 

par.pt := 0; 

ts. wab; 

ts.wab; 

ad.ls(par.pow chl .on := 1; ( Activate AID channel. 
scan.steptime := round(lOO * par.timeperpt); 
Time(scan.starttime); ( Start running irrunediately. 
com_wr('Wave ' + makestringint(w) + ' scanning.', COLORMESS); 

end; 
end; 

end; 
end; 

function scanning(d integer): boolean; 
( Determines if any d dt waves are active. 
var 

w integer; 
begin 

for w : = I to wv. num do 
if (wv.ls[wlA.par.dt = dl and (wv.ls[wlA.scan.mode > 0) then 
begin 

scanning true; 
exit; 

end; 
scanning false; 

end; 

procedure ScanStop{w integer) ; 
{ Terminate scan in w, if one exists. 

s bufstring; ( General string. 
begin 

if wv. num = 0 then 
exit; 

with wv.ls[wl A do 
if scan.mode > 0 then 
begin 

scan.mode 0; 
com_wr_wv(w, 'done. COLORMESS); 
case par dt of 
dt_COR, 

{ Data will be a mess if took more than one scan, because data will 
only be partially overwritten. User will decide if useful, but as 
far as number of scans goes, I will report number of COMPLETE 
scans. If only one scan taken, reduces number of points to If: 
actually taken 

begin 
if par. scan> a then 
par.scan_gl par.scan 

else if par. pt > 0 ther. 
begin 

par.scan_gl 1; 
par.pt_gl par pt; 

end; } 
ADoff(par.cor.ch); ( Turn off channel if no others using it. 

end; 

Update (screen) ; 
end; 

dt_ELE, 
Update (screen) ; 

dt_POW, 
begin 

if scan. shots > 0 then ( Evaluate last point. 
begin 

inc(par.pt) ; 
data(par.ptj := scan.accum./ scan. shots; 

end; 
if par.pt > '0 then 
par.pt_gl := par.pt; 

ADoff(par.pow.ch); { Turn off channel if no others using it. } 
Update(screen); } 

end; 
end; 

end; 

procedure ScanStopAII; 
( Stop all waves. 
var 

i integer; 
begin 

sc_sel_off; 
for i := 1 to wv.num do 

ScanS top (i) ; 

UpdateSel; 
end; 

function sech_sq(pos, fwhm : real) : real; 
( Returns sechA2(pos I fwhm). } 
canst 

CONV = 1.762747174; 
var 

x : real; 
begin 

if (fwhm = 0) then 
begin 

sech_sq 0; 
exit; 

end; 
x := CONV * pas / fwhm; 
sech_sq 4 / sqr(exp(x) + exp(-x)); 

end; 

procedure SetEnergyConversion; 
{ Allows user to input energy conversion factors (PAR_E_CALLENGTH, 

PAR_E_CALTO) which are applied to all existing ELECTRON waves. } 
var 

p : real; { General power. 
s : bufstring; { General string. 
w : integer; ( Wave counter. ) 

begin 
textmode; 
clrscr; 
p := Power(setenergyconversionlength); 

:= 'Enter calibration length (default = ' + makestring( 
setenergyconversionlength I p, MAXXDIGITS, MAXXDIGITS - 1) + ' , + 
UnitPrefix(round(log10(p»)) + 'm): 

writeln{s') ; 
if macro_override = 0 then 

> 
"'CI 
"'CI 
ttl 
::I 
c:l,. 
~. 

~ 

V.l 
VI 
\0 



begin 
readln(s) ; 
if s <> '. t.hen 
begin 

val_res, setenergyconversionlength); 
setenergyconversionlength := setenergyconversionlength'· p; 

end; 
end; 
P ': = Power (setenergyconversiontO) ; 
5 := 'Enter calibration TO (default = ' + makest.ring( 

setenergyconversiontO I p, MAXXDIGITS , MAXXDIGITS - 1) + I • + 
UnitPrefix(round(loglO(p»)) + '5):'; 

writ.eln(s) ; 
if macro_overr ide = 0 t.hen 
begin 

readln(s} ; 
if s <> ' I then 
begin 

val_res, setenergyconversiontO); 
setenergyconversiontO := setenergyconversiontO • p; 

end; 
end; 
p : = Power (set.energyconversionquad) ; 
5 := 'Enter calibration quad factor (default = I + makestring( 

setenergyconversionquad I p, MAXXDIGITS, 
MAXXDIGITS - 1) + I , + UnitPrefix(round(loglO(p))) + 'eV):'; 

writeln(s} ; 
if macro_override 0 then 
begin 

readln(s} ; 
if s<> I' t.hen 
begin 

val_res, setenergyconversionquad); 
setenergyconversionquad := set.energyconversionquad * p; 

end; 
end; 
p := power(setenergyconversionquadoff): 
s := 'Enter calibration quad factor (default = ' + makestring{ 

setenergyconversionquadoff i P, MAXXDIGITS, 
MAXXDIGITS - 1) + ' , + UnitPrefix(round(log10 (p») + 'eV):': 

writeln(s) ; 
if macro_override 0 then 
begin 

readln(s) ; 
if s<> " then 
begin 

val_res, setenergyconversionquadoff); 
setenergyconversionquadoff : = 

setenergyconversionquadoff • Pi 
end; 

end; 
p : = Power (setenergyconversionlaserev) ; 
s. : = ' Enter calibration laser energy (default = ' + makestring ( 

setenergyconversionlaserev I p, MAXXDIGITS, MAXXDIGITS - 1) + ' , + 
UnitPrefix{round(log10{p»)) + 'eV):'; 

writeln(s) ; 
if macro_override = 0 then 
begin 

readln(s) ; 
if s <> " then 
begin 

val_res, setenergyconversionlaserev); 
setenergyconversionlaserev : = setenergyconversionlaserev "" p; 

end; 
end; 
for w := 1 to wv.num do 

with wv.ls[w]A.par do 
if dt = dt_ELE then 
begin 

ele.cal.len := setenergyconversionlength; 
ele.cal.tO := setenergyconversiontO; 
ele.cal.quad := setenergyconversionquad; 
ele.cal.quadoff := setenergyconversionquadoff; 
ele.cal.ev setenergyconversionlaserev; 

end; 
UpdateAll, 

end; 

function sgn(r : real) 
{ Returns sign of r. } 
begin 

real; 

if r < 0 then 
sgn : = -1· 

else 
sgn 1; 

end; 

procedure ShowParams(par-ptr : par_type-ptr: p, w, poffset : integer); 
{ Write all parameters to screen. w is wave number (0 if editing 

defaul ts). ) 
var 

integer; ( Parameter. 
r : real; { General real. 
y : integer; 

begin 
textmode; 
clrscr; 
{ Print header message. } 
textcolor (LIGHTGREEN) ; 
if w = 0 theri 

writeln_ctr('Defaults', 40) 
else if wv.ls[w)A.scan.mode > 0 then 

writeln_ctr{'Wave + makestringint(w) + ' active: READ ONLY', 40) 
else 

write1n_ctr('Wave + makestringint{w), 40)i 
with par-ptrA do 
if (dt >= DT_MIN) and Cdt <= DT_MAX) then 
begin 

y : = USERMAXDTldt} - poffset + PARYSTART - 1, 
if y > PARYSTOP then 

y : = PARYSTOP, 
for y : = PARYSTART to Y do 
begin 

i := poffset + y - PARYSTART + 1; 
gotoxy(CHANGEPARXNAME, y), 
if i < US ERMIN then 

textcolor(LIGHTGREEN) 
else 

textcolorCWHITE); 
{ Name: } 

if i < USERMIN then 
writeCPARLABEL[i] ) 

else 
write (PARLABELDTldt) Ii}), 

Values: } 

W 
0\ 
o 

> 
't:S 
't:S 
n> 

5-.... 
~ 
~ 



gotoxy(CHANGEPARXVALUE, y); 
if i = p then 

textcolor(LIGHTRED) 
else if i < US ERMIN then 

textcolor(LIGHTGREEN) 
else 

textcolor(WHITE): 
case i of 
PAR_ALERT: write(alert): 
PAR_COMMENT: write (conment) : 
PAR_dt, write(dt_NAME(dtJI; 
PAR_FILENAME: write(fn); 
PAR_GEN: write(gen): 
PAR_PT: write(pt); 
PAR_PT_GL: write (pt_gl) ; 
PAR_SCAN: write(scan): 
PAR_SCAN_GL: write(scan_gl); 
PAR_SH: wr i te (wv _sh_NAME (sh] ) ; 
PAR_SKIP: write{skip); . 
PAR_TIMEPERPT: 

if dt <> dt_COR then 
writevalue(timeperpt, 0, VALDEC, VALMAX, 's') 

else 
writevalue(timeperpt, POWFS, VALDECFS, VALMAXFS, 's'); 

PAR_VSTOP: writevalueunitless(vstop, 0, VALDEC, VALMAX): 
PAR_YOFFSET: writevalueunitless(yoffset, 0, VALDEC, VALMAX): 
PAR_YSCALE: writevalueunitless (yscale, 0, VALDEC, VALMAX); 
else 

case dt of 
dt_COR, 

case i of 
PAR_C_STAGESTART: writevalue(cor.ts.start, POWTS, VALDECTS, 

VALMAXTS, 'm'l; 
PAR_C_STAGESTEP: writevalue(cor.ts.step, POWTS, VALDECTS, 

VALMAXTS, 'm'l; 
PAR_C_STAGESTOP: writevalue(cor.ts.stop, POWTS, VALDECTS, 

VALMAXTS, 'm'l; 
PAR_C_STAGETO: writevalue(cor.ts.tO, POWTS, VALDECTS, VALMAXTS, 

'm'l; 
PAR_C_STAGEwobAMPL: writevalue(cor.ts.wob.ampl, POWTS, 

VALDECTS,' VALMAXTS, 'm' 1 ; 
PAR_C_STAGEwobPER: writevalue(cor.ts.wob.per, POWTS, 

VALDECTS, VALMAXTS, ' m' I ; 
PAR_C_STAGEwobPH: writevalueunitless(cor.ts.wob ph, 0, 

VALDEC, VALMAXI; 
PAR_C_CHANNEL: write(cor.ch): 
PAR_C_SHOTSPERPT: write(cor.shotsperpt); 
end: 

dt_ELE, 
case i of 
PAR_E_BS_LAST: writevalueunitless(ele bs.last, 0, VALDEC, 

VALMAX) ; 
PAR_E_BS_MODE: write(ele.bs.mode); 
PAR_E_BS_TOT: writevalueunitless{ele bs.tot, 0, VALDEC, 

VALMAXI; 
PAR_E_CALEV: writevalue(ele.cal.ev, 0, VALDEC, VALMAX, 'eV'); 
PAR_E_CALLENGTH: writevalue(ele cal.len, 0, VALDEC, VALMAX, 

'm') ; 

PAR_E_CALTO: writevalue(ele.cal.tO, 0, VALDEC, VALMAX, 's'); 
PAR_E_CALQUAD: writevalue(ele.cal.quad, 0, VALDEC, VALMAX, 'm2/s2'); 
PAR_E_CALQUADOFF: writevalue(ele.cal.quadoff, 0, VALDEC, VALMAX, 's/m'); 
PAR_E_REPRATE: writevalue(ele.reprate, 0, VALDEC, VALMAX, 'Hz'); 

PAR_E_STAGEPOS: writevalue(ele.ts.pos, POWTS, VALDECTS, 
VALMAXTS, 'm'); 

PAR_E_STAGETO: writevalue (ele. ts. to, POWTS, VALDECTS, VALMAXTS, 
'm'l; 

PAR_E_STAGEwobAMPL: writevalue (ele. ts. wob. ampl, POWTS, 
VALDECTS, VALMAXTS, 'm'l; 

PAR_E_STAGEwobPER: writevalue (ele. ts. wob. per, POWTS, 
VALDECTS, VALMAXTS, 'm' I; 

PAR_E_STAGEwobPH: writevalueunitless(ele.ts.wob.ph, 0, 
VALDEC, VALMAXI; 

PAR_E_TIMEFPES: writevalue (ele. dly, POWFS, VALDECFS, VALMAXFS, 
's' I; 

PAR_E_SHOTSPERSCAN: write(ele.shotsperscan); 
end: 

dt_POW, 
case i of 
PAR_P_CHANNEL: write(pow.ch); 
PAR_P_CALINT: writevalue(pow.cal.int, 0, VALDEC, VALMAX, 'W'); 
PAR_P_CALSLOPE: writevalue (pow. cal. sl, 0, VALDEC, VALMAX, 'W'); 
end; 

dt_MAS, 

case i of 
PAR_M_CALINT: writevalue(mas.cal.int, 0, VALDEC, VALMAX, 's'); 
PAR_M_CALSLOPE: writevalue (mas. cal. sl, 0, VALDEC, VALMAX, 

'Da/s'2' I; 
PARJCCHANNEL: write(mas.ch); 
PAR_M_DELAY: writevalue(mas.delay, 0, VALDEC, VALMAX, '5'); 

PAR_M_INV: write (mas. inv) : 
PAR_M_SCANTIME: writevalue(mas.scantime, 0, VALDEC, VALMAX, 's' 

I; 
PAR_M_VERT: writevalue(mas.vert, 0, VALDEC, VALMAX, 'V/div'); 
end; 

end: 
end: 

end; 
end: 
{ In order to write text in white, must print something to screen -

so we put a space in the corner. 
gotoxy(79, 251; 
textcolor (WHITE) ; 
write (' '); 

end; 

procedure SkipLabel(var f : text): 
{ Reads past label (terminated by LABEL_END_CHAR) in wv or ws file. 
var 

c : char; 
begin 

repeat 
read(f, c): 

until c = LABEL_ENO_CHAR: 
end; 

procedure SmoothEnergy(w : integer; res real); 
{ This is taken partly from the procedure SMOOTH in the TENURE 

computer code implemented by S. Bradforth. 
smoothed data (EO] = sum over i (weight(Ei-EO] * data(EO] 1 

sum over i weight(Ei-EO] 

real; 
energyj : real; 

> 
"CI 
"CI 
l'!) 

a .... 
><'l 

"""'" 

w 
0\ -



factor real; 
i,j integer; 
max integer; 
maxdE ' real; 
min : integer; 
range integer; 
realdE : real; 
root real;} 

t : real; 
totalwave : real; 
totalweight : real; 
wgt : real; 

begin 
a := 4 * LN_2 I res I res; { convert fwhrn to std. dev. } 
maxdE ,= SQRTLN_100 / sqrt(a); 
( set up limit such that smooth iff abs (EO - Ei) < maxdE so that 

weight (EO-Ei) >= 0.01') 
with wv.lS[W]A do 
begin 

factor := 2 * SLOPEFACTOR * par.timeperpt * sqr(par.ele.cal.len); 
for j : = pnin to par .pt do begin 

t := j • par.timeperpt - par.ele.cal.tO; 
root := sqrt(slope*(slope+4*t*quad»; } 

realdE := factor I (t * t * t); 
realdE := timebase*«slope+root)/t/t/t+quad/t/t*(l-slope/root»; 

( realdE is the differential step in energy. Note that 
realdE/timebase is derivative of E as a function of t ) 

range ;= trunc(maxdE I realdE); 
if range > 1 then begin 

min:= - range; 
if min < pmin then 

min := pmin; 
max : = j + range; 
if max > par.pt then 

max := par.pt; 
totalwave := 0.0; 
totalweight : = 0.0; 
energyj := PtoU(w, j, xaxismode_CONVERT); 
for i := "min to max do begin 

wgt := weight (PtoU(w, i, xaxismode_CONVERT) - energyj, a); 
totalwave := totalwave + wgt * data{i]; 
totalweight := totalw~ight + wgt; 

end; 
wv. temp[j) 

end 
else 

totalwave I totalweight; 

wv.temp[j) data[j); 
end; ( loop ) 
( Copy data back. blanking out parts below pmin. ) 
for j: 1 to pmin - 1 do 

datal ) ,= 0; 
for j: pmin to par. pt do 

datal ] : = wv. temp[j]; 

end; 
end; 

procedure SmoothTime(w : integer; res 
{ Smooth wave w in time. } 
var 

a : real; 
i, j : integer; 
max, min : integer; 
range integer; 

real) ; 

5 bufstring; 
timej : real; 
t_wt : real; ( Total weight. ) 
t_wt-y : real; ( Total weight * data. ) 
wt : real; { Weight. } 

begin 
with wv.ls[w]~ do 
begin 

res := res * le-9; ( ns -> s. ) 
a := 4 * LN_2 I res I res; { convert fwhm to std. dev. } 
range trunc(SQRTLN_lOO I sqrt(a) I par.timeperpt); 
( set up limit such that smooth iff weight (ti - tj) >= 0.01 
for j 1 to par.pt do 
begin 

timej ,= PtoU(w, j, XAXISMODE_NORMAL); 
if ( range > 1 ) then { smooth this point 
begin 

min := j - range; 
if ( min < 1) then 

min := 1; 
max : = j + range; 
if ( max > wv.ls{w1~.par.pt ) then 

max := wv.ls[w]~.par.pt; 
t_wt ,= 0.0; 
t_wt-y ,= 0.0; 
for i : = min to max do 
begin 

wt := weight (PtoU(w, i. XAXISMOOE_NORMAL) - timej, a); 
t_wt : = t_wt + wt; 
t_wt-y := t_wt-y + wt * data[i]; 

end; 
wv.temp[j) ,= t_wt-y / t_wt; 

end 
else 

wv.temp[j) ,= data[jj; 
end; 
for j := 1 to par.pt do 

data[j) ,= wv.temp[j);· 
end; 

end; 

procedure SmoothWiener (w : integer; res : real); 
{ Performs time-domain smoothing using a Wiener filter method. This 

approach (taken from TENURE program in S. E. Bradforth' s thesis) con
sists of a Fourier transform of the energy data. multiplication of the 
transformed data by a Lorentzian filter function. and inverse-Fourier 
transform back to energy space. 

Assumes filter array already set up, since this takes some time to 
generate and can be used for multiple jobs. } 

var 
a : fft_array_type; ( Storage of transformed data. 
i. ii : integer; 

begin 
with wv.ls[w]A do begin 

{ Quick check that points are compatible. Eventually may want to 
use a padding method so any length wave can be filtered. } 

if par.pt <> MAXPOINTS then 
begin 
co~wr('Wrong number of points', COLORHL); 
exit; 

end; 
{ Set up a. 

Vol 
0\ 
tv 

> 
'C 
'C 
('t) 

= Q., .... 
~ 

""'" 



for i : = 1 to MAXPOINTS do begin 
a{2 i - 1) data{i); 
a(2 • il := 0; 

end; 
( Fourier transform. 
£ttla, MAXPOINTS, 1); 
{ Filter. } 
for ii : = 1 to MAXPOINTS div 2 + 1 do begin 

= 2 ." ii; 
a( - 1] := a(i - II * filter[iil; 
a[ := a[i) • fi1ter(ii); 

end; 
for ii MAXPOINTS div 2 + 2 to MAXPOINTS do begin 

2 * ii; 
a(i - 11 := a(i - 1] • filter(MAXPOINTS - ii + 2]; 
ali) := a(i) * filter(MAXPOINTS - ii + 2]; 

end; 
{ Inverse Fourier transform. } 
ftt la, MAXPOINTS, -1); 
{ Transfer back to wave data. } 
for i := 1 to par.pt do 

data(il := a(i * 2 - 1] I MAXPOINTS; 
end; 

end; 

{procedure SmoothWaves; 
var 

exitf1ag : boolean; 
k : integer; 
ok : boolean; 
resolution real; 
w : integer; 

begin 
if (scan_.mode 1) and (scan_.w wv.cur) then 

exit; 
if (scantype ENERGYSCAN) then 

begin 
TextMode; 
writeln{' '); 
writeln{'Gaussian smoothing of data. 'I; 
exit flag := FALSE; 
repeat 

ok : = TRUE; 
writeln{' '); 
writeln('Which wave would you like to smooth? (O will smooth all waves) '); 
writeln( 'Type a negative value to exit.'); 
readln (w) ; 
if (w > 'WV.num) then 

begin 
writeln (' '); 
writeln<' Inputted wave number out of range.'); 
ok : = FALSE; 

end; 
if (w < 0) .tp.en 

exitflag : = TRUE; 
until (ok = TRUE) or (exitflag TRUE); 
if (exitflag = FALSE) then 

begin 
if (w = 0) then 

writeln( 'Wavename: "all waves"') 
else 

writeln ( 'Wavename: M' +wave [wI,.... wavename+' H • ' ) ; 

repeat 

ok : = TRUE; 
wr teln{' 'I; 
wr teln{'Type full width at half maximum (in meV) of Gaussian'); 
wr te!n('to be used for smoothing. 'I; 
readln(resolutionl; 
if (resolution <= 0) then 

begin 
writeln ( 'Resolution must be a positive nwnber.') ; 
ok := FALSE; 

end; 
until (ok = TRUE); 
resolution := resolution 
if (w = 0) then 
for k := 1 to wv.num do 

1000.0; { convert from rneV to eV } 

begin 
SmoothWave(k,reso1ution); 
wv.ls[k]".saved := 0; 

end 
else 

begin 
SmoothWave (w, resolution); 
wv.ls[w)".saved := 0; 

end 
else 

end; . 
end; ( if ) 

DrawAll; 

begin 
write('7) ; 
message 'Must be an Energy Scan.'; 
Drawmessagebox; 

end; 
end; { procedure SmoothWaves 

procedure StackWaves; 
{ Stack waves vertically. 
var 

a real; 
c char; 
S : bufstring; 
w : integer; 

begin 
if wv.num = a then 

exit; 
a := 0; 
write1n; 

Generic real. 
Generic char. 
Generic string. 
Wave index. } 

writeln('Enter Y spacing between each wave. A positive value indicates wave 1 is 
on top;'); 

writeln('a negative value indicates wave 1 is on bottom. Enter a to superimpose 
all') ; 

writeln('waves. Previous offset values will be undone. 'I; 
writeln( 'Default = ' + makestring(a, MAXXDIGITS, MAXXDIGITS - 1) + ' (' 

+ sc.ls(sc.cur).qr.yunits + '): '); 
read1n(s) ; 
if s <> " then 
begin 

val_r(s, a); 
a a * sc.ls(sc.cur) .gr.ypower; 

end; 
if a >= 0 then { Stack downward from 1st "wave. 

for w : = 1 to wv.num do 
wv.ls[wJ~.par.yoffset a * (wv num - w) I wv.ls[wJ".par.yscale 

else { Stack upward from 1st wave. 

> 
"CI 
"CI 
~ = Q.. .-. 
~ 
)0000' 

VJ 
0\ 
VJ 



for w := 1 to wv.num do 
wv .ls [w] '" .par. yoffset 

UpdateAll; 
end; 

procedure Stage; 

-a * (w - 1) I wv.ls[wJ"'.par,yscale; 

{ Allows user to communicate with Aerotech translation stage. } 
const 

LF = 110; ( Compiler seems to need this declaration here rather than in the 
Keys unit. ) 

var 
C : char; 
command: string{80); 
exitflag : boolean; 
1 : real; 
p : real; { Power of 1000. } 
readAD : boolean; 
sum : real; 
x : integer; 

begin 
readAD : = false; 
exitflag := FALSE; 
textmode; 
clrscr; 
{ Main loop. 
repeat 

write ( , Position = '); 
writevalue(ts.pos, POWTS, VALDECTS, VALMAXTS, 'm'); 
write ('. Step size = '); 
writevalue(move. step, POWTS, VALDECTS, VALMAXTS, 'm'); 
writeln('. Type H for help.'); 
if readAD = true then 

whi Ie not keypressed do 
begin 

writeln(ADRead(l)) ; 
delay(lOO) ; 

end; 
case readkey of 
EXTENDED; 

case readkey of 
XARROWUP: 

begin 
move. step := move.step * 2; 
if move. step > STAGEMAX then 

move.step := STAGEMAX; 
end; 

XARROWOOWN: ( Down arrow) 
if move. step > ts.step then 

move.step := int«move.step / ts.step» * ts.step / 2; 
XARROWLEFT: ( Left arrow ) 

if ts. pos - move. step >= STAGEMIN then 
StageMove(ts.pos - move. step) ; 

XARROWRIGHT: { Right arrow) 
if ts. pos + move. step <= STAGEMAX then 

StageMove(ts.pos + move.step); 
XHOME; 

begin 
write (COM2, ACK); 
delay (ACKDELAY) ; 
write (COM2 , 'ICAHM' + LF); 
writeln( 'Homing stage. Press any k~y to send ABSL command.'); 
readIn; 
write (COM2, ACK); 

delay (ACKDELAY) ; 
write(COM2, '#CAABSL' + LF); 
ts.pos := 0; 

end; 
end; { Extended keys. 

'A', 'a': 
begin 

write (COM2, ACK); 
delay (ACKDELAY) ; 

end; 
'C', 'c': 

begin 
writeln ( , Enter command to send (begin with i if not CA-type command):'); 
readln (command I ; 
write (COM2 , ACK); 
delay (ACKDELAY) ; 
if conunand[l) = 'i' then 

write (COM2, command + LF) 
else 

write (COM2 , 'iCA' + command + LF); 
end; 

'W, 'h': 
begin 

clrscr; 
writeln('Up arrow: Double step size.'); 
WRITELN('Down arrow: Halve step size.'); 
WRITELN( 'Left arrow: Move stage backward.'); 
WRITELN( 'Right arrow: Move stage forward.'); 
WRITELN('ESC; Exit.'I; 
writeln('HOME: Home stage and place in absolute mode.'); 
writeln('A: Send ACK code. 'l; 
writeln('C: Send command.'); 
WRITELN('H: Display this help screen.'); 
WRITELN('I: Initialize.'); 
WRITELN( 'P: Change position.'); 
writeln('R: Read/don-t read AID converter.'); 
WRITELN('S: Change step size.'); 
writelnC'T: Toggle stage.'); 
WRITELN C ' X: Send disengage command (ttEA).'); 
WRITELN; 

end; 
'I', ' i': 

begin 
( Send setup cormnands. ) 
writeln('Set up. Please wait.'); 
write (COM2, *31; 
DELAY (1000 I ; 
write (COM2 , *321; 
DELAY(lOOOI; 
write (COM2 , *301; 
DELAY(lOOOI; 
write (COM2, ACK); 
DELAY (ACKDELAYI ; 
( Home stage. ) 
writeln< 'Homing stage. Press RETURN when ready.'); 
write (COM2, , ttCAHM' + LF); 
readln; 
write (COM2, ACK); 
{ Set absolute mode. 
write (COM2, 'ttCAABSL' + LF); 
delay (1000 I; 
write (COM2, ACK); 
ts.pos := 0; 

w 
0\ 
~ 

> 
'C 
'C 
~ = Q.. .... 
~ 
)0000I. 



--

end; 
'P', 'p': ( Change position) 

begin 
write{'Enter position (default = 'l; 
writevalue(ts.pos, POWTS, VALDECTS, VALMAXTS, 'm'); 
writeln('): 'J; 
readvalue{ts.pos. POWTS}; 
roundoff{ts.pos, ts.step); 
limit(ts.pos. STAGEMIN, STAGEMAX); 
StageMove(ts.pos); 

end; 
'R', 'r': Toggle read/don't read AID converter. } 

readAD not readAD; 
, S', , S/: Change step size } 

begin 
write('Enter step size {default = 'J; 
writevalue (move. step, POWTS, VALDECTS. VALMAXTS, 'm'); 
writeln{'):'); 
readvalue (move. step, POWTS); 
roundoff (move. step, ts.step); 
limit(ts.pos, ts.step, STAGEMAX); 

end; 
'T'. 't': { Toggle stage. 

begin 
write('Enter starting position (default = 'l; 
writeva!ue(move.start, POWTS, VALDECTS, VALMAXTS. 'm'); 
writelri('):'); 
readvalue{move.start, POWTS); 
roundoff (move. start, tS.step); 
limit (move. start, STAGEMIN, STAGEMAX); 
write('Enter ending position (default = '); 
writevalue (move. stop, POWTS, VALDECTS, VALMAXTS, 'm'); 
writeln(') :'); 
readvalue(move.stop, POWTS); 
roundoff (move. stop, ts.step); 
limit (move. stop, STAGEMIN, STAGEMAX); 
write('Enter time to wait (default = '); 
writevalue(move.wait, POWTS, VALDECTS, VALMAXTS, 's'); 
writeln('): '); 
readvalue(move.wait, POWTS): 
roundoff (move.wait, l,e-3): 
if move.wait < a then 

move. wait 0: 
sum := move. start + move. stop: { Math trick: add limits to

gether; then can toggle between the values by subtracting 
ts.pos from it each time (see below). } 

writeln( 'Moving to starting position. Press RETURN when ready.'); 
StageMove(move.start); 
readln; 
writeln('Press any key to exit. '); 
repeat 

StageMove(sum - ts.pos): 
write (BELL); 
delay(round(move wait * 1000»; 

until keypressed: 
{ Remove character from buffer: 
if readkey = EXTENDED then 

readkey: 
end: 

, X', • x': { Send disengage conunand (/tEA) } 

begin 
writeln(' /tEA'); 
write(COM2. ACK); 

delay IACKDELAY) ; 
write (COM2 , 'tEA' + LF); 

end; 
ESC: { Exit. 

begin 
write (COM2, ACK): 
exitflag TRUE: 

end; 
end: 

until exit flag TRUE; 
DrawAlli 

end; 

function StageDelay(r real): longint: 
Calculates delay time for stage to move to position r from ts.pos. 
If ts.pos = a (always case at startup, and rarely thereafter), re
turns -delay which is a flag to have program wait for user input to 
know when stage has stopped moving. Value returned is in lOath of a 
second. } 

var 
temp: longint: 

begin 
temp := round(abs(r - ts.pos) * ts.wait.sl) + ts.wait.int: ( Empirical 

formula. ) 
if ts.pos > a then 

stagedelay := temp 
else 

stagedelay 
end; 

-temp; 

function StageLookup(r : real) : real: 
{ Looks up r in lookup table ts.wob.lookup to find corresponding 

position to submit to stage. } 
var 

i, j, k integer: 
ri, rj : real; 
rdiv : real; 

begin 
if ts.wob.per < TS_STEP_MIN then 
( Do nothing if period is 0 (prevents /0 error). } 
begin 

stagelookup 
exit: 

end: 

r; 

( Calculate integer divisor and modulus of lookup position. 
rdiv := ts.wob.per * (trunc(r / ts.wob.per - ts.wob.ph + 1) - 1); 

{ + 1 ensures arg of trunc function is positive. } 
r := ts.wob.per * frac(r / ts.wob.per - ts.wob.ph + 1); 

{ + 1 ensures arg of frac function is positive. No need to add back 
since frac only keeps fraction anyway! } 

Initialize positions. } 
; = 0; 
;= TS_LOOKUP_MAX; 
Use binary search to find closest position. 

while j - > 1 do 
begin 

k (i + j) di v 2: 
if r ~ ts.lookup[kl then 

j k 
else 

i k: 
end; 
( ... and interpo1~tion to calculate fractional index position. 

> 
"C 
"C 
~ 

= ~ 
~. ,... 

w 
0\ 
VI 



ri := ts.lookup[i]; 
rj : = ts .lookup[j]; 
stagelookup := rdiv + ({i * (rj - r) + j * (r - rill 1 (rj - ri) 1 

TS_LOOKUP J{AX + ts. wob. ph) * ts. wob. per; 
end; 

procedure StageHove(r real); 
{ Move stage to position r (m) ana update ts.pos. 
canst 

LF = 110; ( For some reason compiler needs this defined again. 
var 

command: bufstring; ( General string. ) 
begin 

if (r < STAGEKIN) or (r > STAGEMAX) then 
exit; 

write ICOM2 , ACK); 
delay I ACKDELAY) ; 

{ StageLookup: Correct position using lookup table. ts.step: alter 
number of steps sent to ts based on current stepsize. } 

command := makestringint(round(StageLookup(r) 1 ts.step»; 
write (COM2, "CAD(' ~ command + '1' + LF); 
ts.pos : = r: 

end; 

procedure StageMoveDelay(w : integer: r : real); 
( Move stage to position r. If ts.pos = 0 (the case when program is 

first started). automatically waits for user input before continuing. 
Changes wave[w]A.scan.starttime and steptime so program can stop after 
proper time. } 

begin 
with wv.ls[w]A do 
begin 

Time(scan.starttime); 
scan.steptilDE': := StageDelay(r); 
StageMove (r) ; 
if scan.steptime < 0 then ( Flag that user must tell when stage 

done moving. ) 
begin 
co~wr(co __ wr_MOVINGSTAGE, COLORHL); 
if readkey = EXTENDED then 

readkey; 
scan.stept~e := 0: ( No need to wait. ) 

end; 
end; 

'end; 

proced,ure StageKoveWai t (r : real); 
( Moves stage and waits for calculated length of time. ) 
var 

del : longint; 
stoptime, t : longint; 

begin 
del := 10 * StageDelay(r); ( Delay in ms. ) 
StageMove (r) ; 
if del < 0 then ( Flag to get user's help. 
begin 
co~wr(co~wr_MOVINGSTAGE, COLORHL); 
if readkey = EXTENDED then 

end 
else 

readkey; 

Do a loop rather than using delay function, to allow user to stop 
early if we've got an unnaturally long wait. } 

-.. .• , 
\ 

begin 
time (stoptime) ; 
inc (stoptime, del div 10); 
repeat 

time(t) ; 
until keypressed or (t > stoptime); 
if keypressed then ( Empty buffer. ) 

if readkey = EXTENDED then 
readkey; 

end; 
delayldel) ; 

end; 

procedure SystemControl; 
{ Allow control of some system features (mostly for debugging purposes). } 
var 

exitflag : boolean; 
r real; 
W : integer; 
11, 12 : longint: 

begin 
TextMode; 
exitflag := false; 
repeat 

writeln; 
writeln( 'System menu.'); 
writeln(' (A) Turn device reading on/off.'); 
writelnC'(B) Toggle debug flag.'); 
writeln('(C) Print available memory.'); 
writeln('(D) Print AD.ls[].on array.'); 
writeln('(E) Print xh info on current screen.'); 
writeln('(F) Print some info on current wave.'); 
writeln('(GI Write graphics info for current screen. '); 

writeln(' (X) Exit.'); 
case readkey 0 f 
'a', 'A': 

begin 
dev_rd : = 1 - dev_rd; 
writeln( 'dev_rd = " dev_rdl; 
case dev_rd of 
0, 

1, 

begin 
write ICOM2, ACK); 
closeICOM2); 

end: 

begin 
assignlCOM2, 'COM2'); 
rewrite (COM2) ; 
Init_ts; , 

end; 
end; 

end; 
'b', 'B', 

begin 
debug : = 1 - debug; 
writeln ( 'Debug 

end; 
'c', 'C': 

begin 
writeln{'Memavail 
writeln{'sizeof(scl 

debug) ; 

memavail, ' maxavail 
" sizeof (sc»; 

maxavaill; 

i~ 

VJ 
0\ 
0\ 

> 
"'0 
"'0 
f'D = Q. .... 
jIo! 

~ 



writeln('s zeof(sc.ls{]) = " sizeof(sc.ls[l]»i 
writeln ( 's zeof (wv) = " sizeof (wv) ) i 
writeln('s zeof(wv.ls[]"') = " sizeof(wv.ls[l]"))i 
writeln(/ s zeof(com) = " sizeof(com»)i 

end; 
'd', 'D', 

for w : = 1 to AD_MAX do 
writeln{w, I " ad.ls{w].on); 

'e', 'E': 
with sc.ls[sc.cur].gr do 
begin 

writeln( 'xh.u[l] 
writeln (' xh. u (2] 
writeln( Ixh.v(l] 
writeln (' xh. v(2] 
writeln( 'xh.x(l] 
writeln( 'xh.x(2J 
writeln( 'xh.y(l) 
writeln( 'xh.y(2] 

end; 
'f', 'F', 

if wv.nurn > 0 then 

xh u[l)); 
xh u(2)); 
xh v[l)); 
xh v(2)); 
xh.x[l)) ; 
xh.x(2)) ; 
xh.y[l)) ; 
xh.y(2)) ; 

with wv.ls(wv.cur]A do 
begin 

writeln( 'vmin vmin); 
writeln ('vmax vrnax) ; 

end; 
'g', 'G', 

with sc.ls(sc.curJ .gr do 
begin 

writeln('cursorp " cursorp); 
writeln( 'cursoru " cursoru); 
writeln (' cursorvisible " cursorvisiblel.; 
writeln('cursorx " cursorx); 
writeln('cursoryl cursoryl); 
writeln( 'cursory2 " cursory2); 
writeln( 'maxxnums " maxxnums); 
writeln( 'maxynums I I maxynums); 
writeln(/ullim " ullim); 
writeln( 'ulnorm " ulnorm); 
writeln( 'u!num " ulnum); 
writeln('u21im', u2lim); 
writeln( 'u2norm " u2norm): 
writeln( 'u2num 
writeln( 'ustep 
writeln{ 'vllim 
writeln( 'vlnum 
writeln( 'v2lim 
writeln( 'v2num 
writeln( 'vstep 
waitkey; 

u2num) ; 
ustep) ; 
vllim) ; 
vlnum) ; 
v2lim) ; 
v2num) ; 
vstep) ; 

writeln('xaxisdt xaxisdt); 
writeln{'xaxismode xaxismode); 
writeln('xdecimals " xdecimals): 
writeln('xfullmode " xfullmode); 
writeln( 'xlabelstring " x1abelstring); 
writeln{'xon " xon); 

xpower) ; 
xunits); 

yaxismode) ; 
ydec imal s) ; 
yfullmode) ; 

writeln( 'xpower " 
writeln{'xunits " 
writeln('yaxismode 
writeln< 'ydecimals 
writeln ('yfullmode 
writeln ( 'ylabelstr ing " ylabelstring); 

>' 

writeln( 'yon', yon); 
wr i te In ( 'ypower ypower) ; 
writeln( 'Y'units " yunits); 
waitkey; 

end; 
'x', 'X': exitflag true; 
EXTENDED: readkey: 
end; 

until exitflag; 
UpdateAll; 

end; 

procedure tekset_rd(ch : integer); 
{ Reads settings from tek scope and saves in array teksetting[]. Reads 

status of all settings which are changed during data acquisition. ch 
is channel * to use'. } 

var 
s : bufstring; 

procedure set_rec(s : bufstring); 
{ Grunt work of recording settings in array. } 
var 

i : integer; 
begin 

tekwrite_ver(s) ; 
mread{tek, sizeof(s) - 1); 
tekset. s (tekset. num] 
for i := 1 to ibcnt - 1 do { disregard LF char. 

tekset.s(tekset.num] := tekset.s[tekset.num] + ibbuf[i]; 
inc (tekset. nurn) ; 
{ Check to ensure do not overrun maximum: } 
if tekset.num > TEKSET_MAX then 
begin 
co~wr('Exeeeded TEKSET_MAX.', COLORHL); 
dee (tekset. nurn) ; 

end; 
end; 

begin 
mwrite(tek, 'head on', true); ( Turn on verbose mode so we get entire 

conunands sent upon querying. ) 
tekset.num := 1; 
set_rec('acq:state?'); 
tekwrite_ver( 'aeq:state 0'); { Turn off so commands execute faster. } 
set_ree('select:eontr01?'); { Read eurrent channel being 

controlled. } 
set_rec('hor:delay:time:runsafter?'); 
set_rec('hor;delay:scale?'); 
set_rec('hor:main:scale?'); 
set_rec('hor:mode?'); 
set_rec{'hor:trig:pos?'); 
set_ree('h6r:recordlength?'); 
s : = 'ch' + chr (ord ( , 0') .. ch); 
set_rec(s + ':offset?'); 
set_ree(s .. ':POS?')i 
set_rec('aeq:stopafter?'); 
set_rec('acq:numavg?')i 
set_rec('acq:mode?'); 
set_ree(' hor: fittoscreen?') i 

set_ree('zoom:state?'); 
tekwrite_ver('head off'); ( Promptly shut off verbose mode. 

end; 

> 
"0 
"0 
til = Q.. 
~. 

.... 

W 
0'1 
-..) 



procedure tekset_wr; 
{ Writes recorded settings back to tek scope. } 
var 

i : integer: 
begin 

( Stop acquisition if in progress. 
mwrite(tek, 'acq:state 0'. true); 
( Write warning to Tek screen: ) 
tekwrite ('message : box 74.209,474,259'): 

tekwrite('message:show ~Restoring settings. Please wait. M
'); 

tekwrite('message:state on'); } 
( Restore settings in reverse order: 
for i := tekset.num downto 1 do 

tekwrite(tekset.s[i1) ; 
( Erase message box: ) 
tekwrite('message:state off'); ) 

end; 

function TEK_~IMEPERPT_to_code (timeperpt real) 
{ Find closest code to timeperpt. } 
var 

i integer; 
begin 

integer; 

for i : = TEK_TlMEPERPT_MIN to TEK_TIMEPERPT_MAX' - 1 do 
if (TEK_TIMEPERPT[i] <= timeperptl and (timeperpt < TEK_TIMEPERPT[i 

+ lJ * 0.9991 then 
begin 

TEK_timeperpt_to_code i: 
exit; 

end; 
TEK_tirneperpt_to_code TEK_TIMEPERPT_MAX; 

end; 

procedure tekwrite(wbuf : bufstring): 
{ Waits to see if tek is free, then calls mwrite. } 
begin 

repeat 
mwrite(tek, 'busy?', true); 
mread(tek, 2); 

until ibbuf[lJ = '0'; 
mwrite(tek, wbuf, true); 

end; 

procedure tekwrite_ver(wbuf : bufstring); 
( Waits to see if tek is free, then calls mwrite. ) 
begin 

repeat 
mwrite(tek. 'busy?', true): 
mread(tek, 8); 

until ibbuf[7J = '0'; 
mwrite(tek. wbuf, true): 

end; 

procedure TextMode; 
( Exi ts graphics mode 
begin 

restorecrtmode; 
TextColor(WHITE); 
sc.mode 

end; 
sc_mode_TX: 

procedure Tidyup.; 
var 

-

i integer; 
begin 

( Free memory for virtual oscilloscope bitmap buffer. 
FreeMem(osc.bit. imagesize(sc.bdy[l] .x, O. ·sc.bdy[2] .x. 0»; 
{ Free memory for color list. } 
FreeMem(com.tx.col, 2 • com.tx.num.y): 
( Free memory for buffer. ) 
FreeMern(com.tx.buf, com.tx.num.x * com.tx.num.y): 
for i : = MAXWAVES downto 1 do 

Dispose(wv.ls[i]); { Free wave memory. 
for i : = sc_MAX downto 1 do 

Deallocate previously reserved memory, in reverse order. } 
with sc.ls[i].gr do 
begin 

FreeMem(xh.bitmap.y{3], imagesize(sc.bdy[l] .x, 0, sc. 
bdy[2J .x, 011; 

FreeMem(xh.bitmap.y[2], imagesize(sc.bdy[l].x, 0, sc. 
bdy[2J.x, 011; 

FreeMem(xh.bitmap.y[l], 
bdy[2J.x, 011; 

FreeMem(xh.bitmap.x[3}, 
bdy[2J·YII; 

FreeMem(xh.bitmap.x[2], 
bdy[2J .YII; 

FreeMem(xh.bitmap.x[lJ, 
bdy[2J .yll; 

end: 

imagesize(sc.bdy(1] .x, 0, sc. 

imagesize (0, sc.bdy[lJ .y, 0, 

imagesize(O, sc.bdy[l].y, 0, 

imagesize{O, sc.bdy[l].y, 0, 

sc. 

sc. 

sc. 

FreeMem(bitmap, imagesize(O, 0, 0, CURSORLENGTH)i { Dispose of cursor 
bitmap memory. } 

if dev_rd = 1 then 
begin 

write (COM2, ACK); { Send final ACK code. } 
close(com2); { Close translation stage channel. 

end; . 
CloseGraph; { free graphics memory (graph unit procedure) and return to text 

mode. } 
end; 

procedure Time(var nowtime longint); 
var 

hour, minute, second, seclOO : word; 
begin 

GetTime(Hour, Minute, Second, SeclOO); 
nowtime := hour * 60 • 60 * 100 + minute * 60 * 100 + second· 100 + 

seclOO; 
end; 

function TimebaseToCode(r : real) : integer: 
{ Finds code corresponding to smallest timebase. 
var 

i : integer: 
begin 

r : = r * (1 + SMALL); ( Make little bigger to ensure hit minimum. 
for i : = MCS_TIMEPERPT_MIN to MCS_TlMEPERPT_MAX - 1 do 

if (MCS_TIMEPERPT[i] <= r) and (r < MCS_TIMEPERPT[i + 1]) then 
begin 

TimebaseToCode i; 
exit: 

end: 
TimebaseToCode : = MCS_TIMEPERPTJ!AX; 

end; 

procedure ToggleAddWavesMode (w : integer); 

w 
0\ 
00 

> 
"0 
"0 

~ 
0.. .... 
~ 
I-" 



If addwaves mode is off, turns on for wave w; if already on, then 
turn off. } 

i integer; 
begin 

if wv.num 0 then 
exit; 

if addwaves.mode = 1 then 
begin 

UpdateAddWaves; ( Add for last time before quitting. 
addwaves . mode : = 0; 
UpdateVitals; 
Update(wv.ls(addwaves.w)A.screen); ( Final screen update. 

end 
else 
begin 

if wv.ls[w]A.scan mode> 0 then 
begin 

com_wr('Cannot overwrite scan in progress! " COLORHL); 
exit; 

end; 
if wv.ls(w]A.datasaved 0 then 

if c0IrLwr-YIl( 'Wave not saved. Overwrite') = 0 then 
exit; 

if (sc.ls(wv.ls(w)A.screen) .gr.xaxismode <> XAXISMODE_POINTS) then 
com_wr('Not in points mode: no promises!', COLORMESS); 

addwaves.mode := 1; 
addwaves. w : = w; 
( Find all screens with valid waves to add. 
sc_sel_off; 
for i : = 1 to wv. num do 

with wv.ls[i)A do 
if (on = 1) and (par dt wv. ls[addwaves.w) A.par.dt) 

then 
sc.ls(screenJ.sel 1; 

Ensure all selected screens are in relative y axis mode. } 
for i : = 1 to sc. num do 

with sc.ls[i) do 
if (sel = 1) and (gr.yaxismode = YAXISMODE_ABSOLUTE) then 

ToggleYAxisMode(i); 
Update add waves screen since erased previous data. 

