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Abstract: Chloroplasts are ancient organelles responsible for photosynthesis and various biosynthetic
functions essential to most life on Earth. Many of these functions require tightly controlled regulatory
processes to maintain homeostasis at the protein level. One such regulatory mechanism is the
ubiquitin-proteasome system whose fundamental role is increasingly emerging in chloroplasts. In
particular, the role of E3 ubiquitin ligases as determinants in the ubiquitination and degradation of
specific intra-chloroplast proteins. Here, we highlight recent advances in understanding the roles
of plant E3 ubiquitin ligases SP1, COP1, PUB4, CHIP, and TT3.1 as well as the ubiquitin-dependent
segregase CDC48 in chloroplast function.

Keywords: ubiquitin; E3 ligase; chloroplast; stress; photosynthesis; homeostasis; SP1; COP1; PUB4;
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1. Introduction

As essential and ancient organelles originating from the endosymbiosis of a cyanobac-
terial organism, chloroplasts are a defining feature of plants and play crucial roles during
growth and development [1–3]. They are bound by a double membrane envelope surround-
ing a stromal matrix containing a unique thylakoid membrane home to photosynthesis, a
process of transforming CO2 into carbohydrates [2,4]. Chloroplasts also perform an array
of important biosynthetic processes such as nitrate assimilation and the synthesis of fatty
acids, amino acids, and terpenes [5,6]. To maintain these functions, the chloroplast’s diverse
proteome must be dynamically controlled.

The chloroplast proteome is known to contain approximately 3000 proteins. More
than 95% of the proteome is nuclear-encoded and the remaining ~100 proteins are en-
coded by the chloroplast genome [5,7,8]. Import of nuclear-encoded chloroplast proteins
relies on translocation through translocons known as TOC (translocon at the outer enve-
lope membrane of chloroplasts) and TIC (translocon at the inner envelope membrane of
chloroplasts) [9–11]. Regulation of the content and quality of the chloroplast proteome
is established by several homeostatic mechanisms, including proteolysis, transcriptional
control, and translation [9,12]. The presence of damaged or incorrectly sorted proteins can
be detrimental and lead to the formation of aggregates or malfunction of important cellular
pathways [9,13–15]. For instance, several abiotic stresses (i.e., extreme temperature, strong
light, and oxidative conditions) can damage properly folded and sorted chloroplast proteins,
consequently compromising the integrity of the chloroplast proteome and affecting plant
growth [16,17]. Thus, it is imperative that chloroplasts maintain proteome homeostasis.

Recent findings demonstrate a link between the ubiquitin-proteasome system (UPS)
and chloroplast function. Notably, plants heavily utilize the UPS to rapidly respond to
the ever-changing environment [18–22]. The destruction of a protein by the UPS involves
two successive steps: first, conjugation of the protein substrate through covalent attach-
ment of ubiquitin molecules in a process called ubiquitination, and second, degradation
of the ubiquitin-conjugated substrate by the 26S proteasome [23,24]. The mechanism of
ubiquitination involves the collaborative action of three main enzymes. First, a ubiquitin-
activating enzyme (E1) activates ubiquitin through ATP hydrolysis and delivers the acti-
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vated ubiquitin to a ubiquitin-conjugating enzyme (E2), forming a thioester bond in its
cysteine active site with the C-terminus glycine of the activated ubiquitin. Thereafter, a
ubiquitin ligase (E3) strictly mediates the transfer of the activated ubiquitin from E2 to the
target substrate [13,25]. The last step in the ubiquitination process requires a successive
addition of ubiquitin moieties to the Lys residue of the previously conjugated ubiquitin
molecule, such that a polyubiquitin chain is formed. Ubiquitin has seven internal lysine
residues (Lys6, 11, 27, 29, 33, 48 and 63) that all can potentially be used for polyubiquitin
chain formation [26]. The isopeptide linkage within a polyubiquitin chain plays role in de-
termining the cellular fate and function of the modified target protein. In a typical scenario,
polyubiquitin chains are linked through Lys48 and target the ubiquitinated proteins for
degradation by the 26S proteasome [13,27–29].

