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Abstract

Purpose of Review.—The purpose of this review is to highlight recent research advances in 

noninvasive prenatal diagnostic methods.

Recent Findings.—Recent studies developing noninvasive prenatal diagnostic (NIPD) methods 

have been focused on either fetal nucleated red blood cells (fNRBCs) or circulating trophoblasts 

(cTBs). Enriched cTBs were successfully utilized for whole genome profiling and short tandem 

repeat (STR) identification to confirm feto-maternal relationship. However, further analysis of 

isolated fNRBCs remains confined to examining fetal cytogenetics.

Summary.—Invasive prenatal diagnostic procedures, amniocentesis and chorionic villus 

sampling, are the gold standard for the diagnosis of fetal chromosomal abnormalities and genetic 
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disorders. Meanwhile, noninvasive techniques of analyzing circulating cell-free fetal DNA 

(cffDNA) have been limited to screening tools and are highly fragmented and confounded by 

maternal DNA. By detecting circulating fetal nucleated cells (CFNCs) we are able to 

noninvasively confirm fetal chromosomal abnormalities, truly realizing the concept of 

“noninvasive prenatal diagnostics”. The primary technical challenge is the enrichment of the low 

abundance of CFNCs in maternal peripheral blood. For any cell-based NIPD method, both fetal 

whole genome profiling and confirmation of the feto-parental relationship are essential. This has 

been successfully performed using enriched and isolated cTBs, making cTB a better candidate for 

NIPD. cTB enumeration also correlates with abnormal fetal or placental development. On the 

other hand, downstream analysis of fNRBCs remains limited to examining fetal sex and 

aneuploidies. Furthermore, trophoblast-based NIPD via an endocervical sample is also promising 

because of reduced dilution from hematologic cells.

Keywords

Noninvasive Prenatal Diagnostic; Circulating Fetal Nucleated Red Blood Cell; Circulating 
Trophoblast; Whole Genome Amplification; Array Comparative Genomic Hybridization; Short 
Tandem Repeat

Introduction

The current gold standard for prenatal diagnosis of chromosomal abnormalities and genetic 

disorders involves an invasive procedure[1, 2], namely chorionic villus sampling (CVS, 

performed between 10–13 weeks gestation) or amniocentesis (performed between 15–18 

weeks gestation), when either amnioctyes or chorionic villi are collected for karyotyping, 

microarray analysis, or sequencing[3]. These two procedures provide accurate diagnostic 

information for clinical decision-making. However, there are concerns regarding procedural 

risk, which includes an increased risk of pregnancy loss (0.6–2%)[4] and other 

complications (i.e. limb-reduction defects and rupture of membranes). To implement 

prenatal diagnosis without these risks, significant endeavors have been devoted into 

developing paradigm shifting non-invasive prenatal diagnostic (NIPD) technologies (Table 

1).

Cell-free fetal DNA (cffDNA)

Dr. Lo first reported[5] the presence of cell-free fetal DNA (cffDNA) in maternal blood in 

1997. Two sequencing methods have been developed to detect fetal aneuploidies: one is 

massive parallel shotgun sequencing (MPSS)[6, 7], while the other is single-nucleotide 

polymorphisms (SNP)-based targeted sequencing[8]. Both methods detect the most 

commonly seen fetal aneuploidies including trisomy 21, 18, 13, and sex chromosome 

abnormality with high sensitivity. Currently, in the United States, there are multiple Clinical 

Laboratory Improvement Amendments (CLIA) labs providing cffDNA-based noninvasive 

prenatal tests (NIPT), including Sequenom, Ariosa, Illumina, and Natera, among others. 

However, cffDNA is highly fragmented and compounded by a significant background of 

maternal DNA. Due to their various limitations (e.g., high false positive rates[9], low 

sensitivity to less common aneuploidies, and an inability to detect shorter copy number 
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variations CNVs and microdeletions/duplications)[10], these cffDNA-based methods only 

served as screening tools, rather than diagnostic tools. Patients with positive NIPT results 

require diagnostic confirmation by invasive prenatal diagnostic procedures, i.e., CVS and 

amniocentesis.