UpdateVita1s; 
Update(wv.ls[addwaves.w)A.screen); 

end; 
end; 

procedure ToggleCrosshairsMode; 
( Turn xh mode on or off. } 
begin 

EraseCursor (sc. cur) ; 
sc.ls[sc.curJ.gr.xh.mode 

mode; 
UpdateCursor(sc.cur) ; 
DraWCursor(sc.cur); 
DrawCursorlnfo; 

end; 

1 - sc.ls(sc.curJ .gr.xh. 

procedure ToggleCrosshairsWhich; 
{ Switch which xh are manipulated by arrow keys. 
begin 

with sc.ls[sc.curJ .gr do 
if xh mode = 1 then 
begin 

end; 

xh.which := 3 - xh.which; ( Switch between 1 and 
2. ) 

EraseCursor(sc.cur)i 
DrawCursor(sc.cur); 

end; 

procedure ToggleSaveMode; 
{ Toggle between saving data multiplied by yscale or not. 
begin 

globalSaveMode := 1 - globalSaveMode; 
case globalSaveMode of 

o com_wr ( 'Regular save mode. " COLORMESS); 
1 : cOIrLwr('Normalized save mode.', COLORMESS); 

end; 
end; 

procedure ToggleXAxisMode(scr integer; mode: integer); 
Toggle x axis among three display modes: XAXISMODE_POINTS, 
XAXISMODE_NORMAL and XAXISMODE_CONVERT. When swi tching from one to the 
other, u-space limits will need to be changed. } 

var 
P integer; 
pI : integer; 

{ Point index. } 
{ Point index. } 
{ Point index. } p2 : integer: 

w integer; { Wave pointer. 
begin 

( Find visible wave on screen scr. 
w := Findwave(scr); 
{ Now take a look at situation. 
with sc.ls(scr).gr do 
begin 

if w 0 then 
xfullmode 

else 
begin 

{ Find points corresponding to screen limits. } 
if xaxismode = XAXISMODE_POINTS then 
begin 

pl := round(ullim); 
p2 := round(u2lim); 
if cursorvisible = 1 then 

cursorp := round(cursoru); 
end 
else 
begin 

pI := UtoP(w, ullim, 1); 
p2:= UtoP(w, u21im, -1); 

if cursorvisible = 1 then 
cursorp := VtoP(w, cursoru, 0); 

end; 
{ Special handling for movement into energy units: 
if xaxisdt = dt_ELE then 
begin 

{ Switch limits. 
if xaxismode = XAXISMODE_CONVERT then 
begin 

p ,= pl; 
pl p2; 
p2 ,= p; 

end; 
if mode 
begin 

XAXISMODE_CONVERT then 

> 
't:! 
't:! 

~ 
~ .... 
>< .... 

W 
0\ 
\0 



( Switch order of limits. 
p ,= pI; 
p1 p2; 
p2 ,= p; 

end; 
end; 

end; 
{ Change mode. } 
xaxismode : = mode; 
{ Change dt to current wave if on same screen. } 
if w > 0 then 
begin 

if wv.ls{w]~.screen = se.cur then 
xaxisdt := wv.ls(w]".par.dt; 

( Assign minimum useful point. ) 
if pI < wv.ls[w]".pmin then 

pI := wv.ls[w]".pmin; 
if cursorp < wv.ls[w]".pmin then 

cursorp := wv.ls[w]".pmin; 
cursoru := PtoU(w, eursorp, xaxismode); ( New cursor position. 

end; 
{ Prevent program from crashing (this is sort of a cop-out!) ) 
if (xfullmode = 0) and «p1 = 0) or (p2 = 0» then 

xfullmode := 1; 
( Calculate new unit-space limits. ) 
if xfullmode = 0 then 
begin 

ullim 
u2lim 

end; 

PtoU(w. pl, xaxismode); 
PtoU(w. p2, xaxismode); 

( Calculate other vars and redraw. 
UpdateVi tals; 
Update(scr); 

end; 
end; 

procedure ToggleYAxisMode(scr : integer); 
begin 

sc.ls(scr].gr.yaxismode 1 - sc.ls[scrl .gr.yaxismode; 
UpdateVitals; 
Update (scr) ; 

end; 

procedure ToggleYOffsetRescale; 
{ Toggle flag to rescale wv.ls[]~.par.yoffset when wv.ls[1".par.yscale is 

changed. } 
begin 

yoffsetrescale : = 1 - yoffsetrescalei 
if yoffsetrescale = 0 then 

C0rtLwr ('Y offset rescale mode OFF.', COLORMESS) 
else 
co~wr('Y offset rescale mode ON.', COLORMESS); 

end; 

procedure tx_dr (tx : tx_type-J;); 
{ Draw text screen. ~qorithm is to create a string for each line, then 

call graphics rout~e. For speed, we copy characters directly into s, 
which requires some pointer tricks. } 

var 
p ; AchararraYi ( Pointer to chars in buffer. 

bufstring; { Holder for each line. } 
x, y : integer; { Char counters. } 

begin 

if sc.mode <> sc_mode_GR then 
exit; 

SetTextJustify(LEFTTEXT, TOPTEXT); 
SetTextStyle(DEFAULTFONT, HORIZDIR, 1); } 
{ Clear screen. } 
ClearArea(tx'.bdy[IJ .x, tx'.bdy[1J .y, tx'.bdy[2J .x, tx'.bdy[2J .y); 
( Fool Pascal into thinking s has length = tx.num.x. } 
p := is; 
p"'{l) chr(tx".num.x); 
for y := 1 to tx"'.num.y do 
begin 

( Point to start of current line. 
p ,= 9(tx'.buf'[(y - 1) • tx'.num.x + 1J); 
{ Copy line into s. } 

\ for x := 1 to txA.num.x do 
s [xJ ,= p' [xJ ; 

{ Print line to screen. 
SetColor (tx"'. col" [y] ) ; 
OutTextXY(tx'.bdy[IJ .x, tx'.bdy[IJ.y + (y - 1) • textsize, s); 

end; 
end; 

procedure tx_scr_up{tx : tx_type-p); 
( Scroll text screen up one line. } 
var 

i : integer; 
begin 

( Scroll up character buffer. ) 
for i := 1 to tx".nwn.x • (tx"'.num.y - 1) do 

tx'" .buf'" [i1 : = tx" .buf" [i + tx'" .num.x]; 
( Blank last line. ) 
FiIIChar{tx"'.buf"{i + I), txA.num.x. ' '); 
{ Scroll up color list. } 
for i := 1 to tx"'.num.y - 1 do 

txA . col" [i) : = tx~. col'" [i + 1); 
{ Make last line user input color. 
tx'.col'[i + IJ ,= COLORUSER; 
{ Redraw screen. ) 
tx_dr(tx) ; 

end; 

procedure tx_wr(tx : tx_type-p; s : string; col: word; scr : integer); 
Print string s to tx screen in color col. CUrsor moves to left side of 
following line unless scr = 0, in which case cursor is left at end of 
string. (Screen still scrolls as needed to fit entire string on it, but 
messages larger than size of screen are truncated). If col = COLORHL 
(highlight color), a beep will also sound. } 

var 
i : integer; ( Counter. ) 
nch : integer; { Max. number of chars allowed. 
nstart : integer; { Char to start with on screen. 
nscr : integer; ( Number of lines to scroll. ) 
p "'chararray; 

begin 
{ Calculate starting character; always starts on lefthand side. 
nstart := tX~.num.x • (tx"'.cur.y - 1) + 1; 
{ Calculate max. nUmber of chars allowed in message. Note this is 

line short of box size, unless scr = 0 -- must allow to scroll up 
1 line. Extra subtraction for scr = 0 is to .force scroll if cursor 
will end up on next line. Truncate message if needed. } 

nch := tx"'.num.x • (txA.num.y - scr) - 1 + scr; 
if length{s) > nch then 

:= copy(s. 1, nch - 2) + ' ..• ; { Little flag to user to indicate 

W 
-.l 
o 

> 
'C 
'C 
~ 

= Q.. ... 
~ 
I-" 



line was truncated. 
Scroll screen to fit message, if needed. Second -1 is to not scroll 
screen extra line if we JUST fill last line. 

nscr better_div{nstart - 1 + length{s) - nch - I, tx"'.num.x) + 1; 
if nscr > 0 then 
begin 

for i := 1 to nscr do 
t}Lscr_up (tx) ; 

dec{txA.cur y, nscr); 
dec{nstart, nscr * tx"'.num.x); 

end; 
( Set pointer to beginning of current line. 
p ,= 9(tx',buf'[nstart]); 
( copy message to buffer. 
for i : = 1 to length (s) do 

p' [i] ,= s [i L 
{ Change color on affected lines. } 
for i := 0 to better_div{length{s) - 1, tx"'.num.x) do 

tx"'.col ... {tx"'.cur.y + iJ := col; 
Text screen handling: Only redraw graphics if message is Mimportant~ 
__ that is, using COLORHL to draw. Otherwise, don't redraw (but 
message still appears in buffer). } 

if (sc.mode <> sc_mode_GR) and (col = COLORHL) then 
begin 

sc.mode := sc_mode_TX; ( Allow screen to be redrawn. 
DrawAll; 

end; 
tx_dr (tx) ; 
{ Highlight feature. 
if col = COLORHL then 

write (BELL); 
( Update cursor location. 
case scr of 
o 

begin 
tx .... cur.x := length{s) mod tx'" .num.x + 1; 
inc(tx"'.cur.y, length(s) div tx"'.num.xl; 

end; 

begin 
tx'" . cur. x : = 1; 
inc{tx"'."cur.y, better_div(length(s) - 1, tx"'.num.x) + 1); 

end; 
end; 
( Make current line default user color. 
tx"'. col A [tx .... cur. y) : = COLORUSERi 

end: 

procedure tx_wr_ch(tx tx_type-p; c char); 
{ Replaces character c at current cursor location in text buffer, UpdateAIl 

screen. } 
begin 

{ Erase old character by writing in background color: } 
SetCo!or(GetBkColor) ; 
OutTextXY{tx"'.bdy[I].x + (tx"'.cur x-I) * textsize, tx .... bdy[l].y + 

(tx"'.cur.y - .1) * textsize, tx ...... buf .... [txA.cur.x + (tx"'.cur.y - 1) * 
tx'" .num.xl); 
Replace character and print to screen in current line color. 

tx".buf"[tx"'.cur.x + (tx"'.cur.y - 1) * tx".num.x] c; 
SetColor (tx". col'" [tx'" cur :y] ) ; 
OutTextXY(tx".bdy[I).x + (tx".cur x-I) • text'size, tx-".bdy[l).y + 

(tx" cur.y - 1) • textsize, c); 
end; 

end. 

4.6. fpesuz . pas 

unit FpesUZ; 
{ History of modifications (please add to BOTTOM of list!): 

version 1: Begun 2jun94 BJG. 

Procedures and functions beginning with Y through Z for the program FPES. 
See FPES (at appropriate version) for more specific program modification 
notes. 

interface 

uses 
FpesVar: 

function UnitPrefix(logpower : integer) bufstring; 
procedure Update{scr : integer); 
procedure Upda teAll ; 
procedure Upda teAddWaves: 
procedure UpdateBg; 
procedure UpdateCORLirnits(par-ptr : par_type-ptr); 
procedure UpdateCursor(scr : integer); 
procedure UpdateDtCompatibility; 
procedure UpdateFilenames(newdir : bufstring); 
procedure Upda teMC; 
procedure UpdatePMin: 
procedure UpdateSel; 
procedure UpdateVitals; 
procedure UpdateVLimits; 
procedure UpdateXAxis (scr integer); 
procedure UpdateYAxis(scr integer): 
function utoP(w : integer; u : real; direction integer) integer; 
function UtoX(u : real; scr : integer) : real; 
procedure val_i(s : bufstring; var i : integer); 
procedure val_r(s : bufstring; var r : real); 
function VtoY{v : real; scr integer): real: 
procedure waitkey; 
function WaveInfo(w : integer; integer): bufstring; 
function WavesExist : integer; 
function weight{x , a : real) real; 
procedure writeengnotation(r : real); 
procedure writeln_ctr(s : string; pos integer); 
procedure writeva!ue(r, p : real; dec, max: integer; u : string); 
procedure writevalueunitless(r, p : real; dec, max: integer); 
procedure wS_df; 
procedure ws_init; 
procedure ws_rd(s : bufstring); 
procedure ws_sv(s : bufstring); 
procedure wv_sel{code.: integer); 
procedure wv_se1_off; 
procedure XFull{scr integer); 
function XToTheY{x, y real) real; 
function XtoU(x : longint; scr integer) real; 
procedure YFull{scr integer); 
function YtoV{y longint; scr integer) real; 

> 
"CI 
"CI 
I'D 

5. 
~. 

.... 

W 
-.....l 



procedure YScaleChange(r : real); 
procedure YScaleChangeSign; 
procedure Zoom; 

implementation 

uses 
crt, dos, FpesCom. FpesAI, FpesJR, FpesST, graph, Keys, TPDecl: 

function UnitPrefix(logpower : integer) : bufstring; 
{ Returns unit prefix symbol corresponding to exponent logpower. If logpower 

is outside range of MINPOWER .. MAXPOWER, or it's not a factor of 3, 
returns string 'lOA' + logpower. } 

begin 
case logpower of 
-18: UnitPrefix 
-15: UnitPrefix 
-12: UnitPrefix 
-9: UnitPrefix 
-6: UnitPrefix 
-3: UnitPrefix 

0: UnitPrefix 
3: UnitPrefix 
6: UnitPrefix 
9: UnitPrefix 

12: UnitPrefix 
else 

'a' ; 
"f' ; 
"P' ; 
'n'; 
'u' ; 
'm'; 

Ok'; 

"M' ; 
"G'; 
"T'; 

UnitPrefix := PowerOfTenPrefix(logpower) + ' 
ty (e.g. "10A-33 J"). } 

end; 
end; 

procedure Update(scr : integer); 

{ Extra spac.e for clari-

{ Update only screen scr. Must call UpdateVitals beforehand! } 
var 

s : bufstring; 
w : integer: { Wave counter. } 

begin 
( Calculate new u and v limits if in full view mode for that axis: 
XFull (scr) ; 
YFull (scr) ; 
{ Calculate screen coordinates (x and y) from u and v information: 
UpdateXAxis (scr) ; 
UpdateYAxis(scr); 
( Update location of cursor, given wv.cur and cursoru information: 
UpdateCursor(scr); 
( Draw new screen: 
DrawScreen < scr) i 

end; 

procedure UpdateAll; 
{ Calculates everything needed for proper screen display. Should be called 

after every command which changes some aspect of the screen display or wave 
data, though if you are clever you can call only a subset of update rou
tines. } 

var 
scr : integer: { Screen counter. 

begin 
UpdateVi tals; 
for scr : = 1 to se. num do 
begin 

( Calculate new u and v limits if in full view mode for that axis: 
XFull (scr); 

¥Full (scr) ; 
{ Calculate screen coordinates (x and y) from u and v information: } 
UpdateXAxis (scr); 
UpdateYAxis(scr); 
{ Update location~of cursor, given WV.cur and cursoru information: } 
UpdateCursor(scr); 

end: 
{ Draw new screen: } 
DrawAll; 

end; 

procedure UpdateAddWaves; 
( Adds together all visible waves of same dt as addwaves. w, 

weighted by their par.yscale and par.yoffset values, and places in 
wave addwaves.w. ) 

var 
integer; 

w integer; 
begin 

if addwaves. mode = 0 then 
exit; 

FillChar(wv.ls[addwaves.w]A.data, sizeof(wv.ls[addwaves.w]A.data), 
O} ; 

FiIIChar(wv. ls [addwaves.w] A. tmp, s·izeof(wv.ls[addwaves.w]A.tmp), 0);· 

wv.ls[addwaves.w]A.datasaved := 0; 
for w := 1 to wv.num do 

end; 

if (w <> addwaves.w) and (wv.ls(w]A.on = 1) and (wv.ls[w]h. par . 
dt = wv.ls(addwaves.w]h.par.dt) then 
for j := 1 to wv.ls[w]A.par.pt do 

wv.ls(addwaves.w]A.data(j] := wv.ls[addwaves.w]A.data[j] ~ 

wv.ls[w]A.par.yscale * wv.ls[w]A:data[j] + wv.ls[w]A.par.yoffset; 

procedure UpdateBg: 
{ If _bs.bg > 0, go thru waves to ensure that there are bs waves in 

memory, and that _bs.bg points to one. Otherwise, sets _bs.bg to 
O. } 

var 
i : integer; 

begin 
if <_bs.bg > wv.num) or (_bs.bg < 0) then 

_bs.bg ,= 0; 
if _bs.bg = 0 then 

exit; 
{ Check that bg points to a bs ELE wave; otherwise, reset and turn 

off bs mode for all waves. } 
with wv.ls[_bs.bg]A do 

if (par.dt <> DT_ELE) or (par.ele.bs.mode 0) then 
begin 

_bs.bg ,= 0; 
for i := 1 to wv.num do 

with wv.ls[i]A do 
if par.dt = dt_ELE then 

par. ele. bs . mode : = 0; 
DrawWaveDatai 
exit; 

end; 
Go thru waves until we find a bs ELE wave. ) 

for i := 1 to wv.num do 
with wv.ls[i]h do 

if (par.dt = dt_ELE) and (par.ele.bs.mode > 0) then 
exit; 

No bs waves loaded; turn off bg flag·. 

W 
-...J 
N 

> 
"'CI 
"'CI 

~ 
Q., .... 
~ 
~ 



bs.bg 
end; 

0; 

procedure UpdateCORLimits(par-ptr par_type-ptr); 
{ Update min & max limits of COR wave based on to and time per point. 
begin 

with par-ptr~ do 
with cor.ts do 
begin 

start := to - step ~ (pt_gl - 1) / 2; 
stop := to + step ~ (pt_gl - 1) / 2; 
limit (start, STAGEMIN, STAGEMAX); 
limit(stop, STAGEMIN, STAGEMAX); 
( Recalculate pt_gl in case limits were changed. 
pt_gl := round«stop - start) / step) + 1; 

end; 
end; 

procedure UpdateCursor(scr : integer); 
{ Updates cursor on screen scr. Two functions: 

1. If xh.mode = 0: Provided cursor is on a visible wave, uses 
wv.cur and cursoru to calculate corresponding cursorp, cursorx, cursoryl, 
cursory2, making sure cursor is on screen and on a legitimate point. If 
cursor cannot be displayed (wave is completely off-screen), sets cursor
visible to O. 
2. If xh.mode = 1: Calculate u's and v's corresponding to x and y 
positions of xh. Note x's and y's never change when changing axis 
scales or modes, or switching in and out of xh mode. } 

var 
i ; 
u 

begin 

integer; { Generic counter. } 
real; { Temporary u value. } 

{ if wv num = 0 then 
exit; } 

with sc.ls[scr].gr do 
if xh mode = 0 then 
begin 

if wv.num = 0 then 
begin 

cursorvisible 
exit; 

end; 

0; 

with wv.ls[wv.cur]" do 
begin 

( Make sure we're on a visible wave on same screen: ) 
if (on = 0) or (screen <> scr) then 
begin 

cursorvisible 
exit; 

end; 

0; 

{ Make sure cursoru is on visible part of x axis: 
if cursoru < ul1im then 

cursoru ul1im 
else if cursoru > u21im then 

cursoru := u21im; 
Seek closest point of wave which corresponds in u value to cursoru, and 
see if this is visible on the screen; otherwise, turn cursor off: } 

cursorp := UtoP(wv.cur, cursoru, 0); 
u := PtoU(wv.cur, cursorp, xaxismode); 
if (u < ullim) or (u > u2lim) then 
begin 

cursorvisible 0; 
exit; 

end; 
( Calculate remaining cursor variables: 
cursoru : = u; 
cursorx := round(UtoX(cursoru, scr»; 
cursory2 := round(PtoY(wv.cur, cursorp»; 
( Constrain cursor y position to stay on screen: 
if cursory2 < yaxis.yl then 

cursory2 := yaxis.yl + CURSORLENGTH 
else if cursory2 > yaxis. y2 - 1 then 

cursory2 := yaxis.Y2 - 1; 
cursory! := cursory2 - CURSORLENGTH; Make cursor extend upward from 

point. ) 
if cursory! < yaxis.yl then 
begin 

cursoryl cursory2; 
cursory2 cursoryl + CURSORLENGTH; { If tip is above top of pl~t area, 

just make it point downward. } 
end; 
cursorvisible 1; 
UpdateMC; 

end; 
end 
else with xh do 
begin 

{ Calculate position of center xh: 
x[3] := (x[l] • x[2]) div 2; 
y[3] ;= (y[l] • y[2]) div 2; 
{ Calculate u- and v-space values of xh: } 
for i := 1 to 3 do 
begin 

uti] 
vIi] 

end; 

XtoU(x[i], scr); 
YtoV(y[i], scr); 

end; 
end; 

procedure UpdateDtCompatibility; 
{ This mouthful of a procedure simply turns off waves whose datatypes 

don't match their screen's datatype (if in NOR or CONV mode). } 
var 

i integer; 
begin 

for i := 1 to wv.nwm do 
with wv.ls[i]A do 

with sc.ls[screen] .gr do 
if (xaxismode <> XAXISMODE_POINTS) and (par.dt <> xaxisdt) then 

on 0; 
end; 

procedure UpdateFilenarnes(newdir bufstring); 
{ Changes recorded filename when dir changes. Should not be called as 

part of standard Update -- slows system! } 
var 

i, W integer; 
begin 

for w : = 1 to wv num do 
with wv.ls[wJ" do 
begin 

if not FullPath{par.fn) then 
par fn := dir + par.fn; 

i := FilenameStart(par.fn); 
if copy(par.fn, 1, i-I) = newdir then 

par.fn:= copy(par.fn, i, length(par.fn»; 

~ 
"CI 
"CI 
~ 

= Q.. .... 
~ 

>-" 

W 
-..l 
W 



end; 
dir newdir; 

end; 

procedure UpdateMC; 
( According to cursor position, calculate all eligible mass combina

tions according to mc parameters. ) 
var 

abort : boolean; ( Flag to kill current combination if multiplicity 
limits are exceeded. ) 

i integer; 
mass : real; 
r : real; 

procedure mc_wr: 
{ Write element combination to screen and its mass. } 
var 

i : integer; 
mass: real; 
52, s3 : bufstring: 

begin 
if abort then 

exit; 
if mc.S <> " then 

mc.s := me.s + 
s2 "; 
mass 0; 
for i : = 1 to mc. num. do 

with mc.lsli] do 
if num > 0 then 
begin 

if nurn > 1 then 
str(num, 53) 

else 
53 := "; 

( Add new element. ) 

52 : = s2 + s + s3; 
mass : = mass + m .... nUIn: 

end; 
mc.s := mc.s + makestringint(round(mass» + ' • + s2; 

end; 

procedure make_comb(i : integer); 
( Makes combination of elements of starting with element i. Remaining 

mass is r. ) 
var 

j : integer; 
begin 

abort : = false; 
r :.= mass; 
( Subtract mass of assigned parts of molecule: 
for j := 1 to i - 1 do 

r := r - mc.ls(j].m .... mc.ls[j) .num: 
{ Pind max. number of each element remaining: 
for j : = i to mc. num. do • 

if (abort = false) and (r > -mc.sens) then 
with mc.ls[j] do 
begin 

num := trunc( (r + mC.sens) / ml; { Find highest valid 
multiple. } 

if num > max then { Force to be <= max. 
num max; 

if num < min then 
abort := true 

else 
r 

end; 
r - num .... m; { Remove mass from r. 

end; 

begin 
mc.s 
if wv.num = 0 then 

exit; 
if wv .15 [wv. cur]" .par .dt 

exit; 
( Find current cursor mass. 

dt_MAS then 

mass := PtoU(wv.cur, sC.ls[wv.ls[wv.cur]".screen] .gr.cursorp, 
xaxismode_CONVERT): 

{ Begin iterative search for valid element combinations. } 
make_comb (1) ; 
if abs(r) <= mC.sens then 

mc_wr; 
:= mC.num. - 1; 
Now loop through other possibilities. 

while i > Q. do 

end; 

with mc.ls{i] do 
if num > min then 
begin 

dec (nurn) ; 
make_comb(i + 1); 

if abs(r).<= mC.sens then 
mc_wr: 

i mC.num - 1i 
end 
else 

dec(i) ; 

procedure UpdatePMin; 
Calculate minimum meaningful point which should be displayed in each wave. 
Value is different depending on xaxismode and dt: 

XAXISMODE_POINTS, XAXISMODE~O~: All points good; pmin 1. 
XAXISMODE_CONVERT, 

var 

dt_COR, dt_POW: All points good; pmin : = 1. 
dt_ELE: pmin corresponds to first point with energy < par. 

user (PAR_E_LASEREV) , the largest physically allowed energy. 
dt_IONS: pmin corresponds to first point with mass> O. 

laserev real; 
W : integer; 
xaxismode : integer; 

begin 
for w ;= 1 to wv.num do 
with wv.ls[w]" do 
begin 

pmin := 1; 
if (sc.ls[screen] .gr.xaxisrnode = XAXISMODE_CONVERT) and (par.dt 

= dt_ELEI then 
begin 

xaxismode := sc.ls[screen].gr.xaxismode; 
laserev := par.ele.cal.ev; 
while (pmin <= par.pt) and (PtoU(w, pmin, xaxismode) > 

la5erev) do 
inc (pmin) ; 

if pmin > par.pt then { Shut off wave if no points are valid. } 

V) 
-.J 
~ 

~ 
"'CI 

~ 
Q. .... 
jIo! 

~ 



on 
end; 

0; 

end; 
end; 

procedure UpdateSel; 
( Update only those screens selected in sc.ls[J.sel. 
var 

i integer; 
begin 

UpdateVitals; 
for i := 1 to SC.num do 

if sc.ls[i] .sel = 1 then 
Update(i) ; 

sc_sel_off; 
end; 

procedure UpdateVitals; 
{ Updates parameters for all waves which only have to be evaluated once 

per update. Designed to save time when calling Update for several 
screens. } 

begin 
UpdateAddWaves; 
UpdateBg; 
UpdateDtCompatibility; 
UpdateFilenames(dir), 
UpdatePMin; 
UpdateVLimi ts; 
DrawVitals; 

end; 

procedure UpdateVLirnits; 
{ Find largest and smallest V values in each wave. } 
var 

p integer; { Point index. 
real; { Temporary y value. 

w integer; 
xaxismode, yaxismode integer; 

begin 
for w := 1 to wv.num do 
with wv.ls[w]A do 
begin 

xaxismode := sc.ls[screen).gr.xaxismode; 
yaxismode := sc.ls[screen).gr.yaxismode: 
vmin : = ptoV (w. pmin. xaxismode. yaxismode): 
vmax : = vmin; 
for p := pmin + 1 to par.pt do 
begin 

v := PtoV(w. P. xaxismode. yaxismode): 
if v < vmin then 

vmin : = v; 
if v > vmax then 

vmax v; 

end; 
end: 

end; 

procedure UpdateXAxis(scr integer): 
{ Calculates needed quantities when x limits change for screen scr. All 

that needs to be set before calling .this routine is u1lim, u2lim. 
xaxismode, xaxisdt. 

bufstring; { Generic string. 

begin 
with sc.ls[scr] .gr do 
begin 

{ Error prevention: 
if u1lim = u21im then 

if ullim = 0 then 
u21im := 1 

else 
u21im ullim + SMALL * abs(u1Iim); 

Calculate axis numbers. ) 
ustep := exp(LN_10 * rounddown(ln(u21im - u11im) / LN_10 - 2»; 
( Begin guess with a power of 10, at least 2 orders of magnitude too small. 
u1num : = ustep * roundup (u1lim / ustep - SMALL); ( Leftmost number is smal-

lest which is larger than u1lim, and a multiple of ustep. ) 
u2num := ustep * rounddown(u2lim / ustep + SMALL); { Rightmost number is 

largest which is smaller than u2lim, and a multiple of ustep. 
while (u2num - u1num) / ustep + 1 > maxxnums do ( if number of numbers 

exceeds maximum allowed. ) 
begin 

ChangeStep(ustep, 1); { Increase step size. 
ulnum : = ustep * roundup (u1lim / ustep - SMALL); 
u2num : = ustep * rounddown (u2lim / ustep + SMALL); 

end; 
Find largest multiple-of-) power to units. 
if abs(ullim) > abs(u2lim) then 

xpower : = Power (abs (u1lim» 
else 

xpower := Power(abs(u2Iim»; 
Calculate number of decimals needed to display numbers (in current units). 
xdecimals := -rounddown(ln(ustep) / LN_lO - Log10(xpower»: 
if xdecimals < 0 then 

xdecimals := 0; ( Correct for negative * of decimal places! 
Update x axis label and units. ) 
case xaxismode of 
XAXISMODE_POINTS: 

begin 
xlabelstring := 'Points': 
xunits := PowerOfTenPrefix(round(Log10(xpower»); 
if xpower <> 1 then 

xlabelstring := xlabelstring + 'I'; 
end; 

XAXISMODE_NORMAL : 
begin 

xunits := UnitPrefix(round(loglO(xpower») + XUNITTYPE[xaxisdt, 
xaxi smode] ; 

case xaxisdt of 
dt_COR: xlabelstring := 'Distance/'; 
else xlabelstring := 'Time/'; 
end: 

end: 
XAXISMODE_CONVERT: 

begin 
xunits UnitPrefix(round(log10(xpower») + XUNITTYPE{xaxisdt, 

xaxismode] : 
case xaxisdt of 
dt_COR. dt_POW: xlabelstring := 'Time/'; 
dt_ELE: xlabelstring 'Energy/'; 
dt_MAS: xlabelstring := 'Mass/'; 
end; 

end; 
end: 

end; 
end; 

> 
"0 
"0 
~ 

= c:l,. .... 
~ 
~ 

VJ 
-.l 
VI 



procedure UpdateYAxis(scr : integer); 
{ Calculates needed quantities when y limits change for screen scr. All 

that needs to be set before calling this routine is vllim, v2lim, 
yaxismode. } 

var 
s : bufstring; 

begin 
with sc.ls[scrJ.gr do 
begin 
{ Error prevention: } 

if vl1im = v21im then 
if vllim = 0 then 

v2lim := 1 
else 

v2lim vllim + SMALL 11" abs (vllim) ; 
Calculate y axis numbers. } 
vstep := exp(LN_lO 11" rounddown(ln(v2lim - v1lim) I LN_10 - 2»; 
{ Begin guess with a power of 10, at least 2 orders of magnitude too small. 
vlnum : = vstep 11" roundup (v1lim / vstep - SMALL); 
{ Leftmost number is smallest which is larger than vllim, and a multiple of 

vstep. } 
v2num : = vstep 11" rounddown (v2lim I vstep + SMALL); 
{ Rightmost number is largest which is smaller than v2lim, and a multiple of 

vstep. } 
while (v2num - vlnum) I vstep + 1 > maxynums do { if number of numbers 

exceeds maximum allowed. ) 
begin 

ChangeStep(vstep, 1); { Increase step size. 
vlnum vstep 11" roundup (v1lim I vstep - SMALL); 
v2num vstep 11" rounddown (v21im I vstep + SMALL); 

end; 

Find largest multiple-of-3 power to units. } 
if abs(v1Iim) > abs(v2lim) then 

ypower : = Power (abs (v11im) ) 
else 

ypower Power (abs (v2lim) ); 

Calculate number of decimals needed to display numbers. } 
ydeci...mals := -rounddown(ln(vstep) / LN_IO - LogIO(ypower»; 
if ydecimals < 0 then 

ydecimals := 0; ( Correct for negative * of decimal places! 

Update y axis label and units. ) 
if yaxismode = YAXISMODE~SOLUTE then 

yla.belstring 'Int. ' 
else 

yla.belstring 'ReI. Int.'; 
if ypower <> 1 then 

ylabelstring : = ylabelstring + '/'; 
yunits PowerOfTenPrefix(round(Log10(ypower»); 

end; 
end; 

function UtoP(w : integer; u real; direction: integer) : integer; 
Converts unit space x coordinate u to closest point in wave w, according to 
the criterion variable direction, which indicates which way to round: 
-1: pick point with next lowest u value. If entire wave> u, return O. 

0: pick point with closest u value. 
1: Pick point with next highest u value. If entire wave < u, return O. 

Usually. 1 is chosen when searching for the leftmost point which fits on 
the screen; -1 is chosen for the rightmost point. 0 is chosen when search-

ing for closest point, as when moving between waves, or selecting a peak 
for normalization. ) 

var 
p integer; Point index. } 
p1 integer; Point with smallest allowed unit value. 

p2 integer; Point with largest allowed unit value. 
up real; 

begin 
with wv.ls(wJ~ do 
begin 

{ Establish limits to search. } 
if (sc.ls{wv.ls[w]~.screen].gr.xaxismode 

(par. dt = dt_ELE) then" 
begin 

p1 par.pt; 
p2 pmin; 

end 
else 
begin 

pi pmini 
p2 := par.pt; 

end; 

XAXISMODE_CONVERTI and 

{ See if outside limits, returning nearest endpoint or 0 if so, according 
to value of direction as outlined above. } 

if u < PtoU(w, p1, sc.ls[wv.ls[w]~.screenJ.gr.xaxismode) then 
begin 

if direction = -1 then 
UtoP 0 

else 
UtoP p1; 

exit; 
end 
else if u > PtoU(w, p2, sc.ls[wv.ls(w]~.screen].gr.xaxismode) then 
begin 

if direction 1 then 
UtoP 0 

else 
UtoP p2; 

exit; 
end; 
( Find closest point according to direction crit~rion, using halving 

algorithm to close in on point iteratively. ) 
while abs(pl - p2) > I do 
begin 

p := (p1 + p21 div 2; 
up := PtoU(w, p, sc.ls{wv.ls[w]~.screen).gr.xaxismode); 

if u < up then 
p2 := p 

else if u > up then 
p1 := p 

else ( Equal: can quit. 
begin 

UtoP p; 
exit; 

end; 
end: 
case direction" of 
-1 

if u = PtoU(w, p2, sc.ls[wv.ls[w]~.screenJ.gr.xaxismode) then 
UtoP p2 

else 
UtoP pI; 

W 
-....l 
0\ 

> 
"= "= 
~ .... 
~ 
~ 



-
if u - PtoU(w, pI, sc.ls[wv.ls[w]".screenJ .gr.xaxismode) < 

PtoU{w, p2, sc.ls(wv.ls{wl~.screenl .gr.xaxismode) - u then 
UtaP pI 

else 
UtaP p2; 

if u = PtoU(w, pI, sc.ls[wv.ls[w]".screen].gr.xaxismode) then 
UtaP pI 

else 
UtaP p2; 

end; 
end; 

end; 

function UtoX(u : real; scr : integer) : real; 
{ Converts unit space x coordinate u to screen x coordinate. Note that value 

may fall outside of screen boundaries (which is why real value was used). } 
begin 

with sc.ls[scrJ.gr do 
UtoX := xaxis.xl + (u - ullim) * (xaxis.x2 - 1 - xaxis.xl) 

(u21im - ullim); ( -1 is 
to ensure that points on righthand edge fall INSIDE screen limit. 

end; 

procedure val_irs : bufstring; var. i : integer); 
( Integer version of clunky val () procedure which needs a dummy variable I 

never check (though is used here to set i to 0 for screw-ups) . 
var 

error : integer; 
begin . 

vales, i, error); 
if error <> 0 then 

i : = 0; 
end; 

( Error variable for vale). 

procedure val_res : bufstring; var r : real); 
( Real version clunky vale) procedure which needs a dummy variable I never 

check (though is used here to set r to 0 for screw-ups). } 
var 

error : integer; 
begin 

vales, r, error); 
if error <> 0 then 

r 
end; 

0; 

function VtoY(v : real; scr 

{ Error variable for val ( ) . 

integer) real; 
{ Converts unit space y coordinate v to screen y coordinate. Note that value 

may fall outside of screen boundaries (which is why real value was used). 
begin 

with sc .1s [scrJ .gr do 

end; 

VtoY := yaxis.y2 - 1 - (v - vllim) * (yaxis.y2 - 1 - yaxis.yl) / 
(v21im - v11irnl; { -1 

is to ensure that points on bottom edge fall INSIDE screen limit. Note 
overall minus sign to expression, compared with UtoX. This is because we 
want (0, 0) in unit space to correspond to bottom left corner, not top 
left. ) 

procedure waitkey; 
( Prints text message and waits for keypress 
begin 

writeln(' '); 
writeln( 'Hit <return> to continue.'); 
readln; 

end; 

function Wavelnfo(w integer; 1 : integer) bufstring; 
Prepare wave information in a string to be used by DrawWaveInfo. 1 is 
the length of the string to be returned (is padded with spaces). See 
help for format of output string. ) 

var 
integer; ( General integer. ) 

out : bufstring; { Growing output string. 
5, s2 : bufstring; { General string. } 

begin 
with wv.1s(w]A do 
begin 

{ Current wave. 
if w = wv.cur then 

out 
else 

out 
( Wave number. 
strew; s); 
out := out + 5; 

{ Invisible flag. 
if wv.ls[w)".on = 1 then 

out 
else 

out + 

out := out + 'i'; 
( Saved flag. ) 
if (wv.1s(w]A.parsaved = 1) and (wv.ls[w)".datasaved 
begin 

if wv .ls (wJ". savemode = 0 then 
out 

else 
out 

end 
else 

out + 's' 

out+'n'; 

out := out + ' 

( Screen number. 
str(screen, s); 
out := out + s; 
( Mode. ) 
if (addwaves . mode 

out := out + 'A' 
1) and (addwaves. w w) then 

else if scan.mode > 0 then 
out := out + '5' 

else if mon.w = w then 
out := out + 'M' 

else 
out out + 

( Background subtraction flags: ) 
if (par.dt = dt_ELE) and (par.ele bS.ffiode 
begin 

if _bs.bg = w then 
out := out + 'B' 

else 

end 
else 

out out + 'q'; 

out : = out + ' 
{ Selection flag. } 
if wv.ls[w]A.sel = 1 then 

1) then 

1) then 

~. 

> 
"t:I 
"t:I 
l'!) 

= ~ 
~. ,... 

w 
-.) 
-.) 



out out + '/' 
else 

out out + 
Need to fit two more items: label determined by w.ls[)"'.par.sh, 
yscale (if in relative y axis mode). First determine amount of 
room left with yscale included, then add label, then yscale . } 

if sc .15 [wv .ls [w]". screen) . gr. yaxismode YAXISMODE_RELATIVE then 
begin 

str (wv .ls [w] A. par. yscale; 0: 2, s2); 
s2 : = ' • + s2; 

end 
else 

s2 : = "; 
maxwavenarnelength ;= 1 - length(out) - length(s2): 
{ Label determined by wv.ls[]A.par.sh. } 
case par.sh of 
wv_sh_CM : ( Comment. ) 

s ;= par. comment: 
wv_sh_DLY : { Time delay (electron wave only). } 

begin 
str(round(par.ele.dly POWFS), s); 
s : = S + ' fs'; 

end: 
wv_sh_FN Filename. First figure out if path is same as current 

and 

directory: if so, print only filename; otherwise. print full path. 
Then truncate filename to fit on screen, if necessary, in which 
case last two chars will be ' .. ' to indicate truncation. } 
begin 

i := FilenameStart(par.filename); 
if copy (par. filename, 1. i - 1) = dir then 

5 ;= copy{par.filename, i, length (par. filename) ) 
else } 

s : = par. fn; 
end; ) 

end; 
if length(s) > maxwavenamelength then 

out := out + copy{s, 1, maxwavenamelength - 2) + 
else 

out := out + 5 + copy (BLANKLINE, 1, maxwavenamelength - length(s) I: 
{ Pad out to maximum length. } 

Wavelnfo := out + s2; ( Add in yscale and exit. ) 
end; 

end; 

function WavesExist : integer; 
( Return 1 if WV.num > 0; 0 otherwise. 
begin 

if WV.num > 0 then 
WavesExist 1 

else 
WavesExist 0; 

end; 

function weight (x , a : real) : real; 
{ Calculate weighting function for smoothing routines. } 
begin 

weight exp (-a" x'" xl; 
end; 

procedure writeengnotation(r 
begin 

write(r 
end; 

PARENGDIGITS) ; 

-

real) ; 

procedure writeln_ctr(s string; pos : integer); 
( Writes string centered on line at position pos. 
begin 

dec(pos, length(s) div 2); 
if pos > 0 then 

write (copy (BLANKLINE, 1, pos»; 
writeln(s) ; 

end; 

procedure writevalue(r, p : real; dec, max : integer; u : string); 
{ Writes value of dec decimals and maximum length max with proper SI 

prefix and unit string u. p is power of r; if p = 0, calculates p auto
matically. } 

var 
s : bufstring; { Temporary string. } 

begin 
if p = '0 then 

p := Power(r}; 
str (r r p : 0 : dec, s); 
if length(s) > max then 

s := coPY(s, 1. max); 
write(s, , ., UnitPrefix(round(log10(p»), u); 

end: 

procedure writevalueunitless(r, p : real; dec, max : integer); 
( Writes value of dec decimals and maximum length max with power-of-ten 

attached. p is power of r. p = 0 is flag to calculate power automati
cally. ) 

var 
s : bufstring; { Temporary string. } 

begin 
if p = 0 then 

p := Power(r); 
str(r / p : 0 : dec, s); 
if length(s) > max then 

s := copy(s. 1. max); 
if p <> 1 then 

write(s, ' (x'; PowerOfTenPrefix(round(log10(p»), ')') 
else 

write(s) ; 
end; 

procedure ws_df; 
{ Sets up default values in case where workspace read fails. } 
var 

i, j : integer; 
begin 

{ Global vars. } 
for i : = 1 to AD-.MAX do 

ad.ls[i].gain 1; 
ad.on := 1; 
allsaved := 1; 
auto.adv := 0; 
auto.bg := 1; 
auto.cor := 1; 
auto.fn := 1; 
auto.gen 0; 
auto.nwn : = 1; 
auto. off := 0; 
auto.rm := 0; 
au to. ser AUTO_SER_DF; 
auto.sv 0; 

VJ 
-.l 
00 

> 
'C 
'C 

~ 
Q.. .... 
~ 
~ 



blankmin : = 1; 
blankmax : = 100; 
_bs bg ,= 0, 
_bs.dis := 0; 
_bs.sts := 0; 
_bs. sts_blank : = 101'; 
_bs.sts_blank2 450; 
_bs.sts_ch := 1; 
bs.sts_fac := 1; 

_bs.sts_vert := 0.02; 
~bs.sts_tog := 1; 
dir : = CD_OF, 
discrim := 0.04; 
dotradius := 1; 
globalsavemode 
mc. fn : = ", 
mc.num : = 0; 
mc. sens : = 1; 
mon.bins := 8; 
mon.w := 0; 

numavg 10; 
move. start := 0; 

0, 

move. step POWTS; 
move. stop 0; 
move wait 0.2; 
osc. ch : = 1; 
ose. scr : = 1; 
peaksecond := 0; 
peakthresho1d 0.1; 

set second derivative level to 0 } 
set to lOt} 

printdir := CPO_OF; 
setenergyeonversion!aserev := 4; 
setenergyconversion!ength := 1.147; 
setenergyeonversiontO := 247e-9; 
to.ae := 0; 
to.cc := 0; 
ts . ace : = TS_ACC_OF; 
ts. 5 tep : = TS_STEP _OF; 
ts vel : = TS_VEL_OF; 
ts.wait.int := TINT_OF; 
ts wait.s1 := TSL_OF; 
ts.wob.ampl := 0; 
ts.wob.per := 0, 
ts.wob.ph := 0; 
tw.dly := -2e-12; 
tw. pt ,= MCS_PT IMCS_PT_MINJ , 
tw.reprate := OF_REPRATE; 
tw. shotsperscan : = 500; 
tw. timeperpt : = 40e-9; 
yoffsetrescale : = 1; 
{ Wave default vars. } 
for i : = dt_MIN to dt_MAX do 

with pardf[i] do 
begin 

alert 0; 
comment 
dt : = i; 
fn : = " 
gen := 0; 
scan := 0; 
sh := wv_sh_FN; 
skip : = 0; 
vstop 0; 
yoffset : = 0; 

yscale : = 1; 
end; 

with pardf[dt_COR] do 
begin 

pt_g1 ,= 50, 
pt pt_g1, 
sean_gl : = 1; 
timeperpt := POWTS / HALFSPEEDOFLIGHT, 
with cor do 
begin 

ch ,= 1, 
shotsperpt := 10; 
ts.start := 29975.5e-6; 
ts.step := TS_STEP_DF; 
tS.stop := 30024.Se-6; 
ts. to ,= 3 0000e-6, 
ts.wob.ampl := 0; 
ts.wob.per := 0; 
ts.wob.ph 0, 

end; 
end; 
with pardfldt_ELEJ do 
begin 

pt ,= MAXPOINTS, 
pt_g1 := 0; { Doesn't matter. ) 
scan_gl := 0; { Set for infinite scans. } 
timeperpt := MCS_TIMEPERPT[MCS_TIMEPERPT_MIN); 
with ele do 
begin 

bS.last 0; 
bs.mode 0; 
bs. tot : = 0; 
cal.ev := 4; 
cal. len := setenergyeonversionlength; 
cal.tO := setenergyconversiontO; 
cal.quad ;= setenergyconversionquad; 
cal.quadoff := setenergyconversionquadoff; 
d1y ,= 0, 
reprate : = OF _REPRATE; 
shotsperscan := 10000; 
ts.pos := 30000e-6; 
ts. to : = 30000e-6; 
ts.wob.ampl := 2.5; 
ts.wob.per := 10; 
ts.wob.ph := 0.525; 

end; 
end; 
with pardf[dt_POW] do 
begin 

pt_g 1 ,= MAXPOINTS, 
pt pt_g1, 
scan_gl : = 1; 
timeperpt 1, 
with pow do 
begin 

ch 1; 
cal. int : = 0; 
cal.sl := 1; 

end; 
end; 
with pardf[dt_MAS} do 
begin 

pt : = MAXPOINTS; 

> 
"CI 
"CI 
~ 

= Q., .... 
~ 
I-' 

W 
-..J 
\0 



pt_gl : = 0; { Ooesn' t matter. } 
scan_gl : = 1; 
timeperpt := 1e-6; 
with mas do 
begin 

cal.int := 0; 
cal.sl := 1; 
ch ,= 1; 
delay := 0; 
inv : = 0: .. 
scantime : = timeperpt * pt; 
vert 0; 

end; 
end; 
{ Write screen vars. 
sc.cur : = 1: 
sc.ls[se.cur] .gr.bdy := sC.bdy, { Copy max. limits. } 
sc_init(sc.cur}; { Set default screen parameters. } 
SC.num := 0; { Must set this below sc.cur when calling sc_resize the 

first time, to establish xh's correctly. } 
sc_resize(sc.cur} , { Establish screen coordinates for rest of graph. 
sC.num := 1; 
ws_init; 

end; 

procedure ws_ini t; 
( Set a few variables to defaults whenever we change workspaces. ) 
const 

LF = #10, { Doesn't seem to work unless this is declared explicitly. 
var 

i :' integer; 
begin 

{ Set these to 0 for first entering program. } 
if newworkspace = 1 then 
begin 

addwaves.mode := 0, 
for i : = 1 to AD_MAX do 

ad.ls[ij.on ,= 0; 
mono tot 0; 
newworkspace := 0; 
osc.mode := 0; 
osc.scr := 1; 
scanwave : = 0; 
wv.num 0; 

end; 

{ Ensure all waves on actual screens. } 
for i := 1 to wv.num do 

with wv.ls[iJA do 
if screen> sC.num then 

screen := sc.cur; 
Ensure ose on actual screen. 

if osc.scr > sC.num then 
OSC.scr := sc.cur; 

Init_ts, 
graphicsmode; 
mc_rd(mc. fn): 
mc.s 

end; 

procedure ws_rd(s : bufstring); 
Reads ws file s from disk, which contains all critical system vars with 
the exception of wave data itself. If read fails (no file, or bad ver-

sion), uses defaults in ws_df. 
var 

text i { File variable. 
i, j : integer; 

begin 
if FileExists(s) = false then 
begin 

if newworkspace = 1 then 
begin 

textmode; 
clrscr; 
textcolor (WHITE) ; 
writeln('Workspace file does not exist; using default values.', 

BELLI; 
delay (1000 I ; 
ws_df; { Set defaults. } 
exit; 

end 
else 
begin 
co~wr('Workspace file does not exist.', COLORHL); 
exit; 

end; 
end; 
Assign(f, 5); 
Reset(fl; 
readln(f, s); 
if s <> HEAD_WS then 
begin' 

if newworkspace = 1 then 
begin 

textmode; 
clrscr; 
textcolor(WHITE): 
writeln('Workspace file format incompatible; using default values.' 