Remarkably, the Arabidopsis genome contains thousands of proteins (~6% of the total
genome) involved in the ubiquitin system, approximately 90% of which are E3 ubiquitin
ligases whose functions are highly dynamic and tightly controlled [1,13,28,30]. Given
their differences in structure and function, E3 ubiquitin ligases are generally classified into
4 groups: RING (Really Interesting New Gene), HECT (Homologous to the E6AP Carboxyl
Terminus), PUB (Plant U-box), and RBR (RING-in-Between-RING) [13,28,31,32]. Within
the last decade, advances have been made in illuminating how the UPS and particularly E3
ubiquitin ligases regulate chloroplast function. In this review, we focus on recent progress
in understanding the role of E3 ubiquitin ligases in the degradation of chloroplast proteins,
which is required for the proper maintenance of the chloroplast proteome.

2. Regulation of Chloroplast Function by E3 Ubiquitin Ligases
2.1. SP1, a Chloroplast-Localized RING-Type E3 Ligase

To maintain proper chloroplast function, >95% of chloroplast proteins are nuclear-
encoded and rely on chloroplast import machinery to enter the organelle [5,7,8]. This
import machinery is comprised of TOC and TIC protein complexes [9–11]. TOC complexes
participate in both protein recognition and import pathways, and as such, can exist in
various isoforms to mediate substrate specificity [4,33–35]. Studies have demonstrated the
role of an E3 ubiquitin ligase, suppressor of plastid protein import 1 (ppi1) locus 1 (SP1), in
alternating between different compositions of TOC isoforms to fine tune substrate-specific
import [36].

SP1, a chloroplast-localized RING-type E3 ligase and outer membrane protein (Omp),
was first identified in a mutagenesis screen investigating suppressors of ppi1, a Toc33
mutant shown to reduce chloroplast protein import and produce chlorosis [4,37]. The screen
displayed defects in Toc33 and Toc75 genes impacting the proper function of protein import
and plant growth [37]. Additional SP1 overexpression and mutant analysis confirmed its
role in reconfiguring TOC machinery by ubiquitination and subsequent degradation by the
26S proteasome [4,37]. For instance, decreased accumulation of photosynthetic proteins
and disproportionate TOC receptor levels were observed in sp1 single mutants which led
to poor photosynthetic performances affecting leaf senescence and de-etiolation [37]. In
the same study, SP1 was revealed to interact with and ubiquitinate several TOC proteins,
including the Arabidopsis thaliana (At) AtToc159, AtToc132, AtToc120, AtToc75, AtToc34,
and AtToc33 (Figure 1A) [37]. Recent studies propose additional roles for SP1 in chloroplast
development and protein import involving plastid interconversion events and tolerance to
various stresses (i.e., salt, osmosis, abiotic, and/or ROS production) [37,38].
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Figure 1. Schematic representation of the mechanisms of E3 ubiquitin ligases in regulating chloro-
plast function. (A) SP1-mediated degradation of TOC machinery through the CHLORAD pathway. 
The specific subunits targeted (Toc33/34/75/120/132 and Toc159) are represented as TOC (detailed 
in Section 2.1). (B) Light and dark pathways of the feedback mechanism involving COP1, HY5, and 
ABI4 in chloroplast development (detailed in Section 2.2). (C) Role of PUB4 in chloroplast degrada-
tion (detailed in Section 2.3). (D) CHIP-mediated degradation of chloroplast protease precursor pro-
teins in the cytosol (detailed in Section 2.4). (E) Simplified schematic of TT3.1-mediated degradation 
of TT3.2 under heat stress (detailed in Section 2.5). (F) CHLORAD pathway involving SP1 and 
CDC48 (detailed in Section 3). Ub, ubiquitin; OM, outer membrane; IM, inner membrane; PTM, 