Circulating fetal nucleated cells (CFNCs) for NIPD

In contrast to cffDNA, CFNCs[11, 12] in maternal blood possess intact fetal genomic DNA, 

making these cells an ideal candidate for NIPD. Fetal-maternal cellular trafficking[13] is the 

bidirectional passage of cells that is responsible for CFNCs in maternal circulation. The 

potential to use CFNCs during the first and second trimester for prenatal diagnosis was 

described[11] in 1969 (before cffDNA). Unfortunately, it has thus far not been possible to 

develop a routine clinical prenatal test despite extensive commercial and academic research 

efforts bover the past 49 years. This hurdle can be attributed to the technical challenges 

associated with the detection, isolation, and characterization of CFNCs in maternal blood 

samples. These cells are both fragile and low in abundance[14] (compared to 109 

hematologic cells/mL of maternal blood in a normal pregnancy). Throughout the past half 

century[15, 12], several different technologies for enriching CFNCs have been studied, 

including: gradient centrifugation,[16, 17] magnetic-activated cell sorting (MACS),[18, 19] 

fluorescence-activated cell sorting (FACS),[20, 21] microchip technologies,[15, 22] 

filtration,[23] high-throughput microscopy[14, 24], and various combinations of the 

aforementioned methods. Yet, none of these technologies have demonstrated sufficient 

sensitivity and reliability to support clinical implementation.

Among CFNCs[12] that have been identified in maternal circulation, e.g., fetal nucleated red 

blood cells (fNRBCs),[25] leukocytes, and circulating trophoblasts (cTBs)[24], the majority 

of efforts have focused on developing NIPD methods using fNRBCs and cTBs. A key 

milestone was achieved by a prospective, multicenter clinical project, i.e. the National 

Institute of Child Health and Human Development Fetal Cell Isolation Study (NIFTY)[26], 

led by Dr. Bianchi to develop fNRBC-based NIPD methods. In this study, both MACS and 

FACS techniques were employed to isolate fNRBCs from maternal blood samples, and were 

followed by fluorescence in situ hybridization (FISH) to detect aneuploidy and fetal sex. 

Unfortunately, the results of the NIFTY trial[26] demonstrated the rates of detecting at least 

one cell with a Y-chromosome signal in women carrying singleton male fetuses and of 

identifying at least one aneuploid cell in cases of fetal aneuploidy to be insufficient for 

clinical use. Furthermore, the high false-positive rate in determining fetal sex (based on Y-

chromosome signal) made this approach inappropriate for clinical use.

Circulating trophoblasts (cTBs) for NIPD

Recent studies[19, 24, 27] suggest that cTB[24] may be a better target CFNC, given their i) 

short lifespan (a few days), which excludes the possibility of isolating cTBs from prior 

pregnancies, ii) representation of fetal karyotype and genotype (except for the rare 

circumstances where discrepancy can result from confined placenta mosaicism), and iii) 

expression of specific biomarker signatures[28] (e.g., CD105[19], EpCAM[27], CK7[19, 24, 

27] and HLA-G[27]) that can be used for both enrichment and identification. In 2016, two 
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studies[19, 24] led by Dr. Beaudet at Baylor College of Medicine demonstrated that cTBs 

could be recovered by either a single-cell isolation technique[24] or an optimized MACS 

approach[19] from maternal blood (as early as 10 weeks’ gestation) for whole genome 

profiling by array comparative genomic hybridization (aCGH) and/or next-generation 

sequencing (NGS). The feasibility of conducting aCGH-based whole genome profiling of 

cTB was independently validated by Vestergaard et al[29] in Denmark. They reported results 

from five clinical cases of first trimester high-risk pregnancies (those with a >1:300 risk of a 

chromosomal abnormality). In all of these, cTBs were enriched by a MACS-based approach, 

followed by single-cell isolation.

In 2017, a joint team across three institutions, including the University of California, Los 

Angeles (UCLA), Cedars Sini Medical Center (CSMC), and Cathay General Hospital in 

Taipei, demonstrated highly precise single cTB isolation (Figure 1a) using a new class of 

NanoVelcro Rare-Cell Assays[30–32]. This technology was originally developed for the 

detection and characterization of circulating tumor cells (CTCs) in the cancer diagnostics 

field. Compared with existing rare-cell enrichment technologies, the uniqueness of 

NanoVelcro Assays stems from their use of nanosubstrates – specifically, nanostructured 

substrates based on silicon,[33, 34] TiO2,[35] and polymer[36, 37] nanostructures – which 

allow for enhanced local topographic interactions[38–40] between the nanostructured 

substrates and nanoscale cellular surface components (e.g., microvilli), resulting in vastly 

improved cell-capture affinities compared to those observed for non-structured (i.e., flat) 

substrates. To explore NanoVelcro Assays’ application in the field of NIPD, we utilized our 