• BELLI; 
delay (1000 I ; 
ws_df: { Set defaults. } 
exit; 

end 
else 
begin 

com_wr ('Workspace file format incompatible.', COLORHL); 
exit; 

end; 
end; 
( Read global vars. ) 
for i : = 1 to ADJ(AX, do 

readln(f, ad.ls[i).gain); 
readln(f, ad. on) ; 
readln (f, allsaved); 
readln(f, aU.to.adv); 
readln(f, auto.bg), 
readln(f, auto.cor); 
readln(f, auto.tn); 
readln(f, auto.gen), 
readln(f, auto.num); 
readln(f, auto. off); 
readln(f, auto.rm); 
readln(f, auto.ser); 
readln(f, auto.sv); 
readln(f, blankmin); 
readln(f, blankmax); 

w 
00 
o 

> :g 
«'D 

= Q.. .... 
~ 

"'""" 



readIn(f, _bs.bg); 
readIn(f, _bs.dis); 
readln(f, _bs.sts); 
readln{f, _bs.sts_blank}; 
readIn{f, _bs.sts_bIank2); 
readIn{f, _bs.sts_ch}; 
readIn(f, _bs.sts_fac); 
readIn(f, _bs.sts_vert); 
readIn(f, _bs.sts_togJ: 
readIn(f, debug}; 
readin (f, dir); 
readln(f, discrim): 
readln{f, dotradius): 
readln(f, globalsavemode); 
readln(f, mC.auto); 
readln ( f, mc. fn) ; 
readln(f, mC.sens): 
readIn(f, mon.bins); 
readln(f, mon.w); 
readln(f, move.numavg); 
readln(f, move.start); 
readln(f, move.step); 
readln(f, move. stop); 
readln(f, move.wait); 
readIn(f, osc.ch); 
readln( f, osc. scr); 
readln (f, peaksecond); 
readln(f, peakthreshold); 
readln(f, printdir); 
readIn(f, setenergyconversionlaserev); 
readln(f, setenergyconversionlength); 
readln(f, setenergyconversiontO}; 
readln{f, setenergyconversionquad): 
readln{f, setenergyconversionquadoff); 
readln (f, to. ac) ; 
readln (f, to. cc) ; 
readln(f, tS.acc); 
readln (f, ts. step) ; 
readln(f, ts.vel); 
readln (f, ts. wai t. int l ; 
readln(f, ts.wait.sl); 
readln(f, ts.wob.ampll; 
readln(f, ts.wob.per); 
readln(f, ts.wob.ph): 
readIn(f, tw.dly); 
readln(f, tW.pt)i 
readln (f, tw. repratel ; 
readln{f, tw.shotsperscan); 
readln(f, tW.timeperpt); 
readln(f, yoffsetrescale); 
{ Read wave default vars". } 
for i : = dt_MIN to dt_MAX do 

with pardf[i] do 
begin 

readln (f, alert); 
readln (f, comment); 
readin (f, dt); 
readln(f, fn) ; 
readln (f, gen); 
readin (f, pt); 
readln(f, pt_gIJ; 
readln (f, scan) ; 
read In (f, scan_gl) ; 

readln (f, sh); 
readln ( f, skip); 
readln(f, timeperpt); 
readln(f, vstop); 
readln(f. yoffset); 
readln ( f, yscale) i 

end; 
with pardf[dt_COR] .cor do 
begin 

readln (f, ch); 
readln{f. shotsperpt); 
readln(£, ts. start) ; 
readln(£. ts. step) ; 
readln(£, ts. stop) ; 
readln(f, ts. to); 
readln( f, ts. wob. ampl) ; 
readln( f, ts.wob.per) ; 
readln( f. ts."wob.ph) ; 

end;" 
with pard£(dt_ELE] .ele do 
begin 

readln (f. bs .last) ; 
readln (f, bs .mode) ; 
readln (f, bs. tot) ; 
readln (f. cal. ev) ; 
readln{f. cal. len); 
readln(f, cal.tO); 
readln(f. cal.quad) ; 
readln(f, cal.quadoff) ; 
readln(f, dly); 
readln ( f, repra te) ; 
readln (f, shotsperscan) ; 
readln(£. ts .pos); 
readln(f. ts. to); 
readln( f. ts.wob.ampl) ; 
readln(f, ts.wob.per) ; 
readln(f, ts.wob.ph) ; 

end; 
with pardf[dt_POW) .pow do 
begin 

readln (f, chI i 

readln(f, cal.int); 
readln(f, cal.sl); 

end; 
with pardf[dt_MASJ .mas do 
begin 

readln(f, cal.int); 
readln(f, cal.sl); 
readln (f, ch); 
readln (f, delay); 
readln(f, inv); 
readln(f, scantime); 
readln (f, vert) i 

end; 
( Read screen vars. 
readln(f, sC.cur): 
readln(f, sc.num); 
for i := 1 to SC.num do begin 

with sc.ls[iJ do begin 
readln{f, ti.on); 
readln(f, ti.s); 

end; 
with sc.ls[iJ .gr do begin 

> 
"CI 
"CI 

('t> 

= Q.. .... 
>< 
>-" 

VJ 
00 



read In ( f. bdy [lJ . xl; 
readln( f. bdy [lJ . yl ; 
readln (f. bdy[2 J . xl; 
read In (f. bdy[2 J . yl ; 
readln(f, xb.mode); 
readln(f. cursoru)i 
readln(f, cursorvisible): 
readln (f, u11im); 
readln(f, u21iml; 
readln (f, vllim); 
readln (f. v21im)-; 
readln(f, xaxisdt) i 

readln(f, xaxismode); 
readln(f, xfullmode}; 
readln(f. xon); 
readln(f. yaxismode); 
readln(f. yfullmode); 
read In (f. yon); 
xh.which := 1; 
xh.u[l] ullim; 
xh.u[2] u21im; 
xh.v[lJ := vllim; 
xh.v[2] := v21im; 
sc_resize(i); { Set up other screen variables. } 

end; 
end: 
( Done. 
close(f) ; 
ws_init; 

end; 

procedure ws_sv(s : bufstring); 
{ saves~ystem variables useful for startup each time in file s. } 
var 

f : text; { File variable. 
i. j : integer; 

begin 
if s <> WS_FN_DF then { Only check for existence if not 

default file. } 
if FileExists(s) then 

if corn_wr--YJl( 'Workspace file exists. OVerwrite') 0 then 
exit; 

if FileOpenWrite(f, s) = false then 
exit; 

( Write version header. 
write!n(f, HEAD_WS); 
{ Write global vars. } 
for i : = 1 to AD_MAX do 

writeln{f, ad.ls[i].gain); 
write!n(f, ad.on); 
writeln(f, allsaved); 
writeln(f, autd.adv); 
writeln(f, auto.bg); 
writeln(f, auto.cor); 
writeln(f, auto. fn); 
writeln(f, auto.gen); 
writeln(f, auto.num}; 
writeln(f, auto. off) ; 
writeln{f, auto.rm); 
writeln(f, auto. serl; 
writeln(f, auto.sv) ; 
writeln(f, blankminl; 
writeln(f, blankmaxl; 

writeln{f, _bs.bg); 
writeln{f, _bs.dis); 
writeln(f, _bs.sts); 
writeln(f, _bs.sts_blank); 
writeln(f, _bs.sts_blank2"); 
writeln(f, _bs.sts_ch); 
writeln(f, _bs.sts_fac); 
writeln{f, _bs.sts_vert); 
writeln(f, _bs.sts_tog}; 
writeln(f, debug); 
writeIn{f, dir); 
writeIn(f, discrim); 
writeIn(f, dotradius); 
wri teln (f, globalsavernode); 
writeIn(f, mC.auto); 
writeIn(f, mc. fn); 
writeln{f, mc.sens); 
writeln(f, mon.bins); 
writeln(f, mon.w); 
writeIn(f. move.numavg): 
writeln{f, move.start): 
writeln(f, move.step); 
writeln{f, move.stop); 
writeln{f, move.wait); 
writeln(f, osc.ch); 
writeln(f. osc.scr); 
writeln(f, peaksecond); 
writeln(f, peakthreshold); 
writeln(f, printdir); 

'writeln(f, setenergyconversionlaserev); 
writeIn(f, setenergyconversioniength); 
writeIn{f, setenergyconversiontO); 
writeIn(f, setenergyconversionquad): 
writeIn(f, setenergyconversionquadoff); 
writeIn(f, to.ac): 
writeIn(f, to.ccl: 
writeln(f, ts.acc); 
writeIn(f, tS.step); 
writeln(f, ts.vel); 
writeln(f, ts.wait.int); 
writeln(f, ts.wait.sl); 
writeIn(f. ts.wob.ampl): 
writeIn(f, ts.woh.per); 
writeln(f, ts.woh.ph); 
writeIn(f, tw.dly); 
writelnCf, tW.pt): 
writeIn(f, tW.reprate); 
writeln(f, tw.shotsperscan); 
writeIn(f, tw.timeperpt); 
writeln(f, yoffsetrescale); 
( Write wave default vars. } 
for i : = dt_MIN to dt_MAX do 

with pardf [i1 do 
begin 

writeln(f. alert); 
writeln(f, comment) i 

writeln(f. dt); 
writeln (f, fn); 
writeIn(f, gen); 
writeIn(f, ptl; 
writeln(f, pt_gll; 
writeln(f, scan); 
writeln(f, scan_gIl; 

w 
00 
tv 

> 
"'CI 
"'CI 

~ 
Q. •. 
>-! 
~ 



writeln(f, sh); 
writeln(f, skip); 
writeln(f, timeperpt); 
writeln{f, vstop); 
writeln{f, yoffset); 
writeln(f, yscale); 

for j : = USERMIN to USERMAXdt [i j do 
wr i te In ( f, user [ j ) ); } 

end; 
with pardf[dt_COR).cor do 
begin 

writeln(f, ch); 
writeln(f, shotsperpt); 
writeln(f~ tS.start); 
writeln(f, ts.step); 
writeln (f, ts. stop) ; 
writeln(f, ts.tO); 
writeln(f, ts.wob.ampl); 
writeln(f, ts.wob.per); 
writelnCf, ts.wob.ph); 

end; 
with pardf[dt_ELE).ele do 
begin 

writeln·Cf. bs.last); 
writeln(f, bs.mode) i 

writeln(f, bS.tot); 
writeln (f, cal. ev) ; 
writeln (f, cal. len) ; 
writeln(f, cal.tO); 
writeln(f, cal.quad); 
writeln(f, cal.quadoff); 
writeln (f, dly); 
writeln(f, reprate); 
writeln(f, shotsperscan); 
writeln (f, ts.pos) ; 
writeln(f, ts. to); 
writeln(f, ts.wob.ampl) ; 
writeln(f, ts.wob per); 
writeln (f, ts.wob ph); 

end; 
with pardf(dt_POWj.pow do 
begin 

writeln (f, ch); 
writeln(f, cal.int); 
writeln(f, cal.sl); 

end; . 
with pardf(dt_MAS] .mas do 
begin 

writeln(f, cal.int); 
writeln(f, cal.sl); 
writeln( f, ch); 
writeln(f, delay); 
writeln(f, inv); 
writeln(f, scantime); 
writeln(f, vert); 

end; 
( Write screen vars. 
writeln(f, sC.cur); 
writeln(f. sc.num); 
for i := 1 to SC.num do begin 

with sc.ls[i) do begin 
writeln(f, ti.on); 
writeln(f, ti.s); 

end; 
with sc.ls(i] .gr do begin 

writeln(f. bdy[lJ .x); 
writeln(f, bdy(l] .y); 
writeln(f, bdy(2J .x); 
writeln(f. bdy[2J .y); 
writeln(f, xh.mode); 
writeln(f, cursoru); 
writeln(f. cursorvisiblel; 
writeln (f, ullim); 
writeln(f, u21im); 
writeln (f, vllim); 
writeln(f, v2Iim); 
writeln(f, xaxisdt); 
writeln(f', xaxismodel; 
writeln(f, xfullmode); 
writeln (f, xon); 
writeln(f. yaxismode); 
writeln(f, yfullmode); 
writeln (f, yon); 

end; 
end; 
( Done. 
close(f) ; 

end; 

procedure wv_sel(code : integer); 
( Examines command line for several levels of flags, depending on code: 

0: null, valid wave number, 'all' = all waves flagged, 'sel' = user 
flags waves with cursor. For all choices, subsequent processing 
must check wave(]A.sel to see which wave(s) were tagged. 

1: above options, plus 'enumeration list': several wave numbers listed. 
explicitly in command. wv.ls[}A.sel holds list of waves indicated 
as for above. 

Sets wv.sel to 0 if no waves selected (if num 0, or if sel 
option returned no tags); otherwise, sets to 1. Leaves com.cur pointing 
to last recognized word (initial command, 'all', 'sel' or last enumera
tion list number. 

var 
dummy : integer; { Dummy variable for val. 
exitflag : boolean; { Flag for enumeration list. 
i : integer; { wave counter. } 
S : bufstring; ( Holds current word. 

begin 
{ Check to make sure there are waves. 
if wv.num = 0 then 
begin 

wv.sel 
exit; 

end; 

0; 

{ Set tags to O. 
for i : = 1 to wv num do 

wv.ls[iJ".sel := 0; 
if com. cur = com.num then 
( Null. ) 
begin 

wv.ls[wv.cur]A.sel 
wv.sel := 1; 

end 
else 
begin 

inc(com.cur) ; 

1 ; 

> 
"C 
"C 
~ 

6-.... 
~ .... 

UJ 
00 
UJ 



S := com.ls[com.cur]; 
val(s, L dummy); 
if (i >= 1) and (i wv.num) then 
begin 

wv.ls[iJ".sel 1; 
wv.sel 1; 
{ Read in more wave numbers if code allows us to. } 
if code = 1 then 
begin 

exitflag false; 
while (com. cur < com.num) and (not exitflag) do 
begin 

inc (com. cur) ; 
val(com.ls(com.cur] , i, dummy); 
if (i >= 1) and (i wv.num) then 

wv.ls(i] ..... sel := 1 
else 
begin 

dec(com.cur); { Let calling routine figure out what meant. } 
exitflag true; 

end; 
end; 

end; 
end 
else if s = 'all' then 
begin 

for i : = 1 to wv. num do 
wv.ls[i]A.sel 1; 

wv.sel := 1; 
end 
else if s 'sel' then 
begin 

cOIrLwr('Select waves: UP/DOWN = move, / = toggle, a = all, c = 
+ ' clear, t = toggle all, RETURN = execute, ESC = abort.', 
COLORMESS) ; 

exitflag := false; 
drawwavedata; { Initialize appearance of waves. } 
repeat 

Scan; { Take care of active waves. } 
if keypressed then 
begin 

case readkey of 
EXTENDED; 

case readkey of 
XARROWDOWN ; 

if wv.cur < wv nurn then 
inc (wv. cur) 

else 
wv.cur := 1; 

XARROWUP; 

end; 

if wv.cur > 1 then 
dec (wv.curl 

else 
wv.cur := wv.num; 

CR: exit flag ;= true; 
ESC: { Abort selection: untag all waves. } 

begin 
for i : = 1 to wv. num do 

wv.ls[i] ..... sel := 0; 
exitflag true; 

end; 
'I', '7'; wv.ls[wv.cur]".sel 1 - wv.ls[wv.cur] ..... sel; 

'a', 'A'; { Select all. 
for i : = 1 to wv do 

wv.ls(i) ..... sel := 1; 
'c', 'C' ~ { Clear all. } 

for i := 1 to wv.num do 
wv.ls[i]A.sel ;= 0; 

't', 'T': { Toggle all. 
for i := 1 to wv.num do 

wv.ls(iJ".sel := 1 - wv.ls(i]".sel; 
end; 
DrawWaveData; { Update cursor, tags. } 

end; 
until exitflag; 
{ See if any waves selected, returning proper value in wv.sel. } 
for i := 1 to wv.nurn do 

if wv.ls[i] ..... sel = 1 then 
begin 

wv.sel 1; 
exit; 

end; 
wv.sel 0; 

end 
else 
begin ( Unrecognized word; assume want current wave selected. ) 

wv.ls[wv.curJ ..... sel 1; 
wv.sel := 1; 
dec(corn.cur); ( Leave ,word for calling routine to decipher. ) 

end; 
end; 
( DEBUG 
s := 'wv_sel: '; 
for i := 1 to WV.num do 

with wv.ls[i] .... do 
if sel = 1 then 

s := s + makestringint(i) + 

co~wr(copy(s. 1. length(s) - 2). COLORDEBUG); 
end; 

procedure wv_sel_off; 
{ Turn off all sel tags on waves. } 
var 

w : integer; 
begin 

for w := 1 to wv.num do 
wv.ls[w] A. sel 0; 

wv.sel 0; 
end; 

procedure XFull(scr : integer); 
( Calculates largest u limits for currently visible waves. If all waves are 

invisible. then limits don't change (and they don't matter, either). } 
var 

got_one : boolean; { Flag indicating valid wave found. } 
ul : real; { Temporary unit variable. } 
u2 : real; { Temporary unit variable. } 
w : integer; ( Wave index. } 
~~ . 

with sc.ls[scr].gr do 
begin 

if xfullmode = 0 then 
exit; 

Find first wave on screen which is visible, calculate its limits. } 

w 
00 
~ 

> 
"'C 
"'C 
~ 

= c:l. .... 
~ 
l-" 



got_one := false; 
w := 1; 
while (got_one = false) and (w <= wv.num) do 

with wv.lstwJ" do 
begin 

if (on = 1) and (screen scr) then 
begin 

if (xaxismode = XAXISMODE_CONVERT) and 
(xaxisdt = dt_ELE) then 

begin 
u2lim := PtoU(w, pmin, xaxismode); 
if par.pt > 0 then 

u1lim : = PtoU(w, par .pt, xaxismode) 
else 

ullim 
end 
else 
begin 

u2lim; 

ullim : = PtoU(w, pmin, xaxismode); 
if par.pt > 0 then 

u2lim : = PtoU(w, par .pt, xaxismode) 
else 

u2lim : = u1lim; 
end; 
got_one := true; 

end; 
w:=w+l; 

end; 
Now look for others, expand limits to include them all. 

if got_one then 
for w := w to wv.num do 

with wv.ls[wJ" do. 
begin 

if (on = 1) and (screen = scr) then 
begin 

if (xaxismode XAXISMODE_CONVERT) and (xaxisdt 
dt_ELE) then 

begin 
u2 : = PtoU (w, pmin, xaxismode); 
if par.pt > 0 then 

ul PtoU (w, par pt, xaxismode) 
else 

u1 := u2; 
end 
else 
begin 

u1 := PtoU{w, pmin, xaxismode); 
if par.pt > 0 then 

u2 PtoU(w, par pt, xaxismode) 

~-u2 u1; 
end; 
if ul < ullim then 

ullim ul; 
if u2 > u2lim then 

u2lim u2 ; 
end; 

end 
else ( No valid waves; use these defaults. 
begin 

ullim 
u21im 

end; 

0; 
1 ; 

end; 
end; 

function XToTheY{x, y real) 
{ Raises x to the y power. } 
begin 

XToTheY : = exp (In (x) ... y); 
end; 

real; 

function XtoU(x longint; scr integer): real; 
{ Calculates unit-space u coordinate, given screen coordinate x and 

screen number scr. } 
begin 

with sc.ls[scrJ.gr do 

end; 

xtou := (x - plotarea.xl) ... (u21im - ullim) I (plotarea.x2 -
plotarea.xl - 1) + ullim; 

procedure YFull(scr : integer); 
( Displays all waves with full Y limits if yfullmode = 1. ) 
var 

got_one : boolean; { Flag indicating valid wave found. } 
vI real; { Generic unit variable. } 
v2 real; ( Generic unit variable. ) 
w integer; { Wave index. } 

begin 
with sc.ls[scr] .gr do 
begin 

if yfullmode = 0 then 
exit; 

{ Find first valid wave, record its limits. 
got_one := false; 
w := 1; 
while (got_one = false) and (w <= wv.num) do 
begin 

with wv.ls[w]A do 
if (on = 1) and (screen = scr) 'then 
begin 

vllim : =' vrnin; 
v21im vmax; 
got_one 

end; 
true; 

inc(w) ; 
end; 
{ Now look for other waves and expand limits to include them all. 
if got_one then 

for w : = w to wv num do 
with wv.ls[w]A do 
begin 

else 

if (on = 1) and (screen scr) then 
begin 

vI vmin; 
v2 vmax; 
if vl < vllim then 

vilim := v1; 
if v2 > v2lim then 

v2lim := v2; 
end; 

end 

begin No waves -- use these limits. 
vllim 0; 
v2lim 1; 

> 
"C 
"C 
('t) 

= Q.. .... 
~ 

~ 

\.;.) 

00 
VI 



end; 
end; 

end; 

procedure YScaleChange(r : real): 
( Change yscale of wave wv.cur by r. ) 
var 

rr : real; ( Temporary value. } 
begin 

with wv.ls[wv.cur)A do 
begin 

rr := par.yscale + r; 
if rr = 0 then 

rr := rr + r; ( Avoid actually getting to 0, which screws up yoffset
rescaling. ) 

if yoffsetrescale = 1 then 
par.yoffset := par.yoffset • rr I par.yscale; 

wv.ls{wv.cur]A. par . y scale := rri 
end; 
DrawWaveData; 

end; 

procedure YScaleChangeSign: 
begin 

if wv.num = 0 then 
exit: 

wv.ls[wv.curJA. par . y scale 
DrawWaveData; 

end; 

-wv .1s [wv. curl A .par .yscale; 

function YtoV(y : longint: scr : integer) : real; 
( Calculates unit-space u coordinate, given screen coordinate x and 

screen number scr. ) 
begin 

with sc.ls{scrJ.gr do 

end; 

ytoV := -(y - plotarea.y2 + 1) • (v2lim - v11im) I (plotarea.y2 -
plotarea.yl - 1) + vllim: 

procedure Zoom; 
( Only active in xh mode: Make screen boundaries equal to limits of 

xh. ) 
var 

r : real; ( Temporary holder. 
begin 

with sc.ls[sc.curJ.gr do 
begin 

if xh.mode = 0 then 
exit; 

with xh do 
begin 

xfullmode := 0; 
yfullI~.ode := 0; 
ullim := u[l]: 
u2lim:=u[2]; 
if u1lim > u2lim then 
begin 

r := u1lim: 
ullim := u2lim: 
u2lim r: 

end: 
vllim 
v2lim 

v[l) , 
v(2) , 

if vl1im > v21im then 
begin 

r : = vllim: 
vllim : = v21im; 
v21im r; 

end: 
( Make xh extend to full screen. } 
x(l] plotarea.x1: 
x{2] := plotar~a.x2 - 1; 
y[lJ ;= p1otarea.y1, 
y[2) ;= p1otarea.y2 - 1, 
UpdateVitals: 
Update(sc.cur) ; 

end: 
end: 

end: 

end. 

4.7. fpesvar.pas 

unit fpesvar: 
( History of modifications (please add to BOTTOM of list!): 

Version 1: Begun 2jun94 BJG. 

Constant, type, and variable declarations for the program view. See view 
(at appropriate version) for more specific program modification notes. 

A note about the coordinate systems: there are three sets of coordinates to 
describe data positions in different ·spaces.- They are: 

(w, p) wave and point space: w is a • wave· or data set: p is a ·point· or 
bin number. 

Cu, v) unit space: u and v are "axis coordinates in real units: for u, it is 
time (ns, us), energy (ev) or mass (amu): for v, it is either abso
lute intensity (counts) or relative intensity (arbitrary units) . 
Which units are in use depends on the display mode: xaxismode_ and 
yaxismode keep track of these. 

(x, y) screen space: x and yare screen coordinates used to plot graphics. 

These systems are always distinguished by using variable names incorporating 
the letters w and p, u -and v, or x and y. 

interface 

uses 
crt, graph, Keys; 

General purpose section·············*······························ ••• } 
const 

ARRAYMAX = 10000; ( Maximum reasonable array position for chararray, 
wordarray. } 

AUTO_SER_DF 'file-'; ( auto.ser default string. 
BLANKLlNE = • 

{ 80 spaces. 
COLORDEBUG = LIGHTGREEN; { Default debug message color. 
COLORUSER = YELLOW; { Default user input color. } 

w 
00 
0'1 

> 
"0 
"0 
to = Q.. .... 
~ 

"""" 



COLORMACRQ = LIGHTMAGENTA; { Default macro color. 
COLORMESS = LIGHTCYAN; ( Default message color. ) 
COLORHL = LIGHTRED; { Highlighting color (most routines also generate 

beep when using this color). } 
CD_DF = 'd: \fpes\data\'; { Default data directory. 
CPO_OF = 'f: \fpes\print\'; { Default print directory. 
DF_REPRATE = 500; 
ELECTRONMASS = 5.4863E-4; { Mass (amu) of electron - for energy conver-

sion. } 
ELECTRONMASSKG 9 .10953E-31; { Electron rest mass in kilograms 
ERR_DATAFORMAT 'Error: Bad data format.'; 
ERR_FILENOTFOUND = 'Error: file not found. '; 
EVNM = 1239.842447; { eV.nm conversion factor between laser wavelength and 

energy. } 
FPES_EXT = 'par'; 
HALFSPEEDOFLIGHT = 1.4989622ge8;· ( Half the speed of light in m/s. ) 
HEAD_WS 'FPES WORKSPACE, REV. 1998.02.20'; 
HEAD_WV = 'K - FPES WAVE FILE, REV. 20FEB98'; 
HELP_FN = 'help.par'; 
HELP_LINESPERPAGE = 24; 
JTOEV = ·6.24146e18; ( Joules to eV conversion factor) 
LABEL_END_CHAR = ':'; { Used to terminate label field in wv or ws 

files. } 
LARGE = 1e38; { Effective upper bound for range checking. 
LARGEINT = 2147483647; { Effective longint upper bound. 
LINESPERPAGE = 15; { for output of peaks } 
LN_2 = 0.693147181; ( 1n(2). ) 
LN_IO = 2.302585093; ( 1n(10). ) 
MAXPEAKS = 200; { ten screens of 20 peaks 
MAXPOINTS = 1024; { max. * of data points in a wave. } 
MAXPOWER = 12; ( Max. legal exponent in UnitPrefix. ) 
MINPOWER = -18; { Minimum legal exponent in UnitPrefix. 
POWFS = 1e-lS; { Power for all fs vars. } 
POWTS = 1e-6; { Power for all ts vars. } 
SLOPEFACTOR = 2.84281568ge-12; { Conversion factor (eV mA_2 s A2) for time 

to energy in PtoU. ) 
SMALL = 1e-3; { Small number to add to rounding expressions to suppress 

roundof f error. } 
SQRTPI = 1. 772453851; ( Square root of Pi ) 
SQRTLN_2 = 0.832554611; { Square root of the nat. log of 2 } 
SQRTLN_IOO 2.145966026; { Square root of the nat. log of 100 
TEKREPRATE 100; ( Max. rep. rate of Tektronix scope (Hz). ) 
TEKSET _MAX 30; 
TEK_YPTSPERDIV = 3276.8; 
TWOPI = 6.28318539717959; ( 2 • pi. ) 
VALDEC = 6; ( Number .of decimals for normal values printed. 
VALDECFS = 1; { Number of decimals for fs values. } 
VALDECTS = 2; ( Number of decimals for ts values. ) 
VALMAX = VALDEC + 2; { Max. number of digits for normal values (counts 

'-' and'.') ) 
VALMAXFS = 7; { Number of digits for fs values. 
VALMAXTS = 8; <. Number of digits for ts values. 
VERSION = 'Version 6'; { Version. } 
WS_FN_DF = 'WS. PAR' ; 

type 
bufstring = string[100]; { General-purpose buffer string. 
chararray = array[l ARRAYMAX] of char; { This definition, together 

with wordarray below, enable a pointer to reference any element of 
an arbitrary-sized array, when a pointer is declared as pointing to 
this array (much like c does for all pointer types). For instance, 
for p ~chararray, can reference element i with p~(i], 

fft_array_type = array[l 2 ~ MAXPOINTS1 of real; ( For use in fft 
and associated SmoothEnergy routines, ) 

intbuf_type = array[l MAXPOINTS] of integer; { Temp. array for data 
transfer during reads. } 

ts_wob_type = record ( Software wob parameters to correct wobble 
in ts motion. Used by COR, ELE datatypes, also ts.wob main var. 
ampl : real; { Amplitude. } 
per: real; ( Period. ) 
ph : real; ( Phase. ) 

end; 
wordarray = array[l .. ARRAYMAX] of word; { See chararray above. } 
xy_type = record {Screen-space position pair. } 

x, y : integer; 
end; 
( Note: the following definitions must be out of order, since they use 

other definitions which would normally follow after them alphabeti
cally. ) 

bdy_type = array[1 .. 2] of xy_type; { Pair of coodinates describing 
graphics boundary. } ~ 

tx_type = record 
bdy array[l .. 2) of xy_type; ( Screen boundaries. 
buf Achara'rray; { Pointer to chunk of memory holding text data. 
col Awordarray; { Pointer to color list (1 for each line). } 
cur xy_type; ( Current x and y char position. ) 
num xy_type; { Max. number of characters in x and y directions. 

end; 
tx_type-p = Atx_type; 

var 
allsaved : integer; ( Flag for whether all waves have been saved. ) 
auto: record ( Auto-filename variables. ) 

adv : real; ( Number of s to advance stage when current ele scan 
is done. Restarts new scan automatically. If 0, mode is off. ) 

bg : integer; { Flag to scale bg and foreground waves. } 
cor: integer; { Flag to scale and calculate fwhm for cor waves. 
fn : integer; ( Flag to generate filenames with new waves. ) 
gen : integer; ( Flag to generate new wave when scan done. ) 
num : integer; { File number counter (for fn = 1 mode). } 
off : integer; ( Flag to turn off scans if all electron waves are 

off. ) 
rm : integer; { Flag to remove waves if full. } 
ser : bufstring; { Series name for files (for fn = 1 mode). } 
sv : integer; { Flag to save automatically when scan done. } 

end; 
blankmin, blankmax : integer; { Current point range to blank using 

Blank-Data routine. } 
_bs : record ( Background subtraction mode parameters. 

bg, fg : integer; { Background and foreground waves. 
dis : integer; { Flag for bs display mode. } 
sts : integer; { Flag for sts (shot-to-shot) bs mode. 
sts_blank : integer; { Number of initial bins to blank to elimi-

nate noise spike. } 
sts_blank2 : integer; { Nwnber of final bins to blank. 
sts_ch integer; { Channel number on TEK to use for bg scans. 
sts_fac real; { Conversion factor for scaling TEK and MCS 

waves. } 
sts_tog : integer; { Flag indicating whether to use toggle mode or 

regular mode for data accumulation (regular usually means will 
connect chopper to the inhibit BNC, so that background scans are 
not accumulated). } 

sts_vert real; { Vertical scale used on TEK. 
end; 
calib record { Temporary holder of parameters for calibrating 

electron or ion spectrum. } 
array[l ,21 of real; { Converted values (energy or mass). 
array[l. .21 of real; { Normal values (time). } 

> 
"C 
"C 
to 

= c:l.o .... 
il< 
~ 

\.J,) 

00 
-.l 



end; 
debug integer; ( Flag to disable graphics screen and print debugging 

messages. } 
dev_rd integer; { Flag to disable device reading, so can use for 

analysis on PC not connected to devices. } 
dir : bufstring; { Current directory label. } 
discrim : real; { Discrimination level used for electrons (MCS and 

TEK) . 
exitflag boolean; { Flag to end program. } 
filter : array[1 .. "MAXPOINTS div 2 + 11 of real; { Filter function 

used by SmoothEnergy. } 
globalsavemode : integer; {save wave mult by yscale or not. } 
info : record { Vars calculated with info functions. } 

area: real; 
ctr : real; 
edgel : real; 
edger: real; 
fwhm : real; 

end; 
macro_override: integer; { macro override flag} 
mon : record ( Parameters for mon (itor) command. } 

bins : integer; ( Nwnber of bins to add together for tweak wave. ) 
tot: real; { Total counts. } 
w : integer; ( Tweak wave. ) 

end; 
newworkspace 

(0). } 
integer; ( Flag to indicate new workspace (l) or not 

osc : record { Virtual oscilloscope. } 
bit : pointer; { Storage for graphics under line. } 
ch : integer; ( Channel to display. ) 
mode : integer; { Flag indicating if on. } 
scr : integer; ( Screen displayed on. ) 
y : integer; { Screen-space y coordinate. } 

end; 
peakthreshold: real: numerical threshold [0 .. 1] for peak finding 
peaksecond : real; { second derivative value for peak finding } 
printdir : bufstring; ( Current directory prints are sent to. ) 
setenergyconversionlaserev : real; { User-specified values to set all 
setenergyconversionlength : real; { energy waves to {see SetEnergyCon
setenergyconversiontO : real; 
setenergyconversionquad : real; 
setenergyconversionquadoff : real; 
to : record ( Record of ac and cc to positions -- defaults. ) 

ac real; 
cc real; 

end; 
tekset : record 

num : integer; 
s : array[1 TEKSET_MAX] of bufstring; 

end; 
tw : record { Parameters for tw (tweak) command. } 

dly: real; { Delay position (relative to pardf[dt_ELE].ele.tO) 
for tweaking. } 

pt : integer; { Number of points to read. 
reprate : real; 
shotsperscan : integer; { Records per scan. 
starttime, steptime : longint; { Intern~l timing vars. 
timeperpt : real; { Bin size. } 

end; 
ynaesc_response : integer; { Holds last ResponseFull/ResponseYesNo result. 
yoffsetrescale integer; { Flag indicating whether to rescale wave[]A.par 

.yoffset when wave[JA.par.yscale is changed. } 

{ col section (colors) ********************************* •• *.***** •• ***.**} 
Const 

COLORMAX = 15; { Max. colors. } 
COLORNAME: array (1 .. COLORMAX) of bufstring = ('blue', 'green', 

'cyan', 'red', 'magenta', 'brown', 'lightgray', 'darkgray', 
'lightblue', 'lightgreen', 'lightcyan', 'lightred', 'lightmagenta' , 
'yellow', 'white'): { Names of colors in order as shown in Program
mer's reference 7.0, p. 29. For use with user specification of Wave 
colors. } 
Following must be out of order since definition uses COLORMAX. ) 

COLOR: array [1 .. COLORMAX] of word = (LightRed, Yellow, LightGreen, 
LightCyan, LightBlue, LightMagenta, White, Red, Brown, Green, Cyan, 
Blue, Magenta, LightGray, DarkGray); { List of wave colors 
(in order of most to least vi~ible. ) 

var 
anticolor array[l COLORMAX] of integer; ( Color-to-code index. ) 

com section (command line)*·**··***··*···*···*······*·*·*······*·** •• *) 
const 
co~ls~ = 30; { Maximum number of words in com.ls[]. } 
co~wr_MOVINGSTAGE = 'Moving stage. Press any key when ready.'; 

var 
com: record 

Is : array[l " co~ls-HAXJ of bufstring; ( List of words typed by 
user. ) 

cur integer; { Current word being looked at. 
nurn integer; ("Number of words in ls[1. ) 
old string; { Last string typed. } 
sv : string; { User input save string. } 
tx : tx_type; ( Text screen variables. ) 
ystart : integer; { Starting line of input. 

end; 

gr section (graphics screen)*·*··*·*-*··*_··_*···_·_---*****·***.·** •• ) 
const 

CURSORLENGTH = 30; 
MAXDOTSIZE 10; 
MAXXDIGITS = 6; { 
MAXYDIGITS = 6; { 
XAXISMODEMIN = 0; 
XAXISMODEMAX = 2; 
XAXISMODE_POINTS 

Max. 
Max. 

( Length of Cursor in pixels. ) 
{ largest sensible dot size for 

of digits for x-axis nwnbers. } 
of digits for y-axis nwnbers. ) 

0; xaxismode states: display points only. } 

screen) 

XAXISMODE.-NORMAL = 1; .: display normal x unit (time or distance, depen-
ding on dt. ) 

XAXISMODE_CONVERT = 2; { 
time, depending on d t . 

YAXISMODE-ABSOLUTE 0; 
YAXISMODE_RELATIVE = 1; 

type 
box = record 

display converted x unit (energy, mass or 

xmax, ymax : integer; ( Max. x and y character 
xl, x2, yl, y2 : integer; ( Screen coordinates 

end; 

units. ) 
defining a box. ) 

fillPatternType = array [1 .. 8) of byte; { 11? 
gr_type = record 

bdy , bdy_type; ( Max. screen boundaries. ) 
cursorp : integer; 
cursoru : real; 
cursorvisible : integer; 

cursorx : integer; 
cursoryl integer; 
cursory2 : integer: 

{ Point index of cursor. } 
( Unit space x coordinate of cursor. ) 
{ Flag indicating whether cursor is visi-

ble (1) or not (0). } 
SCreen x coordinate of cursor. ) 
Screen starting y coordinate of cursor. 
Screen ending y coordinate of cursor. ) 

w 
00 
00 

> 
"0 
"0 
tD 

S. •. 
~ ..... 



maxxnums integer; 

maxynums integer; 
plotarea box; 
ullim real; 
ulnorm real; 

ulnwn real; 
u21im real: 

. u2norm real; 

u2num real; 
ustep real; 
v11im real; 
vlnum real; 
v2lim real; 

Max. number of numbers to print along x 
axis. ) 

Screen limits for plotting area. } 
Left limit of displayed data (user space). 
Left normalization position. Used in 
normalization = INTEGRAL~ SELECTED. } 
Leftmost number displayed on x axis. } 
Right limit of data. } 
Right normalization position. Used in 
normalization = INTEGRAL. } 
Rightmost number displayed on x axis. 
Step size for x axis numbers. 
Bottom limit of data. } 
Bottorrunost number displayed on y axis. 
Top limit of displayed data. } 

v2nwn real; Topmost number displayed on y axis. 
vstep real; Step size for y axis numbers. } 
xaxis box; { Screen limits for x axis. } 
xaxisdt : integer; { If xaxismode <> XAXISMODE_POINTS, then this 

variable tells us which dt can be displayed. } 
xaxismode integer; { X axis display format. } 
xdecimals : integer; { Number of decimals to print on x axis. Depends on 

dt. 
xfu11mode : integer; { Full-scale flag for x axis. 
xh record { Crosshairs. } 

bitmap : record 
x, y : array [1 .. 3 J of pointer; { Pointer to storage areas for 

graphics under crosshairs. Defined in InitGraphics. 
end; 
mode integer; { Flag indicating whether on or off. 
u, v array[l .. 3 J of real; { Unit-space locations of the x and y 

cursor hairs (1 = first, 2 = second, 3 = center. ) 
which : integer; ( Fiag indicating which crosshairs the arrows manipu

late, 1 = x[l], y[l], 2 = x[2], y[2]. ) 
x, y 

end; 
array(l .. 3) of longint; { Screen-space locations. } 

xlabel : box; { Screen limits for x label. 
xlabelstring bufstring; {X axis label (depends on scantype) . 
xnumbers box; { Screen limits for x numbers. } 
xon integer; { Flag to display x axis. } 
xpower : real; { Power of 1000 to divide x axis labels by for display. 
xunits : bufstring; { Units for x axis (depends on scantype). ) 
yaxis box: { Screen limits for y axis. } 
yaxismode integer; { Display mode for y axis. 
ydecimals integer; 
yfu1lmode integer; { Full scale flag. for y axis. 
ylabel box; { Screen limits for y label. } 
ylabelstring : bufstring; 
yon integer; { Flag to display y axis. 
ypower real; { Power of 1000 to divide y axis labels by for display. 
yunits : bufstring; 
ynumbers box; ( Screen limits for y numbers. ) 

end; 
var 

bitmap pointer; 

cursor info box; 

Pointer to storage area for graphics 
under cursor. Defined in InitGraphics. 
Screen limits in which information about 
a data point is plotted. 

dotradius integer; { radius of dots on screen } 
graphmode integer; ( Variable needed by graphics routines. ) 
maxwavenamelength integer; { Max. length of wavenarnes displayed. } 
messagebox box; { Screen limi ts for graphics messages. } 

textsize integer; Size of graphics character in pixels (X 
and Yare the same). Used to layout 
screen correctly regardless of graphics 
mode. } 

wavedata box; { Screen limits for wave information. 

rnc section (mass calculator) ***** * ••• * •• * * *.*********** ••• * •••••••• * •• } 
canst 

MC_LABEL_MAX = 10; ( Number of chars in label. } 
MC_MAX = 20; { Number of elements. } 
MC_LINESPERSCREEN = 24, 

type 
mc_label = string [MC_LABELJ1AXJ ; 

var 
mc : record { Mass calculator parameters. } 

auto: integer; { Flag indicating if on. } 
fn : bufstring; { Name of current mc file (so can ws can reload) . 
Is : array[l .. MCJ1AXl of record 

rn. : integer; ( Mass. ) 
min, max: integer: { Min and max. number of times can be used. } 
nwn : integer; { Temporary storage of mass combination. } 
s mc_label: ( Element label. ) 

end; 
num : integer; ( Number of elements in 1s[J array. ) 
s : bufstring; ( String printed to cursorinfo box containing 

current combination (s). ) 
sens real; { Sensitivity of calculator (i of mass units). ) 

end: 

sc section (screen) * •••••••••••••••••••••• ** ••• * •• *. **. * •• ** ••••• "'. * •• } 
canst 

sc_MAX = 12; 
sc_mode_GR = 0: 
sc_mode_TX = 1: 
sc_mode_TX_OVR 2; { Text override mode -- to force screen to stay 

in text mode even if graphics command issued. This is to allow 
active waves to update, but not redraw, while doing something in 
text mode (such as editing a wave). ) 

type 
sc_type = record 

sel : integer; { Flag indicating if selected. 
t'i : record { Screen title block. } 

bdy bdy_type; ( Screen limits. ) 
on : integer; { Flag to display. } 
s bufstring; { Title. } 

end; 
{ Screen variables. Two types are possible, indicated by mode. This 

construction is called a variable record: gr and tx share the same 
space in memory, and therefore only one is valid at a time. } 

case mode : integer of 
sc_mode_GR (gr gr_type); 
sc_mode_TX : (tx : tx_type); 

end; 
var 

se record 
bdy bdy_type: { Total screen area limits. } 
cur integer; { Current screen. } 
Is array[l sc_MAX] of sc_type; { Screen variables. 
mode integer; { Overall screen mode: sc_mode_GR (normally), or 

sc_mode_TX (for editing waves, etc.) } 
integer; { Number of active screens. 

sel integer; { Flag ,inc;licating if any screens were selected. 
end; 

., ~ 

> 
"'CI 
"'CI 
ttl 

= Q.. .... 
~ ,... 

w 
00 
\0 



'\ 

{ scan section (overall scanning) ***************************************} 
const 

ADJ<AX = 8; 
SCAN_MODEJffiW 5 ; 
TIMEMAX = 100 * 60 * 60 * 24; ( Maximum value returned from time () . 

var 
addwaves : record 

mode: integer; { Flag indicating if on. } 
w : integer; { Wave holding added result·. } 

end; 
ad : record { AID variables. } 

Is : array [1 .. AD_MAX] of record 
gain integer; ( Gain factor = 1, 2, 4, 8. ) 
on : integer; { Whether channel is active. } 
result : integer; ( Storage of AID result. ) 

end; 
on : integer; { Overall flag to read or not. 

end; 
ibbuf : array[l .. 2 * MAXPOINTS] of char; ( Data transfer array for 

GPIS card. ) 
intbuf : Aintbuf_type; { Pointer to ibbuf, but integer format. 
magic: integer; { Gpib variable for magic controller. } 
mes : record { SRS Multichannel Scalar variables. These values are 

kept here so we only need to talk to Scalar when parameters have 
changed. } 
addr : integer: { Gpib address. } 
new : integer: { Flag indicating if MCS needs to be initialized. 
pt : integer: { Number of points. } 
shotsperscan : integer; { Records per scan. } 
timeperpt: real: { Bin width (5). } 

end: 
rdbuf : bufstring: { rdbuf : array[l .. $lOOO] of char; see ibbuf. } 
reprate: integer; { Reprate of laser (Hz). } 
scanwave : integer; { Current wave being scanned. } 
starttime : longint; { The time the escan starts. } 
tek : integer; { Gpib variable- for Tektronix scope. 