Figure 1. Schematic representation of the mechanisms of E3 ubiquitin ligases in regulating chloroplast
function. (A) SP1-mediated degradation of TOC machinery through the CHLORAD pathway. The
specific subunits targeted (Toc33/34/75/120/132 and Toc159) are represented as TOC (detailed in
Section 2.1). (B) Light and dark pathways of the feedback mechanism involving COP1, HY5, and
ABI4 in chloroplast development (detailed in Section 2.2). (C) Role of PUB4 in chloroplast degradation
(detailed in Section 2.3). (D) CHIP-mediated degradation of chloroplast protease precursor proteins
in the cytosol (detailed in Section 2.4). (E) Simplified schematic of TT3.1-mediated degradation
of TT3.2 under heat stress (detailed in Section 2.5). (F) CHLORAD pathway involving SP1 and
CDC48 (detailed in Section 3). Ub, ubiquitin; OM, outer membrane; IM, inner membrane; PTM, plant
homeodomain type transcription factor with transmembrane domains. All images were created with
BioRender.com.
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Furthermore, a chloroplast-associated protein degradation pathway (CHLORAD)
was shown to target damaged TOC machinery [7]. In this pathway, SP1 interacts with
Omp85-type β-barrel channel protein suppressor of ppi1 locus2 (SP2) and cell division
control protein 48 (CDC48), a conserved AAA+ (ATPases associated with diverse cellular
activities) chaperone, to form a complex that mediates TOC protein degradation via protein
retrotranslocation and the UPS (Figure 1A) [7,39]. While SP1 is involved in mediating
the process of ubiquitination in the presence of stress or developmental cues, the exact
mode of target substrate recognition by SP1 remains largely elusive [7,37]. Interestingly, it
has been shown that SP1 can be auto-ubiquitinated, leading to its self-degradation by the
26S proteasome through CHLORAD [7]. However, the processes regulating SP1 and the
existence of other chloroplast-localized E3 ligases remain to be revealed [36].

Notably, a crucial role for SP1 and the CHLORAD pathway has been discovered in
the regulation of fruit ripening in tomato plants [33]. In view of this, two evolutionarily
conserved chloroplast SP1 homologues have been studied: SPL1 and SPL2, whose roles
are still largely unknown [37,40]. Knockdown expression analysis of SP1 and SPL2 demon-
strated delays in leaf senescence and fruit ripening while the opposite effect was apparent
in the overexpression analysis of SP1. In addition, SP1 knockdown and RNA analyses on
tomato fruit development exhibited changes in color, firmness, and ripening-related gene
levels [33]. This indicated that SP1 indirectly induces the retrograde signals required for
ripening, influences gene expression, and directly reconfigures TOC complexes to promote
the import of ripening-related proteins (i.e., ethylene synthesis, carotenoid synthesis, cell
wall modification, lipid metabolism, and chlorophyll catabolism proteins).

2.2. RING-Type E3 Ligase, COP1

Light is essential for all life and serves as an important signal not only for plant flow-
ering but also the expression of genes required to construct photosynthetically competent
chloroplasts [6,41–43]. In view of this, chloroplast populations are reliant upon light signals
in regulating multiple phytohormones, such as ethylene, brassinosteroid, cytokinin, abscisic
acid (ABA), auxin, and gibberellin, which play fundamental roles in modulating photosyn-
thetic processes and chloroplast development at the transcriptional level [44–46]. These
phytohormone pathways are directly or indirectly controlled by the UPS, and specifically
some ubiquitin ligases participate in hormone perception and signaling mechanisms [22,47].
Here, we highlight yet another role for the UPS-phytohormones crosstalk in chloroplast
function and development.

Importantly, the construction of photosynthetically competent chloroplasts also re-
quires the import of nuclear-encoded precursor proteins, chlorophyll biosynthesis, and
formation of the thylakoid membranes [6,48]. These activities rely on retrograde signaling
to manage the expression of photosynthesis-associated nuclear genes (PhANGs) [49–52].
One essential process controlled by the combination of light and phytohormone pathways is
seedling de-etiolation, a process of developing functional chloroplasts during the transition
from heterotrophic to photoautotrophic growth in plants [42,53–55]. To maintain properly
scheduled seedling de-etiolation and photomorphogenesis, Constitutive Photomorphogen-
esis 1 (COP1), a RING-type E3 ligase, regulates these processes during the dark-to-light
shift sensed by photoreceptors (i.e., phytochromes and cryptochromes) [56–59]. The activa-
tion of COP1 occurs in the dark when it accumulates in the nucleus and a complex with
Suppressor of PhyA-105 (SPA) is formed to polyubiquitinate activated photoreceptors and
positive regulators of light signaling [58,60–63]. Conversely, COP1-mediated degradation
of these positive regulators is inhibited upon light exposure [56,59,60]. In addition, the
coordinated efforts involved in chloroplast development also rely on the repressive abilities
of Phytochrome Interacting Factors (PIFs) (i.e., PIF1 and PIF3) and Ethylene-Insensitive 3
(EIN3) in repressing genes associated with chlorophyll biosynthesis and etiolation [64–66].