2nd-generation NanoVelcro Chips,[27] in which laser capture microdissection (LCM)-

compatible nanosubstrates were prepared via nanoimprinting in a cost-efficient and scalable 

manner. A cTB-specific capture agent (anti-EpCAM) was grafted onto the NanoVelcro 

substrates to confer specificity for cTB enrichment in maternal blood samples. From there, a 

4-channel immunocytochemistry (ICC) protocol for parallel staining of Hoechst, anti-CK7, 

anti-HLAG, and anti-CD45 was developed to stain cTBs. In parallel, high-resolution 

microscopy imaging was adopted to identify and register individual cTBs (Hoechst+/CK7+/

HLAG+/CD45−, 15 µm>sizes>7 µm, Figure 1b) from nonspecifically captured white blood 

cells (WBCs) and cellular debris on the NanoVelcro substrates. Subsequently, an LCM 

system was employed to isolate the identified cTBs, followed by downstream fetal whole 

genome profiling by aCGH and short tandem repeat (STR) assays for confirming feto-

parental relationship. A streamlined workflow[27] (Figure 1a) is illustrated starting from 

single cTB identification and isolation to whole genome profiling of cTBs by aCGH and 

STR. Accurate detection of fetal sex and chromosomal aberrations has been demonstrated 

(Figure 1c) in 15 clinical samples.

The four publications[19, 24, 29, 27] described above validated the potential of cTB-based 

NIPD to diagnose the most common chromosomal abnormalities: aneuploidies potentially 

accompanied by mosaicism, unbalanced translocations, deletions, and/or duplications. 

Understanding the potential impact, multiple scientific and biotechnology news outlets, e.g., 

GenomeWeb and Chemical & Engineering News, have highlighted these results[19, 24, 27], 

opening the possibility of high-resolution detection of CNVs, and even whole genome or 

exome sequencing to detect both inherited and de novo mutations.
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With these milestones in place, expectations for a practical cTB-based NIPD prenatal 

technology must include i) sufficient sensitivity and specificity to recover pure cTBs from 

maternal blood during the first trimester, ii) sufficient reproducibility and scalability to 

conduct fetal whole genome profiling using the recovered cTBs, and iii) confirmation of 

cTB identity by checking feto-parental (or at least feto-maternal) relationship using STR 

fingerprints. Due to the low numbers of cTBs found in the first trimester, a practical cTB-

based NIPD technology would need to be capable of highly effective cTB isolation and of 

handling a volume of blood (>10 milliliters) sufficient for isolating cTBs for whole genome 

profiling and STR fingerprints, in order to be reproducible enough for clinical use. Second, 

cTBs need to be isolated in a pure and intact form[19, 24, 27] in order to be subjected to 

whole genome amplification (WGA), followed by fetal whole genome profiling via aCGH 

and/or NGS. To reproducibly amplify the low quantity of cTB-derived DNA represents a 

crucial technical hurdle for whole genome profiling. Extensive tests conducting WGA on 

DNA isolated from single and pooled cTBs have been performed in order to credibly 

demonstrate the feasibility of cTB-based fetal whole genome profiling. Third, to confirm the 

feto-parental relationship of the isolated cTBs, their matching maternal/paternal STR 

fingerprints have to be evaluated.[19, 24, 27] This confirmatory test serves as a crucial 

checkpoint, preventing potential misidentification of maternal cells as female cTBs. 

Moreover, it is well documented that trophoblast cells may be mosaic, leading to false 

positive results. Mosaicism rates in potentially viable embryos range between 4.8% – 16.9% 

and 1.3% at CVS.[41–44] Large-scale clinical validation studies on individual cTB-based 

NIPT technologies will have to be conducted in order to assess fetal mosaicism rates.

Latest progress on fNRBC-based NIPD

Recently, extensive research efforts have also been devoted to exploring the use of different 

rare-cell enrichment technologies to identify and isolate fNRBCs for NIPD applications. 

Byeon et al.[45] utilized a two-step enrichment workflow composed of an enrichment 

process based on red blood cell (RBC) hyper-aggregation in tubes, and immunomagnetic 

WBC depletion in microfluidic chips. The enriched fNRBCs were further characterized by 

ICC and PCR-based detection of SRY gene (associated with fetal Y chromosome). He et al.