ts section (translation stage)·······························**_··*···) 
const 

ACKDELAY = 250; { Number of ms to wait after sending ACK code. 
TINT_OF = 20; { Empirical minimum time for stage delay. } 
TS_ACC_OF = 200000; { Default acceleration (urn sA-2). } 
TS_LOOKUP~ = 32; { Maximum entry in lookup table. Should be multi-

ple of 2 for most efficient lookup.} . 
TS_PHASE_MAX = 1; { Range of wob phase parameter. 
TS_PHASE_MIN = 0; ( • ) 
TS_RES_STEP = 4e-5; { Resolution-stepsize product of ts, e.g. res. 40 

= 1 um, res. 800 = 0.05 urn, etc. } 
TS_STEP_OF = le-6; { Standard step size. 
TS_STEP~IN = TS_RES_STEP / 1024: ( Min. stepsize of ts, at res 

1024. ) 
TS_VEL_DF = 4000; ( Default velocity (urn/s). ) 
TS_VEL_MAX = 30000; { Maximum velocity (um/s). 
TSL_DF = 100000000 div TS_VEL_DF; ( Slope for timing in 1/100 s per 

m. ) 
var 

com2 text; { Text file pointer for translation stage. } 
move record { Stage variables. } 

numavg, start, step, stop, wait: real; 
end; 
ts record 

acc : longint; { Current acceleration (sent.at start of program, and 

whenever stage is initialized). } 
lookup: array{O TS_LOOKUP_MAX] of real; { Lookup table for 

wob function. } 
pos : real; { Current stage position. 
step: real; { CUrrent step size of stage. 
vel : longint; { Current velocity (sent at start of program, and 

whenever stage is initialized). } 
wait : record { Waiting parameters for stage motion. 

int, sl : longint; { Intercept and slope. } 
end; 
wob ts_wob_type; Wobble wob parameters. 

end; 

tx section (text screen)·*··_·······_-_··***·_**·_-***-_·_-**·***·*·**) 
All definitions in general section, due to ordering of other struc
tures which also use them .. } 

wv section (waves)*--**----**--*----****·**------*---***********-***-*} 
const 

US ERMIN = 16; { Min. element of wave{]A.par.user[]. } 
USERMAX = USERMIN + 15; ( Max. element of wave[]A.par.user[]. 
CHANGEPARXNAME = 1; { X position of names in changepar procedure. 
CHANGEPARXVALUE = 40; ( X position of values • ) 
CHANGEPARYSTART = 2; { Y position of start of parameters • } 
CHANGEPARYUSER CHANGEPARYSTART + USERMIN; { Y position of user 

parameters • } 
dt_COR 1; ( Values of par.dt. ) 
dt_ELE 2; 
dt_POW 3; 
dt_MAS 4; 
dt_MIN 1; 
dtJ<AX 4; 
dt_NAME : array [dt.Jf IN .. dt_MAX] of string = ('cor'. 'ele', 'pow', 

'mas') ; 
MAS_CH~ = 4; ( Max. channel * for par.mas.ch. ) 
MAXdt = 4; ( Number of kinds of data types. ) 
MAXNUMSCANS = 10000; { Arbitrary upper limit to NUMSCANS. 
MAXSHOTSPERPT = 32000; ( Arbitrary upper limit to PAR_C_SHOTSPERPT. 
MAXSHOTSPERSCAN = 32000; ( Max. shots per scan on MCS. ) 
MAXWAVES = 18; { max. i of waves in memory at a time. } 
MCS_PTj1IN = 1; 
MCS_PTJ<AX = 1; 
MCS_PT : array [MCS_PTj1IN .. MCS_PT_MAXJ of integer = (1024); 

{ Codes understood by the MCS corresponding to number of points. 
MCS_TIMEPERPT_MIN = 0; 
MCS_TIMEPERPT_MAX = 10; 
MCS_TIMEPERPT: array [MCS_TIMEPERPT_MIN .. MCS_TIMEPERPTJ<AXJ of 

real = (5e-9, 40e-9, 80e-9, 160e-9, 320e-9, 640e-9, 1.28e-6, 
2.56e-6, 5.l2e-6, 10.24e-6, 20.48e-6); { Codes understood by MCS 
corresponding to time per point. } 
wv.ls[]~.par.user indices for different datatypes: } 
For all datatypes: } 

PAR_ALERT = 1; 
PAR_COMMENT = 2; 
PAR_DT = 3; 
PAR_FILENAME = 4; 
PAR_GEN = 5; 
PAR_PT = 6; 
PAR_PT_GL = 7; 
PAR_SCAN = 8; 
·PAR_SCAN_GL = 9; 
PAR_SH = 10; 
PAR_SKIP = 11; 

W 
\0 
o 

> 
'C 
'C 

~ 
Q. .... 
~ 
~ 



PAR_TIMEPERPT = 12; 
PAR_VSTOP = 13; 
PAR_YOFFSET = 14; 
PAR_YSCALE = 15; 
( For deCOR, ) 
PAR_C_CHANNEL == USERMIN; 
PAR_C_SHOTSPERPT = US ERMIN + 1; 
PAR_C_STAGESTART = US ERMIN + 2; 
PAR C STAGESTEP = US ERMIN + 3; 
PAR_C_STAGESTOP = US ERMIN + 4; 
PAR_C_STAGETO = USERMIN + 5; 
PAR_C_STAGEwobAMPL = US ERMIN + 6; 
PAR_C_STAGEwobPER = US ERMIN + 7; 
PAR_C_STAGEwobPH = US ERMIN + 8; 
( For dt_ELE, ) 
PAR_E_BS_LAST = US ERMIN ; 
PAR_E_BS_MODE = USERMIN + 1; 
PAR_E_BS_ TOT = USERMIN + 2; 
PAR_E_CALEV = US ERMIN + 3; 
PAR_E_CALLENGTH = US ERMIN + 4; 
PAR_E_CALTO = USERMIN + 5; 
PAR_E_REPRATE = US ERMIN + 6; 
PAR_E_SHOTSPERSCAN = USERMIN + 7; 
PAR_E_STAGEPOS = US ERMIN + 8; 
PAR_E_STAGETO = USERMIN + 9; 
PAR_E_STAGEwobAMPL = USERMIN + 10; 
PAR_E_sTAGEwobPER = US ERMIN + 11; 
PAR_E_STAGEwobPH = US ERMIN .+ 12; 
PAR_E_TIMEFPES = US ERMIN + 13; 
PAR_E_CALQUAD = US ERMIN + 14; 
PAR_E_CALQUADOFF = US ERMIN + 15; 
( For dt_POW, ) 
PAR_P_CHANNEL = USERMIN; 
PAR_P _CALINT = USERMIN + 1; 
PAR_P_CALSLOPE = US ERMIN + 2; 
( For dt_MAS, ) 
PAR_M_CALINT == USERMIN; 
PAR_M_CALSLOPE = US ERMIN + 1; 
PAR_M_CHANNEL = US ERMIN + 2; 
PAR_M_DELAY = USERMIN + 3; 
PAR_M_INV = USERMIN + 4; 
PAR_M_SCANTIME = US ERMIN + 5; 
PAR_M_VERT = USERMIN + 6; 
{ Labels for use on screen and in wave files. } 
PARLABEL : array(l USERMIN - 1] of string = 
( 'Alert (alert)', 

'Comment (em)', 
'Datatype' , 
'Filename (fn)', 
'Generate' , 
'Number of points', 
'Number of points, goal', 
'Number a f scans', 
'Number of scans, goal', 
'Show (sh)', 
'Skip (skip)', 
'Time per point', 
'v stop', 
'Y offset', 
'Y scale' ); 

PARLABELDT array [DT_MIN 
( ( 'AID channel' , 

'Shots per point', 

DT_MAX, USERMIN USERMAX] of string 

'Translation stage start', 
'Translation stage step', 
'Translation stage stop', 
'Translation stage zero of time', 
'Translation stage wobble amplitude', 
'Translation stage wobble period', 
'Translation stage wobble phase', ", 
'Background wave last scan total', 
'Background subtraction mode', 
'Background wave all scans total', 
'Calibration maximum energy', 
'Calibration length', 
'Calibration time offset', 
'Repetition rate', 
'Shots per scan', 
'Translation stage position', 
'Translation stage time zero (to) " 
'Translation stage wobble amplitude'. 
'Translation stage wobble period', 
'Translation stage wobble phase', 
'Time delay of FPES Idly)', 
'Calibration quad factor', 
'Calibration quad offset factor' ), 
'AID channel' , 
'Calibration intercept', 
'Calibration slope', ", 
'Calibration intercept', 
'Calibration slope', 
'Channel' , 
'Delay', 
'Invert' , 
'Scan time', 
'Vertical scale', " ) ); 

PARDIGITS = 3; { Number of digits to display in parameters. } 
PARDECIMALS = 5; { Number of decimals • } 

" ), 

PARENGDIGITS = 10; ( Number of decimals for engineering notation (4-digit 
mantissa, 2-digit exponent, '-', '.'. 'E', '-'). } 

PARVSTART = 2; ( For change parameter procedure. ) 
PARYSTOP 25; ( • ) 
$TAGEMIN = 0; ( Minimum translation stage position (m). 
STAGEMAX = 0.20: ( Maximum translation stage position (m). 
TEK_PTPERDIV = 50; 
TEK_TIMEPERPT_MIN = 1; 
TEK_TIMEPERPT_MAX = 32; 
TEK_TIMEPERPT : array (TEK_TIMEPERPT_MIN TEK_TIMEPERPT_MAX] of 

real = (le-1l, 2e-ll, 4e-ll, 1e-10, 2e-lO, 4e-10, 1e-9, 2e-9, 4e-9, 
1e-8, 2e-8, 4e-8, le-7, 2e-7, 4e-7, 1e-6, 2e-6, 4e-6. le-5, 2e-5, 
4e-5. le-4, 2e-4, 4e-4, 1e-3, 2e-3, 4e-3, le-2, 2e-2, 4e-2, 1e-1, 
2e-1); ( s. ) 

TEK_ VPERDIV _MIN = l; 
TEK_ VPERDIV _MAX = 13; 
TEK_VPERDIV array [TEK_VPERDIV_MIN TEK_VPERDIV_MAX] of real = 

(1e-3, 2e-3. Se-3. le-2, 2e-2, Se-2, 1e-I, 2e-I, 5e-1, 1, 2, s. 
10); ( V/div. ) 

USERMAXDT : array{l dt_MAX) of integer = (USERMIN + 8. 
US ERMIN + 15, US ERMIN + 2, USERMIN + 6); ( Max. user parameters for 
each dt. ) 

wv_sh_CM = 1; { Comment 
wv_sh_DLY = 2; { Delay (dt_ELE only) . 
wv_sh_FN = 3; ( Filename. ) 
wv _sh_MAX = 3; 
wv_sh_NAME array[l wv_sh_MAXJ of string[3] ( , cm', 'dly', ' fn ' ) ; 

"), 

> 
"'CI 
"'CI 
~ 

= Q.. .... 
~ 
~ 

V) 

\0 



" 

{ Names of wv_sh types for user interaction. 
XUNITTYPE array[dt_MrN .. dt_MAX. XAXISMODEMIN XAXISMODEMAX 

type 

1 of string = «", ·m', '5'), (", 'S', 'eV'), (", 's', '5'), 

I". 's', 'Da'»; 

data_type = array[l .. MAXPOINTS] of real; 
par_type = record 

{ All data types . } 
alert : integer; { Flag to let user start new scan manually. } 
comment: bufstring; 
( dt: see case statement below. ) 
fn ": bufstring; 
gen : integer; { Flag to generate new wave when scans completed. 
pt : integer; { Number of points in wave so far. } 
pt_gl : integer; { Goal number of points (for cor, pow scans) -

scanning stops when pt reaches this number. } 
scan : integer i { Number of completed scans. } 
scan_91 : integer; ( Goal number of scans -- scanning stops when 

scan reaches this number. ) 
sh : integer; ( Show code: indicates which variable is displayed in 

waveinfo box (wv_s~FN: filename; wv_sh_DLY: delay (electron scan 
only); wv_sh_CM: comment). } 

skip: integer; ( Number of cycles to skip between reads. ) 
timeperpt real; 
vstop : real; ( Alternate way af ending scan: when vmax exceeds 

vstop. ) 
yoffset : real; 
yscale : real; 
( Variable part. 

case dt : integer of 
dt_COR , 
( cor : record 

ch : integer; 
shotsperpt : integer; 
ts : record 

wob : ts_wab_type; 
start : real; 
step: real; 
stop: real; 
to : real; 

end; 
end; ); 

dt_ELE, 
( ele : record 

bs' : record. ( Background subtraction variables. 
~ast : real; { Last scan's bg counts -- for redo command. } 
mode: integer; ( Enableldisable flag. } 
tot: real; ( Total bg counts. ) 

end; 
cal record ( Energy calibration parameters. 

ev : real; 
len : real; 
to : real; 
quad: real; 
quadoff : real; 

end; 
dly : real; ( Pump-probe delay. 
reprate : real: 
shotsperscan : Lnteger; 
ts : record 

wob ts_wob_type; 
pas real; 
to : real; 

end; 
end; ); 

dt_POW, 
( pow : record 

ch integer; 
cal record 

int : real;· 
sl : real; 

end; 
end; ); 

dtJfAS, 
( mas : record 

cal : record 
int : real; 
sl : real; 

end; 

end; 

ch : integer; 
delay : real; 
inv : integer; 
scantime : real; 
vert : real; 

end; ); 

par_type.J)tr = "par_type; 
wave_type = record 

col : word; ( Wave color. 
data : data_type; ( Data for waves. ) 
datasaved : integer; ( Flag indicating whether data information has been 

saved. } 
lines : integer; ( Flag indicating lines (1) or dots (0) are displayed. 
mass1 : real; ( Storage of first mass point during mass calibration; 

also a flag (= 0) that first mass point has not been entered yet. } 
on : integer; ( Flag to display (1) wave or not (0). ) 
par : par_type; ( Parameters visible to user; see par_type. 
parsaved : integer; ( Flag indicating if par variables have been 

changed. ) 
pmin : integer; ( Minimum physically meaningful point when x axis units 

are energy or mass. } 
savemode : integer; ( Indicates whether saved data is multiplied by par. 

yscale or not. ) 
screen: integer; ( Screen wave displays on. ) 
scan : record { Var iables needed dur ing a scan. 

accum : "real; ( Accumulator for AID data (COR & POW). 
cycle: integer; ( Cycles so far (use with par.skip). 
mode: integer; ( Flag indicating status of scan: 0 = not scanning; 

1 or more: internal codes depending on dt. See ScanCheck 
for details. ) 

num : integer; ( Number of scans so far. ) 
pt : integer; ( Point number (for dt_COR & dt_POW scans). ) 

shots : integer; ( Number of shots so far. ) 
starttime": longint; ( Time (in 1/100 sec) of most recent scan number 

I dt_ELE , dtJfASS) or point Idt_COR, dt_POW). ) 
steptime : longint; ( Time to wait between scans or shots, depending 

on dt (see start time). ) 
end; 
sel integer; ( Flag indicating selection. ) 
tmp array[l .. MAXPOINTS] of integer; ( Data from last read -- for 

background subtraction. } 
time! real: ( Storage of 1st time point during mass calibration. 
vmin : real; ( V value (converted intensity) of smallest point in wave; 

this depends on xaxismode (recalculated whenever xaxismode changed). 
vrnax real; ( V value of largest point in wave. See ymin. ) 

end; 

w 
\0 
tv 

> 
"0 
"0 
~ 

= Q.. 

>:l" 
~ 



var 
pardf array[l 

values. ) 
dt_MAX] of par_type; { Default par 

wv : record { Waves. 
cur integer; { Current wave. 
Is : array[l MAXWAVES] of Awave_typei { Wave list. 
num : integer; ( Number of waves loaded. ) 
sel integer; ( Flag if any waves selected by get_wv. 
temp array[l MAXPOINTS] of real; { Extra wave for general 

use (sm, etc.). ) 
end; 

implementation 

end. 

4.8. dosshell.pas 

unit DOSShell; 

Set of routines designed to simulate DOS commands from within a Pascal 
program. Should be compatible with any program. } 

interface 

uses 
crt. dos. KEYS: 

procedure ShellToDOS; { Main routine. 

implementation 

const 
BLANK 

( 80 chars. 
ERROR = 'DOS Error.' + BELL; 

procedure cd(s : string); 
{ Change directory to s. 
begin 

while s [1] = •. do ( Skip spaces. 
s := copy{s, 2. length(s»; 

{$I-} ( Turn off error checking. 
ChDir(s) ; 
{$I+} ( Turn back on. 
if IoResult <> 0 then 

writeln (ERROR); 
end; 

procedure dir_entry(s 

procedure dir; 

SearchRec); forward; 

( Print current directory contents. 
con5t 

FILES = '''". * , 
ATTRIB = ANYFILE; 
NUMLINES = 23; 

integer; 

s SearchRec; 
begin 

FindFirst(FILES, ATTRIB, 5) i 
while true do 
begin 

for i 
begin 

1 to NUMLINES do 

if Dos Error > a then 
exit; 

dir_entry (5) ; 
findnext (5) ; 

end; 
write( 'Press any key to continue.'); 
case readkey of 

CTRLC : { Get out. 
begin 

writeln; 
exit; 

end; 
EXTENDED : readkey; 

end; 
( Blank out message. 
gotoxy(l, wherey); 
write (copy (BLANK, 1, 79»; 
gataxy(l, wherey); 

end; 
end; . 

procedure dir_entry(s : SearchRec); 
{ Print directory entry. } 
var 

dt DateTirne; 
s2 string; 

begin 
write(s.name, copy (BLANK, 1, 16 - length(s.name)); 
if s.attr and DIRECTORY> 0 then 

writeln( '<DIR>' 1 
else 
begin 

str(s.size, 52); 
write(s2, capy(BLANK, 1, 12 - length(s2»); 
UnpackTime(s.time, dt); 
with dt do 
begin 

str(month + 100, s2); 
write(copy(s2, 2, 2), '-'); 
str(day + 100, 52): 
write(capy(s2, 2, 2), '-'); 
write (year,' , ) ; 
str (hour + 100, 52); 
write(copy(s2, 2, 2), ':'); 
str(min + 100, s2): 
write(copy(s2, 2, 2), ':'); 
str(sec + 100, s2); 
writeln(capy(s2, 2, 2); 

end; 
end; 

end; 

{"" "" "" "" * * ** * ** ** * * ***** * ** * *****MAIN ROUTINE* "" * ** * * ** "" ** ** "" * * * "" "" * * **** * **} 

procedure ShellToDOS; 
var 

string; 

>
"C 
"C 
ttl 

= ~ .... 
~ 

~ 

v.> 
\0 
v.> 



begin 
writeln(6Stripped-down DOS shell. Not all DOS commands supported! '); 
writeln('Type EXIT to return to program. '); 
while true do 
begin 

getdir,(O, s); 
write(6SHELL ' + '>'); 

readln(s) ; 
if (length(s) > 1) and (s[2) = ':') then ( Change drive. 

cd(s) 
else if copy(s, 1, 2) = 'cd' then ( Change directory. } 

cd(copy(s, 3, length(s») 
else. if S = 'dir' then ( Print contents of current directory. 

dir 
else if s 'exit' then 

exit 
else if s <> ,. then 

writeln(ERROR) ; 
end; 

end; 

end. 

4.9. keys. pas 

unit keys; 

interface 

const 
Normal keys: 
ACK = 123; Service request acknowledge. } 
BELL = '7; Bell.) 
BS = '8; { Backspace. } 
ESC = *27; ( Escape. ) 
EXTENDED = *0; { Exten"ded key (see below). } 
LF = flO; ( Linefeed. ) 
CR = fn3; { Carriage return. } 
TAB = H; ( Tab. ) 
CTRLA fl; 
CTRLB '2; 
CTRLC 13; 
CTRLD i4; 
CTRLE is; 
CTRLF '6; 
CTRLG 17; 
CTRLH i8; 
CTRLI '9; 
CTRLJ 110; 
CTRLK 111; 
CTRLL 112; 
CTRLM 113; 
CTRLN f14; 
CTRLO US; 
CTRLP' '16; 
CTRLQ U7; 
CTRLR t18; 
CTRLS 119; 
CTRLT '20; 

CTRLU 121 
CTRLV 122 
CTRLW 123 
CTRLX *24; 
CTRLY *25; 
CTRLZ *26; 

Extended keys: 
XALTA *30; 
XALTB 148; 
XALTC 146; 
XALTD *32; 
XALTE U8; 
XALTF 133; 
XALTG i34; 
XALTII i35; 
XALTI 123; 
XALTJ 136; 
XALTK 1137; 
XALTL *38; 
XALTM *50; 
XALTN *49; 
XALTO 124; 
XALTP 125; 
XALTQ fl6; 
XALTR 119; 
XALTS 1131; 
XALTT 120; 
XALTU i22; 
XALTV 147; 
XALTW 117; 
XALTX 145; 
XALTY i21; 
XALTZ 1144; 
XALTI il20; 
XALT2 il21; 
XALT3 1122; 
XALT4 il23; 
XALT5 1124; 
XALT6 U25; 
XALT7 1126; 
XALT8 11127; 
XALT9 U28; 
XALTO U29; 
XALTMlNUS = 11130; 
XALTPLUS = 1131; 
XARROWDOWN = 1180; 
XARROWLEFT = i7 5 ; 
XARROWRIGHT = 177; 
XARROWUP = 172; 
XCTRLARROWLEFT = IllS; 
XCTRLARROWRIGHT = U16; 
XCTRLEND = 1111 7 ; 
XCTRLHOME = 11119; 
XCTRLPAGEDOWN = *118; 
XCTRLPAGEUP = '132; 
XDELETE = *83; 
XEND = 179; 
XFl *59; 
XF2 160; 
XF3 161 
XF4 162 
XF5 163 

W 
\0 
.j::o. 

> 
"CI 
"CI 
~ 

S. 
~. 

I-' 



XF6 #64 
XF7 #65 
xF8 #66 
XF9 #67; 
XFlO #68; 
XF11 = #133; 
XFl2 = #134; 
XHOME = #71; 
XINSERT = #82; 
XPAGEDOWN = #81; 
XPAGEUP = n 3 ; 
XSHIFTF1 # 84; 
XSHIFTF2 #85; 
XSHIFTF3 #86; 
XSHIFTF4 #87; 
XSHIFTF5 #88; 
XSHIFTF6 #89; 
XSHIFTF7 #90; 
XSHIFTF8 #91; 
XSHIFTF9 #92; 
XSHIFTF10 = #93; 

implementation 

end. 

4.10. tpdecl.pas 

(*.* •••• ** •••• *"'*.**."' •• *"'. Turbo Pascal Declarations * ••• *.**"'***.*."''''*'''* ••• ) 
unit tpdecl; 

($1 tpib) 

interface 
Const 

( ... GPIB Commands: 

UNL $3£; 
UNT $5£; 
GTL $01; 
SOC $04; 
PPC $05; 
GET $08; 
TCT $09; 
LLO $11; 
DCL $14; 
·PPU $15; 
SPE $18; 
SPD $19; 
PPE $60; 
PPD $70; 

(* GPIB status bit vector: 

ERR $8000; 
TIMD $4000; 
EEND $2000; 
SRQI $1000; 
RQS $800; 

{ .... GPIB unlisten command 
(* GPIB untalk command 
( ... GPIB go to local 
( ... GPIB selected device clear 
( ... GPIB parallel poll configure 
( ... GPIB group execute trigger 
(* GPIS take control 
( ... GPIB local lock out 
( .... GPIS device clear 
(* GPIB parallel poll unconfigure 
(* GPIB serial poll enable 

(* GPIB serial poll disable 
(* GPIB parallel poll enable 
( ... GPIB parallel poll disable 

(* Error detected 
( .... Timeout 
( .... EO! or EOS detected 
( ... SRQ detected by ere 
(* Device needs service 

* ) 
* ) 
*) 

" 

* ) 

* ) 
* ) 
* ) 
*) 

* ) 
* ) 
* ) 
* ) 
* ) 
* ) 
* ) 

* ) 

* ) 
* ) 
*) 

* ) 
*) 

SPOLL 
EVENT 
CMPL 
LOK 
REM 
CIC 
ATN 
TACS 
LACS 
DTAS 
DCAS 

$400 ; 
$200 ; 
$100 ; 
$80; 
$40; 
$20; 
$10; 
$8; 
$4; 
$2; 
$1; 

(* Board has been serially polled 
(* An event has occured 
{* I/O completed 
(* Local lockout state 
(* Remote state 
(* Controller-in-Charge 
(* Attention asserted 
(* Talker active 
(* Listener active 
(* Device trigger state 
(* Device clear state 

*) 

*) 

*) 

*) 

*) 

*) 

*) 

*) 

*) 

') 

*) 

(* Error messages returned in global variable IBERR: *) 

* ) 

*) 

* ) 

*) 

*) 

* ) 

*) 

*) 

* ) 

* ) 

* ) 

EDVR 
ECIC 

ENOL 

EAOR 
EARG 
ESAC 

EABO 

ENEB 

EOIP 

ECAP 

EFSO 

EBUS 

ESTB 

0; 
1; 

2; 

3 ; 
4 ; 
5; 

6; 

7 ; 

10; 

11; 

12 ; 

14; 

15 ; 

(* OOS error , ) 
(* Function requires GPIB board to be cre 

(* Write function detected no Listeners 

(* Interface board not addressed correctly 
(* Invalid argument to function call 

(* Function requires GPIB board to be SAC 

(* I/O operation aborted 

(* Non-existent interface board 

(* I/O operation started before previous 

(* operation completed 

(* No capability for intended operation 

(* File system operation error 

(* Command error during device call 

(* Serial poll status byte lost 

ESRQ 
ETAB 
ELCK 

16 
20 
21 

(* SRQ remains asserted * ) 

(* EOS mode hi ts : 

BIN 
XEOS 
REOS 

$1000 ; 
$800; 
$400; 

(* Timeout values and meanings: 

TNONE 
TIOus 
T30us 
T100us 
T300us 
Tlms 
T3ms 
TIOms 
T30ms 
T100ms 
T300ms 
T1s 

0; 
1; 
2; 
3 ; 
4; 
5 ; 
6 ; 
7 ; 
8; 
9; 
10; 
11; 

(* The return buffer is full 

(* Eight bit compare 
(* Send EOI with EOS byte 
(* Terminate read on EOS 

(* Infinite timeout 
{* Timeout of 10 us 
(* Timeout of 30 us 
(* Timeout of 100 us 
(* Timeout of 300 us 
(* Timeout of 1 ms 
(* Timeout of 3 ms 
(* Timeout of 10 ms 
(* Timeout of 30 ms 
(* Timeout of 100 ms 
(* Timeout of 300 ms 
(* Timeout of 1 s 

(disabled) 
(ideal) 
(ideal) 
(ideal) 
(ideal) 
(ideal) 
(ideal) 
(ideal) 
(ideal) 
(ideal) 
( ideal) 
( ideal) 

*) 

* ) 

*) 

') 

*) 

*) 

*) 

* ) 
*) 

* ) 
*) 
, ) 

') 

*) 

* ) 
*) 

*) 

*) 

*) 

* ) 

> 
"0 
"0 
~ 

= ~ .... 
~ 
~ 

V.) 

\0 
Vl 



T3s 
TlOs 
T30s 
T100s 
T300s 
T1000s 

12; 
13; 
14; 
15 ; 
16; 
17; 

(* IBEVENT Constants 

Even tOTAS 1 ; 
EventDCAS 2; 

(* Miscellaneous: 

S 
LF 

$08; 
$OA; 

NO_SAD 0; 
ALL':"SAD -1; 

(.,. Timeout of 3 s (ideal) 
('" Timeout of 10 5 (ideal) 
('" Timeout of 30 5 (ideal) 
{* Timeout of 100 s (ideal) 
(* Timeout of 300 s (ideal) 
(*" Timeout of 1000 s (maximum) 

(* Parallel poll sense bit 
(* ASCII line feed character 

( .. test only the pad 
(* test all secondary addresses of pad 

( .. Values for the 488.2 Send command 

NULLend 00; 
NLend 01; 
OABend 02; 

(* do nothing at the end of a transfer 
(* send NL with EOl after a transfer 
( .. send EO! with the last DAB 

{* This value is used by the 488.2 Receive command. 

STOPend $0100; ('" s top the read on EOl 

(* This value is used to terminate a 488.2 address list. It should be 
(* assigned to the pad field of the last entry. 

NOADOR -1; 

(* The following constants are used for the second parameter of the 
('" ibconfig function. They are the -option- selection codes. 

IbcPAD= 
IbcSAD= 
IbcTMO= 
IbcEOT= 
IbcPPC= 
IbcREADOR= 
IbcAUTOPOLL= 
IbcCICPROT= 
IbcIRQ= 
IbcSC= 
IbcSRE= 
IbcEOSrd= 
IbcEOSwrt= 
IbcEOScmp= 
IbcEOSchar= 
IbcPP2= 
IbcTIMING= 
IbcDMA= 
IbcReadAdjust= 
IbcWriteAdjust= 
IbcEventQueue= 
IbcSPoIIBi t= 
Ibc SendLLo"= 
IbcSPollTirne= 

$0001; 
$0002 ; 
$0003 ; 
$0004 ; 
$0005 ; 
$0006 ; 
$0007 ; 
$0008 ; 
$0009 ; 
$OOOA; 
$OOOB; 
$OOOC; 
$0000; 
$OOOE; 
$OOOF; 
$0010 ; 
$0011 ; 
$0012 ; 
$0013 ; 
$0014; 
$0015 ; 
$0016; 
$0017 ; 
$0018; 

('" Primary Address 
('" Secondary Address 
('" Timeout Value 
('" Send EOI with last data byte? 
('" Parallel Poll Configure 
('" Repeat Addressing 
('" Disable Auto Serial Polling 
('" Use the CIC Protocol? 
(* Use PIO for I/O 
(* Board is System Controller. 
(* Assert SRE on'device calls? 
('" Terminate reads on EOS. 
{'" Send EOI wi th EOS character. 
('" Use 7 or _8-bit EOS compare. 
(* The EOS character. 
('" Use Parallel Poll Mode 2. 
('" NORMAL, HIGH, or VERY_HIGH timing. 
('" Use DMA for I/O. 
('" Swap bytes dur ing an ibrd. 
(* Swap bytes during an ibwrt. 
('" Enable/disable the event queue. 
(#I Enable/disable the visibility of SPOLL. 
(* Enable/disable the sending of LLO. 
(* Set the timeout value for serial polls. 

. ) 

· ) · ) · ) · ) 
0) · ) 
· ) 

· ) 

0) · ) 
· ) 
0) 

0) · ) 
· ) 
0) 

· ) · ) 
0) 

0) 

0) · ) · ) · ) · ) · ) · ) · ) · ) · ) · ) 
0) 

0) · ). 
0) · ) · ) · ) · ) · ) · ) · ) · ) · ) 

. ) 

IbcPPollTime= $0019; ('" Set the parallel poll length period. 
IbcNoEndBitOnEOS= $OOIA; ('" Remove EOS from END bit of IBSTA. 
IbcUnAddr= $OOlB; ('" Enable/disable device unaddressing. 

('" Constants that can be used (in addition to the ibconfig constants) 
{'" when calling the IBASK function. 

( . 
( . 
( . 
( . 
( . 
( . 
( . 
( . 
( . 

IbaPAD 
IbaSAD 
IbaTMO 
IbaEOT 
IbaPPC 
IbaREADOR 
IbaAUTOPOLL 
IbaCICPROT 
IbaIRQ 
IbaSC 
IbaSRE 
IbaEOSrd 
IbaEOSwrt 
IbaEOScmp 
IbaEOSchar 
IbaPP2 
IbaTIMING 
IbaOMA 
IbaReadAdjust 
IbaWriteAdjust 
IbaEventQueue 
IbaSPollBit 
IbaSendLLO 
IbaSPollTime 
IbaPPollTime 
IbaNoEndBi tOnEos 
IbaUnAddr 
IbaBNA 
IbaBaseAddr 
IbaDmaChannel 
Iba I rqLeve I 
IbaBaud 
IbaParity 
IbaStopBits 
IbaDataBits 
IbaComPort 
IbaComlrqLevel 
IbaComPortBase 

$0001; 
$0002; 
$0003 ; 
$0004; 
$0005; 
$0006; 
$0007 ; 
$0008; 
$0009 ; 
$OOOA; 
$OOOB; 
$OOOC; 
$0000; 
$OOOE; 
$OOOF; 
$0010; 
$0011; 
$0012; 
$0013; 
$0014; 
$0015; 
$0016; 
$0017 ; 
$0018; 
$00l9 ; 
= $OOlA; 
= $OOlB; 
$0200 ; 
$0201; 
$0202; 
$0203 ; 
$0204; 
$0205 
$0206 
$0207 
$0208 
$0209 
$020A 

('" Primary Address 
('" Secondary Address 
('" Timeout Value 
('" Send EOI with last data byte? 
(* Parallel Poll Configure 
('" Repeat Addressing 
('" Disable Auto Serial Polling 
(* Use the CIC Protocol? 
('" Use PIO for I/O 
(* Board is System Controller. 
(* Assert SRE on device calls? 
('" Terminate reads on EOS. 
('" Send EOI with EOS character. 
(* Use 7 or 8-bit EOS compare. 
('" The EOS character. 
('" Use Parallel Poll Mode 2. 
('" NORMAL, HIGH, or VERY_HIGH timing. 
(* Use DMA for I/O. 
(* Swap bytes during an ibrd. 
{* Swap bytes during an ibwJ:'t. 
('" Enable/disable the event queue. 
('" Enable/disable the visibility of SPOLL. 
('" Enable/disable the sending of LLO. 
{lIt Set the timeout value for serial polls. 
(* Set the parallel poll length period 
('" Remove EOS from END bit of IBSTA. 
('" Enable/disable device unaddressing. 
('" A device's access board. 
(* A GPIB board's base I/O address. 
(* A GPIB board's DMA channel. 
(* A GPIB board's IRQ level. 
('" Baud rate used to communicate to CT box. 
('" Parity setting for CT box. 
(* Stop bits used for communicating to CT. 
{* Data bits used for communicating to CT. 
('" System COM port used for CT box. 
{* System COM port's interrupt level. 
(* System COM port's base I/O address. 

The following values are used by the iblines function. The integer 
returned by iblines contains: 

The lower byte will contain a -monitor- bit mask. If a bit 
is set (1) in this mask, then the corresponding line 
can be monitored by the driver. If the bit is clear (0), 
then the line cannot be monitored. 

The upper byte will contain the status of the bus lines. 

ValidEOI 
validATN 
ValidSRQ 
validREN 
ValidIFC 
ValidNRFD 
validNDAC 

Each bit corresponds to a certain bus line, and has 
a corresponding -monitor- bit in the lower byte. 

$0080; 
$0040; 
$0020; 
$0010; 
$0008 
$0004 
$0002 

· ) 
0) · ) 
· ) · ) 
· ) · ) · ) · ) · ) · ) 
0) 

0) 

0) · ) 
0) 

0) · ) · ) · ) · ) · ) · ) · ) · ) · ) · ) · ) · ) 
0) · ) · ) · ) 
0) · ) 
0) 

0) · ) · ) · ) · ) · ) 
0) 

· ) · ) · ) 
0) · ) · ) · ) · ) · ) 

W 
\0 
0\ 

> 
't:S 
't:S 
~ 

= c:l. .... 
~ 
~ 



ValidDAV $0001 ; 
BusEOI $8000; 
BusATN $4000; 
BusSRQ $2000 ; 
BusREN $1000 ; 
BusIFC $0800 ; 
BusNRFD $0400; 
BusNDAC $0200; 
BusDAV $0100 ; 

(** * ***** * * ** ** **. * ** * •••••••• *. '" '" '" '" '" "' ••• "'*** •• * •••••• **.* •••• ***. '" '" '" '" •• "' ••• "') 

nbufsize = 7; (* Length of board/device names -- hard-coded in TPIB .) 
flbufsize = 50; ('" A generous length for filenames -- the 

minimum allowed by the handler is 32. 
50 is hard-coded in TPIB *) 

bufsize 255; (. Length of read/write buffer .) 
(*'" *. * ••• '" •••••••• "' ••••• *** ••• "'. "'. "'. "' ••• *'" ••••••• *.*.***~ •• **."' ••• '" "' ••• "' ••• *.) 

Type cbuf packed array (1. .255] of char; (* character buffer .) 

nbuf packed array[1 .. 7] of char; (. board/device name .) 

flbuf packed array(I .. 50) of char; (* file name .) 

AddrList = array(O .. 255J of integer; (* 488.2 address list .) 

srqproc = "longInt; (* srq procedure .) 

( •• "'.'" ••• '" '" *"' •••• * ••• * '" '" "'* •••• * ••• ** ••• * •• "'.*."'***.*."'.* ••••• ** "'* '" •••••• ** •• "') 

var ibsta integer; (. status word 
.) 

var iberr integer; (. GPIB error code 
.) 

ibcnt integer; ('" number of bytes sent or DOS error 
.) 

var ibcntl: longint; (. number of bytes sent or DOS error 
.) 

(*. *. /I- "' ••• * ••••••••• * •• *. *. * ••••••••••••••• * "' •••••• * ••••••••••• * ••••••• * •••• ) 
(. The following variables may be used directly in your application program.·) 
Var 

bname 
.) 

bdname 
*) 

flname 
wrt 
rd 

nbuf; 

nbuf; 

flbuf; 
cbuf; 
cbuf; 

('" board name bu f fer 

{. board or device name buffer 

(. filename buffer 
(. write buffer 
('" read buffer 

.) 

') 

') 

('" The GPIB board functions declared public by TPIB.OBJ: ') 

procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
function 

procedure 
procedure 
procedure 
procedure 

ibask (bd:integer; option: integer; var retval:integer); 
ibbna (bd:integer; var bname); 
ibcac (bd:integer; v:integer); 
ibclr (bd:integer); 
ibcmd (bd:integer; var cmd; cnt:longlnt); 
ibcmda (bd:integer; var cmd; cnt:longlnt); 
ibconfig (bd:integer; option: integer; v:integer); 
ibdiag (bd:integer; var rd; cnt:longlnt); 
ibdev (boardID:integer; pad: integer; sad:integer; tmo:integer; 

eot:integer; eos:integer) : integer; 
ibdma (bd:integer; v:integer); 
ibeos (bd:integer; v:integer); 
ibeot (bd:integer; v:integer); 
ibevent (bd:integer; var event:integer); 

function 
procedure 
procedure 
procedure 
pro.cedure 

procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 

ibfind (var bdname) : integer; 
ipgts (bd:integer; v:integer); 
ibist (bd.: integer; v: integer) ; 
iblines (bd:integer; var lines:integer); 
ibln (bd:integer; pad: integer; sad: integer; 

var listen:integer); 
ibloc (bd:integer); 
ibnil; 
ibonl (bd:integer; v:integer); 
ibpad (bd:integer; v:integer); 
ibpct (bd:integer); 
ibpoke (bd:integer; option: integer; v:integer); 
ibppc (bd:integer; v:integer); 
ibrd (bd:integer; rd; cnt:longlnt); 
ibrda (bd:integer; var rd: cnt:longlnt); 
ibrdf (bd.:integer; var flname): 
ibrpp (bd:integer; var ppr:integer); 
ibrsc (bd:integer; v:integer); 
ibrsp (bd:integer; var spr:integer); 
ibrsv (bd:integer; v:integer); 
ibsad (bd:integer; v:integer); 
ibsic (bd:integer); 
ibsre (bd:integer; v:integer); 
ibsrq (srqfunc:srqproc); 
ibstop (bd:integer); 
ibtmo (bd:integer; v:integer); 
ibtrap (mask:word; v:integer); 
ibtrg (bd:integer); 
ibwait (bd: integer; mask:word); 
ibwrt (bd:integer; var wrt; cnt:longlnt); 
ibwrta (bd:integer; wrt; cnt:longlnt); 
ibwrtf (bd:integer; var flname); 
ibxtrc (bd:integer; var rd; cnt:integer); 
ibwrtkey (bd.:integer; var wrt; cnt:longlnt); 
ibrdkey (bd:integer; var rd; cnt:longlnt); 

( ••• "' •••• "' ••••••• ** ••••• The 488.2 entry points •••••• * ••••• "' ••••• "' ••• "".) 

procedure 
procedure 
procedure 

procedure 

procedure 

procedure 
procedure 

'procedure 

procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 

SendCmds (boardID:integer; var'buf; cnt:longlnt); 
SendSetup (boardID:integer; var listen:AddrList); 
SendDataBytes (boardID:integer; var buf; cnt:longlnt; 

eot_mode:integer); 
Send (boardID:integer; listener: integer; 

var databuf; datacnt:longlnt; 
eot_mode:integer); 

SendList (boardID:integer; var listeners:AddrList: 
var databuf; datacnt:longlnt; 
eot_mode:integer); 

ReceiveSetup (boardID:integer; talker:integer); 
RcvRespMsg (boardID:integer; var buf; cnt:longlnt; 

eot_mode:integer); 
Receive (boardID:integer; talker: integer; var buf; 

cnt:longlnt; eot_mode:integerl; 
SendIFC (boardID:integer); 
DevClear (boardID:integer; laddr:integer); 
DevClearList (boardID:integer; var laddrs:AddrList); 
EnableLocal (boardID:integer; var laddrs:AddrList); 
EnableRemote (boardID:integer; var laddrs:AddrList); 
SetRWLS (boardID:integer; var laddrs:AddrList); 
SendLLO (boardID:integer); 
PassControl (boardID:integer; talker:integer); 
ReadStatusByte (boardID:integer; talker: integer; 

var result: integer) ; 

> 
"t:I 
"t:I 
~ 

~ .... 
~ 
~ 

V-l 
\0 
-..) 



procedure 
procedure 
procedure 

procedure 
procedure 
procedure 
procedure 

procedure 

procedure 

procedure 

procedure 
procedure 

Trigger (boardID:integerj laddr:integer); 
TriggerList (boardID:integer; var laddrs:AddrList); 
PPollConfig (boardID:integer; laddr:integer; dataline:integer; 

linesense:integer); 
PPollUnconfig (boardID:integer; var laddrs:AddrList); 
PPoll (boardID:integer: var res-ptr:integer); 
ResetSys (boardID:integer; var laddrs:AddrList): 
FindRQS (boardID:integer; var taddrs:AddrList; 

var dev_stat: integer) ; ~ 

AllSpoll (boardID:integer; var taddrs:AddrList; 
var res:AddrList); 

FindLstn (boardID:integer; var pads:AddrList; 
var result:AddrList; limit:integer); 

TestSys (boardIO:integer; var addrs:AddrList; 
var result:AddrList): 

TestSRQ (boardID:integer; var result: integer) ; 
WaitSRQ (boardID:integer; var result: integer) ; 

IMPLEMENTATION 

var 
our_lcv: integer; (- local loop control variable *' 

(. The GPIB board functions declared public by TPIB.OBJ: *' 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
function 

procedure 
procedure 
procedure 
procedure 
function 
procedure 
procedure 
procedure 
procedure 

ibask (bd:integer; option: integer; var retval:integer); external: 
ibbna (bd: integer; var bnarne); external; 
ibcac (bd: integer; v: integer); external; 
ibclr (bd: integer); external; 
ibcrnd (bd:integer: var cmd; cnt:longlnt); external: 
ibcmda (bd:integer; var cmd: cnt:longlnt); external; 
ibconfig (bd: integer; option: integer; v: integer); external; 
ibdiag (bd:integer; var rd; cnt:longlnt); external; 
ibdev (boardID: integer; pad: integer; sad: integer; tmo: integer: 

eot: integer; eos: integer) : integer; external; 
ibdma (bd.: integer; v: integer); external; 
ibeos (bd:integer; v:integer); external; 
ibeot (bd: integer; v: integer); external; 
ibevent (bd:integer; var event:integer); external; 
ibfind (var bdname): integer; external; 
ibgts (bd:integer; v:integer); external; 
ibist (bd:integer; v:integer); external; 
iblines (bd: integer; var lines: integer); external; 
ibln (bd: integer; pad: integer; sad: integer; 

var listen: integer); external; 
procedure ibloc (bd:integer); external: 
procedure ibni l; 
procedure ibonl 
procedure ibpad 
procedure ibpct 
procedure ibpoke 
procedure ibppc 
procedure ibrd 
procedure ibrda 
procedure ibrdf 
procedure ibrpp 
procedure ibrsc 
procedure· ibrsp 
procedure ibrsv 
procedure ibsad 
procedure ibsic 

external; 
(bd:integer; v:integer); external; 
(bd: integer; v: integer); external; 
(bd:"integer); external; 
(bd:integer; option: integer; v:integer); external; 
(bd:integer; v:integer); external; 
(bd:integer; var rd; cnt:longlnt); external; 
(bd:integer; var rd; cnt:longlnt); external; 
(bd: integer; var flnarne); external; 
(bd: integer; var ppr: integer); external; 
(bd:integer; v: integer) ; external; 
(bd: integer; var spr: integer); external; 
(bd:integer; v:integer); external; 
(bd: integer; v: integer); external; 
(bd:integer); external; 

procedure 
. procedure 

procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 

ibsre (bd: integer; v: integer); .external; 
ibsrq (srqfunc:srqproc); external; 
ibstop (bd: integer); external; 
ibtmo (bd:integer; v:integer); external; 
ibtrap (mask:wora.; v: integer); external; 
ibtrg (bd:integer); external; 
ibwait (bd:integer; mask:word); external; 
ibwrt (bd:integer; var wrt; cnt:longlnt) external; 
ibwrta (bd:integer: var wrt; cnt:longlnt) external; 
ibwrtf (bd:integer; var flname); external 
ibxtrc (bd:integer; var rd; cnt:integer); external: 
ibwrtkey (bd.:integer: var wrt; cnt:longlnt); external; 
ibrdkey (bd.:integer; var rd; cnt:longlnt); external; 

( ••• ** •••• _ ••• _ •••••••• - The 488.2 entry points -_ •• _._**.*_ ••• *_ •••••• _) 

procedure 
procedure 
procedure 

procedure 

procedure 

procedure 
procedure 

procedure 

procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 
procedure 

procedure 
procedure 
procedure 

procedure 
procedure 
procedure 
procedure 

procedure 

procedure 

procedure 

procedure 
procedure 

begin 

SendCmds (boardID: integer; var buf; cnt: longlnt); external; 
SendSetup (boardID: integer; var listen:AddrList): external; 
SendDataBytes (boardID:integer; 'var buf; cnt:longlnt; 

eot_mode: integer); external; 
Send (boardID:integer; listener: integer; 

var databuf; datacnt:langlnt; 
eotJllode: integer); external; 

SendList (boardID:integer; var listeners:AddrList; 
var databuf; datacnt:longlnt; 
eotJllode: integer); external; 

ReceiveSetup (boardID:integer; talker:integer): external; 
RcvRespMsg (boardID:integer: var buf; cnt:longlnt; 

eat_mode: integer); external; 
Receive (boardID: integer; talker: integer; var buf; 

cnt:longlnt; eotJllode:integer); external: 
SendIFC (boardID:integer); external; 
DevClear (boardID: integer; laddr: integer): external; 
DeVClearList (boardID:integer; var laddrs:AddrList); external; 
EnableLocal (boardID:integer; var laddrs:AddrList); external; 
EnableRemote (boardID: integer; var laddrs: AddrList); external; 
SetRWLS (boardID:integer; var laddrs:AddrList); external; 
SendLLO (boardID:integer); external: 
PassControl (boardID:integer; talker:integer); external; 
ReadStatusByte (boardID: integer; talker: integer; 

var result:integer); external; 
Trigger (boardID:integer; laddr:integer); external; 
TriggerList (boardID:integer; var laddrs:AddrList); external; 
PPollConfig (boardID:integer; laddr:integer; dataline:integer: 

linesense:integer); external: 
PPollUnconfig (boardID:integer; var laddrs:AddrList): external; 
PPol1 (boardID:integer; var res-ptr:integer): external; 
ResetSys (boardID: integer; var laddrs:AddrListl; external; 
FindRQS (boardID: integer; var taddrs: AddrList; 

var dev_stat:integer); external; 
AllSpoll (boardID:integer; var taddrs:AddrList; 

var res: AddrList); external; 
FindLstn (boardID:integer; var pads:AddrList: 

var result:AddrList; limit:integer); external; 
TestSys (boardID:integer; var addrs:AddrList; 

var result:AddrList); external; 
TestSRQ (boardID:integer; var result:integer); external; 
WaitSRQ (boardID:integer; var result:integer); external: 

ibsta:=O: (. initialize global status variables .) 

w 
\0 
00 

> 
"CI 
"CI 
~ 

= Q.. •. 
~ 
)-01 



end. 

iberr: =0; 
ibent: =0; 

ibentl:=O; 

for our_lev:=! to nbufsize do (* blank fill name buffers *) 
begin 

end; 

bname[our_lev] 
bdname [our_lev] 

for our_lev:=! to flbufsize do (* blank file name buffer *) 
flname(our_levl 

for our_lev: =! to bufsize do (* blank read/write buffers *) 

begin 
wrt (our_lev] 

rd[our_lev] 
end; 

4.11. fs .bat 

mode eom2:96,n,B,1,p 
fpes 

4.12. mass .par 

127 0 1000 I 
18 0 2 (H20) 
44 0 100 (C02) 

> 
'C 
'C 

~ 
Q. •. 
;0< .. 