Recently, several studies have illuminated an intriguing connection linking hormone,
light, and retrograde signaling pathways to the fundamental role of COP1-mediated degra-
dation in chloroplast biogenesis [44,53,67]. ABA is a plant hormone participating in stress
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signaling and functions antagonistic to light signaling to control developmental processes
such as seed germination and stomatal movement [68–70]. A feedback mechanism regulat-
ing transcription factors ABA Insensitive 4 (ABI4) and Elongated Hypocotyl 5 (HY5), in-
volved in mediating retrograde signaling/plant development and promoting de-etiolation,
respectively, revealed that COP1 serves as a convergence point for the integration of light
and chloroplast signaling pathways [53,71]. Here, a chloroplast signal mediated by GUN1
and the N-terminus of chloroplast envelope-bound plant homeodomain type transcription
factor with transmembrane domains (PTM) activates ABI4. Accordingly, ABI4 and HY5 are
shown to regulate COP1 expression while COP1 targets ABI4 in the light and HY5 in the
dark for proteasomal degradation (Figure 1B). Regulating the functions of ABI4, HY5, and
COP1 ensures the establishment of functional chloroplasts; however, the exact mechanisms
underlying chloroplast retrograde signals remain unknown [53]. Similarly, increased COP1
activity was observed under long-term ABA treatments which also displayed elevated
levels of Golden2-Like1 (GLK1) degradation [67]. Importantly, the degradation of GLK1, a
key transcription factor in regulating PhANG expression encoding chlorophyll biosynthesis
enzymes, led to varying levels of leaf yellowing indicative of the suppression of chloroplast
development in a light-dependent manner under both long-term ABA and different light
intensity treatments [67,72].

Furthermore, COP1 also participates in managing several negative regulators in
chloroplast biogenesis. For instance, Brassinazole-Resistant 1 (BZR1), a negative regulator
of photomorphogenesis and chloroplast development, is indicated as a target of COP1. In
the light, active (dephosphorylated) BZR1 is inhibited by HY5 to enable the progression of
chloroplast development whereas COP1 targeted inactive forms of BZR1 in the dark for
degradation [44,73,74]. Moreover, COP1 has also been shown to interact non-proteolytically
with negative regulators of PhANGs, such as PIF3 and EIN3. For instance, COP1 prevents
the phosphorylation of PIF3 and preys on E3 ubiquitin ligases EIN3-Binding F-box protein
1 and 2 (EBF1 and EBF2) who target EIN3. Thus, stabilizing both PIF3 and EIN3 and
inhibiting their subsequent degradation [75]. Interestingly, COP1 engages with cytoplasmic
processing bodies (p-bodies), granules that can function to store, degrade, and translate
mRNA. Dcp5-1, a defective p-body mutant in Arabidopsis, coupled with cop1-6 mutants
demonstrated the need for COP1 in promoting the formation of p-bodies in the dark
that attenuate the translation of specific mRNAs for chlorophyll biosynthesis [76]. Taken
together, these recent studies have revealed that the role of COP1 extends far beyond its
involvement in light signaling. COP1 is a crucial component mediating substrate-specific
protein levels as well as light, hormone, and retrograde signaling pathways, all of which
are essential in chloroplast development and function.

2.3. PUB4, a Cytosolic Plant U-Box E3 Ubiquitin Ligase

Chloroplasts accumulate oxidative damage in the presence of reactive oxygen species
(ROS), such as singlet oxygen (1O2), superoxide anion radicals, and hydrogen peroxide
produced during photosynthesis [4,16,77,78]. This can occur when the organelle’s photo-
synthetic electron transport chain exceeds its capacity to transfer electrons under stressful
environmental conditions resulting in electron leakage [78–80]. Thus, quality control mech-
anisms are needed to respond to these injuries and enable chloroplast turnover for the
redistribution of nutrients [81–83]. To do so, chloroplasts can communicate information
about their condition with the nucleus by retrograde signaling pathways to influence
gene expression as well as utilize regulatory mechanisms such as the ubiquitin system or
autophagy [49–52,79,81,84].