[46] exploited a nanostructure microchip to isolate fNRBCs, followed by on-chip fNRBCs 

analysis by ICC (covering DAPI, CD71, and ε-HbF) and FISH (to detect trisomy). The 

frequency-enhanced transferrin receptor antibody-labelled microfluidic chip (FETAL-Chip) 

was designed by Zhang et al.[47] for enrichment of circulating fNRBCs. Subsequently, ICC 

and SRY gene detection were carried out to identify fNRBCs. Compared to the fNRBC 

enrichment approaches employed in the NIFTY trial[26], there might have been some 

technical improvements in more recent studies. However, the scope of the downstream 

analysis remains confined to either traditional cytogenetic techniques (e.g., karyotyping and 

FISH) or polymerase chain reaction (PCR), which are of limited capacity for detecting 

CNVs. The challenges encountered in the NIFTY trial[26] remained unsolved. fNRBC-

based NIPD has yet to demonstrate its potential to adopt more powerful molecular analysis 

technologies capable of performing fetal whole genome profiling (e.g., aCGH and NGS). 

Furthermore, STR identification for confirming feto-maternal relationship (trios) was not 

performed in fNRBC-based NIPD either. A noteworthy concern for fNRBC-based NIPD is 
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the presence of maternal NRBCs in circulation and the challenges associated with rigorously 

distinguishing these cells from fNRBCs[12] (i.e., fNRBCs of a female fetus without any 

chromosomal abnormality cannot be differentiated from maternal NRBCs by FISH or PCR 

of SRY).

Other CFNC-based NIPD

A new approach has also been developed by the Beijing Genomics Institute[48] (BGI) to 

address the urgent need for a highly sensitive and accurate method of isolating CFNCs for 

NIPD. The BGI team developed a double negative selection (DNS) protocol coupled with 

positive genetic identification for CFNCs. First, CD45-negative cells were collected by 

depleting WBCs using MACS, these CD45- cells were then incubated with Hoechst and 

propidium iodide (PI). Isolation of CD45−/Hoechst+/PI− fetal cells was performed by FACS. 

The isolated cells were further processed by WGA using quantitative PCR (qPCR) and STR 

detection, identifying several disease-associated variants. An inertial microfluidic device was 

demonstrated by Winter et al.[49] in 2018 for efficient isolation of trophoblasts from 

maternal peripheral blood by filtering for cells with sizes greater than approximately 15 μm. 

After optimizing the inertial microfluidic device using a cell line, they conducted a pilot 

study with a blood sample from a woman carrying a fetus suspected to have trisomy 21. 

Subsequent ICC and FISH results agreed with a diagnosis of trisomy 21, which was 

confirmed by amniocentesis for karyotyping. Still, more clinical samples and further WGA 

are necessary to validate the feasibility of this size-based device.

Other potential utilities

Trophoblast (TB)-based NIPD solution using endocervical swab samples as a 
complimentary approach to maximize success.

An alternative approach for achieving fetal cell-based NIPD is to utilize trophoblasts[50] 

that migrate from the placenta into the reproductive tract.[51] It has been demonstrated that 

hundreds of trophoblasts can be recovered safely and non-invasively in the cervical canal 

using a Papanicolaou (Pap) procedure.[52] Since the discovery of circulating fetal cells in 

1971, numerous approaches, including immunomagnetic enrichment with anti-HLAG,[53] 

and filtration followed by NGS[28] and single-cell STR genotyping[54] have been 

developed. Extravillous trophoblast (EVT) cells purified by trophoblast retrieval and 

isolation from the cervix (TRIC) at 5–20 weeks of gestation contain the fetal genome (for 

genetic assessment of the embryo/fetus), as well as the fetal transcriptome, which may 

reveal placental abnormalities as early as the first trimester. TRIC may one day provide a 

method of risk assessment for maternal and fetal disease, paving the way for a diagnostic 

tool in obstetric precision medicine.

CFNC enumeration predicts abnormal fetal development, prognosis, and outcomes.