I-l 

U..l 
\0 
\0 



400 

Appendix 2 . . Femtosecond photoelectron spec
trum simulation program {alpine, trans} 

The alpine and trans programs are designed to simulate a femtosecond pho-

toelectron spectrum at different pump-probe time delays. The alpine program (named 

for the similarity of a wavepacket propagating on a potential energy surface to a skier on 

an alpine slope ).is the main engine, propagating wavepackets and calculating overlap in-

tegrals. trans (named for Fourier transform, the primary operation performed) simply 

takes the output from alpine and generates photoelectron spectra at different time de-

lays. Because of the way the simulation works, alpine need only be run once for each 

pair Of potential surfaces coupled by the probe pulse, and spectra can be obtained at any 

time delay needed using trans. The dimensionality of the potentials is also irrelevant to 

trans, so that a 2- or higher-dimensional simulation (using an improved version of al- , 

pine) can be used to generate photoelectron spectra without modification to trans. 

1. Theoretical background 

Simulations of photoelectron spectra employ a method first described in 1996.1 

. Although the general approach is the same, significant improvements in the efficiency of 

the calculation have been achieved since that time, which were discussed briefly in Ref. 

2. These improvements will be covered in more detail at the end of this section. 

Three potential surfaces are needed for the simulation: the anion ground state, 

anion excited state, and neutral state. In practice, to obtain an accurate photoelectron 

spectrum, several neutral states must be included, running a separate propagation for each 

one, and summing the results using appropriate cross sections.3 The propagation method 



Appendix 2 401 

is based on Kosloff,4,5 using a program framework modified from Bradforth.6 Wave-

functions are represented on an evenly-spaced grid spanning the interesting portions of all 

three potential energy surfaces, and consisting of a number of points equal to a power of 

2 (for compatibility with the fast Fourier transform algorithm). Propagation of wavefunc-

tions is carried out using second-order differencing, with a Fourier transform method of 

evaluating the kinetic energy term of the Hamiltonian. Details of this scheme may be 

found in Bradforth. 

The pump pulse couples the anion ground and excited states. Generally, the probe 

pulse couples the anion excited state with the neutral state; however, it is also possible to 

couple the anion ground state with the neutral state, which is sometimes necessary to 

consider since the ground state can be perturbed by a strong pump pulse excitationJ,8 

This occurs when a significant population is transferred by the pump pulse to the excited 

state. The resulting ground state depletion creates a nonstationary wavepacket there, 

causing deviations from the linear approximation to the calculated excited state 

wavepacket, as well as creating dynamics on the ground state which have been observed 

in the FPES spectra, since the probe pulse has sufficient energy to detach electrons from 

the ground state of Iz-. These are illustrated, for instance, in Zanni et ai.9. 

The propagations are carried out in two steps. The pump pulse couples the anion 

ground ("A") and excited ("B") states only, so a Hamiltonian representing this interaction 

is used to propagate wavepackets on these two surfaces simultaneously: 

(1) 

(2) 



402 Appendix 2 

Here HA = TA + VA and HB = TB + VB are the diagonal Hamiltonians of the ground and 

excited states; J.lAB is the transition dipole moment; Epu(t) = Epu sech(-t-" )eiOJPU
' is the 

" Jrpu 

electric field of the pump pulse with maximum amplitude Epu, full width at half-

maximum (FWHM) 'tpu, proportionality factor J = t sech-t J2 ::::: 0.5673, and 'central fre-

quency ffipu;I'V A> and I'VB> are the ground and excited state wavefunctions. Note that the 

ground state wavefunction must be propagated because the pump pulse can easily transfer 

a significant population to the excited state (as confirmed experimentally in our spectra), 

thus prohibiting the use of a perturbative treatment, i.e. assuming I'VA> does not change. 

Including this extra step is only slightly more demanding numerically, however, because 

the majority of the calculational effort is spent propagating on the neutral surface, as de.:. 

scribed next. 

This establishes the formation and evolution of the anion excited state. Generating 

a photoelectron spectrum involves the interaction of the probe pulse with a nonstationary 

wavepacket, which is unlike conventional photoelectron spectroscopy where the starting 

wavepacket is assumed to be in an eigenstate. Therefore, integration over the probe pulse 

duration must be performed again. Since, in general, the probe pulse is much weaker 

( -1/10) than the pump, first-order perturbation theory can be used to describe the process. 

Recognizing that the energy of the probe photon hV2 is divided between the energy of the 

neutral ("C") molecule Ec and the detached photoelectron kinetic energy c, the total en-

ergy of the system E~' may be written as: 

E:;' = EB + hV2 = Ec + c. (3) 



Appendix 2 403 

where EB is the energy on surface B. Within this framework, the neutral wavefunction 

I"'e> created by a transition from the anion excited state is given by 

(4) 

where fit is the time delay between pump and probe pulses, as measured from peak inten-

sity times; J,1Be is the transition dipole moment between anion excited and neutral states; 

He = Te + Ve is t~e neutral diagonal Hamiltonian, and Epr(t) = Epr sech(_t_)eiWprt is the 
. JTpr 

electric field of the probe pulse (maximum amplitude Epr, FWHM 'tpr, central frequency 

Since, as indicated in the equation, the neutral state is dependent upon the pho-

toelectron energy e and time delay fit, determining the intensity of photoelectrons P(e, 

fit) is tantamount to calculating the corresponding neutral wave function intensity in the 

long-time limit: 10,11 

pee, fit) = lim( If/ c(t; e, fit) IIf/ c(t; e,fit)) 
t~~ 

(5) 

where T= t' - t" represents time spent on surface C; IXc(t", T)) = e-iHcT'1i11f/ B(t")) are 

wavefunctions evolved on surface C which contribute to the overalll"'e> wavefunction; 



404 Appendix 2 

and tmin and tmax have replaced the infinite integral limits of t", since in practice the 

propagation needs only to proceed over a finite, dynamically interesting time range. 

The bracketed expression on the last line of the equation is the argument of a Fou-

rier transform, which yields a powerful method for calculating the entire photoelectron 

spectrum at arbitrary /).t, or even probe pulse shape, without rerunning the propagation. 

The matrix of overlap integrals between time-dependent wavefunctions on surfaces Band . 

c, 

O(t",1) = (X c(t", T) Ilf/ B(t" + T») (8) 

is recorded over the course of the anion excited state propagation. To calculate a photoe-

1ectron spectrum at a particular /).t, the integral over t" is evaluated, producing a vector of 

T-dependent values. This vector is then simply Fourier transformed to produce the pho-

toelectron spectrum pee, /).t). 

The key advantage of this technique is the great reduction in data storage required 

for a propagation: rather than storing individual wavefunctions IXcCt", 1», which take up 

a prohibitive amount of disk space, especially, for 2- and higher-dimensional grids, only 

an overlap matrix is needed, which is independent of grid size. Further savings in storage 

space, as well as computation time, is achieved by recognizing that 

Epr*( t" - I:1t)Epr(T + t" - /).t) (9) 

. vanishes when T is more than a few times the probe pulse width Tpr. Therefore, overlap 

integrals need only be evaluated for 111 < nTpr, n "" 3, effectively making the overlap ma-

trix size scale linearly with propagation time. In addition, by symmetry, 

OCt", -1) = O*(t" + T, 1), (10) 

I 

'..I 



Appendix 2 405 

requiring overlap integrals to be calculated for positive (or negative) values of T only, 

achieving another 50% savings in computation time. 

Note that the term e iDX in both the pump and probe electric field expressions is 

highly oscillatory, and would normally necessitate a very small propagation time step 

size in order to faithfully reproduce its time dependence. However, this can be avoided by 

adding the eiDX term to the upper state potential energy (for instance, VB in the case of the 

pump pulse), where it functions as an energy shift to the potential. The propagation time 

step size is therefore limited only by the maximum kinetic energy of the wavefunctions. 

Note that there are also limitations on the spatial grid spacing as a result of the wave-

function kinetic energy. These points are discussed extensively by Kosloff.4,5 

Calculations of the wavefunctions IXcC(', T» and overlap matrix elements OCt", 

T) can be conducted in a number of different ways. The approach taken in alpine in-

volves a backward time propagation on surface C, so that previous I'l/B>'S can be inte-

grated with calculatedlxc>'s while varying Tbetween 0 and a maximum negative value. 

The procedure for carrying out the calculation is as follows. At a time intervall1tc: 

(11) 

where ..1£ is the range of possible electron kinetic energies, and !safety is an empirical 

safety factor (= 0.4), the current I"'B(t"» is placed at the beginning of a queue of previous 

I'l/BCt"» wavefunctions. The current I'l/B(t"» is backward-propagated on the neutral SUf-

face for one increment of I1tc, producing IXcCt", T = -l1td>, and an element of the overlap 

matrix 0((', T) is evaluated-with the queue wavepacket I"'B((' -l1td>. This process con-

tinues until one column of O(t", T) has been calculated. The oldest wavefunction I"'B((' -



406 Appendix 2 

nTpr» is then thrown out of the queue, and the propagation of I\jIB(('» resumes on the 

anion excited state surface. 

2. Compiling and execution 

Compilation of alpine and trans is straightforward. On a Unix platform such 

as PC Linux or Silicon Graphics (SGI), the FORTRAN compiler commands f77 (or 

f90): 

f77 alpine5.4.1.f -0 alpine5.4.1 

and 

f77 trans2.2.1.f -0 trans2.2.1 
, ; 

are generally sufficient to create an executable file (the -0 option here simply specifies 

the name of the executable file; without it, the default a. ou t is assigned). Different 

compilers become finicky over certain areas of the code, for instance, in the handling of 

strings or numerical precision. As of this writing, both source files have been successfully 

compiled and tested on the above-named platforms. 

Usually alpine must be run as a "batch" process, since it will use an hour or 

more of computer time. The typical format for starting alpine as a batch process uses 

the nice command: 

nice +19 alpine5.4.1 > junk.out & 

Here the lowest priority ( + 19) has been selected to allow other users full access when 

logged on. Output has been redirected (» to the junk. ou t file. This is not really neces-

sary, since the alpine. out file is also created, containing the same information, but it 

prevents the windo~w from continuously scrolling with new updates. The & symbol in-



.:J 
I 

I I 

--

, \ 

f 

G 

Appendix 2 407 

structs the computer to run the command as a background process, i.e. it will not be ter-

minated when the user logs off. 

Because trans only takes a couple minutes to execute, it is typically run di-

rectly: 

trans2.2.1 

Output will appear in the command window, with a copy sent to the trans. ou t file. 

3. Input files to alpine 

3.1. alpine. inp 

This is the main parameter file for alpine. A typical alpine. inp file is 

shown below (line numbers are not part of the file, but are simply used for reference in 

the text): 

Line # 

1 5410 Version header 

2 1, 1, 1, ° 
3 0, 1, 0, 50 

Save potential surface A, B, C; save with shifts 
Save wavepacket A, B, C, save interval (fs) 

4 0, ° Eigen decomp flag (011) and interval (fs; ° auto-
matic) . 

5 63.5 

6 -200, 400, ° 
matic) 

1, 1, 1 

Reduced mass (amu) 
Propagation time min, max (fs), step (fs; ° auto-

Flags to propagate on surfaces A, B, C 7 
8 2, 0, 0.4 Surface to use for C prop (1=A,2=B) ,time step on C 

(0 = automatic), time step safety factor 
9 50 Interval for printing screen statistics (fs) 
10 -0.8, 2.7, 50 Chebychev energy min, max (eV) , safety factor 
11 5 Potential shelf (eV) 
12 0, 0.0 Surface A vib level, add' 1 offset (eV) 

13 0, 0, ° Read wavefunc A from file (011), read wavefunc B 
from file (011) I reverse momentum of B (011) 

14 2.0, 10.0, 512 Grid min, max (angstroms), number of points 

15 1.589, 90.0, 1.0d-4, ° Pump energy (eV) , FWHM (fs), E.mu(AB) - use ° for no 
coupling, sechlgauss flag (0,1) 

16 100, 3 Probe FWHM (max, fs), multiple of FWHM for limits of 
C overlap matrix 

17 0, 4d-6, 60 Abs bdy A flag, factor, num of points . 
18 0, 0, 10 Abs bdy B flag, factor,num of points 



408 

19 1 

Appendix 2 

Pot A: 12-(X2SIGMAu+) (MTZ) (O=rO,DO,beta,VO; 
1=re,we,wexe,VO; 3=fi1e name) 

20 3.205,110,0.371,-1.014 rO, we, wexe, Vo 

21 3 Pot B (O=rO,DO,beta,VO; 1=re,we,wexe,VO; 3=file 
name) 

22 -0.014 

23 3 
3=file name) 

24 2.855 

VO 

Pot c: 12(X) (O=rO,DO,beta,VO; 1=re,we,wexe,VO; 

VO 

Note that text appearing after the relevant data on each line is ignored by the pro-

gram, and so may contain any desired comments. In the example, the names of the vari-

abIes associated with each input item is shown. 

Line 1 contains a version header. This line is compared with the program variable 

input_header to determine if alpine can read the file. 

Line 2 contains flags indicating whether to save a file with each potential surface 

A, Band C (1 indicates yes, and 0, no; this code is used for all flag variables in the file), 

and a flag to include the· shifts used for eliminating the oscillatory eiOX term in the output 

copy of the potentials. 

Line 3 contains a similar set of flags for saving wavepackets I\jIA>, I\jIB> and IXc>, 

and a time interval (in fs) for saving wavepackets. Note if IXc>'s are saved, the program 

will stop after one propagation on surface C, since this option is used strictly for diagnos-

tic purposes, and saving a set of wavepackets for each C surface propagation would gen-

erate a prohibitively large number of files. The wavepacket save interval is automatically 

rounded to an integer multiple of the base propagation time step (see line 6). 

Line 4 contains variables for performing eigenvalue decomposition of I\jIA>. This 

function is currently not functional, but this line must contain two "dummy" values such 

as shown in the example. 

( I 

-



Appendix 2 409 

Line 5 contains the reduced mass of the molecule, in atomic mass units (amu). For 

Line 6 contains the time limits and step size of the I'VA> and 1'V8> propagations, in 

fs. If 0 is given for the step size, it will be calculated automatically from information 

about the grid size and maximum potential energy of the surfaces. It is seldom necessary 

to override this automatic option. 
I I 

Line 7 has flags indicating'whether I'VA>, 1'V8> and IXc> should be propagated. 

Usually I'VA> is propagated only if explicit inclusion of a ground state depletion effect is 

, I needed. By not propagating IXc>, the program can be used for simple propagation of an-

ion wavepackets. 

Line 8 allows for specification of which anion surface (1 = A, 2 = B) is to be used 

to generate IXc>, the time step to use on the C surface, and an additional time step "safety 

factor." As with line 6, the time step can be specified as 0, meaning it will be automati-

cally calculated from potential parameters. The smaller the time step, the larger the range 

of electron kinetic energy in the photoelectron spectrum. The safety factor (typically 

o .4) is used to reduce the calculated time step and thereby expand 'the kinetic energy 

range slightly, to prevent features near the edges of the spectrum from wrapping around 

to the other side if they are artificially broad due to a short propagation time. 

Line 9 contains the interval (in fs) for printing updates to the screen. 

Line 10 contains outdated parameters for the Chebychev propagation scheme, 

now abandoned. Three "dummy" values must appear, such as shown in the example. 

Line 11 contains a potential "shelf' in e V. This is the value each potential surface 

is truncated to after either reading in or calculating the surface. 



410 Appendix 2 

Line 12 specifies the initial vibrational level of ''''A>, and an additional energy 

offset to surface A (in eV). This offset generally only used when ''''A> is read from a file. 

Line 13 contains a flag specifying whether to read ''''A> and ''''B> from files, and a 

flag to reverse the initial momentum of ''''B>. If read from files, the filenames must be 

psiA .inp and psiB. inp, respectively. The momentum reversal function was added 

for a special application (taking the final wavefunction of a prior propagation and placing 

it on a new surface with reversed momentum, to simulate the effect of a wavepacket re-

flected off a solvent-induced "wall.") 

Line 14 specifies the grid parameters: minimum and maximum (in A), and the 

number of points. Note this number must be a power of 2. 

Line 15 provides information about the the pump pulse: photon energy (in eV), 

full width at half maximum or FWHM (in fs), the product of Epu'JlAB (in arbitrary units), 

and a flag to choose between a sech2
- or Gaussian-shaped pulse (0 or 1, respectively). 

Line 16 provides information about the probe pulse: FWHM (in fs), and a factor 

specifying the maximum duration to propagate 'Xc>, in multiples of the probe pulse width 

(typically 4). Note that this information is only used to determine propagation parameters 

for 'Xc>, which defines a maximum possible probe pulse to be used in trans. 

Lines 17 and 18 contain absorbing boundary condition parameters for surfaces A 

and B, respectively. For each, there is a flag specifying whether to use the absorbing 

boundary, a multiplying factor specifying how quickly the boundary drops to zero (use 0 

to let alpine calculate this automatically), and the number of points over which the ab-

sorbing boundary is active. 

\ . 
. \ 

I"':"";", 

I I 

- " 

I ' 



, . 

Appendix 2 411 

Lines 19 and 20 contain parameters for the A surface potential. Line 19 contains a 

flag specifying which type of potential function to use, while line 20 contains the pa-

"-., 
rameters for the potential. The format of line 20 depends on what was provided in line 

19: 

Value Potential t e Parameters 
o Morse o Al re (A), Do (eV), ~ ( -), Vo (eV) 

\ . 
I 1 Morse 
/ 

2 Not used (was LEPS potential) 

3 Read from file Vo (eV) 

Here re indicates the equilibrium bond distance, Do is the well depth, ~ is the curvature 

parameter, Ole is the harmonic frequency, OleXe is the anharmonicity, and Vo is the offset 

energy of the potential (bottom of well assumed 0). Note that the two ways of specifying 

a Morse potential are equivalent: 

(12) 

where Jl is the reduced mass. For potentials read from files, the filenames must be 

pet* .in(* =A,BorC). 

Lines 21 and 22 contain the same parameters for surface B. 

Lines 23 and 24 contain the same parameters for surface C. 

, I 

3.2. pot * . in 

When a potential surface is specified in alpine. inp to be read from a file, the 

filename corresponding to surface A, B or C must be potA. in, potB. in or 

petC. in, respectively. The format of the files is identical. Line 1 contains grid pa-



412 Appendix 2 

rameters of the potential: minimum and maximum (in A), and the number of points. Note 

this number must be a power of 2. These parameters need not match the grid specified in 

alpine. inp, as an interpolation feature is built into the program. Subsequent lines 

contain the potential energy (in e V) for each grid point. 

3.3. psi * . inp 

Previously calculated wavefunctions may be input for I\jIA> and 1 \jiB> , with file-
" ) 

, I 

names ps iA. inp and ps iB . inp, respectively. Each line of the file simply contains 

one pair of complex numbers indicating the wavefunction amplitude at each grid point, 

using the standard FORTRAN format: 

(-1.0000000000, 1.0000000000) 

where the, first number is the real part, and the second number is the imaginary part. 

4. Output files from alpine 

The following files are output during an alpine run: 

alpine. out contains general information about the propagation parameters 

and periodic updates on the status of the propagation. It is the same information as 

printed on the screen during the run. 

norm* . out (* = A, B) contain the norms (k\jlI\j1>12) of I\jIA> and I\jIB>, respec-

tively, calculated at time intervals specified by the update status. 

pot * . out (* = A, B, C) contain the potential functions for each surface, if it was 

specified to be generated in alpine. inp. Each line contains a pair of numbers, dis-

tance (in A) and energy (in e V). 



Appendix 2 413 

psi * . dump (* = A, B) contain I'I'A> and I'I'B> at the final time step in complex 

number format. These are useful for reading back into the propagation code, for instance, 

to break a long propagation into manageable pieces. This is accomplished by renaming 

the files psi * . inp (see above) and setting the appropriate flags in alpine. inp. 

ps i * . *: These are files output for each wavefunction several times during a run, 

if specified in alpine. inp. The first asterisk denotes a letter (A or B, indicating the 

wavefunction I'll A> or I'I'B», followed by a three-digit number starting at 001, and in-

crementing by 1 each save interval. The second asterisk indicates the file type: dump is a 

complex-number format wavefunction, real contains distance (in A) and the real part of 

the amplitude, sq contains distance (in A) and squared amplitude, and mom contains in-

verse distance (in A-I) and the real part of the momentum-space amplitude. 

matrix. out contains the matrix of overlap integrals OCt",T), in complex-

number format, one element to a line. The first line contains the shift of the surface C 

potential used by alpine, which must be applied to the calculation in trans to obtain 

photoelectron spectra with the proper energy offset. 

5. Input files to trans 

5.1. trans. inp 

The format of the main trans input file, trans. inp,js very simple, as the 

following example shows: 

Line # 

1 2200 Version header 

2 4.768, 100 Probe pulse energy (eV) and FWHM (fs) 
3 2, 1200, 254 Convolution type, ion beam energy (eV) , mass (amu) 



414 

4 1. 0, 
size 

5 0 

6 100 

7 200 

3.0, 0.005 
(eV) 

Appendix 2 

Output spectrum energy minimum, maximum and step 

Time delay (fs) for calculating spectrum 
etc. 
etc. 

As with alpine. inp above, text appearing after the relevant data on each line 

is ignored by the program, and so may contain any desired comments. 

Line 1 contains'the version header. This line is compared with the program vari-

, 

able i vers trans to determine if trans can read the file. 

Line 2 contains the probe pulse energy (eV) and FWHM (fs). Note that the 

FWHM cannot be significantly larger than what was specified in alpine, but it may be 

as small as desired. 

Line 3 contains the convolution type, ion beam energy (eV) and ion mass (amu). 

Currently, five convolution types are supported: 

Convolution t tion Function (see text) 
0 None 

1 Tophat (flat) 1 

2 Isotropic ~ 

3 Sin2 e (1-r) ~ 

4 Cos2 e r~ 

For convolution types> 0, the following parameters are determined from the ion 

beam energy and mass: 

(13) 
~on 

r= (14) 

- ( 

,,' 
~ - . f 

\ I 

<II 

I \ 



Appendix 2 415 

where the range of the convoiution is ±2~UoffUecm . The energy offset, Uoff, is called 

aeoffset in the program. The. convolution functions (unnormalized) are shown above 

in the table. 

Line 4 contains the output spectrum energy minimum, maximum and step size, all 

in eV. These parameters may be arbitrary, as the Fourier transform output is always in-

terpolated to fit onto this grid. 

Lines 5 and later contain the pump-probe time delays (fs), one to a line. There 

may be as many time delays as necessary. Calculation of·extra time delays is very fast, as 

the bulk of the computer time is typically spent reading in the rna trix. ou t file. 

j 

5.2. matrix. out 

In addition, the matrix. out file from alpine is read by trans. 

6. Output files from trans 

PW* . ou t contain the photoelectron spectrum for each delay time specified by 

trans. inp. The asterisk indicates a three-digit number beginning with 001, and in-
-....; 

crementingby 1 for each subsequent file. The format of each line is the electron kinetic 

energy (in eV) and the intensity (in arbitrary units). 

trans. out is simply a copy of what is printed to the screen by trans, indi-

cating the progress of the program. 

7. References 

1 B. J. Greenblatt, M. T. Zanni, and D. M. Neumark, Chern. Phys. Lett. 258, 523 

(1996). 



416 Appendix 2 

2 V. S. Batista, M. T. Zanni, B. 1. Greenblatt, D. M. Neurnark, and W. H. Miller, J. 

Chern. Phys. 110, 3736 (1999). 

3 M. T. Zanni, V. S. Batista, B. 1. Greenblatt, W. H. Miller, and D. M. Neurnark, 1. 

Chern. Phys. 110,3748 (1999). 

4 R. Kosloff, 1. Phys. Chern. 92, 2087 (1988). 

5 R. Kosloff, Annu. Rev. Phys. Chern. 45,145 (1994). 

6 S. E. Bradforth, Ph.D. Thesis, University of California, Berkeley (1992). 

7 U. Banin, A. Bartana, S. Ruhrnan, and R. Kosloff, 1. Chern. Phys. 101, 8461-8481 

(1994). 

8 A. Bartana, U. Banin, S. Ruhrnan, and R. Kosloff, Chern. Phys. Lett. 229, 211 (1994). 

9 M. T. Zanni, T. R. Taylor, B. J. Greenblatt, B. Soep, and D. M. Neurnark, J. Chern. 

Phys. 107, 7613 (1997). 

10 C.Meier and V. Engel, 1. Chern. Phys. 101,2673 (1994). 

11 C. Meier and V. Engel, Phys. Rev. Lett. 73, 3207 (1994). 

-", .. -
8. Program listings 

-', 



8.1. alpine5.4.1.f 

c 

c 

c 
c 

A L P N E 

1-0 femtosecond photoelectron spectrum simulator 

Begun by B. Jefferys Greenblatt. August 1995. 
Latest version: see last_date variable. 

C Adapted from S. E. Bradforth code 'proplO'. 

C Address: 
C 

C 
C 

C Phone: 
C E-mail: 

C INPUT, 
C 

Neumark Research Group 
Department of Chemistry 
University of California 
Berkeley. CA 94720 USA 
510-642-7761 or 510-643-9301 
jeff9radon.cchem.berkeley.edu 

alpine.inp 
(pot files) 

C OUTPUT: alpine. out 

Input deck (see rea~input(l for explicit instructions). 
Names of potential energy files, if used (see potread). 
Copy of information printed to screen during run. 
Absorbing boundary function (if iabs = 1) C abs.out 

C normX.out 
C 
C potX.out 
C 
C psix.dump 

C 
C 
C 
C psiXY.Z 
C 

C 
C 
C 
C 
C 
C matrix. out 
C 

Norms of wavepackets (X = A, B only) saved at intervals 
determined in input deck. 

Surface X potential function (A = anion ground state, B 
= anion excited state, C = neutral). 

Final wavepackets on surfaces X = A, B only, in raw 
(complex) format. Intended for the future use of 
reading old wavepackets in, in order to continue a 
propagation. 

Wavepackets on surface X (= A, B only) at time interval 
Y (= 000, 001, etc.). This is only recorded if the 

isavpsiX variable in input deck is set. Information 
contained in file indicated by Z: sq = square of psi 
vs. position; real = real part of psi vs. position; 
dump = real and imag parts of psi (no position); mom 
= square of psi vs. momentum. 

Matrix of overlap integrals: time x time. Read by 
Fourier transform program TRANS. 

C Notes for this version (add to bottom of list, please): 

C 26jul95 BJG: This program calculates photoelectron spectrum intensity over a 
C user-specified range of electron kinetic energies and delay times. . 

C IBmar96 BJG: Version 2 implemented. This version calculates one matrix con-
C taining all dynamical information for full 20 (delay time x eKE) photoelectron 
C spectrum. This matrix. calculated from first order perturbation theory of the 
C probe pulse, consists of the final wave functions zpsiCl each of which has been 
C promoted to the upper surface at different times t and propagated out 'to the 
C same final time tmax. A Fourier transform of this matrix multiplied by the 
C envelope function of the .probe pulse, which can vary in delay time relative 
C to the probe, followed by calculation of the norms of zpsiC1{w, xl gives the 
C photoelectron spectrum pew) for an arbitrary probe delay (and shape for that 
C matter!) 

C Currently program uses weak field limit for both pulses since this eliminates 
C the need to propagate zpsiA at all (no change to zpsiA). For every time step 
C tpsiCstep on surface B. program executes inner loop propagation on surface C 

C and saves result in file zpsiCt. Final transformation 'to useful information 
C is handled by another program, trans1.f. 

C 2Bmar96 BJG: Version 2.1 implemented. Replaces second-order differencing 
C propagation scheme wi th Chebychev polynomial approximation for the upper 
C state surface only (the first two surfaces are linked by a time-dependent 
C coupling term which makes this method difficult to implement; plus, the huge 
C majority of the computation time is spent propagating on the upper surface 
C anyway). This approach is taken from R. Kosloff, ·Propagation Methods for 
C Quantum Molecular Dynamics,· Annu. Rev. Phys. Chern. 45, 145 (1994). New sub
C routine chebprop(l handles this implementation. 

C 7may96 BJG: Version 2.2: Minor change as a test of difference between sechA2 
C and Gaussian pulse shapes on dynamics. Is a permanent upgrade, however, as 
C allow both types of shapes to be accessed in input deck. Also changed input 
C deck filename to alpine.inp, and added a header line with the version number 
C of alpine, so we know which version we ran simulation under (important)! 

C 8dec96 BJG: Version 3.0 (not a big change from 2.2, but MTZ has made some 
C other versions and we don't want to conflict). This solves the small energy 
C offset error by changing the sign of the phase factor in the Chebychev propa
C gator. 

C 8dec96 BJG: Version 3.1. Makes shifting around of potentials automatic and 
C transparent; shifts effected in ALPINE are undone in TRANS by passing along 
C a parameter. Simply set up potentials with true spacings between, vOA can be 
C anywhere (program automatically shifts to make v=O eigenenergy 0). 

C 9dec96 BJG: Version 3.2. Timing specified more rationally now, calculates step 
C size necessary for FT, added function to read in arbitrary potential with 
C automatic interpolation to fit chosen grid. 

C 10dec96 BJG: 3.3: Allow recording of momentum representation of wavefunction 
C in addition to position, if desired. 

C 10dec96 BJG: 3.4: Modified a few lines to allow to compile on Linux machine. 

C 15dec96 BJG: 3.4.1: Changed chebprop algorithm in attempt to fix bug when 
C using 1024 pts in x grid; however, bug was in the read_user-pot interpolation 
C routine (made gap in potential, producing wf spike which blew up propagation) . 

C 15dec96 BJG: 3.4.2: Kept new chebprop, clean up unused subroutines (including 
C dumping off LEPS capability -- so source code file is gone), made screen 
C output produce exact copy in alpine. out, including list of letters with cor
e responding time delays for saved wavefunctions. Added some automatic parame-
C ters such as time steps (both on AlB and C surfaces), option to propagate on B 
C or A+B, take FPES from surface A or B. 

C 20dec96 BJG: 3.4.3: Allowed initial wavepacket from other than v=O eigenlevel. 
C Combined anionmorsewf and alpine source files, so code is now contained in a 
C single file, alpineXXX. f. Changed psiXY. Z labeling scheme to numbers 
C (psiAOOO. sq, etc.). 

- . -. -- .- """"") . .. 
C 24dec96 BJG: 3.4.4: Added ab1l1ty to decompose e1genspace of pS1A or pS1B 
C (using Heller scheme: Fourier transform of autocorrelation). (16feb97: Does 
C not yet work). 

C 16feb97 BJG: 4.0: Switch from recording wavepacket matrix to recording 
C overlap matrix, in anticipation of 2-D implementation (NTOBOGGAN"1 . 

C 29apr97 BJG: 4.1: Got eigenfunction decomposition working. But then realized 
C could simply overlap the final wave function with the known Morse 
C eigenfunctions of the X state and get the populations much more quickly. 

> 
"1:1 
"1:1 

~ .... 
~ 

N 

+:---...-J 



C Currently it does both -- but with the second approach, there's no Qeed to 
C propagate beyond the extend of the pump pulse, so this is the one to use. 

C 29apr97 BJG: 4.2: Allow reading and writing of wavepackets to do "special N 

C propagations like simulating 12 (C02) 16- recurrences at 1.5 ps. 

C 30jun97 BJG: 4.3: Allow inhibition of propagation on all surfaces; added A 
C surface energy offset independent of nlevel, to inform surface moving algo-
C rithm that initial wavepacket (read from file) has nonzero kinetic energy; re
C arranged order of some input deck parameters. 

C 6ju197 BJG: 5.0: Implemented a dramatic improvement in performance, reducing 
C order of propagation time from quadratic to linear in the length of propaga
C tion! Storage requirements are roughly doubled, however: now must record both 
C a co and C1 wavefunction for several time slices simultaneously. 

C 6ju197 BJG: 5.1: Haven't even tested 5.0 yet, but discovered way to halve 
C storage requirements with no decrease in speed, by recording psi2's, rather 
C than psi3's, in queue, and propagating C taking overlap every itCstep 
C iterations. 

C 13aug97 BJG: 5.1.1: Still debugging; this version prints out, starting with 
C pwlOI.out, the un-FFT'd spectra for inspection. 

C 1997.S.29 BJG: 5.1.sgi: special SGI source code version which can get 
C around the inability to read strings as input. 

C 1997.S.29 BJG: 5.2: Again sgi compatible, this just adds a few lines around 
C the C prop loops to calculate the number of Hpsi calls needed (j_max). 

C 1997.10.1 BJG: 5.3: Absorbing boundary conditions added. 

C 1997.10.3 BJG: 5.4: Changed double precision to real*S, added FFT-prep routine 
C to improve alpine performance, other small changes for 'SGI compatibility. 

C 1999.02.10 BJG: 5.4.1: Modified so aether can read input headers (numerical 
C code, rather than string). Had simply ignored them -- not a great idea. 

C Global variable declarations: 

implicit real*S (A-H, o-y) 
implicit complex*16 (Z) 
parameter (npts = 204S, nauto = 204S, MAX_QUEUE = 256) 
dimension zpsiAO{npts), zpsiBO(npts), zpsiCO{npts), zpsiC1(npts): 

& zpsiqueue{npts, MAX_QUEUE), zHpsiA1(npts), zHpsiBl(npts), 
& zHpsi(npts), zpsiAorig(npts), zovlp(npts) 

common labssl absA{npts), absB(npts) 
common lautocorrl zautoA(nauto) 
~oITUl\on Iconvertl harev, evwn, aO, aInU, emu, harwn, amass, atu 
COITUl\on IconstOI zero, zeye, pi, c, twopi, sqrtpi, pisq, 

& alessthanhalf 
COITUl\on Iconst11 xmas, hb, sechfactor, gauss factor 
common Iconst21 xOA, xomegA, vOA, xwexeA, dea, xalphaA, xOB, 

& xomegB, xwexeB, deB, xalphaB, vOB, xOC, xomegC, xwexeC, deC, 
& xalphaC, vOC, shelf, vOA_off, vOB_off, vOC_off 

common Iconst31 tstep 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 
COITUl\on Iconst71 tpktsav, itpktsav, tCstep, itCstep, tCfactor, 

& emin, emax, factor, e_shift, tmin, tmax, statstep, istatstep, 
& tauto, itauto 

common IconstS! hv1, fwhml, dmul, domegal, sechl, itypel, ipropA. 
& ipropB, ipropC, iCpot, nlevel, Aoffset,· Eint, fwhm2, thresh, 

proberange, ireadA, ireadB, irevB 
integer f_in, f_out, f_normA, f_normB, f_matrix, f_temp, 

& f_temp2, f_temp3 
common Ifilesl f_in, f_out, f_normA, f_normB, f_matrix, f_temp, 

& f_temp2, f_temp3 
common Inormsl rnormA, rnormB, rnormC, HavA, HavB, HavC 
common Ipotl zpot(npts, 3) 
common Ipottypl ipottypA, ipottypB, ipottypC, isavpotA, isavpotB. 

& isavpotC, isavpsiA, isavpsiB, isavpsiC, ieigenA, ieigenB, 
& isavpot_shift 

common Izpsisl zpsiAl(npts), zpsiBl(npts) 
character*80 input_header, last_date, matrix_header 
common Iheadersl input_header, last_data, matrix_header 
common Iversionl ivers_input, ivers~trix 

C Begin. 

call FFT-prep ! Set up FFT array. 
stab_factor .2! Stability factor for propagation. 

C Set up header variables -- for compatibility. Used in alpine.inp, matrix.out. 
C Must change anytime the file formats change. 

last_date = '1999.02.24' 
ivers_input = 5410 
ivers_matrix = 2200 

C File variable's -- so only have to change file number in one place. 

f_in = 1 
f_out = 2 
f_normA = 
f_normB = 
f_matrix = 
Ctemp = 8 
Ctemp2 9 
Ctemp3 = 10 

C ~rint greeting. 

100 
110 
120 

130 
140 
141 
142 

open(f_out, file 'alpine.out') 

format('Welcome to ... ') 
format ( , A L p N E') 
format ( , 1-0 femtosecond photoelectron spectrum 

& ' simulator' ) 
format ( , by B. Jefferys Greenblatt') 
format{'Last modified a) 
format('Input header = " is) 
format('Matrix header = " is) 
write (*, ') 

write (*, 100 ) 
write (*, ') 

write (*, 110) 
write'{*, ') 

write (*, 120 ) 
write (*, ') 

write (*, 130) 
write (*, ') 

write (*, 140) last_date 
write (*, 141) ivers_input 
write (*, 142) ivers_matrix 
write (f_out, ') 

.j:;.. 

00 

> 
"0 
"0 
~ 

= c:l,. 
~. 

N 



write (f_out, 100 ) 
write (f_out, · ) 
write (f_out, 1l0) 
write (f_out, · ) 
write (f_out, 120 ) 
write (f_out, · ) 
write (f_out, 130) 
write ( f_out, · ) 
write (f_out, 140) last_date· 
write (f_out, 141) ivers_input 
write (f_out, 142) ivers_matrix 

C Define some uS'eful constants. 

call const () 

C Read input deck. 

call read_input() 

C Write basic information. 

write (*, *) 
write (f_out, *) 

270 format ('xmin =',f9.2,2x, 'xmax =',f9.2.2x. 'nXpts =',i5,2x, 
& 'dx =', e10.4) 
write (*, 270) xmin * aO, xmax * aD, nXpts, dx * aO 
write (f_out, 270) xmin * aO, xmax * aO. nXpts, dx * aO 

220 format ( 'xmas/amu = '. f7.2) 
write (*, 220) xmas / amu 
write (f_out, 220) xmas / amu 

C Criteria of succesful propagation given in Kosloff. J. Comput. Phys. 52, 35 
C (1983); essentially the max kinetic energy representable on a grid with 
C spacing dx is given (in au) by pi * pi / (2 * xmas * dx * dx) and the 
C stability criterion is tstep * {(pi * pi) / (2 * xmas * dx * dx) + V) <= 1.0 
C (actually best at <= 0.2). 

C l6Dec96 BJG: tstep now calculated automatically, unless user specifies (tstep 
. C > 0 in input deck). 

320 format ('Maximum kinetic energy that can be represented is 

420 

& f6.3, ' eV. ') 
sqkmax = 4. 9348dOO I (xmas * dx * dx) 

write (*, 320) sqkmax * harev 
write (f_out, 320) sqkmax * harev 

if (tstep .eg. 0) then 
tstep = stab_factor I sqkmax 
formate' (tstep automatic) ') 
write (*, 420) 
write (f_out, 420) 

endif 

300 format ('Propagation time step size 
write (*, 300) tstep * atu 

f6.3, ' fs.') 

330 

write (f_out, 300) tstep * atu 

format ('Stability at best. assuming zero potential, is " f6.3) 
write (*, 330) sqkmax * tstep 
write (f_out, 330) sqkmax * tstep 

if (sqkmax * tstep .gt. ldO) then 
340 format (' *****THIS PROPAGATION WILL BE UNSTABLE"****') 

write (*, *) 

write (*, 340) 
write (*, *) 

write (f_out, *) 
write (f_out, 340) 
write (f_out, *) 
stop 

endif 

350 format ('Time limits for current propagation 
& 'to', f8.2, ' fs.') 

f8. 2, 

write (*, 350) tmin * atu, tmax * atu 
write (f_out, 350) tmin * atu, tmax * atu 

C Calculate autocorrelation parameters. 

531 

if (ieigenA ,eq. 1) then 

if (tmin .gt. 0) then 
format('tmin cannot be positive for autocorrelation.'} 
write(*, 531) 
write(f_out, 531) 
stop 

endif 
tautomin = -tmin 
trange = tmax - tautomin 

C Calculate tauto if = 0, revise interval regardless to equal a mUltiple of tstep. 
C (nint(x + alessthanhalfl rounds up). 

if (tauto .eq. 0) then 
530 format (' (tauto automatic)') 

write (f_out, 530) 
write (*, 530) 
if (nint(trange I tstep + alessthanhalfl .le. nauto) 

& then 
tau to = ts tep 

else 
tauto = tstep * nint «trange tstep) I nauto + 

& alessthanhalf) ! Calculate a suitable mUltiple of tstep. 
endif 

endif 
itauto nint (tauto / tstep) 
tauto = tstep.* itauto ! Revise value of tauto, if necessary, 
itautomin = nint«tautomin - tmin) I tstep) 
tautomin = tstep * itautomin + tmin ! Revise value of tautomin. 

521 format('Revised time interval for recording autocorrelation 
& '(fs) = " f9.5) 

write (f_out, 521) tauto * atu 
write (*, 521) tauto * atu 

522 format('Revised starting time for recording autocorrelation 
& '(fs) = " f9.5) 

write (f_out, 522) tautomin * atu 
write (*, 522) tautomin * atu 

c Check that tauto not so small that we will overrun zautoA during 

if (nint(trange I tau to + alessthanhalf) .gt. nauto) then 

> 
"'C 
"'C 
~ = Q. ... 
~ 

N 

+;;. 

\0 



511 format('Too many points in autocorrelation. Terminating. 'J 
write (f_out, 511) 
write (*, 511) 
stop 

endif 

C Calculate dephasing constant gamm, for use in autocorrelation. 

gamm -5.0 I (trange / tauto) ** 2 

540 format('Dephasing constant e14.8) 
write(f_out, 540) garnm 
write(*, 540) gamm 

endif 

C Calculate interval parameters, revise real intervals, and print revised 
C delays. 

itpktsav = nint (tpktsav / tstep) 
tpktsav = itpktsav * tstep 

500 format('Revised interval for saving wavepackets 
& f9.2, ' fs.'1 
write (*. 500) tpktsav * atu 
write (f_out, 500) tpktsav * atu 

istatstep = nint (statstep / tstep) 
statstep = istatstep * tstep 

510 f~rmat('Revised interval for printing statistics 
& f9.2, ' fs.'1 
write (*, 510) statstep * atu 
write (f_out, 510) statstep * atu 

C Other miscellaneous parameters. 

280 format ('hv/eV f7.4. 2x. 'fwhm/fs =', f7.2, 2x. 'E""mu 
& e16.81 
write (*. 280) hv1 "" harev. fwhm1 "" atu, dmu1 "" aO 
write (f_out, 280) hv1 * harev, fwhrn1 "" atu. dmu1 * aO 

410 format (. Surface generating FPES = '. aI, 
& Propagate surface A = " iI, ' B = " iI, . C = " i1) 
write (*. 410) char(64 + iCpot), ipropA, ipropB, ipropC 
write (f_out. 410) char(64 + iCpot), ipropA, ipropB. ipropC 

write (*. "") 

write (f_out, *) 

C Calculate eigenenergy. 

Eint = xomegA * (nlevel + 0.5) - xwexeA • (nlevel + 

& 0.51 "2 
520 format (' Initial vibrational level = i3,' 

& f7 . 4, ' eV' I 
write ("". 520) nlevel, Eint * harev 
write (f_out, 520) nlevel, Eint * harev 

C ~dd energy offset. 

Eint = Eint + Aoffset 
550 format('Additional A offset 

& f7 .4, ' eV' I 

f7.4, . eV. 