While investigating the mechanisms underlying these processes, genetic screens inves-
tigating plastid ferrochelatase enzyme mutants and 1O2-induced chloroplast degradation
in Arabidopsis revealed Plant U-Box 4 (PUB4), a cytosolic E3 ubiquitin ligase that targets
unknown plastid proteins and chloroplasts for vacuolar-dependent degradation [79,85].
Here, Woodson et al. focused on ferrochelatase 1 and 2 (FC1 and FC2) which are conserved
plastid enzymes, at the heme-chlorophyll branch point in the tetrapyrrole biosynthetic
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pathway that function by converting protoporphyrin IX to heme; a conversion involved in
retrograde signaling [79,86,87]. In this study, mutant plant lines fc2-1 and fc2-2 promoted
photosynthetic cell death in the cotyledons and an overproduction of both 1O2 and a photo-
sensitizing intermediate, Proto, within chloroplasts [79]. Notably, elevated levels of nuclear
stress-associated genes, ROS, and damaged chloroplasts were reported in the fc2-1/pub4-6
double mutants. Most noteworthy was the observation that ROS-damaged chloroplasts
were specifically targeted by PUB4 and required a 1O2-generated signal involving PUB4
(Figure 1C) [79].

Recently, a study analyzed a variety of mutants in conjunction with an Arabidopsis
gun1-102 ftsh5-3 double mutant known to promote the degradation of damaged chloroplasts
and the formation of a variegated phenotype in the cotyledons and leaves. Chloroplast-
localized Genomes Uncoupled-1 (GUN1) protein mediates chloroplast-to-nucleus signals
whereas Filamentous temperature sensitive H5 (FtsH5) protein is involved in chloroplast
development and photosystem repair. Importantly, the gun1-102 ftsh5-3 pub4-7 triple mutant
prevented the degradation of damaged chloroplasts and did not produce the variegated
phenotype [88]. These findings also demonstrate PUB4 as a key player in chloroplast
degradation to maintain plastid protein homeostasis. Nonetheless, its target substrates and
the precise mechanisms by which it operates remain unknown [81].

Although various systems of protein degradation may indeed exist in chloroplasts, it
remains unclear how the organelle is maintained by different degradation systems simulta-
neously. An investigation into two major eukaryotic degradation pathways, autophagy
and the UPS, analyzed pub4-6 atg5-1 and pub4-6 atg7-2 double mutants [89]. Both double
mutants displayed higher levels of ROS, nitrogen and carbon starvation susceptibility, early
cell death, and lower seed production in comparison to wild-type or single mutants [85,89].
Cleavage assays investigating the activity of chloroplast autophagy displayed similar levels
of autophagy activity in both wild-type and pub4-6 mutants under high light treatment [89].
These findings revealed that PUB4-mediated degradation and autophagy act in parallel to
maintain proper control of the proteome [85,89]. Interestingly, several recent studies have
further revealed additional roles of PUB4 in plant growth and development, including
shoot and root meristem regulation, cytokinin signaling, and microbe-associated molecular
pattern-triggered immunity [90–93]. Given the versatility of its function, future studies may
shed light on how exactly PUB4 is able to regulate both plant and chloroplast pathways to
maintain homeostasis.

2.4. Chaperone-Dependent U-Box Containing E3 Ligase, CHIP

Owing to the large number of nuclear-encoded proteins comprising the chloroplast
proteome, coordinated transport following synthesis in the cytosol to the stroma is critical
for the proper function of the organelle [5,12,94]. Thereafter, these precursor proteins
are subjected to proteolytic processing for the cleavage of their transit peptides and un-
dergo folding, and/or sorting with the assistance of molecular chaperones to other com-
partments, such as the thylakoids [5,95–97]. Importantly, chloroplast precursor proteins
must be unfolded for translocation [98,99]. Left unfolded and unregulated, they tend to
form non-specific protein aggregates in the cytosol [97,100,101]. To date, plants contain
>20 chloroplast proteases, including chloroplast caseinolytic proteases (Clps) in the stroma
and FtsHs on the thylakoid membranes which are both involved in the removal of imported
and chloroplast-encoded proteins [102–106]. Remarkably, a cytosolic E3 ubiquitin ligase
was discovered to regulate these chloroplast proteases.