Since CFNCs can be detected in maternal circulation as early as the sixth week of gestation 

[23], and increased CFNC count suggests escalated feto-maternal cellular trafficking - an 

indication of potential abnormal fetal development[55, 56, 27] (e.g., fetal aneuploidy and 

adherent placentation including placenta accreta), CFNC enumeration may be used to screen 
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for abnormal fetal/placental development. Because CFNC enumeration can be conveniently 

carried out within the existing workflow once the cells are captured on the NanoVelcro 

chips[27, 32], it can be used as a complementary diagnostic screening tool while performing 

the CFNC-based fetal whole genome profiling. The CFNC-based enumeration assay might 

serve as a powerful assay capable of assessing abnormal trophoblast invasion into the 

endometrium which may be used for diagnosing and monitoring diseases related to 

abnormal placental development, including highly morbid conditions such as placenta 

accreta.

Conclusions

Of the current non-invasive prenatal genetic testing methods, cffDNA-based NIPT remains 

solely as a screening technology because of the fragmented nature of fetal genomic 

information and the maternal cell-free DNA background naturally found in maternal blood. 

As for CFNCs, isolation of fNRBCs for further analysis is limited by the presence of 

maternal NRBCs, low detection rates, and high false-positive rates. Another CFNC-based 

approach, i.e., cTB-based analysis, has demonstrated several utilities as a potential NIPD. 

The cTB-derived aCGH data correctly identified fetal sex, and chromosomal and 

subchromosomal abnormalities, which had been confirmed by invasive procedures (e.g., 

amniocentesis and CVS). In parallel, the STR fingerprints from cTBs were correlated with 

maternal/paternal blood cells, which confirmed the feto-parental relationships. These studies 

support the feasibility of cTB as a good candidate for NIPD. With ongoing and anticipated 

large-scale clinical studies in the pipeline, this cTB-based NIPD holds great potential to 

evolve into a truly noninvasive prenatal diagnostic solution. Progress in genomic analysis 

should make it feasible to detect copy number variations in the megabase range in the near 

future and perhaps even to detect de novo point mutations. In addition, potential TB-based 

NIPD using endocervical swab samples could provide assessments for fetal genomic 

aberrations as well as fetal and maternal risks in pregnancy. Overall, circulating and 

endocervical fetal nucleated cell enumeration may serve as a complementary screening tool 

for abnormal placental development while performing fetal whole genome profiling. Such 

technology would transform the practice of prenatal care and diagnosis. While the feasibility 

of performing single-cTB genetic testing has been demonstrated by our team[27] and 

others[19, 24], the biggest remaining challenge to becoming a real NIPD is to demonstrate 

acceptable reproducibility and scalability of this test.
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Figure 1. 
Isolation and examination of cTBs from maternal blood, using the 2nd-generation 

NanoVelcro assay, for genome-wide detection. a) The workflow of cTB enrichment and 
single cTB isolation. After centrifugation of the maternal blood, the peripheral blood 

mononuclear cell (PBMC) layer is extracted to capture cTBs with NanoVelcro Chips for 

further genetic analysis. b) Immunostaining of cTB by specific markers. cTBs are 

identified by Hoechst+ (blue), HLAG+ (orange), CK7 + (green), and CD45− (red). c) cTB-
derived aCGH revealed trisomy 21 from three cTBs of a female fetus. d) STR genomic 
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mapping verified the feto-parental relationship between cTBs and their matching maternal 

and paternal white blood cells. Adapted with permission from Hou, S. et al.[27] Copyright 

(2018) American Chemical Society.
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Table 1.

Benefits of the circulating trophoblast(cTB)-based NIPD technology (using maternal blood) and 

alternative trophoblast(TB)-based NIPD technology (using endocervical swab samples) in comparison to 

the conventional invasive diagnostic procedures (i.e., amniocentesis and CVS) and cffDNA-based NIPT 

screening.

Invasive Prenatal Diagnosis

cffDNA-based NIPT cTB-based NIPD TB-based NIPDAmniocentesis Chorionic Villus 
Sampling (CVS)

Sample Fetal cells Placental tissues Mixtures of fetal and maternal 
DNA

Circulating trophoblasts 
(cTBs) in peripheral 

blood

Trophoblasts (TBs) in 
cervix

Coverage High High Low (chromosome 
21/18/13/X/Y)

High High

Accuracy High High High for trisomy 21 High High

Timing 
(GA)

15 weeks 10 weeks >9 weeks (only for screening) >8 weeks (potential to be 
>6 weeks)

>5 weeks
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