Energy 

Total offset 

write (*. 550) Aoffset "" harev. Eint "" harev 
write (f_out. 550) Aoffset * harev. Eint * harev 

C Set up potential offsets based photon energy. etc: 

·C Make starting eigenenergy at 0: 

vOA_off - Eint - vOA 

C Shift B surface down additionally by photon energy: 

vOS_off vOA_off - hvl 

c 
c 

Shift C surface depending on iCpot: iCpot 
range of C potential: 

1: shift down by average of 

c 
c 

if (iCpot .eq. 1) then 
vdiff_min = vOC + vOA_off 
vdiff_rnax = zpot(nXpts, 3) + vOA_off 
vOC_off vOA_off - (vdiff_min + vdiff_max) / 2 

else 

iCpot = 2: Shift C surface down additionally by average of closest and 
furthest approaches of potentials: 

vdiff_min = vOC + vOS_off 
vdiff_max = zpot(nXpts, 3) - zpot(nXpts. 2) 
vOC_off vOS_off - (vdiff_min + vdiff_max) / 2 

endif 

C Save the potential surfaces if required. 

if (isavpot_shift .eq. 0) then 
150 format ('Saving potentials BEFORE shifting or shelving. ') 

write (*, 1501 
write (f_out, 150 I 
if (isavpotA .eq. 1) call potlsave (1) 
if (isavpotB .eq. 1) call potlsave (2) 
if (isavpotC .eq. 1) call potlsave (3) 

endif 

C Shift potentials and apply shelf condition: 

do ix = 1. nXpts 
zpot(ix, 1) = zpot(ix, 1) + vOA_off 
if (real(zpot(ix, 1» .gt. shelf) zpot(ix, 1) 
zpot(ix, 2) = zpot(ix, 2) + vOS_off 
if (real(zpot(ix, 2» .9t. shelf) zpot(ix, 2) 
zpot(ix, 3) = zpot(ix, 3) + vOC_off 
if (real(zpot(ix, 3» .gt. shelf) zpot(ix, 3) 

enddo 

shelf 

shelf 

shelf 

C DESUG: Save potentials with shifts in effect. 

151 
if (isavpot_shift .eq. 1) tnen 

format ('Saving potentials AFTER shifting and shelving.') 
write (*, 151) 
write (f_out, 151) 
if (isavpotA .eq. 1) call potlsave (1) 
if (isavpotB .eq. 1) call potlsave (2) 
if (isavpotC .eq. 1) call potlsave (3) 

endif 

C Potential information. 

+>
N o 

> 
"CI 
"CI 
nl 

So S;;. 
N 



write (*, *) 

write (f_out, *) 

if (xwexeA .eq. O.OdOD) then 
230 format ('xOA =',f6.2,2x, 'xomegA =',f9.2,2x, 'vOA =',f6.3, 

& 2x, 'vOA_off =', f6.3) 
write (-, 230) xOA * aO, xomegA - harwn, vOA - harev, 

& vOA_off - harev 
write (f_out, 230) xOA * aO, xomegA - harwn, vOA * harev, 

& vOA_off * harev 
else 

235 format ('xOA =',f6.2,2x, 'xomegA =',f9.2,2x, 'vOA =',f6.3, 
& 2x, 'vOA_off =', f6.3, 
& I, 2x,'wexeA =',f9.2,2x,'alphaA =',f9.3,2x,'OeA =',f9.3) 

42 write (*, 235) xOA * aO, xomegA - harwn, vOA • harev, 
& vOA_off - harev, xwexeA * harwn, xalphaA / aC, deA - harev 

write If_out, 235) xOA - aO, xomegA • harwn, vOA • harev, 
& vOA_off· harev, xwexeA - harwn, xalphaA / aO, deA • harev 
endif 

if (xwexeS .eq. O.OdOO) then 
240 format ('xOS =',f6.2,2x, 'xomegS =',f9.2,2x, 'vOs =',f6.3, 

245 

250 

255 

430 

& 2x, 'vOB_off =', f6.3) 
write (-, 240) xOS • aO, xomegS * harwn, vOS· harev, 

& vOS_off· harev 

& 

& 

& 

& 

& 

& 

& 

& 

& 

& 

& 

write (f_out, 240) xOS * aO, xomegB • harwn, vDS * harev, 
vOS_off - harev 

else 
format ('xOS =',f6.2,2x, 'xomegS ='/f9.2,2x, 'vOS =',f6.3, 

2x, 'vOB_off =', f6.3, 
I, 2x, 'wexeS =', f9.2,2x, 'alphaS =', f9.3,2x, 'DeS =', f9.3) 

write (-, 245) xOS - aO, xomegS - harwn, vDS - harev, 
vOS_off * harev, xwexeS * harwn, xalphaB / aO, deB * harev 

write (f_out, 245) xOB • aO, xomegB • harwn, vDS • harev, 
vOS_off - harev, xwexeS - harwn, xalphaB / aO, deS * harev 

endif 

if (xwexeC .eq. O.OdOO) then 
format ('xOC =',f6.2,2x, 'xomegC =',f9.2,2x, 'vOC =', 

fl6.8, 2x, 'vOC_off =', f6.3) 
write (., .250) xOC - aO, xomegC • harwn, vOC • harev, 

vOC_off • harev 
write (f_out, 25D) xOC - aO, xomegC - harwn, vOC - harev, 

vOC_off • harev 
else 

format ('xOC =',f6.2,2x, 'xomegC =',f9.2,2x, 'vOC 
fl6.8, 2x, 'vOC_off =', f6.3, 
/, 2x,'wexeC =',f9.2,2x,'alphaC =',f9.3,2x,'OeC =',f9.3) 

write (*, 255) xOC - aO, xomegC • harwn, vDC - harev, 
vOC_off • harev. xwexeC • harwn, xalphaC / aD, deC· harev 

write (f_out, 255) xOC * aO, xomegC • harwn, vOC • harev, 
vOC_off * harev, xwexeC • harwn, xalphaC / aO, deC * harev 

endif 

format ('Shelf (eV) = " f8.3) 
write (*, 430) shelf - harev 
write (f_out, 430) shelf * harev 

C Calculate energy shift to apply in Fourier transform (depends on iCpot): 

if (iCpot .eq. 1) then 
e sh~ft vOC_off vOA_off 

else 

290 

e_shift vOC off - vOS_off 
endif 

format ('Energy shift passed to matrix out 
write (., 290) e_shift - harev 
write (f_out, 290) e_shift • harev 

fl3.6) 

C Calculate save interval for coverage of full energy range: 

190 format('Energy range of FPES (eV) f16.8) 
200 format('Step size needed for full. FT (fs) = " f16.8) 

write (., 190) harev • (vdiff_rnax - vdiff_min) 
write (., 200) twopi • atu / (vdiff_max - vdiff_min) 
write (f_out, 190) harev • (vdiff_max - vdiff_min) 
write (f_out, 200) twopi * atu / (vdiff_max - vdiff_min) 

c Calculate how often must propagate on upper surface to get wide enough FT: 

400 

if (tCstep .eq. 0) then 
tCstep = tCfactor - twopi / (vdiff_max - vdiff_minl 
format (' (tCstep automatic) , ) 
write (-, 400) 
write (f_out, 400) 

endif 

C Recalculate tCstep based on itCstep (must be integer multiple of tstep): 

itCstep = int(tCstep / tstep) ! Use int to ensure is small enough (nint 
C rounds to nearest integer). 

tCstep = itCstep * tstep 

210 format (' Revised step size used for C surface (fs) 
& flO.4) 
write' (., 210) tCstep • atu 
write (f_out, 210) tCstep • atu 

C Calculate number of wave functions to store for 20 autocorrelation, terminate 
C if larger than max: 

num_queue = nint(proberange / tCstep) 
460 format('nWTLqueue = " i4, ' MAX_QUEUE i4) 

write (-, 460) nUItLqueue, MAX_QUEUE 
write (f_out, 460) nUItLqueue, MAX_QUEUE 
if (nurn_queue .gt. MAX_QUEUE) then . 

470 format('Error condition. Increase MAX_QUEUE in source code. 
& ' Terminating.') 

write (*, 470) 
write (f_out, 470) 
stop 

endif 

C Print table of letters and corresponding times. 

445 
440 

if «isavpsiA .eq. 1) .or. (isavpsiB .eq. 1) then 

write (-, -) 
write (f_out, *) 

format ('Table of delay times for saved wavefunctions.') 
format ('File number Oelay/fs') 
write (*, 445) 
write (f_out, 445) 
write (*, 440) 

> 
'C 
'C 
~ 

= c:l,. 
~. 

N 

.j:>.. 
tv 
>-' 



450 

write (f_out, 440) 

it = nint(tmin I tstep) + 1 
t = tmin + tstep 
format (4x, i3, 6x, f8.2) 
write (., 450) 0, t .. atu 
write (f_out, 450) 0, t ~ atu 

if (mod (it, itpktsav) 
it = it ... 1 
t = t + tstep 
goto 4 

endif 

npacket = 1 ! Main loop 

0) then ! Find second save point 

write (., 450) npacket, t • atu 
write (f_out, 450) npacket, t • atu 
npacket = npacket + 1 
it = it + itpktsav 
t = t + itpktsav • tstep 

if (t .le. tmax) go to 2 
endif 

C Generate absorbing boundary functions and save to files. 

call make_abs 

472 format('Surface', i1, ' iabs=',il,' absfac=',f16.8, , nxabs=',i4) 
write (f_out, 472) I, iabsA, absfacA, nxabsA 
write (f_out, 472) 2, iabsB, absfacB, nxabsB 
write (., 472) 1, iabsA, absfacA, nxabsA 
write (.; 472) 2, iabsB, absfacB, nxabsB 

if (iabsA .eq. 1) then 
open (f_temp, file='absA out') 
do i = 1, nxabsA 

471 format(f16.S) 

c 

writeCf_temp, 471) absA(i) 
enddo 
close(f_temp) 

endif 
if (iabsB .eq. 1) then 

open(f_temp, fi1e='absB.out') 
do i = 1, nxabsB 

write(f_temp, 471) absB(i) 
enddo 
close (f_temp) 

endif 

C MAIN PROPAGATION CODE 
C 

zfactor 
npacket 

-2dO • zeye • tstep I hb 

C Open other files for run. 

open (f_normA, file = 'normA.out') 
open (f_normB, file = 'normB.out') 
open (f_matrix, file = 'matrix.out') 

C Write vital information to overlap ,matrix file (including version header) 

write (f_matrix, .) ivers_matrix 
write (f_matrix, .) num_queue 
write (f_matrix. . ) tmin • atu. tCstep • atu 
write (f_matrix . • j e_shift • harev 

C Check whether to read wavepa~ket A from file. or generate from scratch. 

if (ireadA .eq. 1) then 
call psiread{l. zpsiAO) 

else 
call initA (tmin. zpsiAO) 

endif 

C Generate zpsiAl by second order Runge Kut~a. This step is required to 
c evaluate the time derivative in 2nd order differencing later on. 

call rk2 (1, zpsiAO. zpsiA1, zfactor) was tmin 

C Check whether to read wavepacket B from file, or start as O. Reverse momentum 
C of wavepacket if requested. 

if (ireadB .eq. 1) then 
call psiread(2, zpsiBO) 

if (irevB .eq. 1) then 
do ix = 1. nXpts 

zpsiBO(ix) = dconjg{zpsiBO{ix» 
enddo 

endif 

call rk2 (2, zpsiBO, zpsiBl, zfactor) ! was tmin 
else 

do ix = 1, nXpts 
zpsiBO(ix) zero 
zpsiBl(ix) = zero 

enddo 
endif 

C Write initial wavepackets to disk (if surface is selected). Save initial norm. 

if (isavpsiA .eq. 1) then 
call pktsav (zpsiAO, npacket, 1) 

endif 
if (isavpsiB .eq. 1) then 

call pktsav (zpsiBO, npacket, 2) 
endif 
npacket = npacket ... 1 

C Set banner for subsequent output information. 

write (., .) 
write If_out, .) 

360 format ('Time/fs Norm A Norm B Norm C 
& 'leV KE C/eV Steps') 
write ('*, 360) 
write (f_out. 360) 

KE A/eV KE B'. 

C Begin t/it (inner) loop. t is time in atu; it is an integer counter (starts at 
C some negative value) used for determining when to save wavepackets. nint 
C nearest integer. ieount keeps track of wavefunction labels saved to disk. 

.j::>.. 
N 
N 

> 
"'CI 
"'CI 
('!) 

= Q.. .... 
~ 

N 



t = tmin + tstep 
it = nint (tmin" I tstep) + 1 
iautocount 
icount 
i_queue = 0 ! Position of last wavepacket in zpsiqueue 
i_QUeue_flag = 0 ! Looparound flag initially not set 

C Main loop start. Save wavepackets if it's time. 

if (mod (it, itpktsav) .eq. 0) then 
if (isavpsiA .eq. 1) then 

call pktsav (zpsiA1, npacket, 1) 
endif 
if (isavpsiB .eq. 1) then 

call pktsav (zpsiB1, npacket, 2) 
endif 
npacket = npacket + 1 

endif 

C zpsiA, zpsiB propagation: both optional. 

ZE zfactor I< ZE1 (t) 

if (ipropA .eq. 1) then 
call Hpsi (1, t, zpsiAl, zHpsiA1) 
if (ipropB .eq. 1) then 

call Hpsi(2, t, zpsiBl, zHpsiBl) 
do ix = 1, nXpts 

zpsiAtemp zpsiAO(ix) + ZE * zpsiBl{ix) + 
& zfactor I< zHpsiAl{ix) ! 6-30-97: shouldn't one be - ? 

zpsiBtemp = zpsisO(ix) + ZE * zpsiAl(ix) + 
& zfactor I< zHpsiBl{ix) 

zpsiAO(ix) zpsiA1(ix) 
zpsiBO (ix) zpsiBl (ix) 
zpsiA1 (ix) zpsiAtemp 
zpsiBI (ix) zpsiBtemp 

enddo 
else 

do ix = 1, nXpts 
zpsiAtemp = zps~AO{ix) + ZE I< zpsiB1(ix) + 

& zfactor I< zHpsiAl{ix) ! 6-30-97: shouldn't one be - ? 
zpsiAO (ix) zpsiAI (ix) 

zpsiA1{ix) = zpsiAtemp 
enddo 

endif 
else 

if (ipropB .eq. 1) then 
call Hpsi(2, t, zpsiB1, zHpsiB1) 
do ix = 1, nXpts 

zpsiBtemp = zpsiBO(ix) + ZE * zpsiAl(ix) + 

& zfactor I< zHpsiB1 (ix) 
zpsiBO (ix) zpsiB1 (ix) 
zpsiB1(ix) = zpsiBtemp 

enddo 
endif 

endif 

C Apply absorbing boundary functions to A, B 

if (iabsA .eq. 1) then 
do i = 1, nxabsA 

j = nXpts - nxabsA + i 
zpsiAl(j) = zpsiA1(j) * absA(il 

enddo 
endif 
if (iabsB .eq. 1) then 

do i = I, nxabsB 
j = nXpts - nxabsB + i 
zpsiBl(j) = zpsiB1(j) I< absB(i) 

enddo 
endif 

C ZpsiC propagation. 

if «ipropC .eq. 1) .and. (mod(it, itCstep) .eq. 0» then 

C Copy appropriate surface wavefunc.tion into zpsiC; generate C1 (note: back
C ·ward propagation!) 

if (iCpot .eq. 1) then 
do ix = 1, nxpts 

zpsiCO(ix) = zpsiAl(ix) 
enddo 

else 
do ix = I, nXpts 

zpsiCO(ix) = zpsiB1(ix) 
enddo 

endif 
call rk2 (3, zpsiCO, zpsiC1, -zfactor) ! was tmin 

C Copy wavefunction into conjugated queue array. 

c 
c 

c 

i_queue = i_queue + 1 
if (i_QUeue .gt. num_queue) then 

i_queue = 1 
i_queue_f1ag = 1 ! Set looparound flag 

endif 
do ix = 1, nXpts 

zpsiqueue(ix, i_queue) = dconjg(zpsiCO(ix» 
enddo 

Propagate on C surface. recording overlap matrix element every itCstep 
iterations. 

if «isavpsiC .eq. 0) .or. (it .eq. 0» then 

call chknrm(zpsiCO, rnormC) 
write (f_matrix, *) dcmplx{rnormC) ! Self-overlap 

if (i_QUeue_flag .eq. 1) then 
j_max = num_queue - 1 

else 
j_max 

endif 
i_queue -

·nsteps = j_max * itCstep 
if (j_max .gt. 0) then 

do j = 1, j_max ! num_queue - 1 
i = i_queue - j 
if (( i .le. 0) . and. (i_queue_flag . eq. 1» then 
if (i .le. 0) then 

i = i + num_QUeue 
endif 

if (i .gt. 0) then 

if (j .gt. 1) then! OLD: if (j .+ 1 
kmax = itCstep 

i_queue) 

> 
"0 
"0 
~ 

= c:lo 
~. 

N 

~ 
tv 
W 



c 
c 

else 
kmax = itCstep - 1 ! First step already done by rk2. 

endif 
do k = 1. kmax ! propagate backward several times in succession. 

Eventually this step may be replaced by more efficient Chebychev 
routine. 
call Hpsi(3, t. zpsiCl, zHpsil 
do ix = 1, nXpts 

z = zpsiCO(ix) - zfactor * zHpsi(ix) 
zpsiCO (ix) zpsiCl (ix) 
zpsiCl (ix) = z 

enddo 
enddo 

do ix = I. nXpts 
zov!p(ix) = zpsiCl(ix) * zpsiqueue(ix, i) 

enddo 
call zsimpint(nXpts, zovlp, dx. zaccum) 
write (f_matrix, *) zaccum ! was dconjg(zaccum) 

endif 

C DEBUG: Write intermed wf to disk if isavpsiC 1 and it 0: 

if «(isavpsiC .eq. 1) .and. (mod(j, 8) .eq. 0) .and. 
& (it .eq. 0» then 

write(*, *) 'Writing zpsiCl' 
write(f_out. *) 'Writing zpsiCl' 
call pktsav(zpsiCl, j, 3) 

endif 

enddo 
endif 

endif 

C DEBUG: Terminate if isavpsiC 1: 

if «isavpsiC .eq. 1) .and. (it .eq. 0» go to 800 

C Done C surface propagation. 

endif 

C Print statistics, write data to norm files. 

if (mod (it, istatstep) .eq. 0) then 
call chk (1, 1, zpsiA1, rnormA, HavA) 
call chk (2, 1, zpsiBl, rnormB, HavB) 

900 format(f9.2, 2x, f6.4, 2x, f6.4, 2x, f6.4, 2x, f7.4, 2x, 
& f7.4. 2x. f7.4. 2x. is) 

write (*, 900) t * atu, rnormA, rnormB, rnormC, HavA 
& harev / rnormA, HavB * harev I rnormB, HavC * harev I 

rnormC, nsteps 
write (f_out, 900) t * atu, rnormA, rnormB, rnormC, HavA * 

harev / rnormA, HavB * harev I rnormB, Have • harev I 

& rnormC, nsteps 

901 format{f9.2. 2x. f6.4) 
write (f_normA, 901) t * atu, rnormA 
write (f_normB, 901) t atu, rnormB 

endif 

C Autocorrelation chores. 

if (ieigenA .eq. 1) then 

C Save in~tial wavepacket for autocorrelation when we reach starting time 

if (it .eq. itautomin) then 
zautoA(1) = rnormA 
do ix = 1, nXpts 

zpsiAorig{ix) = zpsiAl (ix) 
enddo 

C For subsequent values, perform autocorrelation. 

else if «it .gt. itautomin) .and. (mod(it, itauto) .eq. 0» 
& then 

call ovlp(zpsiAorig, zpsiA1, zaccum) 
iautocount = iautocount + 1 
zautoA(iautocount) = zaccum. 

endif 

C Check that we aren't blowing up. 

if «rnormA .gt. 2dO) .or. (rnormB .qt. 2dO» then 
877 format ('Exceeded reasonable norm - terminating.') 

write (*, 877) 
write (f_out, 877) 
stop 

endif 

endif 

C End t/it loop. 

t = t + tstep 
it = it + 1 
if (t .le. tmax) goto 

C Save final wavepackets on each surface to a file. 

call psidump(l, zpsiAl) 
call psidump(2, zpsiBl) 

C Perform FT of autocorrelation array. First must pad remaining terms with D's. 

if (ieigenA .eq. 1) then 
541 format('Performing FFT of autocorrelation. 

& 'Results saved in eigenA.out. ') 
write (f_out, 541) 
write (*, 541) 
do i = iautocount + 1, nauto 

zautoA{i) = zero 
enddo 

C DEBUG: Save original autocorrelation -- as both real part, and mag. 

open(f_temp, file='autoA.rea1') 
do i = 1, nauto 

write (f_temp, *) drea1(zautoA(i» 
enddo 
close (f_temp) 

open (f_temp, file='autoA mag') 
do i 1, nauto 

re = dreal(zautoA(i» 

+:>. 
~ 

> 
"0 
"0 
I'D 

= Q.. S;;. 
N 



ai = dimag(zautoA(i)) 
write(f_temp, *) dsqrt(re * re +~ai * ail 

enddo 
close (f_temp) 

C Multiply by smoothing function before taking FFT: 

do i = I, nauto 
zautoA(i) = zautoA(i) * dcmplx(dexp(gamm * i * i» 

enddo 

C DEBUG: Save smoothed autocorrelation -- as both real part, and mag. 

open (f_temp, file='autoA.sm.real') 
do i = I, nauto 

write (f_temp, *) dreal(zautoA{i) 
enddo 
closeCf_temp) 

open(f_temp. file='autoA.sm.mag') 
do i 1, nauto 

re = dreal(zautoA(i)) 
ai = dimag (zautoA (i) ) 
write (f_temp, *) dsqrt(re * re + ai * ail 

enddo 
close (f_temp) 

C Take FFT. 

call FFT(zautoA, nauto, 1) 

C Write results to file - only write positive part since negative freq's don't 
C have physical meaning. 

open(f_temp, file = 'eigenA.out') 
estep = twopi / nauto / tauto * harev 

501 format(f9.5, 2x, e16.8) 
do i = 1, nauto / 2 

write(f_temp, 501) estep * (i - 1), 
& dreal(zautoA{i») 

enddo 
close (f_temp) 

endif 

C Now take final wavefunction and overlap with known eigenfunctions of X state. 

600 

call ovlp(zpsiAI, zpsiAl, zaccum) ! Get norm of wavefunction 
atemp = dsqrt(dreal(zaccum)) 
apen (f_temp, file = 'eigenlist. out' ) 
format (i2, 2x, e16. 8) 
do nlevel = 0, 10 

call initA(O, zpsiAO) ! Use zpsiAO as temp array to hold each e'fn. 
call ovlp(zpsiAI, zpsiAO, zaccum) 
re = dreal(zaccum / atemp) 
ai = dimag(zaccurn / atemp) 

write (f_temp, 600) nlevel, re * re + ai * ai ! Must square result anyway. 
enddo 
clase(f_temp) 

C Done. 

380 
800 

format ( 'Done. ' ) 
write (*, 380) 

write (f_out, 380) 

close (f_out) 
close (f_normA) 
close (f_normB) 
close (f_matrix) 

stop 
end 

C ** ****** * ************* **** *** *** * * * **** *** *** * * **** ***** * * * * * * * * ** * *** ****** ** 
subroutine const () 

C ** * ********** *** * ******* ** * ***** ** * **** ** * * *** * * * *** * **** ** ** ** * ** * ****** ** ** * 
C Define some useful constants. 

implicit real*8 (A-H, O-Y) 
implicit complex*l6 (Z) 
cornmon /convert/ harev, evwn, aO, amu, emu, harwn, amass, atu 
common /constO/ zero, zeye, pi, c, twopi, sqrtpi. pisq. 

& alessthanhalf 
common /constl/ xmas, hb, sechfactor. gaussfactor 

C Set conversion factors. 

harev = 27. 211608dO 
evwn = 8065. 479dO 
aO = 0.52917706dO 
amu = 1822. 882dO 
emu = 9.109534d-31 
harwn = harev * evwn 
amass = 1.66056d-27 
atu = O. 024199dO 

C Set constO. 

c 

zero = dcmp1x (O.OdOO, O.OdOO) 
zeye = dcmp1x (O.OdOO, 1.0dOO) 
pi = dacos (-l.OdOO) 
twopi = 2 * pi 
sqrtpi = dsqrt (pi) 
pisq = pi * pi 
alessthanhalf = 0.49999 ! Just a little less than half, but not so little 

that we machine round to 0.5. 

C Speed of light in cm/s and hbar in atomic units. 

c = 2. 99792458d10 
hb = 1. OdO 

C Pulse shape parameters: sechfactor is multiplied by time inside sech~2 so that 
C relative pulse intensity = 0.5 when time = FWHM / 2. Gaussfactor is similar. 
C but for a gaussian-shaped pulse. 

sechfactor = 1.762747174dOO ! = * arccosh(sqrt(2)) 
gauss factor = -1.386294361dOO ! = -2 * In{2) 

return 
end 

C ****************************************************************************** 
subroutine read_input () 

C ****************************************************************************** 
C Order of input de·ck: 

> 
"CI 
"CI 
~ 

= c:l. ..... 
~ 

N 

+:. 
N 
Vl 



C ivers: Version number of program. If differe~t from current, terminates. 

C isavpotA, isavpotB, isavpotC, isavpot_shift: Flag (0, 1) to save p~tentia1 
C functions of surfaces A, B, C to file. isavpot_shift is flag (0,1) to save 
C shifted potentials, rather than unmodified ones (for debugging purposes). 

C isavpsiA, isavpsiB, isavpsiC, tpktsav: Flag (0, 1) to save wavefunction on 
C surfaces A, B, C to file. Note if isavpsiC set, program ends after first 
C call to chebprop. tpktsav is period for recording (fs). 

C ieigenA, tauto: Flag (0, 1) to perform eigenspace decomposition on psiA, time 
C interval (fs) for saving autocorrelation. Use tauto = a for automatic calcu
C lation (will use largest value possible without overrunning array). Depha-
C sing constant (used to eliminate high-frequency ringing in Fourier transform 
C due to finite record length) is calculated automatically. 

C xmas: Reduced mass of system (a.m.u.). 

C tmin, tmax, tstep: Range of propagation, step size on AlB surfaces. If tstep 
C = 0, calculates automatically. 

C ipropA. ipropB, ipropC: Flags (0, 1) to propagate on A, B. C surfaces. 

C iCpot, tCstep. tCfactor: Surface (l=A, 2=B) to take FPES from; interval (£5) 
C for C surface transfer (controls energy range of FTi if 0, is calculated 
C automatically); safety factor for automatic timestep. 

C statstep: Interval (fs) for saving statistics (norm. KE) to screen. 

C emin, emax, factor: Parameters for Chebychev approximation: emin and emax are 
C energy range (eV); factor is number of extra terms in approximation (for 
C safety) . 

c shelf: Potential shelf for all surfaces (eV). 

C nlevel, Aoffset: Initial vibrational level of ground state (must be Morse 
C potential); alternatively, ~an specify energy offset to shift surface A with 
C Aoffset (eV). 

C ireadA, ireadB, irevB: Flags (O.l) to read initial wavefunctions A, B from 
e file instead (note: nlevel irrelevant if ireadA = 1), flag (0,1) to reverse 
e momentum of wavepacket B when initially read in (for simulating reflection 
c off solvent cage). 

C xmin, xmax, nXpts: Spatial limits of calculation (Angstroms), number of points 
e for grid. 

C hv1, fwhml, dmul, itype1: Photon 
C energy (eV), FWHM pulse width (fs), dipole moment (angstrom) and type (O 
C sech ..... 2, 1 = gaussian) of pump pulse. 

e fwhm2, thresh: Maximum anticipated FWHM of probe (fs), intensity threshold 
e (between D and I) of probe pulse (used to minimize the size of the 2D auto-
e correlation array) . 

C iabsA, absfacA, nxabsA: Absorbing boundary flag, magnitude factor, number of 
C grid points from edge for surface A. If absfacA = 0, generate factor auto
C matically. 

C iabsB, absfacB. nxabsB: Absorbing boundary flag, magnitude factor, number of 
e grid points from edge for surface B. If absfacB = 0, generate factor auto
C matically. 

C ipottypA: Potential type for surface A 
C for details. 

anion ground state. See potread () 

C ***: This line varies with ipottypA; see potread() for details. 

C ipottypB: Potential type for surface B anion excited state. 

C ***: This line varies with ipottypB. 

C ipottypC: Potential type for surface C neutral. 

C ***: This line varies with ipottypC. 

900 

implicit real*8 (A-H, o-y) 
implicit complex*16 (Z) 

parameter (npts = 2048) 
common Iconvertl harev, evwn. aD, amu, emu, harwn, amass, atu 
common /constOI zero, zeye, pi, c, twopi, sqrtpi, pisq, 

& alessthanhalf 
common Iconstll xmas, hb, sechfactor. gaussfactor 
common Iconst21 xOA, xomegA, vOA, xwexeA, dea, xalphaA, xOB, 

& xomegB, xwexeB, deB, xalphaB, vOB, xOC, xomegC. xwexeC, deC, 
& xalphaC, vOC, shelf, vOA_off, vOB_off, vOC_off 

common Iconst31 tstep 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 
common Iconst71 tpktsav, itpktsav, tCstep, itCstep, tCfactor, 

& emin, emax, factor, e_shift, tmin, tmax, statstep, istatstep, 
& tauto, itauto 

common IconstBI hvl, fwhml, dmu1, domegal, sechl, itypel, ipropA, 
& ipropB, ipropC. iCpot, nlevel, Aoffset, Eint, fwhm2, thresh, 
& proberange, ireadA, ireadB, irevB 

integer f_in, f_out, f_normA, f_normB, f_matrix, f_temp, 
& f_temp2, f_temp3 

common Ifilesl f_in, f_out, f_normA, f_normB, f_matrix, f_temp, 
& f_temp2, f_temp3 . 

character*BO input_header. last_date, matrix_header, s 
common Iheadersl input_header, last_data, matrix_header 
common Ipottypl ipottypA, ipottypB, ipottypC, isavpotA, isavpotB, 

& isavpotC, isavpsiA, isavpsiB, isavpsie. ieigenA, ieigenB, 
& isavpot_shift 

common Iversionl ivers_input, ivers_matrix 

format('Reading alpine.inp.') 
write (*, 900) 
write (f_out. 900) 

open (f_in, file = 'alpine.inp') 
read .(f_in, *) ivers 
if (ivers_input .ne. ivers) then 

901 format('Input deck incompatible: is, ' sought, is, 
& ' read.') 

write (*, 901) ivers_input, ivers 
write (f_out, 901) ivers_input, ivers 
stop 

endif 

C Read in parameters 

read If_in. *) isavpotA, isavpotB, isavpotC, isavpot_shift 
write (*, ... ) 'isavpotA=', isavpotA 

~ 
N 
0'1 

> 
"0 
"0 
tD 

= ~ 
~. 

N 



wri te (* , .. ) 'isavpotB=', isavpotB 
write (*, *) 'isavpotC=', isavpotC 

read (f_in, *) isavpsiA, isavpsiB, isavpsiC, tpktsav 
tpktsav = tpktsav I atu 

read (f_in, *) ieigenA, tauto 
tauto = tauto I atu 

read (f_in, *) xmas 
xmas = xmas * amu 

read (f_in, *) tmin, 
tmin = tmin I a tu 
tmax = tmax I a tu 
tstep = tstep I atu 

tmax, tstep 

read (f_in, *) ipropA, ipropB, ipropC 

read (f_in, *) iCpot, tCstep, tCfactor 
tCstep = tCstep I atu ! Deal with neg value later. 

read (f_in, *) statstep 
statstep = statstep I atu 

read (f_in, *) emin, emax, factor 
emin emin I harev 

= emax I harev 

read (f_in, *) shelf 
shelf = shelf / harev 

read (f_in, *) nlevel, Aoffset 
Aoffset = Aoffset / harev 

read (f_in, *) ireadA, ireadB, irevB 

read (f_in, *) xmin, xmax, nXpts 
xmin = xmin / aO 
xmax = xmax I aO 
dx = (xmax - xmin) / nXpts 

read (f_in. *) hvl, fwhml, droul, i type! 
hv! = hv! / harev 
fwhml = fwhml / atu 
droul = droul / aO 
domegal = hvl / hb 
if (itypel .eq. 0) then 

sechl = sechfactor / fwlunl 
else 

sech1 gauss factor / (fwlunl * fwlunl) 
endif 

read (f_in. *) fwhm2, thresh 
fwhm2 fwhm2 / atu 
proberange fwhm2 * thresh 

read (f_in, *) iabsA, absfacA, nxabsA 
read (f_in, *) iabsB, absfacB. nxabsB 

C Read in potential energy function parameters. 

call potread () 

C Done. 

close (f_in) 

return 
end 

c ****** ** ** * * ** * ******************** **** * ** * * * ******** **** ** * ****** *** * *** * .. * ** 
subrou tine po tread ( ) 

C ****************************************************************************** 
C reads in potential energy function parameters, then computes (or reads from a 
C filel the value of the function at each grid point. 

C Potential types available are: 
C 0: Morse (input Re, De and Be) 
C 1: Harmonic/Anharmonic (input Re, We, Wexe). If wexe .ne. 0 then uses Morse. 
e ): Potential read from file - special format 

C Other potentials may be added by modifying the subroutine. 

implicit real*8 (A-H, O-V) 
implicit complex*16 (Z) 
parameter (npts = 2048) 
common /convert/ harev, evwn, aO, amu, emu, harwn, amass, atu 
common /constO/ zero, zeye, pi, c, twopi, sqrtpi, pisq, 

& alessthanhalf 
common /constl/ xmas, hb, sechfactor, gauss factor 
common /const2/ xOA, xomegA, vOA, xwexeA, dea, xalphaA, xOB, 

& xomegB, xwexeB, deB, xalphaB, vOB, xOC, xomegC, xwexeC, deC, 
xalphaC, vOC, shelf, vOA_off, vOB_off, vOC_off 

cornmon/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 
& iabsB, nxabsB, abs facS 

common /pot/ zpot(npts, ) 
common /pottyp/ ipottypA, ipottypB, ipottypC, isavpotA, isavpotB, 

& isavpotC, isavpsiA, isavpsiB, isavpsiC, ieigenA, ieigenB, 
& isavpot_shift 
integer f_in, f_out, f_normA, f_norma. f_matrix, f_temp, 

& f_temp2, f_temp) 
common /files/ f_in, f_out, f_normA. f_norma, f_matrix, f_temp, 

& Ctemp2. f_temp3 

C SURFACE A (anion ground state) 

C set the potential by reading potential type 

read(f_in,*)ipottypA 

C For each type read relevant parameters: 
C (expect xO in Angs, omega, and wexe in cm-l and Va, De in eV, alpha in Angs-l) 

if (ipottypA .eq. 0) then 
read(f_in,*)xOA,deA,xa!phaA,vOA 

C convert to au 
xOA=xOA/aO 
deA=deA/harev 
xalphaA=xalphaA*aO 
xwexeA=xalphaA'" * 2 / (2 . a * xmas) 
xomegA=dsqrt(4.0*xwexeA*deA) 
vOA=vOA/harev 
call morse(l,xOA,deA,xalphaA,vOA) 

else if .(ipottypA .eq. 1) then 

> 
"CI 
"CI 
n> a 
~. 

N 

+:>
tv 
-...l 



read(f_in,*)xOA,xomegA,xwexeA,vOA 
C convert to au 

xOA=xOA/aO 
xomegA=xomegA/harwn 
xwexeA=xwexeA/harwn 
vOA=vOA/harev 

C If Morse, convert potential parameters to reciprocal bohr and hartrees .. 
if (xwexeA .ne. O.OdOO) then 

xalphaA=dsqrt(2.0dOO*xrnas*xwexeA) 
deA=xomegA**2/(4.0dOO*xwexeA) 

c ipottypA=O 

100 

call morse(l,xOA,deA,xalphaA,vOA) 
else 

call harmonic (l,xmas,xOA,xomegA,vOA) 
endif 

else if (ipottypA .eq. 3) then 
vOA = read_user-pot{l) 

else 
format('problem with surface A potential type. ') 
write (*, 100) 
write (f_out, 100) 
stop 

endif 

C SURFACE B (anion excited state) 

110 

read(f_in,*)ipottypB 

if (ipottypB .eq. 0) then 
read( f_in, *) xOS, deB, xalphaB, vOB 
xOB=xOB/aO 
deB=deB/harev 
xalphaB=xalphaS*aO 
xwexeB=xalphaB**21 (2. Q*xmas) 
xomegB=dsqrt (4. O*xwexeB*deB) 
vOB=vOB/harev 
call morse(2,xOB,deB,xalphaB,vOB) 

else if (ipottypB . eq. 1) thEm 
read(f_in,*)xOB,xomegB,xwexeB,vOB 
xOB=xOB/aO 
xomegB=xomegS/harwn 
xwexeB=xwexeB/harwn 
vOB=vOB/harev 
if (xwexeB .ne. O.OdOO) then 

xalphaB=dsqrt(2.0dOO*xmas*xwexeB) 
deB=xomegB**2/(4.0dOO*xwexeB) 
ipottypB=O 
call morse(2,xOB,deB,XalphaS,vOB) 

else 
call harmonic (2 ,xmas, xOB, xomegB,vOB) 

endif 

else if (ipottypB .eq. 3) then 
vOS = read_user-pot(2) 

else 
format('Problem with surface B potential type.') 
write (*, 110) 
write (f_out, 110) 
stop 

endif 

C SURFACE C (neutral) 

120 

read(f_in,*)ipottypC 

if (ipottypC .eq. 0) then 
read(f_in,*)xOC,deC,xa!phaC,vOC 
xOC=xOC/aO 
deC=deC 1 harev 
xalphaC=xalphaC*aO 
xwexeC=xalphaC**21 (2. O*xmas) 
xomegC=dsqrt (4. O*xwexeC*deC) 
vOC=vOC/harev 
call morse(3,xOC,deC,xalphaC,vOC} 

else if (ipottypC .eq. 1) then 
read(f_in, *)xOC, xomegC, xwexeC, vOC 
xOC=xOC/aO 
xomegC=xomegC/harwn 
xwexeC=xwexeC/harwn 
vOC=vOC/harev 
if (xwexeC .ne. O.OdOO) then 

xalphaC=dsqrt(2.0dOO*xmas*xwexeC) 
deC=xomegC**2/(4.0dOO*xwexeC) 
ipottypC=O 
call morse(3.xOC,deC,XalphaC,vOC) 

else 
call harmonic(3,xmas,xOC,xomegC,vOC) 

endif 

else if (ipottypC .eq. 3) then 
vOC = read_user-pot{3) 

else 
format('Problem with surface C potential type. ') 
write (*, 120) 
write (f_out, 120) 
stop 

endif 

return 
end 

C *************************************************************************.**** 
subroutine harmonic (ipot, xmas, xO, xomeg. vO) 

C * * * **** * *************** * ****** *** * * *** * ** * ** * ** * * ** **** * ** ****** * *** ********** 
C 12/8/96 (BJG) Note shelf moved to main subroutine. 

99 

implicit real*8 (A-H, o-y) 
implicit complex*16 (Z) 
parameter (npts = 2048) 
common Iconvertl harev, evwn, aO, amu, emu, harwn, amass, atu 
common /const2/ xOA, xomegA, vOA, xwexeA, dea, xalphaA, xOB, 

& xomegB, xwexeB, deB, xalphaB, vOS, xOC, xomegC, xwexeC, deC, 
& xalphaC, vOC, shelf, vOA_off, vOB_off, vOC_off 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 
common /potl zpot (npts, 3) 

format (a, fS.l, a) 
write (6, *) 

do 120 ix 1, nXpts 

+:>. 
N 
00 

> 
"C 
"C 
ttl 

= c:l.o 
~. 

N 



120 

xi = xmin + (ix - 1) .. dx 
zpot(ix. ipot) = O.SOdOO .. xmas .. (xomeg .. (xi - xO)) ** 2 + vO 

continue 

return 
end 

c ** **** .. *** ........ ,o." ** ** *********""** '" **** *** "'*"""'''". *** '" ** *** ** ** .. ** ********* .. ** '" "' .. '" 
subroutine morse (ipot, xO. de, xalpha, vOl 

C '" '" * **** ... ***** .... ** * *********** """''''.*''' ** ****.* '" **** **** ** ** ******* **<r *'" ** '" '" '" _. *** 
C 12/8/96 (BJG) Note shelf moved to main subroutine. 

99 

implicit real*8 (A-H. O-Yl 
implicit complex*16 (Zl 
parameter (npts = 2048) 
common /convertl harev. evwn, aD, amu, emu, harwn, amass, atu 
common /const2/ xOA. xomegA, vOA, xwexeA, dea", xalphaA, xOS. 

& xomegB, xwexeB, deS. xalphaB, vOS, xOC. xornegC, xwexeC, deC, 
& xalphaC, voe, shelf, vOA_off, vOS_off. voe_off 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 
common Ipotl zpot(npts, 3) 

format (a, fS.1. a) 
write (6, .) 

do 120 ix = 1, nXpts 
xi = xmin + (ix - 1) • dx. 
zpot(ix, ipot) = de * (1.0dOO - dexp (-xa1pha • (xi - xO))) *. 2 

& + vO 
120 continue 

return 
end 

C ** * * *. * **.* ••• ** ••••••• *.******** •• * * ••• * ••• * ••• **. **.* ** * * * ****************** 
real·S function read_user-pot(ipot) 

C •• ** ••••••• **.********* .************** •• *** •• *.* *** ** **.* .** * * * * ******** ****** 
C Read va, potential filename from input_deck. then read potential from file, 
C save in zpot(ipot). Perform interpolation automatically. 

implicit real*B (A-H. a-V) 
implicit complex*16 (Z) 
parameter (npts = 2048) 
common Iconvertl harev, evwn, aO, amu, emu, harwn, amass, atu 
common/const4/xmin,xmax,nXpts,dx.,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 
common Ipotl zpot (npts, 3) 
integer f_in, f_out, f_normA, f_normB, E_matrix, f_temp, 

& f_temp2, f_temp3 
common IEilesl f_in, f_out, f~normA, f_normB, f_matrix, f_temp, 

& f_temp2, f_temp3 

character*80 pot_fn 
real*8 dx_temp, nXpts_temp, vO, vtemp(npts), 

& x, xmin_temp, xmax_temp, x_temp 
integer ifile, ix, ix_temp 

C Read potential 

read{ f_in, *) vO 
if (ipot .eq. 1) then 

pot_En = 'potA.in' 

c 

else if (ipot .eq. 2) then 
pot_fn = 'potB.in' 

else if (ipot .eq. 3) then 
pot_En = 'potC.in' 

endif 
read(f_in, *) vO, pot_En 
va = vO I harev 

100 format ( 'Pot = " iI, ' File = 
write(f_out, 100) ipot, pot_fn 
write(*, 100) ipot, pot_En 

a) 

open(f_temp, file = pot_En) 
read(f_temp, *) xmin_temp, xmax_temp, nXpts_temp 
xmin_temp = xmin_temp / aO 
xmax_temp = xmax_temp / aO 
dx._temp = (xmax_ternp - xmin_temp) I nXpts_temp 

do ix = 1, nXpts_temp 
read(f_temp, *) vtemp(ix) 
vtemp(ix) = vtemp(ix) I harev + vO 

enddo 
close (f_temp) 

C Interpolate potential to fit current grid 

do ix = 1, nXpts 
x = xmin + (ix - 1) * dx. 
iE (x .It. xmin_temp) then 

zpot(ix, ipot) = vtemp{l) 
else if (x .ge. xmax_temp - dx_temp) then !990222 BJG: Added -dx_temp 

zpot{ix, ipot) = vtemp{nXpts_temp) 
else 

ix_temp = int{(x - xmin_temp) I dx_temp) + 1 
x_temp = xmin_temp + (ix_temp - 1) * dx_temp 
zpot(ix, ipot) (vternp(ix_temp) * (x_temp + 

& dx_temp - xl + vtemp(ix_temp + 1) * (x - x_temp» 
& I dx_temp 

endif 
enddo 

read_user....,pot 
return 
end 

vO 

C *** ••• **. ** *.**.* •••• **** ••• * ••• * ••••• * ••• * .*.** *** ****. *****. * ** * *** .***.* •• * 
subroutine initA (ti, zpsiA) 

C •• *. *. *.* ** * *****.* •••••••• ** •• * •• *** * *** * **** ***** ******. * * * * •• ** •• **. * ••• **. 
C Initialize the wavefunction array on anion ground state surface. 

implicit real·S (A-H, a-V) 
implicit complex·16 (Z) 

parameter (npts = 2048) 
common /convert/ harev, evwn, aO, amu, emu; harwn, amass, atu 
common /constOI zero, zeye, pi, c, twopi, sqrtpi, pisq, 

& alessthanhalf 
common /constl/ xmas, hb, sechfactor, gauss factor 
common./const2/ xOA, xomegA, vOA, xwexeA, dea, xalphaA, xOB, 

& xomegB, xwexeB, deB, xalphaB, vOB, xOC, xomegC, xwexeC, deC, 
& xalphaC, voe, shelf, vOA_off. vOB_off, vOC_off 

common Iconst3/ tstep 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 

> 
"CI 
"CI 
(D 

= ~ ... 
~ 

N 

.+>. 
N 
\0 



common Ipottypl ipottypA, ipottypB, ipottypc, isavpotA, isavpotB, 
& isavpotC, isavpsiA, isavpsiB, isavpsiC, ieigenA, ieigenB, 
& isavpot_shift 
integer f_in, f_out, f_normA, f_normB, f_matrix, f_temp, 

& f_temp2, f_temp3 
common Ifil.esl f_in, f_out, f_normA, f_normB; f_matrix, f_temp, 

& f_temp2, f_temp3 

C Local declarations: 

dimension zpsiA (npts) 

C Place the initial wavepacket on surface A. 
C If using a fully flexible potential, i.e., from a file, then need the 
C initial (ground) wave function of the ground state surface supplied 
C explicitly: use anionwf subroutine that reads Id wavefunction from file 
C in the format produced by the FCF program of Ellison. 

c 

if (ipottypA .eq. 3) then 
call anionwf (1, zpsiA) 

else 
if (ipottypA .eq. 4) then 

call psiread (1, zpsiA) 
else 
if (ipottypA .eq. 1) then 

call initWF (zpsiA) 
else 

call morsewf (zpsiA) 
c endif 

endif 
endif 

C Check the norm and energy of the stationary state on the lower potential 

100 

call chk (1, ti, zpSiA, rsnorm, Have) 

write (*, *) 
write (f_out, *) 

format('Norm of initial wavefn is 
write (*, 100) rsnorm 
write (f_out, 100) rsnorm 

f12.6) 

110 format('Energy (on lower surface) <H> =', f10.5, 2x, f10.2, 
& 'cmA-1'l 
write (*, 110) Have/rsnorm, Have*harwn/rsnorm 
write (f_out, 110) Have/rsnorm, Have*harwn/rsnorm 

return 
end 

C * * * * * *** ** * *** * '" **** * **"'*"'*** ** *'" ** ** ***** * ******* * ** ** **** *************** **** 

c 
subroutine rk2 (wf, zpsiAO, zPSiA1, zfactorl 
subroutine rk2 (wf, zPSiAO. zpSiA1, til 

C * ** * * ****** ***** ** ** * ** ** **** *** * ** ** **** * ******** * * * * * ************** * * ** * * '" ** 
C Generate zpsiA1 from zpsiAO using second-order Runge Kutta (PRK2P) on surface 
C wf (1-3). 
C 8/13197 note: Made more flexible by including zfactor as argument (so can 
C propagate backward); more efficient by calculating fractions of zfactor once. 
C Got rid of ti -- never used. 

implicit real*8 (A-H, O-Y) 
implicit complex*16 (Z) 

parameter (npts = 2048) 
common Iconvertl harev, evwn, aD, amu, emu, harwn, amass, atu 
common IconstOI zero, zeye, pi, c, twopi, sqrtpi, pisq, 

& alessthanhalf 
common·lconstll xmas, hb, sechfactor, gauss factor 
common Iconst21 xOA, xomegA, vOA, xwexeA, dea, xalphaA, xOs, 

& xomegB," xwexeB, deB, xalphaS, vOS, xOC, xomegC, xwexeC, deC, 
& xalphae, voe, shelf, vOA_off, vOS_off, vOe_off 

common Iconst31 tstep 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iab"sB,nxabsB, absfacB 

C Local declarations: 

dimension zpsiAO{npts), zpsiAl{npts) 
dimension zHpsi{npts), zpsiAI{npts) 

C dimension zHpsiAO(npts), zpsiAI(npts), zHpsiAI(npts) 
complex*16 zfactor_div_4, zfactor_div_2 

zfactor_div_4 
zfactor_div_2 

zfactor 
zfactor 

call Hpsi(wf, ti, zpsiAO, 
do ix = 1, nXpts 

zpsiAI(ix) = zpsiAO(ix) 
enddo 

4. 
2. 

zHpsi) 

+ zfactor_div_4 * zHpsi(ix) 

call Hpsi(wf, ti, zpsiAI, zHpsi) 
do ix = I, nXpts 

zpsiAl(ix) = zpsiAO(ix) + zfactor_div_2 * zHpsi(ix) 
enddo 

c call Hpsi(wf, ti, zpsiAO, zHpsiAO) 
c do 20 ix = 1, nXpts 
c zpsiAI(ix) = zpsiAO(ix) - zeye * (tstep / 2.00dOO) * zHpsiAO(ix) 
c & I hb 
c20 continue 
c call Hpsi(wf, ti, zpsiAI, zHpsiAI) 
c do 30 ix = 1, nXpts 
c zpsiAl(ix) = zpsiAO(ix) - zeye * tstep '" zHpsiAI(ix) / hb 
c30 continue 

return 
end 

C ***** ***** '" *'" **** '" ************* **** ***** **** ** ** '" * * "'** '" *** *** ******* '" ** *** '" **;* 
subroutine initWF (zpsiAOl. 