Carboxyl Terminus of the Hsp70-Interacting Proteins (CHIP), a highly conserved
chaperone-dependent and U-box containing cytosolic E3 ligase, targets chloroplast protease
precursor proteins to prevent their accumulation and aggregation in the cytosol [96,107–111].
Targeting these substrates requires the help of heat shock protein 70 or 90 (Hsp70 or Hsp90),
molecular chaperones who monitor misfolded proteins [96,112]. A study investigating
Arabidopsis ppi2 mutant plants, shown to impair protein import into chloroplasts, demon-
strated an accumulation of precursor proteins in the cytosol and an increase in Hsc70-4
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(an Hsp70 isoform) and CHIP expression [109]. The Hsc70-4 protein plays a critical role
in interacting with the transit peptides of target substrates [109]. Thenceforth, a complex
formation with CHIP and substrate bound Hsp70 or 90 will lead to an interaction with an E2
to facilitate the ubiquitination and degradation of target substrates via the 26S proteasome
(Figure 1D) [107,109,113].

FtsH and Clp proteases consist of multi-subunit complexes, whereby any alteration to
the production of these subunits may result in a disruption of the function and structure
of the protease [107,110,114]. AtCHIP can indirectly regulate chloroplast proteases Clp
and FtsH by interacting with their cytosolic precursors, including FtsH1, FtsH2, ClpP3,
ClpP4, and ClpP5 [107,110,111,113]. For instance, AtCHIP overexpression analyses demon-
strated a reduction in subunit precursor steady-state levels under high-intensity light
conditions [107,111]. Importantly, the overexpression of AtCHIP was also observed to
prevent the chlorotic phenotypes present in the suppression or overexpression of ClpP4 by
restoring proper subunit stoichiometry. These findings have been detected in transgenic to-
bacco plants as well, suggesting that CHIP plays a conserved role in maintaining chloroplast
protease homeostasis and establishing functional protease core complexes [96,107,111].

Recently, CHIP was reported to be strongly affected by ABA and play a crucial role in
stress and heat tolerance in Arabidopsis and tomato plants [115,116]. Notably, increased
temperature and heat stress has been attributed to a rise in misfolded chloroplast precursor
proteins which can also result in decreased protein import into chloroplasts [96,117]. In the
absence of CHIP, increased temperature sensitivity, reduced photosynthetic activity, and
elevated levels of photosynthetic protein aggregates were observed [96,116]. Interestingly,
these aggregates were still ubiquitinated, implying the existence of other unknown E3
ligases involved in chloroplast function [116]. Strikingly, CHIP is also able to interact
with two nuclear-encoded proteins important in chloroplast function. This includes the
ribulose-biphosphate carboxylases (Rubisco) small subunit (RbcS) and light harvesting
complex photosystem II subunit 6 (Lhcb6), which imply an additional role of CHIP in
maintaining the chloroplast proteome [118]. Taken together, these findings suggest the need
for a rapid response in preventing the accumulation of unimported chloroplast precursor
proteins and balancing protease activity under stressful conditions [96,116].

2.5. TT3.1, a Plasma Membrane-Localized RING-Type E3 Ligase

Plants are constantly exposed to changing temperatures [19,119,120]. High tempera-
tures may damage many metabolic, photosynthetic, and other various molecular pathways;
thus, inhibiting the growth and development of plants as a result of heat stress [119–122].
For that reason, the ability to sense temperature fluctuations is vital to quickly respond
and adapt to the environment [119,123,124]. An important advancement in understanding
various resistance mechanisms in plants led to the discovery of Thermo-Tolerance 3.1
(TT3.1). TT3.1 is a plasma membrane-localized RING-type E3 ligase necessary for the
ubiquitination and vacuolar degradation of TT3.2, a chloroplast precursor protein and
“potential thermosensor” protecting the thylakoids under increased temperatures [125].