C *****"'*"'****"'*"'**"'*****************************************"'**.**"'*********"'** 
C Initialize wavefunction on surface A. 

implicit real*8 (A-H, o-y) 
implicit complex*16 (Z) 
parameter (npts = 2048) 
common IconstOI zero, zeye, pi, c, twopi, sqrtpi, pisq, 

& alessthanhalf 
common Iconstll xmas, hb, sechfactor, gauss factor 
common Iconst21 xOA, xomegA, vOA, xwexeA, dea, xalphaA, xOB, 

& xomegB, xwexeB, deB, xalphaB, vOB, xOC, xomegC, xwexeC, deC, 
& xalphaC, voe, shelf, vOA_off, vOs_off, voe_off 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsS,absfacB 

e Local declarations: 

~ 
W 
o 

;> 
'C 
'C 
n:> 

= Q.. ... 
~ 

N 



dimension zpsiAO(npts) 

C Initial wavefn on surface is ground harmonic oscillator. Only does the ground 
C state wave function (lowest quantum state); for higher vibrational wavefunc-
C tions see the 2-D code. 

C 

910 

10 

if (xomegA .eq. O.OdOO) then 
write (6, .) 'No initial wavepacket as no omega available' 
stop 

endif 
xt = xOA 
pt = O. OdOO 
zat =. dcmplx (O.OdOO, xmas· xomegA I 2.0dOO) 
gt = -(hb I 4.0dOO) • dlog (2 • dimag (zat) I (pi * hb» 
zgt = dcmp1x (O.OdOO. gtJ 

write{2,910) xt,pt,zat,gt 
format (5(lx,e13.6» 

do 10 ix = 1, nXpts 
xi = xmin + (ix - 1) • dx 
zarg = zat • (xi - xt) • (xi - xt) + pt • (xi - xt) + zgt 
zpsiAO(ix) = exp(zeye • zarg hb) 

continue 

return 
end 

C •••••••••••••••••••••••••••••••••• * .** ................... * ••••• *. **.* ** •• **.*.* 

subroutine Hpsi (ipot, ti, zpsi, zHpsi) 
c * •• ** •• * •• * ••••••••••••••••••• *.***** .******.*.** ..... ********* * *** ****** ** .*** 
C Compute H • psi (KE + PE ) * psi (x) . 

implicit real*8 (A-H, O-Y) 
implicit complex·16 (Z) 
parameter (npts = 2048) 
common IconstOI zero, zeye, pi, c. twopi, sqrtpi, pisq, 

& alessthanhalf 
common Iconstll xmas. hb, sechfactor, gaussfactor 
conunon Iconst31 tstep 
common/const4/xmin. xmax, nXpts.dx.npacket, iabsA,nxabsA, absfa cA, 

& iabsB,nxabsB,absfacB 

C Local declarations: 

10 

dimension zpsi(npts), zHpsi(npts) 
dimension zpsiPE(npts),zpsiKE(npts) 

call KEmat (zpsi, zpsiKE, til 
call PEmat (ipot, zpsi, zpsiPE) 

do 10 ix = 1, nXpts 
zHpsi(ix) zpsiPE(ix) + zpsiKE(ix) 

continue 

return 
end 

C ***.*** ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * ••••••••• 

subroutine KEmat (zpsiX, zpsiK, t) 
C .* •• ** ••••••••••••••••• * ••••• *.* •••• *** •••• * •• ***.* •• *** ••••••• *.* ••••• ** •••• * 
C Computes (-hb •• 2) I (2 * xmas» * (d I dx) •• 2[zpsiX) = zpsiK. Note 
C zpsix(1) <-> zpsi(xO), zpsi(nXpts) <-> zpsix(xf}, etc. Uses forward and back-

C ward FFT to evaluate 2nd derivative. 

implicit real·8 (A-H, O-Y) 
implicit complex·16 (Z) 

parameter (npts = 2048) 
common IconstOI zero, zeye, pi. c, twopi, sqrtpi, pisq, 

& alessthanhalf 
common Iconstl1 xmas, hb. sechfactor, gauss factor 
common Iconst31 tstep 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB, absfacB 

C Local declarations: 

dimension zpsiX(npts), zpsiK(npts) 

C Backward Fourier transform zpsiX(x)- => zpsiK(k). 

10 

isign = -1 
do 10 ix = 1, nXpts 
zpsiK(ix) = zpsiX(ix) 
call FFT (zpsiK, nXpts, isign) 

C Compute the second derivative. in the momentum domain. 

L = nXpts I 2 
do 20 k = 0, nXpts - 1 

if (k .le. L) then 
zpsiK(k + 1) -k * k • zpsiK{k + 1) nXpts 

else 
zpsiK(k + 1) -(nXpts - k) • (nXpts - k) • zpsiK(k + 1) I 

& nXpts 
endif 

20 continue 

C Forward transform: zpsiK{k) => zpsix(x). 

isign = 1 
call FFT(zpsiK, nXpts, isign) 

C Scale resul ts. 

30 

xL xmax - xmin 
cl -0.5dOO· hb * hb I xmas 
c2 4· pisq I (xL * xL) 
c = cl * c2 
do 30 ix = 1, nXpts 

zpsiK(ix) c· zpsiK(ix) 
continue 

return 
end 

c * •••••••••••• *.****.* ••••••••••• * •• * ••• ** ••••• ,o,,o, .,o,,o,.,o,. ** ••• ** •• * * ••••••••• *. *. 
subroutine PEmat (ipot, zpsiX, zpsiP) 

c * •••• ***** •• * ••••• *.,o,.*.**.*.* •• * ••• * ••• *** ••••• *.**.*.* ............... * ••••• *. 
C Calculate zpot{x) * zpsiX zpsiP. Note zpsiX(I) <-> zpsiX(xO), zpsiX(nxpts) 
C <-> zpsiX(xf), etc. 

implicit real·8 (A-H, O-Yl 
implicit complex*16 (Zl 
parameter (npts = 2048) 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

> 
"C 
"C 
~ 

= c:lo .... 
~ 

N 

~ 
VJ 
>-" 



& iabsB,nxabsB.absfacB 
common Ipotl zpot (npts. 3) 

C Local declarations: 

dimension zpsiX(npts), zpsiP(npts) 

do 10 ix 1, nXpts 
zpsiP (ix) zpot(ix, ipot) * zpsix(ix) 

10 continue 

return 
end 

C ***********.*****.**************************************** •• ******.*.********* 
subroutine potlsave(ipot) 

C *.* * *** *. * * *** * •• * *************** * * * ** ******** * * *************** * *** ** *** ****** 
C Save potential function ipot (= 1-3) to file. 

930 
10 

implicit real*8 (A-H, O-Y) 
implicit complex*16 (Z) 

parameter (npts = 2048) 
common Iconvertl harev, evwn, aD, amu, emu, harwn, amass, atu 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 
cornman Ipotl zpot(npts, 3) 
integer f_in. f_qut, f_normA, f_normE. f_matrix, f_temp, 

& f_temp2, f_temp3 
corrunon Ifilesl f_in, f_out, f_normA, f_normE, f_matrix, f_temp, 

& f_temp2, f_temp3 

if (ipot . eq. 1) open (f_temp, le 

if (ipot. eq. 2) open (f_temp, le 

if (ipot. eq. 3) open (f_temp, le 
do 10 ix = 1, nXpts 

xi = aD *. (xmin + (ix - 1) * dx) 

a = dreal (zpot(ix, ipot» * harev 
write (f_temp, 930) xi, a 
format (2x, f8. 3, 2x, f20.10) 

continue 

close (f_temp) 
return 
end 

'potA. out') 
'potB.out' ) 
'pote.out' ) 

C * ** * * * ** ****** ******* * **** * ***** ** ** **** ************ * * * * * ***** '" ** * ** *** 
subroutine FFT-prep 

C * •• * ** ** ***** ****************** * *** *********** ****** *. ** ****** ** * ****** 
C Create array of values to be used by FFT routine; must call this before 
C any calls to FFT. 

implicit real*8 (A-H, O-Y) 
parameter (npts=2048) 
cornp1ex*16 5, cstore(npts}' 
cornman Ifftvarsl cstore 

C The roots of unity exp{pi*i*k/j) for j=1,2,4, .. ,n/2 and k=0,l,2, .. ,j-l 
C are computed once and stored in a table. This table is used in subse

C quent calls of fft. 

pi = 3.14159265358979dOO 
j = 1 
icnt = 

10 

20 

s . = pi ... (0, I) I j 
do 20 k = 0, j - 1 

icnt = icnt + 1 
cstore(icnt) = exp(s * k) 
j = j + j 
if (j .It. npts) goto 10 

return 
end 

C ***************************,******************************************** 
subroutine FFT (x, n, isign) 

C *************************************************.********************* 

C ***"'* *. * "'''''''''' '" "'* **"'*** ** *"'*"'''''''''' '" "''''''' **"'''' "'** "'**** ** ******* * "''''''''''''' "'''' 
CloThe fft computes the discrete fast Fourier transform of a 
C '" sequence of n terms. 
C * The forward FFT computes 
C y(j)= sum (from k=O to n-1) x(k)*exp(2*pi*i*j*k/n) 
c * the backward FFT computes 
C * y(j)= sum (from k=O to n-1) x(k)*exp(-2*pi*i*j*k/n) * 

C * 
C * x is a complex array of length n. 
C n is a power of 2. n<=16384 
C * isign is the direction of the transform. If isign >=.0 then* 
C * the fft is forward , otherwise backward. 
C * 
C * Ref. Cooley, Lewis, Welch. The FFT and its applications 
C * IEEE Trans. on Education, vol. E-12 *1; p. 29 
C ** ** ** **** * ** --"'*********** ** ** ** * * *** **** ******* ******** ** * ** * 

C 1997.10.3 BJG: Note that original implementation, where first call 
C automatically generates an array of values for use in subsequent calls, 
C has been moved to a separate function FFT-prep which must be called 
C first! 

implicit real*8 (A-H, o-y) 
parameter (npts=2048) 
complex*16 v, w, x(npts), cstore(npts) 
common /fftvarsl cstore 

C ******Bit rever-sal*******"'** 
C The x(j) are permuted in such a way that each new place number j is 
C the bit reverse of the original placenumber. 

25 

30 

j = 
do 30 i = 1, n 

if (i .1e. j) then 
x (j) 

x(j) = x(i) 
x(i) 

endif 
m = n / 2 
continue 
if (j .gt. m) then 

j =- j 
m = m 
if (m .ge. 1) go to 25 

else 
j = j + m 

endif 
continue 

~ 
W 
tv 

> 
"'CI 
"'CI 
til 

= Q. 
~. 

N 



C *******,o,**",o,,o,Matrix multiplication**,o,,o,** .... ,o,,o,·,o,,o,,o,· 
C The roots of unity and the x(j) are multiplied. 

40 

50 

i = 1 
icnt = 
jj = j + j 
do 50 k = 1, i 

icnt = icnt + 
w = cstore(icnt) 
if (isign .It. 0) w dconjg (w) 
do SO i = k, n, jj 

v=w,o,x(i+j) 
xli + j) = xCi) 
xCi) = xCi) + v 

i = ii 
if (j .It. n) goto 40 

return 
end 

c···· * * * .**** * * ****** ** * * ******* *,o,** ** * * * * * ********* ************** ** ** ** ******* 
subroutine chk (ipot, ti, zpsiA, rnorm, Hav) 

C * * **.*. ** *** * * ** **** * *. * *.***** ****. ,o,. * ** .********************* * ** *** ** * ** * *** 
C Check that norm and energy are conserved. 

implicit real·S (A-H, a-V) 
implicit complex*16 (Z) 
parameter (npts = 2048) 

C Local declarations: 

dimension zpsiA(npts) 

call chknrm (zpsiA, rnorm) 
call chken (ipot, ti, zpsiA, Hav) 

return 
end 

C * * *. ** ****** * * * ** ,o,*** **** ••• *** .***** .****************** ******* ** ** ** ********* 
subroutine chknrm (zpsi, rnorm) 

C * * * *** * .***** * *** * * *,o, ** ** **********.***** •• ********************* ** ** **.*** **** 
C Check that the norm is conserved during numerical integration of TDSE. 

implicit real·8 (A-H, a-V) 
implicit complex·16 (Z) 
parameter (npts = 2048) 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 

C Local declarations: 

10 

dimension zpsi(npts), psisq{npts) 

do 10 ix = 1, nXpts 
rpsi = dreal (zpsi(ix» 
aipsi = dimag (zpsi(ix» 
psisq(ix} = rpsi • rpsi + aipsi * aipsi 

continue 

call simpint (nXpts, psisq, dx, rnorm) 

return 

end 

C ....... ,o,*.**********************,o,**** .. ******,o,,o,,o,****,o,*************************** 
subroutine chken (ipot, ti, zpsiA, Hav) 

C * ,o,* * * * * * *,o, ****** *********** ** * * * *,o, * ****** * ** * * * * * ** * ****** ******* * *,o,*,o, ** * ** *,o,* 
C Check that energy is conserved during numerical intergration of the TDSE. 

implicit real*8 (A-H, a-V) 
implicit complex*16 (Z) 

parameter (npts = 2048) 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 

C Local declarations: 

10 

dimension zpsiA(npts). zHpsiA(npts), psiHpsi(npts) 

call Hpsi (ipot, ti, zpsiA, zHpsiA) 
do 10 ix = 1, nXpts 

psiHpsi(ix) = dreal(dconjg(zpsiA(ix» * zHpsiA(ix» 
continue 

call simpint (nXpts, psiHpsi, dx. Hav) 

return 
end 

/ 

C *,o,******* *********,o,*,o,******* * * *** ****** * *,o,** * * *** * ******* **** * ** *** ** ********* 
subroutine simpint(nx. fl, dx, fint) 

C * *,o, *************************** ** ** * *,o,** **,o,** * ** *,o,* * ******** ***** *** * ** ****1o"" ** 
C Simpson Rule integrator. This subprogram calls the trapezoidal integrator 
C twice. Because of cancellation of errors the result is accurate to the the 
C order of (1/nx**4). Rule valid only when nx odd" Hence for even nx the last 
c piece of area under fl(nx-l) and f2(nx) is added by trapezoidal rule. 
C 
C Reference 'Numerical recipes' Press, Flannery, Teukolsky, Vetter ling 
C Cambridge University Press, Cambridge (1986). 

implicit real""8 (A-H, a-V) 

C Local declarations: 

parameter (nypts = 2048) 
dimension fl(nypts), f2(nypts) 

C Define: 

dxl dx 
dx2 2. OdOO • dx 
ixn 0 

if (nx .qt. nypts) then 
write (6, *l 'simpint nx .gt. nxpts 

endif 

if (mod (nx, 2) .eq. 0) then 
nxl = nx - 1 
nx2 = O.SOdOO * nx1 + 
fint = O.SOdOO * dx * (fl(nx - 1) + f1(nx» 

else 
nx1 = nx 
nx2 = O.SOdOO * nxl + 1 
fint = O.OdOO 

nypts 

> 
'C 
'C 
n> 

= Q.. 
~. 

N 

.j::::.. 
W 
W 



endif 

C Copy the odd elements of farray into f2. 

10 

do 10 ix = l,-nxl, 2 
ixn = ixn + 1 
f2(ixn) = fl(ix) 

C Now integrate fl. f2 in two p1eces. 

call trapint (nxl, fl, dxl. fintl) 
call trapint (nx2. f2. dx2. fint2) 
fint = fint + (4.0dOO * fint1 - fint2) I 3.0dOO 

return 
end 

C ""*""** ""*** * ** "" ** * *** ** * ****** * "" "" "" * * ""** * ******* ** *** * ** ** ****** ** *****.*** •• * ••• 

subroutine trapint (npts. f. dx. fint) 
C .* "". * * * * * * * * * *. * * "" * "" * * * *. * * * * * * * * * * *. * * *. * *. * * * * * * * "". * * * * *. * * * * * * ** *. * * * * * * * * * 

implicit real*8 (A-H, o-y) 

C Local declarations: 

dimension f(npts) 

C Trapeziodal rule integrator for £(1) - f(npts) <-> f(xO) - f(xf). 

fint O. 

do 100 
fint 

100 continue 

2. npts -
fint + f(i) 

fint fint + (£(1) + f(npts» I 2.0dOO 
fint fint * dx 

return 
end 

C ******* .***** ** * **** •• *** * *. * * ""* ** **** **************** ** * ************* ***** *** 
subroutine ovlp(zpsil, zpsi2, zovp) 

C ************ * *.***.** ****** ** * * *** ** ** *********** ****. ******** ******.***** *** * 

C Find the overlap integral. 

implicit real*8 (A-H. O-Y) 
implicit complex*l6 (Z) 

parameter (npts = 2048) 
common/const4/xmin,xmax.nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 

C Local declarations: 

dimension zpsil(npts), zpsi2(npts), zprod(npts) 

do 10 ix = 1, nXpts 
zprod(ix) dconjg(zpsil(ix» * zpsi2(ix) 

10 continue 

call zsimpint(nXpts, zprod, dx. zovp) 

return 

end 

C ****************************************************************************** 
subroutine zsimpint(nx, zfl, dx, zint) 

C ****************************.************************************************* 
C Complex Simpson's rule integrator. 

implicit real*8 {A-H, O-Yl 
implicit complex*16 (Z) 

C Local declarations: 

parameter (nypts = 2048) 
dimension zfl(nypts), zf2(nypts) 

C Define: 

dxl dx 
dx2 dx"2. 
ixn O. 

if (nx .qt. nypts) then 
write (6,*) , zsimpint nx .qt. nypts 

endif 

if ((mod(nx, 2) .eq. 0» then 
nxl = nx - 1 
nx2 = O. 50dOO * ruel + 1 
zint = O. 50dOO * dx '* (zfl (rue - 1) + zf1 (nx» 

else 
nx1 = rue 
nx2 = 0.50dOO * nxl + 1 
zint = O. OdOD 

endif 

C Copy the odd elements of zfl array into zf2. 

10 

do fo ix ~ 1, nxl, 2 
ixn = ixn + ,1 
zf2(ixn) = zfl(ix) 

C Now integrate zfl, zf2 in two pieces. 

call ztrapint (ruel. zfl, dx1, zintl) 
call ztrapint (nx2, zf2, dx2. zint2) 

nypts 

zint = zint + (4.0dOO .. zintl - zint2) I 3.0dOD 

return 
end 

C • **. *** * * ****** ** ** * *** ******* ***** ***** ** *** * **** **** *** *** ** *** *** * * * ** * **** 
subroutine ztrapint(npts. zf, dx, zint) 

C *****************************************************************'************* 

implicit real*8 (A-H, O-Yl 
implicit complex*16 (Z) 
common IconstDI zero, zeye, pi, c, twopi, sqrtpi. pisq, 

& alessthanhalf 

C Local declarations: 

dimension zf(npts) 

-+:>. 
\.J.) 

-+:>. 

> 
"0 
"0 

~ 
Q. 
~. 

N 



C Trapezoidal rule integrator for f(l) - f(npts) <-> f(xO) - f(xf). 

100 

zint zero 

do 100 i = 2, npts - 1 
zint zint + zf(i) 

continue 
zint zint + (zf(l) + zf(npts» I 2.0dOO 
zint zint· dx 

return 
end 

C ** •• * ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
function ZE1(t) 

C ......................... * ••• *.* ••••• * •• * •••••••••••••••••••• *",,,,,,,,,, ", •••• ", ••••••• 
C Returns (complex) value of dipole moment AB • E-field of laser pulse 1 at time 
Ct. Note that cosh term is not squared; I = E"2 = l/cosh .... 2, but this is calcu
elating just E = l/cosh. 

C Sdec96: Modified to not use frequency since is always set to 0 by shifting 
C potentials around. 

c 
c 
c 

implicit real·S (A-H, O-Y) 

implicit complex·16 (Z) 
common Iconvertl harev, evwn, aO, amu, emu, harwn, amass, atu 
conunon IconstOI ze-ro, zeye, pi, c, twopi, sqrtpi, pisq, 

& alessthanhalf 
common IconstSI hv1, fwhm1, dmu1, domega1, sechl, itype1, ipropA, 

& ipropB, ipropC, iCpot, nlevel, Aoffset, Eint, fwhm2, thresh, 
& proberange, ireadA, ireadB. irevB 

if (itype1 .eq. 0) then 
ZEl = elmul I cosh (sechl ", t) 

else 
ZEI 

endif 
dmul • dexp (sechl 

if (itypel .eq. 0) then 

t • t) 

ZEl dmul· cexp (crnplx (-zeye • domegal • t» 
else 

ZEl droul· cexp{cmplx(-zeye • domegal • t») 
& tl 

cosh (sechl • t) 

dexp (sechl • t • 

c endif 

return 
end 

C ••••••••••••••••••• ",******.* **.****. ",*** ••••••• *********.* •• 
subroutine pktsav (zpsi. npkt,ipot) 

c *** .",.*.", •• * ••••• ******* •• *.***** •• * ******.* ** .* •••• ** *** .** 
C Save wavepacket in different file for each shot and each potential surface 
C selected. Code is psiXY.Z, where: 
c 
C X surface A. B, C. indicated by ipot = 1. 2. 3. 
C Y A, B. etc. for first. second. etc. save interval. 
C Z sq (position and square) 
C real (position and real part) 
C dump (real and imaginary part. useful for reading in later). 
C mom (position and square, in momentum representation) (only if enabled) 
c 
C Also append current wavepacket to wavepktX.out (X surface A. B. C). 

implicit r"eal*S (A-H. O-Y) 

implicit complex*l6 (Z) 
parameter (npts = 2048) 
common Iconvertl harev. evwn, aO, amu, emu, harwn. amass. atu 
common IconstOI zero, zeye, pi, c, twopi, sqrtpi, pisq, 

& alessthanhalf 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 
integer f_in. f_out. f_normA. f_normB. f_matrix. f_temp. 

& Ctemp2, Cternp3 
common Ifilesl f_in, f_out, f_normA, f_normB, f_matrix, f_temp, 

& Ctemp2, Cternp3 

C Local declarations: 

dimen~ion zpsi(nptsl, zpsik(npts) 

C First do position representations: 

c 

c 
c 

902 

open(f_temp, file = 'psi' II char(64 + ipot) /1 
& char(48 + npkt I 1001 II char(48 + mod(npkt I 10, 1011 
& II char(48 + mod (npkt, 1011 II '.sq' I 

open{f_temp2, file = 'psi' II char(64 + ipot) II 
& char(48 + npkt I 100) /1 char(48 + mod(npkt / la, 10» 
& /1 char(48 + mod (npkt, 10» /1 '.real') 
open(f_temp3, file = 'psi' // char{64 + ipot) /1 

& char(4S + npkt / 100) /1 char(4S + mod(npkt / la, 10» 
& II char(48 + mod (npkt, 1011 II '.dump' I 

open (f_temp, file = 'psi' II char (64 + ipot) 
& npktlll·'.sq'l 

open (f_temp2, file 'psi' II char (64 + ipot) 
& npkt) II '.real') 

open (f_temp3, file 'psi' II char (64 + ipot) 
& npktl II '.dump'l 

do ix = 1, nXpts 
xi = xmin + (ix - 1) • dx 
xiA = xi * aO 
re = dreal (zpsi (ix) ) 
ai = dimag (zpsi (ix) ) 
sq = re * re + ai * ai 
format (2x, f8.3, 2x, f20.101 

write (f_temp, 902) xiA, sq 
write (f_temp2, 902) xiA, re 
write (f_temp3, .) zpsi(ix) 

enddo 
close (f_temp) 
close (f_temp2) 
close (f_temp) 

II char (65 + 

II char (65 + 

II char (65 + 

C Now do momentum representation: 

do ix = 1. nXpts 
zpsik(ix) = zpsi(ix) 

enddo 

call FFT (zpsik, nXpts, -1) ! Backward Fourier transform 
call chknrm(zpsik, rnorm) ! Get normalization constant 
if (rnorm .eg" 0) then! Trap for /0 error 

rnorm = 1 
endif 

open (f_temp, file 'psi' // char(64 + ipot) // 

> 
"CI 
"CI 
('t) 

= Q.. _. 
~ 

N 

.j:::. 
V) 
VI 



c 
c 

& char(48 + npkt / 100) 1/ char(48 + mod(npkt / 10. 10» 
& /1 char(48 + mod (npkt, 10» II ',mom') 

open (f_temp, file = 'psi' 1/ char (64 + ipot) /1 char (65 + 
& npkt) 1/ •. mom') 

L nXpts / 2 
xL 
c2 

xmax - xmin 
twopi / xL 

do i = -L, L - 1 
if (i .It. 0) then 

ix nXpts + i + 
else 

ix i + 
endif 
xiA = c2 '" 
re dreal (zpsik{ix» 
ai = dimag (zpsik(ix» 
sq = re '" re + ai '" ai 

write (f_temp, 902) xiA, sq / rnorm 
enddo ' 
close (f_temp) 

return 
end 

C ** *** *** ** '" ************** *********** *"'''' "'''''''*.''''''''' ******** "'. ** ************ ** '" **** 
subroutine psidump (ipot, zpsil J 

c **-"'''''''''' '" -*"" ***** *** **** """'*"'1ft"'''''''''''''''' ** ** '" ******** **** ****** ** '" "'''''''*.''''''*'''''''''.''' *"'*** 
C Save wavepacket in raw form, for reading in by psiread(). 

implicit real*8 (A-H. O-Y) 
implicit complex*16 (Z) 
parameter (npts = 2048) 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 
integer f_in, f_out, f_normA, f_normB, f_matrix, f_temp, 

& f_temp2, f_temp3 
common Ifilesl f_in, f_out, f_normA, f_normS, f_matrix, f_temp, 

& f_temp2, f_temp3 

C Local declarations: 

100 

dimension zpsi(npts) 

open (f_temp, file='psi' II char(64 + ipot) II '.out') 
do 100 ix = 1, nXpts 

write (f_temp, *) zpsi(ix) 
continue 
close (f_temp) 

return 
end 

C * * * '" '" * '" * **"'''' '" *'" ** "'***"''''**** ****** *'" '" "''''''' **'" ***** "'**'" '" '" * **'" '" ** "'''' '" ***"'* "'**'" ****** 
subroutine psiread (ipot, zpsi) 

C '" '" '" *** '" * ***'" '" '" '" ***",*****",**",*", '" *'" *'" *"''''''' '" *'" ***"'* "'''''''''' "'*'" '" "'*,. *'" *'" "'''' **"'''''''''' '" '" *'" '" *** 
C Read in wavepacket in raw form saved by psidump ( ) . 

implicit real"'8 (A-H, O-Y) 
implicit complex"'16 (Z) 
parameter (npts = 2048) 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 
integer f_in, f_out, f_normA, f_normB, f_matrix, f_temp, 

& f_temp2, f_temp3 
common Ifilesl f_in, f_out, f_normA, f_normB, f_matrix, f_temp, 

& f_temp2, f_temp3 

C Local declarations: 

dimension zpsi(npts) 

open (f_temp, file='psi' II char(64 + ipot) II '.inp') 
do 100 ix = 1, nXpts 

100 
read (f_temp, "') zpsi(ix) 

continue 
close(f_temp) 

return 
end 

C "'**'" ***"'''' **. *'" '" *"'* *.*"''''** ****'" *** '" * *'" ** '" '" **"'**"'******* ******. ****'" ***** '" '" ** '" "',. 
SUBROUTINE ANIONWF(ILEVEL,ZPSI) 

C '" ** '" '" *** '" **. '" **.'" *"'. *.*** **** •• ,. *** '" * *'" "'. ***** ***.** *** **. ***. '" **'" '" '" ***.* **"'*. 
C Anionwf stolen from READFCFB 
C 
C 

C 
C 
C 
C 

C 
C 
C 

C 

Read the wavefuction off the fort.4 file of a 
FCF program job (code of Ellison et al.) 
This can actually pull off any wavefunction (excited vibrational 
states) from the wave function calculated for the LOWER potential 
using that program. To use this feature change ILEVEL from 1 in 
calling routine 

This routine is mandatory if .the user uses a general potential 
from a file for the LOWER potential in the wavepacket calculation 

IMPLICIT real"'8 (A-H,O-Y) 
Implicit Complex*16 (z) 
parameter (npts = 2048) 
DIMENSION NEN(2) ,PCOEFS(2,6) ,XKOUT(75) 
DIMENSION V(75,2),NPOT(2),E(2,50),VJ(2,70,50) 
DIMENSION ZPSI(npts) 

common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 
& iabsB,nxabsB,absfacB 

C Read data from file fort.4 
C Lets allow the fort.4 file to have data about upper surface for compatibility 
C 

OPEN(4,FILE='fort.4') 
READ (4,900) NOSC 

900 FORMAT(r3) 
IF(NOSC.EQ.1) THEN 

READ (4,903) NEN(l) ,N 
ELSE 

READ(4,905) NEN(1),NEN(2),N 
ENDIF 

903 FORMAT(2I3) 
905 FORMAT (3I3) 

NKNOT = N + 4 
READ(4,910) (XKOUT(I),I=l,NKNOT) 

910 FORMAT (13 (6F12. 6,!) ) 
READ(4,915) NPOT(l), (PCOEFS (1, 1),1=1,6) 

915 FORMAT(I2,6Fl2.6) 
READ(4, 920) (V (1,1) , 1=1, NKNOT) 

920 FORMAT ( (6F12. 7» 

~ 
W 
0\ 

> 
"C 
"C 
~ := 
Q. .... 
~ 

N 



READ(4,925) (E(l,J) ,J=l,NEN(l)) 
925 FORMAT (20F12. 7) 

IF(NOSC.EQ.1) GO TO 10 
READ ( 4,915) NPOT( 2) , (PCOEFS (2, I) , I=l, 6) 
READ (4,920) (V( I, 2) ,I=l, NKNOT) 
READ(4,925) (E(2,J) ,J=l,NEN(2)) 

10 DO 20 I=l,NEN(l) 
READ ( 4,920) (VJ (1, J, I) ,J=l, N) 

20 CONTINUE 
IF(NOSC.EQ.1) GO TO 40 
DO 30 I=1,NEN(2) 
READ(4,920) (VJ(2,J, I) ,J=l,N) 

30 CONTINUE 
CLOSE(4) 
XH = XKOUT(2) - XKOUT(l) 
if «xmin"'O.529177 - xkout(l» .gt. 0.0005) then 
. write{6,"') 'xmin= 1,0.529177*dx 
write(6,*) 'first knot at ',xkout(l) 
write(6,*) 'first points dont match - Stopping' 
stop 

endif 
if ((xh-O. 529177*dx) ,gt. 0.0005) then 
write(6,"') 'roc= ',O.529177*dx 
write(6,*)'knot spacing= ',xh 
write(6,*) 'Grid sizes dont match - Stopping' 
stop 

endif 
if (nknot .ne. nxpts) then 
write(6. *) 'nXpts= ',nxpts 
write(6,*) 'nknots= ',nknots 
write(6,*) 'Cont match - Stopping' 
endif 

40 write("', *) • DONE READING' 

C This has stored all ne~ded and uneeded data 
C 
C Calculate wave function from spline coefficients 
C Want the ground state wavefunction. 1=1: 

C 

I=ILEVEL 
ZPSI(l)=VJ(l,l,I) + VJ(1,2,I)/4 
ZPSI(N)=VJ(l,N,I) + VJ(l,N-l,I)/4 
DO 100 J=2, N-l 

ZPSI(J)=VJ(1,J-l,I)/4 + VJ(l,J,I) + VJ(1,J+l,I)/4 
100 CONTINUE 

C Get the correct sign for wavefunction (+ at beginning) 
C 

105 

106 
110 

J=O 
J=J+I 
IF(real(ZPSI(J)).GT.O) GO TO 110 
IF(real(ZPSI(J)).EQ.O) GO TO 105 
DO 106 J=l,N 
VJ (1, J, I) =-VJ (1, J, I) 
ZPSI (J) =-ZPSI (J) 
CONTINUE 

return 
end 

subroutine morsewf (zpsi) 
c *****************************************.************* 
C MTZ's code for nlevel > 0 vibrational wave functions on a Morse potential 

C (nlevel supplied in common block) . 

C Calculate the ground Wavefn for anharmonic oscillator 
C Wavefn has following form ( see J. Res. N.B.S. A 65, 451 (1961)) 
C psi(x} = norm * [K * expval(x)]~(O.5*{K-l» * exp(-O.5*K * expval(x» 
C where: expval(x) = exp(-beta*x) 
C norm = sqrt ( beta/gamma{k-l) ) 

C This routine will only calculate lowest wave function of a 
C Morse potential, for higher states (i.e. v=l !) see the 2d code 

C This method of calculating the wavefunctions of a Morse oscillator 
C fails when the anharmonicity is very small (i.e. in the limit 
C of a harmonic oscillator) because the gamma function blows up. 
C This limit is reached for mildly anharmonic oscillators 
C e.g. NCO- where we=2l49 cm-l and wexe=12.5 cm-l . 
C In this case it is only a small approximation to use the H.O. 
C wave function for the anion ground vibrational wave function 

C Need to change two things to be able to calculate wave functions 
C with small anharmonicities. '1) Gamma blows us, so get rid of it. 
C By trial and error, Anorm = IOd-250 keeps the function in bounds. 
C 2) (AR*expval) ** «AR-I) 12) goes out of range. Split it in two 
C and multiply. one half by exp(-AK*expvaI/2) first to keep it in bounds. 

implicit real*8 (a-h,o-y) 
implicit complex*16 (z) 
parameter (npts = 2048) 
character*80 wavefile 
dimension zpsi(npts),argl(100),arg2(lOO),aLeg(O:100) 
dimension psinorm( 100) 
common/constOI zero,zeye, pi,c, twopi,sqrtpi,pisq, 

& alessthanhalf 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB,nxabsB,absfacB 
common Iconst21 xOA, xomegA, vOA. xwexeA, dea, xalphaA. xOB, 

& xomegB. xwexeB, deB. xalphaB, vOB. xOC. xomegC, xwexeC. deC. 
& xalphaC. vOC. shelf. vOA_off, vOB_off. vOC_off 

common Iconst81 hv1. fwhm1. dmul. domegal, sech1, itype1. ipropA. 
& ipropB, ipropC, iCpot, nlevel, Aoffset, Eint, fwhm2, thresh. 
& proberange, ireadA. ireadB, irevB 

C Form K we/wexe and calculate gamma function of (k-1) 

c 

AK xomegA I xwexeA 

open(2332, file=' fuck.out') 
open(2333,file='norm.out') 

C evaluate the gamma tn. 

c 
c 
c 

arg=AK-1.0 
APOLY=1+11 (12.0* arg) +11 (288 * arg* arg) - 1391 (51840 * arg* * 3) 
gak=dsqrt{twopi/arg) * (arg**arg) *dexp{-arg)*APOLY 
an = 10.0 
Anorm = 10d-250 
Anorm=dsqrt(xalphaA/gak) 

wr i teo (6, *) , Anorm, gak = " Anorm, gak 
.write(6, *) 'Aleg(-l) = ' ,aLeg(O) 

do i=l,nxpts 
r=xmin+ (dble{ i) -1. OdO) *dx 

x=r-xOA 

> 
"'CI 
"'CI 
tt> = ~ .... 
~ 

N 

.+:>. 
v.l 
-..l 



c 

c 

expva!=dexp(-xalphaA*x) 
splitexp = (AK*expval)**«(AK-l)/4)*dexp(-AK*expval/2) 

zpsi(i)=dcmplx(Anorm * (AK*expval)**(AK-l)/4)*splitexp,O.O) 
zpsi (i) =cmplx {Anorro * (AK*expval) *,.. ( (AK-l) /2) *exp (-AK*expval/2) .0.0) 

aLeg ( 0) = 1. 0 
do iv = l.nlevel 

arg3 = 1.0 
arg4 = 0.0 
do j = Q,iv-l 

arg3 fact (iv-I) / (fact (j) ·fact (iv-l-j) ) * fact (2*j) / fact (j+l) 
arg4 arg4 + arg3 * aLeg(iv-j-l) 

enddo 
aLeg(iv) = AK*expval*aLeg(iv-l)-(AK-2*iv)*arg4 

enddo 
zpsi (i) = (1/ (AK*expval) * *nlevel) ,.. aLeg (nlevel) * zpsi (i) 

write(2332,*) r*O.S29,real(zpsi(i» 

899 format(e22.16.2x.e22.16) 

c 
11 

c 
c 

enddo 

call chknrm{zpsi,rnorm) 
do 11 i = l,nXpts 

r = xmin+{i-l)*dx 
zpsi(i)=zpsi(i)/(rnorm)**O.5 
write(2333,*) r*O.529,real(zpsi(i» 

continue 

close (2332) 
close (2333) 
return 
end 

C * * *** * **** ** * ***.* •• ***** ************ ******************** .. * * * * ** ****** * 
real*8 function fact{n) 

C * ** *** ** * **. * *****.* ***** **** **** ***********. **** **** **** * **.* ******** * 
C Calculates factorial of n. 

integer i 

fact = 
doi=l,n 

fact = dble (i'" fact) 
enddo 

return 
end 

C ... * * ** ......... ******** ** ******* *** **** ** **************************** * ******** 
subroutine make_abs 

C * ** * ** * ********* * ******* * ... ** **** * **** ********************* * ** ** ******* * 
C Generate absorbing boundary functions for A, B surfaces 

implicit real*8 (a-h,o-y) 
implicit complex*l6 (z) 
parameter (npts = 2048) 
common /abss/ absA(npts), absB(npts) 
common /const3/ tstep 
common/const4/xmin,xmax,nXpts,dx,npacket,iabsA,nxabsA,absfacA, 

& iabsB, nxabsB, absfacB 

if (iabsA .eq. 1) then 
if (absfacA .le. 0) absfacA (tstep / 1.3) * 0.0005 
do i 1, nxabsA 

absA(i) dexp (-'absfacA ... i ... i) 
enddo 

endif 

if (iabsB .eq. 1) then 
if (absfacB .le. 0) absfacB (tstep / 1.3) * 0.0005 
do i = 1, nxabsB 

absB(i) = dexp(-absfacB * i * i) 
enddo • 

endif 

return 
end 

8.2. trans2.2.1.f 

C TRANS - Fourier transform program to obtain photoelectron spectra from 
C dynamics matrix generated with ALPINE. 

C Author: B. Jeff Greenblatt 
C Start date: March 1996 (for most recent edit, see last_date variable) 
C Address: Neumark Research Group 
C Department of Chemistry 
C University of California 
C Berkeley, CA 94720 USA 
C Phone, 510-642-7761 or 510-643-9301 
C E-mail: jeff~radon.cchem.berkeley.edu 

C INPUTS, trans. inp Input deck. 
C matrix. out Overlap matrix (output from ALPINE) . 
C OUTPUTS: pwX.out Photoelectron intensity vs. energy (X 001. 002. 
C one for each delay time). 
C trans.out Copy of what's printed to screen during run. 

C Notes for this version (add to bottom of list, please): 

C Transl.2: Uses correct power of two in array size of zmatrix (up to a maximum 
C of nt2halfmax time elements). Also allows use of a position-dependent mu, 
C though I am not at all sure if introducing mu(x) at this point in the simula
C tion is theoretically legitimate. 

C Transl.) (8dec96, BJG): Small change to check version header of matrix.out 
C file being read, and also to read in an energy shift (eV) to apply to photon 
C energy, to undo shifts applied in alpine propagation. Also changed name of 
C input file to 'trans.inp'. 

C 1.4 (1ldec96) BJG: Added pwlist file to outputs, which lists letter with 
C corresponding delay time. . 

C 1.5 (15dec96) BJG: Eliminated nwrap, nrange parameters -- instead program 
C does the correction automatically. Also dropped mu() from program, eliminated 
C some screen printing. Moved pwlist file to part of main output (dumps to 
C screen.out). Updated headers -- now need two (for matrix.out and trans.inp). 

C 1.6 (20dec96) BJG: Added convolution and regridding functions (specify 
C directly in input deck). Changed labeling scheme of pwX.out files to numbers 
C (pwOOl.out, etc.). 

C 2.0 (16feb97) BJG: Switched from reading a wavefunction matrix to an overlap 
C matrix. in anticipation of also being able to transform output from 2D 

~ 
W 
00 

~ 
"t:I 
"t:I 
tt) 

::s 
Q.. 
S;;. 
N 



e propagation code ("TOBOGGAN"). 8ju197: Fixed a sporadic bug which seems to 
C have had devastating consequences for certain potential surfaces: in calcu
elating e_min-pw, used nt2_max, not nt2half_max in expression. So ipts was I 
C point larger than it should have been -- thus overflowing memory. Result·was 
e that the first delay time spectrum was output correctly, but other were gar
e bled. Also resulted in a slight (-few meV) shift in energy of output 
e spectrum. 

C 2.1 8ju197 BJG: Increased ntlmax to 4096 to handle larger number of time 
e delays. 

e 2.1.1 BJG: Dump un-FFT'd spectrum to file in addition to normal photo
e electron spectrum output. File numbers = psiXYYY.ext, where YYY > 
ClOD. 

e 2.2 8/21/97 BJG: To make compatible with aether (SGI system), changed 
e text ·reading into integer reading for version numbers of input decks. 
e This is better in the long run anyway. 

C ·'2.2.1 1999-2-24 BJG: Corrected bug which made system crash if the num
e ber of points in the final convoluted array is larger than nener (cur
e rently 512). Now it catches error before kicking you out. Still uses 
eversion 2200 input deck. 

e Global variable declarations: 

implicit double precision (A-H, O-Y) 
implicit cornplex*l6 (Z) 
parameter (ntlmax = 4096, nt2max = 512, nt2halfmax 256, 

& nener = 512) 
dimension zmatrix(nt1max, nt2halfmax), et(nt1max), 

& ztemp(nt2max), ztemp1(nt1max) 
common Ipwsl pw(nener), pwconvol(nener) 
common Iconvertl harev, evwn, aO, amu, emu, harwn, amass, 
common IconstOI zero, zeye, pi, c, twopi, sqrtpi, pisq 
common Iconst11 xmas, hb 
common Iconst41 nt1, nt2, nt2half, nt2_fft, nt2half_fft, 

& tmin, tstep 
common Iconst81 hv2, fwhm2, sech2, e_shift, e_min, e_max, 

& e_step, iconvol_type, e_ion, rmass, e_min-pw, e_max-pw, 
& e_step-pw, ipts 
character*80 last_date 
common Iversionl ivers_matrix, ivers_trans 

e Set headers 

ivers_matrix = 2200 
ivers_trans = 2200 
last_date = ' 24 February 1999' 

atu 

e Open output file which is carbon copy of what goes to the screen. 

open (2, file 'trans.out') 

C Greeting message. 

900 format ('Welcome to TRANS: Fourier transform routine for 
& 'ALPINE outputs. ') 

901 format ('First written by B. Jeff Greenblatt, March 1996. ') 
910 format ('Input deck version = " is) 
920 format ('Matrix.out version = " is) 
930 format ('Last date edited = " a) 

write (2, *) 

write (2, 900) 
write (2, 901) 
write (2, 910) ivers_trans 
write (2, 920) ivers_matrix 
write (2, 930) last_date 
write (6, ') 
write (6, 900) 
write (6, 901) 
write (6, 910) ivers_trans 
write (6, 920) ivers_matrix 
write (6, 930) last_date 

e Read the needed data and also define some useful constants. 

903 format ('Reading input deck. ') 
write (2, 903) 
write (6, 903) 
call const () 

e Read in overlap matrix. 

904 format ('Reading matrix file.') 
write (2, 904) 
write (6, 904) 
call readzmatrix (zmatrix) 

e Establish some parameters to use for workup later on. 

e_min.,..pw hv2 pi ' (nt2halCfft - 1) 
& / tstep 

e_max-pw = hv2 + pi 1 tstep 
e_step""pw = twopi 1 nt2_fft tstep 

C Generate automatic parameters, if needed. 

nt2halCfft 

if «e_min .eq. 0) .and. (e_max .eq. 0» then 
e_min = e_min.,..pw 
e_max = e_max""pw 

endif 
if (e_step .eq. 0) then 

e_step e_step""pw 
endif 

ipts nint«e_max - e_min) I e_stepl + 1 ! Final number of points 

C Print some parameters. 

100 format('Raw energy range and step size (eV) 
& f7.3, 2x, f7.4) 

f7.3, 2x, 

write (2, 100) e_min-pw * harev, e_max-pw * harev, 
& e_step-pw * harev 
write (*, 100) e_min-pw * harev, e_max-pw * harev, 

& e_step-pw * harev 
110 format('Pinal energy range and step size (eV) f7.3, 2x, 

& f7.3, 2x, f7.4) 
write (2, 110) e_min * harev, e_max * harev, 

& e_step * harev 
wr;ite (*, 110) e_min * harev, e_max * harev, 

& e_step * harev 
120 format('Number of points in raw and final arrays 

& 2x, i4) 
write(2, 120) nt2, ipts 
write(*, 120) nt2, ipts 

i4, 

'. 

> 
't:I 
't:I 
('t) 

6-..... 
~ 

N 

.j:::. 
VJ 
1..0 



if (ipts .gt. nener) then 
140 format ('Number of final points exceeds i4, '. Change 

& 'nener in program.') 
write (*, 140) nener 
write (2, 140) nener 
stop 

endif 

130 format ( 'Convolution type = " iI, , Ion energy 
, eV Mass = " f8.2, , amu') 

write (2, 130) iconvol_type, e_ion * harev, rmass 
write (*, 130) iconvol_type, e_ion * harev, rmass 

write (2, *) 
write (*, *) 

960 format('Table of delay times for spectrum files.') 
902 format { 'File number Delay (fs)') 

write{2, 960) 
write(2. 902) 
write(8. 960) 
write(*. 902) 

C Main loop: read in delta t. 

do ideltat = 1, 99999 
read (1, *, end = 2) deltat 

908 format (4x, i3, 6x, £10.2) 
write (2, 908) ideltat, del tat 
write (*, 908) ideltat, deltat 
del tat = del tat I atu 

f7 .1, 

amu 
amu 

C Create E(t) vector to multiply by each column of zmatrix: 

t = tmin 
do it = 1. nt1 

et(it) = E2(t, de1tat) 
t = t + tstep 

enddo 

C Integrate Oetl, t2) * E(tl) * Eet1 - t2) over tl for each t2: 

& 

do it2 = 1, nt2half 
do itl = 1, ntl 

if (itl .It. it2) then 
ztempl(it1) zero 

else 
ztempl(itl) = zmatrix{itl. it2) * et(itl) * 

et(itl - it2 + 1) 

endif 
enddo 
call zsimpint (nt1, ztempl, tstep, z) 
ztemp(it2) 

enddo 

C Fill in rest of array with O's 

do it2 = ntZhalf + 1, nt2half_fft 
ztemp(itZ) = zero 

enddo 

C Now duplicate array on negative ~ide. taking complex conjugate (this ensures 

C FT is real): 

ztemp(nt~half_fft + 1) = zero 
do it2 = 2, nt2half_fft 

ztemp(nt2_fft - it2 + 2) = dconjg(ztemp(it2») 
enddo 

C DEBUG: Save un-FFT'd spectrum to file: 

call openpw(3, ideltat+l00) 
do i 1, ipts 

re = dreal(ztemp(i» 
ai = dimag(ztemp(i») 
write (3, 906) (0 + (i - 1) .. tstep) * atu, 

& re 
enddo 
close (3) 

C Perform fast Fourier transform, reordering points resulting from FFT since 
C negative values are stored in second half of matrix. 

call FFT (ztemp. nt2_fft, 1) 
do it2 = nt2half_fft + 1. nt2 fft 

pw(it2 - nt2half_fft) dreal(ztemp(it2) 
enddo 
do it2 = 1, nt2half_fft 

pw(it2 + nt2half_fft) 
enddo 

dreal(ztemp(it2)) 

C convolute with instrument response function. 

call convol () 

C Write resulting spectrum to file. 

call openpw(3, ideltat) 
do i = 1. ipts 

906 format (fl4.6, 2x, fl4.6l 
write (3, 906) (e_min + (i - 1) * e_step) * harev, 

& pwconvol(il 
enddo 
close (3) 

C End loop. 

enddo 

COone. 

950 format ('Done.') 
2 write (2, 950) 

write (*, 950) 

close (1) 
close (2) 

stop 
end 

C ** .... ************************************************* .. *********** .. *********** .. 

subroutine const () 
C * .. ******* .. ******************************** .. ********************** .. *~********* .. 

C Read the needed data and also define some useful constants. Order ·of 

t o 

> 
"CI 
"CI 
~ 

= c:l.. .... 
~ 

N 



C input deck: 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

ivers: 

hv2, fwhm2: 

iconvol_type, e_ion, rmass: 

e_min, e_max, e_s tep : 

Version number of input deck. Must 
match, or exits. 
Photon energy (eV) and FWHM pulse 
width (fs) of probe pulse. 
Convolution type (see convol() fn), 
and parameters leV and amu, respec
tively) used by convolution routine. 
Range and step size (eV) desired for 
convoluted spectra. e_step = 0 signals 
to use the same step size as produced 
by the 'Fourier transform; e_min = 
e_max = 0 likewise signals to use 
range of Fourier transform (useful if 
not adding spectra from different 
s ta tes together). 

C del tat : Pump-probe delay (fs). As many lines 
of these can be entered as desired. c 

implicit double precision (A-H, O-Y) 
implicit complex*16 (Z) 
parameter (nt1max = 4096, nt2max = 512, nt2halfmax = 256, 

& nener = 512) 
common /convert/ harev, evwn. aO, amu, emu, harwn, amass, atu 
conunon /constO/ zero, zeye, pi, c, twopi. sqrtpi, pisq 
common /constl/ xmas, hb ' 
conunon /const4/ ntl. nt2, nt2half. nt2_fft, nt2half_fft, 

& tmin, tstep 
common /constB/ hv2, fwhm2, sech2, e_shift, e_min, e_max, 

& e_step, iconvol_type" e_ion, rmass, e_min-pw, e_max-pw, 
& e_step-pw, ipts 

common /version/ ivers_matrix, ivers_trans 

C Set conversion factors. 

harev = 27. 21l60BdO 
evwn = 8065.47 9dO 
aO = 0.52917706dO 
amu = 1822. 882dO 
emu = 9.109534d-31 
harwn = harev * evwn 
amass = 1.66056d-27 
atu = O. 024199dO 

C Set constO. 

zero = dcmplx (O.OdOO, .OdOO) 
zeye = dcmplx (C.OdDD, .OdOO) 
pi = dacos (-l.OdOO) 
twopi = 2 * pi 
sqrtpi = dsqrt (pi) 
pisq = pi * pi 

C Speed of light in cm/s and hbar in atomic units. 

c = 2.99792458dl0 
hb = 1. OdO 

C Sechfactor is multiplied by time inside sech A 2 so that relative pulse intensi
C ty = O. 5 when time = FWHM / 2. 

sechfactor 1.762747174dOO 

C Begin reading input deck. 

open (I, file='trans.inp') 

C Read version header 

read (1, ~) ivers 
if (ivers ivers_trans) then 

closet!) . 
903 format('Version does not match: 

& 'read. Aborting.') 
write(2, 903) ivers_trans, ivers 
write(*, 903) ivers_trans, ivers 
stop 

endif 

read (I, *) hv2, fwhm2 
hv2 = hv2 / harev 
fwhm2 fwhm2 / atu 
sech2 = sechfactor / fwhm2 

C Read convolution parameters. 

is, ' sought, 

read (I, *) iconvol_type, e_ion, rmass 
e_ion e_ion / harev 
rmass = rmass * amu 

C Read energy rebinning paramete·rs. 

read (1, *) e_min, e_max, e_step 
e_min = e_min / harev 
e_max = e_max / harev 
e_step = e_step / harev 

return 
end 

is, 

C ********* * ***** * ********** *********** ********** * **** ***** * ****** * **** ** * **** * * 
subrout ine readzma tr ix (zmat; ix) 

c ** ** ** ** * * * **** * ** ******** *********** * * *** * **** ****** **** ******* * ***** * *** ** ** 
C Read overlap matrix into zmatrix. Format of file: 

C Version: a string indicating which version of alpine produced file. 

C nqueue: number of points in shorter time dimensi~n (overlap length). 

C tmin, tstep: initial time (fs) and time step (fs) between each wavefunction. 

C e_shift: amount (eV) to shift photon energy in input deck, due to shifts 
C applied to potentials in alpine propagation for more efficient math. 

C Remaining lines: complex format data of matrix. 

implicit double precision (A-H, O-Y) 
implicit complex*16 (Z) 
parameter (nt1max = 4096, nt2halfmax 
dimension zmatrix(ntlmax, nt2halfmax) 

256) 

/convert/ harev, evwn, aO, amu, emu, harwn, amass, atu 
common /constO/ zero, zeye, pi, c, twopi, sqrtpi, pisq 
common /const1/ xmas, hb 
common /const4/ ntl, nt2, nt2half, nt2_fft, nt2half_fft, 

tmin, tstep 

> 
"0 
"0 
ttl 

= Q.. .... 
~ 

N 

t 



common leonstSI hv2, fwhm2, sech2, e_shift, e_min, e_max, 
& e_step, iconvol_type, e_ion, rmass, e_min-pw, e_rnax-pw, 

e_step-pw, ipts 
common Iversionl ivers_matrix, ivers_trans 

C Open file and read header information. 

open (3, file='matrix.out') 

read (3, *) ivers 
if (ivers .ne. ivers_matrix) then 

903 format('Version does not match: i5,' sought, 
& 'read. Aborting. ') 

write(2, 903) ivers_matrix. ivers 
write(6, 903) ivers_matrix, ivers 
close(3) 
stop 

endif 

read (3, *) nt2half 
905 format ( 'Halfnt2 = " i4) 

write(2, 905) nt2half 
write{*, 905) nt2half 
if (nt2half .gt. nt2halfmax) then 

i5, 

902 format{'Halfnt2 exceeds allotted memory (Increase nt2halfmax 
& 'in source code). Terminating .... ') 

write(2, 902) 
write{6, 902) 
close(3) 
stop 

endif 

read (3. *) tmin, tstep 
tmin = tmin I atu 
tstep = tstep I atu 

read (3, *) e_shift 
e shift e_shift I harev 

C Apply shift to photon energy. 

hv2 'hv2 + e_shift 

C Read data. 

do it1 = 1, nt1max + 1 ! Loop normally broken at read statement. 
if (it1 .gt. nt1max) then 

901 format{'Ntl exceeds allotted memory (Increase ntlmax 
& 'in source code). Terminating ... 'J 

write(2, 901) 
write(6, 901) 
stop 

endif 

C Read in matrix elements, creating diagonal for first nt2 columns: 
it2max = itl 
if (it2max .gt. nt2half) then 

it2max = nt2half 
endif 
do it2 = 1, it2max 

read (3, *, end 1) zmatrix(it1, 
enddo 
do it2 = it2rnax + 1, nt2half 

~t2 ) 

zmatrix(itl, it2) 
enddo 

enddo 

zero 

C Calculate correct number of wave functions read. 

close (3) 
nt! = itl - 1 

C Print total wave functions read. 

900 format('Ntl = i4) 
write(2, 900) ntl 
write(*, 900) nt! 

C Find appropriate power of two size for fft array. 

nt2half_fft = nt2halfmax 
do while (nt2half .le. nt2half_fft I 2) 

nt2half_fft nt2half_fft I 2 
enddo 

nt2_fft 

return 
end 

2 * nt2half_fft 

G: ******************* * *********** * **** ******* * ** * * **** * ** *** * ******* *** * ** ****** 
subroutine FFT (x, n, isign) 

C ****** ******* * ****************** ************ *** *** ** * ** * *** ******** *** ** * **** * 
c 
C ************* * *** ** ************* ******'**** ** *** * ******* * ******* 
C * The fft computes the discrete fast Fourier transform of a 
C * sequence of n terms. 
C * The forward FFT computes 
C * y(j)= sum (from k=O to n-1) x(k)*exp(2*pi*i*j*k/n) 
C * the backward FFT computes 
C * y(j)= sum (from k=O to n-1) x(k)*exp(-2*pi*i*j*k/n) * 
c • 
c * x is a complex array of length n. 
C * n is a power of 2. n<=16384 
C * isign is the direction of the transform. If isign >= 0 then* 
C * the fft is forward , otherwise backward. 
C • 
C * Ref. Cooley, Lewis, Welch. The FFT and its applications 
C * IEEE Trans. on Education, vol. E-12 *1; p. 29 
C **.******** ******* ************ *** * * **** * ** *** ** * ** ** * ** * ** ***** 

implicit double precision (A-H, O-Y) 

C Local declarations: 

cornplex*16 s, v, w, x(n), cstore(16384) 
data ntbl/OI 

C The roots of unity exp(pi*i*k/j) for j=1,2,4, .. ,n/2 and k=O,l,2, .. ,j-1 
C are computed once and stored in a table. 
C This table is used in subsequent calls of fft with parameter n<=ntbl 

if (n .gt. ntbl) then 
ntbl 
pi = . 14l59265358979dOO 
j = 1 

~ 
~ 
tv 

> 
"'C 
"'C 
toe 

= t:lo .... 
~ 

N 



10 

20 

lent = 0 
s = pi '" (0, 1) / j 
do 20 k = 0, j - 1 

ient = ient + 1 
cstore(icnt) = exp(s k) 
j = j + j 
if (j .It. n) gote 10 

endif 

C ******Bit reversal·"''''''''''''''''''''''''' 
C The x(j) are permuted in such a way that each new place number j is 
C the bit reverse of the original placenumber. 

25 

j = 
do 30 i = 1, n 

if (i .le. j) then 
x(j) 

x(j) xCii 
xli) = v 

endif 
m = n I 2 
continue 
if (j .gt. m) then 

j. = j - m 
m = m 2 
if (m .ge. 1) go to 25 

else 
j = j + m 

endif 
30 continue 

C ************Matrix multiplication"''''''''''''''''''''''''''''''''''''''''· 
C The roots of unity and the x(j) are multiplied. 

40 

50 

j = 1 
ient = 
jj = j + j 
do 50 k = 1, j 

ient = ient + 1 
w = cstore(icnt) 
if (isign .It. 0) w dconjg (w) 

do 50 i = k, n, jj 
v = w '" xli + j) 
xli + j) = xli) - v 
xli) = xli) + v 

j = jj 
if (j .It. n) goto 40 

return 
end 

c ******************.*.****************.********************* •••••••••• * •••••••• 
function E2 (t, deltat) 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C Returns envelope function of E-field of laser pulse 2 at time t, given delay 
C time deltat. Note that cosh term is not squared; I = EA2 = l/coshA2, but this 
C is calculating just E = l/cosh. 

implicit double precision (A-H, O-Y) 
implicit complex·16 (Z) 
common ·/constBI hv2, fwhm2, sech2, e_shift, e_min, e_max, 

& e_step, iconvol_type, e_ion, rmass, e_min-pw, e_max-pw, 
& e_step-pw, ipts 

E2 1 I cosh (sech2 • (t - deltat)) 

return 
end 

C •••••••••••••• ** ••••• *.* •••• * •••••••• *.* .*****.*.** •••••••••••• * •••••••••••••• 
subroutine openet(ifile, icount) 

C •••••••••• * ••••• * •• *** •••••• * •• * •• ***. *********"'* *.*"'* ••••••••• "' •• ** ......... "'. 
C Opens et file. 

implicit double precision (A-H, O-Y) 
implicit complex*16 (Z) 

open (ifile, file='et' II char(64 + icount) II '.out') 

return 
end 

C • * * •• * •••••••••••• * "'*. * ••• * "' •••••••••••••• * * * •• * * '" * ••• * * "' •••••• * •••• "' •••• "' •••• 
subroutine openpw(ifile, icount) 

c •• ** •• * •••• * •• **.*"'**"'*. *.* ••• *"' ••••• "'."'''' •• '''''' "''''*'''*'''*** ****** •• *** ••• *** '" •• * '" "'''' 
C Opens pw file using three-digit file code for icount. 

implicit double precision (A-H, O-Y) 
implicit complex"'16 (Z) 

open{ifile, file='pw' II char(48 + icount I 100) II char(48 
& + mod(icount I 10, 10) II char(48 + mod(icount, 10) II 
& '.out') 

copen (ifile, file='pw' II char(64 + icount) II '.out') 

return 
end 

c ......... *"' .... * "' •• '" ."' •• "'*.****** '" "'**.* ••• "''''*** "''''*''''''***'''***'''*** •• *.* '" *.*** "' •• ** "'''''''*. '" 
subroutine convol() 

C "' •• "'''''''''' ."' •• "' •• *. "'''' "'***."'. "'**"'***. "'''''''** "'* *. "'***"''''''' "'***** "' •• *. "'.** .*"''''** "'. "'''' •• 
C BJG 19dec96: Revised from convol.f (operated on file). Convolutes raw FFT 
C spectrum with an instrument response function; also reb ins data to user's 
C specifications (e_min, e_max, e_step). Several convolution types are avail
Cable (iconvol_type): 

C no convolution. 
C 1 simple tophat distribution. 
C 2 isotropic distribution in magnetic bottle {see B. J. Greenblatt et a1., 
C Chern. Phys. Lett. 258, 523 (1996). 
C sinA2 distribution (sideways peaked) 
C 4 cosA2 distribution· (forward-backward peaked) 

implicit double precision (a-h,o-y) 
implicit complex*16 (Z) 
parameter (nener 512) 
common Ipwsl pw(nener), pwconvol(nener) 
dimension pwtemp(nener) 
common Iconvertl harev, evwn, aO, amu, emu, harwn, amass, atu 
common Iconst41 ntl, nt2, nt2half, nt2_fft, nt2half_fft, 

& tmin, tstep 
common IconstBI hv2, fwhm2, sech2, e_shift, e_min, e_max, 

& e_step, iconvol_type, e_ion, rmass, e_min-pw, e_max-pw, 
& e_step-pw, ipts 

common Iparamsl ak, aeoffset 

> 
"0 
"0 
«'I) 

= 0.. 
~. 

N 

t 
\,;.) 



C First check that distribution type is not 0; simply interpolate array to 
C new grid if so. 

if (iconvol~type eq. 0) then 
call regrid() 
return 

endif 

C Establish consta~ts (in electron mass units) 

electronmass 

C Calculate constants for our distribution function 

ak = rmass / (4 * electronrnass * e~ion) 
aeoffset = e_ion * electronrnass / rmass 

C Blank out target array. 

do j = 1, ipts 
pwconvol(j) 

enddo 

C Perform convolution. i indexes points in original array (pw); j indexes 
C points in new array (pwconvol). Erange is range of convolution function, 
C which changes with energy. anorm is accumulated weight which is then used to 
C normalize each convoluted point. 

& 

& 

do i 1, nt2_fft 

en = e_min-pw + (i - 1) • e_step-pw ! Energy of original array 
erange = dsqrt(en / ak) 
j_min = nint«en + aeoffset - erange - e_min) 

/ e_step) + 1 
j_max = nint«en + aeoffset + erange - e_min) 

/ e_step) 

C First record distribution function in array and add up norm. 

anorm = 0 
do j = j_min, j_max 

dist_temp = dist(en, e_min + (j - 1) • e_step) 
if «j .ge. 1) .and. (j .le. ipts» then 

pwtemp (j) dist_temp 
endif 
anorm = anorm + dist_temp 

enddo 

C Now copy weighted and normalized distribution to final array. 

'if (anorm .gt. 0) then 
a = pw(i) • e_step-pw / e_step / anorm 
do j = j_min, j_max 

if «j .ge. 1) .and. (j .le. ipts») then 
pwconvo!tj) = pwconvol(j) + pwtemp(j) • a 

endif 
enddo 

endif 

enddo 

return 
end 

c * •• *************************************************************************** 
function dist(ereal, eapp) 

C **~*************.***.********************************************************* 
C Return distribution function value (ereal = real eKE, eapp = apparent eKE). 
C Convol~type (in common block) specifies which distribution to use; for 
C details, see comments under convol() subroutine. Normalization not required 
C here, as convol() does its own normalization on each point. 

900 

implicit double precision (a-h,o-y) 
implicit complex*16 (Z) 
common /constS/ hv2, fwhm2, sech2, e_shift, e_min, e_max, 

& e_step, iconvol_type, e_ion, rmass, e_min-pw, e_max-pw, 
& e_step-pw, ipts 

& 

common /params/ ak, aeoffset 

if (iconvol_type .eq. 1) then! Tophat 
dist 1 

else 
temp eapp - aeoffset - ereal 
r = ak * temp * temp / ereal 
if (r .It. 1) then 

if (iconvol_type .eq. 2) then! Isotropic 
dist = dsqrt(l - r) 

else 
if (iconvol_type .eq. 3) then! SinA2 

dist = (1 - r) ", dsqrt(l - r) 
else 

if (iconvol_type .eq. 4) then ! CosA2 
dist = r * dsqrt(l - r) 

else 
format ('iconvol_type not supported. 

'Terminating. ' ) 
write (2. 900) 
write (*, 900) 
stop 

endif 
endif 

endif 
else! Extra trap to ensure don't drop below zero in dsqrt. 

dist = 0 
endif 

endif 

return 
end 

C **** * ** *** * ** * ****************.* **** * *** ****** *** ** *** * ** * * * **", ** * * ** * * ******* 
subroutine regrid() 

C ", ** * * * **** *** * * ***", ** *********** **** * *** *** *** ** ****** * ** ** *** * ** .. ** * ******* * * 
c Interpolates pw array, with grid parameters e_min-pw, e_max-pw, e_step-p, 
C onto pwconvol array using new grid parameters e_min, e_max, e_step. 

implicit double precision (a-h,o-y) 
implicit complex*16 (Z) 
parameter (nt1max = 4096, nt2max = 512, nt2halfmax = 256, 

& nener = 512) 
common /const4/ nt1, nt2, nt2half, nt2_fft, nt2half_fft, 

& tmin, tstep 
common /constB/ hv2, fwhm2, sech2, e_shift, e_min, e_max, 

& e_step, iconvol_type, e_ion, rmass, e_min-pw, e_max-pw, 
& e_step-pw, ipts 

t 
.j:>.. 

> 
"C 
"C 
ttl 

= ~ .... 
~ 

N 



j 

common /pws/ pw(nener), pwconvol(nener) 

do i = 1, ipts 
en = e_rnin + (i - 1) * e_step ! Energy in new array 
j = int«en - e_min-pw) / e_step-pw) + 1 ! Lgest old array elem <= en 
if «j .It. 11 .or. Ij .ge. nt2_fftll then 

pwconvol(i) = 0 
else 

en-pw = e_min-pw + (j 1)" e_step-pw ! Old array energy 
pwconvol(i) (pw(j)" (en-pw + e_step-pw - en) + 

& pw(j + 1) * (en - en-pw» / e_step-pw 
endif 

enddo 

return 
end 

c ** .. * .. ** * ** *** * ********** ***** .. * * * * **************** **** ** * ** *** ** ************** 
subroutine zsimpint(nx, zfl, dx, zint) 

C *** * ** ** ******* ** ************ ***** ** ** **** ************ ***** *** * .. **** ********** 
C Complex Simpson's rule integrator. 

implicit double precision (A-H, O-Y) 
implicit complex*l6 (Z) 

C Local declarations: 

parameter (nypts = 4096) 
dimension zfl(nypts), zf2(nypts) 

C Define: 

dxl dx 
dx2 dx*2. 
ixn .0. 

if (nx .gt. nypts) then 
write (6,'*) , zsimpint : nx .gt. nypts 

endif 

if «mod(nx, 2) .eq. 0» then 
nx1 = nx - 1 
nx2 = 0.50dOO * rue1 + 1 
zint = 0.50dOO * dx * (zf1(nx - 1)4 + zf1{nx» 

else 
nx1 = rue 
nx2 = O. 5 OdD 0 * nx1 + 1 
zint = O.OdOO 

endif 

C Copy the odd elements of zf1 array into zf2. 

do 10 ix 1, nxl, 2 
ixn ixn + 1 

10 zf2(ixn) zfl(ix) 

C Now integrate zfl, zf2 in two pieces. 

call ztrapint (nx1, zfl. dxl. zintl) 
call ztrapint(nx2, zf2, dx2, zint2) 

nypts 

zint = zint + (4. OdOO * zintl - zint2) I 3. OdOO 

return 

end 

C ***************************************'*************************************** 
subroutine ztrapint(npts, zf, dx, zint) 

C ************************************************************************** .. *** 

implicit double precision (A-H, O-Yl 
implicit complex*16 (Zl 
common /constO/ zero, zeye, pi, c, twopi, sqrtpi, pisq 

C Local declarations: 

dimension zf(npts) 

C Trapezoidal rule integrator for fIll - f(npts) <-> f(xO) - f(xf). 

100 

zint zero 

do 100 
zint 

= 2. npts - 1 
zint + zf(i) 

continue 
zint zint + 
zint zint 

return 
end 

Izfl11 + zflnptsll /2.0dOO 
do< 

> 
"C 
"C 
tD a 
~. 

N 

t 
Ul 



446 

Appendix 3. Complete FPES spectra of 12-(Ar)n and 
12-(C02)n clusters 

Contained in this Appendix is the complete set of FPES spectra collected for 

use segments of the same data set, but the I2-(C02)n spectra have been modified to 

remove background signals more effectively, and the zero of time of most of the spectra 

has changed slightly. The bare h- spectra appearing in Chapters 3 and 4 differ from the 

h - spectra here, as they were acquired without pulsed deceleration. These h - spectra are 

not included. The I2-(Ar)6 spectra are presented as two sets. The first set had good signal-

to-noise, but sparse representation beyond 1.2 ps. The second set, while denser at long 

time delays, was not suitable for presentation in papers due to poor background 

subtraction. 

I I 



Appendix 3 447 

1. h-

~ __ ~ ______ ~ ______ .-______ ~ ______ -. ______ ~ ______ ~ a 

~ 
LO a a ex> 
T'"" 

LO 
LO 

a 
(Y) 

LOa LO a 
C\I v r-.... 

I I I 

a 
C\I 
T'"" 

I 

a 
C\I 
C\I 

I 

(Y) 

a 
C\I 

> 
CD 
W 
~ 
CD 

a 

L-__ ~ ______ ~ ______ ~ ______ -L ______ -L ______ ~ ______ ~ q 
LO 
LO 

LO LO 
(Y) T'"" 

Intensity/Arb. Units 

LOO 
a 

I 



448 Appendix 3 
~ __ ~ ______ ~ __ ~ __ '-______ ~ ______ -. ______ ~ ______ -. a 

~ 
o a co co v ('I) 

a a 
('I) co 
('I) C\I 

LO a 
LO('I) 
C\I C\I 

LO a a co 
C\I T""" 

LO a 
LO ('I) 
T""" T""" 

('I) 

a 
C\I 

> 
CI) 

ill 
~ 
CI) 

a 

L-__ L-______ ~ ______ ~ ____ ~~ ______ ~ ______ ~ ______ ~ a 
LO 
LO 

LO LO 
('I) T""" 

Intensity/Arb. Units 

LOa 
a 

I 



Appendix 3 449 
~~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ ____ ~ 0 

~ 
o 
CO 
LO 

(Y) 

o 
C\J 

o 

~~------~------~------~------~------~----~ 
o 

LO 
LO 

LO LO 
(Y) T'-

Intensity/Arb. Units 

LO
o 

o 
I 



450 Appendix 3 

First set 

en 
'+-

N ,........ N '" N N 
\.0 00 ...... (Y) \.0 ...... . . ...... ...... ...... N 

~ 

N N N N 
\.0 \.0 \.0 \.0 
N (Y) ~ LO 

/ . 

0 . 
(Y) 

o . 
N 

> 
Q) 

.......... 
I..LJ 
~ 
Q) 

o 

o L-__ L-______ ~ ______ L_ ______ ~ ______ L_ ______ ~ ____ ~ 

Lr)0 LO LO . 
(Y) ...... o . 

Intensity/Arb. Units 



1 ... 

Appendix 3 

en -CO (f) CO (f) CO (f) 
CO CO (f) or" CO CO 
or" or" or" or" 

\ 

CO (f) C\I 
(f) or" or" 

I 

I'-
(f) 

I 

451 
0 
(f) 

o 
C\I 

> Q) --W· 
~ 
Q) 

o 

L-__ l-______ ~ ____ ~~--------~------~------~ ______ ~ 0 

LO 
LO 

LO LO 
(f) or" 

Intensity/Arb. Units 

LO
O 

o 
I 



452 Appendix 3 
a 
ct) 

en ..... 
a a a a a a a ex) ct) a a a a a a a a ct) ~ a a ex) I'- co LO V ct) C\J C\J C\J 
~ 

a . 
C\J 

a 

~~------~------~------~------~------~----~ 
a 

LO 
Lt) 

LO LO 
en ~ 

Intensity/Arb. Units 

LOa . 
o 

I 

\ I 



-

Appendix 3 

~ 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 LO 
LO C\I ~ 

0 0 
0 0 
0 LO 
C\I ~ 

0 
0 
C\I 
~ 

453 
0 
('I) 

o 
C\I 

> Q) 

ill 
~ 
Q) 

o 

L-__ ~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ 0 

LO 
LO 

LO LO 
('I) ~ 

Intensity/Arb. Units 

LO
O 

o 
I 



454 Appendix 3 

Second set 

(/) 
'+-

0 0 0 0 0 0 
0 0 0 0 0 0 
....... U) LO ~ (Y) C\J 
r-i r-i r-i r-i r-i r-i 

r 

0 0 0 0 
0 0 0 0 
r-i 0 0) 00 
r-i r-i 

0 . 
(Y) 

o . 
C\J 

> 
Q) 

"" W 
~ 
Q) 

o 
r-i 

o 
~~------~------~------~------~------~----~ 

m m . 
m (Y) ......t 

Intensity/Arb. Units 

mO 

o . 

" I 



~ 
.~" 

I 

., 

, ; 

Appendix 3 455 
a . 
(Y) 

en 
~ 

a a a a a a a a 0 a 
0 a a 0 0 0 a 0 0 a 
0 0 0 0 LO LO LO 0 en 00 
0 en '" LO q- (Y) N N ....... ....... 
....... 

0 . 
N 

> 
Q) 

.......... 
w 
~ 
Q) 

a 

o 
L-~~ ____ ~ ______ ~ ______ ~ ______ -L ______ ~ ____ ~ 

LO 

LO 
LO LO . . 
('V') ...-4 

I ntens ity / Arb. Units 

LOa . 
o 



456 Appendix 3 

en 
'+-

a a a a a a a 0 0 0 0 a a a 0 0 0 0 
LO a LO a LO a 
....t ....t (Y) (Y) N N 

a a a a a 0 0 0 
0 a 0 0 

" LO (Y) ......t 
......t ......t ......t ......t 

a . 
(Y) 

a . 
N 

> 
Q) 

........ 
w 
~ 
Q) 

o 

a 
L-~L-____ ~ ______ ~ ______ ~ ______ -L ______ ~ ____ ~ 

.LO LO LOa . 
LO (Y) ......t a 

Intensity/Arb. Units 

'-,-

I 
" 

, ! 

I 
\.,. I 



_/ 

I I 

, 
';~ ,J 

-.. 

) 

I 
~r 

Appendix 3 457 
o 

~--'-------~------'-------'-------'-------~----~M 

CJ) 
'+-

o 
o o 
o 
lO 

0 . 
N 

> 
Q) 

........ 
W 
~ 
Q) 

o 

o 
~~~------~------~------~------~------~----~ 

lO
lO

lO lO
M .-I

Intensity/Arb. Units

lOO

o .

458 Appendix 3

~
,....

~ m ~ m v ,.... ,.... Ct) CO CO ,....
I I I I

~
I

m ~ ~
Ct) CO ,....
~ ~ C\I

I I I

~
CO
C\I

I

0
Ct)

o .
C\I

>
CD
W
~
CD

o

L_ ______ ~ ________ ~ ________ ~ ________ ~ ________ L_ ______ ~ o
o
CO

o 0
~ C\I

Intensity/Arb. Units

00

o

"~ ...

\/If'

..... :;1

t
I

Appendix 3

~
CO CO

,....
CO

,....
CO

CO ('I)
,....

CO CO ('I)
C\I C\I C\I ,.... ,.... ,....

,....
CO

,....
CO ,....

CO CO ('I) ,....

459
0
('I)

o
C\I

> Q) --w
~
Q)

o

L-______ ~ ________ ~ ______ ~~ ______ ~ ________ ~ ______ ~ o
o
CO

o 0
v C\I

Intensity/Arb. Units

00

o

460 Appendix 3
0
('I)

en -CO CO CO CO CO CO CO CO CO CO
('I) ('I) CO ('I) CO ('I) CO ('I) CO ('I)
CO I'- CO CO LO LO ~ ~ ('I) ('I)

0
C\I

>
Q)

---W
~
Q)

L-______ ~ ______ ~ ________ ~ ______ ~ ______ ~ ______ ~ 0

o
CD

o 0
~ C\I

Intensity/Arb. Units

00

o

'\/

I '

'--.

I
I

.7

6.0 .-------r-----r--------,--=-----r------,-------~

462 Appendix 3

~
0 0 0 ·8 (0'
0 0 0 ('I)
0 0 0 0 ex)
ex) (0 lO v C\J

(0 (0 (0
('I) ('I) ('I)
(0 v C\J
C\J C\J C\J

(0
('f)
0
C\J

(0
('I)
0)
T"""

0
('I)

o
C\J

L-______ ~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ o
o
(0

o 0
v C\J

Intensity/Arb. Units

00

o

Appendix 3

en -0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 10 0 10 0
10 v v M M

0 0 0
0 0 0
0 0 0
10 0 10
C\I C\I or-

0 0
0 0
0 0
C\I 0
or- or-

463
0
M

o
C\I

L-______ ~ ______ ~~ ______ ~ ______ ~ ______ ~ ______ ~ 0

o
CO

o 0
v C\I

Intensity/Arb. Units

00

o

464 Appendix 3
0
~

en
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0) CO I'- (0
~

o .
C\J

o

~------~------~------~----~~--------~----~
o

o
(0

o 0
v C\J

Intensity/Arb. Units

00

o

I-

I-

I

I

LO
LO

en
'+-

.-t
('f)

)

)

~

I

~

.J

~

I

,

I

Appendix 3

en ~ en ~ en
.-t ~ ~ en .-t-t .

) (~

~

)) I)

(I I
J

.' ,
,

~ i

LO LO
('f) .-t

Intensity/Arb. Units

~ ~ ~
~ en ~
.-t .-t C\J . . .

~

J J
I

•

-

-

465

o
('f)

o
C\J

>
Q)

"w
~
Q)

o

o .
LOO

o .

466 Appendix 3

en
'+-

\.0 \.0 r-I \.0 r-I \.0
0 LO (Y) a 00 LO
(Y) C\I C\I C\I r-I r-I

r-I \.0 r-I
(Y) 0 00
r-I r-I

U)
LO

0 .
(Y)

a
C\I

>
Q) ,
w
~
Q)

a

a
L-~ ______ ~ ______ ~ ______ ~ ______ -L ______ ~ ____ ~ •

LO LO LOa
(Y) r-I o .

Intensity/Arb. Units

Appendix 3

5.12-(Ar)16

(/)
'f-

0 0 0 0 0 0 0
LO LO LO LO LO LO LO
o:::t .-4 0) ,....... U) LO o:::t
.-4 .-4

0 0 0
LO LO LO
(Y) C\J .-4

467

0 .
(Y)

o
C\J

>
Q)

..........
W
~
Q)

o

o L-______ ~ ______ ~ ______ ~ ______ ~ ________ ~ ____ ~

o .
U)

o 0 . .
o:::t C\J

I ntensity/ Arb. Units
/

0 0

o

468 Appendix 3

If)
'+-

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 L.() 0 L.() 0 00
L.() (Y) N-t-t

0 0 0
0 0 L.()

0 0 0)
w ~-t

0 .
(Y)

o
N

>
Q)

.........
w
~
Q)

o

o
~------~------~------~------~------~------~

o 0 00 . .
~ N o

Intensity/Arb. Units

Appendix 3

6.12-(Arho

(/)
~

0 0 0 LO LO LO
0 0 0 N N N
LO 0 0 '" ~ LO
N N .--I

LO LO LO LO
N N N .N
.q- (Y) N .--I

469

0 .
(Y)

o
N

>
Q)

-........
W.
~
Q)

o

o
~------~------~------~------~------~------~

o 0 00
.q- N o

Intensity/Arb. Units

470 Appendix 3
0
(Y)

en
'+-

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
LO LO LO ~ LO ~ (Y)
(Y) N

o

o
~------~------~------~------~------~------~

o 0 00
. .

~ N o
Intensity/Arb. Units

Appendix 3 471
o

~------~------~------~------~------~------~M

en
c

M
en
'r-

o 0 o 0 o 0
o 0
o 0
N ..--I

o

o
~------~------~------~------~------~------~

o o 0 00 .
~ o::t N o

Intensity/Arb. Units

472 Appendix 3

en
0 0 0 0 0
0 0 0 0 0
C\J 0 ex> ,..... CO
'\""'" '\""'"

0 0 0
0 0 0
1.0 v (t)

0 0
0
C\J

0
C\J

1.0

1.0
o

~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ 0

o
CO

o 0 . . v C\J

Intensity/Arb. Units

00

o

Appendix 3

en -0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ex>
0 0 LO 0 LO C\I
0 LO (t) C\I ,...

0 0 0
0 0 0 v 0 <.0
C\I C\I ,...

0
0 v ,...

473
0
C\I

LO

LO
o

o
~------~------~--------~------~------~------~

o
<.0

o 0
v C\I

Intensity/Arb. Units

00

o

474 Appendix 3
o

~------~------~------~------~------~------; .
C\J

~
o o o o o
C\J

LO
T"""

LO
0,

~------~------~------~------~------~------~
o

o
CO

o 0
v C\J

Intensity/Arb. Units

00

o

Appendix 3

en -0 0 0 0 0 0
0 0 CO CO CO CO
CO T'- CO CO LO V
T'- T'-

0 0 0
CO CO CO
('t) C\I T'-

0
C\I

I

475

0
C\I

LO

LO
o

L-______ ~ ______ ~ ________ ~ ______ ~ ______ ~ ______ ~ 0

o
CO

o 0
v C\I

Intensity/Arb. Units

00

o

476

~
tr)

.-

Appendix 3

o o
T'""

LO
T'""

>
~
~

LO
o

Q)

~------~------~------~------~--------~----~
o

o
CO

o 0
v C\I

Intensity/Arb. Units

00

o

Appendix 3

rJ) -0 0 0 0 0 ,.... CO ,.... CO ,....
01'- CO CO LO LO

0 0 0
CO ,.... ,....
V V ('I)

0 0 ,.... ,....
C\I

477

0
C\I

LO

LO
o

L-______ ~ ______ ~ ________ ~ ______ ~ ______ ~ ______ ~ o
o
co

o 0
V C\I

Intensity/Arb. Units

00

o

478 Appendix 3

en -0 0 0
0 0 0
0 0 0
0 0 0')
0 LO
T"""

0 0 0
0 0 0
0 0 LO
CO ('I) T"""

0
0
0
T"""

0
T"""

CO

q
C\J

LO
o

~ ______ ~ ______ ~ ________ ~ ______ ~ ____ ~~ ______ ~O

o
CO

o 0
~ C\J

Intensity/Arb. Units

00

o

Appendix 3 479
o

~------~------~~----~------~------~----~~N

~
o o o o o
N

LO
o

~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~o
o
<0

o 0 . .
v N

Intensity/Arb. Units

00

o

480 Appendix 3

U)
0 0 0 0 0 0
CO CO CO CO CO CO
I'- CO LO v ('I) C\J

0 0 0
CO CO C\J
.,- I

0
C\J
.,-

I

0
C\J

LO

LO
o

o
~------~------~------~------~--------~----~

o
CO

o 0
v C\J

Intensity/Arb. Units

00

o

Appendix 3

en -0 0 0 0 0
0 0 0 0 0
0 0 0 0 ,...
0 ex> CO v C") ,...

. --

"'"

0 0 0
0 0 0
CO ,... (0
C\J C\J ,...

0 0
ex> ex>
0 ex> ,...

481
0
C\J

LO

LO
o

L-______ ~ ______ ~ ________ ~ ______ ~ ______ ~ ______ ~ 0

o
CO

o 0
v C\J

Intensity/Arb. Units

00

o

482 Appendix 3

~
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 lO ('I)
C\I .,..

0 0 0
0 0 0
0 0 0
0 lO C\I
C\I .,.. .,..

0
"

C\I

lO

lO
o

~------~------~------~------~--------~----~
o

o
(0

o 0
v C\I

Intensity/Arb. Units

0
0

o

Appendix 3

en -0 0 0 0 0
0 0 eX) C') C')
C') 0 eX) CO
T""" T"""

0 0 0
C') C') C')
LO v C')

0 0
C') C')
C\J

483

0
C\J

LO

LO
o

~------~------~------~------~--------~----~
o

o
CO

o 0
v C\J

Intensity/Arb. Units

00

o

484 Appendix 3

en -0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1.0 C\J T"""

C\J T"""

0 0 0
0 0 0
1.0 0 1.0

"" 1.0 C\J

0
0
1.0
T"""

0
C\J

1.0

LO
o

~ ______ ~ ______ ~ ______ ~ ______ ~ ________ ~ ____ ~ 0

o
(,0

0- 0
~ C\J

Intensity/Arb. Units

00

o

Appendix 3

en -0 a 0 0 0 0
0 0 LO 0 LO en C\J ,.... ,....

0 0 0
LO 0 LO

I ,.... ,....
I I

0
0
C\J

I

485

a
C\J

LO

LO
o

L-__ L-______ ~ ______ ~ ______ ~ ______ ~ ______ ~ ____ ~ a
LO
LO

LO LO
en ,....

Intensity/Arb. Units

LO
O

o
I

486 Appendix 3

~
0 0 0 0 0 0
0 0 0 0 0 0
C\I 0) CO (W) 0 ex>
C\I T""" T""" T""" T"""

0 0 0
0 0 0

"""
CO LO

0
0 v

0
C\I

LO

LO
o

o
~~------~~------~------~------~------~----~ 0

LO
LO

It)

(W)

Intensity/Arb. Units

LO .. LO
o

I

I

Appendix 3 487
a
C\J

en
a (J) LO a a a ex> "'" co LO ~ C\J C\J a C\J ,....
C\J

LO
,....

LO . -

a

~~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ ____ ~a
LO
LO

LO LO
('I) ,....

Intensity/Arb. Units

LOa
a

I

488

Appendix 4. Publications from graduate work

1. B. J. Greenblatt, M. T. Zanni, and D. M. Neumark, "Femtosecond photoelectron

spectroscopy of Iz-(Ar)n photodissociation dynamics (n = 6, 9, 12, 16,20)," J. Chern.

Phys., in preparation.

2. B. J. Greenblatt, M. T. Zanni, and D. M. Neumark, "Femtosecond photoelectron

spectroscopy of 1z~(C02)n photodissociation dynamics (n = 4,6,9, 12, 14, 16)," J.

Chern. Phys., in preparation.

3. M. T. Zanni, B. J. Greenblatt, A. V. Davis and D. M. Neumark, "Photodissociation

studies of 13- using photoelectron spectroscopy," J. Chern. Phys., in preparation.

4. M. T. Zanni, V. S.Batista, B. J. Greenblatt, W. H. Miller, and D. M. Neumark,

"Femtosecond photoelectron spectroscopy of the Iz - anion: Characterization of the

A' 2ng ,1/2 excited state," J. Chern. Phys., 110, 3748 (1999).

5. V. S. Batista, M. T. Zanni, B. J. Greenblatt, D. M. Neumark, and W. H. Miller,

"Femtosecond photoelectron spectroscopy of the Iz - anion: A semiclassical molecular

dynamics simulation method," J. Chern. Phys., 110, 3736 (1999).

6. M. T. Zanni, B. J. Greenblatt, and D. M. Neumark, "Solvent effects on the vibrational

frequency 0(12- in size-selected Iz-(Ar)n and 12-(C02)n clusters," 1. Chern. Phys. 109,

9648 (1998).

7. M. T. Zanni, L. Lehr, B. J. Greenblatt, R. Weinkauf, and D. M. Neumark, "Dynamics

of charge-transfer-to-solvent precursor states in f(D20)n clusters," Proceedings of the

Xlth Ultrafast Conference, Garmisch-Partenkirchen, Germany, in press (1998).

I ,

Appendix 4 489

8. M. T. Zanni, B. J. Greenblatt, A. V. Davis, and D. M. Neumark, "Photodissociation

dynamics of 13- using femtosecond photoelectron spectroscopy," Laser Techniques

for State-Selected and State-to-State Chemistry IV, Proc. SPIE, 3271, 196 (1998).

9. B. J. Greenblatt, M. T. Zanni, and D. M. Neumark, "Time-resolved studies of dy-

namics in molecular and cluster anions," Faraday Discuss., 108, 101 (1997).

10. M. T. Zanni, T. R. Taylor, B. 1. Greenblatt, B. Soep, and D. M. Neumark, "Charac-

, IJ terization of the h- anion ground state using conventional and femtosecond photoe-

lectron spectroscopy," J. Chern. Phys., 107, 7613 (1997).

11. B. J. Greenblatt, M. T. Zanni, and D. M. Neumark, "Photodissociation of h-(Ar)n

Clusters Studied with Anion Femtosecond Photoelectron Spectroscopy," Science,

276, 1675 (1997).

12. B. J. Greenblatt, M. T. Zanni, and D. M. Neumark, "Photodissociation dynamics of

the h- anion using femtosecond photoelectron spectroscopy," Chern. Phys. Lett., 258,

523 (1996).

a

(5!.J~I#b-nr ~ ~:;)31~I":I! @)"'J:tI§jL$1 ~~
I§m3 ~ ~ il @l3I:;)a=!JiiIi?o ~1?1m'A ~~

o

b
t