In this study, overexpression analysis of TT3.1 or knockdown of TT3.2 both showed
a notable increase in grain yield under heat stress [125]. Strikingly, heat stress-induced
accumulation of TT3.2 has been shown to cause chloroplast damage, implicating the need
for high TT3.1 activity for its rapid degradation. TT3.1-mediated degradation of TT3.2 ob-
served under heat treatment and in transient expression and immunogold-labelling assays
revealed that TT3.1 will translocate to the endosomes to intercept and target chloroplast-
destined TT3.2 proteins to the endosomes for degradation via vacuoles (Figure 1E). Addi-
tionally, both TT3.1 and TT3.2 have been detected in valuable crops, such as rice, maize,
and wheat [125]. Thus, suggesting a likely conserved mechanism of thermosensing and
highlighting new possible strategies in engineering heat tolerant plants. Despite these
findings, the mechanisms underlying plasma membrane-to-chloroplast communication to
initiate the process of thermotolerance and how the accumulation of TT3.2 causes damage
remains unknown [125].
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3. Intra-Chloroplast Protein Degradation, the Role of CDC48

CDC48 is a highly conserved eukaryotic protein and ubiquitin-dependent segregase
belonging to the AAA+ family [7,39]. Located in the cytosol and nucleus, CDC48 plays
an important role in the CHLORAD pathway. Degradation via CHLORAD is achieved
by the coordinated actions of SP1, which directly ubiquitinates target substrates, and
retrotranslocation of the target substrates to the cytosol by SP2 and CDC48 proteins for
degradation via the 26S proteasome (Figure 1F). More specifically, CDC48 provides the
proper ATP-powered machinery needed to surpass the physical barriers presented by
the chloroplast envelope membranes upon protein extraction [7]. To function, CDC48
requires a complex formation with Ubiquitin Fusion Degradation1 (UFD1)-Nuclear Protein
Localization4 (NPL4), a heterodimeric cofactor that binds ubiquitin and small ubiquitin-like
modifier proteins [39].

Prior investigation of the CHLORAD pathway suggested that its ubiquitination targets
are those of the TOC apparatus [7]. Beyond chloroplast protein import machinery, exten-
sive ubiquitination was recently found in chloroplast fractions, and in greater abundance
under UPS or retrotranslocation inhibition. Among these ubiquitinated proteins were the
Rubisco large subunit (RbcL) and ATP synthase subunit beta (AtpB), both of which are
chloroplast encoded and degraded through the CHLORAD pathway [39]. Most recently,
an unpublished study by Sun et al. demonstrated additional targets of the CHLORAD
pathway involved in photosynthesis (i.e., electron transport, energy transduction, and car-
bon fixation), gene expression, and fatty acid/lipid metabolism [126]. One important target
substrate of interest is fatty acid export 1 (FAX1), an inner chloroplast envelope protein
and key player in fatty acid (FA) export. In the presence of defective CHLORAD-mediated
degradation of FAX1, disturbances in cellular metabolic homeostasis (i.e., a notable decrease
in cellular lipid species and chloroplast-produced FAs) were observed [126]. Altogether,
these findings raise questions about how intra-chloroplast proteins are selected by the
CHLORAD pathway and if intra-chloroplast proteins are marked by ubiquitin inside the
organelle [39,127]. The presence of internal chloroplast ubiquitination processes and a
better understanding of the precise functions of the CDC48 complex under a myriad of
stresses await further investigation.

4. Outlook

Within the last decade, the discovery of several connections between the UPS and
chloroplasts has largely altered our current views about the extent to which E3 ubiquitin
ligases can maintain their regulatory activities in plants. The study of E3s in chloro-
plast function, which has led to the identification of ubiquitinated chloroplast proteins, is
valuable for future agricultural applications. For instance, E3 ligases such as TT3.1 can po-
tentially be exploited and re-engineered to control the degradation of TT3.2 for chloroplast
survival under high temperatures [125]. Uncovering the diverse mechanisms underlying
the interactions of E3 ligases with chloroplast associated proteins will be significant to un-
veiling deeper insights into how the chloroplast proteome can be manipulated to promote
adaptation in the ever-changing environments.
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